New effects in precision
 Brout-Englert-Higgs physics

Axel Maas
$1^{\text {st }}$ of December 2022 Ljubljana
 Slovenia

NAWI Graz
Natural Sciences

Der Wissenschaftsfonds. @ @axelmaas@sciencemastodon.com

What is this talk about?

- Gauge invariance and the Brout-Englert Higgs effect
- Physical states
- Deviations and signals at experiments
- Implications beyond the standard model

What's the deal?
 Gauge symmetry

A toy model

A toy model: Higgs sector of the SM

A toy model: Higgs sector of the SM

- Consider an SU(2) with a single fundamental scalar

A toy model: Higgs sector of the SM

- Consider an SU(2) with a single fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Coupling g and some numbers $f^{a b c}$

A toy model: Higgs sector of the SM

- Consider an SU(2) with a single fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Higgs h_{i} h
- Coupling g and some numbers $f^{a b c}$ and $t_{a}^{i j}$

A toy model: Higgs sector of the SM

- Consider an SU(2) with a single fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Higgs h_{i} h
- Couplings g, v, λ and some numbers $f^{a b c}$ and $t_{a}^{i j}$

A toy model: Higgs sector of the SM

- Consider an SU(2) with a single fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Higgs h_{i} h
- Couplings g, v, λ and some numbers $f^{a b c}$ and $t_{a}^{i j}$
- Parameters selected for a BEH effect

A toy model: Symmetries

- Consider an SU(2) with a single fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{v} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

A toy model: Symmetries

- Consider an SU(2) with a single fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Local $\operatorname{SU}(2)$ gauge symmetry $W_{\mu}^{a} \rightarrow W_{\mu}^{a}+\left(\delta_{b}^{a} \partial_{\mu}-g f_{b c}^{a} W_{\mu}^{c}\right) \phi^{b}$ $h_{i} \rightarrow h_{i}+g t_{a}^{i j} \phi^{a} h_{j}$

A toy model: Symmetries

- Consider an SU(2) with a single fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Local $\operatorname{SU}(2)$ gauge symmetry
$W_{\mu}^{a} \rightarrow W_{\mu}^{a}+\left(\delta_{b}^{a} \partial_{\mu}-g f_{b c}^{a} W_{\mu}^{c}\right) \phi^{b}$ $h_{i} \rightarrow h_{i}+g t_{a}^{i j} \phi^{a} h_{j}$
- Global SU(2) custodial (flavor) symmetry
- Acts as (right-)transformation on the scalar field only $W_{\mu}^{a} \rightarrow W_{\mu}^{a}$ $h \rightarrow h \Omega$

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action
- Choose a suitable gauge and obtain 'spontaenous gauge symmetry breaking': SU(2) $\rightarrow 1$

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action
- Choose a suitable gauge and obtain 'spontaenous gauge symmetry breaking': SU(2) $\rightarrow 1$
- Get masses and degeneracies at treelevel

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action
- Choose a suitable gauge and obtain 'spontaenous gauge symmetry breaking': SU(2) $\rightarrow 1$
- Get masses and degeneracies at treelevel
- Perform perturbation theory

Physical spectrum

Perturbation theory
$0 \quad$ Mass

Physical spectrum

Perturbation theory
Scalar
$\backsim \Delta$ fixed charge

Custodial singlet

Physical spectrum

Perturbation theory

Scalar Vector

$\backsim \wedge$ fixed charge gauge triplet

- Both custodial singlets

The origin of the problem

- Elementary fields are gauge-dependent

The origin of the problem

- Elementary fields are gauge-dependent
- Change under a gauge transformation

The origin of the problem

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice

The origin of the problem

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice...
- ...and gauge-symmetry breaking is not there

The origin of the problem

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice...
- ...and gauge-symmetry breaking is not there
- Just a figure of speech
- Actually just ordinary gauge-fixing

The origin of the problem

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice...
- ...and gauge-symmetry breaking is not there
- Just a figure of speech
- Actually just ordinary gauge-fixing
- Physics has to be expressed in terms of manifestly gauge-invariant quantities

The origin of the problem

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice...
- ...and gauge-symmetry breaking is not there
- Just a figure of speech
- Actually just ordinary gauge-fixing
- Physics has to be expressed in terms of manifestly gauge-invariant quantities
- And this includes non-perturbative aspects

The origin of the problem

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice...
- ...and gauge-symmetry breaking is not there
- Just a figure of speech
- Actually just ordinary gauge-fixing
- Physics has to be expressed in terms of manifestly gauge-invariant quantities
- And this includes non-perturbative aspects...
- ...even at weak coupling [Gribov'7, Singeri7, fujikawa'82]

Physical states

- Need physical, gauge-invariant particles

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs, W-W
(W) W

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Has nothing to do with weak coupling

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Has nothing to do with weak coupling
- Think QED (hydrogen atom!)

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Has nothing to do with weak coupling
- Think QED (hydrogen atom!)
- Can this matter?

How to make predictions

- JPC and custodial charge only quantum numbers

How to make predictions

- J ${ }^{\text {PC }}$ and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure - non-perturbative methods!

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure - non-perturbative methods! - Lattice

Lattice calculations

- Take a finite volume - usually a hypercube

Lattice calculations

- Take a finite volume - usually a hypercube
- Discretize it, and get a finite, hypercubic lattice

Lattice calculations

- Take a finite volume - usually a hypercube
- Discretize it, and get a finite, hypercubic lattice
- Calculate observables using path integral
- Can be done numerically
- Uses Monte-Carlo methods

Lattice calculations

- Take a finite volume - usually a hypercube
- Discretize it, and get a finite, hypercubic lattice
- Calculate observables using path integral
- Can be done numerically
- Uses Monte-Carlo methods
- Artifacts
- Finite volume/discretization

Lattice calculations

- Take a finite volume - usually a hypercube
- Discretize it, and get a finite, hypercubic lattice
- Calculate observables using path integral
- Can be done numerically
- Uses Monte-Carlo methods
- Artifacts
- Finite volume/discretization
- Masses vs. wave-lengths

Lattice calculations

- Take a finite volume - usually a hypercube
- Discretize it, and get a finite, hypercubic lattice
- Calculate observables using path integral
- Can be done numerically
- Uses Monte-Carlo methods
- Artifacts
- Finite volume/discretization
- Masses vs. wave-lengths

Lattice calculations

- Take a finite volume - usually a hypercube
- Discretize it, and get a finite, hypercubic lattice
- Calculate observables using path integral
- Can be done numerically
- Uses Monte-Carlo methods
- Artifacts
- Finite volume/discretization
- Masses vs. wave-lengths
- Euclidean formulation

Masses from Euclidean propagators

Masses from Euclidean propagators

$$
D(p)=\left\langle O^{+}(p) O(-p)\right\rangle
$$

- Masses can be inferred from propagators

Masses from Euclidean propagators

$$
D(p)=\left\langle O^{+}(p) O(-p)\right\rangle \sim \frac{1}{p^{2}+m^{2}}
$$

- Masses can be inferred from propagators

Masses from Euclidean propagators

$$
\begin{gathered}
D(p)=\left\langle O^{+}(p) O(-p)\right\rangle \sim \frac{1}{p^{2}+m^{2}} \\
C(t)=\left\langle O^{+}(x) O(y)\right\rangle \sim \exp (-m \Delta t)
\end{gathered}
$$

- Masses can be inferred from propagators

Masses from Euclidean propagators

$$
\begin{gathered}
D(p)=\left\langle O^{+}(p) O(-p)\right\rangle \sim \sum \frac{a_{i}}{p^{2}+m_{i}^{2}} \\
C(t)=\left\langle O^{+}(x) O(y)\right\rangle \sim \sum a_{i} \exp \left(-m_{i} \Delta t\right) \\
\sum a_{i}=1 \wedge m_{0}<m_{1}<\ldots
\end{gathered}
$$

- Masses can be inferred from propagators
- Long-time behavior relevant
- No exact results on time-like momenta

Masses from Euclidean propagators

- Masses can be inferred from propagators
- Long-time behavior relevant
- No exact results on time-like momenta

Masses from Euclidean propagators

Propagator

- Masses can be inferred from propagators
- Long-time behavior relevant
- No exact results on time-like momenta

Masses from Euclidean propagators

- Masses can be inferred from propagators
- Long-time behavior relevant
- No exact results on time-like momenta

Physical spectrum

Perturbation theory

Scalar Vector

\backsim « fixed charge gauge triplet

- Both custodial singlets

Experiment tells that somehow the left is correct

Physical spectrum
Perturbation theory
Composite (bound) states
n ${ }^{\wedge}$ fixed charge gauge triplet

Experiment tells that somehow the left is correct Theory say the right is correct

Physical spectrum
Perturbation theory
Composite (bound) states
$\backsim \wedge$ fixed charge gauge triplet

Scalar	Vector
$\sim \Delta$ fixed charge	gauge triplet

Experiment tells that somehow the left is correct Theory say the right is correct There must exist a relation that both are correct

Physical spectrum

Perturbation theory
Scalar Vector
n ${ }^{\wedge}$ fixed charge gauge triplet
Mass

- Both custodial singlets

$$
h(x)^{+} h(x) \quad \text { h }
$$

Physical spectrum

Perturbation theory
Scalar Vector
n ${ }^{\wedge}$ fixed charge gauge triplet

Gauge-invariant

 Scalar singlet- Both custodial singlets Custodial singlet

$$
h(x)^{+} h(x) \text { h }
$$

Physical spectrum

Perturbation theory
Scalar Vector
n $\sqrt{\text { dixed charge gauge triplet }}$

Gauge-invariant
Scalar singlet

- Both custodial singlets Custodial singlet

Physical spectrum

Both custodial singlets Custodial singlet

Physical spectrum

Perturbation theory
Scalar Vector
n ${ }^{\wedge}$ fixed charge gauge triplet

Gauge-invariant

 Scalar singletVector
singlet

- Both custodial singlets Custodial singlet

$$
\operatorname{trt}^{a} \frac{h^{+}}{\sqrt{h^{+} h}} D_{\mu} \frac{h}{\sqrt{h^{+} h}}
$$

Physical spectrum

Perturbation theory
Scalar Vector
n ${ }^{\wedge}$ fixed charge gauge triplet

Gauge-invariant

 Scalar singletVector
singlet

- Both custodial singlets Custodial singlet Triplet

$$
\operatorname{tr} @ \frac{h^{+}}{\sqrt{h^{+} h}} D_{\mu} \frac{h}{\sqrt{h^{+} h}}
$$

Physical spectrum

Perturbation theory
Scalar Vector
n $\sqrt{\text { d }}$ fixed charge gauge triplet

Gauge-invariant
Scalar singlet

Equal!

Custodial singlet Triplet
Vector
singlet

Both custodial singlets

A microscopic mechanism

Why on-shell is important

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure - non-perturbative methods?

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure - non-perturbative methods?
- But coupling is still weak and there is a BEH

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure - non-perturbative methods?
- But coupling is still weak and there is a BEH
- Perform double expansion ${ }_{\text {FFroblich etal: } 80, \text { Mas }{ }^{122]}}$
- Vacuum expectation value (FMS mechanism)
- Standard expansion in couplings
- Together: Augmented perturbation theory

Augmented perturbation theory

1) Formulate gauge-invariant operator

Augmented perturbation theory

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$

Higgs field

Augmented perturbation theory

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

(h) n

Augmented perturbation theory

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

Augmented perturbation theory

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

Augmented perturbation theory

[Fröhlich et al.'80,'81
Maas'12,'17]

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle \\
+\left\langle\boldsymbol{\eta}^{+}(x) \boldsymbol{\eta}(y)\right\rangle\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle+O(g, \lambda)
\end{gathered}
$$

Augmented perturbation theory

[Fröhlich et al.'80,'81
Maas'12,'17]

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle+O(g, \lambda)
\end{gathered}
$$

4) Compare poles on both sides

Augmented perturbation theory

[Fröhlich et al.'80,'81
Maas'12,'17]

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

Bound state

$$
\begin{aligned}
& \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
& +\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)
\end{aligned}
$$

4) Compare poles on both sides

Augmented perturbation theory

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory Bound state mass

$$
\frac{\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle}{\left.\frac{\gamma \eta}{}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)}
$$

Trivial two-particle state
4) Compare poles on both sides

Augmented perturbation theory

[Fröhlich et al.'80,'81
Maas'12,'17]

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

Bound
state mass

$$
\begin{aligned}
& \frac{\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle}{+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)} v^{2} \eta^{+}(x) \eta(y)
\end{aligned}
$$

Higgs mass
4) Compare poles on both sides

Augmented perturbation theory

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{aligned}
& \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
& \quad+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle \quad \text { Standard }
\end{aligned}
$$

Perturbation Theory
3) Standard perturbation theory Bound state mass

$$
\frac{\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle}{+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)}
$$

4) Compare poles on both sides

Augmented perturbation theory

Mrohlich et al.'80,'81
Maas \& Sond

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{aligned}
& \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
& +v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{aligned}
$$

What about this?
3) Standard perturbation theory

$$
\begin{aligned}
& \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
& +\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)
\end{aligned}
$$

4) Compare poles on both sides

Consequences: The Higgs

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

Consequences: The Higgs

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

Consequences: The Higgs

$$
\begin{aligned}
&\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
&+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{aligned}
$$

Consequences: The Higgs

$\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle$
$+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle$

Consequences: The Higgs

$\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle$
$+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle$

Consequences: The Higgs

Consequences: The Higgs

Consequences: The Higgs

Consequences: The Higgs

What about the vector?

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$

What about the vector?

1) Formulate gauge-invariant operator

$$
1^{-} \text {triplet: }\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\left\langle\left(\tau^{i} h^{+} D_{\sharp} h\right)(x)\left(\tau^{j} h^{+} D_{\sharp} h\right)(y)\right\rangle=v^{2} c_{i j}^{a b}\left\langle W_{\sharp}^{a}(x) W^{b}(y)^{u}\right\rangle+\ldots
$$

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle=v^{2} c_{i j}^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y)^{u}\right\rangle+\ldots
$$

Matrix from group structure

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle=v^{2} c_{i j}^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y)^{u}\right\rangle+\ldots \\
=v^{2}\left\langle W_{\mu}^{i} W_{u}^{j}\right\rangle+\ldots
\end{gathered}
$$

Matrix from group structure

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle=v^{2} c_{i j}^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y)^{\mu}\right\rangle+\ldots \\
=v^{2}\left\langle W_{\mu}^{i} W_{\mu}^{j}\right\rangle+\ldots
\end{gathered}
$$

Matrix from group structure
c projects custodial states to gauge states

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle=v^{2} c_{i j}^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y)^{\mu}\right\rangle+\ldots
$$

c projects custodial states to gauge states

Exactly one gauge boson for every physical state

Phenomenological Implications

Can we measure this?

Bound states as extended objects

- Bound states have an extension
- Can it be measured?

Bound states as extended objects

- Bound states have an extension
- Can it be measured?
- Example: Vector

Bound states as extended objects

- Bound states have an extension
- Can it be measured?
- Example: Vector
- Measure the form factor

Bound states as extended objects

- Bound states have an extension
- Can it be measured?
- Example: Vector
- Measure the form factor $F\left(q^{2}, q^{2}, q^{2}\right)$

Bound states as extended objects

- Bound states have an extension
- Can it be measured?
- Example: Vector
- Measure the form factor

$$
F\left(q^{2}, q^{2}, q^{2}\right)=1-\frac{q^{2}\left\langle r^{2}\right\rangle}{6}+\ldots
$$

Bound states as extended objects

- Bound states have an extension
- Can it be measured?
- Example: Vector
- Measure the form factor

$$
\begin{gathered}
F\left(q^{2}, q^{2}, q^{2}\right)=1-\frac{q^{2}\left\langle r^{2}\right\rangle}{6}+\ldots \\
=F_{W W W}\left(q^{2}, q^{2}, q^{2}\right)+\ldots
\end{gathered}
$$

Bound states as extended objects

- Bound states have an extension
- Can it be measured?
- Example: Vector
- Measure the form factor

$$
\begin{gathered}
F\left(q^{2}, q^{2}, q^{2}\right)=1-\frac{q^{2}\left\langle r^{2}\right\rangle}{6}+\ldots \\
=F_{W W W}\left(q^{2}, q^{2}, q^{2}\right)+\ldots \\
=\frac{1}{q^{2}-m^{2}}+\ldots
\end{gathered}
$$

Bound states as extended objects

- Bound states have an extension
- Can it be measured?
- Example: Vector
- Measure the form factor

$$
\begin{gathered}
F\left(q^{2}, q^{2}, q^{2}\right)=1-\frac{q^{2}\left\langle r^{2}\right\rangle}{6}+\ldots \\
\quad=F_{W W W}\left(q^{2}, q^{2}, q^{2}\right)+\ldots
\end{gathered}
$$

$$
=\frac{1}{q^{2}-m^{2}}+\ldots
$$

- Comparison proton: mr~5

Bound states as extended objects

- Bound states have an extension
- Can it be measured?
- Example: Vector
- Measure the form factor

$$
\begin{gathered}
F\left(q^{2}, q^{2}, q^{2}\right)=1-\frac{q^{2}\left\langle r^{2}\right\rangle}{6}+\ldots \\
=F_{W W W}\left(q^{2}, q^{2}, q^{2}\right)+\ldots \\
=\frac{1}{q^{2}-m^{2}}+\ldots
\end{gathered}
$$

- Comparison proton: mr~5 - Here: Lattice

Bound states as extended objects

- Bound states have an extension
- Can it be measured?
- Example: Vector
- Measure the form factor

$$
\begin{gathered}
F\left(q^{2}, q^{2}, q^{2}\right)=1-\frac{q^{2}\left\langle r^{2}\right\rangle}{6}+\ldots \\
=F_{W W W}\left(q^{2}, q^{2}, q^{2}\right)+\ldots \\
=\frac{1}{q^{2}-m^{2}}+\ldots
\end{gathered}
$$

- Comparison proton: mr~5 - Here: Lattice
- Experimentally hard, but possible

Bound states as extended objects

[Maas,Raubitzke,Törek'18]

Vector form factor

Bound states as extended objects

[Maas,Raubitzke,Törek'18]

Vector form factor

Bound states as extended objects

[Maas,Raubitzke,Törek'18]

Vector form factor

Bound states as extended objects

[Maas,Raubitzke,Törek'18]
Vector form factor

Bound states as extended objects

[Maas,Raubitzke,Törek'18]

Vector form factor

- Gauge-dependent W has mr~0.5i

Bound states as extended objects

[Maas,Raubitzke,Törek'18]
Vector form factor

- Gauge-dependent W has mr~0.5i

Bound states as extended objects

Vector form factor

- Gauge-dependent W has mr~0.5i

Bound states as extended objects

Vector form factor

- Physical $m r \sim 2$ while gauge-dependent W has $m r \sim 0.5 i$

Measuring the radius

- Two standard possibilities

Measuring the radius

- Two standard possibilities
- Form factor
- Difficult
- Higgs and Z need to be both produced in the same process

Measuring the radius

- Two standard possibilities
- Form factor
- Difficult
- Higgs and Z need to be both produced in the same process
- Elastic scattering
- Standard vector boson scattering process at low energies
- Use this one

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

$$
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|M|^{2}
$$

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

Cross section

$$
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|M|^{2}
$$

Matrix element

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

Matrix element $\quad d \Omega=\frac{1}{64 \pi^{2} s}$

$$
-M(s, \Omega)=16 \pi \sum_{J}(2 J+1) f_{J}(s) P_{J}(\cos \theta)
$$

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

Matrix element

$$
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|M|^{2}, \begin{aligned}
& \text { Partial wave } \\
& \text { amplitude }
\end{aligned}
$$

$$
-M(s, \Omega)=16 \pi \sum_{J}(2 J+1) f_{J}(s) P_{J}(\cos \theta)
$$

Legendre polynom

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

$$
\begin{gathered}
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|M|^{2} \\
M(s, \Omega)=16 \pi \sum_{J}(2 J+1) f_{J}(s) P_{J}(\cos \theta)
\end{gathered}
$$

Partial wave

$$
-f_{J}(s)=e^{i \delta_{J}(s)} \sin \left(\delta_{J}(s)\right)
$$

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

$$
\begin{gathered}
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|M|^{2} \\
M(s, \Omega)=16 \pi \sum_{J}(2 J+1) f_{J}(s) P_{J}(\cos \theta)
\end{gathered}
$$

Partial wave

$$
-f_{J}(s)=e^{i \delta_{J}(s)} \sin \left(\delta_{J}(s)\right)
$$

Phase shift

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

$$
\begin{gathered}
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|M|^{2} \\
M(s, \Omega)=16 \pi \sum_{J}(2 J+1) f_{J}(s) P_{J}(\cos \theta) \\
f_{J}(s)=e^{i \delta_{J}(s)} \sin \left(\delta_{J}(s)\right) \\
a_{0} \stackrel{4 m_{W}^{2}}{=} \tan \left(\delta_{J}\right) / \sqrt{s-4 m_{W}^{2}}
\end{gathered}
$$

Phase shift

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

$$
\begin{gathered}
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|M|^{2} \\
M(s, \Omega)=16 \pi \sum_{J}(2 J+1) f_{J}(s) P_{J}(\cos \theta) \\
f_{J}(s)=e^{i \delta \delta_{J}(s)} \sin \left(\delta_{J}(s)\right) \\
s \rightarrow 4 m_{w}^{2} \\
a_{0} \stackrel{\operatorname{lan}}{ }=\tan \left(\delta_{J}\right)!\sqrt{s-4 m_{W}^{2}}
\end{gathered}
$$

Scattering length~"size"
Phase shift

Impact of a finite size of the Higgs

Consider the Higgs: $J=0$

Impact of a finite size of the Higgs

- Consider the Higgs: J=0

Impact of a finite size of the Higgs

Contribution from finite size

- Consider the Higgs: $J=0$
- Mock-up effect
- Scattering length $1 /(40 \mathrm{GeV})$

Impact of a finite size of the Higgs

- Consider the Higgs: J=0
- Mock-up effect
- Scattering length $1 /(40 \mathrm{GeV})$

Excited states on the lattice

- Each quantum number channel has a spectrum
- Discreet in a finite volume

Excited states on the lattice

- Each quantum number channel has a spectrum
- Discreet in a finite volume
- States can be either stable, excited states,

Elastic
Excited state

Ground state

Excited states on the lattice

- Each quantum number channel has a spectrum
- Discreet in a finite volume
- States can be either stable, excited states, resonances

』

Inelastic

Elastic
Excited state

Ground state

Excited states on the lattice

- Each quantum number channel has a spectrum
- Discreet in a finite volume
- States can be either stable, excited states, resonances or scattering states
Δ

$------\quad$ Inelastic

Resonances or scattering states

Elastic
Excited state

Ground state

Excited states on the lattice

Excited states on the lattice

- Polynominal (inverse) volume dependence
- Width and nature from phase shifts below the inelastic threshold

Elastic
Excited state

- if stable against decays into other channels

Inelastic

Exponential volume dependency
Resonances or scattering states
\qquad

Ground state

Excited states on the lattice

Above inelastic threshold still complicated

- Polynominal (inverse) volume dependence
- Width and nature from phase shifts below the inelastic threshold

Inelastic
 Resonances or scattering states

Elastic
Excited state

Ground state

Excited states on the lattice

Spectrum

Excited states on the lattice

Spectrum

Excited states on the lattice

Spectrum

Inelastic threshold: H->2H

Elastic threshold: $\mathrm{H}->2 \mathrm{~W}$
Ground state

Excited states on the lattice

```
Spectrum
```

Scattering states

Excited states on the lattice

```
Spectrum
```

Scattering states

Inelastic threshold: $\mathrm{H}->2 \mathrm{H}$
Avoided level crossing Identification and widths from phase shifts

Elastic threshold: H->2W
Ground state
Measuring these levels as a function of volume allows the extraction of the phase shift in each quantum number channel

Excited states on the lattice

Spectrum

Scattering states

Inelastic threshold: H->2H
Avoided level crossing Identification and widths from phase shifts

Elastic threshold: H->2W
Ground state
Measuring these levels as a function of volume allows the extraction of the phase shift in each quantum number channel

$$
\tan \delta(E)=\frac{L \pi^{3 / 2} \sqrt{E^{2} / 4-m^{2}}}{2 \pi a Z\left(1, E^{2} / 4-m^{2}\right)}
$$

Excited states on the lattice

Spectrum

Scattering states

Inelastic threshold: $\mathrm{H}->2 \mathrm{H}$
Avoided level crossing Identification and widths from phase shifts
Elastic threshold: H->2W
Ground state
Measuring these levels as a function of volume allows the extraction of the phase shift in each quantum number channel

$$
\begin{aligned}
& \tan \delta(E)=\frac{L \pi^{3 / 2} \sqrt{E^{2} / 4-m^{2}}}{2 \pi a Z\left(1, E^{2} / 4-m^{2}\right)} \\
& \text { Geometry }
\end{aligned}
$$

Impact on the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
- Parameters slightly different
- Higgs too heavy (145 GeV) and too strong weak coupling
- Qualitatively but not quantitatively

Impact on the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
- Parameters slightly different
- Higgs too heavy (145 GeV) and too strong weak coupling
- Qualitatively but not quantitatively

Impact on the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
- Parameters slightly different
- Higgs too heavy (145 GeV) and too strong weak coupling
- Qualitatively but not quantitatively

Impact on the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
- Parameters slightly different
- Higgs too heavy (145 GeV) and too strong weak coupling
- Qualitatively but not quantitatively

Impact on the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
- Parameters slightly different
- Higgs too heavy (145 GeV) and too strong weak coupling
- Qualitatively but not quantitatively

Impact on the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
- Parameters slightly different
- Higgs too heavy (145 GeV) and too strong weak coupling
- Qualitatively but not quantitatively

Generic behavior: DIS-like

Generic behavior: DIS-like

Generic behavior: DIS-like

Generic behavior: DIS-like

Generic behavior: DIS-like

Generic behavior: DIS-like

Summary

- Field theory requires composite states

Summary

- Field theory requires composite states
- Confirmed by lattice
- Analytically treatable with FMS
- Can have measurable impact

Summary

- Field theory requires composite states
- Confirmed by lattice
- Analytically treatable with FMS
- Can have measurable impact
- Unaccounted-for SM background

Summary

- Field theory requires composite states
- Confirmed by lattice
- Analytically treatable with FMS
- Can have measurable impact
- Unaccounted-for SM background
- Or: Guaranteed discovery of the effect in the SM or a serious theoretical problem

Summary

- Field theory requires composite states
- Confirmed by lattice
- Analytically treatable with FMS
- Can have measurable impact
- Unaccounted-for SM background
- Or: Guaranteed discovery of the effect in the SM or a serious theoretical problem
- Invalidates many new physics scenarios

Summary

- Field theory requires composite states
- Confirmed by lattice
- Analytically treatable with FMS
- Can have measurable impact
- Unaccounted-for SM background
- Or: Guaranteed discovery of the effect in the SM or a serious theoretical problem
- Invalidates many new physics scenarios
- FMS applicable to many theories
- MSSM, Quantum gravity, supergravity,...

