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What’s up?

● Could the Higgs have a finite extent?
● If the Higgs would be composite, this should be 

the case
● E.g. in BSM: technicolor, composite Higgs,…

● Radius depends on interaction probing it
● Compare electromagnetic and weak radius of 
hadrons in the 1960ies/1970ies

● Here Higgs weak radius
● There is also a Yukawa radius when probed by 

fermions
● How to measure?
● Is there a background from the standard model?
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Measuring the radius

● Two standard 
possibilities

● Form factor
● Difficult

● Higgs and Z need to be 
both produced in the 
same process

● Elastic scattering
● Standard vector boson 
scattering process at 
low energies

● Use this one

h h

WZ

WZ

WZ

WZ

WZ

h

[Maas, Raubitzek, Törek’18]
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Radius from elastic scattering in VBS

● Elastic region:
● s is the CMS energy in the initial/final 

ZZ/WW system
● Requires a partial wave analysis  

160 /180GeV⩽√s⩽250GeV

dσ

dΩ
=

1

64 π
2 s

|M|
2

M (s ,Ω)=16π∑J
(2J+1) f J (s)PJ (cosθ)

f J (s)=e
i δJ (s)sin (δJ (s))

a0 =
s→4mW

2

tan(δJ)/√s−4mW
2

Phase shift
Scattering length~”size”
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● Consider the Higgs: J=0
● Mock-up effect

● Scattering length 1/(40 GeV)
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A standard model background

Wh W WW WWh
h

h

● Usual assumption: The Higgs is point-like in the SM
● Turns out to be not quite true

● Subtle field-theoretical effect
● Known since the early 1980ies

● Physical states are actually bound states
● True for all weakly interacting particles

● Review: 1712.04721

h f
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1) Formulate gauge-invariant operator

     0+ singlet:

2) Expand Higgs field around fluctuations

3) Standard perturbation theory

4) Compare poles on both sides

⟨(h + h)(x)(h + h)( y)⟩

Deviations:
2009.06671

h=v+η

[Fröhlich et al.’80,’81
 Maas'12,’17
 Maas & Sondenheimer’20]
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Lattice support
● Reduced SM: Higgs+W/Z 

● With quenched fermions

● Many simplifications
● Compressed mass scales
● One generation
● Degenerate leptons and 

neutrinos
● Dirac fermions: left/right-

handed non-degenerate
● Qualitative outcome

● FMS construction
● Mass defect
● Flavor and custodial 

symmetry patterns

[Maas, Mufti’15
 Afferrante,Maas,Sondenheimer,Törek’20]
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Generic behavior: DIS-like
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Review: 1712.04721
Note: Qualitative effects in many BSM scenarios
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Summary

● Modifications of the cross section close 
to threshold in VBS could hint to a 
composite nature of the Higgs

● There is unaccounted-for SM 
background in this measurement

● Or: Guaranteed discovery of either the 
effect in the SM or a serious theoretical 
problem

→ 2204.02756, 1712.04721
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