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The problem in the standard model

Consider gauge-Higgs sector of the standard model:
L= WL W + (D,0)/(D"6) X (66— v?)’
Full symmetry: SU(2)iocal X SU(2)giobal

Local SU(2) gauge symmetry:

W2 — W3 + (6700, — gf** W) ¢ — i+ gT %,

Global SU(2) Higgs flavor symmetry:
Custodial symmetry

W: — W: gb,' — M,'J'ij + N,Jqﬁj



Standard approach
Minimize the potential classically
Higgs vev: ¢l = v?
Length is fixed but not direction
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Standard approach
Minimize the potential classically
Higgs vev: ¢l = v?
Length is fixed but not direction

Perform global gauge transformation such that
(¢i) = v di2:

6(x) = (8) + p(x) = (V%X()Xﬂffp(;()x))

n is the Higgs particle: M, oc v
©; eaten by gauge fields: My, x gv

"Spontaneous gauge symmetry breaking”
Better: gauge symmetry is hidden

Perform standard perturbation theory
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Experiments measure peaks in cross-sections
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Physical states
Physical spectrum: Observable particles
Experiments measure peaks in cross-sections

Elementary fields ¢ and W depend on the gauge
Non-observable objects
Asymptotic states in perturbation theory

Gauge invariant states are composite:
Higgs-Higgs W-W Higgs-Higgs-W

What is the mass spectrum?

et cetera

Why does perturbation theory work?
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Masses from propagators
Poles of propagators = Masses
Two propagators:
W/Z: Db (x — y) = (W2 (x)W(y))
Degenerate without QED
Scalar: Dj(x — y) = (m(x)n}(y))
Perturbative poles of W and Higgs
Only in a fixed gauge
Elementary fields are gauge dependent

No gauge fixing: Propagators o §(x — y)

For gauge-invariant states: Non-perturbative method
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Lattice calculations
Finite volume (hypercube)
Discretization =- Finite hypercubic lattize

Compute observables using the path integral

Numerically
Monte-Carlo methods L

Artifacts
Finite volume and discretization —

Masses vs. wave lengths: Resolution
Euclidean formulation



Masses from Euclidean propagators

Propagator

a’p (p)
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Masses from Euclidean propagators

a’p (p)
1.0

Propagator = Fourier trans form

c(t)
10°

107!

102

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5
ap t/a

Propagator: D(p) = (O(p)O'(p)) x >, P2iim,-2
Fourier transformation:

C(t) = (O(t)O(0)) x 3=, aje~ ™t




Masses from Euclidean propagators

Effectivemass 2 Fourier trans form

c(t) C(t)
c(t+1) 10°

1.1 am = 1

1.0 10

0.9

102
0 1 2 3 4 5 0 1 2 3 4 5
t/a t/a

Propagator: D(p) = (O(p)O(p)) o 3, wm
Fourier transformation:
C(t) = (O(t)0(0)) o >, aie™™*

Extract effective mass
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Mass spectrum: Higgs-Higgs
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Correlator: C(t) = Y-,((616)(%, £)(69)(0,0))
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[Maas, MPL A28 (5633)]
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Mass spectrum: Higgs-Higgs
Simplest 0" bound state: ¢'(x)¢(x)
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Mass spectrum: Higgs-Higgs
Simplest 0" bound state: ¢'(x)¢(x)

Gauge invariant and same g-numbers as Higgs

Correlator: C(t) = Y-,((616)(%, £)(69)(0,0))
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Mass spectrum: Higgs-Higgs
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Simplest 0" bound state: ¢'(x)¢(x)

Gauge invariant and same g-numbers as Higgs

Correlator: C(t) = Y-,((616)(%, £)(69)(0,0))
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[Maas, MPL A28 (5633)]

Mass is about 120 GeV: Same as Higgs
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[Frohlich et al., PL B97 (1980) and NP B190 (1981) /
Torek and Maas, (LATTICE2016) 1610.04188]
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Gauge-invariant perturbation theory

[Frohlich et al., PL B97 (1980) and NP B190 (1981) /
Torek and Maas, (LATTICE2016) 1610.04188]

Take a gauge-invariant operator
0" singlet: O(x) = (¢'¢)(x)

Expand correlator around Higgs fluctuations

(O(x)O'(y)) "= ¢ + 4(Re[vIn](x)Re[v 5] (v )>
+2 [{(n"n)(x)Re[vin](y)) + (x < ¥)] + (™) (x)(n"n)(¥))

Perform standard perturbation theory Higgs mass

{00 (y)) = e ARl Rl ),
mass =+ <Re[an](x)Re[vT77](y)>Z + O(gz, )\)

2 x Hig_gs mass
Compare poles on both sides =~ scaterng state 128



Mass spectrum: Vector state

Vector state 17: tr[72)(x)D,,p(x)] 0@
72 generators of custodial group and ¢ = ( ﬁ; ;4,115)

Custodial triplet instead of gauge triplet

12/28



Mass spectrum: Vector state
Vector state 17: tr[72)(x)D,d(x)]
72 generators of custodial group and ¢ = ( o _d”;)

$2  ¢7
Custodial triplet instead of gauge triplet
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Mass spectrum: Vector state
Vector state 17: tr[72)(x)D,d(x)]
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Mass is about 80 GeV
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FMS mechanism for W

Vector state: 80 GeV

W at tree level: 80 GeV

13/28



FMS mechanism for W

Vector state: 80 GeV
W at tree level: 80 GeV
FMS mechanism: Of(x) = tr[72¢" D, d](x)

(02(x)02 1(y)) "7 4 VW) W2(y)) + O(Wo)
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FMS mechanism for W

Vector state: 80 GeV

W at tree level: 80 GeV

FMS mechanism: OZ(X) = tr[Ta(ETDMQNS](x)
(02(x)07 H(y)) "7 ¢ + VU W2(x)W2(y)) + O(Wo)

Same poles to leading order

Exchange of a gauge for a custodial triplet
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Phase diagram: SU(2) gauge-Higgs model

Depending on parameters (inverse gauge coupling [,
classical Higgs mass ) different regions

Gauge Symmetry-Breaking Transition Lines

3 T T
= Coulomb transition —e—
L. Crossover Landau transition --&---
25 e
2b %
TeEe - ) ) .
_— .. higgs-like region
> 15t T g g
1L Teeg, 1t order |
05 r confinement-like region
0 . . . .
0 0.5 1 1.5 2
8 [Caudy and Greensite, PR D78 (2008)]

No unique transition line (depends on gauge)

No phase transition in this model
[Osterwalder and Seiler, AP110 (1978); Fradkin and Shenker, PR D19 (1979) | 14 /28



Typical spectra

Spectrum Higgs-like Spectrum QCD-like
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Langguth et al., NPB227 (1986)]
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Typical spectra

Spectrum Higgs-like Spectrum QCD-like
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[Maas, MPL A28 (2013) / Maas and Mufti, JHEP (2014) / Evertz et al., PLB171 (1986) /

Langguth et al., NPB227 (1986)]
17 lighter in Higgs-like region
07" lighter in QCD-like region
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Limits

Effective mass

s 160
3 =
g 1o . . .
- Higgs-like QCD-like
120 —
- Higgs condesate Confinement
100 —
F [
L R i e = e TS
- = —
oe T v ;
i3 ¥ e
- 3
e —t
2= e
o= T e e v e R B .
05 15 2

2.
m/m.

[Maas and Mufti, JHEP (2014)]

At mi- = mg+ FMS stops working
So does BEH effect
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Rest of the standard model

[Frohlich et al., PL B97 (1980) and NP B190 (1981) / Egger et al., 1701.02881]

Quarks and gluons
Bound by confinement in bound states

Hadrons need Higgs fields: E.g. Proton ~ qqq¢
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Rest of the standard model

[Frohlich et al., PL B97 (1980) and NP B190 (1981) / Egger et al., 1701.02881]

Quarks and gluons

Bound by confinement in bound states

Hadrons need Higgs fields: E.g. Proton ~ qqq¢
Leptons

Higgs-lepton bound states
(enormous mass defect)

Except for right-handed neutrinos

Photons

Can also be included

17/28



Status of the standard model

Physical states are bound states
Observed in experiment

Description by gauge-invariant perturbation
theory based on FMS mechanism

Mostly the same as ordinary perturbation theory
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Status of the standard model

Physical states are bound states
Observed in experiment

Description by gauge-invariant perturbation
theory based on FMS mechanism

Mostly the same as ordinary perturbation theory

Does not always work

[Maas, MPL A28 (2013) / Maas and Mufti, JHEP (2014)]

Fluctuations can invalidate the mechanism

Local and global multiplet structure must fit

Has to be checked for BSM theories
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Physical spectrum in a
grand-unified setting
[Torek and Maas, PRD95 (2017), 1607.05860]
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Partially Higgsed gauge theory
Aim is to construct a counter-example:
GUT inspired theories:
Gauge group larger than global symmetry group
Local # global multiplet

Toy model: SU(3) gauge group with fundamental
scalar ¢

2 1
L= (D,6) (D) + 42616 — 5 5 (610)" + 5t (L]
Perturbative construction: SU(3) 9, SU(2)

Perturbative spectrum:

4 + 1 massive and 3 massless gauge bosons
1 massive Higgs boson



JP =17 singlet channel

Conflict expected in vector channel
[Térek and Maas, LP2015, 1509.06497]
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JP =17 singlet channel

Conflict expected in vector channel
[Torek and Maas, LP2015, 1509.06497]

FMS mechanism: [Frohlich et al., PL B97 (1980) and NP B190 (1981)]
Composite gauge-invariant operator:
0,(x) = i(¢' Do) (x)
Fix to gauge with non-vanishing vev
Expand Higgs around vev: ¢;(x) = vd; 3 + ni(x)
(0.(x)OL(y)) = V(Wi (x)W(y)) + O(nW)
Correlators have same mass poles = same mass

Only a single massive particle is predicted
= Contradiction to perturbative spectrum



Phase diagram

o Higgs-like
e QCD-like
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Propagators

Good agreement with tree-level perturbation theory

103

a’p® (p)

102
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®
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Spectroscopy in 1 channel - Results

A (ne)
n———¢
A (ng+1)

2.4l o
A

2.0 O 1% level,

<
n

16%: amee: = 0.81079:003
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A 2 level, V = 20*
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0.8} ---B-----G----8--F S A

LA S N

0.4 N
0.0
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Volume dependency of mes

Single massive ground state with mass of W3

Exactly like FMS mechanism predicts

AMess
0.9
& e
P N /. NS B pesepnpepit=t=
0.8 AT &
0.7 A Propagator fit (tree-level): amges = 0.807ﬁ8:gg§
<> Variational analysis : amges = 0.814°9°303
0.6
1 1 1 1
20 16 12 g 3/L
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For what is FMS good for?

Standard model: No discrepancies between
FMS mechanism and perturbation theory
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For what is FMS good for?

Standard model: No discrepancies between
FMS mechanism and perturbation theory

Toy GUT: Correct prediction of particle spectrum
only with FMS mechanism

FMS mechanism can be used to rule out
BSM theories:

Apply FMS mechanism to gauge-invariant
operators

Count number of particles in desired
g-number channels

Same light d.o.f. as in standard model: Good
candidate
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Some general remarks on GUTs
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[Maas, Sondenheimer and Torek, work in progress]

SU(N > 2) with one fundamental scalar:
SU(N) — SU(N — 1)
Perturbative spectrum:

2N — 1 massive and N(N — 2) massless
gauge bosons, 1 massive scalar

Physical spectrum (FMS): 1 massive vector and
1 massive scalar particle
Adding more fundamental scalars: Enlarge global
symmetry (custodial) group = More states possible
More realistic GUT: SU(5)

Higgs in adjoint and fundamental representation
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Summary
Observable spectrum must be gauge invariant
In non-Abelian gauge theories: Bound states

Gauge-invariant perturbation theory as a tool
Requires BEH effect
Yields same results for standard model
Mostly not much more complicated

Applicable to BSM theories
Structural requirement: Multiplets must match
Dynamical requirement: Small fluctuations
Verification requires non-perturbative methods
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Thank youl!



