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* Why the field theory of the standard
model Is more tricky than expected

* But why you did not yet needed to care
* Phenomenology

» Particle spectrum and properties
 Form factors
e Tests at LHC
 Beyond qualitative: BSM
 Experimental consequences
Review: 1712.04721
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Consider an SU(2) with a single fundamental scalar

Essentially the standard model Higgs

1 a v j1.j\ + ai +
L:—ZWWWS +(DYn') " DY h+N(h"h, —V?)
Wi =08, Wi—0,Wi+gf, W, W\
D!=&"0,—igW ¢!
- Ws W,

- Higgs h, @

» Couplings g, v,Aand some numbers f* and t *

e Parameters selected for a BEH effect
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A toy model: Symmetries

* Consider an SU(2) with a single fundamental scalar
» Essentially the standard model Higgs

1 a v e i\ + aip +
L=—2 Wi W' +(DR) " D+ (hh, —v7)

Wi,=0,Wi—0, W +gf, W, W\
D/=8"0,—igWt
* Local SU(2) gauge symmetry
WiSWI+(850,—gfhW)d' h>h+gt,¢"h,
* Global SU(2) custodial (flavor) symmetry

* Acts as (right-)transformation on the scalar field only
W, W, h->hQ
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Textbook approach

* Choose parameters to get a Brout-
Englert-Higgs effect

e Minimize the classical action

* Choose a suitable gauge and obtain
‘'spontaenous gauge symmetry
breaking’: SU(2) —» 1

* Get masses and degeneracies at tree-
level

* Perform perturbation theory
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The origin of the problem

 Elementary fields are gauge-dependent

 Change under a gauge transformation
 Gauge transformations are a human choice...
 ...and gauge-symmetry breaking is not there

* Just a figure of speech
» Actually just ordinary gauge-fixing

* Physics has to be expressed in terms of manifestly
gauge-invariant quantities

* And this includes non-perturbative aspects...
 ...even at weak coupling
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Physical states

 Need physical, gauge-invariant particles
 Cannot be the elementary particles

* Non-Abelian nature is relevant
Need more than one particle: Composite particles

* Higgs-Higgs, W-W, Higgs-Higgs-W etc.

Has nothing to do with weak coupling
 Think QED (hydrogen atom!)
Can this matter?
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How to make predictions

» JPC and custodial charge only quantum numbers

» Different from perturbation theory

* Operators limited to asymptotic, elementary,
gauge-dependent states

 Formulate gauge-invariant, composite operators

 Bound state structure - non-perturbative
methods! - Lattice
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Physical spectrum
Composite (bound) states

Perturbation theory Require

Scalar Vector non-perturbative methods
A fixed charge gauge triplet

Mass

o Both custodial singlets

S

Experiment tells that somehow the left is correct
Theory say the right is correct
There must exist a relation that both are correct
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Physical spectrum

Perturbation theory Gauge-invariant
Scalar Vector Scalar Vector
. A fixed charge gauge triplet singlet singlet
G
=
I I
] 5 | ] 5 |

o Both custodial singlets  Custodial singlet Triplet
 Confirmed on the lattice
 Some lattice support for SU(2)xU(1)



A microscopic mechanism

Why on-shell Is important
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How to make predictions

» JPC and custodial charge only quantum numbers

» Different from perturbation theory

* Operators limited to asymptotic, elementary,
gauge-dependent states

 Formulate gauge-invariant, composite operators

 Bound state structure - non-perturbative
methods?

* But coupling is still weak and there is a BEH
* Perform double expansion

* Vacuum expectation value (FMS mechanism)
» Standard expansion in couplings
* Together: Gauge-invariant perturbation theory
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Gauge-invariant perturbation theory

1) Formulate gauge-invariant operator
0" singlet: (h™ h)(x)(h™" h)(y))
2) Expand Higgs field around fluctuationsh=v+n

(" h)(x)(h " h)(y)=vin" (x)n(y))
v T T )
3) Standard perturbation theory Higgs
Bound / mass
tate™
fnzzj;sesN ﬂ + @ @ + something small

2 X Higgs mass:
Scattering state

4) Compare poles on both sides
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Scalar propagator
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Gauge-invariant perturbation theory

Scalar propagator
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Scalar propagator
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Gauge-invariant perturbation theory
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What about the vector?

1) Formulate gauge-invariant operator
1" triplet: ((*h* D,h)(x)(x'h* D h)(y))
2) Expand Higgs field around fluctuationsh=v+n

((Z"h ™ D,h)(x)(T'h ™ D,h)(y))=v el (Wi(x)W’(y))+...
=v(W, WJ>+

Matrix from
group structure
c projects custodlal

states to gauge Exactly one gauge boson
states for every physical state
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Bound states as extended objects

e Bound states have an extension
e Can it be measured?

« Example: Vector
e Measure the fozrng factor
F(q',q",q")=1-" <6r ).
= 1 +... PR

q2—m2 2r
* Comparison proton: mr~5 - Here: Lattice

* Experimentally hard, but possible
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Bound states as extended objects

Vector form factor

Tree-level

Pole location

o -
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Bound states as extended objects

Vector form factor
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Bound states as extended objects

Vector form factor
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Vector form factor

Physical form

Tree-level
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Bound states as extended objects

Vector form factor

At high energies:
Probes substructure
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Bound states as extended objects

Vector form factor

At low energies:
< Dominated by bound state
with finite size
At high energies:

Probes substructure
Physical form BehaveS ||ke WWW

T I T T T T T T T
[ RRRRR R R

Tree-level

FS— m—

1

WWW form factor Almost tree- IeveI
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* Physical mr~2 while gauge-dependent W has mr~0.5i
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Flavor

* Flavor has two components

* Global SU(3) generation
* Local SU(2) weak gauge (up/down distinction)
« Same argument: Weak gauge not observable

 Replaced by bound state - FMS applicable
h=v+n
((hg)(x)" ({y fy)  ~ (fa (X)fly)+O(n)
 Gauge-invariant state, but custodial doublet
* Yukawa terms break custodial symmetry

» Different masses for doublet members
* Implications for experiment?
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e-H bound state

w-H bound state
= -
Z-H-H bound state

u*-H bound state

e*-H bound state

* Collision of bound states - 'constituent' particles
* Higgs partners just spectators

 Similar to pp collisions
* Sub-leading contributions

. : Large and detected
« New ones: Small, require more sensitivity
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w-H bound state
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u"-H bound state
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e*-H bound state

* Description of impact? Gauge-invariant perturbation
theory!

(hehelhwhu)=(eelun)+(nn)(eelun)+(ee)(Mnjuu)+...

* Ordinary contribution

* Modification of ordinary contribution
* Higgs as initial state

 More contributions...complicated
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How events looks like (LEP/ILC)

e-H bound state
Ww-H bound state

/E

Z-H-H bound state

u*-H bound state

e"-H bound state A
A

* Description of impact? PDF-type language!
* Interacting particles either electrons or Higgs

 Fragmentation 100% efficient - like for quarks

* Off-shell suppression at LEP(2): No deviation
expected - or seen

 LHC?
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Flavor of hadrons

 Flavor is replaced by custodial symmetry

« Straightforward for leptons

* Implications for hadrons?

* Open flavor must be replaced by custodial symmetry
 Requires Higgs component

e Consider nucleon

* qgqg open flavor, cannot be gauge invariant
* Impossible to build a gauge-invariant 3-quark state
 Replacement: gqgh
* GIPT yields QCD
 Higgs component detectable at LHC?

e Strong couplings to Higgs: tops, weak gauge bosons
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Constraining the valence Higgs

 Hard process calculated by Herwig 7
* Modified version to include Higgs initial state
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Starting guess: Higgs PE)F still ‘condensate’-like
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Constraining the valence Higgs

 Hard process calculated by Herwig 7
* Modified version to include Higgs initial state
* Includes tree-level only
» Standard-model dominated by gluons
* Relevant pairings: Standard model, gH, HH
* Requires suitable normalization
* Creates full events
* Every particle with all properties
 Calculations of cross sections
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Constraining the valence Higgs

[Fernbach,Lechner,Maas,

PRE LIMINARY Platzer,Schofbeck, unpublished]
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New physics

Qualitative changes
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Beyond the standard model

» Standard model is special

 Mapping of custodial symmetry to gauge
symmetry

* Fits perfectly degrees of freedom
* |s this generally true?

* No: Depends on gauge group,
representations, and custodial groups

 Can work sometimes (2HDM)
* Generally qualitative differences
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Consider an SU(3) with a single fundamental scalar

Looks very similar to the standard model Higgs

1 a v j1.j\ + ai +
L:—ZWWWS +(DYn') " DY h+N(h"h, —V?)
Wi =08, Wi—0,Wi+gf, W, W\
D!=&"0,—igW ¢!
- Ws W,

- Higgs h, @

» Couplings g, v,Aand some numbers f* and t *

e Parameters selected for a BEH effect



A toy model

* Consider an SU(3) with a single fundamental scalar
* Looks very similar to the standard model Higgs

1 a Y jp,J) + ap t
L:_ZWWWZL +(DJh’') " Dy h+r(h"h," —Vv°)
Wi, =0, Wi—0,Wi+gfs. Wo W,

Di=8"d,—igW"t’



A toy model

* Consider an SU(3) with a single fundamental scalar
* Looks very similar to the standard model Higgs

L:_lwa WMV_I_(DUhf) + Dnh +7\(hah ' _V2)2
4

WS, =0, Wi—0,Wi+gfe WWS
D'=8"6,—igw !t

* Local SU(3) gauge symmetry
W —Wi+(8,0,—gf W) d h—h+gt,d'h,



A toy model

* Consider an SU(3) with a single fundamental scalar
* Looks very similar to the standard model Higgs

1 a v e i\ + aip +
L=—2 Wi W' +(DR) " D+ (hh, —v7)

Wi,=0,Wi—0, W +gf, W, W\
D/=8"0,—igWt
* Local SU(3) gauge symmetry
WsWo (830, —gfe W) o' h—h+gt,d"h,
* Global U(1) custodial (flavor) symmetry

* Acts as (right-)transformation on the scalar field only
Wﬁ-)wﬁ h->exp(ia)h
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What about the vector?

1) Formulate gauge-invariant operator
1" singlet: ((h" D h)(x)(h" D,h)(y))
2) Expand Higgs field around fluctuationsh=v+n

((h" Dh)(x)(h" D h)( )=vie (Wi(x) W (y))+...

—v <W W >+
Matrix from
group structure
o prOJects out
only one field Only one state remains in the spectrum

at mass of gauge boson 8 (heavy singlet)
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* Qualitatively different spectrum
* Results in agreement with analytic predictions
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Physical
— Perturbative

Physical scattering

thresholds
/ Physical resonance
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Experimental consequences

Ghost peaks from unphysical particles in perturbation theory
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Experimental consequences

Close to true structures identical!

a [a.u] A/'/

Physical
T— Perturbative
: —L z/m*2
4
 Add fundamental fermions
 Bhabha scattering l
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Summary: Changed Feynman rules

* Write down full gauge-invariant matrix
element

 Expand in Higgs vev: Sum of gauge-
dependent matrix elements

* Apply standard Feynman rules to each
obtained gauge-dependent matrix
element

 Sum to get gauge-invariant matrix
element
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Up next

* More theories: Adjoint scalars
 Massless composite vectors!

» Quantitative predictions for LHC
* Towards precision, model building, flavor?

 What happens in qguantum gravity?
* Graviton component?

@axelmaas
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