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What's up?

 Could the Higgs have a finite extent?

* If the Higgs would be composite, this should be
the case

* E.g. In BSM: technicolor, composite Higgs,...
 Radius depends on interaction probing it

« Compare electromagnetic and weak radius of
hadrons in the 1960ies/1970ies

 Here Higgs weak radius

* There is also a Yukawa radius when probed by
fermions

* How to measure?
* |s there a background from the standard model?
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Measuring the radius

e Two standard
possibilities
e Form factor
- Difficult (Z

* Higgs and Z need to be
both produced in the @ | @

Same process
 Elastic scattering

 Standard vector boson G\L/
scattering process at
low energies / \
* Use this one e @
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 Elastic region: 160/180 GeV <+/s<250GeV

* 5 Is the CMS energy In the initial/final
LZ/WW system

 Requires a partial wave analysis

do _ \M\ Partial wave
Matrix element dQ 64 1 S /amplltude
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Radius from elastic scattering in VBS

 Elastic region: 160/180 GeV <+/s<250GeV

* 5 Is the CMS energy In the initial/final
LZ/WW system

 Requires a partial wave analysis

do_ 1
dQ 647°s
M(S,Q):16nzj(2J+1)fJ(S)PJ(cos 0)
f,(s)=¢'""sin(,(s))

sé4m@
a, = tan(d,)/\s—4m’
Phase shift

M

Scattering length~"size”
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Impact of a finite size of the Higgs

* Born level without bound state
| ¥ Total phase shift
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A standard model background

* Usual assumption: The Higgs is point-like in the SM
* Turns out to be not quite true

* Subtle field-theoretical effect
 Known since the early 1980ies
* Physical states are actually bound states

* True for all weakly interacting particles

* Review: 1712.04721
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2) Expand Higgs field around fluctuations h=v+n
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Frohlich-Morchio-Strocchi Mechanism

1) Formulate gauge-invariant operator
0* singlet: (h" h)(x)(h" h)(y))

2) Expand Higgs field around fluctuations h=v+n
(kTR () (AT R)(yD=viin " (x)n(y))

v aons = Hv (T )+ ) >

3) Standard perturbation theory

((h* h)(x)(h " h)(y))=viin" (x)n(y))
+(n" (x)nly))(n” (x)n(y))+O(g,2)

4) Compare poles on both sides
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Lattice support

 Reduced SM: Higgs+W/Z
« With quenched fermions

Many simplifications
Compressed mass scales
One generation

Degenerate leptons and
neutrinos

Dirac fermions: left/right-
handed non-degenerate

 Qualitative outcome

FMS construction
Mass defect

Spectrum: Lattice and predictions
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Lattice support

 Reduced SM: Higgs+W/Z

« With quenched fermions
 Many simplifications
« Compressed mass scales
 One generation

 Degenerate leptons and
neutrinos

* Dirac fermions: left/right-
handed non-degenerate

 Qualitative outcome

e FMS construction
e Mass defect

* Flavor and custodial
symmetry patterns

m [GeV]
e
=

Spectrum: Lattice and predictions
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Summary

* Modifications of the cross section close
to threshold in VBS could hint to a
composite nature of the Higgs

* There is unaccounted-for SM
background in this measurement

* Or: Guaranteed discovery of either the
effect in the SM or a serious theoretical
problem

- 2204.02756, 1712.04721
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