Measuring the size of the Higgs

Axel Maas

8th of April 2022

 \rightarrow 2204.02756 with Patrick Jenny & Bernd Riederer

Measuring the size of the Higgs

And why there is Standard Model background

Axel Maas

8th of April 2022

 \rightarrow 2204.02756 with Patrick Jenny & Bernd Riederer

• Could the Higgs have a finite extent?

- Could the Higgs have a finite extent?
 - If the Higgs would be composite, this should be the case
 - E.g. in BSM: technicolor, composite Higgs,...

- Could the Higgs have a finite extent?
 - If the Higgs would be composite, this should be the case
 - E.g. in BSM: technicolor, composite Higgs,...
 - Radius depends on interaction probing it
 - Compare electromagnetic and weak radius of hadrons in the 1960ies/1970ies

- Could the Higgs have a finite extent?
 - If the Higgs would be composite, this should be the case
 - E.g. in BSM: technicolor, composite Higgs,...
 - Radius depends on interaction probing it
 - Compare electromagnetic and weak radius of hadrons in the 1960ies/1970ies
- Here Higgs weak radius
 - There is also a Yukawa radius when probed by fermions
 - How to measure?

- Could the Higgs have a finite extent?
 - If the Higgs would be composite, this should be the case
 - E.g. in BSM: technicolor, composite Higgs,...
 - Radius depends on interaction probing it
 - Compare electromagnetic and weak radius of hadrons in the 1960ies/1970ies
- Here Higgs weak radius
 - There is also a Yukawa radius when probed by fermions
 - How to measure?
 - Is there a background from the standard model?

Measuring the radius

Two standard possibilities

Measuring the radius

- Two standard possibilities
 - Form factor
 - Difficult
 - Higgs and Z need to be both produced in the same process

Measuring the radius

- Two standard possibilities
 - Form factor
 - Difficult
 - Higgs and Z need to be both produced in the same process
 - Elastic scattering
 - Standard vector boson scattering process at low energies
 - Use this one

- Elastic region: $160/180 \, GeV \leq \sqrt{s} \leq 250 \, GeV$
 - s is the CMS energy in the initial/final ZZ/WW system

- Elastic region: $160/180 \, GeV \leq \sqrt{s} \leq 250 \, GeV$
 - s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

- Elastic region: $160/180 \, GeV \leq \sqrt{s} \leq 250 \, GeV$
 - s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

$$\frac{d\sigma}{d\Omega} = \frac{1}{64 \, \pi^2 s} |M|^2$$

- Elastic region: $160/180 \, GeV \leq \sqrt{s} \leq 250 \, GeV$
 - s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

Matrix element

- Elastic region: $160/180 \, GeV \leq \sqrt{s} \leq 250 \, GeV$
 - s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} |M|^2$$

M(s, Ω) = 16 $\pi \sum_{J} (2J+1) f_J(s) P_J(\cos\theta)$

- Elastic region: $160/180 \, GeV \leq \sqrt{s} \leq 250 \, GeV$
 - s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

Matrix element

$$\frac{d \sigma}{d \Omega} = \frac{1}{64 \pi^2 s} |M|^2 \quad \text{Partial wave amplitude}$$

$$M(s, \Omega) = 16 \pi \sum_{J} (2J+1) f_{J}(s) P_{J}(\cos \theta)$$
Legendre polynom

- Elastic region: $160/180 \, GeV \leq \sqrt{s} \leq 250 \, GeV$
 - s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

$$\frac{d \sigma}{d \Omega} = \frac{1}{64 \pi^2 s} |M|^2$$
$$M(s, \Omega) = 16 \pi \sum_J (2J+1) f_J(s) P_J(\cos \theta)$$
Partial wave $f_J(s) = e^{i \delta_J(s)} \sin(\delta_J(s))$

- Elastic region: $160/180 \, GeV \leq \sqrt{s} \leq 250 \, GeV$
 - s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} |M|^2$$

$$M(s,\Omega) = 16\pi \sum_J (2J+1)f_J(s)P_J(\cos\theta)$$
Partial wave $f_J(s) = e^{i\delta_J(s)}\sin(\delta_J(s))$
amplitude

Phase shift

- Elastic region: $160/180 \, GeV \leq \sqrt{s} \leq 250 \, GeV$
 - s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

$$\frac{d \sigma}{d \Omega} = \frac{1}{64 \pi^2 s} |M|^2$$

$$M(s, \Omega) = 16 \pi \sum_J (2J+1) f_J(s) P_J(\cos \theta)$$

$$f_J(s) = e^{i \delta_J(s)} \sin(\delta_J(s))$$

$$s \to 4m_W^2$$

$$a_0 = \tan(\delta_J) / \sqrt{s - 4m_W^2}$$
Phase shift

- Elastic region: $160/180 \, GeV \leq \sqrt{s} \leq 250 \, GeV$
 - s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

$$\frac{d \sigma}{d \Omega} = \frac{1}{64 \pi^2 s} |M|^2$$

$$M(s, \Omega) = 16 \pi \sum_J (2J+1) f_J(s) P_J(\cos \theta)$$

$$f_J(s) = e^{i \delta_J(s)} \sin(\delta_J(s))$$

$$s \to 4m_W^2 \tan(\delta_J) / \sqrt{s - 4m_W^2}$$
Scattering length~"size" Phase shift

• Consider the Higgs: *J*=0

• Consider the Higgs: J=0

- Consider the Higgs: *J*=0
- Mock-up effect
 - Scattering length 1/(40 GeV)

- Consider the Higgs: *J*=0
- Mock-up effect
 - Scattering length 1/(40 GeV)

- Consider the Higgs: *J*=0
- Mock-up effect
 - Scattering length 1/(40 GeV)

• Usual assumption: The Higgs is point-like in the SM

- Usual assumption: The Higgs is point-like in the SM
- Turns out to be not quite true
 - Subtle field-theoretical effect
 - Known since the early 1980ies

- Usual assumption: The Higgs is point-like in the SM
- Turns out to be not quite true
 - Subtle field-theoretical effect
 - Known since the early 1980ies
- Physical states are actually bound states

- Usual assumption: The Higgs is point-like in the SM
- Turns out to be not quite true
 - Subtle field-theoretical effect
 - Known since the early 1980ies
- Physical states are actually bound states
 - True for all weakly interacting particles

• Review: 1712.04721

[Fröhlich et al.'80,'81 Maas'12,'17]

1) Formulate gauge-invariant operator

[Fröhlich et al.'80,'81 Maas'12,'17]

- 1) Formulate gauge-invariant operator
 - **0**⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

Higgs field

[Fröhlich et al.'80,'81 Maas'12,'17]

1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

[Fröhlich et al.'80,'81 Maas'12,'17]

1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

2) Expand Higgs field around fluctuations $h=v+\eta$

[Fröhlich et al.'80,'81 Maas'12,'17]

1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle \\ + v \langle \eta^+ \eta^2 + \eta^{+2} \eta \rangle + \langle \eta^{+2} \eta^2 \rangle$$

[Fröhlich et al.'80,'81 Maas'12,'17]

1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle \\ + v \langle \eta^+ \eta^2 + \eta^{+2} \eta \rangle + \langle \eta^{+2} \eta^2 \rangle$$

3) Standard perturbation theory

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle + \langle \eta^+ (x)\eta(y) \rangle \langle \eta^+ (x)\eta(y) \rangle + O(g,\lambda)$$

[Fröhlich et al.'80,'81 Maas'12,'17]

1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle \\ + v \langle \eta^+ \eta^2 + \eta^{+2} \eta \rangle + \langle \eta^{+2} \eta^2 \rangle$$

3) Standard perturbation theory

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle + \langle \eta^+ (x)\eta(y) \rangle \langle \eta^+ (x)\eta(y) \rangle + O(g,\lambda)$$

[Fröhlich et al.'80,'81 Maas'12,'17]

1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle \\ + v \langle \eta^+ \eta^2 + \eta^{+2} \eta \rangle + \langle \eta^{+2} \eta^2 \rangle$$

3) Standard perturbation theory

Bound state $\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle$ mass $+ \langle \eta^+ (x)\eta(y) \rangle \langle \eta^+ (x)\eta(y) \rangle + O(g,\lambda)$

[Fröhlich et al.'80,'81 Maas'12,'17]

1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle \\ + v \langle \eta^+ \eta^2 + \eta^{+2} \eta \rangle + \langle \eta^{+2} \eta^2 \rangle$$

3) Standard perturbation theory

Bound state $\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle$ mass $+ \langle \eta^+ (x)\eta(y) \rangle \langle \eta^+ (x)\eta(y) \rangle + O(g,\lambda)$ Higgs mass

[Fröhlich et al.'80,'81 Maas'12,'17]

1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle$$

+ $v \langle \eta^+ \eta^2 + \eta^{+2} \eta \rangle + \langle \eta^{+2} \eta^2 \rangle$

3) Standard perturbation theory

Standard Perturbation Theory

Bound state $\langle (h^+ h)(x)(h^+ h)(y) = v^2 \eta^+ (x)\eta(y) \rangle$ mass $+ \langle \eta^+ (x)\eta(y) \rangle \langle \eta^+ (x)\eta(y) \rangle + O(g,\lambda)$

[Fröhlich et al.'80,'81 Maas'12,'17 Maas & Sondenheimer'20]

1) Formulate gauge-invariant operator

0⁺ singlet: $\langle (h^+ h)(x)(h^+ h)(y) \rangle$

- 2) Expand Higgs field around fluctuations $h=v+\eta$
- $\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle$ Deviations: 2009.06671 + $v \langle \eta^+ \eta^2 + \eta^{+2} \eta \rangle + \langle \eta^{+2} \eta^2 \rangle$ 3) Standard perturbation theory

$$\langle (h^+ h)(x)(h^+ h)(y) \rangle = v^2 \langle \eta^+ (x)\eta(y) \rangle + \langle \eta^+ (x)\eta(y) \rangle \langle \eta^+ (x)\eta(y) \rangle + O(g,\lambda)$$

[Maas, Mufti'15 Afferrante,Maas,Sondenheimer,Törek'20]

• Reduced SM: Higgs+W/Z

[Maas, Mufti'15 Afferrante, Maas, Sondenheimer, Törek'20]

• Reduced SM: Higgs+W/Z

[Maas, Mufti'15 Afferrante, Maas, Sondenheimer, Törek'20]

• Reduced SM: Higgs+W/Z

- Qualitative outcome
 - FMS construction
 - Mass defect

- Reduced SM: Higgs+W/Z
- With quenched fermions
 - Many simplifications
 - Compressed mass scales
 - One generation
 - Degenerate leptons and neutrinos
 - Dirac fermions: left/righthanded non-degenerate
- Qualitative outcome
 - FMS construction
 - Mass defect

- Reduced SM: Higgs+W/Z
- With quenched fermions
 - Many simplifications
 - Compressed mass scales
 - One generation
 - Degenerate leptons and neutrinos
 - Dirac fermions: left/righthanded non-degenerate
- Qualitative outcome
 - FMS construction
 - Mass defect
 - Flavor and custodial symmetry patterns

Impact on the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
 - Parameters slightly different
 - Higgs too heavy (145 GeV) and too strong weak coupling
 - Qualitatively but not quantitatively

Impact on the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
 - Parameters slightly different
 - Higgs too heavy (145 GeV) and too strong weak coupling
 - Qualitatively but not quantitatively

Impact on the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
 - Parameters slightly different
 - Higgs too heavy (145 GeV) and too strong weak coupling
 - Qualitatively but not quantitatively

Review: 1712.04721

Review: 1712.04721

Note: Qualitative effects in many BSM scenarios

Note: Qualitative effects in many BSM scenarios

Summary

 Modifications of the cross section close to threshold in VBS could hint to a composite nature of the Higgs

→ 2204.02756, 1712.04721

Summary

 Modifications of the cross section close to threshold in VBS could hint to a composite nature of the Higgs

• There is unaccounted-for SM background in this measurement

→ 2204.02756, 1712.04721

Summary

 Modifications of the cross section close to threshold in VBS could hint to a composite nature of the Higgs

- There is unaccounted-for SM background in this measurement
 - Or: Guaranteed discovery of either the effect in the SM or a serious theoretical problem

→ 2204.02756, 1712.04721