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Chapter 1

Introduction

1.1 The lecture

Programming is essentially the task of making a computer do something. I. e. its purpose

is to transform some input to some output, using a computer to do the mapping. In

physics, the usual reason to do so is that too many mathematical operations are required

as that a human could perform them in any reasonable amount of time. Outside physics,

many other topics arise, but in the end the main motivation is always that some task is

more efficiently done by a computer than a human being and/or some task is so irrelevant

that a computer can do it as well as a human, such that the human has time for other

things, which are less trivial. Still, there is the same basic tenant: Transform an input to

and output.

It is this task, which lies at the heart of writing a program. Therefore, before any pro-

gram is created, the first step should always be to really consider the following questions:

• What is the input?

• In which form is the input available?

• What is the desired output?

• In which form should the output become available?

• What is the map?

• Are there any conditions which may alter the map?

• How can it be ensured that the output is correct?

1



2 1.2. Building an example

All of these question are far less trivial than they may appear. The aim of this lecture is

not to provide answers to these questions. The aim is, given the answers to these questions,

how can the computer be told what it has to do.

Thus, before writing any program, one should sit down and answer these questions.

The result of this are flow diagrams, as well as so-called use cases. By now, structured tools

are available to do this, and partially these tools come with automatized code generators,

which create at least part of the required code. However, this is usually not the case for

physics. Even if it is, it requires first to understand how these generators work, i. e. how

they program, to understand their output. The necessary understanding is only obtained

by experience, and thus programming oneself.

Programming is not a skill which can be learned by reading or calculating. It is a skill

which, like any craftsmanship, requires first of all experience. Thus programming oneself

is the only way to really acquire the necessary abilities. Therefore, doing (exercises in)

programming is the only way to really become a programmer.

1.2 Building an example

To develop the skills, it is necessary to do something. So, let’s start.

It is not yet possible to really program, but it is possible to do so-called pseudo-code.

Pseudo-code is a, more or less formalized, way to describe a program in natural language

or with approximative programming statements. This pseudo-code will be turned into real

code in due course.

The prototypical first program is the so-called ’Hello world’ program. It does nothing

else than putting the statement ’Hello world’ on the screen. In terms of the previous

section, this means there is no input, just output. A pseudo-code version of this program

looks like

Listing 1.1: ”Pseudo-code hello world”

1 Sta r t

2 Pr int ’ He l lo world ’

3 End

It shows that the code starts somewhere, then does the printing, and finally ends. That is

all. But it already lets the computer do something. However, in practice more formalized

languages will be used, of which there are many. But they belong to certain types, and

these will be introduced now.
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1.3 C, C++, and Mathematica

Just like ordinary languages, programming - speaking to the computer - can be done in

many ways. Every way corresponds to a given programming language. These differ widely

in details, but belong to a few basic classes. These classes differ in the level of abstraction

from the actual computer, the hardware.

There are those which are very close to the hardware, the so-called low-level languages.

They are often specific to a given type or group of hardware. It is rare that one is

encountering this type of language nowadays in physics, and therefore little will be said

on them in this lecture. These languages are very often hard to read for humans, as they

are much closer to the machine.

The next ones are procedural languages. These are essentially languages based on

single, human-readable, statements. A corresponding example in mathematics is x = 1+2.

Such statements can be combined, like in mathematics more complicated functions can be

composed from simple functions, but this is essentially the highest level of organization.

These languages are widely used in physics, as they form a compromise between abstraction

and efficiency. They will therefore be discussed at length in this lecture, using the example

of C. Other important examples are Pascal, Fortran, or Cobol.

One level higher are the so-called object-oriented languages. They are no longer based

on statements, but rather on entities, which are collections of data and operations on

the data. They are the cornerstone of modern programming, especially when it comes to

problems which are not essentially doing mathematical exercises. They will be treated in

this lecture by the example of C++, a superset of C. Other examples are Java or (to some

extent) Python.

Functional languages are even higher abstractions. Rather than using statements and

entities, they are working with implicit definitions. In a sense, they are again more math-

ematical than object-oriented languages, as they are based on maps from input to output.

But this moves them again more closer to the original idea of programming. The are also

providing more formal and abstract manipulations. Mathematica, a language particularly

suited for problems in mathematics, will be the example of choice in this lecture, even

though it is a hybrid of a functional and a procedural language. Another example is

Prolog.

It should be noted that programming languages, just as natural languages, evolve. And

just like there are times at which a natural language becomes (re)codified, providing rules

of how to write and spell it, there are times where the same happens for a programming

language. These are so-called standards, often defined by international organizations.

In professional programming most often the current and next-to-current standard are
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prevalent. In physics, where in many areas one encounters projects running over decades,

this is not necessarily so, and often decade-old versions need to be used. Therefore, in the

context of this lecture, it will be attempted to only use elements which are available for

some time, to ensure availability in practice. Therefore, in some case more recent standards

may also provide more elegant or compact ways of dealing with the same problems.

Still, no matter the language, all programs have a similar basic structure.

1.4 Basic structure

The simplest possible concept for a program is that every program consists out of two

different parts. One is the code, i. e. a set of instructions. The other is the data, i.

e. information. This data separates into two different subsets. One is external data, e.

g. input from a user. The other is the internal data, i. e. things the program ’knows’,

usually in the form of memory of the computer which processes the code. While a strict

separation in both concepts, code and data, will be maintained throughout this lecture, the

line between both can sometimes be blurry or even non-existent when starting advanced

programming. Still, strict separation is pervasive in physics applications.

Every such program has a beginning and an end in its written form, the so-called code,

even if the actual program may run for all eternity. Thus, there is always a single first

statement in every program. However, there may be many more than one last statement,

or even none. At the beginning, data is only available in the form of predefined constants

and free memory, which can be used to store data during the runtime of the program.

One important concept is the recognition that data needs to be stored somewhere. It

is therefore necessary that the program has access to this storage. For this purpose, the

program needs an address for a chunk of data, which it can then retrieve from the storage.

This address, often called a pointer, is itself data. However, addresses are stored at fixed

places, on which the program is informed by the underlying system software, the operation

system, when started.

The example in listing 1.1 has already the same structure, but does not use data.

Therefore it is useful to have also an example in pseudo-code which is a bit more involved.

Following the recipe in section 1.1, define first what it should do. Here, lets assume it

takes a number from the user, which it multiples by a fixed factor and then prints the

result. Not a big deal, but it involves now all the basic features: Internal and external

data, operations on data, and user interaction. A pseudo-code version could look like

Listing 1.2: ”Pseudo-code for user interaction”

1 Sta r t
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2 Put f a c t o r in memory

3 Ask user f o r number and s t o r e number in memory

4 Ca l cu l a t e the r e s u l t and s t o r e i t in the memory

5 Pr int the r e s u l t

6 End

One important thing is that all the data the program uses needs to be somewhere for the

computer. The action of ’remembering’ is nothing happening automatically, it has to be

done explicitly by the programmer in the code, and for each thing separately. In 1.1 this

was not yet mentioned explicitly, but in principle line 2 of 1.2 would also be needed there.

But in this case modern languages are quite helpful, as they help to avoid many of the

details in this case, but not in the present one.

This shows that there are a lot of things to be kept in mind when writing a program.

Therefore programming has a lot to do with how to manage things, and especially every

program is a project.



Chapter 2

Computer structure

To really understand how to program requires at least basic knowledge of how a computer

works. To write efficient code, which is often, but not always, necessary in physics, requires

a rather deep understanding of computer architecture. The latter is not a goal of this

lecture, given the limited amount of time, but is rather a lecture on its own.

2.1 CPUs and assembler

The basic principle of a computer today is still the concept of a von Neumann-machine.

It is essentially the idea of sequentially performing operations. Such machines consist out

of two components. One is a machine which can execute a command. One is a storage

device, which can hold either of two information. One is data, the other is commands. The

process is now to start at the beginning of the storage, and read the first information. If it

is a command, it is executed. If it is data, the data is memorized for the next command.

It is also possible to write to the storage, and to have a command by which to move some

steps forward or backward in the storage.

Modern computers are of the same type, though in detail much more sophisticated.

There is still a separation between commands, usually the code, and data1.

Data is nowadays stored in a hierarchy of storage systems, which are primarily charac-

terized by two features: Capacity and speed. As a general rule, the higher the capacity, the

lower the speed. The slowest are harddisks, including SSDs, optical media, and sometimes

tapes. The next level is memory, known as RAM, or random-access memory. Random

means here that any part of the memory can be directly accessed. In the sense of the von

1There are some languages in which the code is in addition also considered as data, and can be modified

by the program itself. Such self-modifying code is not without security issues, and whether it is a good

idea or not is still not settled. This situation will not occur in this lecture.

6
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Neumann machine this implies that one can jump at every point in the storage directly.

The next is then cache, which grows from the slowest level 3 to the fastest level 1 cache.

Finally, there are the registers. These registers contain the actual data on which a pro-

gram operates. Thus, data has to be taken from some higher level of storage and brought

into the registers, and obtained data has to be moved back. This is done by intricate

specialized code to do this very efficiently. User-provided data, like what is typed on a

keyboard, is usually directly transferred to the RAM, and used from there.

All of these issues of where data is stored is mostly transparent to the programmer.

The only notable difference will be access to memory and to objects like a harddisk. They

differ by the fact whether they are persistent, i. e. whether their content is still available

when switching the computer off and on again. RAM and all faster memories loose their

content when doing so, again a sacrifice for their speed, while harddisks do not. Thus,

in the following writing to harddisks or similar devices for persistent storage or using the

memory while doing computation will be the only two different concepts of data storage

used.

When one wishes to write efficient code the distinction between the various types of

memory becomes again important.

The code is executed by the central-processing unit (CPU). It works, for all intents and

purposes, linearly, i. e. executes the code one command at a time2. However, the CPU is

not able to understand natural language, but requires the commands in its own language,

so-called opcodes. These opcodes are essentially numbers, which then the CPU knows how

to treat, as it is physically hardwired into it. For a non-expert human, these opcodes care

unintelligible. They are actually symbolized in a slightly more abstract notion as so-called

assembler code (where each statement can actually be more than one opcode).

Such assembler statements are, e. g. of the type that they command to load two

numbers into two registers, then add the two registers and store the result in a third

register, and finally write the result from the register again to memory. As is visible, this

is not a particular elegant style from a human point of view.

2.2 Compilers and interpreters

Thus, over time, people developed programs which allowed to write code in a more ac-

cessible language, so-called high-level languages, which are then translated to assembler

and opcodes for the machine automatically. C and C++, to be used in this lecture, are

such high-level languages. The programs which translated, e. g., C-code into assembler

2Again, this is not exactly true with modern machines, but remains irrelevant for this lecture.
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are called a compiler. The one to be used primarily in this lecture is called gcc/g++.

A compiler takes a whole program, and translates it. It is then ready to be executed, i.

e. started like a normal program. An alternative are so-called interpreters, which interpret

the code in real-time, and therefore the code need even not be finished before starting to

execute it.

While interpreters are very convenient for fast or real-time development, they are

usually less efficient. On the one hand, their translation in real-time requires resources,

and has to be done every time the program is run. Also, the interpreter cannot use the

knowledge of the whole program to optimize the code, which modern compilers do to a

large extent.

By now, there a literally hundreds of languages, C remaining among the most popular

ones, and for many languages both compilers and interpreters are available. These lan-

guages provide quite different abstraction levels, and allow to a different extent to interact

with the underlying machines. Generally, a more abstract language tends to provide better

understandable, manageable and writable code, while at the same time obstructs writing

efficient code. E. g. C is less abstract than C++, as will be seen. If efficiency is not an

issue, more abstract languages are usually better suited. However, this is often not the

case in physics, and C and C++, which are at a lower and higher middle level, respectively,

of abstraction, are therefore suitable examples.

2.3 The structure of a program

Since the setting has now been created, the next step is to understand the basic structure

of, essentially, any program.

Every program has a single entry point, i. e. a first instruction. These are the lines 1

in listings 1.1 and 1.2. An instruction is sometimes also called a statement.

There is not necessarily any unique second or further statement, as which instruction

is executed next can depend on the previous statement. Indeed, even randomness can be

included in a program, so it can even become wholly non-deterministic. This aspect will

be ignored for the moment, to simplify things. However, even in a deterministic program

there may be many final statements. This is not the case in listings 1.1 and 1.2, as these

programs are just worked through sequentially, and the last lines are the last statements.

Somehow, a program needs therefore to separate statements, i. e. there must be some

kind of delimiter between statements. In C and C++, this will be a semicolon. Thus, a

typical part of a C program looks like

1 statement 1 ;
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2 statement 2 ;

3 . . .

4 statement n ;

That is, there is a sequence of statements, which will be executed one by one and one

after each other. In Mathematica, these are so-called cells, which are marked by a bracket

in the environment. In listings 1.1 and 1.2 every line is a statement of its own. Would

this be C(++)code, each line would needed to be terminated by a semicolon. It should

be noted that a statement can involve rather complex actions. This can be compared to

an expression in mathematics. Both 1 + 1 and sin(1 + 4/3 − 12π) are expressions, but

of quite different complexity. In this sense, it is often talked about atomic statements,

which cannot be decomposed further without becoming trivial. Thus, in the second case

1+4/3 is an atomic statement, while 1 and 4/3 are trivial and 1+4/3−12π can be further

decomposed, and thus neither are atomic.

However, as emphasized in the von Neumann machine, it is also necessary to have data.

Data is not specified in statements, but otherwise, and again specific to each programming

language.

Statements must be understandable for the compiler. This is achieved by having a par-

ticular syntax, which defines the rules for creating well-formed statements. In principle,

the syntax makes the semantic deterministic, and there is no room for misinterpretation.

However, especially for complex languages with rich syntax, it may happen that not every

possibility has been taken into account when creating the syntax. However, this will very,

very likely not be an issue during this lecture. Usually the compiler will stop compil-

ing or give an error message when encountering malformed statements. This is like in

mathematics. 1 + 1 makes sense, but 11+ does not.

An important part of the syntax is precedence. Precedence is similar to calculational

rules, e. g. that first all multiplications are performed, then afterwards additions. Similar

precedence rules exist for languages. They determine in which order instructions are

performed, when a statement is a composition of atomic statements. Comparing again to

mathematics,

3 + 4

is an atomic statement, but

x = 3 + 4

is not, as there are two instructions, addition and assignment. The precedence here tells

that the addition is performed first, and the assignment afterwards. But this is a conven-

tion. Though languages usually keep the precedence for mathematical operations, it is no
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longer obvious how they act when presented with more complicated atomic operations,

which have no analogy in mathematics. Therefore, the rules of precedence are part of the

syntax.

Parentheses are the usual tool to modify precedence, e. g. in

3 + 4× 5

the multiplication is done first and in

(3 + 4)× 5

the addition is done first. Parentheses are used in the same way in programming, though

their precedence-altering feature is extended to arbitrary statements, not only mathemat-

ical statements.



Chapter 3

Variables

While a program could, in principle, only perform instructions, it is actually most useful

if it uses these instructions to manipulate information. These information has to be made

accessible to the program. This is done by so-called variables.

3.1 A rudimentary program

To demonstrate how variables operate, it will be necessary to have, at least, a rudimentary

program. Though this could also be done in the form of pseudo-code like listings 1.1

and 1.2, there are many subtle differences in how different languages treat the concept

of variables. It is therefore useful to start becoming concrete. It will therefore now be

switched to explicit C(++) and Mathematica programs, even though it may need some

elements which will only become available fully later.

In Mathematica, this is comparatively simple, as a newly created notebook is already

a well-defined program frame in itself. In a notebook, any line can be used to start the

program, and a line is executed by pressing shift+return.

This is different in C. The most simple program is

1 int main (void )

2 {
3 return 0 ;

4 }

which will do nothing. It therefore corresponds to lines 1 and 3 of listing 1.1 only. It

is complied by the command g++ filename, where filename is the filename, usually some

name with the extension .c or .cpp. The complier creates then an executable called a.out.

To give it a different name, use the -o targetname option. It is also recommendable to use

11
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the additional options -pedantic -Wall, which will turn on all possible warning messages

from the compiler. This is very helpful when searching for bugs.

The listing contains a number of important concepts, which can help to illustrate what

the concept of syntax can encompass. The first is the declaration of a so-called function.

This will be discussed in much more detail in chapter 5. However, in C everything is

considered as a function, and thus also the program itself.

In general, a function in C is declared by the syntax

r e tu rn type name( arguments )

{}

which has four parts. The name is just the name by which the function is known in the

program. It can contain all kinds of letters, numbers, and a few special characters, like

underscores. It cannot start with a number. The name is case sensitive, as everything

in both Mathematica and C(++) is. The name main is special: It denotes the function

which should be executed as the program. I. e., the first line of this function will be the

first instruction executed at program start1.

The arguments, as will be discussed later in chapter 5 in more detail, is information

passed to the function. For now, it is only important that the identifier void has the

meaning that no information is passed to the function.

The return type signifies of which type the result of the function is, e. g. an integer

number - just like a mathematical function also a function in C(++) can have a result.

In general, a function does not need to have a result, and therefore the result type can

be void as well2. Here, the type is int which signifies that the result is of the type int,

essentially an integer number. This will be discussed further in section 3.3.

This result is returned by the statement return 0; in line 3. This instruction terminates

the function, and returns the value 0. The return value of main is passed back to the

operating system. The value 0 is interpreted by operating systems as a normal program

termination. So, this program just terminates itself and telling the operating system that

everything is just fine.

As noted above, the semicolon signals in C(++) the end of a statement3. After a

semicolon the next instruction begins. It therefore separates instructions. Note that not

1This is not entirely true, but this will come later.
2Functions with no return type are sometimes called procedures to signify the difference. Then the

name functions is kept for anything which returns a value, just like a mathematical function. In the

context of C(++) this is rarely so, as nothing is usually considered as something as well.
3In Mathematica, it has a different meaning. There, it suppresses the output of the result in the

notebook.
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every instruction needs to be finished on a line, and line breaks can be inserted at the

programmer’s discretion.

To every function belongs the so-called body of the function. This is the set of instruc-

tions, as noted above separated by semicolons, between the curly braces. Thus, the curly

braces signal the set of instructions belonging to the function. If a function is executed,

the instructions are executed one-by-one in the order they are written in the body, starting

with the first.

This completes the basic definition of a C(++) program and a Mathematica program.

Note that the Mathematica program needs not to be compiled4. Rather, they are inter-

preted, i. e. executed manually and in real time.

3.2 Basic feedback: Screen output

Compiling and executing the previous program or looking at the Mathematica notebook

is not yet useful: Nothing happens. While for the Mathematica notebook this is not sur-

prising, as there is not yet any statements, this is somewhat surprising for the C program.

Somehow, some kind of feedback would be desirable. Some kind of output would be in-

teresting, signaling what is going on. For this purpose, here basic output will be added to

the C(++) program. As the Mathematica notebook is interpreted, direct feedback will be

provided within the notebook. This will be seen in the examples in section 3.3.

Here, for C(++) only one possibility of such output will be discussed. A more extensive

discussion will be given below in section 3.10. In fact, the one discussed here is specific to

C++, and not usable in C, but it is more convenient.

Actually, screen output is not part of the C(++) language. There is therefore no such

instruction as part of the language. But C(++) is accompanied by extensions, called

libraries. This concept will be discussed in more detail in chapter 7. For now, it suffices to

say that a library provides additional functionality to a language, and that there can be

multiple libraries providing different things. Screen output is contained in such a library.

How such libraries can be systematically used will be discussed in more detail in section

7.2.

For now, it suffices that it is possible. To make the example particularly convenient,

this is actually the only element missing to get listing 1.1 into C++. Doing so yields

Listing 3.1: Hello world

4There is support for compiling also Mathematica programs, if need be, but this will not be part of

this lecture.
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1 #include <iostream>

2

3 using namespace std ;

4

5 int main (void )

6 {
7 cout<<”Hel lo world ”<<” ! ”<<endl ;

8 return 0 ;

9 }

The include instruction in line 1 instructs C++ to make the library iostream, which contains

screen output, available to the program. It is then known for all parts of the program

following this instruction. Note that such inclusions are instructions to the compiler, and

not part of the program to be executed. This is therefore also called preprocessor, and

indicated by the leading hashtag #. It is therefore available even before the first instruction

in the function main. More on the preprocessor will be presented in section 7.3. Here,

the instruction requires to load a library called iostream. The brackets around the name

inform the compiler where to search for this library, and the fact that they are angular

brackets indicate that it is a library coming together with the compiler.

The curly braces {} again define the actual statements. Such a collection of statements

is also called a block - a set of statements which form a logical unit. Blocks will be used to

identify units of statements, which are considered to belonging together, also called local.

In the present case, the whole program is a block, which separates the program itself from

the administrative part used to instruct the compiler in the include and using statements.

This using statement in line 3 is actually only for convenience. Imagine a situation in

which several libraries, programmed by many people, are included in a project. In such a

situation it can easily happen that different libraries use the same names. This can give

rise to ambiguities. To avoid this, libraries can be given a so-called namespace. Then,

every element from the library gets the namespace as a kind of family name on top of its

proper name. Using the combination of namespace and proper name is done in C(++) by

creating a statement namespace::element, where the double-double dots :: are a so-called

scoping operator. The statement in line 3 now instructs the compiler to implicitly assume

that the namespace is called std, if not specified otherwise. If this would not be made, the

statement in line 7 would need to always use the full name

1 std : : cout<<”Hel lo world ”<<” ! ”<<std : : endl ;

as both cout and endl are part of the library iostream. Thus, the using is again an instruction
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to the compiler, and not part of the instructions of the program itself, and merely serves

the purposes to shorten the instructions inside the program. More on namespaces will be

presented in section 7.4.

This leaves the actually interesting instruction in line 7, for which all of this has been

done. It involves actually three instructions, which are concatenated in a very peculiar

fashion, which will be discussed in greater detail in chapter 5. It is based on an object,

defined in the library, called cout. The double left angular bracket << is actually a function

of this object. The meaning of this function is that its argument should be send to the

screen. Thus, the line instructs to print out “Hello World”, and as a second instruction to

do so as well with “!”. This splitting is arbitrary, and just for illustration purposes. The

double apostrophes are used to enclose a sequence of letters, or other printable characters.

Such a sequence is called a string, and how to deal with them more generally will be

discussed in more detail in section 3.11. The final thing send is a quantity which is a

not-printable character, and which is a combination of ending the line and jumping to the

beginning of the next line. Since it is not printable, it has received a particular identifier,

the name endl. Thus, this statement, which is made out of three atomic instructions,

prints “Hello world!” on the screen, and then jumps to the beginning of the next line.

The final line 8 again just finishes the program, and returns as a result the value 0

to the operating system. This is usually done on the command-line, or by clicking the

program. 0 is the (almost) universally accepted value for normal program termination, i.

e. without error. However, the operating system, without further effort, just disregards

this value.

Thus, all of this complexity has only the purpose to print out a single line on the

screen. It seems like a lot of effort to achieve a rather simple objective. Indeed, there are

simpler ways to achieve the same end in many other languages, and even in C, rather than

this C++ example. The same is achieved by the program

1 #include <s t d i o . h>

2

3 int main (void ) {
4 p r i n t f ( ”He l lo world !\n” ) ;
5 return 0 ;

6 }

While the program is rather similar in many respects, it differs in the way how it performs

the output. It also uses a different library. First, it is only a function, which gets a single

argument, so no object involved. It also does not need a namespace. Also, the endl is

replaced by \n, which has for the function printf the same meaning as endl for cout.
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In Mathematica, any output is created by writing some statement, e. g. “Hello world!”,

and then pressing simultaneously the Shift and Return key. The value of the expression

will then be printed. To suppress this printout, add a ; to the end of the expression.

3.3 Variables and variable types

While it is nice to output something to the screen, this is little better than a (primitive)

electronic book. The real possibility only arises when data is involved. As an example,

think again of listing 1.2, which interacted with the user, but also needed to keep data in

mind.

But to use data requires to store data. The data storage of the computer is the

memory. Chunks of this memory are used to store the data. These chunks are called

variables. Variables require two things. One is an identifier by which a chunk of memory

is addressed. I. e., some information where to find the chunk of memory in the total

memory of the computer. It thus acts like an address, and hence the name. The name of

a variable, as for functions, is usually a sequence of letters, numbers, and some permitted

special characters. In Mathematica also (fixed) indices are possible (usually input by using

ctrl+ ). The second part of a variable is the data stored in it.

In this respect it is important to differentiate between so-called strongly-typed lan-

guages and weakly-typed languages. Mathematica is an example of a weakly-typed lan-

guage, as are most interpreted language. A variable is introduced by just using its name.

The variable adapts automatically, i. e. it can hold whatever content one desires, and Math-

ematica takes care of how to store it. E. g. a=2 in Mathematica will create a variable

named a and store the value 2 in it.

The situation is substantially different in C(++), which is a strongly-typed language.

Here, variables need to be declared before using them. In the declaration the name has

to be defined, and also the type of data it should hold. The type can be, say, an integer

number or a letter. Only data of this type can be stored in the variable.

C(++) knows a number of primitive, i. e. built-in, data types. The most common ones,

and how variables of their types, are declared, are the following

1 int a ;

2 char i am a var i ab l e , metoo ;

3 f loat b ;

4 double s12 ;

This chunk of code declares five variables, a..., of the names indicated. The second line
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shows that it is possible to declare several variables of the same type just by separating

their names by a ,, while a declaration is again finalized by a ;. A variable cannot be used

before it is declared. However, declarations can occur at any time during program flow.

It is, nonetheless, considered good practice to declare all variables at the beginning of a

function, rather only when needed5.

The variables do not live forever. They only exist within the part of the program

which is enclosed by the current block, i. e. set of curly braces. Outside these blocks they

simply do not exist. If they should be available in the whole program, so-called global

variables, then they must be declared outside all blocks, e. g. after the namespace. Global

variables are despised for the purpose of structured programs and security reasons, but

may occasionally be necessary to gain efficiency. However, if there is no reasons for a

variable to be global, it should not be. This will be discussed in more detail in section 5.3.

The names in front of the variables in 3.3 define what kind of data the variable, and

thus the chunk of memory addressed by the name, holds.

The type int is containing an integer number, which can either be positive or negative.

This number cannot be arbitrarily large. However, precisely how large is possible depends

on the computer and compiler. The actual value can be either obtained by checking

documentation or at run-time. To check at runtime, the function sizeof can be used. The

command sizeof(a) returns the data size in byte. The range of integers stored for n bytes

is then obtained as −28n−1 − 1,...,28n−1, where the −1 in the exponents stems from the

requirement that half of the numbers is negative and half of the numbers are positive, and

the −1 for the negative numbers is used to have space for zero.

The type char is designed to hold a single letter or other character. It has always the

size of 1 byte6. Internally, characters are represented as numbers, which are mapped by a

table to characters. Therefore, a char can be considered also as an int of one byte size.

The types float and double are both real numbers of either sign7. They differ only

in the size, and thus precision. The type double is more precise, but at the expense of

the amount of memory needed for them larger and dealing with them requires usually

more computer runtime. Internally, real numbers are always stored as an exponent and

a mantissa between zero and one, where the range of the exponent depends on the type.

5The compiler takes care of actually creating the variable and data only when actually needed, so this

does not waste efficiency.
6Occasionally, if Unicode is used, they may be larger. Again, this depends on the configuration in

question.
7For complex numbers there is also the type complex〈subtype〉, where subtype can be double, float, int,

or extended declarations of that. Why and how this works requires the concepts of templates, which will

only be discussed in section 10.11, as these are not primitive types.
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Also, the mantissa is not exact, but only a finite number of digits are stored. If attempted

to store a number with more digits the surplus digits will be dropped or rounded, which

again depends on the configuration in question. It should also be noted that internally

real numbers are stored in binary format, which also affects this. Numbers which are

decimally having only a finite number of digits may have an infinite number in binary, and

vice versa, and are thus truncated.

These completes the list of basic (primitive) types in C(++). However, these types can

be modified in several ways. The actual precision can be changed by adding the modifiers

short or long to the name, yielding, e. g., long double. These reduce or enlarge, respectively,

the range the variable can hold. For int even the modification long long int is possible.

Again, the actual range can depend on the configuration in question.

In addition, it is possible to change int and char by the qualifier unsigned, which then

stores only positive numbers and zero, but doubles the range for them. Note that this does

not change the capacity for a char to be interpreted as a character. The usage of unsigned

is not only to change the storage capacity. It also tells the compiler what to expect for

a number. Therefore, if, e. g., it is attempted to store a negative number in a positive

variable or if it is compared to a signed number, the compiler can notify this, which can

help in preventing errors.

Note that in C(++) there is also the special type void, which means that something

does not have a type. It is therefore not possible to use it to declare variables, but it

appears regularly if something should be defined to have no type.

3.4 Constants

C(++) also allows for all variables a further modifier, const. This declares that a variables

value is fixed when it is declared. This is done, e. g., as

1 const int f i v e =5, s i x =6, seven=f i v e ;

2 const double pi =4.0L∗atan ( 1 . L ) ;

The value of the variable five is immutable the value 5 throughout the whole block in which

it is declared. As is visible, it is possible to create multiple constants in a comma-separated

list, which can use priorly defined constants, where assignments in the list are read from

left to right, and even mathematical operations.

The second line defines π from a mathematical operation, which will be discussed in

more detail in section 3.6.1. This has the advantage to have a value of π as precise as the

computer is capable of, which would not be assured by entering a decimal. The L requires
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the compiler to evaluate the given number at double precision. Otherwise, it will evaluate

1 as an integer and 1. as a float. This distinction can have unexpected side effects if not

used in a controlled way.

The advantages of using constants are twofold. On the one hand, they are faster

than variables when accessing their values. This is because the compiler replaces any

occurrences of the constant in the code with the value during compilation, rather then first

loading the contents of a variable. Especially, it preevaluates any mathematical operation

involved, like the inverse tangents in the second line, at compile time. Since anything,

except addition, subtraction and multiplication, are very expensive in terms of computing

time, this saves a lot of execution time.

The same effect could also be achieved by using at all occurrences of the constant

directly the number. In fact, this may seem like a good idea. The downside is that if the

value of the constant ever changes, it has to be replaced everywhere in the code, which in

larger codes requires a large amount of time. While it can be argued that the value of π is

unlikely to change there are many features, especially in scientific programs, which could

change. E. g. a new measurement of the neutron life time during the time your code is

used shifts the value slightly, but significantly, for your purpose. On the other hand, this

value is unlikely to change during program execution. Thus a constant is the best choice

to include the value of the neutron life time in your code.

In Mathematica in most cases there is no distinction between a constant and a variable.

Note that some quantities, e. g. π, are already available inside a library or in Mathe-

matica. E. g. the value of π in Mathematica is given by entering π, which is done by the

sequence EscpiEsc, Esc is the escape key. Euler’s number is obtained from E, and so on.

The list is available from the corresponding documentation.

3.5 Access to variables and type casts

Once a variable is defined, it is necessary to give it a value. Several examples are shown

in the following code

Listing 3.2: Assignement of variables

1 int a , b=3,c ;

2 f loat f =1.5 , g=1 ./2 . , h=0.5 ;

3 c=5;

4 a=b ;

5 f=b ;

6 a=( int ) g ;
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7 a=static cast<int>(g ) ;

As shown in lines 1 and 2, it is possible to initialize variables with a value, just like it

is possible for constants. Real numbers can be written both as decimal numbers or as

(continued) fractions. Because the quantities are cast to binary before the calculation is

performed, it may occasionally happen that in situations like for g and h both quantities

may not have the same value, but differ, say on a typical machine, by a quantity like 10−19.

This may seem not to be a lot, but can make all the difference between equal and not

equal.

Line three then shows a typical assignment, using the, so-called, operator =, of a value

during run-time, giving c the value of 5. As line four shows, it is possible to copy the

contents of one variable to another by again an assignment. It is important to note that

only the contents, and not the address, of the variable is copied. Both variable remain

distinct, and a subsequent change to b will not change the value of a. It is very important

to carefully distinguish between a variable and the contents of a variable.

In a language like C(++), which is strongly typed, the assignment of variables of

different types is not an entirely trivial issue. If the variable, which the value is assigned

to, is of a type which can hold all values of the type of variables from which it receives the

value, it is simple. Then the assignment is done, as in line 5, just as if the variables are of

the same type.

If this is not the case, there occurs what is called a type cast, that is a change of the

contents of the variable to fit into the new variable. In this process actually only the

transferred value is changed, and the contents of the old variable is left untouched. This

can be done either implicitly or explicitly. In an implicit typecast the compiler decides

how to truncate the value of the variable. How this is done may depend on the compiler.

If the implicit typecast is used, the assignment looks like in line 5, e. g. f=b.

If the rules should be set by the program, an explicit type cast is called for. This is

done in line 6, where the value contained in g is first converted to an integer8, and then

assigned to a. In this case, the value of a after this will be 1. Line 7 contains an alternative

way to perform the typecast. This so-called static cast operator is much more powerful

as it can operate on a much wider range of types, and especially also on derived types,

while the previous case is somewhat limited in scope. It is therefore the preferred version

to use. However, for the types of section 3.3 either will work.

Note that as long as a variable has not been assigned any value its contents is undefined,

and usually has some random value. It particular, this value can be different for each

program run, and therefore no assumptions on it should be made. Variables should never

8It is changed to the, in absolute value, next smaller integer value for most compilers.
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be used without explicit initialization either when declaring them or by initializing them

at first use9.

In Mathematica, all variables are just declared by using them, and all variables can

hold any values, and therefore no type casts are necessary. Assignment to variables are

performed by using the equal sign. As in C(++), the value of other variables is copied,

and the variables remain distinct entities afterwards.

While in Mathematica just stating the name of a variable followed by Shift+Enter is

sufficient to print its value, this is a little bit more complicated in C(++). Using the two

variants for C++ and C of section 3.2 to print the value of the variable a of listing 3.2

looks like

Listing 3.3: Variable output

1 cout<<a<<endl ;

2 p r i n t f ( ”%i \n” , a ) ;

For cout the variable name is used. The handling in printf is more involved. In the text

a placeholder for the value of a variable is need. This contains two elements. The first

is a %-sign to signify that a variable starts10. This is followed by a label to identify the

type of variable. Here, i stands for an integer. The documentation of printf provides all

possibilities. Afterwards, the additional arguments of printf provide the variables contain-

ing the values to be inserted, in the same order as they should be used. In the end, both

operations do the same thing: Since a contains the value 0, they print a line containing

only 0.

3.6 Basic operations on variables

While it is nice to have variables and store data, it is useful to manipulate and, especially,

combine the contents of variables. There are two broad categories of doing so, without

invoking the functions of chapter 5. Note that a few more basic operations on variables

exist, e. g. the possibilities to manipulate the individual bits of a variable. Though they

are not fundamentally different from the operations discussed here, they are somewhat

exotic in the sense that they are rarely needed. These will not be discussed here, but more

details can be found in the documentation of the languages.

9Unnecessary additional initializations are inefficient, and should be avoided.
10To output a single %, it is necessary to write %% instead.
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3.6.1 Mathematical operations

Mathematical operations are just that: Basic mathematical operations. In Mathematica,

they are simply performed by typing them, e. g. a=b-c2. Note that a space between two

variables is interpreted as a multiplication.

In C(++), this is a little bit more involved. Consider the following code, which gives

you the most basic ones.

Listing 3.4: Mathematical operations

1 a=b+2−3;

2 c=b∗a+2;

3 a=(2+3)∗a/b ;
4 d=s i n ( c∗d)+d ;

5 e=log (x)+exp (y)+pow( f , r)− s q r t ( a ) ;

As is seen, all basic operations are available. Furthermore, certain non-trivial operations,

like trigonometric ones or transcendental ones, are also existing, and called in the usual

way. However, it requires to include the library cmath by #include <cmath>, and thus like

iostream. There is a number of build-in such functions, though there are many libraries

available which substantially enlarge them. Which are actually available can be found in

the documentation, but these standard operations are always available. Note that there

is no dedicated square operator, this is covered by the operation pow(·,2). It is important

to note that the fact that the variable a appears on both sides in line 3 is not a problem.

Before the value of the variable on the left-hand-side is altered first the whole right-hand

side is evaluated. There are also operations to determine the modulus and remain of

an integer division, signified by % and ˆ, respectively. There are also two quite handy

operations to increase a value or decrease an integer value by 1, called ++ and −−, so-

called unary operators11. They can only be applied to an integer quantity. For reasons of

mathematics, they have the same precedence as taking the negative of a value, and as a

mathematical operation, it does not matter whether they are appended or written in front

of the expression to be changed12. Note in particular, that these are actually evaluated as

a=a+1; i. e. even without assignment they increase the value. Thus the statement a++;

increases the value of a by one, even without assignment.

11Writing -a to obtain the negative of variable is also considered as a unary operator, though it is in

principle just a shorthand for -1*a.
12Under certain circumstances it makes a difference for efficiency, as the order of getting the value at

the memory position signified by the variable and the actual calculation slightly differ. If such things

become important, optimization beyond the level of this lecture are called for. It also plays a role for flow

control, see section 4.1.
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There are two important caveats here.

One applies again to the type of variables involved. Mathematica always adapts the

variables such that they can accommodate any outcome13. In C++, this is not the case.

Usually, the final variable will determine what is stored, i. e. if in line 4 c is double, but

d is float, then any surplus digits will be dropped. This is of particular importance when

somewhere integers occur.

To asses the effects, it is also important to understand the precedence of operations.

Mathematica and C(++) follow both the mathematical precedence rules for mathematical

operations. They also adhere to the rules for parentheses. Therefore, in line 3 the result

is 5a/b rather than 2+3a/b. In the same way also the conversions are performed, i. e.

a result is always converted to the output required for the next step. Thus, if a is int

than b will be converted to int in the first line, as integer numbers are added and the final

result is also assigned to an int. A constant can be forced to be evaluated as a float by

adding a point at its end, e. g. 2., and as a double by appending an L, e. g. 2L or 2.L,

to force conversions to a particular type. Note that even with precedence rules in place

always the right-hand side is first completely evaluated before the value of the variable

on the left-hand side is changed, e. g. in line 4. This also implies that the left-hand side

can never be an expression, but only a variable. All such mathematical operations are not

equations, but merely assignments. It is important to understand this difference, even if

the assignments look like equations.

This is particular important when it comes to efficient coding and thus the second

caveat. Operations involving integer numbers or low-precision floating-point numbers

rather than (long) double precision are faster, and should therefore be preferred, if possible.

Also, addition, subtraction and multiplication are faster than division. Non-integer powers,

including square-roots, trigonometric or transcendental operations are even slower, as

internally these are performed using series14. Therefore, great care should be taken when

performing such operations such that they are not used unnecessarily often.

C(++) offers also a short-hand notation to abbreviate the basic four operations, as

shown in listing 3.5.

Listing 3.5: Short-hand notation for mathematical operations

1 a=a+2;

2 e+=2;

13Note that also in Mathematica calculations are done using a fixed (decimal) precision. However, this

can be changed arbitrarily using the SetPrecision and N commands.
14Usually for different ranges of values different series representations are used, optimized for quick

convergence in the corresponding range.
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3 b=b/( c∗d ) ;
4 f /=(c∗d ) ;

The operations in lines 2 and 4 have the same impact on the variables e and f as the

operations in line 1 and 3 on a and b, i. e. adding 2 and dividing by the product of c and

d, respectively. This reduces the code length (but not necessarily increases readability), as

such situations where the content of a variable is overwritten by the content of the variable

itself after performing some mathematical operations by it occur frequently.

Note that a mathematical operation which is nonsensical, as dividing by zero, does

not make a program crash if performed on non-integer numbers. Rather, the variable is

assigned the special value nan, meaning not a number. Likewise, if a result cannot be

stored because it is too large for the variable, since the exponent has a finite maximum

size, there appears a so-called overflow, signaled by inf, again a special value. Similarly,

an underflow happens if the result is too small to be stored, yielding zero.

3.6.2 Logical operations

An important question in science is if a statement is true or false. Replicating this mecha-

nism in C(++) and Mathematica leads to the so-called logical operations. They also help

to formulate now equations, rather than assignments, which can be checked. The basic

operations are shown in listing 3.6.

Listing 3.6: Logical operations and the Boolean data type.

1 int a=1,b=2;

2 bool c=true , d=fa l se ;

3 c=(a+1)==b ;

4 c=(c&d ) | | ( ! ( a!=b ) ) ;

5 d=(a>b)&&(cˆd ) ;

The first important new addition is the new primitive variable type bool, which can hold

either of two, so-called boolean, values: true and false as logical possibilities15. Also Math-

ematica knows boolean types and, as always, automatically accommodates such values for

variables. The values true and false (im Mathematica True and False) are built-in constants,

just like, e. g., the number 1.

15Actually also integers will be interpreted by C++ as boolean values if used like a boolean variable,

where 0 signifies false and all other values true. In fact, boolean variables are internally nothing but

usually variables of type char or int, depending on the implementation.
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Besides actual boolean values, boolean results can be obtained from equations. Such

equations have a left-hand side and a right hand-side, and a comparison operator. During

runtime, both sides will be evaluated, and, depending on the comparison operator, the

result of this operation is either true or false. In line 3 the comparison operator is the

equality operator ==, and therefore the equation evaluates to true. This value is then

stored in the variable c by the usage of the assignment operator =. Both should not

be confused, as == does not perform any assignments. This is also the reason why

in line 3 it is possible to have a mathematical operation on the left-hand-side, in stark

contrast to the assignments of the previous section. Alternative comparison operators

are shown in the following lines, including not equal (!=), greater or smaller (> and <),

and greater/smaller or equal (>= and <=). All of these comparison operators are also

available in Mathematica.

Logical statements can also be combined by the usual logical and, or, and exclusive

or operations, signified in C(++) by &, |, and ˆ, and in Mathematica by &&, ||, and
Xor[operand 1,operand 2], respectively. Parentheses can be used to arrange the precedence

of the operations. Otherwise, these operations do not have any precedence, just like

addition and subtraction.

3.7 Pointers

As discussed in section 3.3, the name of variables are actually references to some place

in the memory where the contents of the variable is stored. While in Mathematica, or

usually in functional languages, this is a hidden technical detail, this is different in C(++).

There, it is possible to interact with this information directly. While an advanced topic,

understanding, but not expertise, of pointers will be very useful in next section 3.8.2, and

they are thus introduced rather early in this lecture.

The information where the storage of some variable in memory is located can be ob-

tained. The answer to this question is obtained in the form of a so-called pointer. In the

sense of a von Neumann machine, the memory is represented by a list enumerated bytes,

starting with byte zero16. The information, at which place a chunk of data is stored is

given in C(++) by the & operator, i. e. &a provides a so-called pointer to the memory

location referenced by the variable a. As this pointer is some integer number, this pointer

16In actuality, the number is not necessarily in a one-to-one mapping to the physical memory installed

in a computer. In fact, for many reasons, most notably security issues, this is rarely the case nowadays.

However, from the point of view inside a program, and for the purpose of this lecture, the memory available

to a program is indeed enumerated in this way.
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is usually of size an integer large enough for the system used, e. g. 8 byte on a 64 bit

machine. Note that is indeed the same symbol as the logical and of section 3.6.2. The

context unambiguously defines how it is interpreted. That has to be kept in mind when

reading programs.

Such pointers can themselves be variables, e. g. the declaration int* b implies that b

is variable of type ’pointer to an integer’, so there is also strict typing of pointers, even

though all of them are integer. Thus, b holds a pointer to an integer. To indicate that

a pointer is not valid, e. g. because it has not been initialized, the special value17 NULL

exists. Thus, to check whether a pointer contains an address or not, it is possible to check

b==NULL. However, this does not mean the address is valid, i. e. the chunk of memory at

this address is used. It just tells that this is an address.

Given a pointer, it is possible to read the data at the position pointed to. This is

obtained by the * operator, the so-called dereferencing operator. Again, the context

and/or the usage of parentheses, will make the interpretation of * as either a multiplication

operator or as the dereferencing operator unambiguously.

I. e., given e. g. int *b and if b is not NULL, the operation *b will provide the data

located at the memory position referenced by the pointer b. This is also the reason why b

needs to have a type, rather than just being a pointer: To read the data, it is necessary

to know how many bytes are there, and this is determined by the type. Likewise, it is

possible to write to a memory location. E. g. *b=25; will store the value 25 at the memory

location referenced by the pointer b.

Pointers are an extremely powerful tool to write highly efficient programs. The reason

is that if the memory layout is known, which is, e. g., the case for arrays to be discussed

in section 3.8, they can be handled like real integers. Especially, it is possible to per-

form arithmetic operations on them to calculate other memory locations based on the

application logic.

It is also this fact that makes pointers an extremely dangerous feature. One which

leads to making them unavailable, or at least quite safeguarded, in many programming

languages. The reason is that there is no guarantee that a pointer is actually referencing

anything. Even if it is not NULL, it references some location in memory, but holds no

information on what is stored there. Even the assigned type, if it is a pointer variable, is

only giving an information about how much should be accessed during the dereferencing,

but not at all whether this is what is actually stored there is of this type. In particular, in

17In more recent versions of C(++), there is also the constant null with the same functionality. There is

a subtle difference, NULL is actually the integer value zero, while null does not have such an equivalence,

which is important for conceptual reasons. If available, null is preferred over NULL.
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chapter 6 means will be introduced to create or remove variables at run-time, making this

information even during program runtime volatile. Reading from a location can therefore

produce any kind of garbage. Even worse, writing to a memory location using a pointer

could scramble whatever data was there18. Finding errors due to such a behavior is very

complicated, as such an assignment may happen at a completely different, and otherwise

unrelated, part of the code or, even worse, may change after every compilation, or even

execution of the code.

It is therefore highly advisable to use pointers only if there is a very clear and present

purpose and justification to do so.

3.8 Arrays and lists

A situation appearing very often in programming is that a collection of items is required,

e. g. a set of numbers. These are treated rather differently in Mathematica and C(++),

and called lists and arrays.

It should be noted that arrays and lists are sometimes referred to also by other names,

and that, on a formal level, they are not synonymous. Also, other languages may use the

names in quite a different way. In day-to-day language, and depending on context, they

may also be used (subtly) different. When in doubt, verify what is meant by the respective

names.

3.8.1 Mathematica

In Mathematica, a set is called a list, and is defined as {a,b,c,...,d}, i. e. start and end of a

list are marked by { and }, and the arbitrary number of elements in the list are separated

by ,. Since in Mathematica variables can contain anything, a list can be assigned to a

variable. E. g. a={2,4} lets the variable a hold the two-element list {2,4}. There is no

limit to the size of the list, except the amount of available memory.

To access and manipulate the elements of a list, it is possible to use a double angular

bracket. E. g. in the previous example a[[1]] has the value 2, as it returns the first list

element. List elements can also be accessed using variables. If i=1 then a[[i]] gives again

18Since even code is stored in memory, it is in principle possible to alter code at run-time, intentionally

or unintentionally, by writing to it using pointers. If not done very carefully, this usually results in a crash

of the program, or some unexpected behavior. However, for security reasons modern operating systems

forbid the change of code during runtime by such an operation, and thus such an attempt usually results

in a crash. Modern codes, which should adapt during runtime, will do this not by writing to memory, but

by having a build-in compiler, creating executables at runtime, and thus do not need such operations.
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2. Also arithmetic expressions can be used to reference elements of a list. The value of list

elements can be set in the same way. E. g. a[[1]]=3 will change the list hold by a to {3,4}.
To append to a list use Append. E. g. Append[a,5] yields that a contains {3,4,5}. The

operation Join[] combines two lists. E. g. Join[a,{6,7}] will then make a hold {3,4,5,6,7}.
Mathematica has a large number of possible ways to manipulate lists. Particular useful

is to obtain parts of a list, using the operation ;;. E. g., the operation {1,2,3,4,5}[[2;;4]]
yields {2,3,4}. Using [[All]] will return the whole list. Other operations yield the first or

last part of a list, or check particular parts of a list.

So far, lists where just list of numbers. However, in Mathematica it does not matter,

what is stored in a list. Also, elements do not need to be of the same type, and can even

be functions. Thus, a list like {a,“test”,x2} is perfectly valid in Mathematica.

A useful tool to create lists is the build-in function Table. To create a list of the real

numbers from 1 to 10 will be obtained from Table[i,{i,1,10}]. The first appearance of i is the
actual expressions, which should be put into the list elements. To get, e. g., the squares of

the first ten integer numbers, this would be replaced by i2. The second part is the iterator,

i. e. over which range the variable i should run. The syntax is {Iterator name,iterator

start,iterator finish,iterator increment (optional)}. The iterator increment permits to change

not by the default of +1. E. g., for half-integer steps, this would be Table[i,{i,1,10,1/2}].
The concept of iterator is actually far more general, and will reappear again in section 4.3.

A very powerful feature is that lists can be nested, i. e. any element of a list can itself

be a list. Since elements need not to be of the same type, these lists do not need to be of

the same size. As these are just ordinary lists, they can again contain lists, and so forth.

A valid list would be {1,{{2,3},4},{5,6,7}}. This list has differently sized list elements,

including nested lists. Note that an element is not a one-element list. E. g. 1 is not the

same as {1}, and as a consequence {1}[[1]] works while 1[[1]] will yield an error message.

To access nested elements the , operator is used. E. g. {{1,2},3}[[1,2]] yields 2. This

can be continued for deeper nested lists. Note that this operation can be combined with

the ;; and All operations from above. Also Table operations can be nested to create lists.

Either this can be achieved by nesting table calls, or by using nested lists in the argument

of Table. In addition, Table can use multiple iterators to produce multidimensional lists.

There are many powerful possibilities to sort and search through lists, as well as many

other possibilities to work with lists. These will be explored more in section 8.4.

3.8.2 C++

Lists in C(++) is a very different from Mathematica. The first, probably most important,

difference is that lists, called arrays in C(++), are strongly typed, i. e. all elements of a
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list need to be of the same type. In addition, lists in Mathematica can exist on their own.

A statement like {1,2} makes sense. In C(++) an array must always be associated with a

variable, which is used to find its place in memory.

As with all variables, a variable holding an array needs to be declared before use. Some

possible declarations are shown in listing 3.7.

Listing 3.7: Array declaration and use.

1 int a [ 5 ] ;

2 double d [2 ]={1 , 2} ;
3 int f =1;

4 const int b=2;

5 double c [ b ] ;

6 a [ 0 ]=2 ;

7 c [1]=1+a [ 0 ] ;

8 a [ f ]=3;

9 double e [ b ] [ 3 ] ;

10 e [ f ] [ 2 ]= c [1 ]−1 ;

In line 1 of the listing a basic array is defined as a list of 5 integers. The number of

elements of an array is given in the angular brackets. The list elements are always counted

in steps of one, starting from 0, i. e. the indices of the list elements of a are 0, 1, 2, 3, and

4. There is no alternative to it.

The elements of an array are not having any definite value after the array has been

declared. In the end, just like with normal variables, the elements of an array are just

the size of the array’s memory locations, and their initial value is what every was at that

memory location before it was assigned to hold the values of the array. Thus arrays should

be initialized before use. An example of how to do so is given in line 2. Here, the array is

initialized by giving every array element a value, by listing them on the right-hand side.

Note that they are always assigned starting with element 0. Thus, if not enough values

are provided, only the elements from zero onwards and up to the end of initialization are

assigned values, and any element with larger index is not initialized.

Arrays cannot be declared with a variable size, i. e. it is not possible, using the declara-

tion of line 3, to declare an array int g[f];. This will lead to an error during compilation19.

There are ways to define the size of arrays at run-time, but this needs a different approach

to be introduced in chapter 6. Also, once declared, the size of an array is fixed forever, in

19Note that this changed over various versions of C(++), and some compilers allow to do such things

even if they are conforming to the standard.
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contrast to the lists of Mathematica.

It is, however, possible to declare arrays using named constants, as is done in line 4

and 5, as the size of the arrays is then still known during compilation.

To access an element of an array again [] is used, as shown in lines 6 and 7. The value

passed gives the index of the element to be used. This can be done either to assign it a

value or to use the value, depending on where it is used. Note that it is not possible to

assign multiple values simultaneously, like in line 2, after declaration. A statement like

a={2,3}; will lead to a compilation error. It is also not possible to assign arrays to each

other like d=c;, not even if they have the same dimensionality. All of this is in sharp

contrast to Mathematica. Arrays are much more rigid in C(++).

What is possible is to have also multidimensional arrays in C(++), but again all

elements have to be of the same type. This is illustrated in lines 9 and 10. Also, the

different arrays do not need to have the same size, as the declaration gives an array of 2

elements of type a 3-element array of integers. An initialization is also possible using a

nested version of line 2. Accessing elements then requires a sequence of [], as is shown in

line 10, where explicit numbers and variables as indices can be mixed. Such arrays are

called multidimensional. Note that it is also not possible to assign subarrays to each other,

or assign multiple values at a time. The nesting depth of arrays is again arbitrary.

While arrays seem to be thus much more restricted in C(++), there is also an aspect

which makes them quite powerful. Though it is not possible to assign something to

an array, the name of an array, e. g. a after the declarations of listing 3.7, does have

a particular meaning: It is a pointer, as discussed in section 3.7 of type, in this case,

int. It contains as value the location where the array in memory starts. In C(++), the

arrays are stored in memory starting from element zero onward. In fact, an expression

like (a+1)[0] is the same as a[1]. Thus, it is possible to use arithmetics to move inside an

array. In multidimensional arrays, the memory allocation is that the right-most index runs

fastest, i. e. after the declarations in listing 3.7 the memory layout is e[0][0], e[0][1], e[0][2],

e[1][0], and so on. Since pointer arithmetics is not verified, and often not verifiable, by the

compiler, it should only be used if one knows what one does. It is easy to create almost

undetectable errors. However, knowledge of the memory layout of arrays is extremely

important to access multidimensional arrays efficiently. Thus, once one needs to write

high-performance code involving arrays, it is necessary to take a closer look at these

items.
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3.9 Composite variables

While the basic type of variables are quite often covering all needs, it sometimes occurs

that a simple type or an array does not quite catch the needs. Especially, it may be

desirable to somehow group some information of different types together.

In Mathematica, this can be done by using the lists of section 3.8.1 with multiple

entries for this purpose. This is possible by nesting and the use of arbitrary data in a very

direct way. This is not as simple in C(++).

To achieve the same purpose, C(++) has a construction, which is called structures20.

A structure is, essentially, a way of defining a new data type as a composition of primitive

data types. The listing 3.8 shows how this is done.

Listing 3.8: Declaration of structs and their use.

1 struct complex {
2 long double r e a l ;

3 long double imaginary ;

4 bool i s r e a l ;

5 } ;
6 complex a , b , c={1 ,1 , fa l se } ;
7 a . r e a l =0; b . r e a l =1;

8 a . imaginary=a . r e a l+b . r e a l ;

9 a=b ;

10 complex d [ 1 0 ] ;

In lines 1-4 the composite structure is declared, in this case to represent a complex number,

with a real and imaginary part, both being of type long double. There is also a boolean

quantity of name isreal. After this declaration the new type can be used in essentially the

same way as ordinary built-in types, as line 6 with the declaration of two such complex

numbers shows. To access the elements of the structure the . operator is used, as lines

7 and 8 shows. It also possible to assign such variables in the same way as for ordinary

variables, as line 9 shows. If this is done, every part of the struct, called fields, is assigned

the value of the other variable.

Note that, like ordinary variables, composite variables can also be initialized. However,

an initialization, like shown in line 6, requires a proper initialization with the correct types.

20In fact, this comes actually from C, and in C++ should be superseded by classes to be introduced

in chapter 10. However, structures are often a more efficient solution, as they have less overhead than

classes. The downside is that they can only store data, but not functionality. Though there are subtleties

to the latter statement, which will not be dwelt upon here.
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Otherwise, the code will not compile. It is also possible to declare arrays of such composite

types, as is shown in line 10. They can be used as ordinary arrays, but need then nested

initialization, if they should be initialized.

There are, however, a few things which do not work. Many built-in operations, which

work on all of the elementary types, will not work on a structure. This is as the compiler

cannot know how to interpret this. E. g., given the declarations of listing 3.8, a statement

like a=b+c; will lead to an error upon compilation. While it should seem that it is

’natural’ how two complex numbers should be added, the compiler does not recognize

them as complex numbers. Thus, it does not know how to compute the information,

e. g., for the field isreal, as it does not understand the meaning of it, while the human

does. In fact, it would not even know that it should add the two fields real and imaginary

separately. And before doing something wrong it rather does not do anything at all, and

tells the programmer to do it her/himself. How to do so, except by doing it step by step

like in line 8, and alleviate the problem will be discussed in section 5.8.

It should be noted that the elements of a struct are ordered in memory as declared. It

is therefore possible to use a pointer and pointer arithmetic to work with them. This is

not advised as long as you do not know what you are doing21.

3.10 Persistent variables and (disk) I/O

An important question is how to to communicate with a program and how to store per-

manently data, as everything created so far is lost after the computer is switched off. In

Mathematica, all outputs are actually stored in the notebook file itself (as long as the

output is not suppressed by appending a ; to the statement). Thus, here the results are

persistent, and because of the interpreting nature input is also straightforward.

This is quite different in C(++).

For the output to screen the operations on cout were introduced in section 3.2. It was

somewhat mysterious how it actually operated. This will be expanded on here22.

21E. g., for reasons of efficiency, in some cases some bytes of memory are left empty in between to obtain

addresses for every element of a struct to start at an addresses divisible, e. g., by 8. Such aligned memory

address are increasing the speed of transfers between the different levels of memory on some machines.

Without knowing this, accessing some locations may erroneously lead to such an empty space, which at

best contains garbage.
22There is actually a second set of operations which perform the same purpose, extending the function

printf, also introduced in section 3.2. These functions are inherited from the language C, on which C++ is

based, and are in contrast not object-oriented. They will not be discussed here, but are well-documented,

and have many similarities to the concepts introduced here, but have also (subtle) differences.
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This concept is known as streams. A stream is quite similar to the storage of a Turing

machine: It is essentially something into which data is put or taken from. The stream

cout is a write-only stream, i. e. it only accepts, using the function <<, data to be put

into the stream. The fact that the stuff put into the stream is then printed to the screen

is conceptually different from the stream itself. In actuality, what happens conceptually is

that the contents of the cout stream is send to a stream which corresponds to the screen,

and by this stream ultimately printed. In C++, all streams are descendants of a class

in an object-oriented framework. As this is not yet covered, here only how to use such

streams will be discussed.

A second important stream is the opposite to cout, the keyboard input stream cin. It

is a read-only stream, i. e. it only provides data taken from the keyboard. To signal this,

the corresponding function to take data is >>, followed by the name of a variable into

which the data should be stored. If there is a variable declared as int a, then cint>>a will

read an integer from the keyboard, and the end of the input is marked if the enter key has

been used, which therefore plays the same role as endl for cout. Note that hitting enter

without inputing anything will result in repeating the request for input.

How does cin knows that indeed an integer has been entered? The answer is, it does

not. It just tries to interpret the input as the type of the variable to which the input

should be stored. If the actual data input is of a different type, this will in the best of

cases result in a non-nonsensical content of the variable, and in the worst case crash the

program, as, e. g. data is written somewhere where it does not belong, as cin just keeps on

writing into the memory as much data as it gets from the starting position of the variable.

If it gets too much then, just as with invalid indices for arrays, it will still keep on writing.

It is the job of the programmer to make sure that such problems are taken care of, e. g.

by using some type of variable large enough to contain the input.

Knowing now this, it is finally possible to write a C++ version of listing 1.2, which is

provided in listing 3.9.

Listing 3.9: ”Real code user interaction”

1 #include <iostream>

2

3 using namespace std ;

4

5 int main (void )

6 {
7 long double a , b , c ;

8 cout<<”Give me two r e a l numbers”<<endl ;
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9 cin>>a ;

10 cin>>b ;

11 c=a+b ;

12 cout<<”The r e s u l t i s ”<<c<<endl ;

13 return 0 ;

14 }

Note that here no check is made for the input, to avoid a rather lengthy code. The program

just trusts the user.

The streams cout and cin were one-way streams, as the things they represent, monitor

and keyboard, only have one way for their data. It becomes more interesting when con-

sidering files on disk. Files are used to store data beyond the point where the program

finishes and/or the computer is switched off, and also to transfer data from one computer

to another. They are therefore the central element for the persistent storage of variables23.

These operations are performed using filestreams. A filestream is used as shown in

listing 3.10.

Listing 3.10: Usage of filestreams.

1 #include <fstream>

2 . . .

3 f s t r eam fout ( ”data” , i o s : : out ) ;

4 fout<<2<<” ”<<5<<endl ;

5 f ou t . f l u s h ( ) ;

6 fout<<”Hel lo ”<<endl ;

7 f ou t . c l o s e ( ) ;

8 f s t ream f i n ( ”data” , i o s : : in ) ;

9 int a , b ;

10 f i n>>a>>b ;

11 f i n . c l o s e ( ) ;

12 . . .

Line 1 includes the necessary library to use filestreams. The dots in line 2 here and

hereafter indicate that some code follows, in this case the rest of the start-up of the

23Even though many modern devices act like programs are never shutdown, this is internally also

managed by having a kind of persistent memory, on which they act. However, this kind of memory is

at the current time unsuitable for the necessities of many applications in physics. And it still does not

solve the problem of transferring data. The latter could be solved by networks, but this is again not a

sufficiently efficient choice yet. And also in its complexity beyond the scope of this lecture.
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program, and then the following fragment comes. A new filestream is then declared in

line 3. It is created by a special function, a so-called constructor, which will be discussed

more in chapter 10. This function takes two arguments. The first is the name of the file,

which requires a fully qualified path if not within the same directory. The second is, how

the file should be accessed. This is a particular constant, where ios:: is again a namespace

qualifier, to be discussed in more detail in section 7.4, but conceptually identical to std

of section 3.1. The second part out is determining that it should be written to the file,

and the file should be created, if it does not exist. If it should be opened for reading, the

qualifier must be ios::in. If both should be performed, it is possible to use24 ios::in|ios::out.
Note that for ios::in it is required that the file exists. To check whether the filed could be

opened, e. g. to check whether it exists, fout.good() can be called - this will return 0 (false)

if the opening was not successful and 1 (true) otherwise.

In lines 4 and 6 text is written to the file25. The endl creates a new line in the file. The

command in line 7 closes the file, and no further output is possible.

Line 5 is a very particular command, and has something to do how modern machines

operate when working with files. As mass storage is notoriously the slowest part of the

storage chain, the operating system often makes a copy of a file in memory, and works on

it, to accelerate access to it: It caches it. Unfortunately, memory is not permanent, and

its content can be lost if the program or the machine is stopped unexpectedly. In this case,

all contents of the file only existing in the cache is lost. For scientific purposes, this is a

serious problem, as programs often run for very long times. Thus, to avoid such problems,

the command flush forces the operating system to write all cached changes of the file to

the persistent storage, avoiding such problems. It is therefore highly recommendable to

do, if it can be foreseen that the file is not changed for a while and/or critical or valuable

information has just been written to the file. For the same reason, a file should always

be closed using the close command, as this will also commence all changes to permanent

storage, though this will also be done automatically at program termination.

To access the content of the file is essentially like the case of cout and cin. This is shown

in lines 8-11. The file is opened again, and the first line is read again, where the numbers

2 and 5 are thereby stored in a and b, respectively. The intermediate space or a endl will

be ignored. However, fin does not check the type, and just assumes that everything is

fine. If therefore data is read and attempted to store in a variable of wrong type, it will

do so. In the best of cases, this will lead to a non-nonsensical content of the variables. In

24The operation | is a so-called bit-wise or, and combines logically the zeros and ones which makeup

the two integer values.
25The data is actually stored as text. If one wants to save the data as the binary data it is, add

|ios::binary when opening the file.
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the worst case, it will crash the program. Similarly, it should be checked, whether the file

still contains data. This can be checked using fin.eof(), which will return true or false,

depending on whether something is left or not. Attempting to read beyond the end of a

file can also lead to a crash.

It is often useful to skip ahead or move back inside a file. This is achieved by the seekg

function. Its argument is the absolute position in bytes where the stream should move

to inside the file. Note that this requires knowledge of the structure of the file to make

reasonable use of. To do the same while writing to a file, use seekp.

Also in Mathematica it is sometimes useful to write and read from different files than

the notebook. In physics, this happens very often if the output of some other program

or experiment should be further processed with Mathematica. This can be done using

the functions Import[filename], yielding the contents of a file, and Export[filename,data],

where the argument is the (qualified) filename in “”. The data is, what ever should be

written as content of the file. Usually, this will be a list of some sort. Mathematica

attempts to interpret the contents of a file correctly. In doubt, it will create a list of

the elements found in the file. It is possible to force Mathematica to use a particular,

predefined structure when interpreting files. These built-in possibilities are listed in the

documentation of Import and Export.

3.11 Characters and strings

In section 3.3 already a type for a single letter, decimal, mark, or the like, has been intro-

duced26, the character char. However, it can only store a single character, but throughout

the previous sections many cases of sentences have appeared, e. g. in line 7 of listing 3.1.

In Mathematica, such a sentence is a so-called string, an arbitrarily long sequence of

characters. To identify such a string, it is enclosed in ””. As always in Mathematica, it

can be used like any other type of variables.

The situation is somewhat different in C(++). There are actually two options.

One is inherited from C. There, a sequence of characters is nothing but an array of

characters. In particular, it has a fixed length, even if its contents changes. Therefore,

there exists a special end character, usually written as \n, to signal that the remainder of

the array is not part of the sentence. Thus, adjusting the meaning of it being a sentence

is part of the program logic provided by the programmer, and not inherent to the way

it is treated by the language. Still, many methods are available to manipulate arrays of

26Modern systems often use substantially enlarged alphabets, with up to 65535 different characters,

so-called Unicode. This has implications for the size of this variable type, therefore check if in doubt.
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characters, but they are oblivious to the fact that it is actually a sentence. For their

purpose, it could as well be an array of numbers. The consequence of this is that all

caveats relevant to arrays also apply. All in all, it is a very efficient, but error prone and

tedious, way of handling sentences.

The alternative is a special type string. It is actually a class, as discussed in chapter

10, but this is hidden for most purposes. Internally, it implementation works also with a

suitable array of characters, but it acts like a string in Mathematica, and can be used like

an elementary type. This is demonstrated in listing 3.11.

Listing 3.11: Usage of strings.

1 #include <s t r i ng > . . .

2 s t r i n g a=”Hel lo ” ,b ;

3 b=”World ! ” ;

4 a=a+” ”+b ;

After including the necessary library in line 1, two string variables are defined in line 2.

The variable a is initialized. As in Mathematica, the value of a string is given by what

is within the ””, while the delimiters are not part of the string27. The second variable

then gets a value in line 3. Line 4 demonstrates that it is possible to add (concatenate)

strings with the +, and that a is not restricted to the length it had at initialization. It

also shows how constants can be added. The final contents of a is Hello World!. The

class string contains many more ways to manipulate the contents or get information about

it, e. g. whether it contains certain substrings. It is also possible to get a copy of the

internal characters of the string with the function c str, e. g. a.c str(), as this is sometimes

necessary.

The string class can be used like any ordinary other variable, i. e. it can be used in file

operations or arrays can be created of it.

3.12 Type casts

In Mathematica it is always possible to transfer the contents of a variable at any time

to any other variable. Mathematica will then adjust the type of variable dynamically to

accommodate its new content.

This is not so in a strongly typed language like C(++). It is, e. g., not possible to

assign an integer to a string or a real to an integer. However, it is possible to recast a

27Use r” to have a ” in a string. The preset r always indicates a special character. E. g. a line-ending

would (also) be rn.
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type, i. e. to reinterpret its content. If the type to which a variable should be assigned

to is a superset, this does not need any particular effort. It is always possible to assign

an int to a double, or a double to a long double. If information is modified or cannot be

copied verbatim, it is necessary to provide an explicit typecast. In this case, the variable

is reinterpreted as if.

There are again two possible ways of how to do so. Consider, e. g., the need to assign a

double to an int. Mathematically, this requires to deal with the fractional part. Given that

the double is variable b and the int is variable a, this can be achieved by either a=(int)b or

by a=static cast<int>(b). In both cases, the fractional part is just cut off28. The former

method is inherited from C. While it works for basic types, it does not offer a very flexible

way of extending it to objects and classes. The second option stems from the concepts of

templates, which will be discussed in section 10.11. It is more flexible, and the preferred

version to use in C++, but yields the same results when operated on trivial data types.

It is strongly recommended to always perform explicit type casts, even if implicit type-

casts in the given case work, as then the compiler can make some amount of sanity checks.

Since the compiler otherwise blindly trusts the programmer, a problematic typecast can

otherwise yield hard to detect serious problems.

Note that it is possible to also typecast the pointers of section 3.7. This changes how

data is read from and written to the memory location when dereferencing the pointer. If

the type of data at the location is not of the assumed type, this will yield garbage at best

and a crash at worst.

3.13 Documentation

Now, there are many variables with names and properties. How to find a way among

them?

The probably most neglected part of programming is documentation. Any program-

ming language offers, in various degrees of sophistication, the possibility to document the

code within the code itself. I. e. there are statements which are ignored upon execution,

and therefore only serves the reader of a code, but not the user.

It is commonly assumed that in a well-documented code is about a third to a half

documentation.

This documentation serves the purpose to make the code understandable not only

to other people (a situation very often happening in physics with the high rate of new

28The function round performs mathematical rounding, and there are also other ways to deal with the

fractional part, like determining the closest larger or smaller integer.
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master and PhD students becoming involved with the code), but also to the programmer

herself/himself. After a couple of years understanding one’s own code can become as

challenging as understanding the code of others.

In fact, the pseudo-code in the listings 1.1 and 1.2 can already be considered as a first

step towards a documentation of the final codes.

Besides the documentation of the code inside the code itself, there should also be two

other documents describing the code. One should document the definitions and interfaces

of the code, and should be aimed at other programmers, who will reuse the code and

continue developing it. The other should be discussing how to use the code for its intended

purpose, i. e. how to apply it. Today, many tools are available which can extract suitable

marked parts of the documentation inside the code to build at least a skeleton of these

two documents.



Chapter 4

Flow control

So far, the programs started from a starting point, being that initial values for variables

or user input from file and keyboard, to some output. However, it was not possible to

react on what is going on, it just continued the program without alternatives. That is, of

course, unsatisfactory. A program should be able to react differently on different inputs.

This is achieved by the so-called flow control. There are various possibilities, which will

be introduced in turn.

Flow control works rather similar in both Mathematica and C(++), and is especially

conceptually of the same mind-set.

Generically, all kinds of flow control are based on logical statements, i. e. statements

which can be either true or false. To formulate them uses heavily the logical operations of

section 3.6.2: If something is true do this, and if it is false do something else.

4.1 Binary if

The simplest kind of flow control is a binary decision: If yes do something. If no do nothing

or something else. The basic structure of this binary if in C(++) is

if(condition){statements} else {statements}; (4.1)

How this works is exemplified in listing 4.1. Assume for it that the variables a and b are

ordinary int, and have been initialized.

Listing 4.1: Binary if.

1 i f ( a==2) cout<<c<<endl ;

2 i f ( ( a>2)&&(b==3)) cout<<b<<endl ;

3 i f ( ( a==2) | |(b==3)) {

40
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4 int d=a+b ;

5 cout<<d<<endl ;

6 d=a−b ;
7 cout<<d<<endl ;

8 } ;
9 i f ( a==2) { a++; cout<<a<<endl ; } else { a−−; cout<<a<<endl ; } ;
10 a=2;

11 i f ((++a==2)&&(b++==3)) cout<<a<<endl ;

Much of the general form is actually optional. The simplest case is shown in line 1. Here,

the condition is formulated as the logical test a==2, i. e., whether the value of a at the

moment is 2. It does not matter what the value of a is before or after this. If this is

true, the following statement, putting the value of c to screen, is executed. If not, nothing

happens. Note that what is done is free, and does not need to have anything to do with

the condition. This shows that the else part of the definition (4.1) is optional. It is not

necessary to provide an alternative reaction, the default is simply to do nothing if the

condition is not fulfilled. Also, a single statement does not need an enclosing block. It is

not possible to leave out the first statement. Rather, if it is necessary to not do anything

if something is fulfilled, but otherwise do something, the test should be on the negated

condition using the logical not operator !.

Line 2 of the listing shows that the conditions can be quite involved, but as long as

they are delivering ultimately either true or false, this can be as complicated as desired or

required.

Lines 3 to 8 show that also more than just one statement can be conditionally executed.

However, in this case they need to be enclosed as a block, similar to section 3.3. It is then,

as done in line 4, even possible to define new variables, which will only exist inside this

block, but can be used freely within. I. e., it is no longer possible to access the variable d

after line 8. There are also issues with this, also applying to the following sections of this

chapter, to be detailed in section 5.3.

As line 9 shows, it does not matter how the lines are arranged in a block, and all

statements can be written in one line, or many. The additional new thing in line 9 is the

else-branch: If the condition is true, the block before the else is executed. If it is not true,

the block after the else is executed. In this case, if a is two, a is increased before output,

and otherwise decreased.

Line 10 and 11 show an important trap. Conditions can also involve statements which

alter variables. However, the evaluation of the condition of the if is not continued, for

efficiency reasons, if it cannot become true. It is now important how the ++ operation
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works, which was introduced in section 3.6.1. If it is before the variable, the value of

the variable is first increased, and then provided. If it is appended, the variable is first

evaluated, and then increased, and likewise for the -- operator. Thus, in line 10 the content

of a is first increased, and then used to evaluate the condition. Thus, the condition fails,

as it can no longer evaluate to true. As a consequence, b++ is not executed, and therefore

the value of b is not changed. If, on the other hand, the statement would be a++, the

value of a would first be used to evaluate the condition, and then the value of a would be

changed. Thus, the first part would be true, and b would be changed, and then evaluated

to test the condition.

This is an example of a so-called side-effect. Such side-effects can be used to write

extremely efficient code. However, it is very hard to avoid mistakes, and therefore only

recommended, if you know what you do.

It is an important feature of a conceptually pure functional language that such side-

effects are not possible. Mathematica is not so conceptually pure. Its version of if

If[condition,statement,else statement]

works in the same way as the one in C(++), except for the little bit different syntax. Note

that variables in Mathematica stay once used, and thus if a variable is declared inside

the statements, it is afterwards still available. This is the major difference to the C(++)

case. Furthermore, if evaluated, the value of this If statement in Mathematica equals the

last result it produces inside its statements, acting like a mathematical statement. Thus,

If[a >2,3,c=4] will yield 3 if a is greater than two, and otherwise set c to 4, declaring

it if it does not yet exist, and will yield 4. To use multiple statements in the block

of the Mathematica If use ; to separate them. Thus, the use of , and ; is here reversed

between C++ and Mathematica, though such problems are syntax problems and therefore

immediately recognized by either the compiler or Mathematica.

The ordinary if of C(++) does not yield a result. However, there is a version, which

does so, a so-called trinary operator (in contrast to binary, like +). It has the syntax

(condition)?(statement):(else statement)

As an example, a=(b>3)?(0):(1) whill give a the value 0 if b is greater than 3, and otherwise

1. Again, the rules for evaluation order apply.

It should be noted that if statements can be arbitrarily nested. E. g. in a condition for

a C(++) if trinary ifs can be used, though note that still the rules for evaluation ordering

apply. Also, in all blocks an arbitrary nesting of if statements are possible. This is true,

both for C(++) and for Mathematica.
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4.2 Switch

It happens quite often that it is necessary to not only decide between two possibilities,

but between many. It is possible to do so with a suitable chosen sequence of nested if

statements. However, because it happens quite often, an additional construct exist to

simplify some of these cases1. This is the so-called switch statement. An example of how

it works is given in listing 4.2.

Listing 4.2: Switch statements.

1 const int b=1;

2 switch ( a ) {
3 case 0 : cout<<a ; break ;

4 case b : cout<<a ; cout<<endl ; break ;

5 case 2 : cout<<(a+1)<<endl ;

6 case 12 : cout<<1<<endl ; break ;

7 case −3: case −1: cout<<endl ; break ;

8 case 4 . . . 1 1 : cout<<”Al l ”<<break ;

9 default : cout<<”None”<<endl ;

10 } ;

The starting point is line 2. The switch statement requires an integer variable on which to

operate, whose name is given in the parentheses. After this, the block has a fixed structure,

it is a sequence of case statements, followed by an (optional) default statement, after which

the block is closed. Thus, the switch statement provides the possibility to do something

depending on the contents of integer variables, which are then enumerated, though not

necessarily in a particular order. As line 4 shows, also constants can be used for this, but

not variables2. Every case consists out of one (line 3) or more (line 4) statements, which

are terminated by a break command. If such a break does not exist, the switch will continue

to execute. I. e., if a=2, not only will line 5 be executed, but afterwards also line 6, even

if a is different from 12. This will be continued until either a break is encountered (here in

line 6) or until the end of the switch statement is reached (here in line 10). It is possible

to give several values the same code, which is done in line 7, where two different values

do the same thing, or in line 8, where are range is used3, i. e. the same will be done for

1In actuality, it also makes these cases substantially more efficient. This is also the reasons for the

restrictions applying to it, as such an increase in efficiency would otherwise not be possible.
2To give the constants a useful framework there exists also a so-called enum type, which is essentially

an array of mappings of names to constant numbers.
3Ranges are common, but not part of all versions of C++. Some compilers may therefore reject them.
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a containing any value between, and including, 4 and 11. If no case matches, the default

will be executed, if it exist. Otherwise, nothing happens.

There are a few caveats. A case cannot be doubled, also not inside a range. While the

value of the variable, in this case a, can be manipulated in a case, this will not change

anything, as the destination for the switch is chosen before the statements are performed.

The switch can be performed also based on a numerical expression. Note that also logical

expressions are interpreted internally as integer, and could be used. But in this cases an

if is the recommend procedure. It is possible to construct unreachable code. If, e. g. a is

an unsigned integer, the code in line 7 will never be executed4.

Also Mathematica has a switch operation, which has the syntax

Switch[condition,value,statement,value,block,...]

Where condition is evaluated, and then the statement is performed which follows the first

value fitting the condition. Note that it is more flexible, as both the condition and the

value can take any form. This indicates that in Mathematica this is rather for convenience

to avoid nested ifs, while its performance aspect is much more relevant in C(++), as well

as the strong typing.

4.3 Loops

Another kind of flow control is a conditional repetition of some instruction(s). The simplest

possibility is, e. g., to add all numbers up to a given value, or to calculate a faculty.

However, loops play a very important role for much more complicated behaviors. If, e.

g., your computer is expecting your input, it is in truth somewhere deep down some loop,

checking the keyboard or touchscreen, whether something has happened, until something

happens.

For this purpose three kinds of loops exist. While it is (almost5) possible to write any

loop with any of the three constructions, this is not the intention. Each of these loops

replicates some particular kind of problem, and by using the most appropriate construction

the program becomes easier readable, as the intention of the programmer can already be

gleaned from her or his choice of loop construction.

4Note that compiling using the -Wall and -pedantic option would point out this as a warning to you,

but otherwise not.
5Actually always if the possibilities of 4.4 are used.
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4.3.1 For loops

The idea of a for loop is essentially to replicate the mathematical summation (or product)

construction, though its possibilities are far more powerful. Its syntax is

for(initialization;condition;modification) block;

Thus, there are four relevant parts. The simplest is the block: This is either a single

statement or some collection of statements collected as a block, which then requires a set

of {} to open and close the block, so very similar to the if case in section 4.1.

This block is repeated until the condition is fulfilled. Since the condition is evaluated

before the block is executed for the first time, it can happen that the block is not executed

at all. The condition is a logical statement, and has to evaluate to either true or false,

but can otherwise be any kind of arbitrary complex logical expression, and can e. g. even

involve trinary ifs. Before this condition is evaluated for the first time, the initialization

is performed, which can be any statement, as long as it is a single statement. It is even,

and in fact quite common, to declare a variable in there. This variable is then known

in both the condition and the modification, as well as in the block. The modification is

finally a statement, which is executed after the end of the block, but before the condition

is evaluated. As an example, listing 4.3 shows how to calculate the sum up to a given

number and the faculty and the odd faculty of the same number.

Listing 4.3: Examples of the for loop.

1 int n=5;

2 int sum=0, f a c =1, f a c2 =1;

3 for ( int i =1; i<=n;++ i ) sum+=i ;

4 for ( int i=n ; i>1;−− i ) f a c∗=i ;

5 for (double i =1; i<=n ; i+=2) f a c2∗=i ;

This shows that the variable i, the so-called counting variable, can be reused and redefined

in the different loops. Lines 3 and 4 illustrate that the modification can go any way, and

line 5 that it is not necessary to just do a simple increment, even though this is by far the

most common case. As is also visible, the counting variable is available within the block

of the for loop. It would not be available outside the for loop.

It should be noted that the for instruction part can be modified in the block. E. g., it

would be possible to write

for(int i=0;i<n;++i) { sum+=i; n-=2; };
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In this case the condition for the termination of the loop would be changed during the

execution of the loop. It is also possible to manipulate the counting variable. E. g.

for(int i=0;i<n;++i) { sum+=i; i=(i>5)?(n):(i); };

would terminate the loop if i should become greater than 5, even if n is greater than

5. As a consequence, parts of the for control can be left empty, e. g. a for loop without

modification or initialization is possible. Also the condition can be empty, though this

implies that the for loop runs forever, except by forceful interruptions to be introduced in

section 4.4.

This possibility to manipulate the behavior of a for loop in the block provides both

tremendous flexibility and, at the same time, a huge potential for unintended side-effects,

which are notoriously hard to track. Especially, even though this is not the case in the

examples in listing 4.3, the blocks can become quite lengthy, and especially in combina-

tions with the functions of chapter 5 quite involved. It is therefore recommended to not

manipulate the control part of a for loop as long as one does not has a very precise idea

of why one is doing it, and no alternative way is practical.

Again, also Mathematica provides a very similar for loop with the syntax

For[initialization,condition,modification,block]

It operates just like the C(++) loop, but for the increase of flexibility in all parts as with

the Mathematica versions of If and Switch.

4.3.2 Do and while loops

It happens that a counting variable is not necessary when performing a loop. Rather, it

is sufficient to perform a loop until some condition is met. For this purpose C(++) offers

two possibilities,

while(condition)block;

do{block}while(condition);

The only difference between both constructs is that in the first case the condition is checked

before the first execution of the block. Therefore, the block may never be executed. In

the second case, the block is executed at least once, because the execution comes before

checking the condition. Thus, the do version could be considered to just help in structuring

programs, but may also be useful to optimize the last bit of efficiency. Still, it is highly

recommend to use the kind of loop which actually suits the purpose, instead of just using

always the same type of loop.
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Note that in both kinds of loops it is necessary that the block influences the condition,

as it otherwise will remain forever either true or false, and thus the block is repeated always

or never. Thus, the flow control of these kind of loops is conceptually different than for

for loops, where the flow control is intended to be outside the block, and not inside.

Mathematica has also both a Do and a While loop, but they work a little bit differently

than in C(++).

The Do loop has a number of alternative syntaxes

Do[block,number]

Do[block,counting list]

In the first case the block is done number times. In the second case, this is steered by

one or more comma-separated lists. Each list has as a first entry the name of a counting

variable. If there is a single second entry, e. g. {i,n}, the counting variable will take values

from 1 to n in steps of 1, and every time the block will be executed. In case {i,n1,n2}, it
starts from n1 and goes to n2 in units of 1. In case {i,n1,n2,step} in does so in steps of

size step. This is thus rather like a For loop. Finally, it can be {i,list}, and then i takes

the values given in the list in the order of the list, when every time the block is executed.

Thus, the Mathematica version of the Do loop does not check for a condition, but works

through a predetermined range.

The While loop has the syntax

While[condition,block],

and tests for the condition in the beginning, and repeats the block until the condition is

no longer true. Is is thus very similar to the do loop of C(++). In contrast to the For and

Do loops it is in Mathematica only the While loop where the flow control is intended to

reside inside the block.

4.4 Flow interruptions

As already indicated in section 4.1 there is a possibility to alter the flow control of loops,

and actually also blocks, in C(++). There are four such possibilities.

The simplest one is continue;. It can be used inside of any of the loops and makes the

program skip the remainder of the block and let it continue at the next test. It is thus a

valid way to, e. g., avoid an if statement, or a nesting of if statements inside a loop.

A more drastic operation is break;. It already appeared in the switch statement of

section 4.2. It can also be used inside a loop. Its effect is that the loop is terminated, i. e.
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the remainder of the block is skipped, and the program will continue after the loop. It has

thus the same effect as a continue where afterwards the termination condition is found to

be true. Note, however, that the condition is not necessarily true; the program just acts

as if it were true.

The next one is the return statement, which has syntax

return optional value;

It leaves the current function, a concept to be introduced in chapter 5, which are essentially

subprograms. They are thus terminated by this statement. If it is used inside the main

part of the program, like in section 3.1, it will terminate the program. It can be optionally

passed a value, which, however, is restricted by the (sub)program it is returning from,

as discussed in chapter 5. If this is the main program, this must be of the same type as

written in front of main. E. g. in line 1 of listing 3.1 this is int, and thus the value must be

an integer. The only alternative for main is void, which requires no return value at all. The

returned value in the main program is given to the operating system. Usually a value of 0

indicates a normal program termination, and any other value a problem. This depends on

the operating system. If the return value is void the operating system will always assume

a normal program termination.

Finally, there is the command

exit(integer value);

which will terminate the program immediately, and pass the provided value to the op-

erating system, which will interpret it as above for return. The command exit is usually

not used for a controlled end of the program, but rather a panic shutdown because the

program found itself in a situation precluding normal operation. The intended end of

the program is reaching the end of the main program. However, this is convention, but

considered good style6.

4.5 Debugging

With these new possibilities come also new problems.

Just like calculations, codes are rarely correct in the first go, especially if they are a

little bit more complex. The process of correcting errors is called debugging.

6Concerning style: In some languages there exist possibilities to actually jump directly to a particular

line of code during program execution. These so-called goto statements are considered to be not only bad

style, but, in fact, dangerous, and should be avoided.
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The basic paradigm to avoid errors as good as possible is “Test early and test often”.

Testing means here to use the program, or some chunk of it, feed it with input for which

the answer is known, run it, and verify whether the result is indeed the one expected. In

addition, it should be feed with random input or even intentionally invalid data to see,

whether it deals with potentially problems satisfactorily. Ideally, this is automatized and

repeated whenever there has been a change to the code.

If an error shows up, locating it is probably the most annoying task there is. The main

reason for this is that errors usually do not arise close to where they surface. Furthermore,

as will be seen, there a plenty of possibilities that an erroneous behavior observed in one

part of the program is generated by an error in an entirely different part of code, which

then sets a chain reaction into motion culminating in this erroneous behavior. The main

reason for this is that the data is shared among the whole of the program. Unintentional

changes to the data in one part of the code can therefore entail problems elsewhere.

There is a number of preemptive possibilities to avoid these kind of problems. One is to

code as restrictive as possible. As an example, it will be possible to assign a chunk of data

the type of data it can hold, e. g. an integer number with or without sign. Choosing the

most restrictive possibility still compatible with the purpose will reduce the likelihood of

having an error because the data is erroneously set to a value not sensible for the purpose.

Also, most systems for coding offer the possibility to check code automatically at

various stages. It is useful to set the warning level for these automatized checks to the most

sensitive ones, even though this will force one to deal with a great number of constraints

and especially demands quite a lot of discipline during coding. Taking all warnings serious

helps to avoid errors before they arise.

Finally, always code cleanly. Avoid hasty solutions. Time saved in coding is usually

time lost doubly in debugging.
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Functions

In principle, everything is now available to write a program. However, the resulting code

would be a very lengthy thing. Especially, if parts of the code is needed in different places

of the program, they would be needed to be repeated at every place. All of this leads to

a structure which is, derisively, called ’spaghetti code’. While its aesthetic value may be

discussed, it is definitely very hard to maintain. It is also prone to errors, since if in a

repeated part of the code an error occurs, it is necessary to correct it everywhere.

To avoid these problems, a whole sequence of programming paradigms has been devel-

oped, of which the first is introduced in this chapter, and other follow in later chapters.

The one to be treated here is called function-oriented programming.

The idea behind it is that code which is reused should exist only once. Reused can be

here twofold. One is actually identical code. The other case is code where the operations

are the same, but the affected variables are different. Think of addition. E. g. a+b and

c+d are the same operations, but work on different variables.

This is achieved by putting reused code into subprograms, the functions already allured

to in section 3.1. To achieve the ability to operate on different variables, these functions

will have the possibility to work on passed variables, like the arguments of the addition

above.

5.1 Imperative languages and code reuse

All of this can be put into a more formal context.

The basic program structure exhibited in section 3.1 is what is known as an imperative

language: It executes statement after statement. While this seems to be the logical thing

to do to solve a problem, this has one serious drawback.

Consider the situation that to solve a problem, you have to do things often. Consider

50
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for example that you have some function, which is not known in closed form, e. g. the Γ

function, but only in a series representation, which can be used to approximate it by a

finite sum. If there is now a problem in which this function has to be evaluated multiple

times, the simple-minded approach of statement after statement runs into trouble: Should

it really be necessary to replicate the statements needed to calculate the sum multiple

times?

In fact, in the first imperative languages, this was the case. Fortunately, it was early

on discovered that this would be a tremendous problem, and that it would be much better

to create some way how to reuse the code, instead of rewriting it. This was achieved by

creating functions. Functions are chunks of code, which can be executed using variables,

and which pass their result back. In a bit of pseudocode, this looks like

1 ca l cu l a t e sum ( argument )

2 do the sum f o r argument ;

3 return the value

4 end o f func t i on

5

6 statement . . . ;

7 a=c a l c u l a t e f u n c t i o n ( 2 ) ;

8 b=c a l c u l a t e f u n c t i o n ( 3 ) ;

9 statement . . . ;

In this example, a function has been defined, which does the sum. It takes an argument,

e. g. the value for which the Γ-function should be calculated for, does this, and returns

the value, which is here symbolically given by assigning the function to a variable. This

is reminiscent to a a formulation in mathematics, which also explains the name ’function’

for this action. This function is then called during normal program flow twice for different

arguments, without needing to replicate the code. This is the basic starting point of code

reuse. It transforms also the language from an imperative language to a function-oriented

language.

Code reuse has become one of the major topics in programming, and efficient code

reuse is at the heart of essentially all computing today. Without code reuse, modern

technology would be impossible.
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5.2 Basic functions

Start once more with C(++). So far, all code had to be within the block after main, as

introduced in section 3.1. Functions are not, but they are outside, and before, main in the

program. In fact, they need to be written before they are used for the first time in the

code1. The syntax is

return-type name(arguments) {block}

There are therefore four relevant parts.

The simplest is the block. This is just an arbitrary sequence of statements. However, as

always, any variable declared inside this block is only valid inside the block. Importantly,

if a variable is given a value inside the block, it will not keep this value after the function

ends. This will be discussed in more detail in section 5.3.

The name, which has to adhere to the same restrictions as variables in section 3.3,

needs to be both unique and to be different from any other function’s name. If there are

variables known in the same context, or scope, as the function, the name of the function

may also not be the same as that of any of these variables. Other then this, the name can

be chosen freely. However, it is strongly advised to have a name which somehow represents

the purpose of the function. Also, if there exists multiple functions all associated with a

similar purpose, it is also good practice to make this clear by choosing some part of the

name similarly. E. g., if there is a function to add two matrices and one to multiply, a

possibility would be matrix add and matrix multiply.

The return type is a possibility to yield a result, which can then be used. This will be

explained in more detail in section 5.5. If the function should not return any value, the

return type needs to be void.

Similarly, the arguments is a list of variables, which can be passed to the function to

work with. This is will be discussed in more detail in section 5.4. As before, if no variables

should be passed, this must be declared void. I. e. a function which neither returns a value

nor needs input would be declared as void do something(void) {...}.
To use a function, it is used in the program. Consider listing 5.1.

Listing 5.1: Example for a function.

1 void p r i n t h e l l o (void ) {
2 cout<<”Hel lo ”<<endl ;

3 }
4

1There is a possibility to circumvent this, as described in section 5.7.
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5 int main (void ) {
6 for ( int i =0; i<5;++ i ) p r i n t h e l l o ( ) ;

7 }

Here a function is used to print five times hello to the screen. The function is called by

its name, and since it has no parameters, it is followed by ().

Functions in Mathematica, as a partly functional language, are a somewhat more

involved topic.

Purely mathematical functions can be defined as

name[v1 ,v2 ,...]=expression(v1, v2, ...)

The name is again a valid name, following the same rules as for variables. The list of argu-

ments are then arbitrary variable names, where each name is followed by . The expression

is then an arbitrary mathematical or other expression, which involves the variables, but

here used without the . The function is called as name[x1, x2, ...], where the variables

can now have arbitrary names. Consider as an example

f [x ]=1+
√
x

f [a]

where the first line is the definition, and the execution in the second line will yield 1+
√
a,

while f[2] will yield 1+
√
2. This is very useful to define more complex mathematical

functions. This will be explored in more detail in section 8.1.

It is also possible to define functions in the same form as in C++. The syntax is

Function[arguments, body]

where multiple arguments are passed as a list, and the body can use the name of the vari-

ables in the list (and of all variables declared before this). However, to use the function

later, the result of this operation has to be assigned to a variable, which then formally keeps

the definition of the function as a value. This is the difference between function-oriented

programming in C(++), where functions are independent entities, and a functional lan-

guage like Mathematica, where functions are the result of an expression, which can be

assigned to a variable, or just executed. Such a function is also called a pure function.

To call such a function, it is necessary to use the variable, providing the argument list

for the case of a delayed executing. E. g.

c=1

a=Function[{x,y},x+y+c]

a[d,b]
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will yield d+b+1. If d and/or b have actual values, it will yield the actual value. It is also

possible to evaluate the function directly, by appending the arguments list, just like for

the variable, to the function definition. This is a consequence of the idea that functions

are just expressions.

It is possible to also define functions in another way, but to the same effect. It has the

form

(body(#1,#2, ...))&

I. e., the body is written without an explicit parameter lists, and the parameters are

implicitly labeled in their order by #1... E. g. a=(#1+#2+c)& would do the same as the

declaration above, and would be executed in the same way.

5.3 Local and global variables

As noted already in chapter 4, variables in C(++) are not eternal, but are only valid

within the block, i. e. set of braces {}, within which they are declared. They are therefore

called local variables.

This has several important consequences.

First, they cannot be used outside their block, in which they are declared. But if a

block is nested inside a block, e. g. by two if statements, they can be used inside this nested

block. Hierarchically, they are available within every block, which is declared inside the

block they are declared within.

This ’inside’ is with respect to the position of the braces quite literally. A variable

declared is not usable inside a function called in the same block. The reason is that the

block of the function is not declared inside this block, except if the function declaration

itself appears within the block, which is in principle possible, but usually considered bad

style2.

Second, if a variable is declared inside a block, and a variable of the same name exists

outside the block, the variable inside the block overrules the one outside the block, it

shadows it. Thus, when accessing a variable of such a doubly used name, the innermost

variable is used, and the outer variable(s) remain unchanged, and not directly accessible.

While this is a logical necessity to make meaningful programming in large projects possible,

it is still error prone. Therefore, if possible, multiple uses of the same name in nested blocks

should be avoided.

2Exceptions are anonymous functions, i. e. function declared without name, but these are quite ad-

vanced constructs to be skipped here.
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There is also the possibility to declare a variable outside of all blocks. Such a variable

is called a global variable. Its validity is thus being available everywhere, unless not

shadowed by a variable in a local block. Global variables are usually considered bad style.

However, as their position and existence in memory is not subject to exiting or leaving

blocks access to them is very quick. Thus, when it comes to efficiency, global variables

are useful. However, because of their unlimited visibility, they can be modified in very

different parts of the code. This can lead to very hard to track errors.

In listing 5.2 all of these visibility issues are exemplified.

Listing 5.2: Visibility of variables.

1 int a ; //Globa l v a r i a b l e , v e r s i on 1

2

3 void fun (void ) {
4 //Here , v e r s i on 1 i s v i s i b l e

5 int a ; //Version 2 o f the v a r i a b l e , l o c a l to t h i s f unc t i on

6 //Here a lways ve r s i on 2 o f a i s v i s i b l e

7 for ( int i =1; i<2;++ i ) {
8 int a ; //Version 3

9 //Here a lways ve r s i on 3 i s v i s i b l e

10 } ;
11 //Again ve r s i on 2

12 }
13

14 int main (void ) {
15 //Here ve r s i on 1 i s s t i l l v i s i b l e

16 int a ; //Version 4

17 //Here ve r s i on 4 i s v i s i b l e

18 for ( int i =0; i<5;++ i ) {
19 int a ; //Version 5

20 //Here only ve r s i on 5 i s v i s i b l e

21 fun ( ) ; // Ins i de the func t i on again ve r s i on 2 and 3 are v i s i b l e

22 i f ( i==1) {
23 int a ; //Version 6

24 //Here only ve r s i on 6 i s v i s i b l e

25 } ;
26 //Again ve r s i on 5

27 }
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28 //Again ve r s i on 4

29 }

Everything following a // in a line is a comment, and ignored by the compiler. It is only

for the reader of the program. The comments show where which variable of the same

name is where visible. If this appears confusing this illustrates well why the naming of

the variables should be done such that it is always clear which variable is referred to.

Especially, the same name should not be used within nested blocks. However, using in

consecutive blocks the same name is very common. Otherwise, every for loop would need a

new name for the counting variable, which would quickly lead to a proliferation of variable

names.

Note that all what has been said for variables also applies to constants.

5.4 Pass-by-reference, pass-by-value, defaults, and vari-

able lists

In many cases it is useful for a function to have arguments passed to it, and on which it

can operate. The arguments are a ,-separated list of the following structure

const type name=value

The const modifier and the value are optional.

Consider first the non-optional part. This is just like a variable declaration and a name

for the variable. It is by this name by which the variable (or the value) is known inside

the function. The type is not restricted, but arrays need to be of fixed size, as discussed

below3. It can also be some struct, as long as it contains only fixed-size array. Thus, an

argument is treated inside the function like a locally declared variable with an initial value

which is set by the function’s argument upon calling. As it is treated as a local variable,

its contents is lost at the end of the function, even if the content is modified. This is called

pass-by-value.

Consider the example in listing 5.3.

Listing 5.3: Example of arguments of a function.

1 void fun ( int a , int b) {
2 int d=1;

3 a=b+d ;

3Again, many compilers are somewhat flexible here, and this issue has changed over time.
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4 b=1;

5 }
6 [ . . . ]

7 int c=3;

8 fun (1 , c ) ;

9 [ . . . ]

The function fun has two arguments of type int. When it is called in line 8, it get passed

a value for the argument a. It also gets passed for the argument b as content the value of

the variable c. At line 2, a has the value 1 and b the value 3. However, inside the function

a and b are treated like locally defined variables, and can be modified. Thus, the values

passed along act as initialization for these variables. Hence, it is also possible to pass the

same variable for multiple arguments, e. g. fun(c,c) works as well, as do entire statements,

which yield a result of the correct type. Thus, even though b gets assigned a new value in

line 4, the variable c will still have the value 3 in line 9.

It should be noted that it is always necessary to pass a value, explicit or in form of a

variable, for each argument when calling a function. It is, however, possible to perform

type casts when doing so, as described in section 3.12.

The optional const modifier can be used to declare a variable as unchangeable inside

the function. As with normal constants this allows for optimization by the compiler. It

should therefore always be done, when it is possible. However, the argument can still

receive a variable upon calling for the purpose of initialization, i. e. line 8 in listing 5.3

is still valid even if b in line 1 would have been declared as const. Line 4, however, not

anymore.

The second optional part is a default initialization with = and a value. This is an

exception to the need to always pass along a value for each argument. If an argument

has such a so-called default value, no value needs to be passed on. However, to avoid

ambiguities, every argument after the first argument having a default value needs also

to have a default value. Since the order of arguments is chosen by the programmer, a

corresponding reordering is always possible, and therefore does not pose a problem.

Note that it is possible to shadow also arguments, which should be avoided.

It is often inconvenient that the results cannot be passed back, except when using a

return type as discussed in section 5.5. There are two possibilities how to do so4. The first

is inherited from C, and makes use of the pointers of section 3.7. While it is true that the

argument cannot be changed, it is possible to pass along a pointer to a variable, which can

4A third possibility is the usage of global variables, which is not recommended except when necessary

for critical performance reasons.
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then be used to change the contents of a variable by dereferencing. This is exemplified in

listing 5.4

Listing 5.4: Example of arguments of a function.

1 void fun ( int ∗a ) {
2 ∗a=2+∗a ;
3 }
4 [ . . . ]

5 int c=3;

6 fun(&c ) ;

7 [ . . . ]

This function will increase the value of the passed variable by 2, and thus c will have the

value 5 in line 7. This works as follows. The function has as an argument a pointer to an

integer. The value of this pointer is provided with the address of the variable c using the

address operator in line 6. In line 2 the dereferencing operator is then used twice. On the

right-hand side it is used to read the current value stored at the location pointed to by

the pointer in the variable a. Afterwards, the assignment stores the value at the address

provided again within the variable a. Thus, the contents of the variable a does not change,

but the contents of the variable c.

While actually all implementations of manipulating the contents of variables inside

functions work in this way behind the scenes, it is for a programmer still error-prone, as

working with pointers always is. As a consequence, C++ offers an alternative syntax of

this procedure, which is called pass-by-reference5. By declaring an argument like type

&name, the whole referencing and dereferencing is now taken care of by the compiler. I.

e., changes to the variable passed as argument inside the function will affect the variable

outside. Thus, the function fun of listing 5.4 could be written with the same effect as void

fun(int &a) { a=2+a;}.
The advantage of this form of variable passing is that no error can be made in terms of

referencing and dereferencing. The disadvantage is that, especially with multiple nested

functions, it is possible to loose track of which modification of variables will have which

effect.

Above, arrays have been mentioned as a possible type of argument. However, this is

problematic. The reason is that arrays become quickly large, and pass-by-value becomes

inefficient in terms of memory and speed, as the arrays need to be copied. Therefore, it

is recommend that arrays are always passed by reference. It is important for this to note

5Actually, so is the pointer version.
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that arrays in C and C++ are actually a pointer to a chunk of memory containing the

data. Having declared int a[5]; the variable a is a pointer of type int. Thus, to have a

function taking an array of integer could be declared as void fun(int *a). This immediately

highlights a problem: How does the function know about the array structure? The answer

is: It does not. Thus, the function is entirely responsible to make sure it does the right thing

- or the programmer calling the function. As a mnemonic, it is possible to also declare void

fun(int a[]) or void fun(int a[10]). However, in neither case will the compiler check what

is done inside the function, and internally there is no difference on how the three cases are

handled. In particular, the size of the array in the last declaration will be ignored inside

the function when accessing its elements. Thus, passing arrays as function arguments is

potentially very dangerous. This is best avoided by object-orientation, as will be discussed

in chapter 10. Multidimensional arrays are even more cumbersome, as a pointer-on-pointer

not necessarily uses a continuous chunk of memory, while a multidimensional array does.

Thus, for the purpose of passing variables, a pointer-on-pointer is considered to be different

than a multidimensional array, and therefore explicit type casts may be necessary.

It should be noted that constant values or expressions cannot be passed-by-reference,

and will yield a syntax error.

As discussed in section 5.3, Mathematica does not distinguish these cases, and therefore

all of this plays no role there.

Finally, it is possible to create functions of the same name and return type, but with

different arguments, provided the lists are truly distinct. This is called function overload-

ing. Each such function must be defined independently, i. e. has its own body. Depending

on the passed parameters, the compiler will then select the correct version. If certain

parameters are automatically type casted, it may be necessary to add explicit type casts.

In dubious cases, some compilers may also stop compilation, if a unique selection is not

possible.

5.5 Functions with return type

The far most common case is that a function returns none or only a single quantity. While

these cases can be captured using arguments, there is also an alternative way to do so,

the return type. So far, the functions had been declared as void fun(). However, it is

alternatively possible to declare them as type fun(), where type is an arbitrary elementary

type, including any kind of pointers, or a struct, but not an array except in form of a pointer

to its first element.

If a function has a return type, the value returned is determined by the statement
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return value; at any arbitrary point inside the function. If this statement is reached, the

function terminates, and returns a value. This value can be used like any value. Consider

the following listing

Listing 5.5: Example of return types of a function.

1 int fun ( int a ) {
2 i f ( a==0) return −1;

3 return a+1;

4 return a−1;

5 }
6 [ . . . ]

7 c=d+fun ( g ) ;

The function fun of listing 5.5 returns an integer value. Thus, when evaluated in line

7, the variable c gets assigned the sum of d and whatever fun returns for the value of

a. Inside the definition of fun, the function returns the value of its argument increased

by one in line 3. However, the return statement can be called at arbitrary points in the

function. This is exemplified by line 2: If a has the value 0, the function will return -1

instead of 1. The function stops there. Correspondingly, line 4 will never be reached, and

a pedantic compiler will issue a warning because of this.

Note that it is in addition possible to have arguments for such a function, which can

be modified as well.

The true reason for adding a second possibility to return a single value in this form

is that this allows to use functions in (mathematical) expressions. E. g. something like

fun(a)+fun(1+fun(a)) is well possible. The possibility to perform nested calls of func-

tions is helpful in constructing more complicated expressions. There is no limit to the

number of nestings, and of course different functions can be used.

Note that here the order is uniquely fixed - first all calls for the arguments will be

performed before the function itself will be performed. With multiple nesting levels, this

will occur from innermost to outermost and (usually) from left to right. This is very

important to keep in mind to avoid any unwanted side-effects. The latter is also the reason

why one should be very careful with such constructions. Of course, it is not possible to

perform a pass-by-reference in this way.
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5.6 Recursive functions and the heap

In section 5.5 it was shown that return values of functions can be used as arguments. In-

deed, it is even possible for a function to call itself. Consider the example int fac(unsigned

int n) { return (n > 1)?(n*fac(n-1)):(1); }. This function calculates the faculty of a

number. It does so by a so-called recursion, i. e. by calling itself, using a modified argu-

ment. While such a recursion can always be constructed entirely with loops, a recursive

construction is often the most elegant form.

However, how does the function knows where it is, and what are the corresponding

variables?

The answer is that all functions get a local chunk of memory when they are called, the

so-called heap. It contains all the memory for all variables of the function. It also contains

an information where the function returns to, once finished. Such a heap is created each

time a function is called, and thus the program follows from one heap to the next the way

back.

This already indicates a problem with recursive functions: Each time the function is

called, another chunk of memory is allocated. Though the administrative part is not too

large, substantial amount of data can let the memory required quickly grow. Thus, deeply

recursive functions can easily use up all memory of a machine, and thus crash. Thus, while

elegant, the maximum depth of a recursive function, together with the amount of memory

required should always be kept in mind.

Furthermore, creating the heap and only filling it with just the administrative function

requires time. The loop version res=n; for(int i=(n-1);i >0;−− i) res*=i; is much faster.

Thus, recursive functions are usually not a good choice if efficiency is most important.

However, flattening the code, as putting a recursive function into a loop structure is

called, can create also extremely hard to read and maintain code, and also sometimes

very lengthy one. Thus, efficiency, maintainability, and memory consumption have to be

carefully considered before deciding whether a loop structure or a recursive structure is

more appropriate. Still, in physics mostly the flat version wins.

5.7 Forward declarations

It can happen occasionally that two functions need each other. This can pose a serious

problem, as usually only things are known which are declared in the code before first use.

The solution to this problem are forward declarations. A forward declaration of a func-

tion is done by giving the name of the function, as well as its return-type and arguments,
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but without a body, and a final semicolon ;, just like a statement. This can be done

wherever otherwise a function can be defined. The function can then be used afterwards.

However, the remainder of the function has to be supplied later in the code, but

somewhere in the same block, or in one of the enclosing blocks, or in the body of the main

program.

5.8 Operator overloading

While using names for functions usually does the job, it is not always convenient for

readability. Consider, e. g. the idea of adding two matrices. It is possible to write a

function matrixmadd(matrixm1,matrix m2), where it was assumed that matrix is a suitably

defined new type, e. g. using a struct. For readability it would, however, be helpful if this

could be written as m1+m2. This is possible by operator overloading. This is a special

case of the concept of function overloading of section 5.4.

To get a + which operates on matrices in the same way as the function before would be

declared as matrix operator+(matrix m1,matrix m2), and would have the same body as the

function before. In the remainder of the code it would be possible to write res=m1+m2;

rather than res=madd(m1,m2). Note that the number of arguments, and whether some-

thing is returned, must match the number of arguments of the original operator. However,

it is not necessary that all are of the same type. If there would be also a type vector, matrix-

vector multiplication could be realized as vector operator*(matrix m,vector v). Note that

operator precedence remains as it is for the standard versions of the operator, i. e. e. g. *

has a higher precedence than +.

In a similar way many of the other operators can be overloaded, especially all mathe-

matical operations, but even operations like []. This is helpful to implement, e. g., more

comfortable versions of arrays.

Other than that, operator overloading is essentially just a very special way of functions

with a return value.

While this is a very powerful possibility, it can also quickly become confusing. Just

think of the possibility to overload the operator + to have a function actually subtracting

something. Thus, operator overloading requires very careful design decisions, and should

normally be only used to replicate behaviors known to readers and users of the code (not

the program!) from the corresponding context, e. g. above linear algebra. That these

operators can then have also many more types as arguments can also make it necessary

to ensure by explicit typecasts that always the right context is used.
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5.9 Function pointer

It happens occasionally that it would be useful to choose different functions when executing

something. It appears at first a simple problem. Just define all functions, and use if or

switch.

However, in larger projects not all possibilities are known from the outset, or some

functionality should only be defined much later. This situation can be dealt with by so-

called function pointers. Or, if it should be changed at runtime. A common situation

where this arises are callbacks, i. e. that some part of the code would like to be informed,

if somewhere else something is is happening.

In essence, function pointers are not different from the pointers to data of section 3.7.

The only difference is that they not locate chunks of data in memory, but a function in

the code6.

However, just like a pointer needs a type7, also a function pointer needs a definition

of the function. It needs the type. This is done in almost the same way as for a forward

declaration, except that the name needs not been known yet. Thus, to have a function

pointer to point later at a function defined as

int fun(double a, int b)

requires to declare a variable as

void (*name)(double,int),

where name is the name of the variable. Any variable of this type can be assigned a

function by using the address operator &. E. g., using the declarations of listing 5.5, it is

possible to write

void (*fp)(int)=&fun; (5.1)

Then, the variable fp contains the address of the function fun. To use the function, it

is possible to just write fp(variable), where variable is the variable of type int required

by the function fun in listing 5.5. If an integer variable of name a exists, this would lead

to fp(a). In this case, the explicit dereferencing operator * is not needed, though using it

as (*fp)(a) will work as well. The compiler interprets this correctly. Such statements can

6Actually, where the function is in the memory. After all, the code of functions is stored somewhere,

and there is therefore an address where the function starts. Internally, it is just this address which is

passed around, and therefore internally function pointers are represented in the same way as ordinary

pointers, and only interpreted differently by the compiler.
7There is actually also a non-typed pointer, void*. However, to use it for anything but an address

requires a type cast.
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then be used everywhere where ordinary functions could be used, including the evaluation

of the return value of the function.

5.10 Programming styles and philosophy

With these possibilities at hand, it is useful to discuss a few more elements of how to deal

with programming.

There is, unfortunately, no best way how to program. Just like a calculation, it is for

some people better to just jump into the fray, while others first create all auxiliary things

before attacking the real problem. However, just like with a calculation one should never

trust one owns skill without questioning. Best is if somebody else double checks what one

is doing. Since this kind of resource is not always available, the content of section 4.5 show

always be kept in mind.

Irrespective of the verification of the written code, there are still very different ways

of how to actually organize writing the code. The most extreme versions are probably

to write the full code in one go from start to finish, and then for the first time deploy

it for its purpose. The other extreme is to divide the code in as many small pieces as

possible. These are written and then deployed individually to solve only their particular

subproblem. These chunks are then integrated over time to create the full program. There

is also the possibility to deploy only a rudimentary code at first, and then add features

over time, which is called continuous deployment.

The kind of teams which should develop the code are also subject to various different

philosophies. This starts from one person-one task over the idea of having two persons to

always code together to provide check-and-balances to larger subgroups, which meet often

to coherently create parts of the program.

Inevitably, no matter how one programs, there will be errors.
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Dynamical variables

In section 5.3 it was discussed that variables can exist within different blocks. In chapter

3, the declaration of variables, including arrays, was presented.

However, these are all static definitions. Even if a variable only lives within a block, it

does quite statically so. If it exists or does not exist depends only on whether the program

is currently operating within the block. Such variables are therefore called static.

This is very often not sufficient. The reasons for this are manifold. One is that it may

not be known at program begin how many information has to be stored, and thus how

many variables are needed. Another is that sizes of arrays are not yet known. And there

are many more. It is therefore often necessary to create variables at run-time to variable

extent. Such variables created according to need and not declared at compile time are

called dynamic variables.

There are two caveats to note here.

One is that many language consider all variables as to be ’created on first use’. This is

particularly true for interpreted languages, but also applies to Mathematica. Therefore,

in these languages no distinction is necessary, and the problem does not arise. Thus, the

following only applies to C and C++. Such languages also have automatized functionality

to deal with all issues concerning memory management as discussed in section 6.2. This

is quite convenient, but leads also directly to the second caveat.

Because dynamical variables are not known at compile time, there are much less pos-

sibilities to optimize access to them. Thus, dynamical variables usually mean a loss in

efficiency. Thus, if not necessary, they should not be used1.

1Also, dynamical variables are more error prone than static variables, as they involve at one level or

another pointers.
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6.1 Memory allocation

A computer requires precise information. It is therefore not possible to reserve ’some

memory’. Rather, it is required to reserve a definite amount. Furthermore, in a strongly-

typed language like C(++), it is advisable to declare also the type of data to be stored in

memory. The side-effect is that it is not necessary to know how much memory is needed,

but only how much entities of a certain type need to be stored.

The simplest possibility is to create memory according to an elementary type (or struct).

To memorize where the data is located in memory requires a pointer. Thus, if an int should

be dynamically allocated requires to first declare a pointer to an integer

int *a;

There is not yet any memory associated with this variable. In fact, the variable declared

does not store the data. It only stores the address where there data will be stored.

To actually reserve a chunk of memory requires an explicit command, which is called2

new. Getting the memory is done by

a=new int;

The memory located at the address stored in a is now reserved to keep a variable of type

int. Its contents can now be set by using, e. g., *a=2, and be read also by using *a, i. e.

by using the dereferencing operator.

If no new has been performed, the quantity hold by a is not a valid address. Derefer-

encing it will yield some garbage at best. Writing to it will possibly result in a crash of

the program. Again, it is not checked by C(++) if the dereferencing is done on a valid

address, this is up to the programmer. It is therefore easy to play havoc with the contents.

If there is a second variable declared of the same type, say b, then b=a does not copy

the data located at the memory, but the address of the memory. Thereby, a and b now

reference the same location, and *a and *b will yield the same result. It is just two

pointers pointing at the same information in memory. This is useful, as it allows, e. g., to

allocate memory in a function, and keep the memory allocated and accessible by passing

the pointer to it to an argument of the function3. To actually transfer the contents of

the memory requires *b=*a. Note that this requires that b holds an address to a part of

2There is also an older set of operations centered around the command malloc originating from C. This

will not be used here, but may be necessary in certain environments.
3Note that to do that, the variable passed to the function must be declared as either int** or int*&,

as it is necessary to change the value of a pointer
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memory previously acquired using new. It is not automatically acquired. This has to be

done by the programmer.

If there is a third variable declared as int c, then c can be assigned the value stored

at the allocated memory location by c=*a. Note that this does not allocate memory. For

the variable c, this is done automatically by the declaration for c by the compiler. Note

also that the data is copied, and not that the memory allocated for c is now in any way

connected to the memory allocated for a, i. e. &c does not equal a, while c equals *a.

Later changes of either a or c will not affect the other variable, nor its content.

It is sometimes useful to dynamically allocate the memory to store a pointer. To have

a corresponding amount of memory, this requires to declare the variable as int **d - thus

the * stack. The memory is allocated as d=new int*. Alternatively, *d=a would copy the

address to the previously allocated memory chunk. To access the data would then be done

by dereferencing twice, **d, as well as for changes. This can actually be stacked arbitrarily

by adding more *s, to get more indirections.

This may seem like an odd thing to do. While there are cases where it is necessary to

have these kind of indirections, the more common use is when thinking about arrays.

Going back to section 3.8, the basic concept of an array was to have a fixed number of

consecutive spaces in memory to hold the same type of values. Thus, a variable declared

as int a[5] could be regarded as a pointer which pointed to the first element of the array.

Thus, a[0] and *a yielded the same result, as did a[1] and *(a+1). However, so far it

was not possible to get the number of elements selected at run-time. This is now possible

using dynamical allocation. If there is a variable, say n of type int n with the number of

elements of type double an array should hold, it could be created as

int *ar;

i. e. in the same way as a single pointer to an int! Why is this so? Because there is no

conceptual internal difference. Whether the pointer points at a single int or a sequence of

int is the same. It just points to an int.

The difference arises when the memory is allocated. Here, it does make a difference if

space for a single or more int is allocated. This is done by

ar=new int[n];

This allocates the necessary space to hold whatever value n holds. Note that a nonsensical

value, e. g. a negative one, will usually lead to a crash sooner or later. After this, the

variable ar can be used like an ordinary array, i. e. like ar[0] to access the first element
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and so on. Still, the memory so allocated can again be passed and kept in a different

variable by assigning the address, rather than the contents4.

It is now that multiple indirections come into play. In section 3.8 the case of multi-

dimensional arrays was discussed. A multi-dimensional array is allocated as shown in

listing 6.1

Listing 6.1: Allocating a two-dimensional integer array dynamically.

1 n=5; m=6;

2 int ∗∗a ;
3 a=new int ∗ [ n ] ;

4 for ( int i =0; i<n;++ i ) a [ i ]=new int [m] ;

In line 1 the variables n and m are set to the size of the different dimensions of the array.

Then a pointer to a pointer to an integer is declared in line 2. This pointer is set to a

newly allocated array of pointers in line 3. Each of the pointers in this array is now set

to a newly allocated array of integers in line 4. The integer elements of the final array

can now be accessed as in an ordinary array, i. e. e. g. by a[1][2]. Using only a[1] will

be a pointer to an array of (in this case) 6 integers. Note that because the arrays are

created consecutively it is not guaranteed that they are lying in a single chunk of memory

like in section 3.8. Using pointer arithmetic may therefore not work with them. For

this only statically allocated arrays should be used. This can be seen by the example of

allocating multiple arrays in different pointers. If their creation is interleaved, the memory

is not dealt out for each array consecutively, but consecutively in the order of requests.

Thus, the different arrays have non-continuous memory over which they are distributed.

This also implies that accessing dynamically created arrays can be slower than statically

allocated ones, as different parts may be located in quite different memory locations, and

thus disrupt cache coherency or just take longer to look up. Also, the subarrays can be

of different size. Therefore, whenever possible, static allocation should be preferred. But

this is only possible, if the (maximum) size of an array is known beforehand. That is often

not the case.

Of course, this can be continued arbitrarily to higher-dimensional arrays by creating

pointer to pointer to pointer and so on.

Note that if the requirement for new memory cannot be fulfilled, an error may occur,

or the pointer returned may just be NULL.

4In principle, this could be done also with a static array, as the variable still is just a pointer to an

array of integer. However, since the memory becomes no longer available once the program no longer

needs the array, this can easily lead to problems, and should be avoided.
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6.2 Memory management

Memory is a finite resource. For many programs, this is actually not a very important issue

individually. However, if multiple programs are running or one program does require very

much memory, its scarceness becomes felt even on modern machines. While automatically

the hard disks will be used as a memory extension by most modern operating systems, so-

called swapping, this slows down the system dramatically, making numerical computations

essentially impossible.

Thus, memory should only be used as little as reasonable possible. In particular, on

multiuser machines nobody can tell in advance how much memory someone else needs.

While the memory of statically allocated variables is managed by the compiler, this is

not the case with dynamically allocated memory. This has to be done by the programmer5.

To free up memory, which had been previously allocated by the operator new, the

operator delete can be used. Thus, after a=new int; the call delete a; will free the memory.

Afterwards the pointer stored in a is useless - whatever is now at the memory location

pointed to is as random as when choosing some random location in memory and reading

from there. To free up space allocated for arrays, the modification delete[] ar; is used.

Note that it is not necessary to provide the information how large the array allocated was.

If a multidimensional array should be freed, every subarray must be freed. Thus, in listing

6.1 this would be done by

for(int i=0;i < n;++i) delete[] a[i]; delete[] a;

to free up all allocated memory.

It should be noted that it is necessary to know the pointer to free the memory. Thus,

if in a function memory is allocated, but the pointer is not communicated to the outside,

it will be impossible to free the memory.

Taking care of memory is also known as memory management.

If memory is not freed, or cannot be freed, this is called a memory leak. This happens if

a pointer is overwritten or not returned from a function, before the memory is freed. While

individually usually not harmful, it can happen that a program exhausts the memory, and

this leads to a crash of the machine. Thus, great care should be administered when doing

memory management.

5In fact, some languages, e. g. Java, also automatically take care of dynamically allocated memory.

This is called garbage collection. There are some libraries for C(++) which also provide garbage collection

tools, though then requiring to use their own versions of new to allocate memory. However, while modern

versions are pretty efficient, there is still some loss and friction incurred. Also, quite often this requires

to use OOP, with all its drawbacks when it comes to being efficient.
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Note that memory management can also become intricate in itself. By allocating and

freeing often large amounts of memory it can happen that the available memory becomes

fragmented, i. e. the memory is a patchwork of free and used memory chunks. At some

point, arrays fit no longer in the free patches, creating problems. Also, the efficiency may

fall if the memory become strongly fragmented. Also this is a reason to avoid dynamically

allocated memory if possible.

6.3 Linked lists

As an example of a pattern in connection to dynamical memory consider the following,

common problem. An array of elements should be kept in ordered form, but elements

should be added or removed quite often. Using arrays for this purpose has the consequence

that they may need resizing and sorting. Sorting is something which can be done quite

efficiently6, but an array’s size cannot be changed. The only option is to create a new

array, and copy everything. This is very inefficient.

A solution to this problem is the pattern of a (doubly) linked list. Consider the case

where the relevant information is an integer. Then the following listing shows everything

needed to work with a so-called linked list.

Listing 6.2: Worked with a linked list.

1 struct l l {
2 int a ;

3 l l ∗ next ;

4 l l ∗ prev ;

5 } ;
6

7 l l ∗ f i nd ( l l ∗ i , l l ∗ s ) {
8 i f ( ( i−>a<=s−>a)&&(( i−>next==NULL) | | ( i−>next−>a>s−>a ) ) ) return i ;

9 else return ( i−>next !=NULL)? ( f i nd ( i−>next , s ) ) : ( i ) ;

10 }
11

12 l l ∗ add ( l l ∗ i , l l ∗ toadd ) {
13 i f ( i−>a>toadd−>a ) {
14 l l ∗ p=f i nd ( i , toadd ) ;

15 toadd−>next=p−>next ;

6Sorting is a problem which occurs very often, and thus quite powerful patterns are available for it.
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16 toadd−>prev=p ;

17 p−>next=toadd ;

18 i f ( toadd−>next !=NULL) toadd−>next−>prev=toadd ;

19 else toadd−>next=NULL;

20 return i ;

21 } ;
22 i−>prev=toadd ;

23 toadd−>next=i ;

24 toadd−>prev=NULL;

25 return toadd ;

26 }
27

28 l l ∗ remove ( l l ∗ i , l l ∗ toremove ) {
29 l l ∗ p=f i nd ( i , toadd ) ;

30 i f (p!= i ) {
31 i f (p−>a==toremove−>a ) {
32 p−>prev−>next=p−>next ;

33 i f (p−>next !=NULL) p−>next−>prev=p−>prev ;

34 } ;
35 return i ;

36 } ;
37 i−>next−>prev=NULL;

38 return i−>next ;

39 }
40

41 . . .

42

43 l l ∗ s t a r t=new l l ;

44 s ta r t−>a=1; s t a r t−>next=NULL; s ta r t−>prev=NULL;

45

46 l l ∗next=new l l ;

47 next−>a=2;

48

49 l l ∗temp=add ( s ta r t , next ) ;

50 i f ( temp!= s t a r t ) s t a r t=temp ;

This is a rather lengthy example, and it demonstrates a lot of techniques and how to work
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with memory management.

To start out, in lines 1 to 5 a struct is declared which will become a link of the linked

list. The basic idea is that the result should be sorted in order of the integer value a. Of

course, in real applications the struct will have usually a much larger payload. There are

then two pointers of the type of the struct. Note that it is possible to use them already in

the declaration itself. It would not be possible to use variables of this types, as this would

immediately yield an infinite recursion. But pointers do not require now to be filled, and

are therefore fine. They will be used to form the links from every element of a chain to

the next and previous one.

Now jump to the actual program to follow the flow. In line 43 a variable start is

created. Its initialization in line 44 shows that it is possible to write instead of (*start).a

also start-> a, without explicit dereferencing. It is again a (very common) shorthand

notation. Note that the initial element has not yet any neighbors, and thus the pointers

to the next and previous element are set to NULL.

In line 46 another element is created. In line 47 only its payload is assigned. Its links

are not yet created. This is done in line 49, where the function add is used for this purpose.

Note that a variable is initialized with the return value of this function. No memory is

allocated here.

Jumping to the function add means going back to line 12. The idea of the linked list is

that the values of a increases from the beginning of the list, but allows elements to have

the same value. Then, the element is repeated. It is checked in line 13 if the element,

which should be added should be behind the element which has been passed is already

right. It is here assumed that i has the value of the beginning of the list when called first

- this is not checked, and therefore part of the implicit information on the function. This

needs to be described in the manuals. Also, there could be more lists, and the function

cannot know, which is the current one. Thus, calling the function in the correct order is

the responsibility of the user.

If the element is not yet in order, the function continues in line 14, using the function

find. This will return the correct element after which the new element must be placed.

This will be discussed below. The element is now included in the list in lines 15-19, by

adjusting the pointers next and prev of previous and following list elements accordingly,

checking carefully whether there is a next list element. It then ends by returning the list

element which is considered to be the start of the list. If it turns out that line 13 evaluates

to false, the element to add must be the next beginning of the list. This is arranged for in

lines 22-24. Returning then the new beginning of the list implies that the return value of

function add is the beginning of the list.



Chapter 6. Dynamical variables 73

Since the caller does not know, whether the list has a new beginning, he compares this

return value with the original start of the list, and sets the variable start to the new begin-

ning of the list. This could have been made shorter by just writing start=add(start,next);.

Note that though there is no pointer left to start in the variable itself, if it changes, the

elements of the list still have this information.

Returning now to the finding of the correct list element, consider the function find

starting in line 7. The way how it is used in line 14 implies that it should return the

element preceding the element with the value s-> a. This is done using recursion. In line

8, it checks first, whether the passed element i fits the bill. To add the element at the

end of a sequence of repetitions, it furthermore checks, whether the following element is

actually not of the same size. Note that by ordering the comparisons in the if, it is made

sure that the last test is only performed if i-> next is not NULL, and therefore no crash

or meaningless dereferencing can happen. If the conditions are fulfilled, or the element i is

the last in the list, it is returned. Otherwise, if the next element is not NULL, the function

is called recursively with the next element of the list. If it is the last element of the list,

it is returned anyways. Note the trinary if is used to write this compactly.

The function to remove the element follows the same logic in lines 28-39. It is a useful

test of the reader’s skill to understand it.

This small code fragment has been using a lot of the structuring which was available

so far: It used multiple functions to distribute different functionality. It used recursive

functions, trinary if, and ordered tests to avoid nested loops and conditions. It also used

repeatedly tests for NULL to check the validity of pointers. However, this required to

careful manage that all pointers have been set to NULL, where needed. Still, to optimize

the code, the elements prev and next of next in line 46 and 47 have not been set, as

the function add does this as well. Together, it represents a typical piece of code using

pointers.
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Structuring programs

With the example of section 6.3 a quite intricate structure has already been reached.

At such a point, it becomes necessary to structure the program better. This will be

discussed in the following. Mathematica is somewhat special, and will thus only be briefly

commented on at the end of this chapter in section 7.6.

7.1 Libraries, APIs, and patterns

As has been seen in the concept of functions, one of the central ideas of the development

of programming has been code reuse.

This idea is carried further by not just thinking of the reuse of single functions (or

later objects), but by collections of them. Such a collection is called a library. There are

both highly specialized libraries aiming at very narrow problems, or libraries which collect

any kind of useful things. The probably most important library during this lecture is the

library (actually, a collection of libraries) which is supplied together with C and C++. In

fact, many of the commands used are actually not part of the language itself, but are from

the libraries.

The way how a function looks like, e. g. in the example in section 5.1 it has single real

variable and returns also such a number, is called the interface of the function. Later,

similarly classes have interfaces. Or, more aptly, are interfaces. The collection of all

interfaces of a library is called the application programming interface (API) of the library.

Libraries are code, and therefore tied to a particular programming language1. The

next level of abstraction beyond libraries will be patterns. Patterns are problem solution

recipes, which are specified not in a particular language, but sometimes in a meta language

1Most languages nowadays offer possibilities to call functions from libraries written in different lan-

guages. This will not be detailed here, but should be kept in mind.
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or in a natural language, and describe how problems are solved efficiently which occur again

and again in programming. These patterns are collected in various repositories, and thus

in form of (collection of) libraries. It is highly recommendable to search such pattern

libraries before solving a problem which appears to be somehow something many people

could have come across.

7.2 Multiple files and linking

The first possibility to structure the code is to divide the code in files, each file containing

part of the program logic. Especially, every file, or set of files, should be created to cover a

particular, well-defined purpose. Otherwise, there is a good chance that total chaos reigns.

Thus, partitioning into different files should be planned ahead.

For this purpose, C(++) has a twofold concept: Code files (ending usually as .c for

C and .cpp for C++) and header files (.h and .hpp, respectively). Header files contain

declaration and code. Code files contain only code. There can be header files without a

code file. However, only the code file containing main can be useful without a header file.

A header file can contain any functions and constants. For functions it is also possible

to provide only the forward declarations of section 5.7 in the header, and the remainder

of the function in the code file. In fact, this is more the rule than the exception. It cannot

contain global variables. Rather, if a global variable should be declared, it needs to be

done so in the form of an extern variable, e. g.

extern int name;

It is then necessary that in the code file of the same name the declaration int name;

appears at the global level, as the memory is allocated by the code file.

The other difference between the header file and the code file is that whatever is written

in the header file can be used by another code or header file. This is done by an include

statement, e. g.

#include “somecode.h”

This is exactly the same type of #include as was already used from the beginning since

section 3.2. The usage of “” instead of <> originates from the fact that the brackets

instruct the system to use build-in header files of the compiler, while the quotation mark

allows to add user-provided headers. Not that the name of the header files have to provided

either as relative or absolute paths2, following the conventions of Unix, i. e. different

2Some compilers provide the possibilities to search some directories automatically. For g++, this is

done using the -I option.
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directories are separated by /.

All functions, constants, and global variables of the included file can afterwards be used

in the code file which included the header just as it would have been declared where the

#include statement is. Note that #include statements can appear anywhere in the code.

It is, however, conventional to make all #include statements at the beginning of a code or

header file.

However, conflicts can arise if a header, which is included, is also included by a second

header, which is also included in a file. In this case, the code would be repeated, and

the compiler does not know how to handle the situation, as it cannot distinguish whether

this is twice the same code, and whether there are interdependencies, which need to be

resolved. It will therefore just report an error and stop compiling. To deal with this

problem the preprocessor exists.

7.3 Preprocessor

In fact, the preprocessor is much more than just a mean to resolve such conflicts. The

preprocessor is a possibility to provide instructions to the compiler during compile time.

All preprocessor instructions start with a #. Indeed, as may now be guessed, already the

#include statement is a preprocessor statement. After all, it instructs the compiler, and

thus not the program, to do something: To put here the contents of a different file.

The preprocessor is a quite powerful tool, and a full appreciation of its possibilities

would go far too deep. Here, besides #include, only two more preprocessor structures will

be discussed in more detail.

The first is #define. It can be used to define a name, e. g.

#define name

Note that no ; is needed. The object name is now visible throughout the code, but only

for the preprocessor. However, in this form it will only be useful for the preprocessor, as

it is a name, and not a variable. However, it is possible to use the preprocessor to define

constants

#define two 2

Afterwards, the compiler will replace all occurrences of two within the code before compil-

ing with 2. This is the important feature of the preprocessor: Its statements are executed

before compiling. Hence its name.

It is also possible to provide one or more parameters for definitions. E. g.

#define sqr(x) ((x)*(x))
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will replace everywhere in the code sqr(x) by ((x)*(x)). While it appears tempting to use

such so-called macros for many purposes, it has the disadvantage that the compiler will

only check the created code, but not the macro - after all it is the preprocessor which

replaces the macro by code, not the compiler. It my therefore become quickly involved to

track problems, and is therefore generally not recommended.

The idea to use macros instead of functions to improve efficiency is also not an argu-

ment. For this purpose C(++) offers the inline declaration, which can be put in front of a

function. It recommends3 the compiler to replace every call to the function by the code of

the function, just as a macro would do, but by the compiler with all corresponding checks.

The more important consequence of a defined name is that the preprocessor has flow

control. If declared like

#ifdef name

code

#endif

the code part will only be included in the code passed to the compiler if name has been

defined in a previous #define statement. There is also a test if a name is not defined,

with the preprocessor statement #ifndef. This possibility to include or exclude code from

compilation has a twofold advantage.

One is the resolution of the problem of section 7.2. To avoid duplication of the code

inside a header, it is sufficient to write

#ifndef name

#define name

code

#endif (7.1)

and to put everything of the code inside this the code block. If the name is not defined,

it will then be defined, and therefore when entering the header a second time, the block

3Compilers may not follow this suggestion. Also, when passing the optimization options (-O1 to -O3

with increase in aggressiveness of the optimization while at the same time requiring more careful and

precise programs to permit various assumptions of the compiler), the compiler may expand also functions

not declared inline. The same is true for the option register for variables, put before the type. This

recommends the compiler to keep the content of a variable in a CPU’s register rather than in memory.

Again, the compiler may or may not adhere to this recommendation. It should be noted that being

better in optimization with such tricks than the compiler requires an enormous amount of experience

and knowledge of the inner workings of the compiler and the specific computer architecture on which the

program should be executed.
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will be skipped during compilation. Thus, a header should always have such an embracing

preprocessor directive.

The second advantage is that parts of the code can be included or excluded. E. g.

parts of the code which are only useful during development, e. g. for debugging purposes,

can be dropped in the production version, where it may incur performance penalties, just

by defining or not defining a name4. This avoids altering the code from the development

to the production version, making it easier to have correct code. Alternatively, this can

be used to create different versions of a program using the same code base, e. g. if there

are different optimizations for some different sets of parameters in a simulation. After all,

it is always better to optimize a program for a purpose during compile time than by using

variables, costly to access, and flow control, even more costly, to select between different

variants at runtime. Still, the code is cohesive, and not different variants, so-called forks,

have to be maintained.

Some compilers also offer the possibility to define names as options passed to the

compiler5, so that they may not even be set in the code. The details of this depend on

the compiler.

7.4 Namespaces

Even after using the preprocessor there is a potential for problems with doubled definitions.

The reason is that two different header files may contain the same name, even if used for

entirely different purposes. This is less likely to happen in a single project, but often

enough external code is included in a program, possibly from many different sources, and

this then creates the problem.

This is solved in C(++) by the use of namespaces. A namespace adds to every name

an additional name, to which scope the name belongs. If there exists a variable bar in the

name space foo, its fully qualified name is foo::bar, where :: is called the scoping operator.

A namespace is declared as

namespace name { code }

Everything which is declared inside the block is now within the namespace, and has to be

used using its fully qualified name, that is with name:: attached in front of it. It is not

necessary to declare everything belonging to the same namespace within the same block.

4A preprocessor statement can be commented out using the usual possibilities.
5This is somewhat misleading. E. g. g++ is a single program, but which combines both the preprocessor

and the compiler, one running after the other.
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It is always possible to add in another block, declared in the same way, further members

of a namespace. Note that namespaces can be nested, requiring strings of scoping using

the names of the namespaces.

To avoid the tedious use of the fully qualified name, it is possible to push anything

within a namespace to the current namespace. This is done with the using operator.

E. g. cout is declared inside the namespace std included with C(++). Thus, it would

usually be needed to be fully qualified as std::cout when used in the code. By using

std::cout; it is possible to refer to it as cout only within the current block and after the

using statement. This can happen outside functions. By using namespace it is possible

to do this simultaneously for anything declared in a given namespace, as was done for the

namespace std already in section 3.1 in the most basic program.

This can also be done for multiple namespaces simultaneously. However, if the same

name is used within multiple namespaces, C(++) will usually use the latest one included

by using. Just as with the shadowing of global variables by local variables in blocks, this

can lead to hard to identify problems. Thus, it is better to use using sparingly if the

elements of a namespace are not used extremely often.

7.5 Libraries, and dynamical and static linking

A set of headers and associated code files, which are intended for use by other programs

and not by a specific program only, are called a library. The set of all declarations inside

the headers are then usable by other programs, and therefore form the application pro-

gramming interface, the API, of the library. In the end, all libraries are of this type. To

use a library requires thus the headers, and they need to be included in the code.

Code files of a library can be compiled separately from the code involving the main

function by a compiler option (-c for g++). The resulting files are then containing the

code, and often referred to as object files (a different object than in OOP), and usually

have the file ending .o. They do only form part of a program, and cannot be run alone.

The reason for this is twofold. On the one hand, this allows separation of the com-

pilation of libraries from those of the main code. For extensive libraries which are not

changed during developments, a quite common situation, this can save hours or days of

compile time. They are just once compiled. This is also useful if a company does want to

sell libraries, but does not wish to provide also the code, and then will just provide the

headers and object files6.

The process of combining these objects with the part of the program containing main

6There are also more possibilities to package libraries, but they will not be considered here.
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is called linking. For this purpose still the header files are required, such that the com-

piler knows the declarations, so-called interfaces, of the functions and/or variables in the

libraries. This usually does only require to tell the compiler where to find the object files

(for g++ this is done using the -l (l) option for the location of the libraries and -I (I) for

the location of the header files), but does not require any other compiler switch.

There are now two possibilities how this linking can be done, static and dynamic

linking. In the case of static linking, which is usually the default, the object files and the

compiled code are combined into a single file, which can then be executed. In case of a

dynamical linking this is not the case, and the object files are transfered into so-called

library files (sometimes just the original object files), and need to be kept together with

the program itself.

Dynamical linking has the advantage that it is possible that different programs use the

same library files. This guarantees that all programs use the same version of a library. As

some libraries can become rather large, this also saves space7. To some extent, it is also

possible to replace these libraries after compilation, so libraries can be updated without

recompiling the program. This has its advantages during deployment of code. However,

the details of this requires in-depth knowledge beyond the scope of this lecture. Thus, for

the remainder of this lecture always static linking will be assumed.

7.6 Mathematica

Also Mathematica knows the concept of libraries. On the one hand, in every instance

of Mathematica, i. e. during program runtime, every open notebook lives in the same

environment, and definitions in one notebook will also be available in another notebook.

That can also easily lead to confusion.

The other form is that of packages, which also know concepts like namespaces. Such

packages can be included using <<packagename‘ (note that this is the reverse high

comma!). Package development is much more involved than just having code somewhere

else as in C(++). Thus, it will not be detailed further during this lecture. However, there

are many powerful libraries available for Mathematica, which can be included in this way.

7At first, this does not seem to be an issue, as really much code would be necessary to get large

programs. It is, however, possible to embed also data like pictures into libraries, so-called resource

libraries, and they then quickly grow very large.
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7.7 Programming and project management

Now that with libraries a possibility exists to structure programs, it is necessary to consider

a few more issues when it comes to larger projects.

Just like with a calculation, a simple program is done quickly. But like a complicated

and lengthy calculation, which may require several auxiliary calculations and dragging

on for weeks and months, a more powerful program is not simple. It becomes a project.

Therefore, writing any reasonable complicated program requires management.

It is therefore important to plan a program, i. e. before implementing it and writing

actual code. The first stage is answering the questions posed in section 1.1. However, it

then requires to structure the development process by answering the following questions

• When should it be complete?

• Are there optional parts?

• Can the program be decomposed in subunits, which work independently? If yes, in

which order are they required?

• How should everything be organized?

• How can various versions of the program be separated?

• How can be ensured that the code is readable? How can be ensured that it can be

understood in a month? A year? A decade? How can be ensured that somebody

else can understand it?

• Are and, if yes, how are other people involved?

• Where and how is everything stored (and backuped)?

This list of questions can be extended almost indefinitely. The bottom line is, it is not

only necessary to plan what the program should do. It is also necessary to plan how

the programmer(s) can create the program. Think ahead. Plan from the end, not from

the start. Plan before you start to do anything. Keep the schedule. Use milestones, i.

e. intermediate goals, to structure the temporal evolution. Check that you meet your

milestones. If you do not meet your milestones, understand why your fail and how you

can avoid it. Implement whatever changes necessary to avoid failing a second milestone.

Do not change your project and your plan without necessity. If you have to change it,

assess what this implies and how it changes your plan. Do never assume that a change to

the program does not entail a change to the plan. Include buffer time and never expect

that everything goes smoothly. Murphy is real.
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Functional programming

The following will discuss a number of concepts and techniques for functional programming

with Mathematica. Therefore, much of the following is not available in C++. It is not

an exhaustive list of possibilities, and can give only a slight flavor of how functional

programming is done in Mathematica. Moreover, Mathematica is, as noted, not a pure

functional language. Therefore, there is not always a strict separation.

The basic tenant of functional programming can be summarized in two basic state-

ments:

• Everything is a (mathematical) function yielding a result

• Functions do not have side-effects

The first statement requires that every activity has a return value. This is, e. g., the reason

for Mathematica’s If of section 4.1 to have a return value.

In particular, functions themselves can again be the result of a different function,

using the concept of pure functions from section 5.2 - functions without a name. Thus,

this generalizes the idea from values to entities to operate on. Conceptually, this kind of

generalization also starts out like OOP. But while OOP approaches more the real-world

situation with entities, functional programming marches towards the formally more pure

concept of mathematics. Hence, in a functional language the idea is not to have a persistent

set of data, but map the problem solution to a chain of evaluation of (mathematical)

expressions, from the beginning to the end. In that sense, functional languages are also

known as declarative languages rather than imperative ones.

Little surprising, functional languages are very well suited to mathematical problems,

as their structure is very close to mathematics. However especially large programs tend

to become quite unwieldy to read without experience. Though it is possible to essentially

cover all problems also in functional language, today most functional languages have also

82
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aspects of imperative languages, while imperative languages also have some aspects of

functional languages, e. g. by being able to chain together evaluations of (mathematical)

functions or the use of functions as return types.

8.1 Placeholders and delayed evaluation

In this context, it is important to understand how mathematical functions are defined in

Mathematica.

This requires to understand the concept of placeholders. A placeholder in Mathematica

is a name followed by an underscore, , like a in the place where a function is defined. It

can then be used where the function is defined to use as a placeholder, where the actual

value is then put in when the function is used. E. g.

a[x ]=x+1

defines a function, which will evaluate to 3 if called as a[2]. Without the placeholder,

i. e. as a[x]=x+1, a[2] would evaluate to a[2], because no evaluation is performed. With

placeholder, the argument can now be used also for another variable, e. g. a[y] will evaluate

to y+1. Note that a function can also be undefined using =., e. g. a[x ]=. will make a[x ]

again unknown, and thus a[2] would afterwards again evaluate to a[2]. Note that the

variable a is different from a[x ], and in particular not a function. However, there can only

be one object of name a at any time. Leaving out the argument is therefore not possible

in Mathematica. After the function has been defined, it can be used as any mathematical

function in Mathematica. If the function has multiple arguments, they appeared separated

by commas1, e. g. y[x ,y ]=x+y.

It often happens that a function should be defined using a previous calculation. For

this purpose the % operator is useful - it has the value of the last previous result, i. e. of

the last evaluation of Mathematica after pressing2 shift+return. Multiple % refer to the

previous %%, or prior-to-previous %%% and so on, results. Note that results are denoted

by a number (written as Out[number]), and can therefore be directly accessed, e. g. %12

will yield the result denoted as Out[12].

Consider listing 8.1.

1Note that this not a list. To map a list to a set of arguments use Apply[Sequence,list], e. g. for the

example y[Apply[Sequence,{1,2}]].
2Note that cells, the Mathematica slang for statement blocks, where statements are separated by ,, ;,

or return, can be set to automatic evaluation upon notebook opening. If no manual evaluation has been

performed after opening a notebook, the operator % always refers to these automatic evaluations.
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Listing 8.1: Usage of % in Mathematica.

1 b=2+x

2 c [ x ]=%

3 c [ 3 ]

4 d [ x ]:=%+x+3

5 c [ 5 ]

6 d [ x ]

7 c [ x ]

8 d [ x ]

9 c [ 2 ]

10 d [ 2 ]

In line one the variable b is assigned the function x+2. Note that b is not a function itself,

it is just a variable containing a function. In line 2, c[x] is assigned the previous value,

which is x+2. Thus, c[x] is now the function x+2. Consequently, evaluating line 3 will

yield 5.

This is not always, what is needed. For this purpose, there exists the possibility of a

delayed evaluation, created using := rather than =. This requires Mathematica to only at

time of execution evaluate the contents of the function. This seems to be not different from

before. In fact, a[x ]=x+2 and a[x ]:=x+2 will act in the same way, because everything

on the right-hand-side is immutable. This changes, however, as soon as non-mathematical

operations like % come into play.

Consider such a delayed execution as defined in line 4. Because of line 5, the operator

% would yield 7. Thus, line 6 evaluates to %+x+3, and thus yields 10+x. Likewise, line 8

after executing line 7 will evaluate to 5+2x, and line 10 after executing line 9 to 9, as now

the placeholder x in d receives the value 2.

Delayed assignment is particular useful to define recursive functions. E. g., the Fi-

bonacci sequence can be defined by f[1]=1; f[2]=2; f[n ]:=f[n-1]+f[n-2]. Any attempt to do

this with ordinary assignment using = would yield an error, as Mathematica attempts to

assign the structure immediately, and therefore would create an infinite loop.

Another interesting effect is seen when attempting to apply this formula for very large

numbers. Because of the recursion it becomes very slow. The reason is that Mathematica

uses for every step again a full recursion. To avoid this, it is useful to save the results. This

can be done by a combination of delayed and direct evaluation by f[n ]:=f[n]=f[n-1]+f[n-2].

Then, when any value is first evaluated, it is stored as a value of f[n]. Since this explicit

value has higher precedence over the delayed evaluation afterwards always this value will

be used. On the other hand, the delayed evaluation beforehand avoids that Mathematica
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attempts to get all results immediately after initialization. This explicitly demonstrates

how a combination of delayed and direct assignments can be used to speed up calculations

while at the same time avoiding problems3.

Delayed assignment can have hard to predict consequences and side effects, if employed

unwisely, and should therefore be used with care.

8.2 Pattern matching

A very powerful possibility in Mathematica is pattern matching. The idea is that some

pattern in an expression is replaced by another pattern. This is done using the /. operator.

Consider

x+2/.x->3

This will yield 5, as any occurrence of x is replaced by 3. This seems to be much the same

as evaluating a function. However, in practice often sequences of expressions are evaluated,

where several replacements are done, rather than to define in every step a new function.

The assignment -> is called the replacement rule, and it can also be applied delayed, just

like assignment, by using :> instead. This is also the reason why Mathematica formulates

solutions in terms of such rules: After all, a solution to an equation is obtained when

something is replaced with a certain value.

However, it becomes much more powerful, if combined with the placeholders of section

8.1. Consider

x+2+Sin[x+2]/.Sin[c ]->Sin[2c]

This will yield x+2+Sin[2(2+x)], as the placeholder is replaced accordingly. Note that

Mathematica also inserts automatically parentheses to keep mathematical precedence.

Also, it interprets the context. It only replaces the placeholder, if it is inside a Sin,

as otherwise it would need to also replace the first expression. This is important. E.

g. using just c instead of Sin[c ] would yield Sin[2(2+x)+Sin[2+x]], as here the context

is a complete statement. Likewise the replacement pattern c +2->Sin[2c] would yield

Sin[2(x+Sin[2+x])], as again the context would be the whole expression. To replace both

occurrences of x+2 with 2(x+2) would be achieved by the rule x ->2(x+2)-2.

It should be noted that pattern matching has a low precedence. To have the desired

effect, it may be needed to use parentheses. E. g. 2*(a+2)/.a->3 will first evaluate the

complete mathematical expression, while in 2*((a+2)/.a->3) the multiplication by two

3To see which values are already stored, and which are newly calculated the command Trace can be

used.
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will be done after pattern matching. This is also important when performing multiple

pattern matchings inside a single statement.

It also possible to pass to /. a list with pattern matching rules, i. e. lists of replacements

with ->, e. g. {a->2,b->3}. Note that also here the order can yield different results. E. g.

{a->b,b->3} will yield something differing from {b->3,a->b}.
To enhance pattern matching, the placeholder can also be made more flexible. So

far, it is used to be identified if there is an exact match. Using it twice, requires one or

more equalities, and thrice even allows for zero or more agreement. E. g. 3 will match

to any of the three types of placeholder, but not match to any { }, as 3 is never a list.

Note that as always such pattern matching can be assigned to variables. E. g. a=x y -

>x+y would yield for cb/.a just c+b. Furthermore, by using //. the rule will be applied

until no matching pattern remains. Thus cdefgh/.a yields c+defgh while cdefgh//.a yields

c+d+e+f+g+h.

Pattern matching can be further extended by the use of conditional patterns. E. g.

it is possible to qualify patterns with a condition by using ?, followed by the test. For

example, to replace all integers in a list, this would be possible by list/. ?IntegerQ->x.

This will replace any integer inside the list by x. To replace all quantities bigger than 0

a pure function4 can be used, list/. ?((#1>0)&)->x and of course any other test, as long

as it yields a boolean value.

Since tests are quite common conditions, another way of formulating them is available

with /;. E. g. the test for larger than zero could have also been written as list/.a /;a>0->x

to the same effect.

These tests can also be used to define functions without using If. The following two

statements are equivalent

h[x ]=If[x>0,1,0]

h[x /;x>0]=1; h[x ]=0

and there are several other possibilities how to formulate the same statement.

8.3 Useful functions in Mathematica

Mathematica has a wide variety of built-in functions, a library, many of them available

at start. Additional ones can be included using the Needs[name] command, where name

is the name of an additional package, and operates similarly to the #include directive of

C(++). As with this case, it is necessary to know the appropriate name. Mathematica

4For the sake of the example. This can also be done with the build-in function Positive[].
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has built-in methods for almost any mathematical functions, including special functions

like the Γ-function or hypergeometric ones.

Moreover, it supports many mathematical procedures in an analytical way. The most

important ones are

• N[expression] gives a numerical rather than an analytical value of expression, to

the extent possible

• Sum[expression,{index,start,finish}] allows to implement a sum with terms given

by expressions, with the index of the sum ranging from start to finish. An addi-

tional step size is also possible, as are multiple indices

• Series[function,{variable,start,order}], which gives the Taylor series of the function

in variable around the expansion point start up to order. E. g. Series[Sin[x/2],{x,0,2}]
yields x/2+O[x3]

• D[function,{variable,order}] gives the orderth derivative of function in the variable.

E. g. D[Sin[x],{x,5}] yields Cos[x]

• Integrate[function,{variable,low,high}] attempts to integrate function over variable

analytically from low to high, as an indefinite integral if no limits are given. This is

not always possible, and also not for all analytically integrable functions the solution

is known. Thus, this may not always work. Note that the limits can also be names

or variables

• Simplify[expression] attempts to simplify mathematically expression, if possible.

There is an extension FullSimplify[expression] which knows more relations which

can be used to simplify an expression, but is also considerably slower

• Expand[expression] and TrigExpand[expression] expand expression algebraically and

using trigonometric identities to a sum with as simple terms as possible, which can

be inverted using (Full)Simplify

• Solve[equation,variable] tries to solve equation for the variable analytically. Both

arguments can be lists, where it is then attempted to solve the equation as good as

possible for the variables, even if the number does not match.

• DSolve[equation,function,variable] attempts to solve the differential equation for

the function of variable. E. g. DSolve[D[g[x],{x,2}]==a g[x],g[x],x] yields {{g[x]-
>Eˆ(Sqrt[a] x)C[1]+Eˆ(-sqrt[a]x) C[2]}} where C[i] are the integration constants
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• FindFit[data,expression,parameter,variable] attempts to find values of the list of

parameters of the expression, which is a function of the variable such that it repre-

sents the data, which is a list of variable-value pairs, as good as possible. Optionally,

a first-guess value of the parameters can be provided by giving a two-element list

with the parameter and the guess

Of many of the above listed analytical functions exists also numerical versions, with a

prepended N. Furthermore, many of them support as additional arguments various (and

many) options, e. g. for numerical integration NIntegrate the way how to select the inte-

gration points, or initial guesses for the variables in NSolve. The full listing of all options

is very extensive, and therefore should be obtained from the documentation.

It is also possible to use as an additional argument Assumptions-> list, where list is

a list of assumptions, like, e. g. {a>0}, which assumes for the operation that a is greater

than zero. There is a wide array of possibilities for assumptions.

As it is often necessary to formulate lists for these functions, the command Thread[op[list1,list2]]

is quite helpful, as it recombines the list elements such that they become a single list, pair-

ing the elements as arguments of op. E. g., Thread[Equal[{a,b},{c,d}]] yields {a==c,b==d}.
The same effect could be obtained by {a,b}=={c,d}//Thread.

8.4 Rule-based programming

The operator -> of section 8.2 is actually a far more powerful concept as it first appears.

It is generically called a rule. In section 8.2 this was used to provide a rule how to

replace expressions. There is much more to it, especially when further combined with the

placeholders of section 8.1.

Consider first the very general Select command5. Its application has to do with the

often appearing question of how to find some elements in a list which match particular

criteria. It has generally the syntax Select[list,condition]. While the list is just a standard

list, the second part is more involved.

First, the condition ends with a &. The next is that the element to be worked upon

is referenced to be #. The list is traversed, and one-by-one every element is assigned to

#. As it is a variable, it can be acted upon as normal. Finally, the total condition must

evaluate to either true or false, to give a criterion whether the element should be included

5Note that there are specialized versions of many of the following statements, which reduce the amount

of specifications needed to operate them compared to the general ones. These can be found in the

documentation.
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in the result or not. E. g.

Select[{1,23,6,9},#-1>5&]

will yield all elements of the list, which, after subtraction of 1, are still larger than 5, and

therefore yields {23,9}. If the list contains list, it possible to access various elements. E.

g.

Select[{{1,2},{2,1}},#[[1]]>#[[2]]&]

yields {{2,1}}, as only here the condition is true. Note that the first index is already set

implicit, i. e. #[[1]] operates on the ith list element like6 #[[i,1]].

Such constructions appear at many places, emphasizing the importance of the con-

struction of rules. E. g., the Sort function to sort a list works similarly. However, since

here comparisons have to be made, it is necessary to refer to two different elements. This

is achieved by appending a number 1 and 2 to #. E. g.

Sort[{{1,1},{4,-1},{2,π/3}},Sin[#1[[2]]]>Sin[[#2[[2]]]&]

yields {{2,π/3},{1,1},{4,-1}} as it sorts the list depending on the relative size of the sines

of the second element of the lists being the elements of the list.

8.5 Predicate functions

Because Mathematica does not have strict typing, it is often necessary to test what the

type of the contents of a variable is. For that purpose, a large number of so-called predicate

functions exist. Predicate functions, in general, are just functions which return a boolean

value depending on whether its arguments evaluate to true or false.

In Mathematica predicate functions exist to test for the type of the contents of a vari-

able. E. g. IntegerQ[variable] will return true if variable is an integer and otherwise false.

There are many other such functions, usually ending in Q to test for properties. Because of

the importance of lists there exist also tests on list properties. E. g.MemberQ[list,element]

is true if element occurs in list. Note that e. g. == and && as logical operations yielding

boolean values are also considered to be predicate functions.

8.6 Maps and apply

Because of the mathematical structure of functional programming the concept of a math-

ematical map finds itself also in Mathematica. The command Map[function,expression]

6Therefore, an error will be encountered if it is attempted to access a list element, which does not

exist.
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applies function on expression, yielding e. g. for Map[f,{a,b,c}] {f[a],f[b],f[c]} and for

Map[f,a+b+c] f[a]+f[b]+f[c].

This shows that the function is applied to a certain organizational level of the expression,

especially the basic structure is bypassed, and the function is applied to the first non-

trivial level. In the first example, the basic structure is a list and in the second a sum.

The first non-trivial level is then the list elements or the terms of the sum. If the structure

is deeper nested, it is possible to require Map to be applied to elements at every nesting

level, or just to (a) particular nesting level(s). By giving as a third argument a number,

the function will be applied to all levels up to this level, by giving a list of numbers to the

levels in the list only.

The basic structure can also be replaced by Apply[function,expression]. E. g. Ap-

ply[f,{a,b,c}] yields f[a,b,c], Apply[f,a+b+c] f[a,b,c], and Apply[f,g[a,b,c]] f[a,b,c].

Both functions therefore allow to manipulate the structure of an expression. This is

something which is not possible7 in C(++), and a genuine part of functional programming.

Note that Map[f ,g] can be written as f/@g and Apply[f ,g] as f@@g.

8.7 Trees and hashes

While not formally a central part of Mathematica, there are two concepts, which play

an important role in the context of functional programming, actually in programming in

general.

In a very general sense, a mathematical map can be thought of as a (lookup) table,

as it gives for any input a predefined value. The concept of such tables is always very

prevalent in programming, and the input is often called a key which maps to a value.

Thus, frequently key-value pairs need to be organized.

However, quite frequently the key is far from a simple expression, and also tables can

become very quickly very large. Both effects make lookups quite slow. This lead to various

solutions.

The simplest one is if the key has some kind of ordering principle, such that statements

that one key is larger, in a very generalized sense, than another key remain true8. If this

is the case, the table can be ordered, and thus it is sufficient to start at the beginning and

then traverse the table in ascending order until the searched-for item is found.

7To some extent this can be attempted to be replicated using function pointers and/or classes, but

neither are intended for this purpose, and this is therefore awkward.
8Note that the following also works if the ordering relation is more complicated, e. g. because the

comparison has some finite number n of outcomes, as long as it can order in some sense. It is only for

simplicity of presentation that only the two-possibility case is considered.
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The drawback is that for large tables this becomes quickly very slow, as for every

element a comparison is needed. To speed-up this process so-called trees can be used.

A tree is constructed as follows. It is made up of nodes, and every node can at least

store a key-value pair as well as being able to point to two more nodes, like in the linked list

of section 6.3. The tree is build in the following way. There is a root node, which contains

a key-value pair. The next key-value pair is then assigned to one of the connections, if the

key is larger than the key of the node and to the other one, if it is smaller. Equality is

assigned to one of the cases by convention, though it is often useful to avoid an ordering

principle allowing equality, if possible. If the next node to be added would have to be

added to the same connection, it does not replace the connection. Rather, it is checked

whether its key is larger or smaller than the key of the connected node. Then, following

the same convention which connection to chose, it is attached to that node, rather than

to the root node. In this way, the tree is build with the key-value pairs to be stored.

To search if some key-value pair is stored in a tree, it is started at the root. The key

is then compared, and depending on the outcome, either the result is already found, or

the tree is traversed by either of the two connections. This is repeated until a fitting key

is found, or when arriving at a node without suitable connections. In the latter case, the

tree cannot contain the searched-for value.

Of courses, nothing guarantees that the tree is balanced, and thus not as bad as a list.

However, it is always as least as good as a list for searching, and the more balanced, the

quicker. So it is on the average certainly better, and actually reduces search time on the

average from order N to order log2N .

If there are more than two possibilities, just more nodes are attached at every node.

If a tree becomes unbalanced, it may also be useful to reorder it, and make it balanced

again.

Trees have been developed to a very substantial degree, and for special cases much

more optimized versions of trees are available. For ordered data sets they are often the

best choice. It is therefore useful to search for patterns on the subject if some ordered

structure needs storage.

It is often the case that an exact comparison may actually be quite costly in terms of

computing time. In such cases the concept of hashes is useful. A hash is essentially a map

from some information to another quantity, obeying the following principles:

• A comparison between two hashes is (much) faster than between the original data

• A hash does not need too much memory

• Two different sets of original data may have the same hash, but this should be



92 8.7. Trees and hashes

unlikely in practice

As is visible, these conditions are all soft in the sense that there is no mathematical

formulation of them, and therefore a solution will strongly depend on the problem in

question. In particular, the third requirement may be hard to satisfy in practice.

A, quite trivial, example of a hash is a crosssum, or checksum for numerical data. While

it usually satisfies conditions one and two quite well, it is only in special circumstances

effective at condition three.
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Graphical output

9.1 Generalities

Graphical output is a very involved and extensive topic. Two concepts have to be distin-

guished here quite carefully, though they often go hand-in-hand in practice.

One is the actual graphical output to the screen, or a generalized screen for, e. g., a VR

glass. So far, this can be considered to be a two-dimensional picture. This picture is de-

composed in practice in discrete units, so-called pixels, which have unique two-dimensional

coordinates, and which can be assigned a color1. Thus, in the end, all graphical output is

somehow determined by providing color values for all pixels, and animations by a sequence

of how the colors of every pixel changes as a function of time.

Therefore, at the lowest level, the operating system provides the program by an API

call with a chunk of memory, usually an array, which will take the color values for the

pixel, and another API call will then switch to this new output2. The programmer is

responsible to create graphical shapes, by mapping their exact mathematical form to the

pixels. Fortunately, for many purposes powerful libraries exist to create and manipulate

many graphical objects, usually using an extended set of classes. This is quite specific to

the various libraries, and often OS, and can therefore hardly be generalized.

Note that even output to the command line, like cout, is doing somewhere on a very

basic level nothing but representing every character on the screen as a set of pixels which

1Most systems define a color by a mixture of some numbers. Probably best known is RGB, which

defines a color as a combination of the amount of red, green, and blue components, which each range

between a minimum and maximum value. All three at maximum is white, all three at minimum is black.

But there are many other options.
2For an OS using windows, this can also be only part of the screen, e. g. the window or inner part of

a window of a program
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have to be white (or green or amber or...) on a black (or other colored) background. This

necessity is hidden to the programmer in the usage of cout. In fact, even the class cout

does not do this directly, but in turn uses the API of an even more low-level library all

the way down to the most inner parts of the OS.

The second concept is how to provide three-dimensional pictures to the screen. For this

purpose, the procedure is always to have a three-dimensional representation of the picture.

For this, there is a third coordinate, a depth, which is usually also discrete. This world

volume is then filled. After it is completed, it is projected to the screen by considering

a viewpoint, the observer, somewhere behind the screen. The remainder is a geometrical

operation to figure out, what can be seen by the observer, and what is hidden behind other

objects.

Such calculations, especially the projection, is highly non-trivial, and quite costly in

terms of computing time. This is the main reason for the necessity of dedicated graphical

processors in computers3. Such calculations, as everything, are simplified by libraries,

which are again not standardized. An in-depth discussion is therefore also not possible

within the scope of this lecture.

However, in both cases in the end the purpose is to fill an array representing the screen,

which is then transferred to the screen, and then presented to the user.

9.2 Mathematica

Mathematica also allows access to some direct graphical output using the function Graphics,

which also offers the possibility to draw things like lines, circles, etc., so-called graphical

primitives to create a more involved picture from it.

However, what makes Mathematica particularly useful in physics (and related areas)

is its abilities to draw mathematical data, especially functions.

The simplest possibility is Plot[function,{variable,start,end}], which draws the function

of variable in the interval [start, end]. Mathematica adapts the output and introduces

suitable coordinate axes. However, often the presentation is not entirely as wished for,

and a multitude of options exist to adapt the graphical presentation to one’s needs and

aesthetics. Probably the most important one is AxesLabel, which will provide labels to

the axes from the list provided to it, e. g. AxesLabel->{x,y} to provide according standard

3Most of the necessary operations is actually linear algebra. Therefore, these processors are just

highly optimized and specialized linear-algebra machines. This has led to a widespread use of them

also as numerical auxiliary processors, often much faster than the CPU, for numerics, as most numerical

procedure are at their heart linear algebra. This is not entirely trivial, as the specialization of these

processors also induces complications. This goes far beyond the scope of this lecture.
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labels. Of course, any string can be used. Note that the function can be either an explicit

expression like x+1 or a function f[x], which can be constructed at will. However, it needs

to deliver a numerical value for every value of the variable inside the range.

There is an important caveat with this. Of course, what is actually drawn is not a

function. Rather, it is points, which are drawn, which corresponds to pairs of values for the

variable and the value of function for the value of the variable. Never a really continuous

function is plotted. Rather a number of values are calculated, and then the pixels in the

display are filled by joining these points by lines, in the simplest case straight lines, in

more involved cases some complicated spline interpolation. Because of this, fine details of

a function can get lost in the process. Thus, it is possible to manipulate by various options

the way how the points for which the function should be evaluated are chosen as well as

how the points should be interpolated to fill pixels. This may also be useful if the function

to be evaluated is very expensive, and more than the usual share should be interpolated.

There are many derivatives of Plot for a particular purpose, like e. g. LogLogPlot to

create a double-logarithmic plot or ImplicitPlot to plot a function which is known only

implicitly4, and ParametricPlot which traces a curve in two-dimensional space, and many

other. Two are of particular importance.

One is the possibility to plot functions of more than one variable. A plot of a function of

two variables is Plot3D, which works as Plot, but now with two variables. This will provide

a surface. There is also the possibility to plot equipotential surfaces of a function of three

variables, using ContourPlot3D. Similar purposes can be pursued using ParametricPlot3D.

A probably even more important tool in physics is the possible to plot discrete data, i.

e. two-dimensional or three-dimensional lists. In the two-dimensional case this is achieved

by5 ListPlot[list], where the list must be of type {{x1,y1},{x2,y2},...}. This is a typical

outcome of an experiment: A set of input values and output values. Often, the latter

also have an error, which can be accommodated by6 ErrorListPlot. The required list needs

then a third element giving a (symmetric) error or an error bar created using the function

ErrorBar, which also allows for asymmetric errors. For the case without error bars there is

also a method ListPlot3D, which allows to have a three-element list for the points to specify

their coordinates in a three-dimensional space. As with all plot methods, a multitude of

options allows to tailor the appearance to most requirements.

All of these methods support to plot multiple input in the same plot. For this, it

is only necessary to provide a list. E. g. Plot[{x,x2},{x,0,2}] will plot x and x2 over the

4Which Mathematica deals with by using NSolve to find the necessary results. This also needs to

include the corresponding library by <<Graphics‘ImplictPlot‘.
5If the points should be joined by a line, use ListLinePlot.
6After loading the package with Needs[”ErrorBarPlot“‘].
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indicated range. Mathematica will automatically assign different plot styles to make the

graphs distinguishable. Also how this done can be modified by options.

However, this does not allow to plot, e. g., a function and a list simultaneously. This

is done using the command Show, which requires a list of plots. As Mathematica is a

functional language, any evaluation of plot functions is not just creating the plot. Rather

it creates a return result which is the plot, which is then used by Mathematica to make

the graphical output. But as such, it could be stored, e. g., in a variable, or can be passed

to other functions, in this case Show. Show will then create, as good as possible, a single

graph with one common set of axises, to display both results. For this purpose, both plots

must be of the same dimensionality.

E. g.

Show[ParametricPlot[{u+1,u-1},{u,0,3}],Plot[x2,{x,0,3}],PlotRange->All]

shows a parametric plot and an ordinary plot together in a single graph. The option

PlotRange rescales the plot such that both graphs are completely shown. Otherwise only

the range of the fist graph would be shown. Also, Show does not adjust the plot style of

the graphs, so to optically separate both would require to provide corresponding options

to the two plot functions.

There are many more options like legends, titles, multiple axises etc. This includes the

possibility to save figures in several of the more common picture formats.

9.3 C and other high languages

Languages like C(++) provide multiple layers for dealing with graphical output.

The lowest layer is the API of the underlying operating system. This usually depends

on the operating system, and is therefore not portable. Depending on the operating system,

it can provide raw access to the memory array representing the screen up to rather high-

level constructs like windows and user-interface elements. All of these are provided by

libraries and corresponding header files. Most modern operating system do so usually in

forms of classes and OOP, but not necessarily so.

Above this level exist, more or less, platform-independent graphic libraries. These

provide the same interface on several or most operating systems. They also exists from

rather direct access to graphics, like OpenGL, to highly abstracted levels which provide

things like windows and user interface elements, like Qt for C(++). Some of these are

part of libraries belonging to certain languages, like AWT and Swing of Java, some are,

to some degrees, language-independent.
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Finally, there are also special-purpose libraries, which may or may not be platform-

dependent. They are tailored for a particular purpose, and provide thus often not full

support of everything a graphical system can do. An example is the ROOT library, which

was developed by CERN for the particular needs of particle physicists, and provides, like

Mathematica, extensive possibilities to draw data from typical physics situations. It also

offers rudimentary support for other purposes. At the same time, as with many such

specialized libraries, it has extensive non-graphical features, in this case the ability to

manage and manipulate (large) amounts of data.

This short, non-exhaustive lists, gives an idea of the multitude of possibilities to do

graphical output in C(++). It is extremely flexible by the library concept. However, the

more efficient it needs to be, the mores specific it will be. The choice of approach should

therefore always be governed by the purpose. This purpose must also respect questions

like maintainability and a reasonable ratio between effort and effect.
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Objects and classes

Within the previous chapters all necessary information to program using functions have

been established. Here now the necessary additions for doing OOP will be introduced.

OOP is actually a far wider field than programming with functions, and thus it is only

possible to scratch the surface.

Mathematica, as a primary functional language, does not have objects in the same

sense as C++. Here, expressions are the basic entities. Thus, also this chapter applies

(almost) only to C++.

10.1 The object-oriented paradigm

The idea of the object-oriented (OO) paradigm is that the basic elements to work on are

entities called objects, which contain all relevant data and functions to work with the

entity. The structure of such entities are created from blueprints, called classes. Thus,

just like int is the blueprint for a variable containing an integer, a variable declared as int

is the entity to work with. In a sense, classes are thus struct augmented by functions.

If this would be all, little more would be needed to be said about OOP. But there are

two more important concepts associated with OOP, encapsulation and inheritance.

Encapsulation is associated with the idea that it is not necessary to know how an

objects does what it does internally. Even more, it could be harmful to interfere with

it. As a consequence, a class should only offer an interface to an object, but should not

provide all details of it. Thus, a class can have parts, which are not visible to the outside

world, and what the class offers is only an interface to the entity, but not the entity as

a whole. Pushing the idea further, the possibility of direct manipulation of the data of

an object from the outside is often able to interfere with its inner workings. This would

require more overhead to ensure that all variables contain sensible information. Rather

98
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than doing so, it is better to not provide direct access to any variables, but only functions.

Then, so-called getter and setter methods replace direct access to variables, and contain

all the necessary logic to avoid non sensible states of the objects. This will be discussed

in more detail in section 10.8. The object being derived from such a class is called an

instance of a class, and this will be discussed in more detail in section 10.4.

Inheritance is based on the recognition that objects can offer a new possibility for more

ease of maintenance. Because often only slight changes to a class are necessary to adapt

it for a more specialized or different purpose. To support this, it is possible to derive a

class from a class. In this process, a class inherits, thus the name, all of the interface

of its parent class, and can extend it further. It is possible for a class to have multiple

children1. This will be discussed in more detail in section 10.7. One advantage of this is

that it is possible to select the actual instance during runtime of the program. This is

called polymorphism, and will be discussed in more detail in section 10.9.

10.2 The object paradigm

While functions are already a big step forward, they specialize on instructions only. How-

ever, from a logical perspective, it would be best to combine somehow functions with data.

Think, e. g., about drawing squares on the screen. If you want to draw multiple squares,

using functions to reuse the code for drawing makes a lot of sense.

But now every square has a size and a position. It seems hardly logical to separate the

ability to draw a square and its position and size. This issue is captured in so-called object-

oriented languages, leading to object-oriented programming (OOP), which is arguably the

most common programming style today. C++ is one such language.

The idea is to define objects as a collection of data and functions operating on the

data. Then different objects have the same functions, i. e. abilities, but differ in their

data contents. Since both are connected, it is never a problem of not having sensible

functions operating on the data available. This encapsulation can also be used to avoid

manipulation of the data. E. g., if instead of being able to directly change the size of the

square, there is a function to do it, the function can check the new value to be positive,

and ignore the change if it is negative. This avoids having non-sensible data for the next

draw command. This helps very much in creating safe code, i. e. code without errors.

Also, it is no longer necessary to keep the code and the data separately, and thereby

risking not having one or the other available. Everything is in one place. In fact, in many

1It is also possible for a class to have multiple parents, so-called multiple inheritance. This is a quite

involved topic, as this gives rises to many potential conflicts. It is thus beyond the scope of this lecture.
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more modern languages, e. g. Java, the concept of data has been completely replaced by

that of objects, i. e. every chunk of data can always carry functions with it.

The downside of objects is that they are essentially always associated with additional

overhead - if the data is moved around in memory, so have the functions to be. This can

reduce the efficiency of programs. Especially in physics, where large problems need to be

solved requiring sometimes billions of hours of runtime, it always needs careful consider-

ation, whether the structural advantages of objects compensates the cost in computing

time. Hence, in physics nowadays a mixture of object-oriented and function-oriented

code exists. Languages like C++, which support both possibilities in the same code, are

therefore particularly suited for these problems. Also, very careful considerations of what

aspects of object orientation is included and very efficient compilers can make some purely

object-oriented languages, like Java, almost, but not quite, as fast as C. But this requires

a very good understanding of the inner workings of an object-oriented language.

Definitions of objects are also highly reusable. The definition of an object is also called

a class, and the actual use of them, the objects, are called instances of the classes. Thus,

objects have data, classes declare that they have data. Functions of objects can be used,

functions in classes are declarations of what could be done with an object.

10.3 Classes

The first step is thus to define such a blueprint. An example is provided in listing 10.1

Listing 10.1: Defining a class.

1 class r e c t {
2 public :

3 double x ;

4 double y ;

5 void Draw(void ) ;

6 double Area (void ) { return x∗y ; } ;
7 void Reset (void ) { x=0; y=0; } ;
8 bool AreaGreaterZero (void ) { return Area ()>0; } ;
9 } ;

Note the ; at the end in line 9, compared to function declarations.

A class can be declared, wherever the struct of section 3.9 can be declared. However,

it is common to declare a class in a header file, and quite often every class in a separate

header file, even if its declaration is quite short. For ease of use, a single header file for a
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collection of classes can be then declared, which only contains a list of includes for every

file.

A class is defined as a block started by class followed by the name the class should

carry, in this case rect, followed by a block of its content. Thus, the declaration is, apart

from a different keyword, similar to a struct. Inside the block in line 2 the so-called access

modifier public appears. Access modifiers will be discussed in more detail in section 10.8.

For now it is sufficient that this gives access to the following declarations from outside the

class.

After that follows two variables in lines 3 and 4, declared in the same ways as in a

struct. After that the functions follow in lines 5 to 8. Conceptually, the variables will hold

the extent in x and y directions of the rectangle.

Note that the body of a function inside a class can be given in two different ways. One

is directly inside the class, as is shown in line 6, and can include initializations. It also

shows how inside such a function access to the variables work: They are just accessed

like arguments. Thus, in a sense, all variables of a class are passed as arguments to any

function of a class in a call-by-reference fashion. Thus, they can be changed inside the

function. This is exemplified in line 7. Calling Reset will set the variables x and y in the

given instances of a class to zero. Note that they will not set the values of all instances to

zero, only of the instance on which Reset is called.

If it is desired that all instances share a variable, then it must be declared static.

Then all instances work on the same variables. Note that it can otherwise be used as

every other of the variables. It is also possible to define variables as const. This is often

encountered together with static, to obtain class-specific constants2. Note that memory

must be allocated for a static variable. This needs to be done in a code file, not a header

file, just as with global variables. It must also occur in the same scope as the class has

been defined. This is done by adding the line type classname::variable;, and may have

an initialization. This must be done for all static variables.

The function Draw in line 5 is not declared inside the class definition. It needs to be

declared somewhere else3. To do so requires to notify the compiler that it belongs to this

2Note that static variables can be given a value without having an instance of the class, but this requires

a corresponding variable. This requires various considerations, and will not be discussed in detail.
3It is possible to define a function without giving its details. In such a case the class is called abstract,

and no instances can be created from it. This is useful if eventually multiple children of the class should

be derived, and they should have different implementations. Abstract classes also play a role in multiple

inheritance. Note that as an abstract class essentially only defines an interface, abstract classes are

sometimes just called interface.
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class. This is done using the scoping operator,

void rect::Draw(void) {...

and the body follows as usual. Note that even in this case the variables of the class

are passed-by-reference to the function. So, except for the different location, there is no

difference of whether the function is declared inside the class body or outside. It is usually

done to separate declaration from implementation, which can have maintenance reasons

or simply that only the interface should be available to someone, but not the code, e. g.

for commercial libraries.

Other functions of a class can be called inside any function of a class without further

qualification. This is exemplified in line 8. Again, the functions are called which belong

to a given instance of a class.

Also functions can be declared as static, and can then even be called without an in-

stance. However, static functions can only access static variables. Given a static function

void bar(void) in a class foo, it would be called as foo::bar(); and thus again with the scoping

operator.

The variables and functions of a class are called members of the class.

10.4 Instances

After a class has been created, an instance can be created. Obtaining an instance of the

class declared in listing 10.1 is done as

rect box;

similar to struct.

The elements of the object can be accessed using the . operator. Thus, box.x gives

access to the variable x, which can be used as any other variable. Note that this always

gives the variable associated with the given instance. If there are two instances, e. g. a

second one called box2, then box.x and box2.x are two different variables. In the same way,

functions can be called, e. g. box.Draw() - again, the function uses the variables of the

given instance.

It is also possible to create an instance dynamically, e. g. rect *box=new rect;. Con-

sequently, the memory can again be freed by delete box;. To access it members now, as

for a struct in section 6.3, the access operator is -> for both variables and functions, e. g.

box->y. It is not necessary to dynamically allocate memory for the variables of an object -

as for a struct they are allocated in one go by allocating the memory for the object. It may
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seem strange to allocate memory for an object as it contains functions. What actually

happens is the memory is allocated for function pointers of section 5.9, pointing to the

functions of the class declaration. This will play an important role in section 10.9.

Note that, as for struct, the comparison of two objects will not compare the variables,

but actually whether the two instances are the same. Thus, two instances which have the

same values for all variables are still not equal. Such a test would require that the class

provides a corresponding function.

As for structs, it is also possible to declare arrays of instances of a class, e. g. rect

boxes[5].

10.5 This

It is sometimes necessary for an object to have access to its own instance. This is realized

by the this pointer. Every object has a pointer to its own instance. Thus, if an instance

is declared as rect box; this contains the same information as &box. The this pointer is

available in all non-static functions, and will always point to the instance for which a

function is called. It cannot be accessed from outside the class - there &box needs to be

used.

Consider, e. g., the following two functions to be added to the example of listing 10.1.

Listing 10.2: Using this.

1 bool Compare ( r e c t ∗box1 , r e c t ∗box2 ) {
2 return ( ( box1−>x==box2−>x)&&(box1−>y==box2−>y ) ) ;
3 } ;
4 bool CompareTo ( r e c t ∗box ) { return Compare ( this , box ) ; } ;

The function Compare allows to check if the two arguments describe a rect of the same size.

The function CompareTo allows to compare some rect to the given instance. Internally,

rather than copying the necessary code from Compare, and thus requiring to change both

codes if something changes, this is done by calling Compare with one argument being the

instance itself, as signaled by the this pointer as an argument.

10.6 Constructor and destructor

It happens regularly that a newly created instance needs to initialize itself. Also, especially

when it allocated memory, it needs to do cleanup before it ends its life. In principle, this

can be done by providing two functions, say Init and CleanUp, which needs to be called
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after the object is created and before it is freed. However, it then depends on the user of

the class to actually do so. This is rather unreliable, especially when it comes to memory

management. As a possibility to force initialization and clean up there exists the concept

of constructor and destructor.

Constructors and destructors are functions. However, they do not have a return type,

as they are not called explicitly, but implicitly during the creation and destruction of an

object. E. g., for the class of listing 10.1, it could be added the following parts in listing

10.3.

Listing 10.3: Constructor and destructor.

1 stat ic unsigned int r e c t count ;

2 r e c t (void ) {
3 x=0; y=0;

4 r ec t count++;

5 } ;
6 ˜ r e c t ( ) {
7 rectcount −−;

8 } ;
9 r e c t ( int nx , int ny ) {
10 x=nx ; y=ny ;

11 r ec t count++;

12 } ;

It is assumed that in the memory allocation for the static variable staticount somewhere

the initialization is int rect::rectcount=0; such that it contains the value zero at program

start.

Lines 2-5 define the constructor. As is seen, a constructor has to have the same name as

the class. It also has no return type. Here, it also has no arguments. This can be changed,

as will be discussed below. It is used here to give x and y sensible initial values, and to

increase the static variable rectcount - by this the number of instances can be tracked.

For the purpose that this really works, the variables needs to be reduced by one if

an instance is removed. This is cared for by the destructor in lines 6-8. The name of a

destructor needs to be the same as that of the class, but with a leading ∼. It can have

no return type, and has always an empty argument list, not even void. The reason is that

objects may be destroyed when leaving a block. Therefore, the destructor is called from

the compiler, and therefore needs to be unique. The destructor will thus always be called

whenever an object is destroyed, either when leaving a block, or by an explicit call using
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delete.

A destructor is automatically called whenever an object is created, thus

rect box1,box2(),*box3=new rect(); (10.1)

will all call the constructor rect(void). However, constructors can be overloaded. This is

done in lines 9-12. Here, an additional constructor is declared, which takes initialization

values for the box size. Declaring rect box4(1,1); will use this constructor. For the over-

loading of constructors all applies what has been said for the overloading of functions in

section 5.4.

Note that constructors or destructors cannot be used as ordinary functions.

10.7 Inheritance

Arguably the most powerful feature of OOP is inheritance. Inheritance allows to create

a class as a modification of another class. The idea behind inheritance, and which thus

guides how it works, is that a child derived from a parent class is more specialized than

its ancestor. It is also possible to derive a class from a class, which has been derived from

another class, which is therefore even more specialized4. This idea, a top-down approach,

should also be behind the design of such class trees. The least specialized class is at the

root, and from this unfolds ever more and more differentiated and specialized classes.

Note that if two classes are derived from the same parent class this implies no further

relation between these two classes. However, they will still use both the same static

members defined in the parent class. This can yield unexpected side effects, one reason

why static members should only be employed with great care.

For that purpose, the new class starts out with everything the old class has, and can

add things. To create a colored rectangle as a derivative of the class rect, this would be

done as in listing 10.4.

Listing 10.4: Inheritance.

1 class c r e c t : r e c t {
2 public :

3 int co l o r ;

4 c r e c t (void ) {
5 co l o r =0;

4It is possible to derive a class from multiple classes. This multiple inheritance has unique issues of its

own. While pretty standard in modern languages, the difficulties involved moves this topic beyond the

scope of this lecture.
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6 } ;
7 void Reset (void ) { x=0; y=0; c o l o r =0; } ;
8 } ;

Using a parent class is done by just adding a : after the class name and giving the parent

class, as done in line 1. Then, without explicit declaration, the new class has immediately

all variables and functions of the old class. In addition, it can add to it, as is done in line

3, where an additional member of type color is added.

If no constructor or destructor is provided in the child class, the constructor or de-

structor of the parent class is used. If one is declared, as here in lines 4-6, it is not called

alone. Rather, all constructors, which have been overloaded, in an inheritance chain are

called, starting with the class which has no ancestor, and then following the inheritance

path. Thus, first rect would be called, and then crect would be called. This cannot be

avoided, as the idea behind inheritance is that the descendants are specializations of their

ancestors. Therefore, whatever they do should also be done for any descendants.

The only thing what can happen is the following. The derived class does not have

a constructor with two integer arguments. As a consequence, this is interpreted as that

the specialization no longer provides this functionality. Therefore, a declaration like crect

box(1,1); will not work.

The same applies to destructors. However, in this case, the order of execution is re-

versed, starting with the last descendant, therefore having the most specialized destructor,

and working then down the chain of ancestors.

The new class can alter the behavior of functions existing previously, as is demonstrated

in line 8, where a new version of the function Reset is added, now also affecting the color.

After a declaration like crect cbox; a call cbox.Reset(); will now call this new version. This

is generically true: If something of the same name is declared, it will always overwrite

what has been there in (any of) the ancestors of the same name. However, it is possible

to still access them using the scoping operator and the name of the desired ancestor class.

E. g., an alternative way to implement the new version of Reset would be

void Reset(void) { rect::Reset(); color=0; };

In fact, from the point of view of clean design, this version is preferred over the version in

listing 10.4, as functionality is not duplicated. This avoids inconsistencies, if anything in

the ancestor’s version of Reset would be changed, which would then needed to be changed

also in all descendant versions. This follows the line of thought that a child class only adds

functionality to the parent class, but never takes functionality away. The later would be

achieved by writing an own version of Reset, which would do something entirely different.
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10.8 Private, public, and protected

It is now time to come back to the access modifier public which appears, e. g., in line 2

of listing 10.4. As noted, one of the aims is to encapsulate data and functionality inside

a class. The problem is now the following. In the current version of the class rect it is

possible to modify the values of the variables x and y. The class cannot detect any changes,

and therefore cannot ensure they make sense. Thus, if somebody would do on an instance

box the sequence box.x=-1; box.y=1; the function Area in line 6 of listing 10.1 would yield

a negative area. Also, Draw may no longer work properly.

The obvious question is, why would any programmer want to do so, as she or he

should obviously know that this makes no sense. However, in general, there are several

possibilities how this can happen. A bug. Or, more bugs somewhere else in the code

could lead to this, and thus creating chain reactions whose source cannot easily be traced.

Indeed malevolent behavior, which is unfortunately not rare, as the problems of viruses,

Trojans and the like illustrate. Situations where user input is directly piped to the object.

That the values are results of involved, possibly non-deterministic, calculations, which

are not easy to check for validity - after all, not everything is as simple as this example.

Or, especially if the class is part of a library, the programmer in fact cannot know what

admissible values for a variable is, as this follows from some very involved procedure.

No matter the origin of the problem, this leads to the idea to make encapsulation

explicit. For this purpose, the access modifiers have been created. The access modifier

public: declares that all following members are accessible as in the way discussed before.

The alternative is the access modifier private: which declares that all members following

the declaration are only visible from inside the class.

Thus, a solution to the problems would be a modification of the class as shown in

listing 10.5.

Listing 10.5: Usage of access modifiers.

1 class r e c t {
2 private :

3 double x ;

4 double y ;

5 public :

6 void SetX (double X) { x=(X>=0)?(X) : ( x ) ; } ;
7 double GetX(void ) { return X; } ;
8 void SetY (double Y) { y=(Y>=0)?(Y) : ( y ) ; } ;
9 double GetY(void ) { return Y; } ;
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10 r e c t ( int nx , int ny ) {
11 x=0; y=0;

12 SetX (nx ) ; SetY (ny ) ;

13 r ec t count++;

14 } ;
15 . . .

In this version of rect the variables are now private, and can therefore be not accessed

from the outside. To modify them, the function SetX and SetY need to be used, which are

declared in lines 6 and 8. They only accept positive values, and therefore ensure that the

rectangle is always well defined. The constructor in lines 10-14 demonstrates that even

in the public section of a class, the class itself can access all its private members, as is

shown in line 11. It also shows that if it receives new data for its variables as happens for

this constructor it also uses the same functions to set the values in line 12, after creating

a sensible initial state. The idea behind this is that this avoids to replicate the logic to

check the validity of new values for the variables. Thus, if this logic should change, there is

only a single place in the code where changes need to be made. The private: modifier not

only forbids to write to variables, but hides them altogether. Therefore, if variables needs

to be read, also suitable member functions for this purpose are required, which are here

provided in lines 7 and 9. Of course, the present example is quite simple, but in general

this approach is followed even for far more complicated situations.

It should be noted that also functions can be declared private. Then they are only

accessible from inside the class. Also variables are not needed to be made accessible by

functions from the outside by functions to set and get them (so-called setters and getters),

and can only be known inside. This is a design decision, which should be guided by the

need-to-know paradigm: If something needs not be known to use the class in its intended

purpose, it should not be visible outside. In fact, making all variables only accessible by

getters and/or setters is often considered good style, and some languages have additional

facilities to make this more elegant. Furthermore, functions setting or getting variables

can have further consequences. E. g., in the present case void SetX(double X) { if(X>=0)

{ x=X; Draw(); }; }; would make a lot of sense, as when the rectangle changes, it may

need to be redrawn.

Note that there is no need to have only a single public and a single private section in

every class. The keywords can be repeated as often as one needs, and every time the access

for the following members conforms with the last previous access modifier. If no access

modifier is used, as a consequence of the problems noted above, the default is private.

Private is in fact a very harsh restriction, as also child classes of a class cannot access
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private members. To make this possible, but restrict access only to descendants of a class,

a third access modifier can be used, protected: which works otherwise in the same way.

Again, the design rule is to make as much as possible private, but as much as necessary

protected. Note that it is not even possible using the scoping operator to reach a private

member of an ancestor class.

Access modifiers can also be used when declaring from which class a class inherits, and

this changes the access modifier to the more restrictive version of either the inheritance

modifier or the one in the base class. E. g. a declaration like class crect:private rect...

would make all public members of rect private in crect. However, a declaration like class

crect:public rect... does not make any private members of rect public in crect. The default

is no change. Thus, it appears that public has no effect, but this is not true as discussed

in section 10.9.

10.9 Polymorphism, early and late binding, and vir-

tual functions

Inheritance makes classes and objects already an extremely versatile concept. An even

stronger boost is obtained by the concept of polymorphism. So far, objects where consid-

ered to be strongly type cast, i. e. every object must be of the type it declares. Polymor-

phism makes this more flexible. A pointer to an object is now allowed to also point to any

of its descendants. To make this possible requires that the class from which it is derived

is derived publicly, i. e. the access modifier for the parent class must be public.

If this is the case, it is possible to declare

rect *box=new csquare();

This may seem a bit strange at first. Why should this be done? The answer is that if

there are multiple descendants of rect, e. g. an array of rect could hold any of these.

It appears still to be not useful. E. g. if calling box->Reset(), this would execute the

Reset version of rect, instead of crect. To change this the concept of virtual functions come

into play. Using the keyword virtual in front of a function declaration in the parent class

instructs the compiler to use the version of the function belonging to the actual instance,

rather than of the class as which the pointer is declared. Thus, if line 7 of listing 10.1

would be changed to virtual void Reset(void) { x=0; y=0; };, the appropriate version would

be called. Note that this is an alteration to the base class, not to the class of which the

actual instance is derived of. It has therefore to be incorporated in the most ancestral

class declaration from which onwards this should be possible. Note that it is not necessary
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to declare the corresponding functions in the descendant classes also as virtual. Once the

function has been declared as virtual, it remains so in all descendants. However, keeping

the virtual modifier is good style to highlight this feature. This feature is particularly

important for destructors. Since the appropriate cleanup for the instance, rather than for

the parent class, should be done, they should usually be made virtual.

The actual contents of a pointer could change at runtime. Consider, e. g., the situation

that there is a second child of rect called square. Then a valid declaration would be

rect *box=(besquare)?(new square()):(new csquare());

Which version of Reset should now be called depends on whatever value besquare has at

runtime. If this changes because of user input, there is no way the compiler can predict this.

However, because Reset is defined virtual, always the version appropriate to the instance is

called. This is the true power of polymorphism: It allows to change the things upon which

is operated on at run-time, rather than at compile time, still ensuring consistent behavior.

Because this decision is made upon run-time, this is also called late binding. In contrast,

if the function is not virtual, the compiler can implement it already during compile time.

This is called therefore early binding. Of course, without dynamical allocation the declared

class and actual class coincide, and thus always early binding is done.

Technically, this is realized by the program by checking at run time5, essentially with a

type of if, what the actual content of the pointer is, and then selecting the corresponding

function, based on the result6. Thus, the use of virtual functions always comes with an

additional overhead, and thus at a price in performance. It should therefore be avoided,

if performance is of central importance.

It should be noted that constructors cannot be declared virtual but this is also not nec-

essary. After all, the new statement needs to already reference the actual class to be used

for the instance. It is sometimes necessary to assign an instance referenced by a pointer

to an ancestor class to a pointer of its own class, or some class in the hierarchy between

the ancestor and its own class. This can be done using dynamic cast< targetclass >, a

generalization of the case of the static cast of section 3.5. Note that a dynamical type cast

is done on faith by the compiler. As it occurs during run-time, it is not possible to check

its validity during compile time. It is up to the programmer to ensure that the cast makes

sense.

5This so-called run-time type info is also available to the programmer using the typeinfo functionality.

However, it is considered bad design if this is necessary, even though there exist circumstances where it is

not avoidable. This is beyond the scope of this lecture.
6This is usually realized by a lookup table, which needs then to be added with all possibilities to the

pointer.
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10.10 Abstract classes

To improve design the concept of abstract classes has been developed. An abstract class

is a class, which defines an interface, i. e. set of functions, but does not implement them.

This can be either achieved by not providing a block for them, or, more explicitly, by

virtual void Do(void)=0;

and thus making them explicitly purely abstract. Note that abstract functions necessarily

need to be virtual to make sense.

No instances of an abstract class can be created, as otherwise undefined functionality

would exist. While it is technically possible to add data and implemented, and non-virtual,

functions to an abstract class, this is not their intention. An abstract class should define

an interface and set of functionality, and not functions.

10.11 Templates

Another possibility to increase flexibility are templates. The idea behind templates is that

certain groups of types, and also classes, have common features. If some functionality only

requires this feature, it should not be necessary to create the code once for every type.

This is possible for functions. As an example, consider listing 10.6.

Listing 10.6: Use of template functions.

1 template <typename T> T DoubleSubtract (T x ,T y ) {
2 return x−2∗y ;
3 } ;
4

5 template <typename T, typename R> T DoubleSubtractMixed (T x ,R y) {
6 return x−2∗y ;
7 } ;
8 . . .

9 int a=3,b=4,c ;

10 double c=5,d=6,e ;

11 c=DoubleSubtract (a , b ) ;

12 e=DoubleSubtract ( c , d ) ;

13 a=DoubleSubtractMixed ( a , d ) ;

A function with the desired feature needs to have the leading template declaration. Af-

terwards, in the <> angles the placeholders for the types are given, lead by the keyword
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typename. This is exemplified in line 1. The placeholder for the type is in this case is

called T. As can be seen in the rest of the definition in lines 1-3, it is used as any other

type.

It is then used with different types7 in line 11 and 12, yielding corresponding results.

However, there are two restrictions. One is that all functionality used inside the templated

function are provided by the types actually used, in the form of (overloaded) functions. In

this case, this is subtraction and multiplication. Thus, calling the function with two, say,

filestreams, would yield a compiler error. Secondly, the types are strongly checked. Thus,

a call like DoubleSubtract(a,c) would yield a compiler error. To make such a call possible

would require a different function, as defined e. g. in lines 5-7. Note however that the strong

typing also persists to the return type. Thus, even now a=DoubleSubtractMixed(c,b); would

not work, but e=DoubleSubtractMixed(c,b); does. What is still possible is to act with a

type-cast to perform conversions of any of the parameters.

Of course, templated functions can be used for classes as normal members. It is,

however, possible to also create templated classes. Consider a templated version of the

rect class in listing 10.7.

Listing 10.7: Use of template classes.

1 template <typename len , typename area> class r e c t {
2 private :

3 l en x , y ;

4 public :

5 area Area (void ) { return static cast<area>( l en ∗ l en ) } ;
6 . . .

Here, the class is templated with two types, which have the suggestive names area and len

to indicate their purpose. The data members are now of this type, while the function Area

now returns the corresponding type. However, because such operations are strongly type-

casted, an explicit type cast is done in line 5, even though it is not strictly necessary, as

line 6 in listing 10.6 shows. Of course, all functions have then to be typecasted, including

constructors. To get an instance using, say, float for the coordinates and double for the

area would be require a declaration like

rect<float,double> box; (10.2)

7Note that in this case also the build-in type-casting would do the corresponding job, but any example

requiring this would be too complicated to exhibit here. So assume for a second that automatic type-

casting between int and double would not work.
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10.12 Exceptions

So far, error handling was a quite obnoxious procedure. In principle, everything which

could create an error needs to be wrapped in if statements, to avoid errors before they

happen. Even under the best of circumstances, not every error can be foreseen. Also,

the proliferation of ifs makes the code hard to read and hard to maintain. Therefore a

possibility to separate error handling and code has been devised, the so-called exceptions.

As the name already indicates, it is not really errors which are the only purpose for

them, though it is arguably the most common one. It is intended as a possibility to deal

with exceptional circumstances, of which the occurrence of an error is only one.

The basic structure of how to handle exceptions is given in listing 10.8

Listing 10.8: Exception handling.

1 try {
2 //Doing something

3 . . .

4 // Log i ca l error d e t e c t i on

5 i f ( oops ) throw −1;

6 }
7 catch ( int exc ) {
8 i f ( exc==−1) cout<<”Something went wrong”<<endl ;

9 }
10 catch ( except ion &e ) {
11 cout<<”Caught standard except ion ”<<endl ; delete e ;

12 }
13 catch ( . . . ) {
14 cout<<”Something un fo r e seen happened”<<endl ;

15 }

The basic starting point is the try block, which is initiated by a try keyword in line 1,

followed by the block from line 1 to 6. In this block is the code which should be supervised

by the exception handling.

To this end, various possible exceptions are caught in the three catch blocks in lines

7-15. These catch blocks have to immediately follow the try block. There can be as many

as wanted, and each starts with the keyword catch and is followed by a block. Just like

in a switch statement, they are transversed until a fitting block is encountered. If none is

found, i. e. the exception is not handled, the exception is considered to be a show stopper,

and the program terminates. It is possible to nest try blocks, and then the exception
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is escalated to the enclosing try block. But again, if unhandled, eventually the program

terminates. Note that an exception can also escalate to outside a function in which it

occurs, and can then be caught by the code calling the function, if the function call occurs

inside a try block.

If no exception is encountered, i. e. the last line of the try block is executed without

problems, the program will resume operations after the end of the catch blocks, and thus

none is executed. If an exception occurs, the try block will be left at this point, and the

corresponding catch block will be executed. After this, the program will continue after the

catch block.

To avoid crashing, a possibility is to declare a catch-all catch block. This is done in

lines 13-15, and it is declared by the (...) after the keyword catch. However, for such a

catch to make sense, it needs to guarantee that after its execution the program is in a

viable state to commence operation. Just noting a problem, as is done here as the only

treatment in line 14, is usually not a wise course of action.

An exception handler can get information from the try block, and needs to declare this

information as an argument. This is shown in lines 7-9, where the information is passed

on as an integer. This integer can then be used as an ordinary variable in line 8. Note,

however, that its lifetime ends after the catch block. The only exception is, if the passed

variable is a pointer to data. This data needs to be dynamically allocated inside or before

the try block, and needs to be freed afterwards, either in the catch block, which is error

prone, especially if there is more than one catch block, since it then needs to be freed

everywhere, or after the catch block.

The variable passed can be a class instance. This happens in line 10-12, where a pointer

to an instance of the class exception, which is declared inside the header exception coming

with C++, is provided. Alternatively, this can be any arbitrary class, but standard is a

class inheriting from the class exception. As is seen, it frees up the corresponding memory in

line 11. While this gives the possibility to provide more complex information on the error,

the real advantage arises when combining this feature with the polymorphism of section

10.9. Then, the pointer can contain some derived class, and using virtual functions can

provide much more specific information. In fact, testing the class type and performing

a dynamical type cast can give access to much more detailed information. In fact, the

library on exceptions inside the header exception provides a class hierarchy for the various

exceptions thrown by library functions, e. g. the class bad alloc is used in an exception in

many library functions if allocating memory fails8.

8It is not new which throws this exception. The operator new just returns NULL. By testing on NULL

the library functions decide whether to throw an exception.
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How this is actually done is demonstrated in line 5. It is possible to trigger the

exception handling also inside the code, and not only by relying on something else. In

line 5 an exception is created explicitly by the keyword throw, because something went

wrong, signaled by the Boolean test on the variable oops. This is done utilizing an integer

variable, and therefore will be captured by the block in lines 7-9. This allows to provide

ones own exception handling mechanism. Note that the try block is then left at this point,

and after finishing the catch block the code continues after the last line of the catches. To

reach the handler in lines 10-12, an alternative would have been throw new exception();,

which also would have allocated the required memory for the class, which is freed in line

11.

As with library functions, using throw is also possible without a try block. This then

requires whatever code calls the function to provide exception-handling abilities, or oth-

erwise this will also lead to a termination of the program. Thus, the ability to throw

exceptions should be documented9.

10.13 The standard template library

C++ comes with a large range of classes for many different purposes, such as resizable

arrays, sorting, maps, file and screen input and output, string manipulation and many,

many other purposes. All of these are subsumed in the so-called standard-template library

(STL), which can be included as usual, having the namespace std. As the name suggests,

the library makes heavy use of templates.

It would be by far too repetitive and lengthy to just only list everything contained in

the STL. It is highly recommendable to have a look at the corresponding documentation

in case something is needed, as there is a good chance that a solution is provided in the

STL.

10.14 Refactoring

Now that much more powerful paradigms are available, it is time to take a step back and

reconsider what has been programmed before.

Consider, e. g., the examples 1.1 and 1.2, which are in pseudo-code. They will have

9Earlier versions of C++ and other languages provide keywords for this for the function declaration.

In C++, this is now assumed to be the normal case, and therefore no keywords are provided. However,

it is good documentation to provide information about all possible exceptions a function could throw on

its own, besides any which may originate from other circumstances.
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to be still fundamentally changed to actually work. This is not rare. Such a significant

change in code, which is essentially a complete rewriting, is called refactoring.

A need for this arises when more features are added to programs, and they thereby

grow beyond their original purpose. Then it often happens that the original design of

the code, i. e. the structure derived from the questions of section 1.1, becomes incapable

of sustaining efficiently the new purpose. At this point, it becomes necessary to change

something, or otherwise the code may become no longer maintainable or extensible. This

is the occasion calling for refactoring.

When refactoring code, nothing is changed in its functionality. In fact, when refactoring

any changes need to be avoided. The only changes are made to the underlying structures.

The design, or architecture, is changed to be more flexible and easier to maintain. Often,

this does not affect the whole program, and outer layers, e. g. user interaction, can be

kept. Only how the core is organized is changing, though this often requires recoding of

substantial parts of the internal structure.

Refactoring is, in a sense, an emergency break. It is necessary to make a program

become able to grow beyond its original purpose. It is something happening in physics

not too rarely. It is also not a contradiction to section 1.1. Section 1.1 is about how to

start with the information present and known at the beginning. These may change over

time. It is often (much) simpler too change the program to adapt, rather than to restart

every time something new comes up.
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Some useful patterns

Just as in physics the same equations have the same solutions, no matter from where

they arise, also in programming the same problems have the same solutions. Solutions to

problems appearing in multiple contexts are known as patterns. Here, a few patterns will

be discussed, which are quite useful. Such patterns are solutions to problems. They are

therefore not specific to a programming language, here Mathematica or C(++), and are

therefore not necessarily formulated in a specific language. In particular, every pattern

can be realized in every language. But it may happen that they are much simpler to realize

in some languages than in others.

11.1 Sorting

One very often appearing problem is sorting, i. e. ordering sets on which a (binary) ordering

principle is defined. Simple solutions scale badly with the number of elements to be sorted,

usually at least as bad as the number of elements squared.

But, sorting can be done such that it only scales (on the average) like the number of

elements times the logarithm of the number of elements. This is done using the so-called

quicksort algorithm. The idea is again based on a divide-and-conquer strategy, and follows

a similar idea as the tree structure of section 8.7. It works by reducing the problem to the

problem of sorting two elements.

The idea works as follows: Select an (arbitrary) element of the list of elements1. Then

put all elements larger (or equal) that this in a new list, and the others in another new

list. After this, repeat for the new lists. This works better the more equal the number of

1Actually, cases can be constructed where a bad choice will slow down this algorithm such that it takes

again as long as naive sorting. There are algorithms, like heapsort, which have no worst case, but have

on the average a larger coefficient.
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elements larger or smaller than the chosen element is. In the end, combine the list in the

order of the splitting elements again into a single list, which is now sorted.

This procedure can be implemented most easily using a recursive routine. It is easier

to implement when using a second list to hold the results, but can also be created by

swapping elements if memory is insufficient, but this is somewhat slower.

11.2 Event-Listener

A situation arising in interactive environments is often that a reaction is necessary if

some external input takes place. This may be the pressing of a key on the keyboard, an

information coming from a server or the output of another program.

To deal with this problem the event-listener pattern is suited. It is usually implemented

in OOP, but could also be realized using the function pointers of section 5.9. It usually

involves two to three classes. One class represents the input type, e. g. the keyboard. A

second class, usually an abstract class of section 10.10, is a so-called listener class. From

this ancestor class classes are derived which implement the possibility to interact with

classes interested in the information.

To realize this relies heavily on polymorphism. The class representing the input pro-

vides the possibility to add to it a polymorphic pointer to the listener class, and thus to

its childes. The listener class has a virtual function member, which is called for all added

listeners by the instance of the input class whenever an event occurs. The descendant

of the listener class created for the purpose of the class which wants to have the input

that uses whatever device it has to push the information through to the interested class.

This is usually done by the listener descendant by having a pointer to an instance of the

interested class, and which then can call a function member of this class.

Using here polymorphism allows the input class to have no clue about who will be

ultimately interested in the information. This makes the pattern so flexible.

11.3 Data-Observer

A very similar concept to the event-listener pattern of section 11.2 is the data-observer

pattern.

The idea is that whenever data is changed, e. g. an element of an array, somebody

maybe interested in this. If the data is encapsulated in a class, this can be realized by

considering this to be an external event, even if the source is within the data itself. Thus,
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it can be realized in the same way as with the Event-Listener pattern of section 11.2: A

listener class is used to notify interested parties.

This exhibits a particular feature of patterns: Often, there is a very similar solution

for two, at first sight, very different situations. One is a trigger from outside the program,

created by the user of the program. The other is something entirely internal to the

program, as the data is part of it. The solution for both is still the same.

11.4 Streams

The console and the file input and output structure of C++, as discussed in sections 3.2

and 3.10, realize a pattern known as streams.

The idea behind streams is that often data needs to be moved to somewhere or is coming

from somewhere. What this somewhere is does not matter - that is a specialization. The

stream pattern deals with this situation in the following way: It defines that a stream has

certain properties - it is available to take or provide data. It has the feature to accept data

of certain kinds. It can be activated or deactivated. It has information whether additional

data is available. And so on. If necessary, it is also possible to realize streams just for

input and just for output. The most important element is that it has the possibility to

put a chunk of data into the stream or take it out of the stream, and to be connected to

a stream.

All of these features can be realized as members of a class. Special types of streams

are then realized by the descendants of this, usually abstract, class. In C++, cout and cint

as well as fstream are all descendants of such an abstract stream class, and represent the

screen, the keyboard, and files, respectively. Note that they are specialization not only in

the type of device. The class of which cout is an instance has, abstractly, an input stream

which is always closed, and can never be opened. The class fstream, on the other hand,

provides a two-way stream.

A particularly interesting possibility is to combine the stream pattern with the event-

listener pattern of section 11.2, as events can be considered to become a stream. Thus a

class providing events to listeners can have an internal stream of events, which are then

distributed to the listeners.

11.5 Serializable

It is often necessary that some or all of the data of a class is kept safe, even if an instance

is destroyed. Think of a class which represents the contact data of someone. It should be
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kept after the program finishes.

This situation is solved by the serializable pattern. The idea is that the data of the

instance is encoded into a series of bytes, or other primitive types, in a sense ’flattened’.

A member function would take care of this. Another member function would then be

able to reconstruct the state of a class from this series of bytes. Thus the class becomes

serializable, i. e. a list of bytes, which contains all the information.

This pattern can be easily combined with a stream of section 11.4 to avoid making the

serializing process to dependent of how it is realized. In this case, the member function to

(de)serialize the object just receives a stream class, and by use of polymorphism serializa-

tion can occur to any medium without the class to actually know where she is serialized

to - a file, the screen, a server, or whatever.

This shows on the one hand the power of polymorphism. On the other hand, if a class

implements the serializable pattern, it becomes very simple to save the state of a program

to, say, disk. If being serializable is a feature of the ancestor class of all relevant objects,

it is just needed to go through all of them one by one and serialize them.

Deserializing is not entirely trivial, if the program is dynamic. After all, it is needed to

know what kind of class comes next from the stream. For this purpose, a factory pattern

helps - a class checks the stream which class comes next. This is encoded during the

serialization in the stream, usually at the beginning. It then creates an instance of the

class, and deserializes it from the stream. This is repeated until the stream provides no

more objects. Of course, for this the factory class has to have knowledge of all possible

classes in the stream.

11.6 Data integrity

Streams are not always reliable. The same is true for event sources. No matter the origin

of this, data integrity is always the relevant question.

At the simplest level, this will be just the necessity to note if the stream read is identical

to the original stream. The simplest possibility is to use a hash function, like discussed in

section 8.7. When data is written to the stream, e. g. when serializing an object, a hash

is calculated of it. In the simplest case, this can be the cross-sum or the number of bits

being one, the later known as a CRC code. This value is then also written in the stream.

When reading the data from the stream, the hash is again calculated, and compared to

the one in the stream. If it does not match, something went wrong. Of course, since the

hash is always a reduction of information, there are errors, which cannot be detected by

it. But there exist no perfect system. This concept can be enhanced in two ways.
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One is that the hash allows to correct for at least some possible errors. So-called error-

correcting check sums are able to correct an error of a single bit, and detect errors in two

bits. This can be further enhanced, but always at the expanse of the amount of data to

stream. After all, this is always redundant data in the sense of the final purpose, and only

serves to detect the errors.

The other is that the hash acts as an integrity check. If someone wants to change the

data without the recipient noticing a hash like a crosssum is easy to trick. It just needs

to recalculate it, and the data appears still to be intact. If the hash is not known to the

recipient via a different channel, s/he is not able to notice that a change has occurred.

To avoid this requires either that nobody than the one reading and writing to the stream

is able to correctly calculate the hash, either because no one else knows how to do this2

or is able to do this. The latter can be realized, e. g., by public-key cryptography to be

discussed in section 11.7.

11.7 Public-key cryptography

To solve the problem of being trustworthy is very hard. In fact, no perfect solution is

known.

One good solution is so-called public-key cryptography. The basic idea is that to make

something to be identifiably from a particular person requires two elements. One is an

element known to belonging to this person, the so-called public key. The person also has

a private key only s/he knows. If a message is sent by the person, s/he uses her/is private

key to sign it, e. g. by calculating a hash of it. It requires the message, the hash, and the

public key to check that the hash of the message is valid. Thus, nobody else can create

the correct hash, as nobody else has access to the private key. Of course, this requires

that the way how everything is mixed is so expensive that not somebody can solve the

problem just by trying every possible values for the private key3. This can also be used to

ensure the data integrity of section 11.6 against manipulation.

Conversely, this can also be used to send a message to a person, which only the person

can read. The message to the person is encrypted using her/is public key such that it is

only (feasible) possible to decrypt it with her/is private key.

The decisive problem, aside from the actual algorithm to perform the en/decryption

2So-called security-by-obscurity. Usually not the best choice, as experience tells that social engineering

sooner or later removes the obscurity, or reverse engineering does.
3This is actually the weak point of most ways of mixing it - it is usually not possible to disprove that

there is some yet unknown fast way to solve the problem in much shorter time. It is also often calculational

quite expensive to make the keys bigger to make brute force less likely to succeed.
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is how to be sure that a public key actually belongs to the person in question. The best

possibility is to get it in person, but this is not always possible. How to build a so-called

web-of-trust without personal meetings is a central, and not satisfactorily solved, problem.
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Programming by contract

Probably the most important question of programming is how to write a ’correct’ program,

i. e. a program what does what it is supposed to do.

However, often it turns out that a program is correct, but the question of what it is

supposed to do has not been correctly answered, or even posed. This is an issue of design,

and actually not only applies to programming but to engineering in a very broad sense.

It is therefore too abstract for here. Thus, in the following it is assumed that what the

program is supposed to do is perfectly known, and the only question is how to ensure that

the implementation of the program is behaving in this way.

12.1 Formal proofs and the science of programming

While most of this lecture concentrates on actual programming, there is far more to it.

Since programs are structured, it is possible to map them on mathematics, even if some

amount of randomness is included. As a consequence, the whole apparatus of mathematics

is available to treat programs and algorithms.

Especially, it is possible to mathematical proof if some piece of code, given input, is

formally correct, i. e. has a well-defined output. This is especially important if the piece

of software is crucial, if, e. g., human lives are at stake. Think about the software involved

in controlling a nuclear power plant. Such software must be formally verified and proven

to be correct.

The whole formalism turns programming into a hard science. Besides correctness also

issues like performance or usage of resources can be treated in a mathematical well-defined

way. While this will not be subject of this lecture, it is important to know about this

possibility. Especially, if there is a persistent bug, this may be the only way to find it.
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12.2 Contract

To achieve this goal, a good approach is programming by contract. The idea is that there

is a well-defined set of conditions under which a program provides a certain outcome. This

is essentially a contract.

The important insight is that a contract requires two parties: Somebody who gives an

order, and somebody who performs accordingly. As in a real contract, both sides have

obligations. The one giving the order has the obligation to provide input in a particular

way. The one performing the order is required to guarantee a certain output, given the

input.

There are two particularities involved. One is that input is not necessarily exactly

defined. E. g., if considering performing an addition as a contract, the input can be, say

any real number. It is part of the contract that these are real numbers. Including also

complex numbers would be a different contract. The other party then guarantees an output

in a certain range, e. g. again the real numbers. This is different from ordinary contracts,

which have often a one-to-one character. Rather, it is more like a service agreement.

The second particularity is that there is a particular purpose. In the example above,

this is that an addition should be performed. This is an additional information. So far,

the contract was just to have a mapping of two real to one real numbers. Thus, purpose

needs to be added.

12.3 Preconditions and postconditions

To ensure this contract leads to the idea of preconditions and postconditions. The idea is

that a part of code, usually a function, requires certain conditions, i. e. preconditions, and

then guarantees that something is achieved, i. e. postconditions.

In the example of addition above, part of this can in C(++) already be implemented

using the strict typecasting. If the return value and the parameters are already real

numbers, float or double, this is ensured, and thus implements these precondition and

postcondition. An additional postcondition can then be formulated as a mathematical

expression, that the output is the sum of the two inputs1. This last part can often involve

statements which are almost as complicated as the function itself, but should still not be

done sloppily. A mathematical formulation is needed to ascertain a precise statement.

1There is, of course, the subtlety that this is not exactly true, as even long double variables have a

finite range, and thus the strict mathematical statement is only valid up to rounding errors. Including

this is an important, though often implicit, part of the conditions.
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While the previous example of addition is almost trivial, there are much more com-

plicated cases, especially if user input is involved. Consider the case that an input is a

user-provided email address, and the output is that an email to the user has been send.

The preconditions now decide how the function needs to be written. Is it ascertained that

the input is a well-formed string containing a valid email address? Then the function does

not need to check it. If it is only guaranteed that a well-formed string is provided, it is

necessary for the function to check that it is valid email address, and have a postcondition

which specifies the behavior of the function for the case that it is not. If it is not even

guaranteed that the string is well-formed2, even this has to be checked by the function.

Thus, the preconditions will decide a lot about what the function has to do.

Since preconditions and postconditions are so far just statements, there is a danger

that they can be ignored. To avoid this, libraries exist which force the test of precondi-

tions and/or postconditions at run-time, throwing exceptions in case of violations. Such

constructs are often created by heavy use of the preprocessor of section 7.3. Also, there

exists special languages, e. g. Eiffel, which include preconditions and postconditions as

part of the language, making it even mandatory to state the absence of conditions if none

are needed.

Preconditions and postconditions are a valuable tool to enforce contracts. Of course,

they cost computing time. Depending on the purpose, convenient or critical, it may be

useful to enforce conditions only during testing and programming or also in the final

version of a program.

12.4 Invariants

Besides conditions on the execution of a part of a program, there are also so-called invari-

ants. These are conditions, which are guaranteed to hold at every stage of a program.

One example of such an invariant is that the static variable rectcount of the class rect

in chapter 10 on classes is always non-negative. Such an invariant could in this case be

guaranteed by the strong typing of C(++) declaring it to be an unsigned int. Another

example could be that the area of every instance is always non-negative. The later would

require to ensure that the product of the members x and y is non-negative. It should be

noted that this invariant does not imply that x and y are separately non-negative. This

would be two more invariants, which imply the area invariant. Such invariants, which

are defined based on a class, are also called class invariants. There could also be global

2It could contain, e. g., wrong information about its length, a trick quite often used in buffer-overflow

attacks.
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invariants, which pertain to the whole program.

Again, ensuring the invariants beyond stating them requires code. In the example of

the length of the object, this is achieved by the getters and setters of section 10.8 and by

making the members private. For rectcount this is done by its type.

As for preconditions and postconditions, some libraries, or even languages, support

their enforcement. However, ensuring them is even more expensive, as whenever something

changes, which is involved with a given invariant, it has to be checked. E. g. for the rect

class the area would have to be calculated whenever x or y are changed, if only the non-

negative area class invariant would have been formulated.

12.5 Formal proofs

If postconditions and class invariants can be formulated in mathematical terms, it is ac-

tually possible to provide formal proofs of whether they could be guaranteed by the post

condition.

The basic idea is to start at a given postcondition, and then follow the code backwards.

Every statement, which affects any element of the postcondition or invariants3, is then used

to reformulate the postcondition. If the code is formally correct, then the postcondition

should have turned into the precondition in this way. At the same time, at every step the

(class) invariants need to be satisfied. This constitutes a formal proof of the correctness

of the code4.

Ideally, every code should have explicit preconditions, postconditions, and invariants,

and they should imply the satisfaction of the contract. In practice, this is not always

possible, or, in comparison to the consequences of a failure of the code, not always justified.

It remains a decision of the project manager to identify to which extent code should be

tested formally. In the end, this decision has also ethical aspects, leaving the scope of this

lecture, but should be aware for any programmer. This reaches from the fact that literally

lives may depend on the code, e. g. control software for an airplane, down to questions

whether it is acceptable that the customer’s code crashes every once in a while.

3Other statements should, strictly speaking, not exist, because either they have no effect or the post-

condition and invariants have not been formulated strongly enough, as not all actions of the code have

been taken into account.
4Provided no error is made when performing the proof. There are also tools to automatically proof

code, at least to some extent.
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Parallel programming

So far, code was executed in a serial way, i. e. one statement after another. In practice,

this is often inefficient. In science, the reason for the inefficiency is often that a code would

run far too long. In commercial applications, this may be a problem as this would block

the computer to the user while something is done. Also, it is technically easier to build

slower but many cores, rather than a single very fast core.

All of these issues lead to the development of parallel programs, i. e. programs in which

multiple statements are executed in parallel. Thereby, they can utilize multiple cores, or

even computers, so-called clusters. Also, one part of the program can do some calculation,

while another part interacts with the user. Finally, it is possible to user many slower cores

to get the same effect as a single fast core.

How this parallelization is actually done is something which is quite involved. Thus,

normally, this is hidden from the programmer. Rather, the programmer works on an

abstract level, saying that n things should be done in parallel, and an underlying library,

or the operating system, takes care of doing so. The one notable exception is if performance

it the most important concept. Here, the actually distribution over the available resources

is decisive, and the programmer/scientists, has to take care of this. This is, however,

somewhat advanced, and beyond the scope of this lecture.

It should be noted that parallelization is not necessarily the best solution. The time

needed to do a program in n parallel parts behaves, roughly, as

t = t0 +
a

n
+ bn2,

what is called Amdahl’s law. There is always a part which takes the same time no matter

how much the code is parallelized. E. g. initialization or opening files. Then there is a

part which is determined by calculation, and will ideally by n times quicker if the code is

distributed over n cores. But then the code needs usually to combine somehow the results
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of the different cores, requiring communication. This usually scales like n2. Thus, there

is a sweet spot of n where the time is smallest. If more cores are added, the performance

degrades again. Where this spot is is determined by the coefficients a and b, which depend

on the problem at hand. If b is small enough, the performance of a program will increase

proportional to n. If this the case, it is said that the performance scales.

Parallelizing programs is highly non-trivial, and substantially more complicated to do

than serial programs, especially if b should be made small. Still, there are some common

elements to all parallel programs.


