
Approaches to the shape of the
Higgs-PDF using proton-proton collisions

Bachelor’s Thesis (BSc)

Author:

Simon Dampfhofer

Supervisor:

Prof. Axel Maas

Graz, October 23 2020



II

Abstract

Because quantized, non-abelian gauge theory requires observable states to be gauge independent,
the presence of Higgs within the proton is postulated. An analysis of proton-proton-collisions
can therefore be used to estimate the currently unknown parton density function (PDF) of the
Higgs. The goal of this thesis is to find candidates for this function. To determine the adequacy of
such candidates, collision events are simulated using the HERWIG 7.2 event generator for protons
modified to contain Higgs, assuming a constant higgs content, while studying the PP → tt̄Z

process. Cross sections obtained from protons modified to contain higgs are compared both with
data generated for the unmodified standard model proton and with data for modified protons based
on different PDFs. Additionally, parameters of three initially promising formulas are optimized.
Relevant data is used to generate plots as well as numerical "quality"-values that can be used to
rank PDFs. When analyzing this data, it is possible to correlate some general features of PDFs
with their impact on scattering cross-sections.
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1. Introduction

In modern particle physics, scientific treatment of the world on increasingly smaller scales is pos-
sible. In particular, with the Standard Model objects previously thought to be indivisible are
described as consisting of elementary particles themselves. In the case of the proton, the prevalent
view of the Standard Model is that it consists of two up quarks and one down quark. But as it
turns out, it is not possible to create a gauge invariant composite state containing only those three
quarks. Objects that depend on gauge can not be physically observable; this poses a problem for
the Standard Model proton. One solution to create a gauge invariant proton is to assume it to
contain a valence Higgs. Following this assumption, this thesis leaves behind the "pure" Standard
Model in favor of a quantized, non-Abelian gauge theory with an active Brout-Englert-Higgs effect.

It is possible to describe the presence of Higgs within the proton using parton distribution functions
(PDFs). These functions describe the probability to find partons such as the Higgs inside hadrons,
in this case the proton, for a given momentum fraction. Knowing the distribution functions of all
partons inside the composite particle, it is possible to compute the protons behaviour and outcome
of collision events using perturbation theory. For this thesis, data for proton-proton-collisions will
be simulated using the event generator HERWIG. Specifically, we will take a look at events with
final states including top and antitop quarks as well as a Z boson (ttZ), assuming a fixed Higgs
content of 5%. As a result of simulations, differential cross-sections in respect to the transverse
momentum of resulting top quarks will be analyzed. The goal is to find functions that result in
cross-sections of protons modified to contain Higgs that exhibit similar or faster decay than cross-
sections of the Standard Model. Additionally, the impact different function shapes can have on
the outcome of collisions will be studied. Some research on these topics is already available (e.g.
Fernbach [1] and Reiner [2]), providing PDFs that do manage to perform acceptably. However,
one explicit goal of this thesis was to also look for entirely new ansätze for these functions.

As an introduction to relevant topics, section 2 provides necessary background knowledge on a
number of issues: Gauge theories, which present the main reason for assuming Higgs inside the
proton; scattering events, to enable a sufficient description of events and interactions behind particle
collisions; and the technical implementation of these issues via the event generation program. Most
of the information presented in this chapter is taken either from textbooks or from research papers.
Having covered all preconditions, the simulations themselves and their results are presented in
section 3; here, findings will also be compared with data for already existing PDFs. To conclude,
results and methods are reflected upon in chapter 4. In this section, a brief overview of current
and future research is also provided.
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2. Theoretical Background

The discussion of the theoretical background will be divided into three parts. As initially men-
tioned, the assumption of Higgs within the proton is based on a general requirement of gauge-
independence for composite states. Because this consideration forms the basis of this thesis, a
look at relevant fundamental aspects of gauge theories is given the first subsection; this part is
based mainly on Fernbach [1], Griffiths [3], Henley and Garcia [4], Maas et al. [5] and Maas [6].
Having motivated the presence of Higgs in the proton, this can be utilized when analyzing proton-
proton-collisions, since a different composition of the proton would result in different observations
of collisions. Therefore, subsection 2.2 introduces necessary concepts for the description of scat-
tering events, namely cross-sections and parton distribution functions (PDFs). Primary literature
for this chapter is Griffiths [3], Henley and Garcia [4] and Tanabashi et al. [7, chapter 18]. Rather
than using published data from actual particle accelerators, the collision events to study will be
simulated. This is done with the general-purpose Monte Carlo event generator HERWIG, version
7.2. While the technical details of HERWIG can be referenced in the manual (Bähr et al. [8]) and
the release notes (Bellm et al. [9], [10] and [11]), the qualitative discussion of relevant features in
the final subsection is largely based on Sjöstrand [12]. Also in this section, details for the imple-
mentation of the PP → ttZ subprocess are discussed, based on Fernbach [1] and Fernbach et al.
[13]. Additional information for all covered topics is taken from Perkins [14].

2.1. Gauge theories

Symmetries (and, via Noether’s theorem, corresponding conservation laws) are fundamental prop-
erties of nature. Mathematically, symmetries represent operations that, when performend on
a system, leave that system unchanged. Sets of such symmetry operations form mathematical
groups, which in many physically interesting cases can be formulated as groups of matrices. The
Standard Model in particular consists of three fundamental gauge groups, SU(2)× SU(3)×U(1).
U(1) corresponds to the group of unitary 1× 1 matrices, while SU(2) and SU(3) represent groups
of unitary 2 × 2 / 3 × 3 matrices with determinant 1, respectively. Notably, while elements of
U(1) commute and this group therefore is Abelian, elements of SU(2) do not, which is why the
Standard Model gauge theory itself is a non-Abelian theory. In general, the transformation repre-
senting global gauge invariance of a field ψ can be described as follows, with U being an element
of one of the three gauge groups:

ψ → Uψ, where U†U = 1 (2.1)

An example for an element of the U(1) group can be given by the phase transformation eiθ. In
addidtion to global invariances independent of position, local invariance can also be demanded; in
the case of phase transformation, the phase would then also depend on the local coordinate x.

In an analogy to the Lagrangian of classical mechanics, relativistic Lagrangians can be introduced.
Demanding gauge invariance necessitates the introduction of additional terms to these Lagrangians,
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the so called gauge fields, which in the quantum mechanical case have to be quantized. As a result
of this, some of the known elementary particles, the gauge bosons, emerge: The photon is the
result of the quantization of the electrodynamic field resulting from U(1)-invariance, while SU(2)
is responsible for the W and Z bosons, and SU(3) for the gluon. The other Standard Model
elementary particles (leptons, quarks and the Higgs) can also be seen as quanta of fields, but not
of gauge fields.

To calculate this quantization of fields, one option is to use path integral formalism. However,
this results in the gauge fields of the Lagrangians being gauge variant. In perturbation theory,
one option to fix this problem is to apply BRST transformations; they utilize a global symmetry
discovered by Becchi, Rouet, Stora and Tyutin that allows for distinction between physical and
unphysical states. Non-perturbatively, when trying to apply BRST symmetries, one faces the
problem that unwanted additional field configurations arise from transformations which also fulfill
the gauge condition; this is called the Gribov-Singer ambiguity. While in this case the construction
of a BRST symmetry is still possible, it proves rather difficult.

Another way gauge invariance can be achieved is by considering not single but only bound states,
which are products of fields. Presupposing an active Brout-Englert-Higgs effect, it is possible
to analyze such gauge invariant composite fields under perturbation theory by using a method
developed by Fröhlich, Morchio and Strocchi. This so called FMS mechanism will be the basis for
the approach taken in this thesis. The simplest possible object under this theory, the custodial
singlet, is given by:

O(x) = Φ†(x)Φ(x) (2.2)

Inserting a Higgs-field ~Φ(x) around the vacuum value using the t’Hooft gauge, it is possible to write
down the propagator of the singlet state and expand it [1], with the result given below. Here, ν is
the norm of the higgs doublet, ~n the gauge group direction and ~η higgs field fluctuations around
the vacuum value; d represents a constant term:

~Φ(x) = ν~n+ ~η(x)

〈O†(x)O(y)〉 = d+ 2ν(〈Re(~n† ~ηy) ~ηx† ~ηx〉+ x↔ y) + 4ν2〈Re(~n† ~ηx~n† ~ηy)〉+ 〈 ~ηx† ~ηx ~ηy† ~ηy〉
(2.3)

Instead of computing the bottom equation in 2.3 by applying lattice theory, an easier approach is to
use parton distribution functions to describe the right hand side; these functions will be discussed
in more detail in section 2.2.

Finally, it is possible to motivate the presence of Higgs inside the proton: As mentioned, under
non-Abelian gauge theories (as is the Standard Model), only composite gauge-invariant objects can
be actually physically observed. Importantly for the current thesis, it is not possible to describe
the proton gauge-invariantly as a composite state using only quarks; this can be fixed by assuming
a valence Higgs inside the proton.
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2.2. Scattering events

Since the object of research are proton-proton collisions, in this section two concepts providing
some background knowledge for the description of scattering events are presented. The first is
that of the cross-section, used to characterize the behaviour of a collision. The second concept,
the parton density function, describes the probability of finding some partons within a stream
of particles. Additionally, a short explanation of Feynman diagrams is given at the end of the
subsection.

2.2.1. Cross-section

To introduce cross-sections, we will take a look at monoenergetic particle beams. The flux F of
such beams is then defined as the number of particles crossing a unit area perpendicular to the
beam per unit time. For uniform beams consisting of ni particles per unit volume moving with
velocity v, this is simply given by:

F = niv (2.4)

The goal is now to describe what happens when particles of that beam are scattered by an arbitrary
target; the following figure should illustrate this situation:

Fig. 2.1.: Scattering of a monoenergetic beam. Based on a graphic from [4, page 16].

Here, the number of particles dN detected by the detector at angle θ per unit time is proportional
to the incidental Flux F , the solid angle of the detector dΩ, the number of independent scattering
centers in the target intercepted by the beam N and, importantly, the differential scattering cross-
section dσ(θ)

dΩ , in this case derived in respect to the solid angle:

dN = FN
dσ(θ)
dΩ dΩ (2.5)

In a naive sense, cross-sections correspond to the size of an area the target presents to the incident
beam. While in this thesis cross-sections are computed via simulation (more detail in section 2.3),
equation 2.5 describes a way to in theory determine this value experimentally.
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Another quantity, the total cross-section, is obtained by integrating the differential cross-section,
in this case over all solid angles:

σtot =
∫
dσ(θ)
dΩ dΩ (2.6)

It is also possible to write the total cross-section of a scattering event as a sum of all cross-sections
of subprocesses, as is shown in equation 2.7. As an example, the scattering of electrons off hydrogen
could involve elastic scattering (e+ p→ e+ p) as well as multiple types of inelastic scattering (e.g.
e+ p→ e+ p+ π0), each of which could be represented by a cross-section σi for subprocess i, the
sum of which would constitute the total cross-section. While this total cross-section σtot is inclusive
(meaning it contains no further information on energy and momenta of the resulting particles),
the exclusive cross-sections σi of subprocesses do contain such information. Of particular interest
for this thesis are exclusive cross-sections for one specific end product: t+ t+ Z.

σtot =
n∑
i=1

σi (2.7)

2.2.2. Parton distribution functions

The second important concept is that of the parton distribution function or PDF. Looking at a
beam of hadrons H, the PDF PH,i(x) gives the probability of finding partons i with momentum
fraction x within that beam. Since determining them non-perturbatively is difficult, the usual
approach to finding a PDF is to fit experimental input with theoretical parameters, in a similar
approach to the one taken in this thesis. Known PDFs for some partons, created by the CTEQ
group specifically from experimental data, are provided in figure 2.21.

Fig. 2.2.: CTEQ6 PDFs of u, d, s and g

1) https://en.wikipedia.org/wiki/File:CTEQ6_parton_distribution_functions.png
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Because a PDF of the proton describes all partons within the particle, it has to fulfill additional
conditions, namely retaining total charge of +e, total momentum of 1, sum of up quarks being
2 and sum of down quarks being 1, while containing no other QCD partons, as is represented in
equations 2.8 - 2.12.

charge sum rule:
∑
i

∫ 1

0
dxqiPP,i(x) = +e (2.8)

momentum sum rule:
∑
i

∫ 1

0
dxxPP.i(x) = 1 (2.9)

flavor sum rules:
∫ 1

0
dx(PP,u(x)− PP,u(x)) = 2 (2.10)∫ 1

0
dx(PP,d(x)− PP,d(x)) = 1 (2.11)∫ 1

0
dx(PP,i(x)− PP,i(x)) = 0, i 6= {u, d} (2.12)

To connect cross-sections (gained from either experiment or simulation) with PDFs, so called struc-
ture functions can be utilized. It is possible to determine a double-differential cross-section dσ

dxdy

by LO perturbation theory using these structure functions, while structure functions themselves
are related to PDFs via so called DGLAP equations (for details, see [7, chapter 18]).

The structure function F2 is given as the Fourier transform of the charge distribution, which for
Spin- 1

2 particles is connected to F1 via the Callan-Gross relation (first part of equation 2.13). In
the Standard Model, the structure functions of the proton consisting of two up quarks and one
down quark can also be determined from the probability P (second part of 2.13), where P(xi)
describes the probability of finding quark i with momentum xiph.

F2(x) = 2xBjorkenF1(x) = xBjorkenP(x) (2.13)

Here, xBjorken = Q2

2Mv is the Bjorken x scaling variable with squared four-momentum-transfer Q2,
massM and energy loss between scattering particles v. Considering its classical composition of two
up quarks and one down quark, it is possible to derive the probability for the proton. In equation
2.14, the quantities up and dp describe the probabilities of finding up or down quarks within the
proton, while up, dp, sp and sp represent sea quarks, possible virtual quark-antiquark pairs that
can spontaneously emerge from splitting of gluons.

P(x) = 4
9(up + up) + 1

9(dp + d
p + sp + sp) (2.14)

Because of the relations of both cross-sections and PDFs to structure functions, the following
equation provides a preliminary general result for a collision of two hadrons H, H ′ and final state
f can be given:

σHH′→f =
∑
ij

∫
dxdyσij→fPH,i(x)PH′,j(y)θ(1− x− y) (2.15)
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2.2.3. Feynman diagrams

Finally, a practical graphical representation for scattering events should be mentioned: Feynman
diagrams. In these diagrams, time flows horizontally, which means incident particles are shown
on the left, and outgoing ones on the right. Vertices indicate interactions between propagating
particles; the usual conservation laws apply here. The particles themselves are represented by
lines, with their style giving indication to the type of particle (solid lines represent fermions, and
wavy, curly or broken lines bosons). It is convention that outgoing particles are drawn with an
arrow along the direction of their momentum, and a reversed arrow in the case of antiparticles.
Intermediary lines represent virtual particles, which can not be directly observed without changing
the process itself.

A particular physical process such as PP → ttZ is represented by multiple Feynman diagrams, in
particular all whose external lines correspond to the appropriate particles involved in the process.
The total process can then be described by the sum of all Feynman diagrams, taking into account
the different contribution of each diagram. Since every vertex introduces factors of (different)
fine structure constants, which are of small magnitude, the contributions of processes including
larger numbers of interactions are negligible; this is why only a finite number of diagrams has to
be considered. Figure 2.3 shows two example Feynman diagrams for one subprocess used for the
simulation, HH → ttz. All Feynman diagrams for the subprocesses involved in the simulations,
taken directly from the diagram creator MadGraph included in HERWIG, can be referenced in
section B.4.

Fig. 2.3.: example Feynman diagrams for HH → ttz

2.3. Technical implementation

As already briefly mentioned above, event generators such as HERWIG are used to simulate ma-
chines like the LHC. In short, generated collision events are measured by a simulated detector,
after which the collected data can be stored and analyzed. The generator first computes matrix
elements that serve to describe the cross-section for the hard part of a collision, using an analogy
to equation 2.15. In the case of HERWIG, these matrix elementsM are generated by MadGraph
at next to linear order (NLO), and the results are then handled by HERWIG doing further compu-
tation. The hard cross-section itself is proportional to the square of these matrix elements and can
be calculated using Fermi’s golden rule with the masses mi and momenta pi for involved particles
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of type i, as seen in equation 2.16, where S is a statistical factor correcting double counting of
identical particles in the final state.

σ = S~2

4
√

(p1p2)2 − (m1m2c2)2

∫
|M|2(2π)4δ4(p1 + p2− p3...− pn)×

n∏
j=3

2πδ(p2
j −m2

jc
2)θ(p0

j )
d4pj
(2π)4

(2.16)

From this cross-section for the hard process, the final particles obtained from the scattering event
are calculated perturbatively using Monte Carlo methods by further considering decays of resulting
particles, radiation effects, remnants, hadronization and interaction with further partons after the
initial collision. This process is called parton shower. For the later presented simulations, it is
done at LO for processes involving Higgs and NLO for QCD partons. The final cross-section is
then given by the following product:

σfinal state = σhard processPtot, hard process → final state (2.17)

Finally, specifics of the implementation of PP → ttZ are to be discussed. But first, why analyze this
subprocess specifically? There are two primary answers to this question. On one hand, because
fermion-Higgs coupling is proportional to the mass of the fermion, only processes involving the
comparatively heavy top quark coupled to Higgs contribute an appreciable amount to scattering
processes. Since tops themselves have negligible PDFs and are not implimented for the proton in
HERWIG, it is practical to only consider them in the final state. On the other hand, it is not
possible for gluons to emit Z bosons, which is why the presence of Z is also an indication for the
presence of Higgs; this is also represented by an extra number of Feynman diagrams with ZH and
HHH coupling for ttZ compared to tt. Experimental evidence for ttZ cross-sections in proton-
proton collisions was found by the ATLAS detector at LHC in 2019, which is however deemed to
be also compatible with predictions made for the Standard Model proton [15].

Since HERWIG supports only collisons of two incoming particles at a time, the simulation of the
modified proton has to be split up. As was mentioned when discussing Feynman’s diagrams, the
cross-section of a process can be described by a sum of cross-sections of subprocesses. Having
added a Higgs, to still fulfill the sum rules from equations 2.8 - 2.12 this new cross-section has to
be renormalized, resulting in the approximation for the total cross-section σPP→ttZ(c) with Higgs
content c given in equation 2.18 [13].

σPP→ttZ(c) = (1− c)2σPP→ttZ + (1− c)cσgH→ttZ + c2σHH→ttZ (2.18)

σPP→ttZ(c) refers to the total cross-section with added Higgs, while σPP→ttZ represents the un-
modified Standard Model proton. The cross-sections for the PP , gH and HH subprocesses can,
as mentioned, be determined by individual simulations.
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3. Simulation and Results

3.1. General approach

As input files for HERWIG, newer versions of .read-files for the PP , gH and HH processes from
Fernbach [1], [13] are used. Using these files, the program is set at an energy scale of 13 TeV.
After simulation, initial data processing is done by the Rivet analysis plugin, resulting in .yoda-
files containing binned histogram data for observables. Additionally, .out-files are produced by
HERWIG, containing total cross-sections. Data analysis is done in Mathematica 12.1, where
differential cross-sections for modified protons in respect to the transverse momentum of tops
pT are calculated, assuming constant Higgs content of 5% (equation 2.18). Code for all custom
programs used in the process can be referenced in chapter C.

When starting a simulation with HERWIG, the number of events N to be simulated can be
specified. This is a time-sensitive issue, since a large number of events results in long computation
times; however higher Ns also correspond to lower statistical uncertainties. Initially, data was
simulated using N = 1000, but later this number was increased. The specific number of events for
gH and HH will be mentioned when discussing data sets for particular approaches, e.g. for the
later mentioned Gauss- or sine wave-ansätze. Since PP , representing the Standard Model proton,
does not change when supplying different PDFs, this data has to be simulated only once; in the
end, N = 4 · 106 was used for this process.

As initially mentioned, the goal was to arrive at modified cross-sections that either within margin
of error agree with data simulated for the Standard Model proton, or exhibit a faster decay than
the latter. The success of this will be assessed in two ways. First, as a graphical representation of
decay, ratio plots comparing modified to unmodified differential cross-sections will be presented.
Additionally, a numeric quality-value is used to rate the performance of different PDFs. It was
reported by Reiner [2] and Fernbach [1] that a general problem of many modified cross-sections
is a too slow decay for high pT , resulting in ratios of modified to unmodified cross-section much
higher than 1. This observation could be confirmed when checking data from initial simulations.
To avoid this, quality q is defined as the sum of absolute differences of binned ratios ri from 1 for
all histogram bins i, as seen in equation 3.1. Low q, per definition representing ratios close to one,
is seen as desirable.

q =
nbins∑
i=1
|1− ri|, ri =

σPP→ttZ,i(c)
σPP→ttZ,i

(3.1)

As a starting point, some equations for suitable PDFs are already available in the literature.
Fernbach et al. [13] provide the general equation 3.2; among other candidates discussed, one PDF
allowing high Higgs content is given by Fernbach using this formula with the parameters c0 = c1

= c7 = 1, c3 = 100, c4 = c5 = c6 = 0, assuming Higgs content of 6.08%. Reiner [2] also reports
good results for a PDF resembling a gluon-PDF according to equation 3.3, with parameters a =
0.5, b = 1.6 and Higgs content of 2.844%.
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f0(x) = (1− x)c0

xc1
(c7e−c3x

2
+ c6e

−c4(x−c5)2
) (3.2)

fgluon(x) = xa(1− x)b (3.3)

To start off, data for 110 different PDFs was simulated, using N = 1000. Most of these functions
are created by varying parameters of the general PDF 3.2, but some custom PDFs were also
tested. Ansätze responsible for better quality-values were then taken into further consideration by
modifying contained parameters. Additionally, these functions were plotted, and it was tried to
replicate discerning qualities (e.g. peaks at x = 0.3) with other functions. Since better performing
ansätze were studied in more detail, the results of the general approch will not be discussed further.
Instead, we will now take a look at specialized equations.

3.2. Singularities at zero

The first approach analyzed in detail were functions with extreme singularities at x = 0. Some
PDFs based on this ansatz result in very low ratios of modified to unmodified cross-sections. Due
to an initial error in calculations, it was thought they exhibit very low quality-values for higher
powers of 1

x as well, which is the reason they were analyzed further. Using parameters in the range
provided in table 3.1, 220 PDFs were created with the following equation:

fsing(x) = (1− x)a1

xa2
e−a3x

2
(3.4)

Tab. 3.1.: total parameters ranges, singularities

variable lowest value highest value
a1 0 2.8
a2 1 15.5
a3 15 35

The best quality value encountered is 4.1 ± 1.7 for parameters a1 = 2.8, a2 = 3.8, a3 = 35. For
comparison, optimized functions of the Gaussian-ansatz managed to reach q-Values below 10−3. As
a visual representation of the results, the top plot of figure 3.1 shows the differential cross-sections
of the Standard Model proton PP , subprocesses gH and HH as well as the modified proton.
Looking at this and further similar plots, it is important to note that in order to illustrate their
influence on the modified proton, gH and HH differential cross-sections are scaled by c ·(1−c) and
c2, respectively. This corresponds to their contributions according to equation 2.18. Meanwhile,
the PP differential cross-section should be seen as the Standard Model reference value allowing for
better comparison with the modified cross-section, which is why it is not scaled. The bottom plot
of 3.1 shows the ratio of cross-sections for modified to unmodified proton; as mentioned, ratios at
or slightly below 1 are in general seen as desirable.

Of particular interest is the change in behaviour when adding powers of 1
x by increasing the pa-

rameter a2, which is the defining characteristic of singularities-PDFs. To illustrate this behaviour,
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Fig. 3.1.: Data for equation 3.4, a1 = 2.8, a2 = 3.8, a3 = 35. Top: Differential cross-sections for
subprocesses and modified proton. Here, HH and modified proton practically overlap
because of an high total cross-section for HH. Bottom: Ratio of modified to unmodified
differential cross-section.

figure 3.2 is provided. These plots show data for which two of the three parameters in equation
3.4 were fixed: a1 = 1 and a3 = 25. By now varying the remaining parameter a2, it is possible to
visualize the impact different powers of 1

x have for this equation. In the x−z-plane of the 3D-plot,
the ratio of modified to unmodified cross-section is plotted, similar to the bottom graph of figure
3.1 for one parameter. The y-axis gives the value of the parameter a2 responsible for this ratio.
For a better visual representation, all values are interpolated. Uncertainties are represented by red
error bars. As a common problem of many results is the too slow decay for high momenta, the
ratios for these momenta are of particular interest. Because of this, the bottom figure of 3.2 shows
only ratio values for the last momentum bin, in essence providing a section of the y − z-plane of
the 3D-plot for pT = (975± 25) GeV. More detailed ratio plots as well as three dimensional ratio
comparison plots from different perspectives are provided in sections B.1 and B.2.

Checking the total cross-sections of HH, it can be observed that they rise exponentially with
powers of 1

x . To illustrate this, a plot showing how σtot, HH
σtot, PP

changes when varying the parameter a2

is provided in section B.3. Therefore, increasing a2 amplifies the decay of modified cross-sections
in two ways: First, it leads to higher total cross-sections of HH, which corresponds to a higher
contribution to the modified cross-section. Second, for a2 higher than 4.5 it was observed that the
HH cross-section itself decays faster than the Standard Model’s. In total, this means both decay
of HH and the contribution of that decay to the total proton increase when increasing a2 above a
value of 4.5.
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Fig. 3.2.: Data for equation 3.4, a1 = 1, a3 = 25, a2 varied. Top: Ratio of modified to unmodified
differential cross-section for different parameters a2. Bottom: Ratio at pT = (975± 25)
GeV. Dark blue colors indicate low and yellow colors high values.

This means that despite comparatively high q-values, the singularities approach does show some
promise. On one hand, these functions were the only ones checked whose HH cross-section do in
fact decay faster than the Standard Model proton. The problem here is that for more extreme
singularities, the total cross-section for processes involving Higgs (gH and HH) are much higher
than those of the Standard Model PP (a2 = 15.5, represented in figure 3.2, results in a HH total
cross-section in the order of 1036 nb, corresponding to rather unplausible 0.1 m2, compared to
the cross-section of PP with 10−4 nb). Since the contribution of HH to the total cross-section
calculated with equation 2.18 is high, the decay of the total cross-section then actually is very rapid
compared to the Standard Model, which seems not desirable either. Using equation 3.4, there does
seem to be a sweet spot for a2 in a range around 5, with a1 = 1 and a3 = 25, for which a decay
similar to the Standard Model can be observed; lower values result in slower and higher in faster
decreasing cross-sections. As at the time of more detailed data analysis the focus of research was
already shifted to Gaussian- and sine-based approaches, no more research was done on this topic.
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3.3. Gaussian curves

The Gaussian approach was motivated by an observation from initial data that promising PDFs
show peaks somewhere in the area between x = 0.2 to x = 0.4 and decline outside of this area.
To replicate this behaviour, data for 1524 PDFs based on Gaussian curves was simulated. 639 of
these functions were generated with equation 3.5, while the rest came from other Gaussian based
equations. Contrary to the initial assumption, better performing PDFs actually turned out to not
possess peaks in the range mentioned above, but have graphs starting at high values for x = 0 and
decaying with rising x. Since 3.5 produced the best results in terms of low q-values, data based
on this equation will be discussed in more detail. Ranges within which the parameters for this
equation were varied are displayed in table 3.2.

fGauss(x) =
√

2πg2
2

x(1− x) · e
− (x−g1)2

2g2
2
−g3x

2

(3.5)

Tab. 3.2.: total parameters ranges, Gaussians

variable lowest value highest value
g1 0.5 15
g2 0.1 10
g2 19 90

As mentioned, PDfs based on Gaussians for parameters shown above are able to reach qualities
below 10−3. Cross-sections and ratio for one particular distribution function, using g1 = 3.87, g2

= 0.3 and g3 = 51, are shown in figure 3.3. The q-value for this function is (0.1± 1) · 10−3.

To further optimize parameters for equation 3.5, one well performing PDF was analyzed in more
detail. In a similar approach to the previously discussed singularities-ansatz, two of the three
g-parameters for this function were fixed at a time and new PDFs created by varying the last
parameter within bigger bounds. Ranges used for parameters are shown in table 3.3, while the
resulting plots can be seen in figures 3.4 - 3.6 (again, additional plots are available in chapter B).
In contrast to data for singularities, no HH cross-sections with faster decay than the Standard
Model were found. Since in both the 3D- and last value ratio plots dark blue colors indicate low
values, this means that dark blue represents ratio values of 1, as no lower values are present.

Tab. 3.3.: parameters for optimization, Gaussians

variable lower bound upper bound step size total number constant parameters
g1 0.1 10 0.33 31 g2 = 3.87, g3 = 51
g2 0.5 15 0.5 30 g1 = 0.3, g3 = 51
g3 20 90 5 15 g1 = 0.3, g2 = 3.87
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Fig. 3.3.: Data for equation 3.5, g1 = 3.87, g2 = 0.3, ge = 51. Top: Differential cross-sections for
subprocesses and modified proton. Bottom: Ratio of modified to unmodified differential
cross-section.

In addition to 3D- and last value plots, graphs of the PDFs responsible for the data are also
provided in form of the bottom plots of figures 3.4 - 3.6. As is custom, the functions are plotted
with an multiplicative factor of x. The color bar gives indication to the varied parameter, with
darker values usually reserved for PDFs responsible for lower last values. Important to note is
that while the color bar implies continuous values, the parameters were varied discretely according
to table 3.3. However, due to a high number of PDFs in consideration for some parameters, the
representation with a color bar was chosen for easier readability. Results for this approach as well
as the one based on sine waves will be discussed in section 3.5.
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Fig. 3.4.: Data for equation 3.5; g2 = 3.87, g3 = 51, g1 varied. Top: Ratio of modified to
unmodified differential cross-section for different parameters g1. Middle: Ratio at
pT = (975 ± 25) GeV. For these plots, dark blue colors indicate low and yellow col-
ors high values. Bottom: PDF graphs. Here, darker values usually are reserved for
lower qualities.
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Fig. 3.5.: Data for equation 3.5; g1 = 0.3, g3 = 51, g2 varied. Top: Ratio of modified to unmodified
differential cross-section for different parameters g2. Middle: Ratio at pT = (975± 25)
GeV. Bottom: PDF graphs.
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Fig. 3.6.: Data for equation 3.5; g1 = 0.3, g2 = 3.87, g3 varied. Top: Ratio of modified to
unmodified differential cross-section for different parameters g3. Middle: Ratio at pT =
(975± 25) GeV. Bottom: PDF graphs.
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3.4. Sine waves

Because of good performances of sine wave PDFs in the initial batch of simulations, sine based
functions were also studied in more detail. Again, N = 5.000 was used for most simulations, and
N = 250.000 for better PDFs. Data was generated for 346 PDFs based on sine waves, 208 of which
are based on 3.6. Parameter ranges for this equation are shown in table 3.4.

fsin(x) = sin (s1x)
x(1− x) · e

−s2x
2

(3.6)

Tab. 3.4.: total parameters ranges, sine waves

variable lowest value highest value
s1 0.3 10
s2 16 90

Data for one particular PDF, resulting in q = (3 ± 4) · 10−3, can be seen in figure 3.7. Again,
further optimization was done. Parameter ranges for this are shown in table 3.5, with the resulting
data presented in figures 3.8 and 3.9; additional plots in sections B.1, B.2 and B.3.

Fig. 3.7.: Data for equation 3.6; s1 = 0.6, s2 = 45. Top: differential cross-sections for subprocesses
and modified proton; bottom: ratio of modified to unmodified differential cross-section.

Tab. 3.5.: parameters for optimization, sine waves
variable lower bound upper bound step size total number constant parameter
s1 0.5 10 0.5 20 s2 = 70
s2 20 90 5 15 s1 = 0.6
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Fig. 3.8.: Data for equation 3.6; s2 = 70, s1 varied. Top: Ratio of modified to unmodified
differential cross-section for different parameters s1. Middle: Ratio at pT = (975± 25)
GeV. Bottom: PDF graphs.
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Fig. 3.9.: Data for equation 3.6; s1 = 0.6, s2 varied. Top: Ratio of modified to unmodified
differential cross-section for different parameters s2. Middle: Ratio at pT = (975± 25)
GeV. Bottom: PDF graphs.
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3.5. Discussion

It remains now to compare and discuss the results presented above. At first, looking at just
the sine wave and Gaussian-approaches, both ansätze manage to arrive at similar quality values.
The ratio plot 3.10 shows the ratio of differential cross-section of sine to Gauss; within margin of
error, it is hard to identify differences, but a slightly better performance can be attributed to the
Gaussian-approach.

Fig. 3.10.: Cross-section ratio of Gaussian to sine wave. Parameters are the same as in figures
3.3 and 3.7.

Returning to previous research, comparisons can be made not just with PDFs created from scratch,
but also with functions from the literature. Because the PDF of Fernbach is valid for Higgs content
up to 6.08%, data for this function was generated; results are provided in figure 3.11. It was possible
to replicate the results by Fernbach et al. [13, page 12]. The quality assigned to this distribution
function is q = 0.49± 0.14; within margin of error, the differential cross-section decays slower than
that of the Standard Model proton. The contribution of the HH cross-section can be decreased
by lowering the total cross-section; changing c1 to zero and thus decreasing the influence of 1

x , it
is possible to increase the quality to (4 ± 4) · 10−3 (the impact of parameters such as 1

x will be
discussed later). Because the gluon PDF of Reiner is valid for c = 2.844 %, it does not perform well
assuming higher Higgs content of 5%. Therefore, comparisons with Reiner are not meaningful. To
compare all functions (Fernbachs original PDF and the PDFs from all three approaches presented
above), figure 3.12 is provided. It shows ratios of modified to unmodified differential cross-sections
for all four functions.

Having presented PDFs exhibiting good q-values, the question remains if it is possible to find some
general properties of the underlying function graphs that result in acceptable cross-sections. As
was already briefly mentioned when discussing the singularities-approach, low quality values can
be reached in two ways. One is to decrease the total cross-section for gH and HH, resulting
in a decreased contribution to the modified proton. The other is to generate PDFs resulting in
differential gH and HH cross-sections showing same to slightly faster decays than the Standard
Model proton. Regarding the first point, Fernbach [1] explicitly mentions ways in which functions
impact resulting total cross-sections. Relevant for the topic at hand are factors of 1

x : They lead
to increased cross-sections of HH. The impact of this becomes apparent when comparing the
qualities of Fernbachs original and modified PDF, as the latter’s, as mentioned, gets decreased
when lowering the contribution from 1

x .

Looking at the function graphs of both Gauss- and sine-PDFs in figures 3.4 and 3.8, parameters
g1 and s1 can both be used to tune the same characteristics; specifically, higher g1 and lower s1

lead to flatter, wider peaks positioned slightly closer to x = zero. In both cases, this decreases
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Fig. 3.11.: Data for equation 3.2, c0 = c1 = c7 = 1, c3 = 100. Top: differential cross-sections for
subprocesses and modified proton; bottom: ratio of modified to unmodified differential
cross-section.

Fig. 3.12.: Comparison of ratios of modified to unmodified cross-sections. Parameters are the
same as for figures 3.1, 3.3, 3.7 and 3.11.

the total cross-section by orders of around 10−3. The impact of this on Gaussian PDFs is slightly
lower than on sine-PDFs.

Also similar for both Gaussians and sine waves is the effect of the dampening factor provided
by e−αx2 , substituting parameters s2 and g3 for α. As can be seen in figures 3.6 and 3.9, higher
dampening leads to lower last values of ratios. This is partially due to the dampening again leading
to lower total cross-sections for gH and HH, resulting in modified cross-section very close to the
Standard Model. However, while the decrease of the cross-section is again of order of 10−3 for
sine waves, the decrease in the Gaussian case is only by factor 10. Since the parameters for e−αx2

were varied within the same ranges in both cases, this can be seen as an example for the high
degree of non-linearity of the problem. Fernbach [1] mentions that factors of (1− x) lead to lower
cross sections; seeing as such factors also provide dampening with higher values of x, they seem to
behave analogously to e−αx2 .
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The last parameter to discuss is g2 of the Gaussian approach. Classically, this parameter would
represent the standard deviation of a Gaussian, but because the normal formula of a Gaussian
was modified for equation 3.5, this is no longer clearly the case here. As for powers of 1

x in the
singularities approach, looking at figure 3.5 there does seem to be a sweet spot for function graphs.
However, the specifics of the equation actually make it so this sweet spot is reached when linearly
increasing g2 within the tested range. Looking at the function graphs, this linear graph does not
lead to uniform changes of shape, with "better" peaks being somewhere in the middle with regards
to height and width. Again, the reason for this behaviour seems to lie with the total cross-section,
as can be seen when looking at how this value changes when modifying the parameter (figure B.12
in the appendix). While total cross-sections are small for low values of g2, they get bigger for
parameters up until 4. For higher g2, total cross-sections decline again. In contrast to this, the
decay of HH differential cross-sections does not change significantly for different values of this
parameter.
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4. Conclusion

The goal of this work was to find suitable candidates for the Higgs parton distribution function by
analyzing data from simulated proton-proton collisions. As object of research, data was generated
using the event generation software HERWIG specifically for the PP → ttZ process and assuming
fixed Higgs content of 5%. To determine PDFs responsible for differential cross-sections with
similar or faster decay than the standard model proton for higher pT , three main approaches were
considered, corresponding to equations 4.1, 4.2 and 4.3 repeated below. PDFs were assigned a
numeric quality rating; this was defined as the sum of absolute differences of ratios of modified
to unmodified cross sections from 1. The best parameters for each ansatz alongside their quality
values can be seen in table 4.1. Again, lower quality values represent the more desirable case of
modified differential cross-sections behaving similar to those for the Standard Model proton.

fsing(x) = (1− x)a1

xa2
e−a3x

2
(4.1)

fGauss(x) =
√

2πg2
2

x(1− x) · e
− (x−g1)2

2g2
2
−g3x

2

(4.2)

fsin(x) = sin (s1x)
x(1− x) · e

−s2x
2

(4.3)

Tab. 4.1.: best parameters

ansatz parameter 1 parameter 2 parameter 3 quality
singularity a1 = 2.8 a2 = 3.8 a3 = 35 4.1± 1.7
Gaussian g1 = 3.87 g2 = 0.3 g3 = 51 (0.1± 1) · 10−3

sine wave s1 = 0.6 s2 = 45 - (3± 4) · 10−3

It was observed that fitting the standard model differential cross-section as well as possible by
that of a modified proton can be achieved in two ways. One is to generate a PDF that leads
to similar, if slightly faster decaying gH and HH differential cross-sections for high momenta.
The other is to find a function that decreases the total cross-section for Higgs collisions, leading
to a lower contribution to the differential cross-section for the modified proton. If one wants to
find specifically gH and HH cross-sections with slower decay, the second approach however is not
sufficient. The goal described by the first point can be fulfilled to some degree with distribution
functions containing singularities at zero, as presented in section 3.2.

Concerning the impact of function graphs on resulting HH cross-sections in particular, three main
findings can be stated. First, observations by Fernbach [1] could be confirmed that factors of 1

x

lead to an increase of total cross-sections. Second, e−αx2 provides dampening similar to powers
of (1− x), leading to a decrease of total cross-section. And third, in addition to increasing cross-
sections, higher powers of 1

x , when combined with dampening both by (1 − x) and e−αx
2 , lead
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to the desirable result of having a modified cross-section decaying slightly slower than that of the
Standard Model.

If one has the goal to specifically find fast decaying differential cross-sections for gH and HH

processes, the methodology used to determine well performing PDFs might not have been ideal.
Defining quality not in regard to the modified cross-section, but instead just for theHH-subprocess,
might have been preferable. As it turned out, functions reducing total cross-sections for gH and
HH are more common than ones where the differential cross-sections show the desired decay for
high momenta. This means the defined q-value highlighted a higher number of PDFs producing
low total cross-sections for gH and HH than intended. While some Higgs-PDFs resulting in faster
decaying differential cross-sections were also found with the singularities-approach, this might in
general be an area for further research.

What remains is to provide an outlook on current research within the field. The search for the
Higgs-PDF is currently very much in its infancy, and further research can be done both based on
findings made in this thesis and in general. Starting from the ansätze tested and described above,
parameters could be further optimized by varying not one parameter at a time, but different
combinations at once. Regarding the simulations themselves, a higher number of events could
lead to further decreased statistical uncertainties. One could also look at the impact of Higgs in
proton-proton-collisions with other final states and thus test the performance of PDFs presented
above in different contexts; another appropriate process would for example be PP → tt, which
also benefits from the fact that massive tops have high contributions to scattering processes. Yet
another possible area of refinement concerns the Higgs content c. This was taken as constant in
this work, but could be determined either by calculation for given cross-sections or by comparison
with experimental data.
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B. Additional Plots

B.1. Detailed last-value ratio plots

Fig. B.1.: Ratio at pT = (975± 25) GeV for equation 3.5; g1 = 0.3, g2 = 3.87, g3 varied.

Fig. B.2.: Ratio at pT = (975± 25) GeV for equation 3.6; s2 = 70, s1 varied.

Fig. B.3.: Ratio at pT = (975± 25) GeV for equation 3.6; s1 = 0.6, s2 varied.
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B.2. Ratio plots, parameter variation

Fig. B.4.: Ratio of modified to unmodified cross-section for eq. 3.4; a1 = 1, a3 = 25, a2 varied.

Fig. B.5.: Ratio of modified to unmodified cross-section for eq. 3.5; g2 = 3.87, g3 = 51, g1 varied.
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Fig. B.6.: Ratio of modified to unmodified cross-section for eq. 3.5; g1 = 0.3, g3 = 51, g2 varied.

Fig. B.7.: Ratio of modified to unmodified cross-section for eq. 3.5; g1 = 0.3, g2 = 3.87, g3 varied.
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Fig. B.8.: Ratio of modified to unmodified cross-section for eq. 3.6; s2 = 70, s1 varied.

Fig. B.9.: Ratio of modified to unmodified cross-section for eq. 3.6; s1 = 0.6, s2 varied.



B. Additional Plots 31

B.3. Total cross-sections, parameter variation

Fig. B.10.: Ratio of total HH to PP cross-sections for eq. 3.4; a1 = 1, a3 = 25, a2 varied.

Fig. B.11.: Ratio of total HH to PP cross-sections for eq. 3.5; g2 = 3.87, g3 = 51, g1 varied.

Fig. B.12.: Ratio of total HH to PP cross-sections for eq. 3.5; g1 = 0.3, g3 = 51, g2 varied.



B. Additional Plots 32

Fig. B.13.: Ratio of total HH to PP cross-sections for eq. 3.5; g1 = 0.3, g2 = 3.87, g3 varied.

Fig. B.14.: Ratio of total HH to PP cross-sections for eq. 3.6; s2 = 70, s1 varied.

Fig. B.15.: Ratio of total HH to PP cross-sections for eq. 3.6; s1 = 0.6, s2 varied.
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B.4. Feynman diagrams page 1/2
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Fig. B.20.: Feynman diagrams, bb→ ttZ
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C. Code

C.1. pdf.py

The program pdf.py generates a list of pdf candidates based on a given formula. In this thesis,
both the formula and variables were varied, as explained above.

1 # -*- coding: utf-8 -*-

2 """

3 Created on Mon May 11 13:38:25 2020

4

5 @author: simon

6 """

7 import numpy as np
8 import itertools
9

10 # number of vars n, lower bound l, step d, upper bound u for two types of

variables↪→

11 n1 = 15
12 l1 = 0.10
13 d1 = 0.02
14 u1 = n1 * d1 + l1
15 n2 = 16
16 l2 = 0.01
17 d2 = 0.01
18 u2 = n2 * d2 + l2
19

20 def f(x0, sigma):
21 return (' return

1\/sqrt(2*3.1415*pow(%.2f,2))*exp(-pow(x-%.2f,2)\/(2*pow(%.2f,2)));\n'%(sigma,
x0, sigma))

↪→

↪→

22

23 # now generate table of all possible combinations:

24 c = list(itertools.product(np.arange(l1, u1, d1), np.arange(l2, u2, d2)))
25

26 # write output to file

27 file = open("variables.txt", "w")
28 for i in range(len(c)-1):
29 file.write(f(np.around(c[i][0], decimals=3), np.around(c[i][1], decimals=3)))
30 file.close()
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C.2. combine.py

combine combines simulation subfolders provided in an input folder into a new combined-output
folder and generates a new variables list.

1 # -*- coding: utf-8 -*-

2 """

3 Created on Sun Jun 14 21:57:38 2020

4

5 @author: simon

6 """

7 import os
8 import shutil
9

10 # create output, move to input folder and get list of all folders to combine

11 if os.path.exists('combined_output'):
12 print('output folder already exists. warning: this will be overwritten')
13 shutil.rmtree('combined_output')
14 os.mkdir('combined_output')
15

16 os.chdir('input')
17 files = os.listdir()
18

19 totalsims = 0
20 variables = []
21

22 for i in range(len(files)):
23 # get current file and move to that directory

24 file = files[i]
25 os.chdir(file)
26

27 # read in number of simulations, subtract one for variables.txt

28 sims = len(os.listdir()) - 1
29

30 # read in variables list and save in variables

31 vartxt = open('variables.txt', 'r')
32 for pdf in vartxt:
33 variables.append(pdf)
34 vartxt.close()
35

36 os.chdir('../..')
37

38 # now move all folders to combined directory

39 for j in range(1, sims + 1):
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40 shutil.copytree('input/%s/%s'%(file, str(j)), 'combined_output/%s'%(str(j
+ totalsims)))↪→

41

42 # add to total and return to input folder

43 totalsims += sims
44 os.chdir('input')
45

46 # generate new variables.txt

47 os.chdir('../combined_output')
48 file = open("variables.txt", "w")
49 for pdf in variables:
50 file.write(pdf)
51 file.close()
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C.3. runsim.sh

runsim.sh reads in a variables-file containing pdf candidates, runs Herwig simulation for the GH
and HH subprocesses and collects all data in an output-folder. The number of simulations nsim
on line 2 can be changed.

1 #!/bin/bash

2 nsim=5000 # number of events for herwig sims

3

4 n=$(wc -l < variables.txt) # length of input file containing possible

pdfs↪→

5

6 rm -r output # this deletes old output folder and overwrites it

7 mkdir output
8 cp variables.txt output
9

10 source ~/herwig2/bin/activate # activate herwig variables

11 echo "activated herwig system variables."
12

13 # we will now run a simulation for every line of the file:

14 for ((i = 1; i < $n+1; i++)); do
15 echo "starting on i = $i out of $n."
16 currentpdf=$(sed "${i}q;d" variables.txt) # read in pdf of current

line↪→

17

18

19 if [[ -d Herwig-cache ]]; then
20 echo "old cache detected. this will be deleted."
21 rm -r Herwig-cache
22 fi

23

24 # change the pdf-line, which is line 42 of HiggsPDF

25 sed -i "42s/.*/$currentpdf/" HiggsPDF.cc
26

27 # build plugin and intrinsichiggs

28 make IntrinsicHiggs.so
29 rivet-buildplugin TTBARZ.cc
30 export RIVET_ANALYSIS_PATH=/home/simon/herwig2
31

32 # now to start the simulations! first, gh:

33 Herwig read GH.in
34 Herwig run GH.run -N $nsim
35

36 if [[ -d Herwig-cache ]]; then
37 echo "old cache detected. this will be deleted."
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38 rm -r Herwig-cache
39 fi
40

41 # now, hh:

42 Herwig read HH.in
43 Herwig run HH.run -N $nsim
44

45 # create output folder and move files

46 mkdir output/$i
47 # check if one of the outfiles exists; otherwise, create empty files for

data analysis; if there are problems, HH is more likely to have

them.

↪→

↪→

48 if [[ -f HH.out ]]; then
49 mv -t output/$i GH.out GH.yoda HH.out HH.yoda
50 else
51 touch output/$i/GH.out
52 echo "no cross section for this pdf" >> output/$i/GH.out
53 touch output/$i/GH.yoda
54 echo "no cross section for this pdf" >> output/$i/GH.yoda
55 touch output/$i/HH.out
56 echo "no cross section for this pdf" >> output/$i/HH.out
57 touch output/$i/HH.yoda
58 echo "no cross section for this pdf" >> output/$i/HH.yoda
59 fi
60

61 echo "finishing up i = $i out of $n."
62 done
63

64 echo "all simulations finished."



In[1]:= (* --------------------------------------------------------------- *)

(* PARAMETERS AND VARIABLES *)

(* --------------------------------------------------------------- *)

(* Mathematica parameters *)

(* allow better pdf export for easy Latex integration: *)

SetOptions[SelectedNotebook[],

PrintingStyleEnvironment → "Printout",

ShowSyntaxStyles → True]

fontsize = 16; (* plot font *)

(* --------------------------------------------------------------- *)

(* File parameters *)

pathpp = "C:/Users/simon/Uni/Physik/Meine Bak/Daten/pp4m/"; (* paths: PP *)

path = "C:/Users/simon/Uni/Physik/Meine Bak/Daten/combined_output/"; (* GH, HH *)

graphfolder = "C:/Users/simon/Uni/Physik/Meine Bak/Daten/graphics/";

(* export folder for plots *)

files = {"PP", "GH", "HH"}; (* files to read in *)

graphs = Append[files, "modified proton"]; (* files to plot *)

lenfiles = Length[files];

startphrase = "BEGIN YODA_HISTO1D_V2 /TTBARZ/pT_T";

(* first line in yoda-file to consider *)

nstart = 10; (* number of lines to ignore after first line *)

endphrase = "BEGIN YODA_HISTO1D_V2 /TTBARZ/pT_TBAR";

(* last line in yoda-file to consider, e.g. start of next table *)

nend = 2; (* number of lines to ignore before last line *)

linephrase = "Total (from attempted events): including vetoed events";

(* line containing total cross-section *)

poscs = 8; (* position of cross-section in that line *)

(* --------------------------------------------------------------- *)

(* Simulation parameters *)

dx = 25; (* error on x-Axis, corresponding to half of bin length *)

higgsc = 0.05; (* higgs content in proton *)

(* --------------------------------------------------------------- *)

(* Plotting parameters *)

(* All PDFs and corresponding data are assigned an index. Here,

indices can be specified for which to create plots. *)

(* indices for 2D-plots of cross section and ratio *)

(* current contents: 1...gauss, 2...sin, 3-5...sing, 6-8...Fernbach *)

decl2D = {2033, 2116, 322, 192, 301, 2207, 2208, 2209};

(* list of indices for which plots will be generated *)

(* indices and further information for 3D-plots of ratio,

last value ratio and PDF parameter comparison plots *)

(* contents: 1...index start, 2...index end,

3...step size for nested lists of data, 4...axis start, 5...axis end,

Printed by Wolfram Mathematica Student Edition
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6... axis label, 7... plot label, 8...log scale for cross-section plot *)

decl = {{2006, 2036, 1, 0.1, 10, "g1", "gauss1", 1},

{2134, 2163, 1, 0.5, 15, "g2", "gauss2", 0},

{2184, 2198, 1, 20, 90, "g3", "gauss3", 1},

{2164, 2183, 1, 0.5, 10, "s1", "sin1", 1},

{2102, 2116, 1, 20, 90, "s2", "sin2", 1},

{293, 322, 1, 1, 15.5, "a2", "sing", 1}};

(* create PDF-plots based on indices in decl not for full range,

but e.g. limited x-Values. These will be used for the PlotRange argument *)

ranges = {{1, Full, True},

{1, {{0, 0.3}, Full}, True},

{2, Full, True},

{2, {{0, 0.3}, Full}, True},

{2, {{0, 0.1}, {6.5, 7.5}}, True},

{3, Full, True},

{4, Full, False},

{5, Full, True},

{6, Full, True}};

(* 1...Index for decl, 2... PlotRange, 3... reverse colorbar *)

(* additional ratio plots *)

ratioindices = {{decl2D[[2]], decl2D[[1]], {"gauss/sin"}},

{1044, 1045, {"gauss/sin2"}}};

(* comparison ratio plot *)

comparisons = {{2033, "Gauss"},

{2116, "sin"},

{2208, "Fernbach"},

{192, "singularities"}

};

(* --------------------------------------------------------------- *)

(* FUNCTIONS *)

(* --------------------------------------------------------------- *)

(* differential cross-section norm *)

SimNorm[x_] := 1  x * dx * 2;

(* norm for one simulation not total, x events and bin size dx *)

(* convert an exponential string of the form "8.8e-03" to expression *)

ExpConvert[a_] := ToExpression[StringSplit[a, "e"] [[1]]] *

10 ^ ToExpression[StringSplit[a, "e"] [[2]]];

(* convert c PDFs to Mathematica expressions *)

ExpVars[i_] := Quiet[

ToExpression[StringReplace[vars[[i]], {"abs" → "Abs", "sin" → "Sin", "cos" → "Cos",

"exp" → "Exp", "pow" → "Power", "sqrt" → "Sqrt"}], TraditionalForm]];

(* file input; this reads in out- and yoda file for one data set,

and formats the content *)

ReadFile[readpath_] := Module

{streamyoda, fulllist, streamout, lineout, csstring, pre, brack,

exp, unc, xvals, plotdata1, cs, nval, data, end, rawdata, len1, len2},

(* --------------------------------------------------------------- *)

2     quality_final.nb
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(* read in .yoda-file as fulllist *)

streamyoda = OpenRead[readpath <> ".yoda"];

Find[streamyoda, startphrase]; (* relevant starting point *)

fulllist = ReadList[streamyoda, String];

(* read in data as list starting from this point *)

Close[streamyoda];

(* --------------------------------------------------------------- *)

(* read in .out-file as lineout *)

streamout = OpenRead[readpath <> ".out"]; (* open data stream, out *)

lineout = Find[streamout, linephrase]; (* relevant line *)

Close[streamout];

(* --------------------------------------------------------------- *)

(* extract total cross-section from lineout *)

csstring = StringSplit[lineout][[poscs]]; (* string for total cross-

section. This looks like "8.8(1)e-03" and needs to be converted *)

pre = ToExpression[StringSplit[csstring, "("][[1]]];

(* get values for uncertainty *)

brack = ToExpression[StringSplit[StringSplit[csstring, "("][[2]], ")"][[1]]];

exp = ToExpression[StringSplit[csstring, "e"][[2]]];

unc = brack * 10^-StringLength[StringSplit[csstring, "("][[1]]] - 2;

cs = Around[pre, unc] * 10^exp; (* convert to expression *)

(* --------------------------------------------------------------- *)

(* extract differential cross-section data from fulllist *)

end = FromDigits[FromDigits[Position[fulllist, endphrase]]];

(* find end of relevant data *)

rawdata = Table[StringSplit[fulllist[[i]], " "], {i, nstart, end - nend}];

(* truncate list and seperate strings into sublists *)

len1 = Length[rawdata] - 4; (* number of rows *)

len2 = Length[rawdata[[1]]]; (*number of columns *)

data = Table[ExpConvert[rawdata[[i]][[j]]], {i, 5, len1 + 4}, {j, len2}] ;

(* convert strings to numbers*)

nval = ExpConvert[rawdata[[1]][[len2]]] - ExpConvert[rawdata[[3]][[len2]]];

(* determine number of events for norm, excluding overflow *)

(* extract differential p_T cross-section and bin values from fulllist *)

plotdata1 = Table[Around[ SimNorm[nval] * data[[i]][[7]],

SimNorm[nval] * Sqrt[data[[i]][[7]]]], {i, len1}];

(* generate list of function values with errors *)

xvals = Table[Around[data[[i]][[1]] + dx, dx], {i, len1}];

(* generate list of x-values with errors *)

{xvals, plotdata1, cs}



(* ratios of cross sections for an index to the standard model cs of that index *)

Ratio[k_] := Table

xvals[[i]], plotdata2[[k]][[j]][[i]][[2]]  plotdata2[[k]][[1]][[i]][[2]],

quality_final.nb     3
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{i, len1}, {j, lenfiles + 1};

(* define quality as sum of absolute differences of ratio from 1.

We generally want low quality. IntegerQ is here to rule out invalid

simulation results this does not occur for the final data *)

Quality[i_] := IfIntegerQ[ratio[i]], 0,

Sum1 - ratio[[i]][[j]][[4]][[2]]^2 , {j, len1};

(* --------------------------------------------------------------- *)

(* plotting  3D - plots *)

(* these functions primarily make formatting for 3D-plots based on decl easier *)

CurrentSteps[i_] := decl[[i]][[2]] - decl[[i]][[1]]  decl[[i]][[3]] + 1;

(* number of steps for given indices and step size =

total number of PDFs when varying one parameter within bounds *)

Currentratio[i_] := Table[Transpose[ratio[[j]]][[4]],

{j, decl[[i]][[1]], decl[[i]][[2]], decl[[i]][[3]]}];

(* ratio for given indices *)

(* tick spacing and custom ticks;

spacing can be adjusted below by providing a value to this parameter *)

Xticks[i_] := TableCurrentSteps[i]  spacing * j, decl[[i]][[4]] +

decl[[i]][[5]] - decl[[i]][[4]] * j  spacing, {j, 0, spacing};

(* variation parameter axis. parameters are determined in decl *)

Yticks[i_] := Tablelen1  spacing * j, len1 * dx * 2 * j  spacing, {j, 1, spacing + 1};

(* momentum axis spacing, adjusted for bin size *)

(* --------------------------------------------------------------- *)

(* --------------------------------------------------------------- *)

(* MAIN PROGRAM *)

(* --------------------------------------------------------------- *)

(* --------------------------------------------------------------- *)

(* 1 - FILE INPUT AND FORMATTING *)

(* --------------------------------------------------------------- *)

(* read in variables-file *)

streamvars = OpenRead[path <> "variables.txt"];

vars = StringSplit[ReadList[streamvars, String], {" return ", ";"}];

Close[streamvars];

lenvars = Length[vars]; (* number of total PDFs *)

(* --------------------------------------------------------------- *)

(* read in PP-data *)

pplist = ReadFile[pathpp <> files[[1]]];

cspp = pplist[[3]]; (* total cross-section, PP *)

xvals = pplist[[1]]; (* x values, corresponding to transverse momenta *)

plotdatapp = pplist[[2]]; (* ready-to-plot histogram data for PP *)

len1 = Length[plotdatapp]; (* number of bins *)

(* --------------------------------------------------------------- *)

(* read in gH and HH-data *)

processlist =
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Table[ReadFile[path <> ToString[varindex] <> "/" <> files[[fileindex]]],

{fileindex, 2, lenfiles}, {varindex, lenvars}];

ghlist = Transpose[processlist[[1]]]; (* list containing just gH-data *)

hhlist = Transpose[processlist[[2]]]; (* same for HH *)

(* extract cross sections from the lists. format: [[i]][[j]] =

cross-section for subprocess j and index i;

j = 1...gH, j = 2...HH, j = 3...modified *)

crosssection = Tableghlist[[3]][[i]], hhlist[[3]][[i]],

1 - higgsc2 * cspp + ghlist[[3]][[i]] * 1 - higgsc * higgsc +

hhlist[[3]][[i]] * higgsc2 , {i, lenvars};

(* ready-to-plot table of all differential cross-

sections. Generating this immediately is convenient and not too slow. *)

(* contents: [[i]][[j]] = value j for index i. j = 1...unscaled standard model,

j = 2...scaled gH by Higgs content, j = 3...scaled HH, j = 4...modified proton *)

plotdata2 = TableTable[{xvals[[i]], plotdatapp[[i]]}, {i, len1}],

Tablexvals[[i]], crosssection[[j]][[1]]  crosssection[[j]][[3]] *

1 - higgsc * higgsc * ghlist[[2]][[j]][[i]], {i, len1},

Tablexvals[[i]], crosssection[[j]][[2]]  crosssection[[j]][[3]] *

higgsc2 * hhlist[[2]][[j]][[i]], {i, len1},

Tablexvals[[i]], 1 - higgsc2 * cspp * plotdatapp[[i]] +

crosssection[[j]][[1]] * 1 - higgsc * higgsc * ghlist[[2]][[j]][[i]] +

crosssection[[j]][[2]] * higgsc2 * hhlist[[2]][[j]][[i]] 

crosssection[[j]][[3]], {i, len1}, {j, lenvars};

(* list of ratios of subprocess-

cross section to unmodified standard model for each index. Also convenient. *)

ratio = Table[Ratio[i], {i, lenvars}];

(* --------------------------------------------------------------- *)

(* 2 - MATHEMATICA CONSOLE OUTPUT *)

(* --------------------------------------------------------------- *)

(*

(* this section is used to manually check numbers and plots

within the Mathematica program -> not needed for final output. *)

(* qsorted: determine best quality *)

(* table contents: 1...index, 2...pdf, 3...plotdata, 4...ratio, 5...quality *)

qprocessed = DeleteCases[

Table[{i, vars[[i]], plotdata2[[i]], ratio[[i]], Quality[i]} , {i, lenvars}],

{a_, b_, c_, d_, e_} /; d ⩵ 0];

qsorted = SortBy[qprocessed,N@*Last];

bestvars = TableExpVars[candidates[[i+1]][[1]]] 

NIntegrate[ExpVars[candidates[[i+1]][[1]]], {x, 0, 1}], {i, numpdfs};

(* normalizes PDFs for plotting. convenient for checking PDFs *)
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(* --------------------------------------------------------------- *)

(* collect best pdfs; 1...index, 2...pdf, 3...quality, 4...last value *)

numpdfs = Min[lenvars, 10];

candidates = Prepend[Table[{qsorted[[i]][[1]], ExpVars[qsorted[[i]][[1]]][[1]],

qsorted[[i]][[5]],Last[Last[Last[qsorted[[i]][[4]]]]]}, {i, numpdfs}],

{"index", "pdf", "quality", "last value"}];

plotcand = Grid[candidates,

Alignment→Left,

Frame→All,

Background→{{None, None}, {LightGray, None}},

BaseStyle→FontSize→12];

(* --------------------------------------------------------------- *)

(* convert pdfs to Mathematica expressions and plots of pdfs *)

plotgraphs = Plot[bestvars, {x, 0, 1},

PlotLegends→Table[candidates[[i+1]][[1]], {i, numpdfs}],

(* ImageSize→Large, *)

AxesLabel→{"x", "f(x)*x, normalized"},

ImageSize→Medium,

(*PlotLabel→"normalized pdfs with highest quality", *)

PlotTheme→"DashedLines", PlotRange→Full,

LabelStyle→ Directive[FontSize→ 9],

TicksStyle→ Directive[FontSize→8, Plain]];

Column[{plotcand, plotgraphs}]*)

(* --------------------------------------------------------------- *)

(* 3 - PLOTTING *)

(* --------------------------------------------------------------- *)

(* 2D-plots: cross-section and ratio *)

Fori = 1, i ≤ Length[decl2D], i++,

Exportgraphfolder <> ToString[i] <> "_column.jpg",

Column

(* cross section *)

ListLogPlot[plotdata2[[decl2D[[i]]]],

ImageSize → Large,

AxesLabel → {"pT(t) / GeV", "dσ/(σ dpT)"},

PlotLegends → graphs,

PlotRange → {10^-10, 0.01},

LabelStyle → Directive[FontSize → fontsize],

TicksStyle → Directive[FontSize → fontsize - 2]],

(* ratio *)

ListPlotTranspose[ratio[[decl2D[[i]]]]][[4]],

ImageSize → Large,

AxesLabel → {"pT(t) / GeV", "ratio"},

LabelStyle → Directive[FontSize → fontsize],

TicksStyle → Directive[FontSize → fontsize - 2],

GridLines → {None, {{1, Gray}}},
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AspectRatio → 1  4,

PlotRange → Full,

PlotStyle → Gray,

GridLinesStyle → Directive[Dotted, Thick],

Alignment → Left



(* 3D-plots *)

pointlist[i_] :=

Table[Currentratio[i][[j]][[k]][[2]], {j, CurrentSteps[i]}, {k, len1}];

(* ratio for given pair of p_T and variation parameter, for 3D-plot *)

Fori = 1, i ≤ Length[decl], i++,

spacing = 5; (* limit number of tick labels for 3D-plot *)

(* 3D-ratio plot *)

For[j = 1, j ≤ 2, j++, (* generate multiple plots from different viewpoints *)

Export[graphfolder <> ToString[decl[[i]][[7]]] <> "_" <> ToString[j] <> "_3D.jpg",

ListPlot3D[pointlist[i],

Ticks → {Yticks[i], Xticks[i], Automatic},

ImageSize → Large,

ColorFunction → "BlueGreenYellow",

AxesLabel → {"pT(t) / GeV", decl[[i]][[6]], "ratio"},

IntervalMarkersStyle → Directive[Red],

LabelStyle → Directive[FontSize → fontsize, Bold],

TicksStyle → Directive[FontSize → fontsize - 2, Plain],

ViewPoint → If[j ⩵ 1, {1.3, -2.4, 2.}, {-2.4, 1.3, 2.}]]]];

spacing = CurrentSteps[i] - 1; (* remove tick limit *)

(* last value ratio plots. For every plot,

a small plot with limited y-range will also be generated *)

For small = 0, small ≤ 1, small++,

Exportgraphfolder <> ToString[decl[[i]][[7]]] <> ToString[small] <> "_lv.jpg",

ListPlotTable[{Xticks[i][[j]][[2]],

Currentratio[i][[j]][[len1]][[2]]}, {j, CurrentSteps[i]}],

ImageSize → Large,

AspectRatio → 1  4,

IntervalMarkersStyle → Red,

PlotRange → If[small ⩵ 0, Full, {Full, {0.9, 1.2}}],

ColorFunction → "BlueGreenYellow",

PlotLegends → {"ratio"},

AxesLabel → {decl[[i]][[6]], "ratio at 975 GeV"},

LabelStyle → Directive[FontSize → fontsize],

TicksStyle → Directive[FontSize → fontsize - 2],

GridLines → {None, {{1, Gray}}},

GridLinesStyle → Directive[Dotted, Thick]



(* HH total cross-section for different parameters. Log scale on y,

if specified in decl *) ×

Exportgraphfolder <> ToString[decl[[i]][[7]]] <> "_crosssection.jpg",

If[decl[[i]][[8]] ⩵ 1, ListLogPlot, ListPlot]TableXticks[i][[k]][[2]],
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TransposeTablecrosssection[[j]]  cspp, {j, decl[[i]][[1]],

decl[[i]][[2]], decl[[i]][[3]]}[[2]][[k]], {k, CurrentSteps[i]},

ImageSize → Large,

AspectRatio → 1  4,

AxesLabel → decl[[i]][[6]], "
σtot, HH

σtot, PP
",

LabelStyle → Directive[FontSize → fontsize],

TicksStyle → Directive[FontSize → fontsize - 2],

PlotStyle → Gray



(* PDF comparison plots. Plot all functions from

parameter comparison. Dark colors are chosen to indicate low

=good quality. PlotRange can be modified with "ranges" *)

Fork = 1, k ≤ Length[ranges], k++,

i = ranges[[k]][[1]]; (* index from range-list *)

reversion = ranges[[k]][[3]];

(* determine whether color bar and function colors should be reversed *)

itable = Table[j, {j, decl[[i]][[1]], decl[[i]][[2]], decl[[i]][[3]]}];

plist = Table[ExpVars[j], {j, itable}]; (* Expressions to plot *)

colors = TableColorData["SolarColors"][h], h, 0, 1, 1  CurrentSteps[i] - 1;

(* discretize colors to assign to functions *)

colors = If[reversion == True, Reverse[colors], colors];

Exportgraphfolder <> ToString[decl[[i]][[7]]] <> "_k" <> ToString[k] <> "_pdfs.jpg",

PlotEvaluate[plist], {x, 0, 1 - 1*^-6},

(* stop slightly short of one, to remove singularities from 1

1-x
*)

ImageSize → Large,

AxesLabel → {"x", "P(x)*x"},

PlotStyle → colors,

PlotStyle → Thick,

PlotRange → ranges[[k]][[2]],

LabelStyle → Directive[FontSize → fontsize],

TicksStyle → Directive[FontSize → fontsize - 2, Plain],

PlotLegends → BarLegend[{If[reversion ⩵ True, {"SolarColors", "Reverse"},

"SolarColors"], {decl[[i]][[4]], decl[[i]][[5]]}},

LegendLabel → decl[[i]][[6]]];



(* additional ratio plots. Shows ratio of two modified cross

sections for data with indices specified in "ratioindices" *)

Fork = 1, k ≤ Length[ratioindices], k++,

Exportgraphfolder <> ToString[k] <> "_compareratio.jpg",

ListPlot

Tablexvals[[i]], plotdata2[[ratioindices[[k]][[1]]]][[4]][[i]][[2]] 

plotdata2[[ratioindices[[k]][[2]]]][[4]][[i]][[2]], {i, len1},

ImageSize → Large,

AxesLabel → {"pT(t) / GeV", "ratio"},

AspectRatio → 1  4,
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PlotRange → Full,

PlotStyle → Gray,

LabelStyle → Directive[FontSize → fontsize],

TicksStyle → Directive[FontSize → fontsize - 2],

GridLines → {None, {{1, Gray}}},

GridLinesStyle → Directive[Dotted, Thick];



(* comparison ratio plot. Ratios for all

indices in "comparison" combined into one plot *)

Exportgraphfolder <> "ratiocompplot.jpg",

ListPlotTable[

Transpose[ratio[[comparisons[[i]][[1]]]]][[4]], {i, 1, Length[comparisons]}],

ImageSize → Large,

AxesLabel → {"pT(t) / GeV", "ratio"},

AspectRatio → 1  4,

PlotRange → Full,

PlotLegends → Transpose[comparisons][[2]],

LabelStyle → Directive[FontSize → fontsize],

TicksStyle → Directive[FontSize → fontsize - 2],

GridLines → {None, {{1, Gray}}},

GridLinesStyle → Directive[Dotted, Thick]

;
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