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● Consider an SU(2) with a single fundamental scalar
● Essentially the standard model Higgs

● Ws
● Higgs

● Couplings g, v, λ and some numbers f abc and t
a

ij

● Parameters selected for a BEH effect
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● Consider an SU(2) with a single fundamental scalar
● Essentially the standard model Higgs
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● Consider an SU(2) with a single fundamental scalar
● Essentially the standard model Higgs
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A toy model: Symmetries

● Consider an SU(2) with a single fundamental scalar
● Essentially the standard model Higgs

● Local SU(2) gauge symmetry

● Global SU(2) custodial (flavor) symmetry
● Acts as (right-)transformation on the scalar field only
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Textbook approach

● Choose parameters to get a Brout-
Englert-Higgs effect

● Minimize the classical action
● Choose a suitable gauge and obtain 

‘spontaenous gauge symmetry 
breaking’: SU(2) → 1

● Get masses and degeneracies at tree-
level

● Perform perturbation theory
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The origin of the problem

● Elementary fields are gauge-dependent
● Change under a gauge transformation
● Gauge transformations are a human choice...
● ...and gauge-symmetry breaking is not there 

[Elitzur’75, Osterwalder & Seiler’77, Fradkin & Shenker’78]

● Just a figure of speech
● Actually just ordinary gauge-fixing

● Physics has to be expressed in terms of manifestly 
gauge-invariant quantities

● And this includes non-perturbative aspects…
● ...even at weak coupling [Gribov’78,Singer’78,Fujikawa’82]

[Fröhlich et al.'80,
 Banks et al.'79]
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Physical states

● Need physical, gauge-invariant particles
● Cannot be the elementary particles
● Non-Abelian nature is relevant

● Need more than one particle: Composite particles

● Higgs-Higgs, W-W, Higgs-Higgs-W etc.

● Has nothing to do with weak coupling

● Think QED (hydrogen atom!)
● Can this matter?

Wh W WW WWh
h

h

[Fröhlich et al.'80,
 Banks et al.'79]
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How to make predictions

● JPC and custodial charge only quantum numbers
● Different from perturbation theory

● Operators limited to asymptotic, elementary, 
gauge-dependent states

● Formulate gauge-invariant, composite operators
● Bound state structure – non-perturbative 

methods! - Lattice

[Fröhlich et al.’80,’81,
 Maas & Törek'16,’18,
 Maas, Sondenheimer & Törek'17]
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Custodial singlet Triplet

Physical spectrum
Perturbation theory

M
a
ss

0

Scalar
fixed charge

Vector
gauge triplet

Both custodial singlets

Gauge-invariant

Scalar
singlet

Vector
singlet

● Confirmed on the lattice
● Some lattice support for SU(2)xU(1) [Shrock et al. 85-88]

[Maas’12, Maas & Mufti’14]
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How to make predictions

● JPC and custodial charge only quantum numbers
● Different from perturbation theory

● Operators limited to asymptotic, elementary, 
gauge-dependent states

● Formulate gauge-invariant, composite operators
● Bound state structure – non-perturbative 

methods?
● But coupling is still weak and there is a BEH
● Perform double expansion [Fröhlich et al.'80, Maas’12]

● Vacuum expectation value (FMS mechanism)
● Standard expansion in couplings
● Together: Gauge-invariant perturbation theory

[Fröhlich et al.’80,’81,
 Maas & Törek'16,’18,
 Maas, Sondenheimer & Törek'17]
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1) Formulate gauge-invariant operator
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2) Expand Higgs field around fluctuations

3) Standard perturbation theory
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 Maas'12,’17]



Gauge-invariant perturbation theory

=D (P2
)h h



Gauge-invariant perturbation theory

h h D (P)=⟨(h + h)(x)(h + h)( y)⟩



Gauge-invariant perturbation theory

h h D (P)=⟨(h + h)(x)(h + h)( y)⟩

=v2⟨η +
(x)η( y)⟩tree level



Gauge-invariant perturbation theory

h h D (P)=⟨(h + h)(x)(h + h)( y)⟩

=v2 ⟨η +
(x)η( y)⟩



Gauge-invariant perturbation theory

h h D (P)=⟨(h + h)(x)(h + h)( y)⟩

=v2 ⟨η +
(x)η( y)⟩tree level+⟨η

+
(x)η( y )⟩tree level

2



Gauge-invariant perturbation theory

h h D (P)=⟨(h + h)(x)(h + h)( y )⟩

=v2 ⟨η +
(x)η( y)⟩+⟨η

+
(x)η( y)⟩tree level

2



What about the vector? [Fröhlich et al.’80,’81
 Maas'12]



What about the vector?

1) Formulate gauge-invariant operator

     1- triplet:

[Fröhlich et al.’80,’81
 Maas'12]

⟨(τ
i h + Dμ h)(x)(τ

j h + Dμ h)( y)⟩



What about the vector?

1) Formulate gauge-invariant operator

     1- triplet:

2) Expand Higgs field around fluctuations

⟨(τ
i h + Dμ h)(x)(τ

j h + Dμ h)( y)⟩

h=v+η

[Fröhlich et al.’80,’81
 Maas'12]



What about the vector?

1) Formulate gauge-invariant operator

     1- triplet:

2) Expand Higgs field around fluctuations

⟨(τ
i h + Dμ h)(x)(τ

j h + Dμ h)( y)⟩

⟨(τ
i h + Dμ h)(x)(τ

j h + Dμ h)( y)⟩=v2cij
ab
⟨Wμ

a
(x)W b

( y)
μ
⟩+...

h=v+η

[Fröhlich et al.’80,’81
 Maas'12]



What about the vector?

1) Formulate gauge-invariant operator

     1- triplet:

2) Expand Higgs field around fluctuations

⟨(τ
i h + Dμ h)(x)(τ

j h + Dμ h)( y)⟩

Matrix from
group structure

⟨(τ
i h + Dμ h)(x)(τ

j h + Dμ h)( y)⟩=v2cij
ab
⟨Wμ

a
(x)W b

( y)
μ
⟩+...

h=v+η

[Fröhlich et al.’80,’81
 Maas'12]



What about the vector?

1) Formulate gauge-invariant operator

     1- triplet:

2) Expand Higgs field around fluctuations

⟨(τ
i h + Dμ h)(x)(τ

j h + Dμ h)( y)⟩

Matrix from
group structure

⟨(τ
i h + Dμ h)(x)(τ

j h + Dμ h)( y)⟩=v2cij
ab
⟨Wμ

a
(x)W b

( y)
μ
⟩+...

=v2 ⟨W μ

i W μ

j
⟩+...

h=v+η

[Fröhlich et al.’80,’81
 Maas'12]



What about the vector?

1) Formulate gauge-invariant operator

     1- triplet:

2) Expand Higgs field around fluctuations

⟨(τ
i h + Dμ h)(x)(τ

j h + Dμ h)( y)⟩

Matrix from
group structure

c projects custodial
states to gauge
states

⟨(τ
i h + Dμ h)(x)(τ

j h + Dμ h)( y)⟩=v2cij
ab
⟨Wμ

a
(x)W b

( y)
μ
⟩+...

=v2 ⟨W μ

i W μ

j
⟩+...

h=v+η

[Fröhlich et al.’80,’81
 Maas'12]



What about the vector?
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Bound states as extended objects
[Maas,Raubitzke,Törek’18]

● Physical mr~2 while gauge-dependent W has mr~0.5i

Tree-level

WWW form factor: Almost tree-level

Physical form 
factor

At high energies:
Probes substructure
Behaves like WWW

At low energies:
Dominated by bound state
with finite size
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● Global SU(3) generation 
● Local SU(2) weak gauge (up/down distinction)

● Same argument: Weak gauge not observable
● Replaced by bound state – FMS applicable

● Gauge-invariant state, but custodial doublet
● Yukawa terms break custodial symmetry

● Different masses for doublet members
● Implications for experiment?

[Fröhlich et al.'80,
 Egger, Maas, Sondenheimer'17]
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How events looks like (LEP/ILC)

e--H bound state

e+-H bound state

Z-H-H bound state

--H bound stateμ

+-H bound stateμ

● Description of impact? PDF-type language!
● Interacting particles either electrons or Higgs
● Fragmentation 100% efficient – like for quarks
● Off-shell suppression at LEP(2): No deviation 

expected – or seen [Egger et al.’17]

● LHC?

[Maas'12,
 Egger et al.’17]
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Flavor of hadrons

● Flavor is replaced by custodial symmetry

● Straightforward for leptons

● Implications for hadrons?

● Open flavor must be replaced by custodial symmetry

● Requires Higgs component

● Consider nucleon
● qqq open flavor, cannot be gauge invariant

● Impossible to build a gauge-invariant 3-quark state
● Replacement: qqqh

● GIPT yields QCD
● Higgs component detectable at LHC?

● Strong couplings to Higgs: tops, weak gauge bosons

[Egger, Maas, Sondenheimer'17]
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H,g,q
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● Hard process calculated by Herwig 7
● Modified version to include Higgs initial state
● Includes tree-level only

● Standard-model dominated by gluons
● Relevant pairings: Standard model, gH, HH

● Requires suitable normalization
● Creates full events

● Every particle with all properties
● Calculations of cross sections
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New physics
-

Qualitative changes
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Beyond the standard model

● Standard model is special
● Mapping of custodial symmetry to gauge 

symmetry
● Fits perfectly degrees of freedom

● Is this generally true?
● No: Depends on gauge group, 

representations, and custodial groups
● Can work sometimes (2HDM) [Maas,Pedro’16]

● Generally qualitative differences

[Maas’15
 Maas, Sondenheimer, Törek’17]
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● Higgs

● Couplings g, v, λ and some numbers f abc and t
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● Consider an SU(3) with a single fundamental scalar
● Looks very similar to the standard model Higgs

● Local SU(3) gauge symmetry
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A toy model

● Consider an SU(3) with a single fundamental scalar
● Looks very similar to the standard model Higgs

● Local SU(3) gauge symmetry

● Global U(1) custodial (flavor) symmetry
● Acts as (right-)transformation on the scalar field only
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What about the vector?

1) Formulate gauge-invariant operator

     1- singlet:

2) Expand Higgs field around fluctuations

⟨(h + Dμ h)(x)(h + Dμ h)( y)⟩

Only one state remains in the spectrum
at mass of gauge boson 8 (heavy singlet)

Matrix from
group structure

cab projects out
only one field

⟨(h + Dμ h)(x)(h + Dμ h)( y)⟩=v2cab
⟨Wμ

a
(x)W b

( y)
μ
⟩+...

=v2 ⟨Wμ
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8
⟩+...

h=v+η

[Maas & Törek’16]
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● Qualitatively different spectrum
● No mass gap!
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● Qualitatively different spectrum
● Results in agreement with analytic predictions
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● Add fundamental fermions
● Bhabha scattering
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Ghost peaks from unphysical particles in perturbation theory



Experimental consequences

● Add fundamental fermions
● Bhabha scattering

[Maas & Törek'18
 Maas'17]

Close to true structures identical!
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Summary: Changed Feynman rules

● Write down full gauge-invariant matrix 
element

● Expand in Higgs vev: Sum of gauge-
dependent matrix elements

● Apply standard Feynman rules to each 
obtained gauge-dependent matrix 
element

● Sum to get gauge-invariant matrix 
element

Review: 1712.04721@axelmaas
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Up next

● More theories: Adjoint scalars
● Massless composite vectors!

● Quantitative predictions for LHC
● Towards precision, model building, flavor?

● What happens in quantum gravity?
● Graviton component?

@axelmaas
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