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Chapter 1

Introduction

Linear algebra, as a generalization of geometry, is the mathematical description of space
(in a very general sense). I. e., it describes positions in space in an abstract sense. More
importantly, linear algebra can be used to describe also relations between different posi-
tions, and especially classes of relations. It is this feature, which makes linear algebra so
important to physics, as physical statements, in a very general sense, are just descriptions
of how relations between different positions, or generally events, look like. As a conse-
quence, linear algebra is the language of all of physics, much more important than e. g.
analysis or even more complex mathematical concepts. Linear algebra is required in the
most simple examples of classical mechanics from the antiques, and is the basic elements
on which quantum physics, general relativity and any other modern theory of physics is
build. Thus linear algebra is the most essential mathematical tool for a physicist, no mat-
ter whether they are theoreticians or experimentalists. Also many mathematical problems
from other fields, e. g. analysis, can be sufficiently approximated by linear algebra to ob-
tain all relevant information. Thus, also from a practical point of view linear algebra is
indispensable.

This importance has led to an enormous development of the underlying concepts of
linear algebra. Thus, much more is known about its topic than can be covered in a single
lecture. The aim is thus to introduce all the necessary basic concepts, such that extensions
can be acquired as needed. This is particularly important as linear algebra transcends in
its more abstract forms easily any intuitive access by everyday experience. Though much
of this may seem esoteric at first, many of these levels of abstraction play a role in modern
physics. The question to be posed must therefore always be: “What are the structures?”
rather than “What are the numerical values?”.
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Chapter 2

Vectors in space

Though linear algebra can become quickly quite abstract, it is best to use an intuitively
accessible example wherever possible to understand the concepts. The most useful example
is actually ordinary space, i. e. the ordinary three-dimensional space with length, width,
and height. This space will therefore often be used to present examples, but it is equally
important to also understand the generalization to more abstract spaces.

The aim of this chapter is to introduce many concepts of linear algebra using this space,
before generalizing them in the following chapters. This approach will also be rehearsed
repeatedly for many other concepts in later chapters.

2.1 Vectors in the 3-dimensional real space

So, start with a three-dimensional space. This space has three directions, the x-direction,
the y-direction, and the z-direction. Thus, to identify a position in this space, we need three
numbers signifying the position in each direction. To make these numbers meaningful, they
need to be relative to a starting point, the so-called origin. They then define how far1 the
point in every direction is away from the origin. Conventionally, positive numbers will be
to the right of the origin, and negative numbers to the left of the origin for every direction.
Since the space is continuous, these numbers should be elements of the real numbers R.

Hence, an ordered tuple

~v =

xy
z

 (2.1)

identifies uniquely a point in space, and is called a vector. Such a vector will be signified
by the ~ above its designation v, to separate it from normal numbers.

The full space, i. e. the set of all possible vectors, is therefore called the (vector) space
R3. The exponent gives the number of directions, and the R stands for the type of distance-
measuring numbers. The ordering is conventional, but widespread. To refer to an element
also an index notation is used, (~v)1 = v1 = x, (~v)2 = v2 = y, and (~v)3 = v3 = z. The

1Note that no units, like meters, will be attached in this lecture, but they could be used if wished for.
From the mathematical point of view (human-made) units are irrelevant.

2



Chapter 2. Vectors in space 3

elements vi of a vector are also called its components. Writing a vector instead of as a
column vector as a row vector, (x, y, z), is also possible. To distinguish both versions, the
row vector is called the transpose of the column vector and indicated by an upper-placed
T after the vector, and vice versa. Thus for (2.1) ~v = (x, y, z)T and ~vT = (x, y, z). This
will have much more significance later on.

However, so far this is not sufficient to really identify the point, since this just gives
three values. It is therefore necessary to explicitly specify a point of reference, the origin
of the space, which is given by vi = 0, or ~v = ~0, the zero vector. Then, the numbers give
the distance in the three possible directions x, y, and z.

These values are then called coordinates with respect to the origin, though usually only
coordinates. It is possible to think of the space filled up by a grid, a coordinate system,
such that every point becomes a unique set of values. Especially, a vector

~v =

1
0
0

 , (2.2)

would then be interpreted as a connection from the origin along the x-direction of the
coordinate system to the point with the given coordinates. Likewise a vector (2,−3, 4)T

denotes some point in this space.
Vectors like (2.2), where the ith vector has only an element in the ith component of

size 1, and all other components being zero, are somewhat special, as they point along a
particular direction only. They are therefore called base vectors, and are denoted as ~ei
Thus (2.2) is also written as ~e1. The others are ~e2 = (0, 1, 0)T and ~e3 = (0, 0, 1)T .

When put into a coordinate system, a vector can hence be visualized as a straight
arrow pointing from the origin to the described point. The vectors of type (2.2) can then
be thought of as pointing along the coordinate axis, or even defining the coordinate axis.

2.2 Paths

The most elementary object to be described by vectors are paths, i. e. a possibility to
describe how to get from one point described by the vector ~a to another point described
by a vector~b. Every point in between the two vectors will also be described by a vector, and
differing paths between the starting vector and end vector will have a different sequence
of points.

This requires to somehow make statements where along the path a position is. The
most convenient description is that of a vector ~p which is parameterized by a parameter t
such that

~p(0) = ~a

~p(1) = ~b

then moving in the interval t = [0, 1] describes the path. While a pretty standard choice,
the parameter could also vary over some other interval, including [−∞,∞], depending on
context.
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Of course, this requires all components to be functions of the parameter t, ~p(t) =
(p1(t), p2(t), p3(t))

T . Properties of these component function determine whether the path
is smooth or has edges and so on. Any kind of function would be possible, provided it is
defined in the interval. Note that mathematically there may be jumps in the path, though
in the context of physics this is rarely useful.

Examples for such paths for t ∈ [0, 1] are

~p1(t) =

t0
0


~p2(t) =

cos(2πt)
sin(2πt)

0


~p3(t) =

cos(2πt)
sin(2πt)

t


~p4(t) =

(1− 2t)θ
(
1
2
− t
)

(2t− 1)θ
(
t− 1

2

)
0


θ(t) =

{
1 if t ≥ 0
0 if t < 0

(2.3)

where θ(t) is called the step function or Heaviside function2. The path ~p1 describes a
movement from the origin to the point (1, 0, 0)T along the x-axis. The path ~p2 describes a
path along the complete unit circle in the x-y-plane, starting and ending in the same point
(1, 0, 0)T , and centered on the origin ~0. Such a path, where start and end coincide, is called
a closed path. The path ~p3 describes a single winding of a screw along the z-axis, where
the winding extends over one unit along the z-axis. The path ~p4 starts at (1, 0, 0)T , moves
then along the x-axis to the origin, and after making a sharp turn by π/2 to (0, 1, 0)T .

In general, a path is given by a vector with components fi(t), where the fi are arbitrary
functions. Paths are called continuous (and differentiable), if all component functions are
continuous (and differentiable).

The idea of paths is thus to replace components with fixed values by functions. This
generalizes. Whenever there are components in the following they can be upgraded to
describe paths by replacing them with functions of a parameter varying in some interval.
It is sometimes also useful to consider a path as a set of the vectors along the path, and
the same is also possible for its components.

2.3 Scalar multiplication and length of a vector

Coordinate axes are usually extended from negative infinity to positive infinity. To create
them from the vectors pointing in their direction, (2.2), it is necessary to somehow have

2There are cases, in which it is defined that θ(0) = 1/2, instead of 1.
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vectors of arbitrary length. Of course, this could be implemented by an (infinite) set of
vectors. More natural is to permit to scale a vector to give it a particular length. This can
be achieved by defining the so-called scalar multiplication of a vector by a real number.
This real number is called a scalar for reasons which will become clear in chapter 8.

The definition of a multiplication of a scalar a and a vector ~v is

a~v = a

v1v2
v3

 =

av1av2
av3

 ,

i. e. every component is multiplied by the same real number a, (a~v)i = avi. In the same
way, division by a scalar a 6= 0 is defined as a multiplication with the real number 1/a.

Thus, by having a scaling factor it is now possible to address every point along a line
just by tuning a prefactor. This implies that the direction of the vector has been separated
from the length of a vector. The length can be thought of as just the usual distance from
the origin. Thus, the length of a vector can be defined as

|~v| = +
√
x2 + y2 + z2, (2.4)

where the notation on the left-hand side implies calculating the length. Hence, e. g. all
~ei have length 1. Sometimes the length of a vector is denoted by the same symbol, but
without the ~ , i. e. the length of ~v is v = |~v|. This is distinguished from the components
of the vector by the absence of an index.

Note that the square of the length of a vector often appears, and is therefore often
abbreviated as |~v|2 = ~v2 = v2. In an abuse of language ~v2 is often called the square of the
vector ~v. But this is not a square, nor a multiplication at all.

The direction of a vector and its length can now be separated. Take any vector which
has a non-vanishing length. Then it is possible to write

~v = |~v|~e~v

~e~v =
1

|~v|
~v.

The vector ~e~v has by definition unit length, and is therefore called a unit vector in direction
of ~v. The concept that now every point along this direction can be accessed by just scalar
multiplication of ~e~v is formulated by talking of a vector ~w = a~e~v obtained by scalar
multiplication with a number a from ~e~v as being a representative of a ray. I. e. a ray is
defined as the set {~e~v,R}, and thus a direction and any possible length.

As an example, the three coordinate axes are given by the three rays {~ei,R}.

2.4 Vector addition

A quite often appearing problem is that one needs to go first to a given point and then
from there on to a second point, and finally to obtain the vector to this new point.
Mathematically, this could be described by first describing a point, the first aim. Then,
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describe the second point relative to the first point, i. e. create the vector for this second
part of the path. Finally, one should get back to a description with the original origin.
Geometrically, this corresponds to a parallel displacement of the vector, by putting its
start at the end of the first vector, and then draw a vector connecting the beginning of
the first vector with the end of the second vector.

To obtain a suitable formulation, it is best to first have a look at a much simpler space,
R1 = R. In this case, all vectors are just simple real numbers. Then the problem boils
down to first go to a value x, and then onward an amount x′. The total distance from the
origin is then x + x′, thus the coordinates have just been added. The three coordinates
in R3 are independent. The same could be repeated by just doing the same, piece by
piece, independently for all three coordinates. Thus, the process of adding two vectors is
performed by adding the individual components

~v = ~x+ ~y =

x1x2
x3

+

y1y2
y3

 =

x1 + y1
x2 + y2
x3 + y3

 =

v1v2
v3

 ,

or vi = xi + yi. A good test is to see what happens if the goal is to first go to a point,
and then go back to the origin. Then, both vectors should have the same, but negative,
components, and thus xi − xi = 0, as required.

If one now uses the three base vectors ~ei, any vector can thus be written as

~v = v1~e1 + v2~e2 + v3~e3 =
3∑
i=1

vi~ei =
∑
i

vi~ei. (2.5)

Thus, using scalar multiplication and vector addition every vector can be decomposed into
the base vectors, emphasizing the reason for their name, and its components.

The fact that every vector can be written as in (2.5) is summarized by calling the set
{~ei}, usually abbreviated as just ~ei if the context is unambiguous, a basis for the vectors,
and, by extension to the set of all vectors, for the space R3. These vectors have, by
construction, unit length, and are therefore unit vectors along the three directions.

Since vector addition has now been mapped to the addition of the individual compo-
nents, the subtraction of vectors can be introduced immediately as the subtraction of the
individual components, i. e.

~a−~b =
3∑
i=1

(ai~ei − bi~ei) =
3∑
i=1

(ai − bi)~ei.

Thus, geometrically subtraction corresponds to traversing one of the vectors backwards.
Especially, ~a−~a = ~0, i. e. traversing a vector first forward and then backwards returns to
the origin ~0.
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2.5 Compactified notation

Since expressions like (2.5) appear very often often, it is useful to introduce an abbrevia-
tion,

3∑
i=1

xi~ei ≡ xi~ei,

the so-called Einstein summation convention. In this case, if the limits of the summation
are clear from the context, any doubly repeated indices, and only those, are summed over
the range given by the context. Single indices, or indices appearing more than twice, are
never summed automatically. Thus, e. g., neither ai nor aibicidi implies summation. It
also only applies to products, and thus a statement like, e. g., ai + bi does not imply
summation over i. However, for aibi + cidi both terms will be summed individually, and
thus correspond to

aibi + cidi =
3∑
i=1

aibi +
3∑
i=1

cidi.

Furthermore, a statement like a2i is thus interpreted as
∑3

i=1 aiai. Thus, in particular,

v2i = vivi =
3∑
i=1

vivi =
3∑
i=1

v2i .

This needs to be looked at quite carefully. Consider, e. g.,

(v21 + v22 + v23)(w2
1 + w2

2 + w2
3) =

(
3∑
i=1

v2i

)(
3∑
j=1

w2
j

)
=

3∑
i=1,j=1

viviwjwj = viviwjwj,

where the summation convention has only been applied in the last step. Thus, when
introducing indices to keep track of the component formulation of, e. g., ~v2 it is necessary to
introduce always an independent pair of indices - this can be summarized in the statement
that such, so-called dummy, indices are only created and removed pairwise.

This Einstein summation convention is essentially ubiquitous in (theoretical) physics,
and will be used from now on throughout, except when noted otherwise.

A useful quantity in this context is the so-called Kronecker δ-function, which is defined
as

δij = δji =

{
1 for i = j
0 otherwise

(2.6)

Thus, the Kronecker δ-function has two arguments, two integer indices, and it is only
nonvanishing if both coincide. It is also symmetric in both indices, i. e. when exchanging
both indices, its value does not change.

With it, it is e. g. possible to write the components of the vectors ~ei conveniently as

(~ei)j = δij.
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where the index j on the parentheses requires to take the jth component of the vector
inside the parentheses, and i denotes which vector. This notation is common, and will
reappear often.

Another context, in which the Kronecker-δ will often appear, is that it collapses double
sums. E. g. ∑

i,j

aibjδij =
∑
i

aibi,

or, with using the summation convention

aibjδij = aibi.

Thus, a Kronecker-δ allows to remove one summation, if it is summed over both its indices.
It is often convenient to express squares with the summation convention, and introduce
and remove sums using the Kronecker-δ

aiai = a2i = aiajδij.

All of this are the same expression, just written in different ways.
Other useful properties of the δ functions are, e. g.

δii =
N∑
i=1

δii = N

δi,i±1 = 0

δi+1,i−1 = 0,

where the additional “,” in the last two expressions was inserted to separate the operations
on the two indices clearly.

2.6 Scalar and vector product in three dimensions

While addition and multiplication are straightforward extensions of their counterparts
in one dimension, there is no a-priori obvious extension of how to multiply two vectors.
Of course, since addition and subtraction have been defined component-wise, it appears
tempting to just define multiplication and division also by just multiplying or dividing the
components. Though this is possible, the result has no simple geometrical interpretation
like the addition and subtraction of vectors. It also turns out to be not useful for anything
than being mere mathematical constructions.

Instead, it turns out to be better to construct geometrical operations on vectors which
can be viewed as generalized multiplications. They are quite different from the usual
notation of multiplication, but will coincide with the ordinary one in one dimension, that
is with the usual numbers.

However, there are two paths how to generalize multiplication. At first it may seem
more natural to generalize multiplication such that the product of two vectors is again
a vector, but it turns out that the more natural generalization is yielding again a real
number, just like ordinary multiplication does.
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2.6.1 Scalar product

This first product is called scalar product, because it yields a scalar, i. e. an ordinary
number. It is also sometimes called dot product or, for more fundamental reasons to be
skipped here, inner product.

To introduce it, reduce for the moment the number of dimensions to two rather than
three. This will not affect in any way anything of the topics discussed beforehand in any
qualitative way, except for counting everywhere only up to two instead of three.

Now consider two vectors ~a and ~b. A geometrical question, which can be posed is what
is the angle γ between the two vectors. Since they are just two lines in a plane, they can
be extended by a third line to yield a triangle, where the third vector should be called ~c.
It is given by the difference of both vectors, ~c = ~a −~b, where the relative sign will turn
out to be irrelevant. Then, elementary geometry yields

~c2 = ~a2 +~b2 − 2|~a||~b| cos γ.

Rewriting this in components, using the expression for the length of a vector from section
2.3, yields

c2i = (ai − bi)2 = a2i + b2i − 2aibi = a2i + b2i − 2|~a||~b| cos γ.

Simplifying this equation yields

aibi = |~a||~b| cos γ.

This implies that the sum of the product of the components of two vectors equals the
length of two vectors multiplied with the enclosed angle. Moreover, this implies for the
corresponding unit vectors

(~e~a)i(~e~b)i = cos γ,

and thus the (cosine of the) desired angle is just given by this product-sum of the compo-
nents of the unit vectors in the direction of the two original vectors.

This fact motivates to introduce the scalar product ·, defined as

~a ·~b = ~a~b = aibi = |~a||~b| cos γ, (2.7)

where the second equality is a common abbreviation of the · operation. This prescription
is a map of two vectors to a real number, i. e. a scalar. It is zero, if both vectors are
orthogonal to each other, and equals the product of their lengths if they are parallel to
each other. Thus, it reduces to the ordinary product of two real numbers in the special
case of a one-dimensional space.

This product is also intimately linked to the length of a vector, since

~a · ~a = aiai = |~a|2. (2.8)

Hence, taking the scalar product of a vector with itself yields the length squared of the
vector, since the vector is parallel to itself. Moreover, by construction, the scalar product
of a vector with itself is zero if and only if the vector is the zero vector, and positive
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otherwise. It is hence a positive semi-definite operation. This does not imply that the
scalar product of two vectors is always positive, but only for a vector with itself. E. g. the
product of the two vectors (1, 0)T and (−1, 0)T is −1.

Since two vectors are necessarily always in a plane, also in three dimensions an enclosed
angle can be determined in the same way. In fact, the whole construction done for two
dimensions is valid identically in three dimensions, and thus the definition of the scalar
product (2.7) can be transferred to three dimensions identically using elementary geometry.
Just sum the indices up to three, instead of two.

E. g. the scalar product of the two vectors ~a = (1, 2, 3)T and ~b = (−1, 0, π)T is

~a~b = 1(−1) + 2(0) + 3(π) = 3π − 1.

Since their respective lengths are
√

14 ≈ 3.74 and
√

1 + π2 ≈ 3.30, the enclosed angle is

cos γ =
3π − 1√

14
√

1 + π2
≈ 0.683→ γ ≈ 0.819 ≈ 46.9° (2.9)

2.6.2 Vector product

Having now a product at hand which maps two vectors into a scalar, the obvious question
is, whether there is also a product which maps two vectors into a vector. This question
turns out to be surprisingly non-trivial, and is best first answered in three dimensions.

To obtain such a map, two properties of the resultant vector must be determined: Its
direction and length. The direction should be uniquely defined. Since two vectors always
are within a plane, the most natural choice is a vector which is perpendicular to the plane.
It is a matter of convention, in which direction with respect to the plane, as the two
possibilities only differ by an overall sign. The usual convention is the right-hand-rule,
where the vectors form a right-hand screw.

For the length, consider the following. In three dimensions, three non-parallel vectors
define a volume. The case of two vectors parallel is special, and can be signaled by the
resultant vector to have length zero, to avoid an ambiguity for its direction. Since this
is signaled by the sine of the enclosed angle, the length of the resultant vector should
therefore be proportional to sinα, where α is again the enclosed angle. Similarly, if either
vector is the zero vector, also the resultant vector should have zero length. This suggests
to construct a resultant vector of the vector product of the vectors ~a and ~b of length
|~a||~b| sinα.

It remains to obtain a vector which is orthogonal to both other vectors and has this
length. This is best done by introducing a very useful object, the so-called Levi-Civita
tensor3 ε. What the name tensor signifies will be discussed later in chapter 9. For now,
this is just a name. The Levi-Civita tensor is, like the Kronecker-δ, an object which maps
a set of indices to a number. While the Kronecker-δ maps two indices, the Levi-Civita
tensor maps three indices, εijk. It is defined such that ε123 = 1. All other values are
derived from it by the following two rules: If two indices coincide, the value is zero, e. g.

3To be precise, of rank three
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ε112 = 0, but also εiik = 0, no matter whether the indices are summed over or a single
pair. The second rule is that if two adjacent indices are exchanged, the sign is flipped. E.
g. ε123 = −ε132 or εijk = −εjik. If the indices are not adjacent, it can always be reduced to
multiple exchanges, e. g.

εijk = −εjik = εjki = −εkji,
and so on. Thus

εijk =


1 for {ijk} = {123}, {231}, {312}
−1 for {ijk} = {132}, {213}, {321}

0 otherwise

are all possible values.
Using the Levi-Civita tensor, it is possible to construct a vector ~c orthogonal to both

vectors ~a and ~b defined as
(~c)i = (~a×~b)i = εijkajbk. (2.10)

This defines the vector product of ~a and ~b, which yields the vector ~c. The symbol × is used
to distinguish the vector product explicitly from the scalar product ·. It is sometimes also
called the outer product, in contrast to the scalar (inner) product. Because of the symbol,
the vector product is sometimes also called the cross product. The individual components
of the resulting vector are

~c = ~a×~b =

a2b3 − a3b2a3b1 − a1b3
a1b2 − a2b1

 ,

as can be seen by direct calculation.
Interestingly, this product is not commutative, as ~a ×~b = −~b × ~a, as can be seen di-

rectly from the definition. Such an anti-commutativity is impossible for ordinary numbers,
and explicitly demonstrates that the resulting object is certainly not a number. Such a
behavior, i. e. an operation changing sign under exchange of its arguments but is otherwise
unaltered, is called anti-linearity.

It needs to be shown that (2.10) has indeed the required properties. To show this, note
first that the following holds true

ε12ka1a2 + ε21ka2a1 = ε12ka1a2 − ε12ka1a2 = 0.

Thus

~c~a = εijkajbkai =
1

2
(εijkajbkai − εjikajbkai) =

1

2
(εijkajbkai − εijkaibkaj) = 0, (2.11)

where in the second-to-last step the names of the dummy indices in the second term have
been changed. For a multiplication with ~b the same result follows in the same way. Thus,
~a×~b is indeed orthogonal to both ~a and ~b.

It remains to show that the length of ~a × ~b is |~a||~b| sinα. This can be seen in the
following way,

~c2 = εijkajbkεilmalbm = (δjlδkm − δjmδkl)ajalbkbm
= ~a2~b2 − (~a ·~b)2 = |~a|2|~b|2(1− cos2 α) = |~a|2|~b|2 sin2 α.
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Thus, the length is indeed correct.
Herein, an important relation was used

εijkεilm = δjlδkm − δjmδkl. (2.12)

Such a relation is also called a (tensor) contraction, as a common index is summed over.
In that sense also the scalar product is a contraction. That the right-hand side of (2.12) is
correct is not obvious, and the simplest way of establishing it is by explicit calculation of
one set of indices, and obtaining the rest by using the properties of both symbols. More
general contractions appear very often. They play a fundamental role in physics and will
reappear numerous times throughout the lecture.

Consider now an explicit example, with again ~a = (1, 2, 3)T and ~b = (−1, 0, π)T . Based
on (2.9), the length of their vector product should be ≈ 9.01. The vector product yields1

2
3

×
−1

0
π

 =

 2π
−3− π
−2

 ,

which has indeed length
√

13 + 6π + 5π2 ≈ 9.01.
In contrast to the scalar product, the vector product has no non-trivial behavior in

lower dimensions, as it always vanishes. This can be seen from the definition (2.10), as
in lower dimensions it is never possible to obtain three different indices. Geometrically,
this makes also sense. In one dimension, any vector (i. e. numbers) are either parallel or
anti-parallel. In two dimensions, any vector different from the two original ones will be
inside the same plane, and any objects dependent on the two initial vectors can then be
constructed using addition and/or scalar multiplication of the two vectors, and thus the
vector product could not create anything independent.

It is useful to collect a few more properties of the vector product. Very interesting is
that the vector product is not only non-commutative, but also non-associative. Perform

(~a× (~b× ~c))i = εijkεklmajblcm = biajcj − ciajbj 6= ((~a×~b)× ~c)i, (2.13)

where the last identity is obtained using (2.12). If ~a is perpendicular to ~b and ~c then the
first cross-product cannot lie in the same plane as the last, and therefore the cross-product
cannot be associative. However, it satisfies the important so-called Jacobi identity

(~a× (~b× ~c))i + (~b× (~c× ~a))i + (~c× (~a×~b))i = 0,

which can be seen from inserting (2.13), as then every term appears twice with opposite
signs.

2.7 Generalization to n dimensions

In physics applications, it is very often necessary to perform linear algebra in spaces with
more or less than three dimensions, even in infinite-dimensional spaces. It is therefore
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necessary to formulate all that has been said so far for an arbitrary number of dimensions
n, the so-called Rn.

The generalization of the vector concept is straightforward. Instead of three num-
bers/coordinates, there are now n, and the vector has n components. Addition/subtraction
as well as multiplication with a scalar can also be immediately generalized, as well as the
geometric definitions of length and direction.

Since the scalar product is entirely a statement w. r. t. the plane which is created by
the two vectors, also the scalar product is extended to be just the sum of the products of
the components. Since the angle is also defined inside this plane, there is no ambiguity in
its definition. However, in contrast to three dimensions, there is much more freedom in
how a plane can be positioned in a higher-dimensional space. Especially, there can be two
vectors, which are both perpendicular to a plane, but not parallel to each other, like they
would be in three dimensions. An example in four dimensions is (1, 0, 0, 0)T , (0, 1, 0, 0)T ,
(0, 0, 1, 0)T , and (0, 0, 0, 1)T , which are all non-zero vectors, orthogonal to each other, and
none parallel to any of the others.

This immediately indicates that there is a problem with the vector product. Its geo-
metric construction required a vector which has a unique direction (up to a scalar factor
of -1) with respect to two other, non-parallel vectors. In more than three dimensions, this
requirement becomes ambiguous. Since coplanar vectors, i. e. vectors within the same
plane as the two original vectors, can be described by addition, there is no unique way of
extending the vector product with the same geometric meaning to higher dimensions.

It is, however, possible to abandon the simple geometric definitions, and define a higher-
dimensional vector product formally by (2.10). The Levi-Civita tensor is then defined
such that if all three indices are different, and in increasing order, it is unity. The other
rules are just kept like they are in the three-dimensional case. The so-defined quantity
is still orthogonal to the two original vectors, as (2.11) goes through unchanged, but its
length and relative direction in the other dimensions are not necessarily as expected from
three dimensions. The use of this generalization is much more limited than that of the
scalar product, but it is occasionally encountered in physics. A much more powerful
generalization will be discussed in section 8.5.2, but this will require some more concepts.

2.8 Hypersurfaces

To provide an example for the geometrical usefulness of the scalar product also in more
than three dimensions, consider the following.

Since two non-parallel vectors ~f1 and ~f2 lie always in a plane, they can be used to
define a surface. If the surface is through the origin, it is described by the vector-valued
function ~s defined as

~s(a, b) = a~f1 + b ~f2.

I. e., the two real numbers a and b are used to define all points in the plane. They are
essentially the coordinates of all points of the plane. This is very similar to the parameter
t used to describe every point along a path in section 2.2.
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If the plane does not contain the origin, it is sufficient to have a single point, described
by a vector ~c, on the surface, to obtain a new parametrization

~s(a, b) = ~c+ a~f1 + b ~f2, (2.14)

where a different choice of ~c yields different meanings for the parameters a and b, as
a = b = 0 always reduce to the point ~c on the surface. This is true in any number of
dimensions.

Now introduce the scalar product. An alternative to characterize a surface is then
Hess’ normal form. First note that a straight line in R2 can be characterized as a ray. But
alternatively, it could also be characterized by the fact that, given a vector of unit length
~n orthogonal to a line and oriented outwards with respect to the origin,

~n~x = d,

where d is the distance of closest approach to the origin, and may also be zero for a line
going through the origin. Then any vector ~x fulfilling this equation describes a point on
the line. This is true, as the scalar product gives the projection of ~x in the direction of
~n. Since ~n is orthogonal to the line, it has the direction from the origin to the line at the
point of closest approach, and thus the projection for any line element must be d.

This can be generalized. Consider the equation

~n~x = d

in R3 with ~n again of unit length. Then every vector ~x satisfying this condition has
projected upon ~n a component of size d, but is otherwise free. This describes a surface,
where the two free components describe the movement in the surface. Thus, this is an
equivalent way of describing a surface as (2.14), which is already visible since there are
two degrees of freedom left. In fact

~n~s(a, b) = ~n~c+ a~n~f1 + b~n~f2 = d+ 0 + 0

and both statements are equivalent.
Considering the Rn, an n − 1-dimensional hypersurface can then be defined then in

either of the two forms

~s(a1, ..., an−1) = ~c+
n−1∑
i

ai ~fi

as an explicit form or by
~n~x = d

in the implicit Hess’ normal form.
As an example, consider R4. Then the vector (0, 0, 0, 1)T can be used to describe the

hypersurface characterized by

~s =


a
b
c
0

 = ~0 + a


1
0
0
0

+ b


0
1
0
0

+ c


0
0
1
0

 = ~0 + a~f1 + b ~f2 + c~f3
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which is a three-dimensional volume, though still called a hypersurface.
Describing objects with less than n − 1 dimensions, this is best performed by the

corresponding generalization of (2.14). This form is also more suitable for a generalization,
as the geometrical interpretation of d is otherwise lost, since d can then become something
conceptually different.



Chapter 3

Vector spaces

The previous chapter has mostly dealt with a well-known situation, the three-dimensional
space. Only at the end it generalized this concept to more than three dimensions. Except
for the vector-product, this was possible in a straightforward way without modifying the
geometrical concepts behind the structures.

These geometrical concepts are very useful, and in the following often the comparatively
simply visualized three-dimensional space will be used to illustrate concepts. The true
power of linear algebra, however, lies elsewhere, especially when it comes to quantum
physics. While length, breadth, and depth are concepts of special familiarity, the concepts
of linear algebra can operate on much more abstract entities. This generalization will be
performed here.

Thus, from here on, it will be necessary to let go of the idea that vectors (always)
describe points in the space around one. Vectors will become arbitrary entities, like func-
tions or the ominous wave-functions of quantum physics. Vector addition will become a
composition rule, and a scalar product can be something like integration. On the other
hand, this will show that there are very few mathematical concepts actually underlying
a rich multitude of physical structures. This will be essential to find the common laws
describing natural phenomena. But it is challenging to becoming used to such abstract
thinking. Especially in the beginning it requires to break one’s association of vectors with
actual space.

3.1 Definition

To distill the basic properties of what will become a vector space, it is foremost necessary
to consider what are the concepts we would like to hold most important from the ordinary
three-dimensional space R3.

The concept of vectors is something of fundamental importance. Thus, a vector space,
should be a set of vectors. To retain some resemblance of geometry, there should be defined
some type of operation which joins two vectors to give another vector. This will be defined
as vector addition.

It would certainly be helpful to endow a vector space with a group structure, as this

16
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would provide many powerful features. As a reminder, a group is a set S of arbitrary
objects and a composition rule ◦ such that for any elements a, b, and c from the set hold

i) a ◦ b ∈ S, this is called closure

ii) (a ◦ b) ◦ c = a ◦ (b ◦ c) , this is called associativity

iii) There exists e ∈ S such that for any a e ◦ a = a ◦ e = a, which is called the neutral
or identity element e

iv) For any a there exists an element, called1 a, such that a ◦ a = a ◦ a = e, which is
called the inverse

v) If a ◦ b = b ◦ a, the group is called Abelian, otherwise it is called non-Abelian

The group generalizes the usually multiplication or addition of real numbers.
Thus, to create a vector space, first require that there exists some set of objects V . The

elements of V will be called vectors ~v. There can be a finite or enumerable or denumerable
infinite number of elements. There should exist an Abelian composition rule ⊕, called
vector addition, such that the set is closed under it. Thus, ~v⊕ ~w ∈ V for all ~v, ~w ∈ V . The
details must be given for any application, of course, but at the current level only these
abstract features are relevant.

To obtain a group, there needs to exist a neutral vector ~0 ∈ V , called the zero vector,
such that

~v ⊕~0 = ~0⊕ ~v = ~v

for any ~v ∈ V . There must exist also an inverse element for any ~v, which will be called ~v,
such that

~v ⊕ ~v = ~0.

Note that this does not have any geometric implications, nor is ~v defined as any mathe-
matical operation acting on ~v.

The last property is associativity for any ~vi ∈ V

~v1 ⊕ (~v2 ⊕ ~v3) = (~v1 ⊕ ~v2)⊕ ~v3,

which is also intuitive from a geometrical point of view: Following the path of three vectors
should not depend on how the path elements are traversed. Likewise, the geometrical
interpretation of the sum of two vectors being the endpoint of the path described by
following first the first vector and then the second vector is maintained by the Abelian
nature of ⊕,

~v ⊕ ~w = ~w ⊕ ~v,

and thus telling us the geometrical feature that the endpoint of a vector addition is unique.
These are the reasons to require an Abelian group structure for the vectors and vector
addition.

1Note that a is often denoted by a−1. To avoid confusion of and prevent any attempt to divide by a
vector later, this different notation will be used.
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So far, even if a geometric idea is behind the vectors, the structure is yet just that
of an Abelian group. But there is an important geometrical feature not yet included in
the definition of a vector space, the concept of direction. More precisely, the statement
that different vectors can have the same direction. This is encoded in the geometrical
important concept of rays, which is uniquely connected with some vector and some factor.
However, to be more precise, it will not be required to have a specific set of numbers for
the factors. Rather, the factors are requested to form a field.

As a reminder, a field (or body) is a set of elements B with two operations ◦ and •. It
requires that

i) it is an Abelian group under ◦ with neutral element e. e does not need to have an
inverse with respect to •

ii) it is an Abelian group under • with a neutral element E. E does not need to have
an inverse with respect to ◦. E and e can be different

iii) and a composition of ◦ and • obeys a•(b◦c) = (a•b)◦(a•c) and (b◦c)•a = (b•a)◦(c•a)
for all elements of the group, which is called distributivity

This generalizes the real numbers under addition and multiplication.
Now, everything is available to define a vector space: A vector space V is defined as

a combination of two elements: An Abelian group of vectors {V ,⊕} and a field {B, ◦, •}.
The latter are called scalars.

In addition, a third property is required to create a connection between the vectors
and the scalars, and to obtain rays. This is an operation called scalar multiplication �.
It combines a scalar a and a vector ~v and yields again a vector a � ~v. It is furthermore
required that

(a • b)� ~v = a� (b� ~v) (3.1)

a� (~v ⊕ ~w) = (a� ~v)⊕ (a� ~w) (3.2)

(a ◦ b)� ~v = (a� ~v)⊕ (b� ~v) (3.3)

E � ~v = ~v

e� ~v = ~0. (3.4)

This completes the list of properties for a vector space. Note that � is given a higher
precedence than ⊕, such that (a� ~v)⊕ ~w = a� ~v ⊕ ~w.

The conventional situation in chapter 2 with the Rn satisfies all these requirements, e
is 0 and E is 1, and thus is a vector space. But vector spaces can be much more, as will
be encountered throughout physics. In particular, while it looked like there are only two
different operations at play in chapter 2, there are actually four, •, ◦, ⊕ and �. They can
act very differently.

To see, how this plays out for non-conventional building blocks consider the following
example. Start with the Abelian group Z2, which contains just the two elements {1,−1},
and which is a group under conventional multiplication, with the element 1 being the
neutral element. This can be then used to form the vectors of the vector space, while the
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fields can remain to be the real numbers. It is then important to note that a � 1 is a
vector, while a is a real number. Also, a� 1 is not the same as the vector 1, and a vector
a does not exist.

This makes some of the rules (3.1-3.4) strange. Consider e. g. (3.2) for ~v1 = 1 and
~v2 = −1. Then ~v1 ⊕ ~v2 = −1 = ~v2 and

a� (~v1 ⊕ ~v2) = a� ~v2 = (a� ~v1)⊕ (a� ~v2),

where it is important to note that ~v1⊕ ~v2 = 1(−1) = −1 = ~v2! Thus, it is necessary to be
wary what the symbols mean.

It is conventional in physics to use the symbol + to mean both ⊕ and ◦,

~v + ~w ≡ ~v ⊕ ~w

a+ b ≡ a ◦ b

and to suppress • and � altogether

a~v ≡ a� ~v
ab ≡ a • b.

Also, subtraction of vectors is defined as vector addition with the inverse vector

~v − ~w ≡= ~v ⊕ ~w

and likewise subtraction and division of scalars

a− b ≡ a ◦ b
a

b
≡ a • b.

The rest of the lecture will often switch back to this simplified notation. But if confusion
arises, it is very helpful to always return back to these basic distinctions and definitions.

Note that at no point angles, a scalar product, a tool to calculate the length of a
vector, let alone a vector product, has been used. In fact, even though we introduced
scalar multiplication, there is no possibility to state that a � ~v should be parallel to ~v.
Thus, though geometrical features have inspired a vector space, such vector spaces can be
quite strange. Endowing a vector space with further operations will yield more specialized
spaces, which will be more familiar, and also more useful in physics. However, from a
mathematical point of view, the definitions listed here are sufficient to construct vector
spaces with interesting properties.

3.2 Complex vector spaces

A very useful example of the general construction of vector spaces are complex vector
spaces. These are in some parts of physics, e. g. quantum physics, even more common
than the real vector spaces of chapter 2.
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3.2.1 Complex numbers as sets or fields of vector spaces

So far, all vector spaces where over the field of real numbers. Also, all examples where
based on the real vector space Rn. It is, however, possible to use as field the complex
numbers C as well. Note that this does not necessitates that the set of vectors is not
the Rn, though this requires pedantic distinction between scalars and components, and is
almost never encountered.

On the other hand, it is possible to consider a vector space with vectors having compo-
nents in Cn as well. The simplest example is C, the one-dimensional complex vector space.
Since only addition needs to be defined, this is a vector space. It is important to note that
so far no multiplication of complex numbers as vectors in C is defined, and therefore a
complex number as a vector in C is not having a multiplication operation attached to it.
It is, however, necessary, to attach a field to it. This can be, e. g. both, the real numbers
and the complex numbers. Again, care has to be taken, especially if the set and the field
are just C what is what. This distinction is better seen when taking n > 1, since then the
vectors are n-dimensional with coordinates being in Cn, just as with the real numbers in
Rn before, with so far no multiplication operation defined.

In fact, if the field is again C, the multiplication with an element of the field becomes,
e. g. for C2,

z

(
zx
zy

)
=

(
zzx
zzy

)
, (3.5)

where the products zzi are again performed as for ordinary complex numbers.

3.2.2 Mapping complex vector spaces to real vector spaces

An interesting question is the relation between complex vector spaces and real vector
spaces. Formally, a complex number z = a+ ib consists out of two real numbers, a and b.
Moreover, the addition of two complex numbers yields

z1 + z2 = (a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2),

i. e. the components are not mixed under addition. This suggests to map the complex
vector space C to a two-dimensional real vector space R2, by just defining the real and
imaginary part of the complex number as the two directions of the real vector space, i. e.

z = a+ ib→
(
a
b

)
.

Based on section 3.1, this fulfills under the usual addition of the complex numbers all
requirements to be a vector space. The zero of the complex numbers, 0, is then just the
vector ~0 = (0, 0)T .

This requires then to add a field. An important point is that the product of two
complex numbers,

z1z2 = (a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(a1b2 + b1a2) (3.6)



Chapter 3. Vector spaces 21

is not trivially mapped, as this would mix the components of the space R2. Indeed, only
the multiplication with real numbers would behave as expected.

Also, when considering the scalar product in R2 of section (2.3), this has nothing to
do with the multiplication in C (3.6). Rather, it would yield

z1z2 =

(
a1
b1

)(
a2
b2

)
= a1a2 + b1b2

which is a real number, and different from either real or imaginary part of (3.6). In fact,
this definition of the scalar product for complex numbers is usually not useful, and a better
version will be introduced in chapter 4.

Thus, a mapping is possible, but only the addition behaves as expected. Any other
structure requires a different approach. Nonetheless, there are connections, which will
become more transparent, once the more general ideas have been introduced.

3.3 Basis

The first interesting question is a seemingly innocuous one: What is the dimension of a
vector space? For the Rn, this was simple enough: By definition n, and thus the number
of independent directions. But to define directions, it was necessary to have a sense of
direction, and to be able to tell apart when vectors are parallel or not. Since the latter
is a question which cannot even be posed in a vector space so far, it is less obvious what
dimension a given vector space has. Or even what a dimension is.

To identify a more general concept of dimension, it is best to return and ask what
characterizes a dimension (or direction) geometrically in Rn? The answer to this has to
do with the number of independent directions. Independent in the sense that if there are
some vectors, none of them pointing in this direction, it is not possible to construct using
vector addition a vector in this direction from those vectors. It is independent.

This notion of independence can be generalized in the following way. A vector ~v is said
to be (linearly) independent from a set of vectors {~wi} if the only solution for the equation

a� ~v ⊕ bi � ~wi = ~0

is a = bi = e. In the context of Rn, this translates to a = bi = 0. Otherwise, it is said
to be (linearly) dependent on the vectors ~wi. Note that we do not yet pose the question
of how to calculate the scalars a and bi in practice. For the definition, it does not matter.
Especially, the definition of a vector space just guarantees the well-definiteness, but by no
means any computation rules, as there are no coordinates or anything yet. They come
now.

This concept can now be used to define the dimensionality of a vector space. The
dimension of a vector space n is the minimum number of vectors ~ei necessary such that
every other vector ~v of the vector space is linearly dependent, i. e. there is always a solution
to the equation

⊕ibi � ~ei = bi � ~ei = ~v (3.7)
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with at least one bi 6= 0, including the option that only for bj = E, if ~v = ~ej. Herein the
notation ⊕i (and later ◦i) generalizes the concept of a sum, and for it also the Einstein
convention is applied.

This generalizes the idea of dimension in the sense that the dimension gives the number
of independent directions ~ei in a given vector space. The set {~ei} is then called a basis
of the vector space. The values bi are then called the coordinates of the vector ~v in the
basis {~ei}. The requirement of the minimal number is essential to give a unique number of
dimensions, as otherwise it would also be possible to add another vector to the equation,
which is linearly dependent on the set {~ei}, and thus obtain a larger number of involved
vectors. The scalars bi used to describe a vector in a basis are also called the components
of the vector in this basis, and

~v = ⊕i(bi � ~ei) (3.8)

holds.
It should be noted that at no point it is required that the basis is unique. Thus, it is

perfectly possible, but not necessary, that there are different sets of vectors {~ei} and {~fi}
which both form a minimal set, and thus a basis. These may be created in several ways.
Either by scalar multiplying any (or all) vectors with scalars. This, in a trivial sense,
creates a new basis. This is called also a rescaling of the basis. Any such operation will
rescale also the coordinates by the inverse of these factors. The other option is to replace
any or all of the vectors ~ei by other vectors. However, since every vector is by definition
linearly dependent on the old basis, these new vectors will also be linearly dependent on
the old basis. Thus, there is always a solution to the set of n equations

~ei = cij � ~fj

giving n2 coefficients cij. This is called a base transformation, a concept which will be
discussed in much more detail later in section 8.8.1. Of course, vectors will have in this
basis new coordinates,

~v = bi � ~ei = (bi • cij)� ~fj = ⊕j(◦ibi • cij)� ~fj

where the two sets of pairs of indices requires double summation as indicated. The new
coordinates are then the n scalars ◦jbj • cji.

Thus, the choice of a basis is arbitrary, and every vector can be rewritten in any
basis. Choosing a basis is therefore not more than a convenience. The vectors (~ei)j = δij
encountered in the Rn in section 2.4 are, e. g., an explicit example of a basis, the so-called
Cartesian or, since it is the standard choice, canonical (usual) basis.

3.4 Curvilinear coordinates

To show that bases can be quite different from the canonical basis of Rn, it is useful to
consider the following examples.

The following bases play also an important role in practical calculations in physics,
and can alternatively be used to discuss the Rn. They are adapted to certain geometrical
features of problems, for which Cartesian coordinates are often impractical.
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For these examples again all the features of the Rn of chapter 2 will be used, even if
not all of them have yet been generalized.

3.4.1 Circle

Consider for example a circle of radius r in two dimensions. It can be described using
either a vector

~r =

(
x
y

)
~r2 = r2,

where r is a fixed number, and thus involves a second condition, or by

~r =

(
r cosα
r sinα

)
,

where the angle α runs from 0 to 2π. This appears to be a rather useful concept.
However, the decomposition

~r = r cosα~ex + r sinα~ey

with the conventional orthonormal Cartesian unit vectors appears somewhat clumsy.
Consider instead the two following vectors

~er =

(
cosα
sinα

)
~eα =

(
− sinα
cosα

)
.

which are both normal vectors, and orthogonal for any value of α. The circle is then
described by the vector

~r = r~er

and thus in a much more natural form. Furthermore, since both vectors are linearly
independent, they must form a basis in two dimensions, and therefore any vector can be
described by them as well,

~x = (x cosα + y sinα)~er + (y cosα− x sinα)~eα

=

(
x cos2 α− (−x) sin2 α + y cosα sinα− y cosα sinα
y sin2 α + y cos2 α + x cosα sinα− x sinα cosα

)
=

(
x
y

)
,

and they do indeed form a basis.
These new base vectors are better suited to describe a circle, but are ill-equipped for

usual Cartesian problems. Such coordinates are therefore called curvilinear coordinates,
as they are adapted to problems involving curves.
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The important difference compared to ordinary Cartesian coordinates is that the new
unit vectors are no longer pointing at every point in the same direction, but at different
points in different directions. This yields one problem, for the zero vector. For it, the
angle α is not well-defined, as the zero vector does not have a direction. Thus, this change
of basis is not well-defined at this point. This can also be seen in the following way. The
new unit vectors are obtained from the ordinary ones by a rotation. Acting with this
rotation on the zero vector, creates again the zero vector, so this vector is invariant, while
all other vectors are rotated. Thus, in these coordinates special care has to be taken when
discussing the origin.

This result is also related to the paths of section 2.2. Consider a path along the circle.
Then at every point the vector ~eα points in the direction of the path, and describes thus
the path in the same way as in section 2.2. The vector ~er is everywhere orthogonal to ~eα,
and thus describes therefore an orthogonal direction off the path.

These coordinates are not the only ones adapted to particular problems, and a few
more will be discussed in the following.

3.4.2 Cylinder

Another typical example are cylinders. A cylinder is an extension of the circle into three
dimensions. Therefore, a suitable set of unit vectors, the so-called cylinder coordinates, is
given by

~er =

cosα
sinα

0

 , ~eα =

− sinα
cosα

0

 , ~ez =

0
0
1

 ,

which is therefore a mixture of a Cartesian base vector and curvilinear coordinates. How-
ever, any point on (or in) the cylinder can now be addressed by r~er + z~ez, where r just
gives the distance from the origin, and z the height along the cylinder, while ~eα is not a
relevant direction for the cylinder: It describes a movement around the cylinder.

It may look at first sight that somehow a three-dimensional object would now be
described by only two variables, r and z. This is not the case, and the third information
is encoded in the fact that the vector ~er has a changing direction.

Note that the whole z-axis now becomes a singular point, as there the unit vectors ~er
and ~eα have no longer a well-defined direction.

3.4.3 Sphere

In a very similar manner, it is useful to construct coordinates describing a sphere, so-called
spherical coordinates, as

~er =

cosφ cos θ
sinφ cos θ
− sin θ

 , ~eθ =

cosφ sin θ
sinφ sin θ

cos θ

 , ~eφ =

− sinφ
cosφ

0


where the angle φ varies between 0 and 2π and θ between 0 and π. The case θ = 0
recreates again a circle in the x-y plane described by the vectors ~eφ and ~er. The vector ~er
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describes the direction from the center of the sphere outwards, while the vectors ~eθ and
~eφ create a surface orthogonal to ~er. Of course, for the two vectors spanning this surface
there is an ambiguity, as any rotated basis in this surface works equally well.

The second angle only needs to span half a period, as this describes a half-circle, which
by rotation around the z-axis by the full period of φ already creates a sphere. The latter
is described by the second angle.

In contrast to the case of cylindrical coordinates, for spherical coordinates again only
the origin is ill-defined, and everywhere else the unit vectors have a well-defined direction.

3.4.4 Hypersphere

Comparing the cases for the sphere in three dimensions and the circle in two dimensions
immediately suggests to generalize the concept to arbitrary dimensions, so-called hyper-
spheres and hyperspherical coordinates. There is a constructive way of creating the unit
vectors. To see how it works, consider the case of four dimensions

Start first with the generalization of ~eφ, yielding

~eφ =


− sinφ
cosφ

0
0

 .

The next vector must be orthogonal, and linearly independent. This requires to add one
more angle, and one more component, yielding

~eθ =


cosφ sin θ
sinφ sin θ
− cos θ

0


and continue onward with another angle

~eη =


cosφ cos θ sin η
sinφ cos θ sin η

sin θ sin η
− cos η

 .

The final ingredient cannot have another additional component, and therefore needs to be
orthogonal to the previous one, yielding finally the radial vector

~er =


cosφ cos θ cos η
sinφ cos θ cos η

sin θ cos η
sin η

 .

As before, only the angle φ goes from 0 to 2π, while θ and η are between 0 and π only.
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The process is thus that for every vector one component and one new angle appears,
suitably normalized and orthogonalized to the previous vectors, adding as new component
the negative cosine of the new angle. Only the last vector, the radial one, is special, as
here no new component can be added, and thus only all sines of the previously added
angles are flipped to cosines, and the cosine to a negative sine. Constructions in higher
dimensions then follow these rules. It should be noted that setting angles to 0 reduces
the hyperspherical unit vectors to the unit vector of a hypersphere of one dimensions less
(suitable embedded in the higher-dimensional space).

Again, only the origin is ill-defined.

3.5 Subspaces

If the dimension of a vector space is larger than 1, it is possible to define subspaces of it.
A genuine subspace of a vector space is any subset of the original vector space which is
also a vector space, but has a number of dimensions less than the original vector space. A
vector space can be split also into many subspaces. In the extreme case, a vector space of n
dimensions can be split into n genuine subspaces, which have only the vector ~0 in common.
However, formally also the whole vector space can be considered as a subspace, and there
is the trivial subspace containing only the vector ~0, which has formally dimension 0. Note
that sometimes such subspaces are also called hypersurfaces, like in section 2.8 , in analogy
to a surface which is a subspace of a volume.

Such a subspace is then spanned by a subset of basis vectors. If the subspace has
dimension n1, the remainder of the original vector space of dimension n2 = n − n1 is
considered to be its complement. The only common vector of these subspaces is the
vector ~0. If the subspace of V is called S, then the complement is denoted as S⊥. It is
often convenient to define a basis of the vector space such that a subspace of interest will
be described by the first n1 basis vectors, and its complement by the remaining n2 vectors.

As an example, consider R3 in the Cartesian basis. A subspace would be, e. g., the
vector space R2 spanned by the base vectors {~e1, ~e2}. The complement is spanned by {~e3}.
Note that from this point of view, vectors which have non-zero components in directions 1
or 2 and 3 are no longer living in either sub-space. The union of both sub-spaces is not the
full original sub-space, except when including all sums and rays, called the linear hull or
linear span. However, the complement of the complement is again the original subspace,
S = (S⊥)⊥.

Subspaces play an important role in physics, e. g. when movement of an object is
reduced to a restricted part of space, e. g. an object moving on a plane. In this context
the linear span or linear hull plays also an important, though often implicit, role.

More formally, a linear hull is defined to be the intersection of all subspaces of a given
vector space, which includes a defined subset S of vectors. By construction, it is therefore
a vector space. E. g., the set S = {(1, 0, 0)T , (1, 1, 0)T} in R3 has as linear hull the R2

subspace spanned by the basis {~e1, ~e2}. Especially, any linear hull contains all vectors
reachable by addition of the vectors in S as well as by multiplication with scalars of
vectors in S. As a consequence, the linear hull of a basis is the vector space they describe.
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Structures on vector spaces

4.1 Normed and Banach spaces

So far, the abstract vector space has only vector addition and multiplication by scalars.
Thus, not even a notion of the length of a vector (and thus that scalar multiplication in
a sense ’rescales’ a vector) has been introduced, much less that of a distance. However,
especially in physics, such concepts are necessary in almost all cases to describe physical
quantities. But, from a purely mathematical point of view, vector spaces do not need
such a structure. Hence, such vector spaces which have an implementation of a distance
and length measurement are special cases of vector spaces, and thus have an own name,
so-called normed vector spaces.

First of all, what will be necessary are two operations. The first maps a vector ~v into
the real numbers R, ‖~v‖ → R. The second does the same for the scalars, |a| → R.

The relevant properties, from a geometrical or physical point of view, to create a length
or a norm of a vector by ‖~v‖ are then threefold:

i) ‖~v‖ ≥ 0 with ‖~v‖ = 0 if and only if ~v = ~0

ii) ‖a~v‖ = |a|‖~v‖. This implies that also the operation |a| needs to yield a positive
number, or zero if and only if a = e.

iii) The equation

‖~a⊕~b‖ ≤ ‖~a‖+ ‖~b‖ (4.1)

should hold. This requirement is less obvious. It is called the triangle inequality.
It expresses the requirement that the length of the sum of two vectors should never
exceed the sum of the length of the two vectors.

Note that it is possible to construct operations on vectors, which only fulfill the first two
conditions. If so, much less stringent consequences follow. Such cases are called seminorms,
and thus the vector space is then only seminormed. Since these play very little role in
physics, they will not be considered in this lecture further.

For the length defined in section 2.3, generalized straightforwardly to Rn, these three
conditions hold. The first two can be seen directly from the definition (2.4). The third
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is not directly evident. However, as the maximum length of the sum is reached if both
vectors are parallel, and this saturates the inequality. An alternative in the Rn is the
so-called maximum norm, which identifies the length of a vector with the absolute value
of its largest component,

‖~v‖ = max
i
|vi|.

This satisfies certainly the first two conditions. The third follows as that the addition
of two positive or negative largest components cannot be larger than the sum of their
absolute values, and if both have opposite sign it will only decrease the length.

An interesting special case of normed vector spaces are Banach spaces, also called
complete normed spaces. Banach spaces are normed vector spaces with the additional
constraint that the field is either R or C and that the norm is complete in the sense that
all Cauchy sequences converge. This is the statement that for any (infinite) set of vectors
~v the sum ∑

n

‖~vn‖ <∞,

converges, and it then follows that the vector ~v, defined as

~v =
∑
n

~vn,

and called the limit of the Cauchy sequence, is part of the vector space. That is not trivial.
The standard counter example is an n-dimensional sphere in Rn+1 without its boundary.
Though being certainly a normed vector space, there are sequences where the limit would
be on the boundary, and therefore the norm is not complete, and thus it is not a Banach
space. Whether a space is a Banach space or not plays an important role in physics, as
often the existence of limits is crucial.

4.2 Scalar product and Hilbert spaces

In the Rn the norm was found to be equivalent to the square-root of the scalar product
of a vector with itself. The norm constructed, either in (2.4) or in the section 4.1, both
did not refer to any scalar product. Scalar products are therefore an additional structure
for a vector space. As it will turn out, a scalar product will automatically introduce a
norm, and therefore every vector space with a scalar product will automatically also be a
normed vector space.

On an abstract level, the one thing the scalar product did was mapping two vectors
into a real number. To generalize it, the basic definition is hence that it is some map of
two vectors ~v and ~w to a scalar, denoted as

〈~v|~w〉 = a

where a is some scalar, and the notation should for now emphasize that this is a different
operation than the usually experienced scalar product. It is a map 〈·|·〉, which maps two
vectors to an element of the field. An example is the one of R3 in (2.7).
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To proceed further, it is necessary to restrict the field to either R or C. If this restriction
is not done, it is still possible to continue, but all other cases play essentially no role in
physics. But since restricting to either fields will open up many powerful, and for physics
essentially necessary, consequences, the restriction is very valuable. So, this will hold true
for the rest of the lecture, except if otherwise noted. This immediately reduces ◦ and • to
the usual addition and multiplication of real or complex numbers.

With this restriction, the scalar product is required to have a number of further prop-
erties, all fulfilled by (2.7),

〈~v|~w〉 = 〈~w|~v〉∗ (4.2)

〈~v|a� ~w〉 = a〈~v|~w〉 (4.3)

〈~v|~u⊕ ~w〉 = 〈~v|~u〉+ 〈~v|~w〉 (4.4)

〈~v|~v〉 ≥ 0 (4.5)

〈~v|~v〉 = 0⇔ ~v = ~0. (4.6)

Actually, in section 4.5 the last two conditions will be dropped, but for now they will be
part of the following. If they are not included, the scalar product is called a semi-scalar
product.

Generalizing from the usual case in Rn, two vectors are then said to be orthogonal
if their scalar product vanishes. Two vectors in a normed vector space are said to be
parallel, if the absolute value of their scalar product has the same size as the product of
their lengths, and anti-parallel if it is of the same size, but negative. Note that this does
not necessarily imply the usual geometrical picture.

The last two requirements (4.5-4.6) are then realizing the idea that a scalar product
should also make a statement about relative orientation. Especially, the property (4.5)
states that no vector is orthogonal to itself, except for the vector ~0. It also guarantees
that the scalar product maps twice the same vector to a positive number, which will be
essential in recovering the relation to the norm in the sense of (2.8).

The conditions (4.3-4.4) guarantee that the scalar product is linear in its arguments,
i. e. it is a linear function of its two arguments. It is therefore also called a linear form, a
linear map, or a linear operator. The latter concept will be made more precise in chapter
10. Especially, it is possible to think of the scalar product as a linear operator L~v which
yields for every vector ~w the scalar product of ~w with ~v. This very abstract way of thinking
about the scalar product will be quite useful in quantum physics.

Finally, the condition (4.2) is relevant only for complex vector spaces. It ensures that
the scalar product of a vector with itself is a real number, and can therefore be interpreted
later as a length. Note that the combination of (4.2) and (4.3) implies

〈~v|a� ~w〉 = a〈~v|~w〉 = (a∗〈~w|~v〉)∗ = 〈~w|a∗ � ~v〉∗ = 〈a∗ � ~v|~w〉,

i. e. moving a scalar from the second to the first argument complex conjugates it.
The way of writing a scalar product has lead to the simplification of notation that the

vector arrow is often dropped, i. e.

〈~v|~w〉 ≡ 〈v|w〉,
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a notation often encountered in quantum physics. In this context, the object |w〉 is taken
to be equivalent to a vector, and is called ’ket’. At the same time, the object 〈v|, called
’bra’, cannot be really also a vector, as the fact that a is conjugated during scalar multi-
plication shows. The complex conjugation indicates that the bra is also changed, therefore
also called (complex) conjugated. Furthermore, it will be seen later that it is also the
transposed vector, and thus, in a loose language, 〈w| ∼ ~w†, the bra is the so-called Hermi-
tian conjugate, i. e. transposed and complex conjugated and indicated by the sign †, called
dagger, of the vector ~w. While this distinction will be of very limited importance in the
following, this fine distinction is of central importance is many aspects of modern physics,
especially general relativity and quantum physics. In the following, this so-called bra-ket
notation will not be used for the vectors themselves, to avoid confusion. The notation for
the scalar product is kept, nonetheless, to make clear that it can be quite general.

A vector space with scalar product is upgraded to a so-called Hilbert space1 by relating
the length function of section 4.1 with the scalar product by

‖~v‖ = +
√
〈~v|~v〉 (4.7)

‖~a⊕~b‖ = +

√
〈~a⊕~b|~a⊕~b〉.

Note that the triangle inequality (4.1) can then only be fulfilled if the scalar product obeys
(4.5-4.6). If the vector space in question should only be normed but not complete, it is
called a pre-Hilbert space

Almost all vector spaces encountered in physics are either Hilbert spaces or indefinite-
norm Hilbert spaces, i. e. Hilbert spaces without the condition (4.5-4.6).

To emphasize, consider again the example at the end of section 3.1 of Z2 for the
vectors of the space. Define for the two vectors 1 and −1 the scalar product as 〈1|1〉 = 0,
〈−1| − 1〉 = 1 and 〈1| − 1〉 = 〈−1|1〉 = 0. This satisfies the conditions (4.2-4.3) and
(4.5-4.6) trivially. Only (4.4) requires some more consideration:

〈1|1⊕ 1〉 = 〈1|1〉 = 〈1|1〉+ 〈1|1〉
〈1|1⊕−1〉 = 〈1| − 1〉 = 〈1|1〉+ 〈1| − 1〉

〈1| − 1⊕−1〉 = 〈1|1〉 = 〈1| − 1〉+ 〈1| − 1〉
〈−1|1⊕ 1〉 = 〈−1|1〉 = 〈−1|1〉+ 〈−1|1〉
〈−1|1⊕−1〉 = 〈−1| − 1〉 = 〈−1|1〉+ 〈−1| − 1〉

〈−1| − 1⊕−1〉 = 〈−1|1〉 = 〈−1| − 1〉+ 〈−1| − 1〉

This system of equations cannot be solved, except if the scalar product is always zero.
Thus, on this vector space it is only possible to define a scalar product fulfilling (4.2-4.5),
but not at the same time (4.6). Thus, this vector space can become at most an indefinite
Hilbert space using this definition of a scalar product.

1There are fine subtleties in the following. Especially, from a correct mathematical perspective, a
Hilbert space will require (4.5-4.6) to be fulfilled. In most physics contexts, the name of Hilbert space is
often also used if these are not fulfilled, though this is a strict mathematical sense not correct.
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4.3 Orthonormal basis

Once a scalar product is defined, it can be used to define the two important concepts of
orthogonality and normality, provided (4.5-4.6) hold for it, and the norm is introduced as
(4.7). A vector ~a is then said to be normal, if its length is ‖~a‖ = 〈~a|~a〉 = 1. Any vector
can be made normal by multiplying it with its inverse length. As noted, two vectors ~a
and ~b are said to be orthogonal, if their scalar product vanishes 〈~a|~b〉 = 0. If two normal
vectors are orthogonal, they are said to be orthonormal.

It is especially convenient to apply these concepts to a basis. So far, a basis {~ei}
was just a minimal set of linearly independent vectors. If the elements of this basis are
orthogonal to each other 〈~ei|~ej〉 ∼ δij, this basis is called an orthogonal basis. If, in
addition, every base vector is normal, 〈~ei|~ej〉 = δij, it is called an orthonormal basis.

Such bases have particular advantages. Especially the components of a vector ~v in this
basis

~v = vi � ~ei
can be calculated by taking the scalar product with a base vector ~ei,

〈~ei|~v〉 = vj〈~ei|~ej〉 = vjδij = vi,

i. e. the components are just the scalar products of the base vectors with the vector.
Especially, given any, often normal2, basis {~ai}, it is possible to construct an orthonor-

mal basis, provided the scalar product satisfies (4.5-4.6). This is the so-called Gram-
Schmidt orthogonalization procedure. To start, take an arbitrary base vector ~a1. This will
be the first vector ~b1 = ~a1/|~a1| of the new base. Then construct a second vector by

~c2 = ~a2 ⊕ 〈~b1|~a2〉 �~b1. (4.8)

For the vector space Cn, this reads

~c2 = ~a2 − 〈~b1|~a2〉~b1.

This vector is, by construction, orthogonal to the vector ~b1,

〈~b1|~c2〉 = 〈~b1|~a2〉 − 〈~b1|~a2〉〈~b1|~b1〉 = 0,

since ~b1 is normalized, 〈~b1|~b1〉 = 1. The purpose of the operation (4.8) was therefore to

remove the component of ~a2 which is parallel to ~b1. Normalizing ~c2 then yields the new
base vector ~b2 = ~c2/‖~c2‖.

The orthogonalization procedure now proceeds in the same manner for all the other
base vectors. Given another vector of the original set, the components parallel to the
already orthogonalized base vectors are projected out

~ci = ~ai ⊕
(
⊕i−1j=1〈bj|ai〉 �~bj

)
2Any basis can be immediately normalized by dividing each base vector by its length,
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or in Cn

~ci = ~ai −
i−1∑
j=1

〈bj|ai〉~bj.

After normalization this yields the next base vector ~bi. Since the vectors of the original
basis are mutually linearly independent, the base vector ~ai have to be linearly independent
from the created base vectors ~bj with j = 1, ..., i − 1 as these are, by construction, linear
combinations of only the subset ~a1, ...,~ai−1 of the original base vectors. Since they are
linearly independent of ~ai, no linear combination of them can yield a vector which can
cancel ~ai. Thus, the new vector is non-zero, and still linearly independent of the previously
obtained ~b1, ...,~bi−1. By repeating this procedure, always an orthonormal basis {~bi} is
obtained. Note that this basis will depend on the order of choosing the ~ai in the process.

As an example, consider the ordinary R3 with the basis {~a1,~a2,~a3}
= {(1, 1, 1)T , (1,−1, 1)T , (−1,−1, 1)T}. The first new vector is the normalized first vector,

and thus ~b1 = (1, 1, 1)T/
√

3. The second vector is

~c2 =

 1
−1
1

− 1

3

〈1
1
1

∣∣∣∣∣∣
 1
−1
1

〉1
1
1

 =

 2
3

−4
3

2
3


and thus ~b2 = 1/(

√
6)(1,−2, 1)T . The third vector then is obtained as

~c3 =

−1
−1
1

− 1

3

〈1
1
1

∣∣∣∣∣∣
−1
−1
1

〉1
1
1

− 1

6

〈 1
−2
1

∣∣∣∣∣∣
−1
−1
1

〉 1
−2
1

 =

−1
0
1


and thus ~b3 = (−1, 0, 1)T/

√
2.

4.4 Metric

To finally obtain even more non-trivial examples of scalar products (and finally recover the
situation of section 2.6.1), consider now an n-dimensional Hilbert space. The condition
(4.4) requires that a scalar product is a linear function in its second argument. Together
with condition (4.2) this also requires it to be linear in its first argument,

〈~a⊕~b|~c〉 = 〈~c|~a⊕~b〉∗ = 〈~c|~a〉∗ + 〈~c|~b〉∗ = 〈~a|~c〉+ 〈~b|~c〉.

Furthermore, the condition (4.3) requires it to be a homogeneous function, i. e. there
cannot be any linear term.

The most general function which has the required properties is given by

〈~v|~w〉 = gijv
∗
iwj = (g∗ijviw

∗
j )
∗ = 〈~w|~v〉∗, (4.9)

where the n× n numbers gij are called the metric coefficients, or briefly the set g = {gij}
is called the metric, and the vi and wj are the components with respect to a given basis.
They are thus either real or complex numbers.
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There are a few general statements which can be made about the metric. However,
it is better to introduce them latter, when more powerful techniques to discuss them are
available. For now, it must be sufficient that not every choice of g is possible to maintain
(4.2-4.6). the simplest example is that gij = 0 would immediately violate (4.6). Also, if
for any fixed index the value of the metric coefficients for all values of the other indices
vanishes, then there are vectors which are non-zero but have zero scalar product with
themselves, violating (4.6).

The situation of the R3 is recovered by selecting as metric the Kronecker-δ, gij = δij,

〈~v|~w〉 = δijviwj = viwi = ~vT ~w.

This is called an Euclidean metric. Including the statements about how the length of a
vector was defined in section 2.3, the R3 with the geometrically introduced scalar product
is indeed a Hilbert space. The last line now also uses the notation of what the bra vectors
are to define what the multiplication of a transposed vector with a vector means: This is
the true definition of the scalar product in R3. This kind of metric is called an Euclidean
metric.

In section 3.2 it was not simple to give a meaning to how the scalar product in Cn

should be defined. Here, it now follows immediately as a generalization from the case of
the Rn: Use the definition (4.9) again with gij = δij for two complex vectors v and w,

〈~v|~w〉 = v∗iwi = (<vi − i=vi)(<wi + i=wi) = ~v† ~w.

Especially, this implies that the squared length of a complex vector is just the sum of the
absolute values of the components,

〈~v|~v〉 = v∗i vi = (<vi)2 + (=vi)2 = |vi|2,

a rather natural generalization of the squared length of an ordinary real vector, which
is also given by the squared absolute values of its arguments. This shows also that the
requirement (4.2) makes sense, as it permits a generalization of the length to complex
vector spaces in an intuitive way. Still, the resulting vector product is even in one dimen-
sion not the ordinary product of two complex numbers, as one of the numbers is complex
conjugated.

It should be noted that it is by no means necessary to use the Kronecker-δ as the
metric. An equally possible choice is, e. g., g11 = 2, g22 = 1/2 and g12 = g21 = 0. Though
the result has no obvious geometrical interpretation (e. g. in R2 the vector (1, 0)T is four
times a as long as (0, 1)T ), it is a valid choice. Relativity, in particular, is a theory in
which a non-trivial metric is central.

4.5 Indefinite metric spaces

When the conditions (4.5-4.6) are dropped, it is possible to have metrics which are different.
The arguably best known example is the so-called Minkowski metric in a four-dimensional
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real space, of which there are two (equivalent) versions: g11 = −1 and g22 = g33 = g44 = 1
or g11 = 1 and g22 = g33 = g44 = −1 and in both cases gij = 0 for i 6= i.

Such a metric is indeed not compatible with (4.5-4.6), as e. g. the vector (1, 0, 0, 1)T

has zero length and the vector (1, 0, 0, 0)T (for the first case) has indeed a negative scalar
product with itself. Thus, interpreting the scalar product as a length or distance is a
non-trivial issue. Length and distance can then be even for non-zero vectors zero, positive
or even negative.

A negative length or distance appears at first sight something unreasonable from the
point of view of geometry. But here experience fools us, as our intuitive understanding is
based on the three-dimensional Euclidean space. Indeed, it can be shown that this vector
space has a geometry quite different from the Euclidean space we are used to. In physics,
this metric appears in the theory of special relativity and also general relativity. In these
theories it will turn out that the question of positive length or negative length will be
statements about causal connection: Distances of one sign (which depends on convention)
can causally influence each other, while those with the other sign cannot. In general,
in physics of indefinite metric spaces, different signs indicate different kinds of physical
relations between the physical objects represented by the vectors. Hence, despite their
counter-intuitive properties, they are fundamentally important. Thus, this topic will be
taken up again in due course in the lectures on theoretical physics.

4.6 Infinite-dimensional vector spaces

So far, the vector spaces discussed had some arbitrary, but finite dimensions. Especially
due to the intended geometrical meaning, this was important. However, none of the struc-
tures introduced so far requires a finite umber of dimensions, but only a denumerable one.
This is best seen when considering an example. This will also show that the geometrical
idea of vectors is a far too limited concept, and vector spaces can be much more complex,
but also much richer.

A rather important vector space in physics can be build up from functions which are
polynomials,

f(x) =
∑
i

fix
i.

I. e., a vector is a polynomial, ~f = f(x), as strange as this seems. Vector addition ⊕ will
then be the addition of two polynomials,

~f ⊕ ~g = f(x) + g(x) =
∑
i

(fi + gi)x
i. (4.10)

With this definition, the set of polynomials forms a group under addition, with 0 being
the neutral element and −f(x) the inverse. As a body, the real numbers will be used with
the usual addition and multiplication. Scalar multiplication is then defined as

α� ~f = α
∑
i

fix
i =

∑
(αfi)x

i,
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which immediately implements all other rules for vector spaces, since

(α • β)� ~f = (αβ)
∑
i

fix
i = α

∑
i

(βfi)x
i = α� (β � ~f)

α� (~f ⊕ ~g) = α
∑
i

(fi + gi)x
i = α

∑
i

fix
i + α

∑
i

gix
i = α� ~f ⊕ α� ~g

(α ◦ β)� ~fv = (α + β)
∑
i

fix
i = α

∑
i

fix
i + β

∑
i

fix
i = α� ~f ⊕ β � ~f (4.11)

E � ~f = 1
∑

fix
i = ~f

e� ~v = 0
∑

fix
i = ~0.

It is thus a vector space. Note that while ordinary polynomials can be multiplied, this is
not a valid operation in this vector space.

To obtain a suitable Hilbert space later, it will be necessary to require that only
functions are included with the following two properties:

• The sum exists, i. e. |f(x)| < ∞ for every finite x. Since this remains true for any
sum of functions and for all multiples of functions, this is a closed set under the
necessary operations. It also ensures that the vector space is complete

• The function should be bounded in the sense that −∞ < f(x)e−|x| < ∞ for all x
and that f(x) grows slower than exponential for x→ ±∞. This will be necessary for
the norm and the scalar product chosen in this example. Again, this is a constraint
which cannot be broken by either addition or multiplication, and therefore is a
sensible statement about a set of functions to form the vector space

These two conditions may seem to be somewhat ad-hoc, but they are typical properties of
functions encountered in physics. It is at this stage not obvious why this is the case, and
it will become clear only in physics lectures.

The functions f(x) = ~f play the role of vectors in the vector space to be defined. When
doing so, the monomials xi = ~ei will become the basis, which is now denumerable infinite,
as i can run from 0 to infinity, but only in integer steps. That this is indeed a basis can be
seen by the fact that, say, x2 cannot be written by a sum which does not contain x2. The
field are now the real numbers making up the α. Note that the coefficients fi are from
the same field, but this is not necessary in general. The addition is then the addition of
monomials, with the neutral element being zero. A possible sequence of base vectors is
then {1, x, x2, ...}.

A possibility to obtain a normed vector space would be the norm

||f || =
∫ ∞
0

dxe−x|f(x)| (4.12)

That this is a norm can be seen by checking the requirements of a norm. Since the absolute
value appears, only f(x) = 0 can have norm zero, since otherwise a non-vanishing, positive
function is integrated, which will yield a non-zero positive result. A multiplication by a
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field element is no problem, since ‖αf(x)‖ = |α|‖f(x)‖ as any constant can be moved
outside the integral. Finally, since

‖~f1 + ~f2‖ = |f1(x) + f2(x)| ≤ |f1(x)|+ |f2(x)| = ‖~f1‖+ ‖~f2‖

for any two functions at the same positions x can be derived from the triangle inequality
for ordinary numbers, this would be a norm, and would upgrade the vector space to a
normed space.

As an alternative to the normed vector space an interesting knack appears when the
vector space should be upgraded to a Hilbert space by implementing a scalar product.
The multiplication f(x)g(x) will not be a possibility, as this actually produces again a
vector, i. e. a new function h(x). Though this could be considered as some different kind
of vector product, though it is not anti-linear and therefore quite a different object as the
previously considered one, it is certainly not an element of the field, i. e. a real number.

There are, in fact, several possibilities how to define a suitable inner product. Here, for
the sake of variety, a scalar product leading to a different norm than (4.12) will be chosen,

〈~f |~g〉 =

∫ ∞
−∞

dxe−x
2

f(x)g(x).

This definition is certainly mapping the two functions to a real number. The appearance
of the factor exp−x2, the so-called integral measure, has the only purpose of ensuring
that the integral is finite. This also explains the condition for the functions to vanish
sufficiently fast at in infinity. It has also all the properties (4.2-4.4). Also, only the zero
vector f(x) = 0 will have a vanishing inner product, as in all other cases only the positive
semi-definite square of a function is integrated. Since the integral measure is positive, this
does not change the result.

It should be noted that for two different vectors, i. e. functions, the integral can become
both positive or negative or zero. In this sense, two functions can be orthogonal with
respect to each other. However, taking the monomials as basis, this basis is no longer
orthogonal, nor normal, since neither the inner product of two monomials vanishes, nor is
the norm of a monomial one.

This already concludes all the necessary steps to create an infinite-dimensional Hilbert
space. Note that no real vector product has been discussed, and there is indeed no obvious
generalization of a vector product on this space, but this is also not necessary for the
purpose of constructing a Hilbert space. As is seen, the vectors are quite different from
the usual idea of points in space. Hence, it is also said that the vectors here are elements
in a function space. Function spaces are the fundamental building blocks of quantum
physics.

A typical property of infinite-dimensional vector spaces is the appearance of infinite
sums. This is the root of where most differences between finite-dimensional vector spaces
and infinite-dimensional vector spaces are located. A finite sum of finite elements is always
finite. An infinite sum of finite elements is not necessarily so. This is the reason why there
are subtle differences between both cases, and why not necessarily every statement made
about finite-dimensional vector spaces automatically carries over to infinite-dimensional
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vector spaces. However, if not stated explicitly otherwise, this will be true for results in
this lecture.

4.7 Vector product

The scalar product as a map of two vectors to the field could be generalized in a rather
straightforward way. The vector product, mapping two vectors to a vector, is an entirely
different problem. As already noted in section 2.7, even the generalization to higher
dimensions is far from obvious. The resulting operation suggested there is not really a
vector product, as one of its geometric features, the orthogonality with respect to the two
vectors it is formed from, is no longer unambiguous. Its extension in this form is therefore
subtle.

The situation becomes even worse when attempting to generalize the concept further,
if one insists on having a mapping from two vectors to one vector: There is no unique
geometrical generalization. Rather, the key to generalize it is not to insist on the orthog-
onality as a guiding principle, but the anti-linearity. With this in mind, it is possible to
extend the idea, and also to show why in the end three dimensions is so special. This will
be done in section 8.5.2. But this requires another concept first: Matrices.
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Matrices

5.1 An example: Rotation

5.1.1 Rotations of vectors

To start the discussion of the extremely important topic of matrices, it is best to start
once more with a geometrical example. Consider a vector space R2 over the field of real
numbers, with an orthonormal basis {(1, 0)T , (0, 1)T}, where the upper component plays
the role of the x-axis and the lower component that of the y-axis. This is just a plane.

Start with some point on the plane, say (1, 0)T . Rotate the point in the plane around
the origin by π/2 counter-clockwise. It will then have the new coordinates (0, 1)T . In
general, if the vector would be rotated by an angle α between the original and the new
vector (counter-clockwise), the new vector would be (cosα, sinα)T .

The question to be posed now is: Is there some map M : ~v → ~v′ which realizes the
rotation of the vector ~v into the vector ~v′? Or, in a more formal way, in

M

(
1
0

)
=

(
cosα
sinα

)
, (5.1)

what is the map, or operator, M?
Since a rotation should not change the length of a vector, this operator M must be

linear:
Ma~v = aM~v,

i. e. any multiplicative factor must commute with the operator.

5.1.2 Definition of matrices and matrix-vector multiplications

To achieve this, it is useful to introduce the concept of a matrix. A matrix M is a
rectangular scheme of n × j entries Mij with the indices running from 1 to n and 1 to
k, respectively. These entries are elements of the field. Here, they will be most often
numbers. Thus, a 2× 2 matrix M will be given by

M =

(
M11 M12

M21 M22

)
.

38
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A matrix for which n = k is called a square matrix. This type of matrices is actually the
by far most prevalent type encountered in physics. Special matrices are the unit matrix
with matrix elements given by Mij = δij and the zero matrix with Mij = 0. Matrices with
non-zero elements only for i = j are called diagonal matrices, and often abbreviated as
M = diag(M1, ...,Mmin(n,k)), dropping the second index1.

Now, it is possible to define the action of an n×k matrix M on a k-dimensional vector
~v, such that this yields a n-dimensional vector ~v′ by

~v′i = (M~v)i = Mijvj (5.2)

This is called matrix-vector multiplication. The vi are the components of the vector in
a fixed basis. What a change of basis implies for matrix-vector multiplication will be
explored later.

As an example, consider(
2 3
−1 1

)(
−2
5

)
=

(
−2 · 2 + 3 · 5

(−1) · (−2) + 1 · 5

)
=

(
11
7

)
.

Analyzing this statement in detail, it is helpful to consider each row of the matrix as a
transposed, k-dimensional vector:

M =

 ~MT
1

...
~MT
n

 .

The vectors ~Mi are called row vectors. Then the definition (5.2) requires to build a new
vector with each entry of its n entries being the ordinary Rn scalar product of the ith row
vector of the matrix with the vector:

M~v =

 ~MT
1 · ~v
...

~MT
N · ~v

 ,

which, by construction, is an n-dimensional vector. However, this is only an analogy. The
scalar product on the vector space in question may actually be defined entirely differently,
or non-existent, and both the field and the vector space may be made up from entirely
different objects. Still, the definition (5.2) holds always. It uses only features necessary to
define a vector space at all.

Since in this case the vector ~w has been positioned on the right of the matrix, it is
also called a right-multiplication. It is useful to define also a left-multiplication. In this
case, an n-dimensional, transposed and, if complex, conjugated vector is multiplied from
the left using the definition

(~w†M)j = w∗iMij. (5.3)

1Diagonal matrices with n 6= k are sometimes not considered to be properly diagonal.
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This yields a k-dimensional transposed vector in the same way as before. This can be
considered as a vector with entries obtained from scalar products of the column vectors
~M ′ of the matrix M

M =
(
~M ′
1 ... ~M ′

K

)
with the original vector ~w

~w†M = (~w† · ~M ′
1, ...., ~w

† · ~M ′
K)

and thus in a very similar fashion as before. An example is(
1
i

)†(
1 i
0 −i

)
= (1,−i)

(
1 i
0 −i

)
= (1,−1 + i) =

(
1

−1− i

)†
,

where the complex entries were conjugated explicitly.
This implies also that it is possible to simultaneously multiply a matrix from the left

and the right by vectors to obtain a scalar

~w†M~v = w∗iMijvj = w∗i (Mijvj) = w∗i v
′
i = (w∗iMij)vj = w

′∗
i vi

where the primed vectors are obtained by the action of the matrix on the vector. An
explicit example is

(2, 1)

(
1 1
−1 2

)(
1
−2

)
= (2, 1)

(
−1
−5

)
= −7,

showing one possible path for the two-step process.
For the matrix-vector product it is not necessary that the matrix is square. Using

the definition (5.2) an n× k matrix maps k-dimensional column vectors to n-dimensional
column vectors and (5.3) n-dimensional row vectors to k-dimensional row vectors, respec-
tively.

This also shows that the ordinary scalar product of Rn and Cn can be interpreted as
matrix-vector left-multiplication, interpreting the second vector as an 1× n matrix. This
view will be analyzed further in section 5.2.

5.1.3 Rotation using a matrix

With this scheme, it is possible to return back to the example of rotation of section 5.1.1.
Given the desired properties, the linear map implementing a rotation can now be chosen
to be the matrix

R =

(
cosα − sinα
sinα cosα

)
. (5.4)

Acting with this matrix on a vector (1, 0)T using the definition of the matrix multiplication
will indeed yield (5.1). Likewise

R

(
0
1

)
=

(
− sinα
cosα

)
,
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as would be expected. Thus, a matrix can be used to implement a rotation.
There are many other features of matrices which implement rotations, and this topic

will be taken up again in section 8.8.1.2. Before this, it is useful to first collect general
properties of matrices.

One thing one should be wary about is, however, the following. While every rotation
in a two-dimensional vector space can be mapped to a matrix, not every matrix can be
mapped to a rotation. Thus, matrices are a much more general concept. In physics, this
is made explicit by saying that certain special sets of matrices are tensors, i. e. matrices
with certain special properties which are well-defined in a given context. But very often in
physics essentially all matrices appearing are belonging to some set of tensors. Therefore,
sloppily, often the names matrix and tensors are used interchangeably though this is,
strictly speaking, not correct. This will be discussed more in chapter 9.

5.2 General matrices and vectors

One of the first things to notice is that the definition of matrices actually also encompasses
vectors. A normal vector in an n-dimensional vector space is a 1 × n matrix. Thus, a
vector is just a special case of a matrix. For real vectors, the transposed vector is then
an n× 1 matrix. Moreover, the usual scalar product is a special case of the matrix-vector
product for these two particular kinds of matrices. For complex vectors, the definition
has to be enlarged, as the Hermitian conjugate vector is a n × 1 matrix of the complex
conjugated elements of the original vector.

As has already been done, matrices and vectors, as well as the associated operations,
can be directly enlarged to arbitrary vector spaces, by using the components of the vectors
with respect to a given basis as defined in (3.8) and then applying (5.2),

(M~v)i = ◦jMij • vj = ~v′i,

which requires the matrix elements to be in the same field as the scalars, i. e. usually R
or C. In the case of the standard vector spaces Rn and Cn, this reads

(M~v)i = Mijvj = ~v′i

and is thus a conventional sum of products.
Given that also vectors are matrices, the fact that both the scalar product and the

rotation are linear maps proves to be a portent. In fact, any linear map on a (finite-
dimensional) vector space can be represented by a matrix and can be written as a matrix
product with the vectors and this matrices. To see this requires to check that the properties
of a linear map are implemented by matrix-vector products.

These are by, definition, linearity, additivity, and the existence of a zero element

M · (α� ~v) = α� (M · ~v)

M · (~a⊕~b) = M · ~a⊕M ·~b
M ·~0 = ~0 = 0� (M · ~v),
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where · is the application of the linear map to a vector, in case the linear operator is more
abstract than a matrix, as will be the case in chapter 10. These are trivially fulfilled by
matrix vector multiplication, and therefore matrix multiplication is a linear map or linear
operator.

The proof to the opposite is more complicated. It requires to show that any map which
has these properties can be represented as a matrix. For linear operators mapping into
the same Hilbert space, this can be shown using the fact that there exists an orthonormal
basis. Any linear operation M acts necessarily as

M · (⊕iai � ~ei) = ⊕iai �M · ~ei.

The M · ~ei are again vectors, as the linear map is again into the same vector space. In
addition, there is always an orthonormal base. Assume that the given base is orthonormal.
This gives the matrix elements

Mij = 〈~ej|M · ~ei〉,

and thereby constructively proofs the assertion.

5.3 Operations on matrices

Before moving on, it is useful to establish a number of computational rules for matrices.
In the following, this will only be used in cases where the matrix elements are either from
R or C. If the matrix elements are from a more general body, this has to be taken into
account. Also, the body of the vector space is taken to be the same body.

First, matrices can have complex entries. It is therefore useful to define complex
conjugated matrices as

(M∗)ij = (Mij)
∗,

i. e. complex conjugation complex conjugates every element. It is also useful to extend
the concept of transposition from vectors also to matrices, by defining(

MT
)
ij

= Mji

i. e. the matrix is mirrored at its diagonal. Rectangular matrices are thus changed from
a n × m matrices to m × n matrices. This generalizes the concept from vectors, where
transposition maps 1 × n vectors to m × 1 vectors, and vice versa. In physics, it occurs
very frequently that a matrix must be both transposed and complex conjugated. This lead
to the introduction of the so-called Hermitian conjugation, which is just the combination
of both2, (

M †)
ij

= M∗
ji

and which therefore generalizes from the vector case of section 4.2.

2Actually, on very general vector spaces which will be encountered later, there is a subtle difference,
but this is rarely of relevance in physics.
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When regarding vectors as special cases of matrices, it appears reasonable that matrices
are also affected by similar calculational rules as vectors. Especially, the addition of two
matrices is defined as

(M +N)ij = Mij +Nij,

i. e. components are added, and likewise subtracted. This also implies that the addition
of matrices is only well-defined, if both have the same size and shape, i. e. both are n× k
matrices with the same n and k. In this context the zero matrix, 0ij = 0, is the neutral
element of addition.

It is also useful to define multiplication with a field element as

(aM)ij = aMij,

i. e. every element of the matrix is multiplied by the field element. This is, like for vectors,
called scalar multiplication.

When multiplying a vector with a matrix, the situation was such that multiplying an
n×m matrix with an m×1 matrix yielded an n×1 matrix/vector, or a 1×m matrix/vector
multiplied by an m× n matrix yielded a 1× n vector. Especially, the corresponding sides
had to match. This suggests to also define multiplications between two general matrices
of which the two prior cases are special cases. Comparing the situation, this would require
that it is only possible to multiply n×m matrices with m× k ones, yielding an n× k one.
The correct rules such that the special cases emerge is

(NM)ij = NikMkj,

i. e. a scalar product is formed between the rows of the first matrix and the columns of
the second matrix, a so-called row-column product, to obtain as a result the entries for
the product matrix.

As an example, consider(
1 0
−1 −2

)(
2 −1
0 1

)
=

(
2 −1
−2 −1

)
,

showing that the product of two 2× 2 matrices is again a 2× 2 matrix.
It should be noted that the first matrix is not complex conjugated, different from the

scalar product on complex vector spaces. The reason is that the product of two matrices
is in general again a matrix, and not a number as with the scalar product. Therefore, a
multiplication of, e. g., three matrices is well-defined, while this is not the case for the
scalar product of three vectors. Thus, matrix multiplication is only similar to the usual
scalar product, but by far not the same!

It is in this context useful to note that the square unit matrix 1ij = δij, i. e. a diagonal
matrix 1 = diag(1, ..., 1) which has 1s on the diagonal and zero everywhere else, is the
neutral element of the matrix multiplication. By definition

(1M)ij = δikMkj = Mij = (M1)ij

and therefore a multiplication with the unit matrix leaves a matrix untouched.



44 5.3. Operations on matrices

Note that both matrix addition and multiplication are, by definition, associative. They
inherit this feature from the associativity of the elements.

There is special care to be taken for matrix multiplication, as it is different in a par-
ticular way from ordinary multiplication: It is not commutative, i. e.

AB 6= BA

which can be seen by explicit calculation of a counter example, e. g. for a 2× 2 matrix,

AB =

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)
6=

(
A11B11 + A21B12 A12B11 + A22B12

A11B21 + A21B22 A12B21 + A22B22

)
= BA

and thus care has to be taken. This leads to the definition of the commutator

[A,B] = AB −BA,

which is the zero matrix if and only if the order of multiplication of A and B does not
matter. If the commutator is vanishing, it is said that the two specific matrices A and B
commute. This test plays a major role in quantum physics.

This has also consequences on taking the Hermitian conjugate of a product of matrices,(
(MN)†

)
ij

= (MN)∗ji = M∗
jkN

∗
ki =

(
N †
)
ik

(
M †)

kj
=
(
N †M †)

ij
,

which is thus the product of the Hermitian conjugate matrices in reverse order. This can
be extended to a longer product, which is then completely reversed.

Matrices are abundant in physics. As a first example, they play an interesting role in
the context of linear equations.
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Systems of linear equations

6.1 Matrices and linear systems of equations

So far, matrices played an important role for rotations. However, matrices appear ubiqui-
tously. Arguably one of the most important situations is the one within the context of sets
of linear equations. Such equations arise in an enormous number of contexts in physics,
from elementary mechanics, astrophysics to quantum physics to particle physics, but also
in numerics.

A single linear equation has the form

mx+ b = 0,

which has the solution −b/m if m 6= 0. It is a comparatively simple equation, as the
independent variable x appears only linearly, and it can therefore be solved with elementary
operations in terms of the two constants m and b.

A set of two linear equations for two unknowns x1 and x2

m1x1 +m2x2 + b1 = 0

m3x1 +m4x2 + b2 = 0

is more complicated, as now two equations are coupled, and in total six constants m1...4

and b1,2 appear. Its solution

x1 =
b2m2 − b1m4

m1m4 −m2m3

(6.1)

x2 =
b1m3 − b2m1

m1m4 −m2m3

(6.2)

can still be obtained by elementary operations, but is much less straightforward. Espe-
cially, there can only be a solution if m1m4 −m2m3 6= 0, a fact which is not obvious from
the original set of equations.

The situation deteriorates quickly with more and more independent variables. For n
variables, there are n(n+ 1) constants of which the solutions are functions.

45
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A first step to improve the situation is by recognizing that the set of linear equations is
actually a set of equations for the components of a vector ~x. This can be seen by noticing
that the ith equation can be rewritten as

Mi1x1 + ...+Minxn + bi = 0

which are precisely the coordinates of the vector-valued equation

M~x+~b = ~0. (6.3)

Thus, a set of linear equations can be written in so-called matrix-vector form.
Usually, there are as many equations as there are unknowns, and thus the matrix M is

square. But this is not always the case. If M is not square, the number of equations does
not match the number of unknowns. If there are more variables than there are equations,
the system is said to be underdetermined. An example is

M11x1 +M12x2 = b,

with both Mij 6= 0, that is a single equation with two variables. In this case, the solutions
are, e. g.,

x1 =
b−M12x2

M11

,

i. e. there are infinitely many solutions, as there is a solution for x1 for every x2, given by
the above relation and if M11 6= 0. However, also underdetermined systems may have only
a finite number of solutions, or none at all.

The other extreme is if there are more equations than independent variables. Such a
system is called overdetermined or overconstrained. E. g.

M11x1 = b1

M21x1 = b2

would be such a system. If b1/M11 = b2/M12, this system still has a solution, but in general
it will not be possible to find a solution.

6.2 Solving a set of linear equations

Solving a set of linear equations can be done in various ways, most of them involving the
matrix M . Before moving on to these rather powerful possibilities, it is very useful, and
also in some practical applications helpful, to also get acquainted with possibilities to solve
a system of linear equations without explicitly involving the matrix-vector form.

Arguably the best known approach is the Gauss’ elimination procedure. The basic
idea is to use the knowledge provided by the equations to solve them.

For just one equation, the approach is straightforward. Given the equation

Mx = b
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divide it on both sides by m to obtain the solution

x =
b

M
,

which therefore does not involve any particular insight into the properties of the system.
The basic principles of the approach can already be seen from a system of two equations

M11x1 +M12x2 = b1 (6.4)

M21x1 +M22x2 = b2 (6.5)

To start, multiply the second equation by M12/M22, assuming that M22 is non-zero. If
not, the second equation does not involve M22, and can therefore be solved like in the
one-equation case for x1, giving x1 and thus turning the first equation again into a single
equation for x2. If not, the result is

M11x1 +M12x2 = b1
M21M12

M22

x1 +M12x2 =
M12

M22

b2.

Since if the equations can be solved, both equations must be true, it is permissible to
subtract the first from the second, yielding

M11x1 +M12x2 = b1
M21M12 −M11M22

M22

x1 =
M12

M22

b2 − b1.

The second equation no longer involves x2, and can therefore be solved for x1 yielding

x1 =
M12b2 −M22b1

M11M22 −M21M12

,

reproducing (6.1). Knowing x1, the first equation becomes again an equation for a single
variable, which can immediately be solved, and will yield (6.2). Thus, the basic idea is to
transform the system of equations such that it finally has the form

M ′
11x1 + ...+M ′

1nxn = b′1
M ′

22x2 + ...+M ′
2nxn = b′2

...

xn = b′n,

where the M ′
ij and b′i are some functions of the original Mij and bi. This is called a

tridiagonal form. Of course, in many practical calculations it may be simpler to not have
the exact ordering, but a relabeling will always bring the result into this form, if desired.

This already provides the gist of the Gauss’ procedure. By suitably adding and sub-
tracting multiples of equations together, eliminate from one equation all but one variable.
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This is then an ordinary equation for a single variable, which can be immediately solved.
Knowing the result, the original system of equations is reduced to a system of one variable
less. To this reduced system the Gauss’ algorithm can then again be applied, and so on,
until only one equation for a single variable is left, which can then be solved immediately,
completing the solution. If during the procedure either any way to eliminate a variable
involves a division by zero or yields otherwise an insolvable single equation, the system
does not have a solution.

There are several extensions of this procedure for practical applications, e. g. the Gauss-
Jordan algorithm, which tries to accelerate the procedure by manipulating all equations
simultaneously. Though more efficient in detail, any approach is ultimately based on the
same concept as the Gauss’ algorithm.

6.3 Inverse matrices

An interesting simplification of the system of linear equations in matrix-vector form (6.3)
could be obtained if some matrix N would exist with

NM = 1, (6.6)

where 1 signifies again the unit matrix, 1ij = δij. If this matrix N exists, which is usually
written as M−1 ≡ N , it would be possible to multiply (6.3) by it, yielding(

M−1M~x
)
i

=
(
M−1)

ij
Mjkxk = δikxk = ~xi =

(
M−1~b

)
i

and therefore the solution would be given by M−1~b, and hence by a matrix-vector multi-
plication, which is much simpler than, e. g. the algorithm of Gauss. This is not restricted
to square matrices, but works as well for rectangular matrices, in which case the inverse
of an m × n matrix is a n ×m matrix such that their multiplication can yield the n × n
or m×m unit matrix when multiplying from the left or right, respectively.

Hence, this also works with underdetermined or overdetermined systems of equations.
In particular, this reduces the question of the existence of a solution to the question of the
existence of this so-called inverse of the matrix M . Note that if for a square matrix such
a matrix exists then

M−1M = 1 = MM−1, (6.7)

which can be obtained from (6.6) by multiplying from the left by M and from the right
by M−1. Thus, if there exists a so-called left-inverse satisfying (6.6), then there also exists
a right-inverse satisfying (6.7), which is the same1.

The inverse has the interesting feature that necessarily the inverse of a product of
matrices is the reverse product of the individual inverse matrices,

(AB)−1AB = B−1A−1AB = B−1B = 1.

1Again, there exist subtleties if the number of dimensions is not finite
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This originates from the fact that the matrix product is non-commutative. For ordinary
numbers, which commute under multiplication, it would be possible to reverse the order.

Of course, if the solution to a system of linear equations is known, the inverse matrix
can be reconstructed. E. g., for the two-equations case (6.4-6.5), it can explicitly be derived
from the solution, and is given by

M−1 =
1

M11M22 −M12M21

(
M22 −M12

−M21 M11

)
,

since

M−1M =
1

M11M22 −M12M21

(
M22 −M12

−M21 M11

)(
M11 M12

M21 M22

)
=

1

M11M22 −M12M21

(
M11M22 −M12M21 0

0 M11M22 −M12M21

)
,

and therefore having indeed the required property.
However, this also illustrates an important restriction. If

M11M22 −M12M21 = 0, (6.8)

then the inverse matrix does not exist, since the pre-factor diverges. Thus, not every
matrix has an inverse. This is a quite different situation than for numbers. Here, every
number r, except zero generalizing to the non-invertible zero matrix, has an inverse 1/r.
This again shows that matrices are quite distinct from numbers.

To discuss criteria for the invertibility of matrices, it is useful to define first some more
functions on matrices.

6.4 Trace and determinant

So far, it is has been discussed how matrices act on both vectors and other matrices. It is
furthermore useful to introduce special functions, which map a square matrix to the field,
i. e. usually to the real numbers or complex numbers.

6.4.1 Trace

The first such function is called the trace of a matrix. It is defined as

trM = Mii,

i. e. it is the sum of the diagonal elements of a matrix. If the matrix is not a square matrix,
the sum extends to the shorter of both sides. E. g., for a 2× 2 matrix

tr

(
M11 M12

M21 M22

)
= M11 +M22.
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Especially, the trace is independent of the off-diagonal part of the matrix, and is the sum
of the diagonal elements of the matrix.

There are a number of further properties of the trace which are very useful. First, it
is cyclic for products of matrices,

trAB = AijBji = BjiAij = trBA

trABC = AijBjkCki = CkiAijBjk = trCAB = trBCA,

and so on.
It is furthermore the same under transposition

trAT = (AT )ii = Aii = trA

and is complex conjugated for a complex conjugated matrix

trA∗ = (A∗)ii = (trA)∗.

Thus the trace of the Hermitian conjugate of a matrix is the conjugate of the trace of the
original matrix

trA† = (trA)∗,

which are properties which are useful in actual calculations. Finally, for linear combina-
tions of matrices

trk(A+B) = (k(A+B))ii = kAii + kBii = ktrA+ ktrB,

and thus the trace is a linear operation2.

6.4.2 Determinant

The second is the so-called determinant, which is only defined for square matrices. This
operation is best defined in a recursive way. Start by defining the determinant of a one-
dimensional square matrix M as the matrix element itself,

detM = det(M11) = M11.

Next, define the determinant of a 2× 2 matrix as

det

(
M11 M12

M21 M22

)
= M11M22 −M12M21

That this is the same as appearing in the expression relevant to determine the invertibility
of a 2× 2 matrix in (6.8) is auspicious, and will be returned to.

2Note that it is no represented by a matrix, as it does not map a vector into a vector, but a matrix
into a number.
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But first, define now the determinant of an n × n matrix in the following way. First
define for a matrix A a reduced matrix in which the 1st row and the ith column is deleted,
A1i. Then the determinant is given by

detA =
∑
i

(−1)i+1A1i detA1i. (6.9)

This works for the 2× 2 case

detA = A11 detA11 − A12 detA12 = A11A22 − A12A21

and yields for a 3× 3 matrix

detA = A11 detA11 − A12 detA12 + A13 detA13

= A11(A22A33 − A23A32)− A12(A21A33 − A31A23) + A13(A21A32 − A31A22),

and so on. For the calculation of the determinants of reduced matrices the recursive
algorithm can be used until a known expression is encountered.

There are a number of observations which can be made on the result. The first is that
every element appears in the expressions always the same number of times. This suggests
that rather than giving the first row a special role, it should be possible to use rather some
arbitrary row j, yielding

detA =
∑
i

(−1)i+jAji detAji

or, alternatively, a column

detA =
∑
i

(−1)i+jAij detAij.

It is straightforward that this always yields the same results. It is also said that the de-
terminant is developed with respect to the chosen row or column, which is made special
in these formulas. These forms imply that whenever a line or column vanishes, the deter-
minant vanishes, as it is always possible to use the formulation utilizing specifically this
line or column.

The simplest way to see that all these formulas are equivalent is by noting that the
determinant can also be written without recursion for an n× n matrix as3

detA =
∑
ik

εi1...inΠjAjij =
1

n!

∑
ik

∑
jm

εi1...inεj1...jnΠlAiljl , (6.10)

where the second equality is a combinatorial rewriting. Note again that the ε are anti-
symmetric. Thus ε123...n = 1, cyclic permutations have the same value and anticyclic a
negative, and if two indices coincide it vanishes. This form does not depend on any singled
out row or column.

3The notation
∑

ik
is the same as

∑
i1

∑
i2
...
∑

in
, and thus a shorthand for n summations.
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That this is equivalent can be seen by induction. For n = 1

detA =
1∑

11=1

εi1Π
1
j=1A1i1 = A11

and for n = 2

detA =
∑
i1

∑
i2

εi1i2A1i1A2i2 = ε12A11A22 + ε21A12A21 = A11A22 − A12A21.

Hence, this agrees. Now

detA =
∑
i

(−1)i+1A1i detAi =
∑
i

(−1)i+1A1i

∑
ik,ik 6=i

εi2...inΠj,j 6=iAjij

=
∑
i1

∑
ik,ik 6=i1

(−1)i1+1εi2...inΠjAjij (6.11)

The remaining step requires to consider the combination of the ε and the pre-factor. By
construction, there is no contribution where any of the indices of the ε coincides with the
index i. Furthermore, consider the case of ε with the desired index attached as the first
one. If it is odd, and the sequence is cyclic, then this has the same sign as the existing
expression (e. g. +1ε23 = 1 is the same as ε123 = 1). Alterations in the order of the
remaining indices are already contained in the behavior of the ε with one index less. If it
is even and the remaining indices are cyclic, then it has to be negative compared to the
case with one index more (e. g. −ε13 = −1 is the same as ε213 = −1.). Thus, indeed both
are possible ways to evaluate a determinant.

The expressions (6.9) and (6.10) are very useful to establish properties of the determi-
nant.

One is that if a matrix is diagonal then the determinant is the product of the diagonal
elements,

det diag(Aii) =
∑
i

(−1)i+1A1i detA1i =
∑
i

(−1)i+1A11δi1 detA1i

= A11 detA1 = ... = ΠiAii,

where no summation is implied in the first step. This was achieved by reusing the same
formulas repeatedly, and that only one non-zero element exists per column and row to
collapse the sums. Especially, this implies det 1 = 1, i. e. the determinant of any unit
matrix is one. In fact, for any matrix which has triangle form, i. e. non-zero elements only
on the diagonal and exclusively above or below the diagonal, the determinant is a product
of its diagonal elements. This follows by developing the matrix always with respect to
a row or column in which there is only one non-vanishing entry (left), the one on the
diagonal.

Also useful is

detAT =
1

n!

∑
ik

∑
jl

εi1...inεj1...jnΠlAjlil =
1

n!

∑
jl

∑
ik

εj1...jnεi1...inΠlAiljl = detA,
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where in the second step the indices have just be renamed. Thus, transposition does not
alter the value of a matrix.

It is also useful that

detA† = (detA)∗

since transposition does not change the determinant, and by the explicit form the product
of the matrix elements of the complex conjugate matrix elements is just the complex
conjugated of the product of the matrix elements, as the ε-tensors are real.

The arguably most important property of determinants is that about the determinant
of products of matrices,

det(AB) =
1

n!

∑
r

∑
ik

∑
jm

εi1...inεj1...jnΠlAilrBrjl =
∑
ik

∑
jm

εi1...inεj1...jnΠlAillBljl

=
∑
ik

∑
jm

εi1...inεj1...jnΠlAillΠmBmjm

=

(∑
ik

εi1...inΠlAill

)(∑
jm

εj1...jnΠmBmjm

)
= detA detBT = detA detB

where it has been used in the second step that the sum over the product is just giving
all possible rearrangements, and thus cancels the factor n!. The splitting of the product
is then always possible, as it is also just a rewriting. This formula will be very useful in
many instances.

Note that while the determinant is well-defined only for its argument being a quadratic
matrix, the individual components A and B of the product AB may not be so. In this
case the above proof fails, as the number of possibilities differ.

If a n× n matrix is multiplied by a constant factor, then the form (6.11) immediately
shows that

det kA = kn detA

and thus the determinant is, in contrast to the trace, not a linear operation. On the other
hand, if only a single column or row is multiplied by a constant then the formula (6.9) and
its generalization shows that this implies that then the determinant is only multiplied by
this factor, as it is always possible to develop in this particular line or column. Finally,
exchanging two adjacent rows or columns multiplies the determinant by a factor of -1, as
this is the same as by developing for one row number/or column number less or more,
which increase the exponent of the −1 by one, and therefore yields the prefactor.

Another important fact about matrices is that if any two columns (or rows) are linearly
dependent, the determinant vanishes. To see this, note that the determinant of a matrix
with a zero row or column vanishes, since it is always possible to develop the determinant
with respect to this row or column. Furthermore, adding one row of a matrix to another
can be achieved by multiplying a matrix with another matrix of form

T klij = δij + δikδlj, (6.12)
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from the left, where k is the row to which the column l should be added,

(T klA)ij = T klimAmj = (δim + δikδlm)Amj = Aij + δikAlj.

E. g. (
1 1
0 1

)(
a b
c d

)
=

(
a+ c b+ d
c d

)
Multiplication from the right does the same to a column,(

a b
c d

)(
1 1
0 1

)
=

(
a a+ b
c c+ d

)
The matrix T kl has unit determinant, as it has triangle form. Thus

detA = detT kl detA = det(T klA).

This can now be repeated as often as necessary to reduce the linearly dependent column
or row to zero, and then the determinant is zero, proving the claim.

6.5 Invertibility of matrices

The determinant will now be very useful to determine if a square matrix is invertible.
Assume that an inverse exist, then

1 = det 1 = detAA−1 = detA detA−1, (6.13)

and therefore for an invertible matrix the determinant of the inverse matrix has to be the
inverse of the determinant of the original matrix. Since it is impossible to divide by zero,
this implies that an invertible matrix has a non-vanishing determinant. The question is
now whether the reverse is also true, and that a non-invertible matrix has determinant
zero.

To show this, it is useful to return to systems of linear equations. First assume once
more that a matrix A is invertible. Consider the set of linear equations

A~x = ~0. (6.14)

Such a system, where the right-hand side vanishes, is called a homogeneous (set of) lin-
ear equation(s). Otherwise it is called inhomogeneous. Multiply this by A−1 which, by
assumption, exists, Then A−1A~x = ~x = ~0. Thus, if A is invertible then the only solution
to (6.14) is the trivial one, ~x = ~0.

The next step is to recognize that Gauss’s elimination procedure can be viewed as a
sequence of matrix multiplications. Consider again the 2× 2 case.(

M11 M12

M21 M22

)
~x = ~b
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Multiplying a line with a constant is multiplying the matrix-vector equation by a diagonal
matrix E where only in the desired line there appears the constant, and otherwise 1,(

1 0
0 M12

M22

)(
M11 M12

M21 M22

)
~x =

(
1 0
0 M12

M22

)
~b(

M11 M12
M21M12

M22
M12

)
~x =

(
b1

M12

M22
b2

)
Removing now the term in the second line, i. e. subtracting the first and second line to
create a new second line, is achieved by a tridiagonal matrix T , just like in (6.12),(

1 0
−1 1

)(
M11 M12

M21M12

M22
M12

)
~x =

(
1 0
−1 1

)(
b1

M11

M22
b2

)
(

M11 M12
M21M12−M11M22

M22
0

)
~x =

(
b1

M11

M22
b2 − b1

)
Thus, Gauss’s elimination procedure is thus equivalent to multiplying the matrix A by a
string of either tridiagonal matrices T or diagonal matrices E, especially

TEA =

(
C11 C12

C21 0

)
,

and thus the resulting matrix is tridiagonal, or of upper/lower (depending on choice)
triangular form. Note that this construction shows that this always possible for any
matrix. Of course, by redoing in a different order, it is as well possible to obtain

f(Tk, Er)A = C =


C11 C12 ... C1n

0 C22 ... C2n

0 0
. . .

...
0 0 0 Cnn

 .

where m and r depend on the matrix in question, and f is a product of these matrices, as
needed for the system in question. Once this form has been reached, further adding or sub-
tracting scaled lines will finally bring this matrix to a diagonal form C ′ = diag(C ′11, ..., C

′
nn)

if there are no non-vanishing lines. Otherwise, the form will remain tridiagonal. The max-
imally reduced form C ′ of A is also called its reduced step form. If no line vanishes, this
can be continued until a unit matrix is reached.

For the present case, the solution to A~x = 0 is ~x = 0, this implies necessarily that
there is such a string of E and T matrices such that C ′ = 1.

To make progress, note that all matrices E are trivially invertible, since they are
diagonal,

diag(E11, ..., Enn)−1 = diag

(
1

E11

, ...,
1

Enn

)
,

since by construction none of the elements are zero. For the T matrices, this is a little less
obvious. It follows from the fact that subtraction is an invertible process. If the first line
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is added to the second line in the example, the original status is recovered, i. e. the matrix

T−1 =

(
1 0
1 1

)
(6.15)

is indeed the inverse of T , as can be seen immediately by calculation. The generalization
is given by the fact that the matrix elements for a general subtraction/addition matrix of
rows a and b is given by Tij = δij ± δiaδbj and thus

(T−1)ijTjk = (δik + δibδja)(δjk − δkaδjb) = δij + δibδka − δkaδib − δibδkaδab = δik,

and the last term vanishes, because by assumption a 6= b.
This also implies that

A = f(Tk, Er)
−11,

since the inverse of f , being a product of T and E matrices, exists. However, if A can be
written in this form, then it is necessarily invertible, as the right-hand-side, by construc-
tion, is. Since the invertibility has only be used by concluding that an invertible matrix
has as a solution to (6.14) only the trivial solution, but not otherwise, this creates a ring
of implications: If any of the conditions

• A is invertible

• A~x = ~0 has only the trivial solution ~x = ~0

• There is some f(T,E) such that f(T,E)A = 1

• A can be written as some A = f(T,E)−11

is true all other ones follow.
The only remaining step is now to show that if detA 6= 0 but A cannot be written only

as a string of T and E matrices, then it is still invertible, using that E is (tridiagonal) and
T are diagonal, and their determinants are non-vanishing. Now, if detA 6= 0, this implies
that its reduced step form has a non-vanishing determinant, since

detA = det f(T,R)B = det f(T,R) detB,

and the determinant of f is non-zero, because it is a product of matrices with non-vanishing
determinants. Thus, detB must be non-vanishing. But, as shown, either one or more rows
of B vanish, or B is the unit matrix, and thus A invertible. But if a row of B vanishes,
then its determinant vanishes, in contradiction to the fact that detA does not vanish.
Thus, B must be the unit matrix, and thus by virtue of the previous statement A must
be invertible. Thus for any invertible matrix A the determinant is non-vanishing, and it
can always be reduced to the unit matrix.

Since the last statement is actually an equivalence, the statement (6.13) is actually no
longer necessary. This permits to provide an independent proof of detAB = detA detB.
If A is not invertible, then neither is AB, even if B is, since

X−1AB = 1→ X−1A = B−1 → A = XB−1 = (B−1X)−1,
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which contradicts the assumption. But then detAB = 0 = detA detB because detA is
zero as well. If neither A nor B is invertible, then neither is AB, as the inverse of AB is
necessarily B−1A−1. Then this reduces to 0 = 0.

If both matrices are invertible, then either can be written as a product of E and T
matrices,

detAB = det f(T,E)B,

However, multiplication of B by an E matrix just multiplies a single column by a factor,
which therefore can be outside the determinant. A matrix T however is tridiagonal with
ones on the diagonal, and therefore has determinant 1. Especially detA = det f(T,E) =
E1...Em for some value of m, and thus

detAB = det f(T,E)B = E1...Em detB = detA detB,

completing the proof.

6.6 Similarity transformations

Many of the previous manipulations of matrix-vector equations can now be put into a
larger perspective. Consider a matrix A. A similarity transformation of a matrix is then
defined in the following way. For any given invertible matrix S, form

A′ = SAS−1

where A′ is then called the similarly transformed matrix. Note that the unit matrix
does not change under a similarity transformation. In fact, this is true for any matrix
proportional to the unit matrix, D = diagd = d1, as such matrices commute with any
other matrix B, DB = BD, and thus

SDS−1 = SS−1D = D.

Whether the inverse matrix is on the right or left does not matter. Since the matrix is
invertible, it is possible to choose the inverse and obtain the other version. It is hence a
matter of convention. The only important thing is that once a convention has been chosen,
it is kept.

A similarity transformation is invertible, as

A = 1A1 = S−1SAS−1S = S−1A′S.

However, the inversion has the opposite order of inverse matrix and matrix. This once
more emphasizes that any convention chosen must be kept. If the alternative convention
would have been chosen, the order in the inverse similarity transformation would also be
reversed.

It is noteworthy that both the trace and the determinant are invariant under similarity
transformations. For the trace this follows from the cyclicity under matrix multiplication,

trSAS−1 = trS−1SA = trAS−1S = trA.
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For the determinant it follows from the factorization of products of matrices and the fact
that the determinant of an inverse of a matrix is the inverse determinant,

detSAS−1 = detS detA detS−1 =
detS

detS
detA = detA,

where detS 6= 0 because S is invertible.
Coming back to matrix-vector equations, similarity transformations can be used to

rephrase the manipulations done beforehand. Consider

A~x = ~b→ SAS−1S~x = S~b.

Thus, the system of equation is transformed by a similarity transformation. But since S
is known, this can be reversed.

The interesting question arising is, whether there exist similarity transformations which
make the system of equations particularly simple. This may seem like a superfluous
question, as it has been seen that, at least for invertible matrices A, it is just necessary to
invert A to find the solution by

~x = A−1~b.

There are two reasons why this is not sufficient. One is that for non-invertible matrices
this will not help. The other is that in practice inverting a matrix is not a simple exercise.
Especially, so far the only procedure how to do this is finding the sequence of E and T
matrices required to solve the system, but then the quest for the inverse of A has become
irrelevant. Thus, the question remains, whether there is a simpler way. Sometimes there is.
To understand how requires first to learn more about matrices, especially square matrices.



Chapter 7

Eigenvalues and eigenvectors

7.1 The eigenproblem

So far, matrices have mainly been regarded as a convenient way to describe a system of
linear equations. But this is not necessary. Matrices can also be considered as stand-alone
entities. They are then n×m schemes of numbers. They can therefore be considered also
as linear operators mapping a vector from an m-dimensional space to an n-dimensional
space,

A : Rm → Rn,

or, of course, also for complex spaces.
But then, linear operations usually have objects on which they trivially act. For

matrices, this can only be the case for square matrices. It is hence a meaningful question
whether there are vectors ~vAi and numbers λAi for some n× n matrix A with the property

A~vAi = λAi ~v
A
i ,

where no summation is implied. Of course, different matrices will have different such
vectors. If such vectors exist, they are called eigenvectors. The constant of proportionality
is called the corresponding eigenvalue. Geometrically, this implies that A acts on its
eigenvectors as if it would be the unit matrix multiplied by the corresponding eigenvalue.
In the ordinary Rn, this is then an elongation or a shortening of the eigenvector, depending
on whether the eigenvalue is larger than one or smaller than one, respectively.

As an example, consider the matrix

A =

(
2 1
1 1

2

)
. (7.1)

Explicit calculation shows (
2 1
1 1

2

)(
2
1

)
=

(
5
5
2

)
=

5

2

(
2
1

)
,

and thus the eigenvalue to the eigenvector (2, 1)T of this matrix is 5/2. In addition(
2 1
1 1

2

)(
−1

2

1

)
=

(
0
0

)
= 0

(
−1

2

1

)
,
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and thus the matrix has a second eigenvalue 0 with eigenvector (−1/2, 1)T . This exhausts
the possibilities.

Systems of eigenvectors retain the property,

A(a~vAi + b~vAj ) = λAi a~v
A
i + λSj b~v

A
j . (7.2)

Thus, if in a linear system of equations it would be possible to decompose the vector ~b
on the right-hand side into eigenvectors, and the eigenvalues are known, this could be
immediately used to calculate the solution. Since if

~b =
∑
i

ai~v
A
i

then
A
∑
i

ai
λAi
~vAi =

∑
i

ai~v
A
i ,

and therefore knowledge of~b in this form yields knowledge of ~x. This type of manipulations
is actually one of the mainstays of tools in quantum physics. In fact, eventually the
eigenvalues and eigenvectors will become much more important than either the matrix or
any kind of system of linear equations. However, for it to work it requires to answer the
following questions: How many eigenvectors are there and which kind of vectors can be
decomposed into them? What are the eigenvalues? Are there zero eigenvalues? This is
the so-called eigenproblem. Finding the answers to these questions will be done in the
following, and it will turn out that the operation of determinant will again play a central
role.

Note that trivially ~0 appears to be an eigenvector to any eigenvalue, but to be precise
an eigenvector is a vector for a fixed eigenvalue, and therefore ~0 is not an eigenvector.

7.2 Characteristic equation and the eigenvalue prob-

lem

The first thing to note is that the maximum number of eigenvectors cannot be larger than
n, since this is the maximum number of linearly independent vectors in the vector space.
If there are n linearly independent eigenvectors, this would form a basis of the vector space
in question, and any further eigenvector could be decomposed into it, along the lines of
(7.2).

It turns out that to proceed it is actually easier to first determine the eigenvalues, and
the eigenvectors then only in a second step. For brevity, from now on the superscript A
will be suppressed on both the eigenvector and the eigenvalue, as it will always be clear
from context to which matrix they belong.

Assume that λ is an eigenvalue and ~vλ 6= ~0 the associated eigenvector for some fixed
matrix A. Then

A~vλ = λ~vλ → (A− λ1)~vλ = 0.
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Thus the eigenvector ~v is the solution to this linear equation. However, if A − λ1 is
invertible, then, according to section 6.5, the only solution to this equation is ~vλ = ~0,
in contradiction to the requirement that ~vλ is an eigenvector. Thus, A − λ1 may not be
invertible. If it is for all values of λ, this matrix has no eigenvalues and no eigenvectors,
which is the case, e. g., for the zero matrix, as λ1 is invertible for any value λ 6= 0.

Looking for non-trivial solutions thus requires A − λ1 to be not invertible. As shown
in section 6.5, this implies

det(A− λ1) = 0. (7.3)

Hence, finding the eigenvalues corresponds to finding the solution to this equation. It is
therefore called the characteristic equation of the matrix A.

The next step is to obtain the explicit form of the characteristic equation. This requires
to determine

det


A11 − λ A12 ... A1n

A21 A22 − λ ... A2n
...

...
. . .

...
An1 An2 ... Ann − λ

 . (7.4)

Using the form (6.9) to calculate the determinant, it is helpful to always develop with re-
spect to the first row. Then in every reduced determinant the element with the subtracted
eigenvalue appears exactly once. Therefore, the characteristic equation is a polynomial of
order n in λ. E. g. for n = 2 the characteristic equation takes the form

det

(
A11 − λ A12

A21 A22 − λ

)
= (A11 − λ)(A22 − λ)− A12A21

= λ2 − λ(A11 + A22) + A11A22 − A12A21 = 0, (7.5)

and thus is a polynomial equation of order 2 in λ.
The solutions to this equation are

λ1,2 = −1

2

(
A11 + A22 ±

√
(A11 + A22)2 − 4(A11A22 − A12A21)

)
This result has a number of immediate implications.

If the field of the vector space is real, the eigenvalues must also be real. Thus, there
are 2, 1 or no solution to the characteristic equation (7.5). Correspondingly, there are 0
or 2 eigenvalues. There is also the special case of apparently one eigenvalue, if the square-
root is zero. However, this is only the case that the eigenvalue appears twice. Because,
provided there are solutions to (7.3), the equation can be rewritten as

det

(
A11 − λ A12

A21 A22 − λ

)
= (λ− λ1)(λ− λ2) = 0

as this is precisely the form which an order 2 polynomial can have, for suitable choices
of λ1,2. In the degenerate case, this becomes (λ − λ1)2, thus showing that the eigenvalue
appears twice. This is also called a degenerate eigenvalue or that the eigenvalue has
degeneracy two.



62 7.2. Characteristic equation and the eigenvalue problem

The situation is radically different if the field is complex. As then the square-root of
any number exists, there are always two eigenvalues. There can be either two different real
eigenvalues, two degenerate real eigenvalues, or, if all coefficients in the polynomial are
real, two conjugate complex eigenvalues. That they need to be complex conjugated can be
seen for this case by explicit calculation and decomposing the matrix entries into their real
and imaginary part, though this is tedious. Otherwise, i. e. already if any coefficients are
complex, the result can be any two complex numbers, not necessarily complex conjugated
to each other.

In the general case, this will be a polynomial of order n. There is a theorem in
algebra, proven in the lecture on advanced mathematics, that states that such a polynomial
equation for complex numbers has exactly n solutions, or roots, of which the complex ones
appear pairwise as complex conjugated pairs if the coefficients are all real. Note that if n
is odd, this implies necessarily that there is one real root, and thus one real eigenvalue, if
the coefficients are real. If they are complex, not even this is guaranteed.

Thus, if there exists at least one eigenvalue, the characteristic polynomial can always
be rewritten as

P (λ) = (λ− λ1)µ1 ...(λ− λm)µm (7.6)

for the m distinct eigenvalues λi, which are of algebraic multiplicities 1 ≤ µi ≤ n such
that ∑

i

µi = n

for a complex vector space and

0 <
∑
i

µi ≤ n

for a real vector space. Though this implies that there are always n, not necessarily
distinct, eigenvalues for the complex case, in the real case there may be anything from 0
to n eigenvalues. Actually calculating them is a problem of algebra, and not necessarily
entirely trivial, but can be algorithmitized. This will not be detailed further here. Of
course, since only zeros are searched for, any overall factor of the characteristic polynomial
is irrelevant.

If in the real case less real roots than possible exists, it is possible to show that the
characteristic polynomial can be decomposed as

P (λ) = ...(λ− λi)µi ...(λ2 + ajλ+ bj)
µj ...

and thus it is at least possible to break it down into factors of implicit quadratic equations,
which do not have real solutions. That is a consequence of (7.6): It is always possible to
still find all complex roots, but any pair of complex conjugate roots can be combined to
yield such a quadratic factor. The algebraic multiplicities of these factors is hence always
even. Since for this case the coefficients are always real, the complex solutions are always
conjugate pairs.

As an example, consider the matrix (7.1). Its characteristic polynomial is

det

(
2− λ 1

1 1
2
− λ

)
= (2− λ)

(
1

2
− λ
)
− 1 = λ2 − 5

2
λ = λ

(
λ− 5

2

)
= 0
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and the two eigenvalues 0 and 5/2 can be read off directly in the last step. Both are of
algebraic multiplicity one.

7.3 Eigenvectors

Once the eigenvalues are known, the next question is how to determine the eigenvectors
~vi of

A~vi = λi~vi. (7.7)

These are again systems of linear equations, and the problem can therefore be tackled
with the methods described in section 6.2. For an arbitrary matrix, there is no general
procedure how these eigenvectors can be computed, and therefore in general indeed the
corresponding set of linear equations has to be solved for every eigenvalue separately.

Note that because the eigenvector equation is invariant under multiplication by a con-
stant, the norm of the eigenvectors, as far as defined in the vector space at hand, is not
determined by the eigenvector equation. Therefore, the results are often conventionally
normalized to one, but this is not necessary. This also implies that the equation (7.7) is
necessarily an underdetermined set of linear equations.

Consider again the matrix (7.1). The eigenvector equation for the eigenvalue 0 is(
2 1
1 1

2

)(
x
y

)
=

(
2x+ y
x+ y

2

)
=

(
0
0

)
.

Both coefficient equations are proportional to each other, which stems from the arbitrary
normalization. The solution is thus y = −2x, yielding for x = −1/2 y = 1, and thus the
known solution. Likewise (

2x+ y
x+ y

2

)
=

(
5x
2
5y
2

)
gives two equations proportional to each other, and which read y = x/2. Selecting x = 2
yields y = 1, and thus the solution found above.

While eigenvectors play an important role in physics, mathematically they are rather
straightforward. An interesting concept derived from them is the classification of the
eigenvectors in form of the so-called eigenspaces.

7.4 Subspaces created by a matrix

The effect a matrix has on the vectors in a vector space is classified by the (sub)spaces the
matrix generates. These are the eigenspaces, image, kernel, and cohomology of a matrix.
Later also other such spaces may arise. Note that while there is some connection between
these spaces, they are independently defined concepts, which do not rely on each other.
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7.4.1 Eigenspace

An eigenspace is the space which is spanned by the eigenvectors to a fixed eigenvalue.
Given a fixed eigenvalue, there are two basic possibilities. Either its algebraic multiplicity
is one. Then there is one eigenvector, and the corresponding eigenspace is one-dimensional.
If the algebraic multiplicity is larger than one, there can be more eigenvectors, but there
do not need to be more than one. This will manifest itself by finding as solution to (7.7)
less (linearly independent) solutions than the algebraic multiplicity of the eigenvalue.

Take as an (almost trivial) example the matrix

M =

2 0 0
1 2 0
0 0 1

 . (7.8)

This matrix has eigenvalue 1 with algebraic multiplicity one and 2 with algebraic multi-
plicity two. The eigenvector to the eigenvalue 1 is (0, 0, 1)T . However, there is only one
solution the eigenvector equation for λ = 2, (0, 1, 0)T . Thus, also the eigenspace to the
eigenvalue 2 is also an one-dimensional space.

To characterize the situation, the concept of geometric multiplicity γi is introduced,
which denotes the dimensionality of the eigenspace of a fixed eigenvalue λi. In this case,
the geometric multiplicities for both eigenvalues are one. It is surprisingly non-trivial
to show that γi ≤ µi, i. e. for every eigenvalue there can be no more linearly different
eigenvectors than its algebraic multiplicity. Also, by construction, the eigenspaces to
different eigenvalues are different, and thus eigenvectors to a fixed eigenvalue are always
linearly independent from all eigenvectors to different eigenvalues. The proof will be
skipped here.

The sum of the geometric multiplicities obeys

m∑
i=1

γi = n′ ≤
m∑
i=1

µi ≤ n, (7.9)

where m is the number of distinct eigenvalues. This implies that if n′ = n the eigenvectors
of the matrix are n linearly independent vectors, and therefore form a (not necessarily
orthonormal) basis of the vector space. It is important to note that this is a necessary and
sufficient condition.

Of course, if the sum of algebraic multiplicities is smaller than n, i. e. for a real vector
space there are not n eigenvalues, always n′ < n. The concept of eigenspaces gives rise to
a number of different definitions.

If an eigenspace to an eigenvalue λj has dimension greater than one, any linear combi-
nation of eigenvectors ~vij inside this eigenspace is again an eigenvector. Here, the index i
of ~vij counts the number of dimensions of the eigenspace, and thus runs from 1 to γj. This
follows as

A
∑
i

(
ai~v

i
j

)
=
∑
i

(
aiA~v

i
j

)
=
∑
i

(
aiλj~v

i
j

)
= λj

(∑
i

ai~v
i
j

)
,
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where no summation is implied. From this follows that any choice of basis within an
eigenspace is made up from eigenvectors. This can be frequently used to simplify calcula-
tions.

7.4.2 Image

The image I of a matrix A is the set of vectors {~b} obtained by acting on all vectors ~a of
the vector space by the matrix,

I =
{
~b
∣∣∣A~a = ~b∀~a

}
.

This space can be much smaller than the vector space, and at most be identical to the
vector space. The dimension of the image is called the rank of the matrix.

The extreme case is the zero matrix, for which the image is just the zero-vector, and
thus is zero-dimensional. If the eigenvectors form a full basis of the vector space, the
image is automatically the full vector space. This is hence a sufficient, but not necessary,
condition. E. g., the unit matrix, or any matrix proportional to it, has the full vector
space as image. The example (7.1) has also the full vector space as image. But for the
example (7.8) this would a separate investigation, as the sum of geometric multiplicities
is smaller than the dimensionality of the vector space.

Note that the image of the transposed matrix is the same as for the original matrix,
since

(A~a)T = ~aTAT = ~bT ,

and if the ~b are linearly independent, then so are the ~bT . Likewise, the entire eigenproblem
for the transposed matrix is trivially connected to the one of the original matrix.

It should be noted that the rank may be different from the number of linearly inde-
pendent eigenvectors, and thus the sum of the geometric multiplicities (7.9). E. g. if the
matrix has one or more vanishing eigenvalues, the corresponding eigenvectors are mapped
to the zero vector, and therefore cannot contribute to the dimensionality of the image.
The same is, of course, true if there are less eigenvalues (for real spaces) than there are
dimensions.

7.4.3 Kernel

A matrix can map some vectors to the zero vector,

A~a = ~0, (7.10)

even if it is not the zero matrix. An example is given by m = diag(1, 0), which maps
the vectors (0, c)T for any c to the zero matrix. This is quite different from scalar/matrix
multiplication, were this can only happen if either of the involved quantities is zero.

This situation plays an important role in many cases in physics, and the set of vectors
~v satisfying (7.10) is called the kernel K of the matrix,

K =
{
~a
∣∣∣A~a = ~0

}
.
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Its dimension is sometimes called the defect of the matrix.
There is an important relation between the rank and the defect of the matrix: The sum

of rank and defect is n, the number of dimensions of the space. This can be seen as follows.
The kernel condition (7.10) is a homogeneous system of linear equations. As discussed in
section 6.5, a system of linear equations can be manipulated by matrix multiplications.
But the zero vector is invariant under matrix multiplications. Thus, at some point, the
equations have been transformed such that there must be the same number of trivial
equations of type 0 = 0 as the defect of the matrix - in a suitable basis the kernel will
be spanned by a set of vectors with only entries in a number of dimensions equal to the
defect.

But then the remainder of the equations are just parameterized by the components
vi, and therefore parameterize a defect-dimensional set of solutions, as by assumption the
remaining equations are no longer trivial. Thus, the remaining equations are mapped to
an (n-defect)-dimensional system of inhomogeneous equations. But by assumption, this
reduced set is not part of the kernel, and therefore cannot have a non-trivial solution to
(7.10). Thus, this reduced matrix is by construction invertible, and there is thus a non-
trivial solution for any base-vector of the remaining space, and therefore this is just the
image of the matrix of dimension rank, completing the statement.

Note that for non-square matrices, the number of independent vectors which can be
produced and on which it can act can be not larger than the smaller of its dimension.
Thus, the sum of defect and rank will in this case always yield the smaller of the two
numbers.

It is noteworthy that because an invertible matrix has only trivial solutions to (7.10),
according to section 6.5, its defect is always zero, and its rank always n. Furthermore,
this implies that a matrix with non-zero defect has a determinant of zero. Note, however,
that a matrix with determinant zero does not need to have a non-zero defect. E. g. (7.1)
has determinant zero, but has defect zero.

7.4.4 Cohomology

An interesting construction, though of no immediate use in this lecture, is the so-called
cohomology C of a matrix. It is defined as the sub-space of the kernel of the matrix from
which the image is removed

C =
{
~c
∣∣∣A~c = ~0 and A~a 6= ~c∀~a

}
. (7.11)

This implies that only non-invertible matrices can have a non-trivial cohomology, as a
non-zero defect is required.

An example is given by the matrix

m =

(
0 1
0 0

)
.

It maps the vector (1, 0)T to ~0, which is therefore part of the kernel. The vector (0, 1)T is
mapped into (1, 0)T , which is therefore part of the image. Thus, the vector (1, 0)T is part
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both of the image and the kernel. It would therefore not be contained in the cohomology
of the matrix m. The vector (0, 1)T is.

7.4.5 Injective, surjective, and onto

These concepts can also be used to define certain properties of general operators, which
are exemplified for matrices.

A map is defined to be injective, if every element of the space into which the map leads
is reached from the original space. A matrix, which has a rank smaller than the target
dimension, is not injective, while a matrix with rank equal the dimension is injective.

A map is defined to be surjective, or onto, if every element of its domain of definition
is mapped onto a different element in its image. A matrix can be or cannot be surjective.
E. g. a n×1 matrix will map all n-dimensional vectors to 1-dimensional ones, and thereby
more than one n-dimensional vector on the same 1-dimensional vector.

A map is bijective, if it is both injective and surjective, that is every element of the
domain is mapped to one and only one element in the image, and there is hence a one-
to-one correspondence. Square, invertible matrices with rank equal the dimension, which
therefore map the whole vector space into itself, are of this type.

7.5 Diagonalization

The eigenvectors permit some rather strong statements about matrices. Especially, if the
there are as many linearly independent eigenvectors as there are dimensions, i. e. if in (7.9)
it is equality and the eigenvectors form a basis.

The first is about whether a matrix can be made diagonal by a similarity transfor-
mation, a process called diagonalization. Diagonalization is a two-step process, starting
out from the concept of a similarity transformation, as discussed in section 6.6. Then the
diagonalization of a matrix M is defined to be a similarity transformation using a matrix
S such that the result is a diagonal matrix,

SMS−1 = diag(m′11...m
′
nn) = M ′.

At this time, it is not yet clear, whether this is possible. To see why this is important,
note that for any eigenvector ~v

SMS−1S~v = λS~v = diag(m′11...m
′
nn)~v′ = λ~v′ = λS~v.

Thus, the diagonal form of the matrix has much simpler relations to its eigenvalues: The
Cartesian basis forms now necessarily the set of transformed eigenvectors ~v′ with eigen-
values the diagonal entries mii, and thus λ necessarily equals one of those. It is therefore
desirable to get information about when such a diagonalization is possible. This would
allow to circumvent the necessity to find the roots of a polynomial. It will then be seen
that there are even more properties, which can be deduced from diagonalizability, some of
which are quite powerful statements.
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For now, consider only matrices with a full set of linearly independent eigenvectors. The
case of matrices where the sum of the geometric multiplicities is less than the dimension
of the vector space will be considered in the section 7.6. Then the eigenvectors are all
linearly independent. Define a matrix S−1 as1

S−1ij = (~vi)j,

where ~vi is the eigenvector to a the eigenvalue λi. If some geometric multiplicities are
non-zero, the different eigenvectors would need a further index to enumerate them. This
is left implicit, but could be understood to be part of the index i. Assume further that
the eigenvectors are normalized to unity, though this is not necessary, but convenient.

This matrix has the property to be invertible. This follows from the fact that the
homogeneous system

(S−1~x)i = (~vi)
T~x = (~0)i

can have only the trivial solution, since the vectors ~vi are linearly independent by assump-
tion, and this is just a linear combination of them. As shown in section 6.5 this implies
that S−1 is invertible.

This implies

(MS−1)ik =
∑
j

Mij(~vj)k = λk(~vi)k, (7.12)

where no summation is implied. This is the matrix S−1 with every column multiplied by
its eigenvalue. When multiplying with the inverse, the presence of a common factor in a
column does not matter. If

(S)ijS
−1
jk = δik

then
(SMS−1)ik =

∑
j

(S)ijλkS
−1
jk = λkδik,

where again no summation is implied. Thus, the similarity transformation yields a diagonal
matrix with the eigenvalue of the original matrix as diagonal elements

SMS−1 = diag(λ1, ..., λn).

The result for this particular similarity transformation is hence especially simple. This also
implies that S~vi is necessarily a vector with only an element in the ith component to remain
an eigenvector to the same eigenvalue. Thus, this particular similarity transformation also
transforms the system of eigenvectors into an orthonormal basis of the same form as the
Cartesian basis.

This new basis is also called the eigendecomposition of the matrix at hand. Note
that it was not necessary that the matrix M itself is invertible, and thus to have only
non-zero eigenvalues. Diaganolizability and invertibility are two distinct concepts, and

1That here the inverse of S appears is due to the chosen convention, and that first the matrix to the
right should be determined. At the moment, this is just a label, and not yet it is implied that the so
constructed matrix is indeed invertible.
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should not be mixed. Many physically relevant systems in 8quantum) physics in involve
diagonalizable but not invertible matrices. An important aside of this result is that this
implies that the determinant of such a matrix is the product of the eigenvalues while the
trace is the sum of it, as both are invariant under similarity transformations. This feature
is exploited in physics, as sometimes only this sum or product is needed. It is then not
necessary to determine the actual eigenvalues.

As an example, consider the matrix

M =

(
1 −1
0 0

)
,

which has determinant zero and eigenvalues zero and one. It has determinant zero and is
thus not invertible. Its eigenvectors are (1, 0)T and (1, 1)T/

√
2. Thus, the sum of geometric

multiplicities is 2, the dimension of the vector space. The matrix is thus diagonalizable.
These eigenvectors which can be used to diagonalize the matrix:

S−1 =

(
1 1√

2

0 1√
2

)

S =

(
1 −1

0
√

2

)
SMS−1 = S

(
1 0
0 0

)
=

(
1 0
0 0

)
.

The eigenvalues can be read off, and are 0 and 1, each with algebraic multiplicity one.

7.6 Jordan normal form

If a matrix has a true lesser in (7.9) it is not possible to bring it into diagonal form.
However, it is possible to bring a N × N matrix still into a simpler form, the so-called
Jordan normal form.

This form is defined to be block-diagonal, i. e.

S−1AS = J =

J1 ... 0
...

. . .
...

0 ... JM

 (7.13)

where only the M < N Jordan blocks Ji have non-zero entries. Note that if N = M , the
matrix would be diagonal. Of course, if M = 1, then the Jordan normal form is just the
original matrix. Furthermore, the Jordan blocks Ji for complex spaces have the form

Ji =


λi 1 0 ... 0
0 λi 1 ... 0

0 0
. . . . . . 1

0 0 ... 0 λi

 (7.14)
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I. e. it has the eigenvalue on the diagonal, and the next diagonal above has ones (or below,
this does not matter and is a choice of convention).

If for real vector-spaces also the algebraic multiplicities do not add up to the dimension
of the space, it is still possible to form blocks

Ji =


ai bi 0 0 ...
−bi ai 1 0 ...
0 0 ai bi ...

0 0
. . . . . .

...

 .

where the 2 × 2 blocks are repeated correspondingly often. Though suggestive, it is not
necessary that every block belongs to different eigenvalues. But it is possible.

At any rate, to determine the Jordan normal form, and the corresponding similarity
transformation, it is first required, as in case of the diagonalization, to determine all
eigenvalues and eigenvectors. Also, for every Jordan block it will be necessary to determine
its respective kernel and image. So, assume that all eigenvalues and eigenvectors of A are
known.

Since the following is quite involved, it is useful to track every step with an explicit
example. Consider to this end the matrix

A =


5
3

− 1√
6
− 1√

18
1√
6

1
2

1
2
√
3

− 1√
18
− 1√

12
11
6

 . (7.15)

This matrix has eigenvalues 1 and 2 with algebraic multiplicities 2 and 1, respectively. Its
(normalized) eigenvalues areas

~v2 =

−
1√
3

0√
2
3

 ~v1 =


1√
3
1√
2
1√
6

 , (7.16)

showing that each eigenvector has geometric multiplicity one. Thus, the matrix is not
diagonalizable, and thus a candidate for the Jordan normal form. Note that its determinant
is 2, and it remains thus an invertible matrix.

It can now be shown that there are exactly as many Jordan blocks as there are linearly
independent eigenvectors. To see this, it is best to construct explicitly the required matrix
S to perform the similarity transformation to the Jordan normal form. Thus, assume the
Jordan normal form J is known. Then, for a base vectors ~ei holds

AS~ei = SJ~ei

Because of the block-diagonal form, J~ei will have only components within the subspace of
the Jordan block in which ~ei is.
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In the example, the Jordan block form will be necessarily

J =

1 1 0
0 1 0
0 0 2

 .

In the end, the matrix

S =


1√
3

1√
3

1√
3

1√
2
− 1√

2
0

1√
6

1√
6
−
√
2√
3

 (7.17)

will do the transformation. Choosing a Cartesian basis, this yields, e. g.

AS~e1 =


1√
3
1√
2
1√
6

 = SJ~e1,

as asserted.
The trick to determine S is now to see that for S to be invertible, it is necessary that all

its row/columns are linearly independent. This is visible in (7.17). It is therefore necessary
to somehow upgrade the single eigenvector associated with each block in a unique way to
a full subspace which is orthogonal to all subspaces created by the other Jordan blocks.

Assume that there is such a matrix S which needs to have linearly independent rows.
Then because AS = SJ = T , the action of a Jordan block i of size k induces a set of
column vectors in T of type

λ~sa

~sa + λ~sa+1

~sa+1 + λ~sa+2

...,

a so-called Jordan chain.
In the example, this yields

AS =


1√
3

2√
3

2√
3

1√
2

0 0

1√
6

√
2
3
−
√

8
3

 .

In this case the Jordan chain has only two elements,

λ~s1 = 1×


1√
3
1√
2
1√
6

 (7.18)

~s1 + λ~s2 =


2√
3

0√
2
3

 =


1√
3
1√
2
1√
6

+ 1×


1√
3

− 1√
2

1√
6

 (7.19)
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At the same time, this is identical to the action of A on the rows of S. This implies
when considering AS − SJ column by column,

(A− λ1)~sa = 0

(A− λ1)~sa+1 = ~sa

(A− λ1)~sa+2 = ~sa+1,

which necessarily implies

(A− λ1)2~sa+1 = (A− λ1)~sa = 0

(A− λ1)3~sa+2 = (A− λ1)2~sa+1 = (A− λ1)~sa = 0.

Vectors satisfying this properties are called generalized eigenvectors.
For the example, it follows that

(A− 1× 1)~s1 =

0
0
0


(A− 1× 1)~s2 =


1√
3
1√
2
1√
6


as required. Thus, (7.18-7.19) are indeed the generalized eigenvectors to eigenvalue 1 of
the matrix (7.15).

Hence, to show the existence of an invertible S requires to show that the ~sa form a
complete basis, and therefore S can be inverted. For Jordan blocks of size 1, this is trivial,
as this is true for the single eigenvector. To show that this is true in general, perform a
proof by induction. For a 1×1 matrix, this is trivial if there is a single eigenvalue, so the
seed is trivial. If there are zero eigenvalues, these form a trivial kernel, for which any base
vectors will do, as the base of the kernel of the matrix, so this is also trivial.

Assume that a Jordan normal form has been constructed for everything up to a certain
row/column. If the newly added column does not extend an existing block, the new block
is a 1×1-block, for which the corresponding base vector will serve the purpose. If it does
extend an existing Jordan block, it extends a Jordan chain. Then, by assumption, the
intersection of the kernel of A−λ1 and the image of the reduced matrix is not empty, and
therefore there must exist a vector such that

(A− λ1)~q = ~p,

where ~p is the lead-element of one of the Jordan chains of the reduced matrix. The vector
~q is not part of the kernel (A− λ1), as it would otherwise vanish. But they must also be
linearly independent of the existing vectors, as otherwise they would be in the kernel, a
contradiction. Therefore they are linearly independent.

Since in this form all vectors are linearly independent, the ~p by induction assumption,
the kernel vector since they are an arbitrary basis, and the new ~q as they are not linearly



Chapter 7. Eigenvalues and eigenvectors 73

dependent on the former, this proves the existence of the Jordan normal form in the
complex case. Since this gives now a constructive way to determine an invertible S such
that (7.13) holds for any matrix A, the general proof has been obtained.

In the real case, this can be reconstructed from the solution in the complex case. Then
every set of two complex conjugate eigenvalues is expanded into a 2×2 matrix, which
precisely yields the real form of the Jordan normal form.

That this is true can now be seen from the example, since

S =
(
~s1 ~s2 ~v2

)
(7.20)

as can be seen from explicit comparison between (7.17) and (7.16), (7.18), and (7.19). The
constructive procedure to determine S is then

1. Determine the eigenvalues and eigenvectors

2. Construct for any eigenvalues with geometric multiplicity less then algebraic multi-
plicity the generalized eigenvectors, by creating a chain from each linearly indepen-
dent eigenvector

3. Combine the vectors to form S, which will deliver J .

As J could equally be obtained after step 1 already, the other steps will only be necessary
if S is needed. Whether this is the case depends on the problem.

7.7 Matrix powers, roots and exponentials

It is an interesting observation that invertible matrices form a non-Abelian group under the
associative matrix multiplication. This follows, as the product of two invertible matrices
A and B is itself invertible, (AB)−1(AB) = B−1A−1AB = 1 = AB(AB)−1 and the unit
matrix is invertible and acts as the neutral element. This will be discussed in more detail
in section 8.7.

As this makes (invertible, square) matrices similar to other groups, like the ordinary
real numbers, it is a very interesting question, whether it is possible to also construct
further mathematical operations on them. It turns out that the answer to this is positive,
and shows interesting relations to the eigenvalue problem.

7.7.1 Matrix roots

The simplest operation is, of course, to construct higher integer powers of matrices, in a
straightforward way by performing sequential multiplications.

A much more involved question is whether there is a solution to

A2 = B

with B a fixed matrix, i. e. whether there is a square-root of a matrix. Since the 1 × 1
matrices are just the ordinary numbers, it is clear that there are exceptions if the matrices
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are real, but what is if it is complex? If such a matrix exist, it is called the root of the
matrix B.

The situation is highly involved. Consider the unit matrix. Then(
1 a
0 −1

)(
1 a
0 −1

)
=

(
1 a− a
0 1

)
= 1

for any value of a. Thus, in contrast to real or complex numbers a matrix can have an
infinite number of roots, even for a real matrix and real roots. In fact, it can be shown
that even the zero matrix has non-trivial roots, in great distinction to ordinary numbers.
An example is, e. g. (

0 1
0 0

)(
0 1
0 0

)
=

(
0 0
0 0

)
.

This will lead to an interesting concept later in section 8.3.

For diagonal matrices, the situation is comparatively simple, as there at least some
solutions are given by taking the roots of the diagonal elements. Especially

V −1A2V = V −1AV V −1AV = V −1BV

implies that diagonalizing a matrix, performing the square-root, and then returning to the
original version will yield the square root. Specifically, if the diagonal elements are distinct,
there is no choice, except for the sign. However, if there are degenerate eigenvalues, there
is an arbitrariness in the diagonalization procedure, since the transformation can order the
diagonal elements arbitrarily by a further base transformation. Hence, there are additional
possible ambiguities in comparison to the one-dimensional case.

Hence, a square root of a matrix can be defined, but just like with numbers, this is a
multi-valued operations, which can have an infinite number of solutions. Accepting this,
a square root is a meaningful operation. In the same way, it is possible to define higher
roots, and calculate them using diagonalization methods.

The calculation of arbitrary powers can then be again constructed as a limiting pro-
cedure of integer powers and integer roots, and therefore power-laws of matrices can be
calculated, and are meaningful to the same extent this is true for numbers, but can in
general yield again an infinite number of possible results.

Non-diagonalizable matrices could still have no square roots. In fact, it turns out that
it is non-trivial to show whether a general matrix can have a square root. For 2 × 2
matrices M , a general sufficient criterion can be constructed: A (possibly complex) square
root exists, if (

trM + 2
√

detM
)2
6= 0.

Of course, there can be more than one. However, if a matrix does not fulfill this condition,
it can still have square roots. Thus, taking the root of a non-diagonalizable matrix is a
non-trivial problem.
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7.7.2 Matrix exponentials

Thus, a power of a matrix is a difficult issue. The situation changes when taking the
matrix to be the power, especially in form of the matrix exponential, i. e. exponentiating
e by a matrix. The result of this operation will again be a matrix. However, this requires
to define what this operation should actually mean.

For this, it is useful that the exponential function can be defined in various ways. Two
particular useful definitions valid for numbers, real or complex, are

exp(x) = lim
n→∞

(
1 +

x

n

)n
exp(x) =

∞∑
n=0

xn

n!
,

which will be shown in other lectures.

Both definitions only require to take a positive, integer power and perform addition
and multiplication. They can therefore be straightforwardly generalized to matrices, and
both provide a definition of a matrix exponential. Especially, since for a diagonal matrix

diag(a1, ..., an)n = diag(an1 , ..., a
n
n)

the definitions imply that the exponential of a diagonal matrix is a diagonal matrix with
the entries exponentiated.

This definition can then also be used to define the logarithm of a matrix as the in-
version of the exponentiation, if necessary. However, as is the case for real and complex
numbers, the existence of a logarithm of a matrix is not guaranteed, and if it exists can
be multivalued.

A particular useful consequence of the definition of the exponential is a direct way
to evaluate the determinant of an exponentiated matrix where the sum of the algebraic
multiplicities gives the size of the matrix, so that for an n × n matrix there are n, not
necessarily distinct, eigenvalues λi. Then

etrA = e
∑

i λi = Πie
λi = det eA,

where it has been used twice that such a matrix has a Jordan normal form J , but that the
necessary similarity transformation S does neither change the trace nor the determinant.
This follows because

trA = trSS−1A = trS−1AS = trJ =
∑
i

λi

detA = detS
detS

detA = detS detA detS−1 = detS−1AS = det J = Πiλi
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and for any Jordan block Ji

trJi = tr


λi 1 0 ... 0
0 λi 1 ... 0

0 0
. . . . . . 1

0 0 ... 0 λi

 = λi + ...+ λi

det Ji = det


λi 1 0 ... 0
0 λi 1 ... 0

0 0
. . . . . . 1

0 0 ... 0 λi

 = λi · ... · λi,

where the determinant has been developed always in the first line.
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Matrix types

As has been seen, matrices have a host of interesting properties. It can be expected that
many consequences arise from these properties. Especially, there are particular subtypes
of matrices, which are of great relevance in physics, which exhibit combinations of very
particular consequences. These form the so-called matrix groups.

8.1 Permutation matrices

The first subclass of matrices are so-called permutation matrices. They are constructed
such as to exchange two rows (or columns) k and l of a matrix they are multiplied to.
They take the form

(P kl)ij = δij(1− δik)(1− δjl) + δikδjl + δilδjk + δijδkl,

where no summation is implied. E. g. for n = 3 and exchanging the first and second row,

P 12 =

0 1 0
1 0 0
0 0 1

 . (8.1)

Thus, this is a unit matrix, where the kth and lth row (or, equivalently columns) are
exchanged.

When acting as P klM , the result is a matrix where the lth and kth row of M are
interchanged, but otherwise it is M . Likewise, MP kl gives a result where the columns are
exchanged.

Such a matrix has the property

P klP kl = 1,

i. e. it squares to one. Conversely, any permutation matrices are thus (some of the) roots
of the unit matrix. This is intuitively clear, as swapping twice the same rows or columns
reproduces the original matrix.

77
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The trace of a permutation matrix of dimension n is n− 2, as there are two diagonal
elements with entry zero. The determinant of P can only be ±1, as (detP )2 = detP 2 =
det 1 = 1. It has actually determinant −1. This follows, as it is always possible to develop
the determinant after the rows and columns such that the reduced matrix is ultimately
just

P ′ =

(
0 1
1 0

)
, (8.2)

which has determinant -1. The other factors are all from a unit matrix, so the total result
is −1.

The eigenvalues are also all one, except for one which is minus −1. This can be seen by
noting that (8.2) has eigenvalues 1 and −1, but the rest of the matrix is just a unit matrix,
which has eigenvalues 1. Similar, the eigenvectors are for all eigenvectors just the base
vectors, except for those associated with the submatrix (8.2). For it, the eigenvectors are
(1,−1)T and (1, 1)T . However, these are linearly independent vectors, and therefore the
eigenvectors form a full system. The permutation matrix can therefore be diagonalized.

Implicitly, the permutation matrix has been used before when reordering in a system
of linear equations the equations, which can be obtained by multiplying the system in
matrix-vector form by a suitable permutation matrix.

8.2 Projection matrices

Another important class of matrices are so-called projection matrices. Projection matrices
are defined by the fact that their image is a sub-space of the original vector space of lesser
dimensions. E. g. the projection matrix

P =

(
1 0
0 0

)
, (8.3)

projects every two-dimensional vector on its x-component, and therefore on a one-dimensional
sub-space.

The defining property of projection matrices is that they leave a once-projected vector
invariant, i. e.

PP~v = P~v

for any vector ~v, or more succinctly as a matrix equation

PP = P.

Matrices satisfying this property are called idempotent, and projection matrices are ex-
amples of such matrices.

Furthermore, there is a second projection matrix

P ′ = 1− P.
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which by construction is also idempotent and sums with the original projection matrix to
one,

P ′P ′ = (1− P )(1− P ) = 1− 2P + PP = 1− 2P + P = 1− P = P ′

P ′ + P = 1− P + P = 1.

For the example (8.3) it is given by

P ′ = 1− P =

(
0 0
0 1

)
.

The subspace into which P ′ projects is also called the complement of the space into which
P projects, since

P ′P = (1− P )P = P − PP = 0 = P (1− P ) = PP ′

and thus a projection by the one and then by the other one results in a zero vector. Hence,
the vector P~v needs to be in the kernel of P ′ = (1− P ).

Projection operators have necessarily vanishing determinant, since

0 = det 0 = detP det(1− P ) = (detP )2(det(1− P ))2. (8.4)

But the only number squaring to zero is zero itself. This implies that projection matrices
cannot be inverted, which is geometrically intuitive: information is lost, and cannot be
regained. This implies that there is a non-trivial kernel, which is formed by the vectors
belonging to the complement of the projector.

However, the eigenvectors form a full base system, and therefore the projectors can be
diagonalized, like in the example (8.3).

The trace of P is not necessarily zero, but it is necessarily positive

trP = trPP = (Pii)
2 ≥ 0,

and the sum of the traces of the projector and its orthogonal complement is

tr(P + (1− P )) = tr1 = d,

the number of dimensions. Note that both the unit matrix and the zero matrix are formally
also projection matrices, and project to the full space and the null space, and are therefore
complements of each other1.

Note that if P = P † then the vectors from the projected sub-space and its complement
are actually orthogonal to each other, because

((1− P )~v)†P~v = (~v)†(1− P †)P~v = 0.

1The unit matrix has determinant one, but here the associated second matrix P ′ = 1 − 1 is the zero
matrix, ensuring (8.4). Thus, in a sense, projection matrices where both the matrix and the associated
one have zero determinant can be considered as the proper projection matrices.
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The complement is then called an orthogonal complement.
This is not necessary, however. If this is not the case, the space is still separated into

two sub-spaces, but the vectors in both sub-spaces still retain a part of the old one. E. g.
a possible projection matrix is

P =

(
1 i
0 0

)
.

It still projects the (complex) vectors only on their first component, and thus on a one-
dimensional sub-space. Its orthogonal complement is

1− P =

(
0 −i
0 1

)
(8.5)

and projects vectors into another sub-space, and sums by construction to one, but the
vectors created are not orthogonal to the previous ones. E. g.((

0 −i
0 1

)(
1
1

))†(
1 i
0 0

)(
1
1

)
=

(
−i
1

)†(
1 + i

0

)
= i− 1.

8.3 Nilpotent matrices

Another subclass of matrices has the strange property

SS = 0,

but are not the zero-matrix itself. This has already been seen for roots of the zero matrix
in section 7.7.

That is a rather strange thing, and requires at least two dimensions. A two-dimensional
example is

S =

(
0 1
0 0

)
.

Matrices with this property are said to be nilpotent. This implies that their determinant
vanishes, since (detS)2 = 0, which again can only be fulfilled by having detS = 0. This
implies that they cannot be inverted. Furthermore

0 = trSS = (sii)
2

and therefore for real nilpotent matrices all diagonal elements vanish. For complex ones,
this may not be the case.

Note that by construction any vector ~v which is in the image of S creates a vector ~w
which is in the kernel of S,

S ~w = SS~v = 0.

Thus, the cohomology of nilpotent matrices can be a non-empty set. This is also one of
the main consequences relevant in physics applications of nilpotent matrices.
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8.4 Symmetric and hermitian matrices

A very important class of matrices in physics are hermitian matrices, which have the
defining property

H† = H. (8.6)

This property is also called self-adjointness2. In finite-dimensional vector space (H†)† = H
holds.

An example are the famous Pauli matrices,

σ1 =

(
0 1
1 0

)
σ2 =

(
0 i
−i 0

)
σ3 =

(
1 0
0 −1

)
(8.7)

which play an extremely important role throughout quantum physics, and also an im-
portant role in some branches of mathematics, especially the general theory of groups.
These examples also show that Hermitian matrices can be real, and may or may not have
diagonal form.

Furthermore, hermiticity implies

(detH)∗ = detH† = detH,

Therefore Hermitiean matrices have a real determinant. They also have a real trace, since
to fulfill (8.6) the elements on the diagonal have to be real.

The main reason for their importance follows from the fact that the eigenvalues of a
Hermitian matrix are real. To see this, note first that for any matrix for any eigenvalue

(M~v)† = ~v†M † = (λ~v)† = λ∗~v†.

Multiply this equation again with the eigenvector. For a Hermitian matrix

λ∗~v†~v = (~v†H†)~v = ~v†H~v = ~v†λ~v = λ~v†~v.

Now, either the eigenvalue needs to be zero for this to be true. Or, since at least one
eigenvector for any non-zero eigenvalue has non-zero length, is real. Thus, all eigenvalues
are real.

Eigenvectors ~v and ~w to different, non-zero eigenvalues λ1,2 of hermitian matrices are
mutually orthogonal, since

|λ1|2(~v~v − ~v ~w) = ~vH†H(~v − ~w) = ~v(|λ1|2~v − |λ2|2 ~w) = |λ1|2~v~v − |λ2|2~v ~w

which implies
(|λ1|2 − |λ2|2)~v ~w = 0

2There is a small difference between both concepts for infinite-dimensional vector spaces. The proper
definition requires (~v†H†)~v = ~v†(H~v) for every vector of the vector space. Especially (H†)† = H, which
is true for arbitrary matrices for a finite number of dimensions may no longer hold for an infinite number
of dimensions.
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which requires ~v to be orthogonal to ~w. Note that for orthogonality of the eigenvectors
it was actually only necessary that H†H = HH†, which is a weaker statement than
hermiticity. Matrices satisfying this condition are called normal.

E. g. the first Pauli matrix (8.7) has the two eigenvalues ±1 and eigenvectors

0 = det

(
−λ 1
1 −λ

)
= λ2 − 1 = (λ+ 1)(λ− 1)(

0 1
1 0

)(
1
1

)
=

(
1
1

)
= +1

(
1
1

)
(

0 1
1 0

)(
−1
1

)
=

(
1
−1

)
= −1

(
−1
1

)
(
1 1

)(−1
1

)
= 1− 1 = 0,

exhibiting all the properties listed above. This is also almost trivial for the third Pauli
matrix.

Thus eigenspaces to different eigenvalues are orthogonal3. This would imply that the
eigensystem forms a complete basis, if for every eigenspace the geometric multiplicity
equals the arithmetic multiplicity, to also include zero eigenvalues. This can actual be
shown by the fact that any Hermitian matrix is diagonalizable, and therefore according to
section 7.5 the eigenvectors must form a full basis. For that use the fact that any matrix
can be brought into upper triangular form following the procedures in section 6.5. For any
upper triangular matrix T , T † is lower triangular. This implies

T † = (U−1HU)† = U †H†U †−1 = U−1HU = T

where its has been used that the for every matrix in the sequence build in section 6.5 U † =
U−1 applies4, as can be directly read off. But then an upper and lower triangular matrix
should be equal, which is only possible if they are diagonal matrices, which completes the
proof.

The combination of properties of Hermitiean matrices of the reality of eigenvalues and
that the eigenvectors form an orthonormal basis is also called the spectral theorem. This
theorem will be essential for the description of quantum physics.

Note that if the vector space is real, a hermitian matrix just satisfies

H = HT ,

which is called symmetric. Since in the derivation of the various properties nothing changes
when exchanging a complex vector space with a real vector space, the spectral theorem also
applies to symmetric matrices. This is remarkable, as this implies that the characteristic

3In case of degenerate eigenvalues and thus multiple eigenvectors, it is always possible to find an
orthonormal basis in the corresponding eigenspace. All vectors of this basis are also eigenvectors, as
discussed in section 7.4.1.

4Note that no pure rescaling is involved to bring a matrix to upper triangular form, only adding and
subtracting multiples of some columns and rows.
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polynomial of a symmetric matrix has indeed as many real solutions as possible. This is
not entirely trivial, since a real matrix can have also complex eigenvalues.

Note that the number of independent, real or complex, matrix elements of a hermitian
or symmetric matrix is smaller than the n × n elements of an ordinary matrix. First,
the real case. There are n diagonal elements, which are free. There are also (n2 − n)/2
elements above (or below) the diagonal, which are unconstrained, while the other ones are
uniquely determined by them. Thus, the total number of independent matrix elements
are n2/2− n/2 + n = n(n + 1)/2. For the hermitian case, the situation is a bit different.
Because of the hermiticity, the diagonal elements need to be real, while either the part
above or below the diagonal are complex and unrestricted, while the other part is fixed.
Thus, there are n2 − n+ n = n2 real parameters independent.

8.5 Antisymmetric and antihermitian matrices

8.5.1 Properties

A variation on the topic of symmetric/hermitian matrices are antisymmetric/antihermitian
matrices, which satisfy

A† = −A

For any antihermitian matrix A, the matrix iA is hermitian. Thus, all eigenvalues of an
anti-hermitian matrix are either zero or purely imaginary. The same is thus also true for
an antisymmetric matrix. Because this is just a multiplicative factor, the eigenvectors still
form an orthonormal system, with all consequences.

Note for real d× d matrices that because

detA = det−AT = (−1)d detAT = (−1)d detA

the determinant is zero in odd dimensions, since the imaginary eigenvalues come in pairs,
and the surplus eigenvalue has therefore to be zero to ensure this. In even dimensions,
this is not necessary, as here two imaginary eigenvalues can, by squaring, compensate each
other.

The number of independent entries is smaller than in the symmetric/hermitian case.
For real matrices, the diagonal elements have to vanish, and therefore there are n(n−1)/2
free elements. In the complex case, the diagonal elements need to be purely imaginary,
but the off-diagonal elements are not constrained. Thus, there they have the same number
of independent entries as the hermitian ones above the diagonal. Hence, in total there are
n(n− 1) real parameters.

8.5.2 Vector product and anti-symmetric matrices

Anti-symmetric matrices also permit to think about the vector product in an entirely
different way. Consider two vectors ~v and ~w in R3 and construct the following object

mij = viwj − vjwi, (8.8)
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which is an antisymmetric matrix. However, upon closer inspection, this matrix has the
form

M =

 0 v1w2 − v2w1 v1w3 − v3w1

v2w1 − v1w2 0 v2w3 − v3w2

v3w1 − v1w3 v2w3 − v3w2 0

 = −MT , (8.9)

and thus has as elements the components of the vector product of two vectors in R3.
This is possible, as an anti-symmetric matrix has in R3 the same number of independent
components as a vector.

Thus, the vector product could also be considered not to be a map of two vectors into
a vector, but of two vectors into an antisymmetric matrix. In fact, the definition (8.8)
will generate always an anti-symmetric matrix, and therefore is in addition to (2.10) an
alternative way to generalize the vector product, then usually called outer product, to a
different number of dimensions than three. Indeed, in this case there is also a non-trivial
result for a vector product in two dimensions, a two-dimensional antisymmetric matrix,

M =

(
0 v1w2 − v2w1

v2w1 − v1w2 0

)
,

which then has only one non-trivial entry. In dimensions larger than three, the number of
independent entries in an antisymmetric matrix is larger than for a vector. Thus, in this
case three dimensions is very special. This is also true in the sense that the entries of the
matrix (8.9) can be assembled into a vector and then behave as a vector.

It is in fact this generalization of the vector product, which is most useful, and plays
also a certain role in physics. This feature is generalized in differential geometry, which
appears in many contexts in theoretical physics.

8.6 Orthogonal and unitary matrices

Another important class of matrices has the property

U † = U−1,

i. e. the inverse of the matrix is the same as its hermitian adjoint. Such matrices of
dimension n are called unitary matrices of dimension n. This definition implies that only
invertible matrices can be unitary matrices, and therefore any unitary matrix has non-zero
determinant. Actually, the norm of their determinant is necessarily one,

1 = det 1 = detUU−1 = detU(detU)∗ = | detU |2

If the determinant itself, rather than its norm, is one, the matrix is called special unitary
of dimension n.

One of the central properties of unitary matrices is that they act as transformations
on vectors which are norm-preserving and angle-preserving. If every vector is transformed
by U , ~v′ = U~v, then for any two vector ~v and ~w

~v′† ~w′ = ~v†U †U ~w = ~v†U−1U ~w = ~v† ~w,
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and therefore scalar products are preserved. Also any decomposition of the vector space in
subspaces is preserved under the action of a unitary matrix, in the sense that the number
and dimensionality of subspaces are preserved. This is seen by considering the action on
a projection matrix,

U−1P ′U = U−1UPU−1U = P = P 2 = PU−1UP = U−1UPU−1UPU−1U = U−1P ′2U,

and therefore UPU−1 = P ′ is again a projection matrix. Since this implies PU = U−1P ′,
the transformed vectors are still forming as a decomposition of the same type.

This norm preservation implies especially that all eigenvalues of a unitary matrix are
of norm one. If ~v is a (normalized) eigenvector of U then

1 = ~v†~v = ~v†1~v = ~v†U †U~v = λ∗λ~v†~v = |λ|2.

This is an independent proof that the determinant has norm one.
A particular important example of such matrices are those used to modify systems of

linear equations in section 6.5, since there the inverse of these matrices were indeed their
hermitian conjugate.

Unitarity has an immediate consequence for the column and row vectors: The col-
umn/row vectors of unitary matrices need to be orthonormal to each other, since

δij = (U−1)ikUkj = (U∗ki)Ukj = (~U i)†~U j, (8.10)

where ~U i are the ith row vectors. Thus the columns and rows of a unitary matrix form
an orthonormal base system for the vector space. Because hermitian conjugating the
statement yields the same equations, the orthonormality of the rows automatically ensures
the orthonormality of the columns. This can be used to show that they are furthermore
diagonalizable.

As an example, consider

U =
1√
2

(
1 i
i 1

)
detU =

1

2

(
1− i2

)
= 1

U †U =
1√
2

(
1 −i
−i 1

)
1√
2

(
1 i
i 1

)
=

1

2

(
1− i2 i− i
−i+ i −i2 + 1

)
=

(
1 0
0 1

)
,

and which has eigenvalues exp(±iπ/4). Since the determinant is one, it is actually special
unitary.

If the vector space is real, then matrices satisfying

OT = O−1

are the analogue to unitary matrices, and are called orthogonal. For them, the eigenvalues
can thus be only ±1, and also the determinant can only be ±1. They are also called
special if the determinant is 1.
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Note that the number of independent entries for a unitary or orthogonal matrix is
reduced due to the condition (8.10). This yields n conditions in the real case and 2n
real or n complex conditions in the complex case. Thus, there are n2 − n = n(n − 1)
independent real or complex entries.

In section 8.8.1 the properties of unitary matrices will be used to construct base trans-
formations.

8.7 Matrix groups

The presence of so many particular sets of matrices is not a coincidence. It rather shows
that matrices also have an abstract superstructure: Matrices form groups. Especially,
there are two possible group structures, one with respect to matrix addition and one for
matrix multiplication.

The one corresponding to matrix addition is closed, as the sum of two matrices is a
matrix, has with the zero matrix a unit element, and with the negative of a matrix also
the inverse element. It is hence an Abelian group.

A very important subgroup of this group is the group of Hermitian matrices. Since

(A+B)† = A† +B† = A+B,

if A and B are both Hermitian, the group of Hermitian matrices is closed under addition.
Since the zero matrix is also Hermitian, these matrices indeed form a subgroup, the group
of hermitian matrices. Also the symmetric matrices form for real vector spaces such a
subgroup. Note that the antihermitian/antisymmetric matrices do not, as the zero matrix
cannot act as a neutral element as it is neither antihermitian nor antisymmetric.

Another interesting one is the so-called general linear group GL(F ,d), where F denotes
the field and d the dimension. It is a group under matrix multiplication, and therefore
contains only the invertible matrices, and thus not all matrices, since, e. g., projection
matrices are not part. The unit element is here the unit matrix. Since the matrix product
is by construction associative, the last of the group axioms is also fulfilled. This group is
for d > 1 non-Abelian.

The special linear group SL(F ,d) is the subgroup of all invertible matrices with unit
determinant, since

1 = detU detW = detUW = 1

this is actually meaningful: If two matrices have each unit determinant, then so has its
product, and thus the group is closed. Since furthermore

1 = detU−1 =
1

detU
= 1

also the inverse element belongs to the group. The unit matrix has also unit determinant,
and therefore also belongs to the group, providing the identity under matrix multiplica-
tions.

The reason why the general linear group is so relevant is that there are important sub-
groups, i. e. subsets of matrices which also fulfill the group axioms among only themselves.
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Especially important are the unitary matrices, since

(AB)−1 = B−1A−1 = B†A† = (AB)†,

and thus this subgroup is closed under matrix multiplication. Moreover, the unit matrix
is also unitary, and therefore the unit element is part of this group. Since they will play a
very important role in the following, this group of matrices have also a special name, they
are called the unitary matrices of dimension d, or briefly U(d).

Similar to the SL subgroup of GL, there is another subgroup, those of unitary matrices
of determinant 1, for the same reason as before. These are called the special unitary
matrices of dimensionality d, or SU(d).

Consequently, there is for real matrices the subgroup of orthogonal matrices, called
O(d) and of orthogonal matrices of determinant 1, the special orthogonal matrices SO(d).
The groups (S)U(d) and (S)O(d) are also particular examples of so-called Lie groups, a
certain class of matrix groups which play a central role in modern physics.

Also the permutation matrices form a subgroup of the group SL, as any product of
permutation matrices is again a permutation matrix, with the unit matrix a trivial per-
mutation.

Note that enforcing additional conditions on the determinant will reduce the number
of independent entries by one for any case.

These are just a few of the many more subgroups of the group GL. These are subject
of group theory, which is covered in a different lecture. For many parts of physics, the
groups discussed here play the central role, while the other groups are relevant only in
special circumstances. Thus, they will not be discussed here.

8.8 Applications of matrix groups

8.8.1 Base transformation

8.8.1.1 General concepts

The particular importance of (special) unitary matrices becomes evident when considering
the following problem. As noted in sections 3.3 and 4.3, there are many different possibili-
ties how to construct a basis. In section 4.3 it was shown how to construct from a given set
of basis vectors an orthonormal basis. Since any basis is as good (though not necessarily
as practically useful) as any other, the natural question is therefore to ask whether there
is somehow a connection between two given bases. The answer is yes, and the connection
will be in form of a unitary or orthogonal matrix. Since this is true with trivial changes
in both cases, in the following only the case of unitary matrices in complex vector spaces
will be considered.

Note first that unitary matrices, according to section 8.6, preserve scalar products,
if they act on two vectors. Given any two base vectors ~ei of an orthonormal basis, the
transformed vectors U~ei have the property

~e†iU
†U~ej = ~e†i~ej = δij



88 8.8. Applications of matrix groups

and thus the set of transformed vectors are again an orthonormal basis. Thus, application
of a unitary matrix to an orthonormal basis creates a new orthonormal basis. Note that
the same is true for an orthogonal basis. Since by the Gram-Schmidt orthogonalization
procedure any basis is equivalent to an orthogonal basis this implies that all bases can be
transformed into other bases by a multiplication with a unitary matrix, or, as it is also
called, a unitary transformation.

Secondly, if there is some basis, not necessarily orthonormal, any vector ~a can be
decomposed into this basis. The components of the vector ~a in the new basis are then
given by

a′i = ~e†iU
†~a = ~e†iU

†~ej = U †ijaj = (U †~a)i,

where the Uij are defined to be the components of the U in the old basis. This implies that
while the base transforms with U , the other vectors transform as U−1 = U †. Alternatively,
the basis could have been transformed by U † and the vectors by U . This is sometimes used
to distinguish between active and passive base transformations, with active if the base is
transformed by U .

A natural question is, of course, if every basis can be reached from every other basis. It
is sufficient to show that any basis can be reached from the normal Cartesian one. For any
other pairing, it is otherwise just sufficient to first transform back to the Cartesian one it
originates from. Since unitary matrices are invertible this is always possible. Afterwards
it then needs to transform forward to the desired basis. The full transformation is then
obtained by a combination of the two unitary transformations.

Consider, e. g. the two bases

B1 =

{
1√
2

(
1
i

)
,

1√
2

(
i
1

)}
(8.11)

B2 =

{
1

2

(√
3

1

)
,
1

2

(
−1√

3

)}
. (8.12)

The first one can be transformed to the Cartesian basis with the special unitary matrix

U †1 =
1√
2

(
1 −i
−i 1

)
, (8.13)

which can then be transformed to the second basis by

U2 =
1

2

(√
3 −1

1
√

3

)
. (8.14)

It is noteworthy that the new base vectors appear in the columns of the transformation
basis. This is true for any base transformation starting from the Cartesian basis, as will
be seen below.

Alternatively, the inverse matrices U †2 and U1 do it in the opposite order. A direct
transformation is obtained using

U = U2U
†
1 =

1

2
√

2

(
i+
√

3 −1− i
√

3

1− i
√

3
√

3− i

)
, (8.15)
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which would probably not seem obvious.

It still needs to be shown in general. This is best done in a constructive way. First,
consider some other orthonormal basis. Arranging the base vectors ~ui as the columns of a
matrix, this matrix will be unitary, by virtue of (8.10). Then

(U~ei)j = Ujke
i
k = Ujkδik = Uji = (~uj)i

and therefore indeed in general the image of the Cartesian basis is written in the columns
of the transformation matrix.

This is indeed the case in the example also for the first basis. Comparing (8.12) to
(8.14) and noting for (8.13)

U1 =
1√
2

(
1 i
i 1

)
and comparing this to (8.11) shows this explicitly. Note, however, that (8.15) shows that
this is not true for a transformation between two orthonormal bases different from the
Cartesian basis.

If the base ~vi is not orthonormal, then it can always be expanded in another suitable
orthonormal basis ~f i, e. g. constructed using the Gram-Schmidt orthogonalization proce-
dure of section 3.3. This basis can again be reached from the standard Cartesian basis.
Thus

~vi = aij ~f
j = aij(U~e

j) = (AU~e)i.

The matrix AU is necessarily invertible, and thus (AU)−1 = U−1A−1 exists. However,
it cannot be unitary, since it does not preserve the angles between the vectors, since the
input vectors are orthonormal, and the output vectors are, by assumption, not. It is,
however, an upper triangular matrix with non-zero eigenvalues, and can therefore also be
diagonalized. Thus, the property of angle-preservation of unitary matrices does not permit
to transform an orthogonal to a non-orthogonal base, as well as the norm-preservation
forbids to transform a normal to a non-normal basis. This requires the multiplication
with a suitable additional matrix. However, a unitary transformation transforms a non-
orthonormal basis in another non-orthonormal basis, where the base vectors keep the
relative angles and lengths.

A base transformation can also be considered to be actually a similarity transformation
on matrices instead. Consider a Cartesian basis and any matrix A. Its matrix elements
are

Aij = ~e†iA~ej.

Performing a base transformation with U yields

~e†iU
†AU~ej.

Thus, rather than to transform the base vectors, this can also be considered as a similarity
transformation

A′ = U−1AU = U †AU
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of the matrix. Put it differently, any similarity transformation with a unitary matrix is
reexpressing a matrix in a new base. This preserves the action of a matrix on an arbitrary
vector in the following sense,

~b′ = A′~a′ = U †AUU †~a = U †A~a = U †~b.

Thus, a base transformation does not change the image, kernel etc. of a matrix. Especially,
a base transformation does not change the eigenvalues of a matrix,

λ′ = λ′~v
′†~v′ = ~v

′†A′~v′ = ~v†UU †AUU †~v = λ~v~v = λ,

where for simplicity it was assumed that the eigenvectors ~v were normalized, and which is
not changed by the unitary transformation due to the norm preservation.

Note that the determinant of a matrix and the trace of a matrix are invariant under
base transformations, as they are particular similarity transformations.

8.8.1.2 Once again, rotations

Now, finally, is the time to return to the rotations of section 5.1. The matrix defined in
section 5.1.3

R =

(
cosα − sinα
sinα cosα

)
.

can now be identified to be a special orthogonal matrix, as

RTR =

(
cosα sinα
− sinα cosα

)(
cosα − sinα
sinα cosα

)
=

(
cos2 α + sin2 α cosα sinα− cosα sinα

cosα sinα− cosα sinα cos2 α + sin2 α

)
= 1

and

detR = cos2 α + sin2 α = 1.

Hence, the rotation is a special type of base transformation, mediated by an SO(2) matrix:
The coordinate axes become rotated by the angle α.

In fact, since the number of independent entries for an SO(2) matrix is one, all SO(2)
matrices can be written in the above form, and are parameterized by the rotation angle
α. The only type of base transformations not covered in two dimensions are those with
detP = −1, the mirroring or parity transformation, which by a similarity transformation
always can be brought into the form

P =

(
±1 0
0 ∓1

)
,

which correspond to mirroring of the x-axis and y-axis. Together with R, they form the
matrix group of O(2).
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The situation becomes more involved for higher dimensions. Again, all base transfor-
mations between orthonormal base systems are mediated by matrices of the group O(N).
E. g. an arbitrary SO(3) matrix can be written as

D(α1, α2, α3) =

 cosα1 sinα1 0
− sinα1 cosα1 0

0 0 1

 cosα2 0 sinα2

0 1 0
− sinα2 0 cosα2

×
×

1 0 0
0 cosα3 sinα3

0 − sinα3 cosα3

 ,

and likewise a number of mirroring matrices. However, there is no unique way to write
these matrices, as now there is the possibility to select different rotation axes. However,
a suitable similarity transformation can always bring any element of SO(3) to this form.
Moreover, rotations in three dimensions are no longer commutative, so things are more
complicated.

The generalization to higher dimensions becomes correspondingly more unpleasant,
but the main result remains: (Real) Rotations between orthonormal base systems are
mediated by elements of O(d).

8.8.2 Generalized ellipsoids

A very important particular geometric problem is the description of ellipsoids in R3, i. e.
the geometric objects whose surface is described by the equation

a2x2 + b2y2 + c2z2 = r2

with a, b, c, and r constants. If r is varied between zero and a fixed maximum value, this
equation describes the volume of the ellipsoid. For a = b = c, this describes the surface of
a sphere of radius r, and otherwise of an ellipsoid with main axes r/a, r/b, and r/c. This
equation can be rewritten in matrix vector form as

~xTM~x = ~xT

a2 0 0
0 b2 0
0 0 c2

 ~x = r2,

and is therefore characterized by a diagonal matrix M .
On the other hand, rewrite M as STMS, then

~xTSTMS~x = r2 > 0.

Then M ′ = STMS is a symmetric matrix and S~x can be considered as the vectors of
a new basis. Thus, in general, any three-dimensional diagonalizable matrix describes an
ellipsoid in some coordinate system. In this context, diagonalization is therefore also called
main axis transformation, as it brings the main axes of the ellipsoid on the coordinate axes.
This also shows that, like unitary/orthogonal matrices have a geometrical interpretation in
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terms of rotation, symmetric matrices, which are diagonalizable by the spectral theorem,
have a geometric interpretation in terms of ellipsoids5.

The conditions for the the diagonal elements can also be relaxed, and only require that

~xT

a 0 0
0 b 0
0 0 c

 ~x ≥ 0.

The objects described by this situation are quite different, and it is useful to first consider
the two-dimensional projections, so called cone projections, of these, i. e. equations of type

ax2 + by2 = r.

Then there are three possibilities. One is that either a and b have negative sign, but r is
positive. This describes hyperbolas, starting out from ±r. Reversing the signs of a and
b just flips this by π/2. In three dimensions, these are then saddles, or two separated
hyperboloids, depending on the relative sign of the z-axis.

Together, this implies that the equation

~xTM~x ≥ 0,

can be classified according to the eigenvalues of the matrix M . Note that it is sufficient
to actually consider only the case that the right-hand side is equal to one, as it is always
possible to rescale the matrix by a corresponding factor

If the matrix M can be brought into diagonal form, it depends on the values of the
eigenvalues. If they are all positive, it describes an ellipsoid. If one is negative, it becomes
a saddle, if two are negative, it becomes two separated hyperboloids. All three negative
cannot be, as then the inequality cannot be fulfilled. If one is zero, this degenerates into
the equation of a cylinder, and if two are zero to a plane. If the matrix does not have
three eigenvalues, it is not describing such a body.

It is interesting to consider also the case of

(~xT +~bT )M(~x+~b) = r,

with ~bTM~b = r. This compensates the right-hand side. E. g. in two dimensions, this yields

ax2 + by + cx+ dy2 = 0.

In a suitable basis, this reduces to

ax2 + by = 0.

It therefore describes a parabola, positive or negative depending on prefactors. This
combines then with the various possibilities for z.

5There is a generalization for hermitian matrices in complex vector spaces, but this has less geometrical
appeal.
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An alternative to classify all possible such forms is by considering

~xTM~x+~bT~x+ r = 0. (8.16)

Thus, all previous cases are just special cases of this so-called quadratic form. In a sense,
this is a generalization of the concept of the Hessian normal form of section 2.8.

All of this, especially equation (8.16) can be generalized to arbitrary dimensions, de-
scribing the n-dimensional generalizations of these bodies.

8.8.3 Solving linear systems of equations

Also the solution of linear equations discussed in section 6.2 takes now a new perspective.
Given a system of linear equations in matrix-vector form

A~x = ~b, (8.17)

there are now multiple ways to reinterpret it.
One is that if A is diagonalizable, there is always a base transformation with a unitary

matrix such that
UAU †U~v = U~b

such that in this basis the solution becomes trivial. Alternatively, if A is invertible, i. .e
detA 6= 0,

~x = A−1~b

and the solution can be mapped to a matrix inversion.
Conversely, the absence of a solution is now signaled by detA = 0.
Multiple solutions appear if the kernel of A is non-trivial. Take a vector ~k from the

kernel K, then
~b = A~x = A~x+~0 = A~x+ A~k = A(~x+ ~k),

and hence adding to a solution any vector from the kernel creates a new solution to the
system of equations. Alternatively, this can be read that the solution to the inhomogeneous
system (8.17) is a combination of a particular solution to (8.17) to which an arbitrary
solution of the homogeneous system

A~x = 0

can be added, which just defines the kernel.
Hence, the solvability of a system of linear equations can now be classified by the

matrix A and its properties.
If the system of linear equations has indeed a single solution, it is possible to use the

determinants to construct it explicitly. This is known as Cramer’s rule. Consider a system
of linear equations in matrix vector form (8.17) with exactly one solution, as assured with
the above methods. The result is

xi =
detAi
detA

where Ai is the same matrix as A, but with the ith column replaced by the vector ~b.
The proof uses the calculational scheme (6.9) for determinants, which gives a determinant
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based on the determinants in terms of subdeterminants with a certain row and column
eliminated, denoted by detAi.

Now sum the equations weighted with the corresponding subdeterminant detAi. The
coefficient of xi will then be detA, while the coefficient of all other x vanishes, since these
are the determinant of a matrix with twice the same column. The right-hand side is then
precisely the determinant detAi, thus completing the proof.
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Tensors

Tensors are a particular subclass of matrices. They have the property that they transform
under a base transformation in a very particular way. In fact, all physics theories are
formulated using tensors, i. e. they are tensor equations: Both sides transform in the same
way under base transformations, both sides are tensors. Vectors are in this case special
cases of such tensors (as vectors are special cases of matrices), as they have a definite
transformation property under base transformations, as shown in section 8.8.1. Thus, e.
g. Newton’s second law is a tensor equation, as the force and the acceleration, which are
equated with a scalar factor of mass, are vectors.

9.1 Tensors and base transformation

With the construction of base transformations, it is possible to introduce the notion of
tensors. Given a base transformation U , a tensor of rank n is defined to be an object with
n indices which transforms under a base transformation as

v′i1...in = Ui1j1 ...Uinjnvj1...jn , (9.1)

and thus every index is transformed by a separate transformation matrix.
This implies that a vector is a tensor of rank 1. However, an arbitrary matrix transforms

not with twice the same transformation matrix U , but on one index with U and one with
U−1, i. e.

M ′
ij = (UMU−1)ij = UikMkmU

−1
mj = UikU

−1
mjMkm (9.2)

while a tensor of rank two would transform as

M ′
ij = UimUjkMkm,

which is distinctively different.
However, the matrix still has a definite transformation property under a basis trans-

formation. To account for this, it is useful to introduce the concept of covariant and
contravariant tensors.

95
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A covariant tensor is a tensor which transforms like (co) a vector under a basis trans-
formation, and thus like (9.1). A contravariant tensor is defined to transform like

v′i1...in = U−1j1i1 ...U
−1
jni1

vj1...jn

and therefore in the opposite (contra) way as a vector. A tensor is said to be mixed, if it
transforms as

v′i1...inj1...jm = Ui1l1 ...UinlnU
−1
k1j1

...U−1kmjmvl1...lnk1...km ,

having n covariant and m contravariant indices. A normal matrix transforming like (9.2)
would therefore be a mixed tensor of rank 2.

It is often useful to keep track of the nature of a tensor by using the index position to
signal how it transforms under a basis transformation, e. g. by putting covariant indices in
a lower position and contravariant indices in an upper position. This will be encountered
often in physics, especially in theories involving relativity, starting from special relativity
and extending to quantum gravity. However, ultimately physics, and thus empirical infor-
mation, will decided which physical quantities will be represented by which type and rank
of tensors. This cannot be determined from mathematics alone.

Note that in real spaces for a symmetric transformation the distinction is irrelevant,
since

U−1ij = UT
ij = Uji

and therefore covariant, contravariant, and mixed tensors of any rank transform in the
same way.

9.2 Tensor compositions

9.2.1 Vector spaces

It is interesting to extend the concepts of matrices further. This can be done using tensor
compositions.

Tensor compositions are, overly simply speaking, a way how to get from two lower-
dimensional spaces into a single higher-dimensional space. The name of tensor originates
from the fact that this is most useful when applied to tensors.

The simplest way of a tensor composition is by appending two vectors to each other,
called a tensor addition. E. g. combing an n-dimensional vector space and anm-dimensional
vector space, this yields

~vn+m = ~vn ⊕ ~wm =



v1
...
vn
w1
...
wm


.
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creating a space of higher dimensionality n+m. Of course, this requires to have compatible
vector spaces, such that e. g. scalar multiplication is still well-defined. Thus, in most cases
tensor addition occurs for vector spaces of the same type.

Matrices are in this case composed in a block diagonal form,

M ⊕N =

(
M 0
0 N

)
, (9.3)

and thus continue to act only on vectors in the corresponding subspaces. Note that this
implies that in the new vector space there are additional matrices, which are not in this
sense block-diagonal, which can now mix the different subspaces. Tensors of the same
rank created in this way under tensor addition remain tensors of the same rank. But they
may become mixed if they were not so before, e. g. if M transforms covariantly and N
transforms contravariantly in (9.3).

A second option originates from the question, if it would be possible to have vectors
of vectors, i. e. the component of a vector is not, e. g., some number, but again a vector.
Of course, if this would be the case, these subvectors could be expanded, such that again
an ordinary vector would be obtained, just with instead of n components now with nm
components, where m would be the dimensionality of the embedded vectors. If this is
done, this is called a tensor product of two vector spaces, V n ⊗Wm, with vectors written
as

~anm =

~v
n
1
...
~vnm

 , (9.4)

and thus forming a new vector space of dimension nm. Of course, if the vector spaces
would have different types of vectors and/or different fields, things would become very
complicated, thus neglect this possibility for a moment. However, this will happen in
physics systems, especially quantum physics.

A consequence of (9.4) is that vectors could be regarded as having now two indices. An
’outer’ index, which addresses the original component, and an inner index, which addresses
the component in the ’inner’ vector,

~vjm+i = ~vji = ~wj,

where ~w are vectors of the space V m. This already shows that in this way not all compo-
nents become independent if only a single vector in one vector space is used to create one
in the tensor-product space. Hence, the simple tensorization will not create all vectors of
V nm.

9.2.2 Tensors

There is also another possibility how to tensorize two objects. It is possible to tensorize
two vectors as

(~v ⊗ ~w)ij = viwj,
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and therefore construct a matrix out of them. In particular, this constructs a matrix, a
rank two tensors, out of two vectors, two rank one tensors. In the same way, it is possible
to construct higher-rank tensors out of lower-rank tensors. It is possible that this creates
mixed objects. At the same time, this does not change the vector space, in contrast to
the possibilities of section 9.2.1. This kind of tensorization also appears repeatedly in all
areas of physics.

An interesting application for tensor products is the spectral decomposition of a diag-
onalizable matrix. Then, the (normalized) eigenvectors ~vi form a basis, and it is possible
to spectrally decompose a matrix as

M =
∑
i

λi~vi ⊗ ~v†i ,

where the sum runs over all eigenvectors and λi are the corresponding eigenvectors. To
see that this is correct, decompose an arbitrary vector in the eigenbasis of the matrix, and
act with both versions on it

M~a = M
∑

i ai~vi =
∑

i aiM~vi =
∑
i

aiλi~vi∑
i

λi~vi ⊗ ~v†i~a =
∑

ij ajλi~vi ⊗ ~v
†
i~vj =

∑
ij ajλi~vi ⊗ δij =

∑
aiλi~vi,

proving the correctness of the spectral decomposition.
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Linear operators

Matrices have so far been n × k sets of numbers. But just as with vectors and vector
spaces, it is possible, and indeed useful, to generalize them. In fact, there are many useful
examples of this.

10.1 Matrices as a (normed) vector space

In section 8.7 it has been noted that the matrices form an Abelian group under matrix
addition.

This property can be upgraded to have a vector space of matrices under addition.
Add a field to the set of matrices, being either the real or complex numbers. Then scalar
multiplication can be defined as

(aM)ij = amij.

This fulfills all the usual rules of scalar multiplication as enumerated in section 3.1, since

(a(M +N))ij = amij + anij = (aM + aN)ij

((ab)M)ij = abmij = (a(bM))ij

(a(M +N))ij = (a(mij + anij)) = (aM)ij + (aN)ij

((a+ b)M)ij = (a+ b)mij = (aM)ij + (bM)ij

(0M)ij = 0mij = 0.

Thus, matrices themselves form a vector space. Note that the above did not require the
matrices to be square, and it thus also applies to rectangular matrices.

This does not imply that any of the matrix groups introduce in section 8.7 form a vector
space, and in fact most do not. The notable exception are the hermitian (symmetric)
matrices of section 8.4. Since

(H +M)† = H† +M † = H +M

if both H and M are hermitian, the hermitian (or symmetric) matrices are closed under
addition. Since

(aH)† = a∗H† = a∗H

99
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it is possible to construct a vector space over the field of real numbers. That has a number
of very useful application in quantum physics, especially in the context of group theory.

A question following from the construction of a vector space of matrices is, whether it
is possible to upgrade it to a normed vector space, or even a Hilbert space.

Consider first the case of a normed vector space. It requires just to define a proper
norm. There are many possibilities. One is, e. g.

||A|| =

(∑
ij

|Aij|2
) 1

2

but this is only one out of many. This definition guarantees only the zero matrix to have a
zero norm. Since it is based on properties of the norm of the elements of the field, it also
ensures the triangle inequality, and the scaling of scalar multiplication is also automatically
ensured.

Probably the most interesting property is that for a square matrix A with eigenvalues
λi and eigenvectors ~vi with the above norm and the usual norm for Rn or Cn

|λi||~vi| = |λi~vi| = |A~vi| ≤ ||A|||~vi|,

where no summation is implied. The last inequality holds because it can be reduced to
inequalities of the real or complex numbers. Thus, |λi| ≤ ||A||, and hence the matrix norm
provides an upper limit to the size of the eigenvalues.

The condition

|A~v| ≤ ||A|||~v|

or more general

||AB|| ≤ ||A||||B||,

is not automatically guaranteed, but depends on the norms in question. It applies for the
usual norms encountered in physics. This property of matrix norms is called submulti-
plicativity.

What has been said about norms is also true for scalar products. It is possible to define
also scalar products of matrices. However, it is more useful to introduce this as a more
abstract concept, once matrices have been generalized to linear operators in section 10.2.

10.2 Definitions of linear operators

So far, the generalizations still used the concept of the matrices as rectangular schemes
of numbers. This is not necessary, and will be removed now. The new concept is called
linear operator. It is based, as for all generalizations, on the most useful properties of the
inspiring object, in this case the matrices.

The basic definition of an arbitrary linear operator M is that it acts on vectors and
maps them to another vector, but possibly in a different vector space. This is also called
the target of the linear operator, and the set of all targets the target space.
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The only requirements are that a linear operator M fulfills the following properties
when acting on vectors ~a and ~b, which could be scaled by some factor α from the field,

M(~a+~b) = M~a+M~b (10.1)

M(α~a) = αM~a (10.2)

M~0 = ~0. (10.3)

This definition applies to matrices, and for finite-dimensional vector spaces, it was shown
in section 5.2 that it is always possible to write a linear operator as a matrix. However,
linear operators can take very different forms.

As a non-trivial example, consider some fixed vector ~v in a complex Hilbert space.
Then the scalar product with this vector is also a linear operator M~v, since for any other
vectors ~w and ~x and field element a

M~v(~w + ~x) = ~v†(~w + ~x) = ~v† ~w + ~v†~x = M~v ~w +M~v~x

M~v(a~w) = a~v† ~w = aM~v ~w

M~v
~0 = ~v†~0 = 0,

and thus fulfills the requirements of a linear operator. Since it maps a vector into a number,
it is not realized by a square matrix, but rather by the matrix given by the vector itself.
Thus, it shows that a linear operator maps elements of one vector space into another,
in this case from the Cn into the C1. Hence, a linear operator does not need to have an
inverse, and it usually does not have. As noted before, any linear operator can be rewritten
as a matrix, but not necessarily a square one. However, if the corresponding matrix is
invertible, so is the linear operator.

There are also antilinear operators, which differ from linear operators by the fact that

M(α~v) = α∗M~v.

An example for such an anti-linear operator would be, e. g. the scalar product where the
fixed vector is the second vector, rather than the first.

In general, for any linear operator it is possible to define

~y†M~x,

provided ~x and ~y are from suitable vector spaces. Linear operators which map a vector to
the same vector space are then classified by their action on the same vector,

~x†M~x = a,

which is necessarily a scalar. Such an operator is called positive definite if a > 0, positive
semi-definite if a ≥ 0, negative definite if a < 0, and negative semi-definite if a ≤ 0 for all
~x 6= ~0, and indefinite otherwise.

E. g., the linear operator M

M =

(
a 0
0 b

)
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yields

~x†M~x = a|x1|2 + b|x2|2. (10.4)

For a = b = 1 it is positive definite, for a = 1 and b = 0 it is positive semi-definite, and
likewise for a = b = −1 negative definite and for a = −1 and b = 0 negative semi-definite.
It is indefinite for a = 1 and b = −1, as it depends then on the vector whether the result
is positive or negative.

Provided the vector space in question is at least a Banach space, there is another
important classification. Given that the vector ~x on which M is acting is from a bounded
subspace, i. e. in practice usually its components are finite, then the operator M is called
compact if it maps these vectors to a subspace which is also bounded.

In any finite-dimensional vector space any matrix with finite entries will provide a
compact operator. However, in an infinite-dimensional vector space, this is no longer
necessarily the case.

10.3 Differential operators as linear operators

The true power of linear operators becomes more apparent when considering again infinite-
dimensional functional spaces. Consider a space build from real or complex arbitrarily
often differentiable functions with real or complex numbers as the field. The differentiable
functions form an Abelian group with addition, as the sum of two differentiable functions
is again differentiable, and the neutral element, zero, yields that the negative function is
the inverse. Since multiplication by a number does not change differentiable, the proof
that it is a vector space is complete.

Then the differential operator d/dx is a linear operator, since

d

dx
(f(x) + g(x)) =

df(x)

dx
+
dg(x)

dx
d

dx
(af(x)) = a

df(x)

dx
d

dx
0 = 0

and it maps the vector space of (arbitrarily often differentiable) functions into itself. Of
course, the corresponding matrix is not a finite-dimensional matrix, but rather an infinite-
dimensional one, just like the vector space itself.

In the same sense also integration can be considered as a linear operator, as long as
the function space contains only integrable functions. That this is a vector space with
the group constructed from the addition of the functions proceeds as for the differentiable
functions. However, it is necessary that the functions are either integrable over the whole
range of arguments, or the integration range is only over an interval where all functions
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included are integrable. Then∫ b

a

dx(f(x) + g(x)) =

∫ b

a

dxf(x) +

∫ b

a

dxg(x)∫ b

a

dx(cf(x)) = c

∫ b

a

dxf(x)∫ b

a

dx0 = 0.

However, it is important that these are definite integrals, as a non-zero integration constant
would spoil multiplicativity. It would be necessary to negotiate to have always this constant
set to zero to have the indefinite integral being a linear operator. Again, an infinite-
dimensional matrix would be necessary for a matrix representation of this operator. Note
that integration as a linear operator does not map the vector space into itself, but rather
the vector space to the (vector space of) real or complex numbers.

It should be noted that in neither case the operators can be expected to be positive
semi-definite, i. e. ≥ 0. However, to check this would require to test (10.4). This is
problematic for two reasons. First, this is not multiplying by the same function. This
operation is not defined. Rather, it would be necessary to expand the functions in a
suitable basis, which is a non-trivial problem in itself, which will not be solved here, and
then provide an explicit matrix representation1. The second is that integration is not
mapping the vector space into itself. If for differentiation the vector space is enlarged to
only differentiable functions, also then the vector space is not mapped into itself. Then
the compactness itself cannot be tested, as the criterion is not applicable. Thus, care has
to be taken when making statements about compactness.

This shows that a wide range of operations are actually linear operators, and that the
space they operate on can be rather abstract.

10.4 Images, kernels and eigenspaces

Just like for matrices, it is useful to introduce the concepts of images and kernels also for
linear operators. Given some vector space of vectors ~x, the space

M~x = ~y

spanned by the vectors ~y is called the image of the linear operator M . Note that the image
may not be in the same vector space as the vectors ~x.

Likewise, the vector space, or subspace, of vectors ~x such that

M~x = ~0

is called the kernel of the linear operator M .

1For some finite-dimensional function spaces this is/was discussed in the exercises to this lecture.
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Note that these vector spaces can both be infinite-dimensional, but still be smaller
than the original vector space. Such is the subtlety of infinite-dimensional vector spaces.

If M maps a vector space in itself and has the property

MM~x = ~0

for any ~x, it is called a nilpotent operator.
If a linear operator maps a vector space in itself, it is possible to define eigenvectors ~vi

and eigenvalues λi as
M~vi = λi~vi,

where the eigenvectors can again span eigenspaces, and degeneracies may arise. However,
in general it is not entirely simple to determine now possible eigenspectra and eigenvalues.
Especially, they may be continuous. However, this question will be central in many areas
of physics, and in particular quantum physics.

Consider as an example the differential operator. Then the eigenvalue equation

d

dx
f(x) = λf(x)

becomes a differential equation. It is solved by f(x) = a exp(λx), and therefore there is a
continuous and infinite set of eigenvalues, λ, with eigenvectors a exp(λx). The prefactor a
plays in this case the role of the arbitrary normalization.

Formally, it is possible to define the determinant and trace of a linear operator by the
sum and product of the eigenvalues.

Interestingly, it is also possible to define properties like hermiticity or unitarity for
linear operators. In particular, the equivalent of the spectral theorem can be proven also
for hermitian operators. Thus, the eigenspace of a hermitian operator will form a basis of
the vector space at hand. Especially, also its eigenvalues will be real. Also this will play
a central role in quantum physics and many other areas of physics.

10.5 Morphisms

Since the restriction of the linear operators to those which map a vector space in itself
appeared repeatedly, it is useful to classify this property. It is also these class of linear
operators which are the most important ones, and the most frequently appearing ones, in
physics.

The basic concept is the morphism. A morphism is a map which preserves the structure
of the (vector) space it acts on. For a vector space, this structure is vector addition and
multiplication by an element of the field. Since a linear operator on a vector space by
definition maintains this structure, any linear operator is a morphism. This is also called
a homomorphism, and for the present case of linear operators on vector spaces both denote
the same. This may be different in other areas of mathematics.

If a linear operator maps a vector space into the same vector space, it is called an
endomorphism. If it has an inverse, i. e. the matrix representing the linear operator can be
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inverted, it is called an isomorphism. Finally, if a linear operator is both, an endomorphism
and an isomorphism, it is called an automorphism. It should be noted that linear operators
with a non-trivial kernel can never be an isomorphism. On the other hand, a unitary or
orthogonal matrix is automatically an automorphism. Thus basis transformations are also
automorphisms.

In this context, also other designations are relevant. A linear operator is called injective,
if it maps two different vectors to two different vectors. This is also called one-to-one. A
surjective linear operator reaches every vector in the target space, i. e. for every vector in
the target space, there is one or more vectors from the original space which are mapped on
this vector. If a linear operator is both injective and surjective, and therefore has a unique
result for any vector, it is called bijective. Note that bijective operators are automatically
invertible: Since there is a unique map, just inverting the map defines the inverse operator.
Note that a bijective operator is not necessarily an isomorphism, as it is not required to
be an endomorphism.

These designations are important, as it is often possible to make general statements
about the category itself. Then, as soon as it is clear that a map or operator belongs to
any of these categories it is certain that it fulfills all these statements.
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Non-Euclidean geometry

So far, everything discussed was about the topic of spaces with an Euclidean metric, i. e.
spaces with a positive semi-definite scalar product. However, especially in physics non-
Euclidean geometries play an important role, i. e. spaces with an indefinite scalar product.
This is particularly true for special relativity and general relativity, but also applies to
particle physics. It is therefore useful to collect a few results on such spaces.

11.1 Non-Euclidean metrics

The simplest examples occur when the metric g defining the scalar product does not lead
to a positive-definite scalar product. The simplest example has been on a real1 vector
space the metric

g =

(
1 0
0 −1

)
, (11.1)

for which the scalar product takes the form

~xTg~y = x1y1 − x2y2

and which can now also be recognized as a particular matrix-vector product.
The first consequence is that orthogonal transformations O no longer leave the scalar

product invariant
~xTOTgO~y 6= ~xTg~y

since(
cosα − sinα
sinα cosα

)(
1 0
0 −1

)(
cosα sinα
− sinα cosα

)
=

(
cos(2α) −2 cosα sinα

−2 cosα sinα − cos(2α)

)
6= g,

and likewise in other cases.
However, it is possible to define transformations which leave the metric invariant, as

ΛTgΛ = g (11.2)

1All of the following can also be done for complex vector spaces, but for simplicity here only real vector
spaces will be considered. Also, this is the case relevant to special relativity.

106
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which in two dimensions for this particular metric have the form

Λ =

(
coshα sinhα
sinhα coshα

)
, (11.3)

and are therefore not orthogonal matrices. Note that ΛT = Λ. That this is indeed the
case can be seen by an explicit calculation,(

coshα sinhα
sinhα coshα

)(
1 0
0 −1

)(
coshα sinhα
sinhα coshα

)
=

(
coshα sinhα
sinhα coshα

)(
coshα sinhα
− sinhα − coshα

)
=

(
cosh2 α− sinh2 α coshα sinhα− coshα sinhα

coshα sinhα− coshα sinhα sinh2 α− cosh2 α

)
=

(
1 0
0 −1

)
,

where it has been used that cosh2 α− sinh2 α = 1.
Thus, a scalar product is invariant under these new transformations. Matrices of this

type are called SO(1,1), similar to the SO(2) matrices discussed in section 8.7, since the
rotation plane includes 1 axis with negative metric element and 1 with positive metric
element, and the determinant is 1.

11.2 Covariant and contravariant vectors

As in chapter 9, this situation is now used to define covariant and contravariant tensors.
Especially, a vector ~v which transforms as

~v′ = Λ~v

is defined to be a covariant vector. A contravariant vector ~w is a vector which transforms
in the opposite way, i. e. like

~w′ = Λ−1~v.

As already noted in section 9, the components of a covariant vector will be denoted as vi
and of a contravariant vector as wi. However, the relation (11.2) implies

Λ−1(g~v) = Λ−1ΛTgΛ~v = Λ−1ΛgΛ~v = g~v′ = (g~v)′.

Thus (g~v) transforms like a contravariant vector. As a consequence, the metric is given
two contravariant indices, and it is defined that

gijvj = vi

to signify this fact: The metric can be used to raise and lower the indices of a tensor.
Since gg−1 = 1, the inverse metric is denoted to have lower indices. Note that this needs
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to be read as gijg
jk = 1ki in components. Thus, the metric with lower indices is defined to

lower the indices, turning a contravariant vector into a covariant one.

gijw
j = wi

This also implies that the scalar product can be considered to be a combination of a
contravariant and a covariant vector,

wig
ijvj = wivi.

The consequence of the metric being, in a sense, its own inverse is then that

gijg
jk = δki ,

and thus a δ with one index up and one index down is the corresponding unit matrix.

The consequence of such a metric is that scalar products are no longer positive semi-
definite. Especially

~vTg ~w = a

can now be greater, smaller or equal zero, even if ~v = ~w. Thus, vectors can be classified by
the fact whether they have positive, negative, or zero length. Examples for all possibilities
in two dimensions for the metric (11.1) are

~v1 =

(
a
0

)
~v2 =

(
b
b

)
~v3 =

(
0
c

)
,

where these vectors have positive, zero, and negative norm. This also implies that the
’angle’

viwi
|~v||~w|

between two vectors needs no longer to be a real angle, and in fact this expression needs no
longer to vary between -1 and 1, as it does in Euclidean metric. Rather, as with rotations
before, this should be considered to be a generalized angle η, and this expression is equal
to cosh η.
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11.3 Four-dimensional Minkowski case

These results can be generalized to higher dimensions, especially to the physically relevant
case of the so-called Minkowski metric2

g =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (11.4)

in four dimensions dimensions.
However, the situation is now quite different from the two-dimensional case discussed

previously. Three of the four directions form a conventional Euclidean vector space, with a
positive semi-definite scalar product, instead of a semi-scalar product. Thus, it is necessary
to carefully distinguish the fourth direction and the other three directions.

Especially, rotations only along the three normal axes are generated by again a nor-
mal three-dimensional orthogonal matrix. But whenever the direction of rotation has a
component in the fourth direction, the rotation occurs in a non-Euclidean subspace, and
therefore requires a generalization of the matrix (11.3).

In total, there are then six different rotations, corresponding to the six planes which
can be formed using four axes. Three are ordinary rotations, where the rotation plane
contains two directions which have ordinary metric coefficients. But there are also three
rotation planes, where one of the directions is the direction which is different. In analogy
to the Euclidean case of SO(4), this is called SO(1,3), since there is one different axis, and
three ’normal’ axes. A general rotation is therefore composed out of the three conventional
rotation matrices

J1 =


1 0 0 0
0 cosα sinα 0
0 − sinα cosα 0
0 0 0 1

 ; J2 =


1 0 0 0
0 cos β 0 sin β
0 0 1 0
0 − sin β 0 cos β

 ; J3 =


1 0 0 0
0 1 0 0
0 0 cos γ sin γ
0 0 − sin γ cos γ


as well as the three ’special’ rotations

J4 =


cosh η sinh η 0 0
sinh η cosh η 0 0

0 0 1 0
0 0 0 1

 ; J5 =


cosh ξ 0 sinh ξ 0

0 1 0 0
sinh ξ 0 cosh ξ 0

0 0 0 1

 ; J6 =


cosh ζ 0 0 sin ζ

0 1 0 0
0 0 1 0

cosh ζ 0 0 sinh ζ

 .

In the context of relativity, these are called boosts. Restricting only to these six special, so
called Lorentz, transformations, is not necessary. It is possible to also permit determinants
of ±1, which then require the matrices diag(−1, 1, 1, 1) and diag(1,−1,−1,−1), which
correspond to the different possible mirroring, which cannot be created using just rotations.

2Everything works in the same way by replacing g with diag(−1, 1, 1, 1). It is thus a matter of conven-
tion which to use.
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Together, these forms the so-called Lorentz group O(1,3), while SO(1,3) is sometimes also
called proper Lorentz group.

It should be noted that now not always Ji = JTi , and thus to show the changes from
covariant to contravariant vectors by the metric requires to make separate calculations for
J1−3 and J4−6, but in the end the result is always the same.

11.4 Symplectic geometry

Another non-trivial example is so-called symplectic geometry, which plays an important
role in the mathematical foundations of mechanics, and thus physics in general. It will
again be sufficient to consider two real dimensions. Consider the metric

g =

(
0 1
−1 0

)
. (11.5)

It has the peculiar property that it yields zero length for any vector

~vTg~v = (x, y)g

(
x
y

)
= (x, y)

(
y
−x

)
= xy − xy = 0.

Thus, this metric is certainly not creating an ordinary inner product. It satisfies also
g−1 = gT = −g and g2 = −1

This can now be generalized to arbitrary even dimensions, by just using blocks of g
instead of ones3.

Again, there are transformations J which leave such a metric invariant. These are the
so-called symplectic matrices, Sp(d). These are matrices J which again need to satisfy

JTgJ = g (11.6)

(11.7)

It can be shown that for the 2× 2 submatrices of the matrix J

J =

(
A B
C D

)
holds that

(ATC)T = ATC

(BTD)T = BTD

ATD − CTB = 1.

This can be seen by explicit calculation. Using an explicit 2× 2 block form,

JTgJ =

(
AT CT

BT DT

)(
0 1
−1 0

)(
A B
C D

)
=

(
AT CT

BT DT

)(
C D
−A −B

)
=

(
ATC − CTA ATD − CTB
BTC −DTA BTD −BDT

)
=

(
0 1
−1 0

)
.

3The fact that this is only possible in even dimensions hints already at the very important fact that
even and odd dimensions are fundamentally different.
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Thus, such transformation leave the metric invariant.
As before, it is possible to distinguish covariant and contravariant tensors, transforming

differently.
Using (11.6) and the properties of the metric it is possible to show that

J−1 = g−1JTg = −gJTg.

Note that in this case raising and lowering of indices with the metric is more involved.

11.5 Other symmetries

Finally, it should be illustrated that relevant transformations in vector spaces are not
necessarily linear. The following works, no matter whether the metric is positive or not.

First, consider the so-called sphere inversion transformation

xµ →
axµ
~x2

.

It is not a linear transformation, as it does not respect the conditions (10.1-10.3). Conse-
quently, it also impossible to describe it by a constant, i. e. x-independent, matrix.

This transformation rescales a vector by a position-dependent factor, and thus is non-
linear. It has the property to leave the angles between the vectors invariant,

(|~x||~y| cos θ)′ = ~xT
′
~y′ =

a2

x2y2
~xT~y = |~x′||~y′| cos θ.

Geometrically, as the name suggests, it describes how points in the interior of a sphere of
radius

√
|a| are moved to the outside, and the points outside into the inside. The center

of the sphere is distributed to a sphere at infinity, by definition. Such transformations are
useful, as they invert the concepts of near and far.

As a second example consider the two transformations

xµ → λxµ

xµ → xµ + aµ~x2

1 + 2xνaν + ~a2~x2
,

The first is a scale transformation, also known as dilatation. It is a linear operation. The
second is not, and a is just a fixed vector. It is called a special conformal transformation
However, consider the length of a transformed vector

x
′2 =

x2 + 2(ax)~x2 + ~a2(~x2)2

(1 + 2ax+ ~a2~x2)2
=

~x2

1 + 2ax+ ~a2~x2

Thus, this transformation is not length-preserving. In fact, it can be rewritten as

x′µ =
x2

1 + 2ax+ ~a2~x2

(xµ
~x2

+ aµ

)
.
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Thus, it is equivalent to a position-dependent rescaling, followed by a translation, and
finally another rescaling.

A physical system in d dimensions, which is invariant under rotations, being that
those mediated by the conventional SO(d) matrices or by the Lorentz group SO(1,d− 1),
and both dilatation and special conformal transformations are said to have conformal
symmetry. Systems exhibiting such symmetries play an important role in many physical
applications. E. g., substances undergoing a second-order phase transition behave exactly
at the phase transition as if they would have conformal symmetry, which has very far-
reaching implications.
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Hermitian conjugation, 42
Hermiticity, 81
Hess’ normal form, 14
Hilbert space, 30

Indefinite norm, 30
Infinite-dimensional, 36
Pre, 30

Homomorphism, 104
Hyperbola, 92
Hyperboloid, 92
Hypersphere, 25
Hyperspherical coordinates, 25
Hypersurface, 14

Idempotence, 78
Identity, 17
Image, 65, 103
Indefinite, 101
Indefinite metric space, 34

Index, 2
Dummy, 7
Position, 96

Injective, 67, 105
Inner product, 9
Inverse, 17
Isomorphism, 105

Jacobi identity, 12
Jordan block, 69
Jordan chain, 71
Jordan normal form, 69

Kernel, 65, 103
Ket, 30
Kronecker δ-function, 7

Length, 27
Levi-Civita tensor, 10
Lie group, 87
Linear algebra, 1
Linear equation, 45

Coupled, 45
Homogeneous, 54
Inhomogeneous, 54
Matrix-vector form, 46
Overconstrained, 46
Overdetermined, 46
Sets, 46
Tridiagonal form, 47
Underdetermined, 46

Linear form, 29
Linear hull, 26
Linear independence, 21
Linear map, 29, 41
Linear operator, 29, 42
Linear span, 26
Linearity, 41
Lorentz group, 110
Lorentz transformation, 109

Main axis transformation, 91
Matrix, 38

Addition, 43
Antihermitian, 83
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Antisymmetric, 83
Complex conjugation, 42
Diagonal, 39
Exponential, 75
Group, 77
Hermitian, 81
Integer power, 73
Inverse, 48

2× 2, 49
Left-inverse, 48
Multiplication, 43
Normal, 82
Orthogonal, 85
Right-inverse, 48
Root, 74
Scalar multiplication, 43
Special unitary, 84
Square, 39
Symmetric, 82, 91
Symplectic, 110
Transposition, 42
Unit, 39
Unitary, 84
Vector space, 99
Zero, 39

Matrix group
Invertible matrices, 73

Matrix-vector multiplication, 39
Left-multiplication, 39
Right-multiplication, 39

Metric, 32, 106
Coefficients, 32
Euclidean, 33
Minkowski, 33, 109
Symplectic, 110

Mirroring, 90
Morphism, 104
Multiplicity

Algebraic, 62
Geometric, 64

Nilpotency, 80, 104
Norm, 27

Maximum, 28

Preservation, 84
Seminorm, 27

Normality, 31

O(1,3), 110
O(2), 90
O(d), 87
One-to-one, 67, 105
Onto, 67
Operator

Antilinear, 101
Compact, 102
Definiteness, 101
Linear, 100

Origin, 2, 3
Orthogonal, 29
Orthogonality, 31
Orthonormality, 31
Outer product, 11, 84

Parabola, 92
Parallel, 29
Parallel displacement, 6
Parameter, 3
Parity, 90
Path, 3

Closed, 4
Continuous, 4
Differentiable, 4

Pauli matrices, 81
Permutation matrix, 77
Physics, 1
Plane, 92
Projection matrix, 78

Quadratic form, 93

R1, 6
R3, 2
Rank, 65
Ray, 5, 18
Reduced step form, 55
Right-hand rule, 10
Rn, 13
Root, 62
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Rotation, 90
Row vector, 39

Saddle, 92
Scalar, 5, 9

Division, 5
Multiplication, 5

Scalar multiplication, 18
Scalar product, 9, 28

Semi, 29
Screw, 4
Self-adjointness, 81
Semi-definite, 101
Similarity transformation, 57
SO(1,1), 107
SO(1,3), 109
SO(2), 90
SO(3), 91
SO(d), 87
Space

Three-dimensional, 2
Vector, 2

Spectral decomposition, 98
Spectral theorem, 82
Spherical coordinates, 24
Step function, 4
SU(d), 87
Subgroup, 86
Submultiplicativity, 100
Subspace, 26
Surface, 13
Surjective, 67, 105

T , 3
Target, 100
Target space, 100
Tensor, 41, 95

Addition, 96
Composition, 96
Contravariant, 95, 107
Covariant, 95, 107
Mixed, 96
Product, 97

Rank, 95
Theorem on polynomials, 62
θ, 4
Trace, 49

And eigenvalues, 69
Cyclicity, 50

Transformation
Active, 88
Passive, 88
Scale, 111
Sphere inversion, 111
Unitary, 88

Transpose, 3
Triangle inequality, 27
Tuple, 2

U(d), 87
Unit, 2
Unit circle, 4

Vector, 2, 16
Addition, 6
Base, 3, 6
Column, 3
Direction, 5
Length, 5
Normal, 31
Row, 3
Square, 5
Subtraction, 6
Unit, 5
Zero, 3

Vector addition, 16, 17
Vector product, 11, 83
Vector space, 16, 18

Complete normed, 28
Complex, 20
Dimension, 21
Infinite-dimensional, 34
Normed, 27
Seminormed, 27

Z2, 18
Zero element, 41


