Dark Matter on the Lattice SIMPs in an Sp(4) dark sector FAKT Workshop 2024

Particle Physics Retreat

Yannick Dengler, 23.2.23 With Axel Maas und Fabian Zierler

Dark Matter

- Collection of phenomena beyond the standard model
 - Rotation curves, structure formation, etc.
- Possible explanations:
 - Modified gravity
 - Non observable form of matter
 - Particle beyond the SM

Rubin et al.: Ap.J.L. 225 (1978)

350 Sa NGC 4594

Sab-Sb NGC 72/7

300

S⁻¹)

Sa NGC 4378

Dark Matter - Self-interaction

- Observations are in conflict with cold dark matter (CDM) models
 - "cusp vs. core", "too big to fail", etc.
- Possible solution:
 - Self-interacting dark matter (SIDM)
- Constraint by "bullet cluster"

UNI GRAZ

NAWI

Graz

Tulin, Yu: arXiv:1705.02358 (2017)

Dark Matter - Velocity-dependence

- "Dark halos as particle colliders"
- Cross-section from shape of halos
- Results prefer velocitydependent cross section
- This work:
 - Blueprint: How to compare lattice results to this

```
× km/s)
                       10^{3}
(\text{cm}^2/\text{g})
   \langle \sigma v \rangle / m
```


Kaplinghat et al: Phys. Rev. Lett. 116 (2016)

Dark Matter - SIMP

- One possible realization of SIDM
 - DM as a thermal relic of the early universe via freeze-out
- Number lowering process in the dark sector
 - Heat up of DM
- Heat flow from DM to SM via coupling
 - Mediator enables direct detection

NAWI

Graz

UNI GRAZ

Hochberg et al.: Phys. Rev. Lett. 113 (2014)

Minimal realisation

Rep of gauge group: Complex **Pseudo-real** $(N_f = 2)$ U(2)xU(2) **U(4)** $m_{\mu} = m_{d} = 0$ Axial anomaly SU(2)xSU(2)xU(1) **SU(4)** $m_u = m_d = 0$ Chiral symmetry $m_{\mu} = m_d \neq 0$ breaking SU(2)xU(1) **Sp(4)** Kulkarni et al.: SciPost Phys. 14 (2023)

.

NAWI

Graz

UNI GRAZ

- $N_f = 2$ fundamental fermions in pseudo-real representation of gauge group
- Enlarged flavour symmetry
- Result: 5 pNGBs
 - $\Rightarrow 3 \rightarrow 2$ process possible

Yannick Dengler - Dark matter on the lattice, SIMPS in an Sp(4) dark sector

Sp(4) gauge with $N_f = 2$

- "Zoo" of dark particles:
 - 5 "dark" Pions
 - 10 "dark" Rhos
 - and more
- Even number of colours:
 - No fermionic bound states

Lattice

- Sample gauge configurations in a discretized space-time
- Challenges:
 - IR and UV cutoff because of a and L
 - Discretization artifacts
 - Finite volume effects

NAWI

Lattice - Scattering

- Particles enclosed in a box
 - Energy levels are shifted in finite volume due to scattering effects
- Energy shift ↔ scattering properties

•
$$\tan(\delta) = \frac{\pi^{\frac{3}{2}}q}{\mathscr{Z}_{00}^{\vec{0}}(1,q^2)}$$
 "Lüscher Zeiter

NAWI

Graz

UNI GRAZ

eta function"

Lüscher et al.: Commun. Math. Phys. 104/105 (1986)

Effective range-expansion (s-wave) \bullet

 $\mathrm{km/s}$

 \times

 $[\mathrm{cm}^2/\mathrm{g}$

 $\langle \sigma v \rangle /m$

•
$$P \cot(\delta) = -\frac{1}{a} + \frac{P^2}{2r_e} + \mathcal{O}(P^4)$$

• $\frac{\langle \sigma v \rangle}{m} = \int_0^\infty v \,\sigma f_{MB}(v) \,dv$

 $\Rightarrow a = 22.2 \text{ fm}$

 $r_e = -2.59 \times 10^{-3} \,\mathrm{fm}$

 $\Rightarrow m_{DM} = 16.7 GeV$

Kondo et al: J. High Energ. Phys. (2022)

	-	-	-	-
				_
Т	Ţ			
	Ţ	-	-	-
				_
-				
-				-
				-
				-
-				
-		1	-	
-	1			
-		1	1	
-	1	-		
-	•			
-		-	-	
-		1	1	

Effective range-expansion (s-wave)

•
$$P \cot(\delta) = -\frac{1}{a} + \frac{P^2}{2r_e} + \mathcal{O}(P^4)$$

• Parameters do not agree

Kondo et al: J. High Energ. Phys. (2022)

Effective range-expansion (s-wave)

•
$$P \cot(\delta) = -\frac{1}{a} + \frac{P^2}{2r_e} + \mathcal{O}(P^4)$$

Parameters do not agree

• Effective range-expansion (s-wave)

•
$$P\cot(\delta) = -\frac{1}{a} + \frac{P^2}{2r_e} + \mathcal{O}(P^4) \quad \underset{\subseteq}{\underline{\xi}}$$

- Parameters do not agree
- Relativistic speeds:

•
$$\frac{\langle \sigma v \rangle}{m} = \int_{1}^{\infty} v(\gamma) \, \sigma f_{MJ}(\gamma) \, d\gamma$$

• $m_{DM} \approx 50 MeV$

 M_{DM}

NAWI

Graz

UNI GRAZ

•

Outlook

- Lattice technicalities
- Provide low energy constants for "dark" χ -pT
- Full $\pi\pi\pi\pi \rightarrow \pi\pi$ scattering cross section from the lattice

Thank you!

$Sp(4)_c$ vs. $Sp(4)_f$ - clarification

- Symplectic groups always have a even dimension - Sp(2N)
- Flavour symmetry:
 - Needed for symmetry breaking pattern
- Gauge symmetry: Needed for the pseudo-real representation
 - Also SU(2) or Sp(6) for example possible

NAWI

Graz

UNI GRAZ

Effective range-expansion (s-wave)

•
$$k \cot(\delta) = -\frac{1}{a} + \frac{k^2}{2r_e} + \mathcal{O}(k^4)$$

Best fit: \bullet

•
$$a = 22.2 \text{ fm}$$

- $r_e = -2.59 \times 10^{-3}$ fm
- $m_{DM} = 16.7 GeV$

,

NAWI

Graz

UNI GRAZ

Comparison chiral perturbation theory

0.0

• χpT prediction: -0.2

•
$$a_0 m_\pi = -\frac{1}{32} \left(\frac{m_\pi}{f_\pi}\right)^2$$
 -0.4
-0.6

- Pion mass on edge or beyond validity
 - -1.2
 - -1.4

Graz

UNI GRAZ

Bijens et al.: JHEP (03:028, 2011)

	-
	_
10 A	
-	
	_
	_
	-
	7
	7

Comparison to astrophysical constraints

- Scattering length:
- $a_0 m_\pi = -0.65^{+0.2}_{-0.3}$

$$\frac{\sigma}{m} < 0.19 \frac{cm^2}{g}$$

• Fixes the lattice constant

•
$$m_{DM} > 115 MeV$$

$$0.00$$

 -0.25
 -0.50
 -0.75
 -1.00
 -1.25
 -1.50

Eckert et al.: A&A 666, A41 (2022)

5 dark Pions

- Pions form a 5-plet of the flavour symmetry
 - $\pi^+, \pi^0, \pi^-, \Pi_{ud}, \Pi_{\bar{u}\bar{d}}$
- What are the possible scattering channels?
- Tensor products of the corresponding representations
- 3 Isospin channels in $\pi\pi$:
- I=0 (1-dim), I=1 (10-dim), I=2 (14-dim)

 $Sp(4)_f$

$5 \otimes 5 = 1 \oplus 10 \oplus 14$ $10 \otimes 5 = 5 \oplus 10 \oplus 35$ $5 \otimes 5 \otimes 5 = 3(5) \oplus 10 \oplus 30 \oplus 35$

- $\pi\pi \rightarrow \pi\pi$ (I=0,1,2)
- $\pi\pi \rightarrow \rho (l=1)$
- $\pi\pi \rightarrow \pi\pi\pi$ (l=1)
- $\pi\pi \rightarrow \pi\pi\rho$ (I=0,1,2) etc.

- I=2 (14-dim):
 - (Probably) contributes most to $\pi\pi$ -scattering
 - 14 out of 25 possible combinations of Pions
- Considered in this talk

 $Sp(4)_f$

$5 \otimes 5 = 1 \oplus 10 \oplus 14$ $10 \otimes 5 = 5 \oplus 10 \oplus 35$ $5 \otimes 5 \otimes 5 = 3(5) \oplus 10 \oplus 30 \oplus 35$

- $\pi\pi \rightarrow \pi\pi$ (l=0,1,2)
- $\pi\pi \rightarrow \rho (l=1)$
- $\pi\pi \rightarrow \pi\pi\pi$ (l=1)
- $\pi\pi \rightarrow \pi\pi\rho$ (I=0,1,2) etc.

- I=0 (1-dim):
 - (Probably) no large contribution to $\pi\pi$ -scattering
 - Mixing with the "singlet"
 - Numerically challenging (...connected diagrams")
- Not considered in this work

 $Sp(4)_f$

$5 \otimes 5 = 1 \oplus 10 \oplus 14$ $10 \otimes 5 = 5 \oplus 10 \oplus 35$ $5 \otimes 5 \otimes 5 = 3(5) \oplus 10 \oplus 30 \oplus 35$

- $\pi\pi \rightarrow \pi\pi$ (I=0,1,2)
- $\pi\pi \rightarrow \rho (l=1)$
- $\pi\pi \rightarrow \pi\pi\pi$ (I=1)
- $\pi\pi \rightarrow \pi\pi\rho$ (I=0,1,2) etc.

- I=1 (10-dim):
 - Mixing with the Rho
 - $\pi\pi\pi \to \pi\pi$
 - No contribution to $\pi\pi$ -s-wave scattering
- Tackled in the future

 $Sp(4)_f$

$5 \otimes 5 = 1 \oplus 10 \oplus 14$ $10 \otimes 5 = 5 \oplus 10 \oplus 35$ $5 \otimes 5 \otimes 5 = 3(5) \oplus 10 \oplus 30 \oplus 35$

- $\pi\pi \rightarrow \pi\pi$ (I=0,1,2)
- $\pi\pi \rightarrow \rho (l=1)$
- $\pi\pi \rightarrow \pi\pi\pi$ (I=1)
- $\pi\pi \rightarrow \pi\pi\rho$ (I=0,1,2) etc.

- **I**=2:
 - Makes up most 2 π scattering (14/25)
 - Easiest on the lattice
- I=1:
 - No s-wave scattering
 - Mixing with dark Rho
 - $\pi\pi\pi \to \pi\pi$
- I=0:
 - Mixing with the flavour singlet

 $Sp(4)_f$

$5 \otimes 5 = 1 \oplus 10 \oplus 14$ $10 \otimes 5 = 5 \oplus 10 \oplus 35$ $5 \otimes 5 \otimes 5 = 3(5) \oplus 10 \oplus 30 \oplus 35$

- $\pi\pi \rightarrow \pi\pi$ (I=0,1,2)
- $\pi\pi \rightarrow \rho (l=1)$
- $\pi\pi \rightarrow \pi\pi\pi$ (I=1)
- $\pi\pi \rightarrow \pi\pi\rho$ (I=0,1,2) etc.

Lattice - Scattering

- Can be extended to the 3 particle case
- "3 particle quantization condition"
- $det[F_3^{-1} + \mathcal{K}_3] = 0$
 - Full $2 \rightarrow 2$ information needed

