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What is this talk about?

● Gauge invariance and the Brout-Englert 
Higgs effect

● Physical states
● Deviations and signals at experiments
● Implications beyond the standard model

Review: 1712.04721



What’s the deal?
-

Gauge symmetry
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● Consider an SU(2) with a single fundamental scalar
● Essentially the standard model Higgs

● Ws
● Higgs

● Couplings g, v, λ and some numbers f abc and t
a

ij

● Parameters selected for a BEH effect
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A toy model: Symmetries

● Consider an SU(2) with a single fundamental scalar
● Essentially the standard model Higgs
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● Consider an SU(2) with a single fundamental scalar
● Essentially the standard model Higgs
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A toy model: Symmetries

● Consider an SU(2) with a single fundamental scalar
● Essentially the standard model Higgs

● Local SU(2) gauge symmetry

● Global SU(2) custodial (flavor) symmetry
● Acts as (right-)transformation on the scalar field only
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Textbook approach

● Choose parameters to get a Brout-
Englert-Higgs effect

● Minimize the classical action
● Choose a suitable gauge and obtain 

‘spontaenous gauge symmetry 
breaking’: SU(2) → 1

● Get masses and degeneracies at tree-
level

● Perform perturbation theory
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The origin of the problem

● Elementary fields are gauge-dependent
● Change under a gauge transformation
● Gauge transformations are a human choice...
● ...and gauge-symmetry breaking is not there 

[Elitzur’75, Osterwalder & Seiler’77, Fradkin & Shenker’78]

● Just a figure of speech
● Actually just ordinary gauge-fixing

● Physics has to be expressed in terms of manifestly 
gauge-invariant quantities
● And this includes non-perturbative aspects…
● ...even at weak coupling [Gribov’78,Singer’78,Fujikawa’82]

[Fröhlich et al.'80,
 Banks et al.'79]
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Physical states

● Need physical, gauge-invariant particles
● Cannot be the elementary particles
● Non-Abelian nature is relevant

● Need more than one particle: Composite particles

● Higgs-Higgs, W-W, Higgs-Higgs-W etc.

● Has nothing to do with weak coupling

● Think QED (hydrogen atom!)
● Can this matter?

Wh W WW WWh
h

h

[Fröhlich et al.'80,
 Banks et al.'79]
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How to make predictions

● JPC and custodial charge only quantum numbers
● Different from perturbation theory

● Operators limited to asymptotic, elementary, 
gauge-dependent states

● Formulate gauge-invariant, composite operators
● Bound state structure – non-perturbative 

methods! - Lattice

[Fröhlich et al.’80,’81,
 Maas & Törek'16,’18,
 Maas, Sondenheimer & Törek'17]
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Lattice calculations

● Take a finite volume – usually a hypercube
● Discretize it, and get a finite, hypercubic 

lattice
● Calculate observables using path integral

● Can be done numerically
● Uses Monte-Carlo methods

● Artifacts
● Finite volume/discretization
● Masses vs. wave-lengths
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Masses from Euclidean propagators

● Masses can be inferred from propagators
● Long-time behavior relevant

● No exact results on time-like momenta

D(p)=〈O +
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How to make predictions

● JPC and custodial charge only quantum numbers
● Different from perturbation theory

● Operators limited to asymptotic, elementary, 
gauge-dependent states

● Formulate gauge-invariant, composite operators
● Bound state structure – non-perturbative 

methods?
● But coupling is still weak and there is a BEH
● Perform double expansion [Fröhlich et al.'80, Maas’12]

● Vacuum expectation value (FMS mechanism)
● Standard expansion in couplings
● Together: Augmented perturbation theory

[Fröhlich et al.’80,’81,
 Maas & Törek'16,’18,
 Maas, Sondenheimer & Törek'17
 Maas & Sondenheimer ‘20]
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1) Formulate gauge-invariant operator

     0+ singlet:

2) Expand Higgs field around fluctuations

3) Standard perturbation theory

4) Compare poles on both sides

⟨(h + h)(x)(h + h)( y)⟩

What about
this?

h=v+η

[Fröhlich et al.’80,’81
 Maas'12,’17
 Maas & Sondenheimer’20]
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What about the vector?

1) Formulate gauge-invariant operator

     1- triplet:

2) Expand Higgs field around fluctuations

⟨(τ
i h + Dμh)(x)(τ j h + Dμh)( y)⟩

Exactly one gauge boson 
for every physical state

Matrix from
group structure

c projects custodial
states to gauge
states
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i h + Dμh)(x)(τ j h + Dμh)( y)⟩=v2cij

ab
⟨Wμ
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(x)W b

( y)μ⟩+...
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Bound states as extended objects

● Bound states have an extension
● Can it be measured?
● Example: Vector
● Measure the form factor

● Comparison proton: mr~5 – Here: Lattice 
● Experimentally hard, but possible
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Bound states as extended objects
[Maas,Raubitzke,Törek’18]

● Physical mr~2 while gauge-dependent W has mr~0.5i

Tree-level

WWW form factor: Almost tree-level

Physical form factor

At high energies:
Probes substructure
Behaves like WWW

At low energies:
Dominated by bound state
with finite size
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Measuring the radius

● Two standard 
possibilities
● Form factor

● Difficult
● Higgs and Z need to be 

both produced in the 
same process

● Elastic scattering
● Standard vector boson 
scattering process at 
low energies

● Use this one

h h

WZ

WZ

WZ

WZ

WZ

h

[Maas, Raubitzek, Törek’18]

[Jenny, Maas, Riederer’22]
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Radius from elastic scattering in VBS

● Elastic region:
● s is the CMS energy in the initial/final 

ZZ/WW system
● Requires a partial wave analysis  

160 /180GeV⩽√s⩽250GeV

dσ
dΩ

=
1

64 π2 s
|M|

2

M (s ,Ω)=16π∑J
(2J+1) f J (s)PJ (cosθ)

f J (s)=ei δJ (s)sin (δJ (s))

a0 =
s→4mW

2

tan(δJ)/√s−4mW
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  from phase shifts below the
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Summary

● Field theory requires composite states
● Confirmed by lattice
● Analytically treatable with FMS
● Can have measurable impact

● Unaccounted-for SM background
● Or: Guaranteed discovery of the effect in the SM 

or a serious theoretical problem
● Invalidates many new physics scenarios
● FMS applicable to many theories

● MSSM, Quantum gravity, supergravity,...

Review: 1712.04721@axelmaas
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