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Chapter 1

Introduction

At the end of 2009 the largest particle physics experiment so far has been started, the LHC

at CERN. With proton-proton collisions at a center-of-mass energy of up to 14 TeV, there

are two major objectives. One is to complete the current picture of the standard model

of particle physics. To do so, it was required to find the Higgs boson, the last missing

particle in the standard model. This has been achieved in 2012.

The second objective is to search for new physics beyond the standard model. For

various reasons it is believed that there will be new phenomena appearing in particle

physics at a scale of 1 TeV. Though this is not guaranteed, there is motivation for it, as

will be discussed in section 3.5.

Afterwards, a number of possibilities will be presented. In particular, grand unified

theories, technicolor, extended Higgs sectors or additional (possibly hidden) sectors ex-

tending the standard model in one way or another by additional forces and particles will

be presented. These are candidates to resolve some of these issues. A more elaborate

approach is to impose a new structure on particle physics. This is done in particular by

supersymmetry as an extra (though broken) symmetry of nature. This is the one extension

most commonly believed to be the candidate for beyond-the-standard-model physics. Su-

persymmetry is in general also an important ingredient in theories which go a step further

and endow the very arena of physics, space-time, by a different structure. In particular,

supergravity theories and string theories do so. An example of a (non-supersymmetric)

string theory will be given at the end of this lecture. A simpler case of such an extension

is given by large extra dimensions, which will be discussed beforehand.

A useful list of literature for the present lecture is given by

• Aitchison, “Supersymmetry in particle physics” (Cambridge)

• Andersen et al., “Discovering technicolor”, 1104.1255

1



2

• Bambi et al. “Introduction to particle cosmology”, Springer

• Bedford, “An introduction to string theory”, 1107.3967

• Böhm, Denner, and Joos, “Gauge theories”, Teubner

• Cheng, “Introduction to extra dimensions”, 1003.1162

• Dolgov, “Cosmology and physics beyond the standard model”, Cosmology and Grav-

itation, American Institute of Physics

• Han et al., “Kaluza-Klein states from large extra dimensions”, hep-ph/98113504

• Hill and Simmons, “Strong dynamics and electroweak symmetry breaking”, hep-

ph/0203079

• Kalka, “Supersymmetrie”, Teubner

• Lane, “Two lectures on technicolor”, hep-ph/0202255

• Maas, “Brout-Englert-Higgs physics: From foundations to phenomenology”, 1712.04721

• Morrissey et al., “New physics at the LHC”, 0912.3259

• Piai “Lectures on walking technicolor, holography, and gauge/gravity dualities”,

1004.0176

• Polchinski, “String theory”, Cambridge University Press

• Rovelli, “A dialog on quantum gravity”, hep-th/0310077

• Shifman, “Advanced topics in quantum field theory”, Cambridge

• Siegel, “Fields”, hep-th/9912205

• Weinberg, “The quantum theory of fields III” (as well as I and II) (Cambridge)

• Wess et al. “Supersymmetry and supergravity” (Princeton)

However, the topic is developing, and will be even more rapdiyl do so as soon as something

is found at the LHC or elsewhere. In particular, it is not possible to cover only a serious

fraction of all proposals for physics beyond the standard model. This is particularly

true, as most proposals features sufficient freedom so that they can be adapted to any

new observation being in conflict with them. Hence, this lecture can only present a small
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selection, which is necessarily both not even exhaustive on a principle level and a subjective

selection by the lecturer. Still, all the more popular proposals in their most general form

should be covered.

Note that this lecture has necessarily some overlap with the astroparticle physics lecture

and the advanced general relativity and quantum gravity lecture, as those fields are tightly

connected. However, here the emphasis will be on microscopical models and their tests

and predictions in earthbound experiments, rather than on cosmological implications.

Furthermore, this brings with it that the focus will be on observables accessible in colliders,

and thus frequently the Higgs and/or electroweak observables.

Finally, right now new experimental results and observations from astronomy flood in

on an almost weekly basis. Essentially all of them confirm our knowledge, and those which

do not have often relevant uncertainties attached to them. Taking this seriously is very

important, as not doing so has given rise to various false claims of new physics, as will

be discussed in section 3.6.1. Therefore, adding a discussion of the current experimen-

tal situation makes no sense within these lecture notes, as it will be probably outdated

by the time the lecture is actually given. I will therefore only comment orally on new

developments, and of course adapt the lecture for any developing situations.

Finally, I would like to point out that the research of my group, my collaborators,

and myself has in the last few years rose doubt about the standard way how new theories

beyond the standard model are constructed, especially low-energetic completions. These

findings do contradict at some points the models presented in this lecture. However,

at the current time our results are not yet established beyond doubt, and certainly not

mainstream. Also, frequently the current ideas form an integral part to understand our

results, as well as it is necessary to understand mainstream research in this area and its

history. I therefore present in this lecture the current mainstream ideas on new physics.

I will only briefly introduce our own ideas in the section 7.7 on more recent theoretical

developments.



Chapter 2

A brief reminder of known physics

2.1 The standard model

2.1.1 The sectors of the standard model

The1 standard model of elementary particle physics is our best description of high-energy

physics up to an energy of about a few hundred GeVs to one TeV2. Within the standard

model there exists a number of sectors. One sector is the matter sector. It contains three

generations, or families, of matter particles. These particles are fermions, i.e., they have

spin 1/2. Each generation contains four particles, which are split into two subsets, quarks

and leptons. The different particles types are called flavors.

The first family contains the up and down quarks, having masses about 2-5 MeV each,

with the down quark being heavier than the up quark. Since their mass is very small

compared to the scale of the strong interactions, around 1 GeV, it is very hard to measure

their mass accurately, even at large energies. The leptons are the electron and the electron

neutrino. The electron has a mass of 511 keV. The masses of the neutrinos will be discussed

after the remaining generations have been introduced. All stable matter around us, i. e.,

nuclei and atoms, are just made from the first family. Particles from the other families

decay to the first family on rather short time-scales, and can therefore only be generated

in the laboratory, in high-energy natural processes, or virtually.

The other two families are essentially identical copies of the first one, and are only

distinguished by their mass. The second family contains the strange quark, with a mass

1The following contains contributions from Hill and Simmons, “Strong dynamics and electroweak

symmetry breaking”, hep-ph/0203079, 2003 and Morrissey, Plehn, and Tait “New physics at the LHC”,

0912.3259, 2009.
2For a detailed introduction to the standard model see also the lecture on the standard model.

4



Chapter 2. A brief reminder of known physics 5

between 80 and 100 MeV, and the charm quark with a mass of about 1.5 GeV. The leptons

in this family are the muon with roughly 105 MeV mass, and its associated neutrino, the

muon neutrino. The final, third, family contains the bottom quark with a mass of about

4.2 GeV, and the extraordinary heavy top quark with a mass of about 175 GeV. The

corresponding leptons are the tau with 1777 MeV mass and its associated tau neutrino.

Of the neutrino masses only an upper limit is known, which is roughly 0.2 eV. However,

it is sure that their mass, whatever it is, is not the same for all neutrinos, but the masses

differ by 50 meV and 9 meV. It is, however, not clear yet, whether one of the neutrinos is

massless, or which of the neutrinos is heaviest. It could be either that the one in the first

family is lightest, which is called a normal hierarchy of masses, or it could be heaviest,

which is called an inverted hierarchy. Experimental results favor so far a normal hierarchy,

but this is not yet beyond doubt. Also, it is not yet known whether the actual masses are

of the same order as the mass differences, or much larger. Both is still compatible with

the data. Advanced direct measurements of the neutrino mass should help clarify at least

a few of these questions until 2030.

These matter particles interact. The particles mediating the forces are called force

carriers and make up the force sector. The quarks have a force, which is exclusive to them,

the strong force, which binds together the nucleons in nuclei and quarks into nucleons or

in general hadrons. This strong force is mediated by gluons, massless spin-1 particles. The

description of the strong interactions is by a gauge theory, called quantumchromodynamics,

or QCD for short. Quarks and gluons can be arranged as multiplets of the gauge group of

QCD, which is SU(3). The associated charges are called color, and there are three quark

colors and three anti-quark colors, as well as eight gluon colors. From a group-theoretical

point of view, the (anti-)quarks appear in the (anti-)fundamental representation of SU(3)

and the gluons in the adjoint representation.

All matter particles are affected by the weak force, visible in, e. g., β-decays. It is

transmitted by the charged W± bosons and the neutral Z boson. These bosons also

have spin 1, but, in contrast to the gluons, are massive. The W bosons have about

81 GeV mass, while the Z boson has a mass of about 90 GeV. Thus, this force only

acts over short distances. This force is described by the weak interaction, again a gauge

theory. The gauge group of this theory is SU(2), into which all particles can be arranged

as doublets. However, this interaction violates parity maximally, and thus only couples

to left-handed particles. But it is in a sense even stranger, as it not couples to the

particles of the matter sector directly, but only to certain linear combinations, which also

contain admixtures of right-handed particles proportional to the mass of the particles.

This behavior is parametrized, though not explained, by the CKM and PMNS matrix for
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the quarks and for the leptons, respectively. It is mysteriously very different for both, the

one for the quarks being strongly diagonal-dominant, while the one for the leptons more

or less equally occupied. Both introduce also an explicit violation of CP into the standard

model. The actual amount for the quarks is quite large, even though the actual process is

kinematically substantially suppressed. For the leptons it is not yet firmly established, but

experiments strongly hint at a non-zero, and possibly even maximal, CP violating effect.

However, also for the leptons the actual consequences are strongly suppressed, in this case

by the small neutrino masses.

Finally, all electrically charged particles, and thus everything except gluons and neutri-

nos, are affected by the electromagnetic interactions. These are mediated by the photons,

massless spin-1 particles. The corresponding theory is again a gauge theory, having gauge

group U(1). It is actually entangled with the weak interactions in a certain way, and thus

both theories are often taken together as the electroweak sector of the standard model.

Together with the strong interactions, the gauge group of the standard model is there-

fore SU(3)color×SU(2)weak×U(1)em
3. Obtaining this structure in theories beyond the stan-

dard model will be a recurring theme in this lecture. It should be noted that this group

structure is not directly related to the actual group structure. In particular, the groups

SU(2) and U(1) are the weak isospin and hypercharge groups, and a mixture of them fi-

nally represents the weak interactions and the electromagnetic interactions. In particular,

left-handed fermions and right-handed fermions have different hypercharges while they

have the same electromagnetic charges.

However, because of the parity violation of the weak interactions, the masses of the

particles cannot be intrinsic properties of them, as otherwise no consistent gauge theory

can be formulated. Therefore, the mass is attributed to be a dynamically generated effect.

Its origin is from the dynamics of the Higgs particle, which interacts with all fields of

the standard model except gluons. Still, it is often taken to be a part of the electroweak

sector4. This particle is a scalar boson, and is by now experimentally as well established

as the other particles in the standard model.

The particular self-interactions of the Higgs particle obscures the gauge group, they

hide or, casually spoken, break the symmetry group of the standard model down to

SU(3)color×U(1)em. This occurs, because the Higgs field forms a condensate, very much

like Cooper pairs in a superconductor. As a consequence of the interactions with this

condensate the particles directly interacting with the Higgs boson acquire a mass, i. e.

3Actually, it is S(U(3)×U(2))=(SU(3)/Z3)color×(SU(2)/Z2)weak×U(1)em, to be precise. This is actually

not a trivial matter, and can be used as a restriction when constructing grand-unified theories in chapter

7, see e. g. O’Raifeartaigh “Group structure of gauge theories”, Cambridge, 1986.
4See the lecture on electroweak physics from SS 2016.
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all quarks and leptons and the weak gauge bosons W and Z. Only the photon remains

massless, despite its coupling to the Higgs, as it endows the unbroken U(1)em symmetry.

2.1.2 The Brout-Englert-Higgs effect

This Brout-Englert-Higgs effect is a very generic process5, and it reappears in different

forms in the majority of beyond-the-standard-model (BSM) scenarios to be described in

this lecture, and also in the literature. It is therefore worthwhile to detail it more for

the standard model. Begin by considering the SU(2)×U(1) part of the standard model

with one complex scalar field in the fundamental representation of the weak isospin group

SU(2). The covariant derivative is given by

iDµ = i∂µ − giW a
µQa − ghBµ

y

2

= i∂µ − giW+
µ Q

− − giW−
µ Q

+ − giW 3
µQ

3 − ghBµ
y

2

with the charge basis expressions

Q± =
(Q1 ± iQ2)√

2

W±
µ =

W 1
µ ± iW 2

µ√
2

.

Note that there are two gauge coupling constants, gi and gh for the subgroups SU(2) and

U(1), respectively, which are independent. The hypercharge y of the particles are, in the

standard model, an arbitrary number, and have to be fixed by experiment. The relevance

of this observation will be discussed in section 2.1.4, and in particular in chapter 7. The

Qa are the generators of the gauge group SU(2), and satisfy the algebra

[Qa, Qb] = iεabcQ
c

within the representation t of the matter field on which the covariant derivative acts. In

the standard model, these are either the fundamental representation t = 1/2, i. e. doublets,

and thus the Qa = τa are just the Pauli matrices, or singlets t = 0, in which case it is the

trivial representation with the Qa = 0.

Returning to the gauge bosons, linear combinations

W 3
µ = Zµ cos θW + Aµ sin θW

Bµ = −Zµ sin θW + Aµ cos θW

5This presentation is quite simplified, but the standard view. A more accurate quantum-field-

theoretical description will be given in section 7.7.
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can be written where Zµ (Aµ) is the Z-boson (photon). Then the electromagnetic coupling

constant e is defined as

gi sin θW = e = gh cos θW , (2.1)

implying the relation
1

e2
=

1

g2
i

+
1

g2
h

.

This definition (2.1) introduces the weak mixing, or Weinberg

tan θW =
gh
gi
.

The conventional electric charge, determining the strength of the coupling to the photon

field Aµ, is thus defined as

eQ = e
(
Q3 +

y

2
1
)
, (2.2)

where 1 is the unit matrix in the appropriate representation of the field, i. e. either the

number one or the two-dimensional unit matrix.

The total charge assignment for the standard model particles is then

• Left-handed neutrinos: t = 1/2, t3 = 1/2, y = −1 (Q = 0), color singlet

• Left-handed leptons: t = 1/2, t3 = −1/2, y = −1 (Q = −1), color singlet

• Right-handed neutrinos: t = 0, y = 0 (Q = 0), color singlet

• Right-handed leptons: t = 0, y = −2 (Q = −1), color singlet

• Left-handed up-type (u, c, t) quarks: t = 1/2, t3 = 1/2, y = 1/3 (Q = 2/3), color

triplet

• Left-handed down-type (d, s, b) quarks: t = 1/2, t3 = −1/2, y = 1/3 (Q = −1/3),

color triplet

• Right-handed up-type quarks: t = 0, y = 4/3 (Q = 2/3), color triplet

• Right-handed down-type quarks: t = 0, y = −2/3 (Q = −1/3), color triplet

• W+: t = 1, t3 = 1, y = 0 (Q = 1), color singlet

• W−: t = 1, t3 = −1, y = 0 (Q = −1), color singlet

• Z: t = 1, t3 = 0, y = 0 (Q = 0), color singlet

• γ: t = 0, y = 0 (Q = 0), color singlet
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• Gluon: t = 0, y = 0 (Q = 0), color octet

• Higgs: t = 1/2, t3 = ±1/2, y = 1 (Q = 0,+1), color singlet

Note that the right-handed neutrinos have no charge, and participate in the gauge inter-

actions only by neutrino oscillations, i. e., by admixtures due to the leptonic CKM matrix

and their interaction with the Higgs boson. Any theory beyond the standard model has

to reproduce this assignment.

It is now possible to discuss the Brout-Englert-Higgs effect in more detail. The complex

doublet scalar Higgs-boson can be written as

H =

(
φ0

φ−

)
(2.3)

and the Lagrangian for H takes the form

LH = (DµH)†(DµH)− V (H) (2.4)

with some (renormalizable) potential V . To generate the masses in the standard model

it must be assumed that (the quantum version of) the Higgs potential has an unstable

extremum for H = 0 and a nontrivial minimum, e. g.

V (H) =
λ

2
(H†H − v2)2 (2.5)

The Higgs boson then develops a vacuum expectation value v, the Higgs condensate. It is

always possible to find a gauge, e. g. the ’t Hooft gauge, in which v is real and oriented

along the upper component, and thus to be annihilated by the electric charge to make it

neutral,

〈H〉 =

(
v

0

)
.

In the conventions used here, the value of v is v = (2GF )−1/2 ≈ 250 GeV, where GF is

Fermi’s constant. Note that the operator Q defined by (2.2) acting on the Higgs vacuum

expectation value yields zero, which implies that the condensate is uncharged, and this

implies that the photon remains massless.

Inserting the decomposition of H into vacuum expectation value v and quantum fluc-
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tuations h = H − v into (2.4) generates the masses of the weak gauge bosons as

Lmass = 1/2(∂h)†∂h+ 1/2M2
WW

+
µ W

µ− + 1/2M2
ZZµZ

µ − 1/2M2
Hhh

†

−
√
λ

2
MH(h2h† + (h†)2h)− 1

8
λ(hh†)2

+1/2

(
hh+ +

MH

λ
(h+ h†)

)
(g2
iW

+
µ W

µ− + (g2
h + g2

i )ZµZ
µ)

MH = v
√

2λ

MW =
giv

2

MZ =
v

2

√
g2

2 + g2
1 =

MW

cos θW
.

Here, the electromagnetic interaction has been dropped for clarity. This Lagrangian also

exhibits the coupling of the Higgs h field to itself and to the W and Z fields. It implies

that the Higgs mass is just a rewriting of the four-Higgs coupling, and either has to be

measured to fix the other.

The matter fields couple with maximal parity violation to the weak gauge fields, i. e.

their covariant derivatives have the form, for, e. g. the left-handed weak isospin doublet

of bottom and top quark ΨL = (t, b)L

Ψ̄Liγ
µDµΨL = Ψ̄Liγ

µ∂µΨL −
1√
2
t̄γµ

1− γ5

2
bW µ + − 1√

2
b̄γµ

1− γ5

2
tW µ −

−2e

3
t̄γµ

1− γ5

2
tAµ +

e

3
b̄γµ

1− γ5

2
bAµ − Ψ̄Le tan θγµΨLZµ,

The problem with a conventional mass term would be that it contains the combination

Ψ̄LΨR, with ΨR being the sum of the right-handed bottom and top, which is not a singlet

under weak isospin transformation, and thus would make the Lagrangian gauge-dependent,

yielding a theory which is not physical.

This can be remedied by the addition of an interaction between the fermions and the

Higgs of the Yukawa form

gtΨ̄L ·HtR + gbΨ̄L ·H†bR, (2.6)

where · indicates a scalar product in isospin space, and which couples the left-handed

fermions and right-handed fermions to the Higgs field. This combination is gauge-invariant

and physically sensible for arbitrary Yukawa couplings gb and gt. When the Higgs develops

its vacuum expectation value, masses mt = gtv and mb = gbv arise for the top and bottom

quarks, respectively. This mechanism is replicated for both the other quarks and all

leptons, though one of the neutrinos may remain massless without contradiction.

It should be noted that (2.6) can, in general, contain also off-diagonal terms, i. e. terms

mixing different flavors. In the standard representation, the quark and lepton fields have
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been rotated such that they do not appear. The price to be payed is the appearance of

the CKM and PMNS matrices in the weak interaction. However, otherwise a fixed flavor

would not have a fixed mass. The consequence of this are oscillation phenomena. Note

also that thus intrageneration effects, including CP violation, thereby originate from the

Higgs-Yukawa interaction, and not from the weak interaction.

Another interesting feature of the Higgs sector is the fact that (2.3) has actually more

than the minimum necessary number of degrees of freedom for a sensible theory. In

principle, two degrees of freedom would be sufficient for a consistent theory. However,

then there would be not enough degrees of freedom to make all three gauge bosons, W±

and Z, massive simulatenously, and thus three or more are required by phenomenology.

Theoretical consistency then requires at least four, and thus twice as many. Since these

two sets of degrees of freedom are not distinguished by the weak interaction this gives

rise to an additional SU(2) symmetry, the so-called custodial symmetry. This symmetry

implies that the W± and Z would be mass-degenerate in absence of QED. QED, and also

the Yukawa interactions (2.6), break this symmetry explicitly. In fact, QED is nothing but

gauging the U(1) subgroup of the SU(2) custodial symmetry. While the symmetry is thus

not manifest in the standard model, its original structure is still imprinted as an explicitly

broken symmetry, which has to be replicated in one way or the other by any extension of

the standard model.

2.1.3 Running coupling

There is a further important concept in the standard model, and actually in all quantum

field theories, which will be a recurring theme in the search for beyond-the-standard model

physics. This is the running of a coupling, or, more generically, the running of a quantity,

known from the renormalization program in qunatum field theory. The derivative for a

coupling with respect to the renormalization scale defines the β function as

dg

d lnµ
= β(g) = −β0

g3

16π2
+O(g5), (2.7)

where the last equality defines the perturbative expansion with the β function coefficients

βi at order i of perturbation theory. Integrating this equation in leading order perturbation

theory yields

α(q2) =
g(q2)2

4π
=

α(µ2)

1 + α(µ2)
4π

β0 ln q2

µ2

≡ 4π

β0 ln q2

Λ2

, (2.8)

which introduces the scale Λ of a theory as a boundary condition of the ordinary differential

equation (2.7). The value of Λ can be determined, e. g., by evaluating g(µ) perturbatively
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to this order. It plays the role of a characteristic scale of the theory in question. The

value of β0 depends on the theory under scrutiny, as well as the type and representation of

the matter fields which couple to the interaction in question, e. g. for a gauge theory with

gauge group G including fermions and Higgs fields in the fundamental representation it is

β0 =
11

3
CA −

2

3
Nf −

1

6
NH (2.9)

where CA is the adjoint Casimir of the group, and Nf and NH counts the number of fermion

and Higgs flavors, respectively, which are charged in the fundamental representation of

the gauge group. Plugging this in for the standard model, the values of β0 for the strong

interactions, the weak isospin, and the hypercharge are 7, 19/6, and -41/6, respectively,

if the Higgs effect and all masses are neglected, i. e., at very high energies, q2 � 250

GeV. Remapping this to the weak interactions and electromagnetism is only shifting the

respective value for the weak interactions and the hypercharge weakly.

Plugging these values in (2.8) implies that for a positive β0 the coupling decreases with

increasing energy, while it increases for a negative value of β0. The former behavior is

known as asymptotic freedom. The latter, in contrast, yields eventually a singularity at

high energies, called a Landau pole. This may indicate the breakdown of the theory, or

merely the inadequacy of perturbation theory at high energies. If g(µ → ∞) becomes a

non-zero constants, this is referred to as asymptotic safety and to be discussed in more

detail in section 7.6.

Similar equations like (2.9) actually hold also for all other parameters in a quantum field

theory, in particular masses. Rather generically, the masses of the particles all decrease

when increasing the measured momenta. Thus, the masses of particles become less and

less relevant the higher the energy. That is a very important feature in many scenarios

which rely on symmetries only broken by such mass terms, called a soft breaking.

2.1.4 Anomalies

There is one particular important property of the standard model, which is very much

restricting its structure, and which is recurring in extensions of the standard model. That

is the absence of anomalies. An anomaly is that some symmetry, which is present on

the classical level, is not present when considering the quantum theory. The symmetry is

said to be broken by quantum effects. Generically, this occurs if the action of a theory is

invariant under a symmetry, but the measure of the path integral is not. Constructing a

theory which is at the same time anomaly-free and consistent with the standard model is

actually already quite restricting, and therefore anomalies are an important tool to check
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the consistency of new proposals for physics beyond the standard model. This will be

therefore discussed here in some detail.

Anomalies fall into two classes, global and local anomalies. Global anomalies refer to

the breaking of global symmetries by quantum effects. The most important one of these

global anomalies is the breaking of dilatation symmetry. This symmetry corresponds

to rescaling all dimensionful quantities, e. g., x → λx. Maxwell theory, massless QED,

Yang-Mills theory, and massless QCD are all invariant under such a rescaling, at the

classical level, though not the Higgs sector of the standard model. This is no longer the

case at the quantum level. By a process called dimensional transmutation, surfacing in

the renormalization process, an explicit scale is introduced into the theory, and thereby

the quantum theory is no longer scale-invariant. Such global anomalies have very direct

consequences. E. g., this dilatation anomaly leads to the fact that the photon is massless

in massless QED. Another example is the so-called axial anomaly, which occurs due to the

breaking of the global axial symmetry of baryons. A consequence of it is the anomalously

large η’ mass.

In contrast to the global anomalies, the local anomalies are a more severe problem. A

local anomaly occurs, when a quantum effect breaks a local gauge symmetry. The conse-

quence of this would be that observable quantities depend on the gauge, and therefore the

theory makes no sense. Thus, such anomalies may not occur. There are two possibilities

how such anomalies can be avoided. One is that no such anomalies occurs, i. e., the path

integral measure must be invariant under the symmetry. The second is by anomaly cancel-

lation, i. e., some parts of the measure are not invariant under the symmetry, but the sum

of all such anomalous terms cancel. It is the latter mechanism which makes the standard

model anomaly-free. However, the price to pay for this is that the matter content of the

standard model has to follow certain rules. It is thus rather important to understand how

this comes about. Furthermore, any chiral gauge theory beyond the standard model faces

similar, or even more severe, problems.

Eventually, see the lecture on quantum field theory II, the requirement for the absence

of gauge anomalies boils down to the condition

tr
{
τaL, τ

b
L

}
τ cL − tr

{
τaR, τ

b
R

}
τ cR = 0,

where τ are the generators of the theorie’s total gauge group, and L and R indicate

the representation of the left-handed fermions and right-handed fermions, respectively.

There are now two possibilities how to obtain an anomaly-free theory. Either, the theory

is anomaly-free, if each of the terms is individually zero, or they cancel. Indeed, the

expression tr{τa, τ b}τ c, the so-called symmetric structure constant, is zero for all (semi-

)simple Lie groups, except for SU(N ≥ 3) and U(1). Unfortunately, these are precisely
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those appearing in the standard model, except for the SU(2) of weak isospin. For the

group SU(3) of QCD, this is actually not a problem, since QCD is vectorial, and thus6

τL = τR, and the terms cancel for each flavor individually. Thus remains only the part

induced by the hypercharge.

In this case, each generation represents an identical contribution to the total result, as

the generations are just identical copies concerning the generators. It is thus sufficient to

consider one generation. The right-handed contributions are all singlets under the weak

isospin, and thus they only couple vectorially to electromagnetism, and therefore yield

zero. The contributions from the left-handed doublet contain then the generators of the

weak isospin, τa, and the electric charge Q = τ 3 + 1y/2. The possible combinations

contributing are

trτa{τ b, τ c} (2.10)

trQ{τa, τ b} (2.11)

trτaQ2 (2.12)

trQ3. (2.13)

The contribution (2.10) vanishes, as this is a pure SU(2) expression. The term (2.13) is

not making a difference between left and right, and is therefore also vanishing. It turns

out that (2.11) and (2.12) lead to the same result, so it is sufficient to investigate (2.12).

Since the isospin group is SU(2), the anti-commutator of two Pauli matrices just gives a

Kronecker-δ times a constant, yielding in total

trQ{τa, τ b} =
1

2
δab
∑
f

Qf ,

where Qf is the electric charge of the member f of the generation in units of the electric

charge. It has to vanish to prevent any gauge anomaly in the standard model, which is

fulfilled: ∑
f

Qf = (0− 1) +Nc

(
2

3
− 1

3

)
= −1 +

Nc

3
= 0.

Therefore, there is no gauge anomaly in the standard model. However, this is only possible,

because the electric charges have certain ratios, and the number of colors Nc is three. This

implies that the different sectors of the standard model, the weak isospin, the strong

interactions, and electromagnetism, very carefully balance each other, to provide a well-

defined theory. Such a perfect combination is one of the reasons to believe that the

6Actually, unitarily equivalent is sufficient.
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standard model is part of a larger theory, which imposes this structure. This leads to the

concept of grand-unified theories in chapter 7.

There is actually a further possible anomaly, the so-called Witten anomaly, which

comes from the parity violation. This is a problem exclusively applying to the Sp(N)

gauge groups, and to SU(2) of the weak interactions because SU(2)≈Sp(1), as well as

O(N < 6) groups, except for SO(2), if the number of chiral (Weyl) fermions is not even. It

will not be detailed here, see again the lecture on quantum field theory II. In the standard

model, it is canceled because the number of weak fermion states is even. This would not

be the case, if, e. g., there would be a single triplet of fermions charged under the weak

isospin. In technicolor theories, to be discussed in chapter 5, this is a constraint, as in

such theories multiplets with an odd number of fermions may appear.

2.2 General relativity

As will be discussed later, one of the objectives of many proposals for physics beyond the

standard model is to include a quantized version of gravity. Therefore, here quickly the

basics of gravity necessary in the following will be repeated7. The basic ingredient will be

the local metric gµν(x), which will later often be split as

gµν(x) = ηµν + hµν(x)

where ηµν is the constant Minkowski metric around which the quantum corrections to the

metric hµν fluctuate. Both classically and quantum, the metric describes the invariant

length-element ds by

ds2 = gµνdx
µdxν .

The inverse of the metric is required to exist and is given by the contravariant tensor gµν ,

gµνgνλ = δµλ .

As a consequence, for any derivative δ of gµν

δgµν = −gµλgνρδgλρ (2.14)

holds. The metric is assumed to be non-vanishing and symmetric and has a signature such

that its determinant is negative,

g = det gµν < 0.

7A more detailed introduction is given in the lecture on advanced general relativity and quantum

gravity.
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The covariant volume element dV is therefore given by

dV = ωd4x

ω =
√
−g =

√
− det gµν > 0,

implying that ω is real (hermitian), and has derivative

δω =
1

2
ωgµνδgµν = −1

2
ωgµνδg

µν (2.15)

as a consequence of (2.14).

The most important concept of general relativity is the covariance (or invariance) under

a general coordinate transformation xµ → x′µ (diffeomorphism) having

dx
′µ =

∂x
′µ

∂xν
dxν = Jµν dx

ν

det(J) 6= 0,

where the condition on the Jacobian J follows directly from the requirement to have an

invertible coordinate transformation everywhere. Scalars φ(x) are invariant under such

coordinate transformations, i. e., φ(x) → φ(x′). Covariant and contravariant tensors of

n-th order transform as

T ′µ...ν(x
′) =

∂xµ
∂x′α

...
∂xν
∂x′β

Tα...β(x)

T ′µ...ν(x′) =
∂x
′µ

∂xα
...
∂x
′ν

∂xβ
Tα...β(x)

(2.16)

respectively, and contravariant and covariant indices can be exchanged with a metric

factor, as in special relativity. As a consequence, the ordinary derivative ∂µ of a tensor

Aν of rank one or higher is not a tensor. To obtain a tensor from a differentiation the

covariant derivative must be used

DµAν = ∂µAν − ΓλµνAλ (2.17)

Γλµν =
1

2
gλσ(∂µgνσ + ∂νgµσ − ∂σgµν),

where Γ are the Christoffelsymbols. Only the combination ωAν , yielding a tensor density,

obeys

Dµ(ωAν) = ∂µ(ωAν).
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As a consequence, covariant derivatives no longer commute, and their commutator is given

by the Riemann tensor Rλρµν as

[Dµ, Dν ]A
λ = Rλ

ρµνA
ρ

Rλ
ρµν = ∂µΓλνρ − ∂νΓλνρ + ΓλµσΓσνρ − ΓλνρΓ

σ
µρ,

which also determines the Ricci tensor and the curvature scalar

Rµν = Rλ
νµλ

R = Rµ
µ,

respectively.

These definitions are sufficient to write down the basic dynamical equation of general

relativity, the Einstein equation

Rµν −
1

2
gµνR + gµνΛ = −κTµν , (2.18)

which can be derived as the Euler-Lagrange equation from the Lagrangian8

L = ω

(
1

2κ
R− 1

κ
Λ + LM

)
, (2.19)

where the first two terms are the Einstein-Hilbert Lagrangian LEH . The quantity Λ is the

cosmological constant, a parameter of the theory, which is measured to be small but non-

zero. LM is the matter Lagrangian yielding the covariantly conserved energy momentum

tensor Tµν , which is the variation of LM with respect to the metric. In flat-space time it

becomes the usual one,

Tµν =

(
−ηµνLM + 2

δLM
δgµν

(gµν = ηµν)

)
. (2.20)

The second constant κ = 16πGN is Newton’s constant. It describes the strength of the

coupling of matter to gravity.

There is an important remark to be made about classical general relativity. The pos-

sibility of making a general coordinate transformation leaving physics invariant has the

consequence that coordinates, and thus also both energy and three momentum as their

canonical conjugate momenta, loose their meaning as physically meaningful concepts, just

like charge in a non-Abelian gauge theory. Indeed it is possible to alter the energy of a

system by performing a space-time coordinate transformation. Only the concept of to-

tal energy (or momentum) of a localized distribution of particles when regarded from far

8In the following, usually, the cosmological constant term gµνΛ will be absorbed in the matter part.
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away in an otherwise flat space-time can be given an (approximate) physically meaning,

similarly to charges. Therefore, many concepts which are usually taken to be physical

loose their meaning when general relativity is involved. This carries over to any quantum

version.



Chapter 3

Why physics beyond the standard

model?

Before discussing actual BSM scenarios, it is useful to understand why they appear nec-

essary and how they could be discovered.

There are a number of reasons to believe that there exists physics beyond the standard

model. These reasons can be categorized as being from within the standard model, by

the existence of gravity, and by observations which do not fit into the standard model.

Essentially all of the latter category are from astronomical observations, and there are

currently only very few observations in terrestrial experiments which are reproducible

and do not perfectly agree with the standard model, and none which disagree with any

reasonable statistical and systematical accuracy.

Of course, it should always be kept in mind that the standard model has never been

completely solved. Though what has been solved, in particular using perturbation theory,

agrees excellently with measurements, it is a highly non-linear theory. It cannot a-priori

be excluded that some of the reasons to be listed here are actually completely within the

standard model, once it is possible to solve it exactly.

Many of the observations to be listed can be explained easily, but not necessarily, by

new physics at a scale of 1 TeV. However, it cannot be exclude that there is no new

phenomena necessary for any of them up to a scale of 1015 GeV, called the GUT scale for

reasons to become clear in chapter 7, or possibly up to the Planck scale of 1019 GeV, in

which case the energy domain between the standard model and this scale is known as the

great desert.

19
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3.1 Inconsistencies of the standard model

There are a number of factual and perceived flaws of the standard model, which make it

likely that it cannot be the ultimate theory.

The one most striking reason is the need of renormalization. It is not possible to deter-

mine within the standard model processes at arbitrary high energies. The corresponding

calculations break down eventually, and yield infinities. Though we have learned how to

absorb this lack of knowledge in a few parameters, the renormalization constants, it is

clear that there are things the theory cannot describe. Thus it seems plausible that at

some energy scale these infinities are resolved by new processes, which are unknown so far.

In this sense, the standard model is often referred to as an effective low-energy theory of

the corresponding high-energy theory, or sometimes also called ultraviolet completion.

This sought-for high-energy theory is very likely not a (conventional) quantum field

theory, as this flaw is a characteristic of such theories. Though theories exist which reduce

the severity of the problem, supersymmetry at the forefront of them, it appears that it is

not possible to completely resolve it for any theory compatible with observations1, though

this cannot be excluded. Thus, it is commonly believed that the high-energy theory

is structurally different from the standard model, like string theory to be discussed in

chapter 9.1.

In a similar vain, there is also a very fundamental question concerning the Higgs sector.

At the current time, it is not yet clear whether there can exist, even in the limited sense of

a renormalizable quantum field theory, a meaningful theory of an interacting scalar field.

This is the so-called triviality problem. So far, it is essentially only clear that the only

consistent four-dimensional theory describing a spin zero boson alone is one without any

interactions. Whether this can be changed by adding additional fields, as in the standard

model, is an open question. However, since this problem can be postponed to energy scales

as high as 1015 GeV, or possibly even higher, this question is not necessarily of practical

relevance.

There are a number of aesthetic flaws of the standard model as well. First, there are

about thirty five different free parameters of the theory, varying by at least twelve orders of

magnitude. There is no possibility to understand their size or nature within the standard

model, and this is unsatisfactory. Even if their origin alone could be understood, their

relative size is a mystery as well. This is particularly true in case of the Higgs and the

electroweak sector in general. There is no reason for the Higgs to have a mass which is

small compared to the scale of the theory from which the standard model emerges. In

1Some conformal theories or lower-dimensional theories do not need renormalization, they are intrin-

sically finite.
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particular, no symmetry protects the Higgs mass from the underlying theory, which could

make it much more massive, and therefore inconsistent with experimental data, than all

the other standard model particles. Why this is not so is called the hierarchy problem,

despite the fact that it could just be accidentally so, and not a flaw of the theory. Even if

this scale should be of the order of a few tens of TeV, there is still a factor of possibly 100

involved, which is not as dramatic as if the scale would be, say, 1015 GeV. Therefore, this

case is also called the little hierarchy problem.

There is another strikingly odd thing with these parameters. The charges of the leptons

and quarks need not to be the same just because of QED - in contrast to the weak or

strong charge, actually. They could differ, and in particular do not need to have the ratio of

small integer numbers as they do: −1 to 2/3 or 1/3. This is due to the fact that the gauge

group of QED is Abelian. However, if they would not match within experimental precision,

which is more than ten orders of magnitude, then actually the standard model would not

work, and neither would physics with neutral atoms. This is due to the development of

a quantum anomaly, i. e., an effect solely related to quantizing the theory which would

make it inconsistent, as discussed in section 2.1.4. Only with the generation structure of

quarks and leptons with the assigned charges of the standard model this can be avoided.

This is ultimately mysterious, and no explanation exists for this in the standard model,

except that it is necessary for it to work, which is unsatisfactory.

There is also absolutely no reason inside the standard model why there should be

more than one family, since the aforementioned cancellation works within each family

independently and is complete. However, at least three families are necessary to have

inside the standard model CP violating processes, i. e. processes which favor matter over

anti-matter. As will be discussed in section 3.4.4, such processes are necessary for the

observation that the world around us is made from matter. But there is no reason, why

there should only be three families, and not four, five, or more. And if there should be

a fourth family around, why its neutrino is so heavy compared to the other ones, as can

already be inferred from existing experimental data.

In this context it is also important that it is not yet clear whether the ground state

of the standard model is actually the world we are living in, or whether this is just a

metastable state which could collapse at some point in the future to the true ground

state, with potentially catastrophic consequences. Finding the answer to this question is

currently primarily a question of computability, but it is already clear that the answer is

sensitive to the mass ratio of the Higgs to the top quark, two not related quantities in

the standard model. This makes it again suspicious why these two numbers should be so

close. This is known as the electroweak stability problem.
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Finally, when extrapolating the running gauge couplings to an energy scale of about

1015 GeV their values almost meet, suggesting that at this scale a kind of unification could

be possible. However, they do not meet exactly, and this is somewhat puzzling as well.

Why should this seem to appear almost, but not perfectly so?

Though often referred to as beyond the standard model, the conventional realization

of neutrino oscillations can be accommodated in the standard model just by making them

Dirac fermions and the introduction of parameters for their masses, and a second CKM-

matrix in the lepton sector, the PMNS matrix. This will therefore not be considered

beyond the standard model for the scope of this lecture. This does not explain why their

masses are several orders of magnitude smaller than all the other fermions masses nor why

the PMNS matrix is so different from the CKM matrix, and this will be a subject of this

lecture.

Also, questions of computability, in particular within perturbation theory, are deemed

here to be completely irrelevant in this lecture, since its nature and not our ability to

compute something which decides about physics. Thus, especially the concept of pertur-

bativity, i. e. the demand that the theory is readily accessible to perturbative calculations,

will not be considered as a valid constrain for anything.

3.2 Gravity

3.2.1 Problems with quantization

One obviously, and suspiciously, lacking element of the standard model is gravity. Up to

now no consistent quantization of gravity has been obtained beyond reasonable doubt.

Usually the problem is that a canonical quantized theory of gravity is not renormalizable

perturbatively. This is visible when writing down the Lagrangian of gravity (2.19): The

coupling constant involved, κ or equivalently Newton’s constant, is dimensionful. Super-

ficial (perturbative) power counting immediately implies that the theory is perturbatively

non-renormalizable. As a consequence, an infinite hierarchy of counter terms, all to be

fixed by experiment, would be necessary to perform perturbative calculations, spoiling

any predictivity of the theory. In pure gravity, these problems occur at two-loop order,

for matter coupled to gravity already at the leading order of radiative corrections.

In particular, this implies that the theory is not reliable beyond the scale
√
κ. Though

this may be an artifact of perturbation theory, this has led to developments like super

quantum gravity based on local supersymmetry or loop quantum gravity.

Irrespective of the details, the lack of gravity is an obvious flaw of the standard model.
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Along with this lack comes also a riddle. The natural scale of quantum gravity is given

by the Planck scale

MP =
1√
GN

≈ 1.22× 1019 GeV.

This is 17 orders of magnitude larger than the natural scale of the electroweak interactions,

and 19 orders of magnitude larger than the one of QCD. The origin of this mismatch is

yet unsolved, and also known as (a) hierarchy problem

One of the most popular explanations, discussed in detail in chapter 8, is that this is

only an apparent mismatch: The scales of gravity and the standard model are the same, but

gravity is able to propagate also in additional dimensions not accessible by the remainder

of the standard model. The mismatch comes from the ratio of the total volumes, the

bulk, an the apparent four dimensional volume, which is thus only a boundary, a so-called

brane.

3.2.2 Asymptotic safety

Reiterating, the problem with the renormalizability of quantum gravity is a purely per-

turbative statement, since only perturbative arguments have been used to establish it.

Thus, the possibility remains that the theory is not having such a problem, it is said to be

asymptotically safe, and the problem is a mere artifact of perturbation theory. In this case,

when performing a proper, non-perturbative calculation, no such problems would arise.

In fact, this includes the possibility that κ imposes just an intrinsic cutoff of physics, and

that this is simply the highest attainable energy, similarly as the speed of light is the max-

imum velocity. As a consequence, the divergences encountered in particle physics then

only results from taking the improper limit energy→∞� κ.

This concept of asymptotic safety can be illustrated by the use of a running coupling,

this time the one of quantum gravity. The naive perturbative picture implies that the

running gravitational coupling increases without bounds if the energy is increased, similarly

to the case of QCD if the energy is decreased: The theory hits a Landau pole. Since

the theory is non-linearly coupled, an increasing coupling will back-couple to itself, and

therefore may limit its own growth, leading to a saturation at large energies, and thus

becomes finite. This makes the theory then perfectly stable and well-behaved. However,

such a non-linear back-coupling cannot be captured naturally by perturbation theory,

which is a small-field expansion, and thus linear in nature. It thus fails in the same way as

it fails at small energies for QCD. Non-perturbative methods, like renormalization-group

methods or numerical simulations, have provided indication that indeed such a thing may

happen in quantum gravity, though this requires further confirmation.
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As an aside, it has also been proposed that a similar solution may resolve both the

hierarchy problem and the triviality problem of the Higgs sector of the standard model,

when applied to the combination of Higgs self-coupling and the Yukawa couplings, and

possibly the gauge couplings.

This scenario will be discussed in more detail in section 7.6.

3.3 Observations from particle physics experiments

There are two generic types of particle physics experiments to search for physics beyond

the standard model, both based on the direct interaction of elementary particles. One are

those at very high energies, where the sheer violence of the interactions are expected to

produce new particles, which can then be measured. The others are very precise low-energy

measurements, where very small deviations from the standard model are attempted to be

detected. Neither of these methods has provided so far any statistically and systematically

robust observation of a deviation from the standard model. Indeed, it has happened quite

often that a promising effect vanishes when the statistical accuracy is increased. Also,

it has happened that certain effects have only been observed in some, but not all, of

conceptually similar experiments. In these cases, it can again be a statistical effect, or

there is always the possibilities that some, at first glance, minor difference between both

experiments can fake such an effect at one experiment, or can shadow it at the other. So

far, the experience was mostly that in such situation a signal was faked, but this then

usually involves are very tedious and long search for the cause.

At the time of writing, while almost daily new results are coming in, there are few

remarkable results, and which await further scrutiny. The two most prominent are the

muon g − 2 and lepton flavor universality violation. The first originates from the fact

that the measured value of anomalous magnetic moment of the muon differs from the one

expected in the standard model in experiments. The other refers to the fact that the

decays of bottom quarks to leptons does not happen, up to trivial mass effects, at the

same rate into different types of leptons. Both effects have been seen at a less than fully

convincing statistical accuracy in experiments, and currently larger efforts are undertaken

to increase the statistics.

On the other hand, both effects are dominated by hadronic, and thus theoretically

hard to control, uncertainties. Once from hadronic vacuum fluctuations, and once from

the structure of the meson into which the bottom quark is embedded. It is thus entirely

possible that both will, as so often in the past, turn out to be just deficiencies in our ability

to estimate the systematic errors of calculations.
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But then, maybe not.

3.4 Astronomical observations

During the recent decades a number of cosmological observations have been made, which

cannot be reconciled with the standard model. These will be discussed here.

3.4.1 Dark matter

One of the most striking observation is that the movement of galaxies, in particular how

matter rotates around the center of galaxies, cannot be described just by the luminous

matter seen in them and general relativity. That is actually a quite old problem, and

known since the early 1930s. Also gravitational lensing, the properties of hot intergalactic

clouds in galaxy clusters, the evolution of galaxy clusters and the properties of the large-

scale structures in the universe all support this finding. In fact, most of the mass must be

in the form of invisible dark matter. This matter is concentrated in the halo of galaxies, as

analyses of the rotation curves show. This matter cannot just be due to non-self-luminous

objects like planets, brown dwarfs, cold matter clouds, or black holes, as the necessary

density of such objects would turn up in a cloaking of extragalactic light and of light from

globular clusters. This matter is therefore not made out of any conventional objects, in

particular, it is non-baryonic. Furthermore, it is gravitational but not electromagnetically

active. It also shows different fluid dynamics (observed in the case of colliding galaxies)

as ordinary luminous matter. Also, the dark matter cannot be strongly interacting, as it

otherwise would turn up as bound in nuclei.

Thus this matter has to have particular properties. The only particle in the standard

model which could have provided it would have been a massive neutrino. However, though

the neutrinos do have mass, the upper limits on their mass is so low, and the flux of cosmic

neutrinos too small, to make up even a considerable fraction of the dark matter. This can

be seen by a simple estimate. If the neutrinos have mass and would fill the galaxy up to

the maximum possible by Fermi-statistics, their density would be

nν =
p3
F

π2

with the Fermi momentum pF in the non-relativistic case given by mνvν . Since neutrinos

have to be bound gravitationally to the galaxy, their speed is linked via the Virial theorem

to their potential energy

v2
ν =

GNMgalaxy

R
,
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with Newton’s constant GN and R the radius of the galaxy. Putting in the known numbers,

and using furthermore that the observational results imply that nν , the total number of

neutrinos approximated to be inside a sphere size the galaxy, must give a total mass larger

than the one of the galaxy leads to the bound

mν > 100 eV

(
0.001c

3vν

) 1
4
(

1 kpc

R

) 1
2

,

yielding even for a neutrino at the speed of light a lower bound for the mass of about 3

eV, which is excluded by direct measurements in tritium decays.

Therefore, a different type of particles is necessary to fill this gap. In fact, many

theories offer candidates for such particles, in particular supersymmetry. But so far none

has been detected, despite several dedicated experimental searches for dark matter. These

proceed either by trying to produce them in high-energetic collisions or by searching them

from astronomical sources using highly sensitive detectors of a wide variety of techniques,

including underground detectors and satellites.

These yielded only very few candidates for an observation of dark matter particles,

and those are hard to distinguish from background, in particular natural radioactivity and

cosmic rays. Though, every once in a while, satellites find excesses in cosmic rays which

seem to hint for signals of dark matter annihilation, but so far none of these has survived

further scrutiny. The origin of dark matter stays therefore mysterious.

But not only the existence of dark matter, also its properties are surprising. The

observations are best explained by dark matter which is in thermal equilibrium. But how

this should be achieved if it is really so weakly interacting is unclear. The best guess so

far is that it is more strongly interacting with itself than with ordinary matter and/or

consists out of more than a single particle type.

On the other hand, the fact that dark matters needs to interact gravitationally is also

posing problems, not only a solution. In particular, there is no reason why it should neither

form celestial dark bodies, which should be observable by passing in front of luminous

matter, or why it should not be bound partly in the planets of our solar system, or other

celestial bodies. Only if it is temperature is so high that binding is prohibited this would

be in agreement, but then the question remains why it is so hot, and what is the origin of

the enormous amount of energy stored in the dark matter.

It should be noted that there are also attempts to explain these observations by a depar-

ture of gravity from its classical behavior also at long distances. Though parametrizations

exist of such a modification, often called modified Newtonian dynamics, or MOND, which

are compatible with observational data, no clean explanation or necessity for such a modi-

fication in classical general relativity has been established. This proposal is also challenged
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by observations of colliding galaxies which show that the center-of-mass of the total matter

and the center of luminous matter move differently, which precludes any simple modifica-

tion of the laws of gravity, and is much more in-line with the existence of dark matter.

In the same vain, some dwarf galaxies have become candidates to have vastly different

amounts, in either direction, of dark matter and ordinary matter than other galaxies.

Still, this cannot be excluded yet. In this class of solutions falls also the possibility that

asymptotic safety of quantum gravity may be related to the apparent existence of dark

matter.

3.4.2 Inflation

A second problem is the apparent smoothness of the universe around us, while having

at the same time small highly non-smooth patches, like galaxies, clusters, super clusters,

walls and voids. In the standard model of cosmological evolution this can only be obtained

by a rapid phase of expansion (by a factor ∼ e60) of the early universe, at temperatures

much larger than the standard model scale, but much less than the gravity scale. This is

called inflation. During the inflationary period, space-time itself expanded at superluminal

velocities, which is not in contradiction to general relativity. Therefore, large parts of mat-

ter, which equilibrated beforehand, were no longer causally connected, but still maintained

their common equilibrium. Only afterwards they started to develop differently, leading to

the small regions of inhomogeneities.

Also the standard model can create such periods of inflation, especially the elctroweak

and strong crossovers/phase transitions. But they occurred far too late in the evolution of

the universe, and could not sustain more than a factor of perhaps e4−e5 expansion. Thus,

none of the standard model physics can explain inflation, nor act as an agitator for it. In

particular, it is also very complicated to find a model which at the same time explains the

appearance of inflation and also its end after just the right amount.

However, the predictions of inflation have been very well confirmed by the investigation

of the cosmic microwave background radiation, including non-trivial features and up to

rather high precision. They also are important for the curvature of the universe to be

discussed next.

3.4.3 Curvature and cosmic expansion

Another problem is the apparent flatness of the universe. Over large scales, the angle

sum of a triangle is observed to be indeed π. This is obtained from the cosmic microwave
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background radiation, in particular the position of the quadrupole moment2, but also that

the large-scale structure in the universe could not have been formed in the observed way

otherwise. For a universe, which is governed by Einstein’s equation of general relativity,

this can only occur if there is a certain amount of energy inside it. Even including the

unknown dark matter, the amount of registered mass can provide at best about 30% of

the required amount to be in agreement with this observation. The other contribution,

amounting to about 70%, of what origin it may ever be, is called dark energy. Even then,

the extreme flatness of the universe also requires an inflationary period to be possible.

A second part of the puzzle is that the cosmic expansion is found to be accelerating.

This is found from distant supernova data, which are only consistent if the universe ex-

pands accelerated today. In particular, other explanations are very hard to reconcile with

the data, as it behaves non-monotonous with distance, in contrast to any kind of light-

screening from any known physical process. Furthermore, the large-scale structures of the

universe indicate this expansion, but also that the universe would be too young (about

10.000.000.000 years) for its oldest stars (about 12-13.000.000.000 years) if this would not

be the case. For such a flat universe such an acceleration within the framework of general

relativity requires a non-zero cosmological constant Λ, which appears in the Einstein equa-

tions (2.18). This constant could also provide the remaining 70% of the mass to close the

universe, and is in fact a (dark) vacuum energy. Such a constant is covariantly conserved,

since both Tµν and the first two terms in (2.18) together are independently in general

relativity, and thus indeed constant. However, the known (quantum) effects contributing

to such a constant provide a much too large value for Λ, about 1040 times too large. These

include quantities like the chiral condensate and gluon condensates. These are of order

GeV, and in addition would have the wrong sign. What leads to the necessary enormous

suppression is unclear. Also, it is not clear whether this is a valid comparison, as this is a

quantum effect. Thus, this kind of hierarchy problem may also be just a deficiency of the

calculational tools.

Alternatively, weakly broken supersymmetry could remove this contribution, when a

gluino and a squark condensate cancel essentially quark and gluon condensates. Unfor-

tunately, supersymmetry broken sufficiently weakly to be in agreement with the observed

value of the condensates generates in general super partners with masses too close to

those of ordinary matter as that they could have escaped experimental detection. Only

enormous fine-tuning, leading to another hierarchy problem, could prevent this.

2The homogeneity of the universe leads to a vanishing of the monopole moment and the dipole moment

originates from the observer’s relative speed to the background.
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3.4.4 Matter-antimatter asymmetry

In the standard model, matter and antimatter are not perfectly symmetric. Due to the

CP violations of the electroweak forces, matter is preferred above antimatter, i. e., decays

produce more matter than antimatter, and also baryon and lepton number are not inde-

pendently conserved quantities, only their sum is. However, this process is dominantly

non-perturbative. The most striking fact that this is a very weak effect is the half-life

of the proton, which is (experimentally and theoretically) larger than 1034 years. Indeed,

only at very high-temperature can the effect become relevant.

After the big-bang, the produced very hot and dense matter was formed essentially from

a system of rapidly decaying and recombining particles. When the system cooled down, the

stable bound states remained in this process, leading first to stable nucleons and leptons in

the baryogenesis, and afterwards to stable nuclei and atoms in the nucleosynthesis. Only

over this time matter could have become dominant over antimatter, leading to the stable

universe observed today. But the electroweak effects would not have been strong enough

for the available time to produce the almost perfect asymmetry of matter vs. antimatter

observed today, by a factor of about 1019. Thus, a further mechanism must exist which

provides matter dominance today.

There is a profound connection to inflation. It can be shown that inflation would

not have been efficient enough, if the number of baryons would have been conserved in

the process. In particular, the almost-baryon-number conserving electroweak interactions

would have permitted only an inflationary growth of e4−5 instead of e60.

The possibility that this violation is sufficient to create pockets of matter at least as

large as our horizon, but not on larger scales, has been tested, and found to yield only

pockets of matter much smaller than our horizon.

A further obstacle to a standard-model conform breaking of matter-antimatter symme-

try is the necessity for a first order phase transition. This is required since in a equilibrium

(or almost equilibrium like at a higher-order transition), the equilibration of matter vs.

anti-matter counters the necessary breaking. However, the mass of the standard-model

Higgs is too high for this.

3.5 Why one TeV?

There is the common expectation that something of these new theories will show up at

an energy scale of one TeV or slightly above. That the Tevatron has not seen anything

of this is actually not surprising. Since it collides protons and anti-protons, the actually

interacting partons, quarks and gluons, have almost always significantly less energy than
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the maximum energy. So, it is up to the LHC to explore this energy range.

The gateway to this kind of new physics is likely the Higgs. The reason is that the

Higgs is instrumental for the balancing in the standard model. If there is something just

slightly different, it will most likely surface first in the Higgs sector. And the balancing

becomes already quite sensitive to new effects at 1 TeV.

The simplest explanation why 1 TeV is such a crucial scale can be seen, e. g. by the

scattering cross-section of two longitudinally polarized W bosons to two longitudinally

polarized W bosons, a process which in the standard model will occur a-plenty at these

energies. At tree-level, the scattering amplitude without the Higgs is given by

MWW = M2(cos θ)
s

m2
W

+M1(cos θ) ln
s

mW

+M0(cos θ), (3.1)

where s is the center-of-mass energy, θ the angle between the scattered W bosons, and

the amplitudes Mi describe the processes of scattering different polarizations of the W

bosons. Unitarity, and thus preservation of causality, requires that this amplitude is

bounded for s → ∞, which is obviously not the case for the terms containing M2 and

M1. Thus, for a center-of-mass energy significantly larger than the W boson mass mW

(in fact, about a TeV), unitarity is violated. In the standard model, interference with

diagrams containing the Higgs removes this problem. This is known as the Goldstone

boson equivalence theorem. But if there are additional contributions, this will be slightly

different. And then the linear dependency in s will magnify this effect. Of course, at

sufficiently large s again unitarity has to be restored, but for some time there would be a

quick and apparent deviation, which should be detectable in experiments.

Hence, all in all, though there is no guarantee that something interesting beyond a

rather light Higgs has to happen at the TeV scale, there is quite some evidence in favor of

it. Time will tell. And what this something may be, this lecture will try to give a glimpse

of.

3.6 How can new physics be discovered?

A task at least as complicated as the theoretical description of new physics is its experimen-

tal observation. One of the objectives of theoretical studies is therefore to provide signals

on which the experiments can focus on. Here, some of the more popular experimental

signatures, which can be calculated theoretically, will be introduced.
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3.6.1 Lessons from the past on reliability

An important point in this respect is the statistical significance of an observation. Since the

observed processes are inherently quantum, it is necessary to obtain a large sample (usually

hundred of millions of events) to identify something new, and still then an interesting effect

may happen only once every hundredth million time. Experimentally identifying relevant

events, using theoretical predictions, is highly complicated, and it is always necessary to

quote the statistical accuracy (and likewise the systematic accuracy) for an event. Usually

a three sigma (likeliness of 99.7%) effect is considered as evidence, and only five sigma

(likeliness 99.9999%) are considered as a discovery, since several times evidence turned in

the end out to be just statistical fluctuations.

To quantify the amount of statistics available, usually the number of events is quoted

in inverse barn, i. e., as an inverse cross section. Consequently, if there is 10 fb−1, a typical

amount of data collected at hadronic colliders like the Tevatron or the LHC, implies that

a process with a cross section of 0.1 fb will be observed in this data set once. The current

aim for the LHC is, however, much larger, at about 3000 fb−1 until 2030, and more than

100 fb−1 delivered to date.

An important effect in this is the so-called ’look-elsewhere’ effect. The amount of exper-

imental measurements, especially using modern machine-learning techniques, has grown

immensely into the thousands. Thus, it is statistically likely that a single measurement

will show deviations at the evidence level, just due to the amount of statistical fluctua-

tions in such a large set of measurements. Thus, the relevance of a statistical fluctuation

is reduced by the fact that in some measurement a large statistical fluctuation is statis-

tically expected. Therefore, an actual statement about reliability needs to take this into

account. Hence, the statistical uncertainty of a single measurement is also called a local

significance, while one which is taking into account the likelihood of finding a deviation

in a large set of measurements is called global significance. Thus, new physics will require

either a single very large local significance and a discovery-level global significance, or

many local discovery-level significant measurements, as in the presence of many anomalies

local and global significance approach each other.

An alternative way to present data is the so-called p-value, which recasts the signifi-

cance into the probability to being a statistical fluctuation, essentially the total probability

minus two times the tail amount at the 3/5 sigma level. Thus, the lower the p value the

more probably something new has been found.
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3.6.2 New particles

When in an interaction two particles exchange another particle, the cross-section of this

process will in the s-channel in the lowest order be proportional to the square of the

propagator D of the exchanged particle, i. e.

D(p) =
i

p2 −M2 + iε
,

where p is the energy transfer, and M is the mass of the new particle. Therefore, the cross-

section will exhibit a peak when the transferred energy equals the mass of the particle.

Such resonances can be identified when the cross section is measured. If the mass does

not belong to any known particle, this signals the observation of a new particle.

In practice, however, this simple picture is complicated by interference, other channels,

a finite decay width of the exchanged particles, and higher order effects, and very often

more than just the two original particles will appear in the final state. Identifying the

peak in any particular channel of the interaction is therefore very complicated, and there

are several instances of ghost peaks known, created by constructive interference. Still, this

is one of the major ways of discovering a new particle directly.

This discovery mode has the advantage that this is a counting experiment, i. e. the

number of particles in the final state are counted and plotted as a (binned) function of the

invariant mass, and then peaks are searched. Thus, no modeling is needed to identify the

new resonance, making it rather robust discoveries. E. g., the Higgs has been discovered

in this way. Of course, theory enters by selecting of which particles invariant mass plots

should be made, as with about 20 particle in the final states at the LHC it becomes even

with modern computers combinatorially challenging, especially when taking three or more

particle decay channels into account, to check every possibility.

3.6.3 Missing energy

In principle akin to the concept of a resonance, the signature of missing energy is also

associated directly with the (non-)observation of a particle. When two particles interact,

the resulting particle may not be virtual, but real and stable, or at least sufficiently long-

lived to escape the detector, in particular when its interactions with the standard model

particles is small. Such a particle would surface in experiments as missing energy, i. e.,

the total observed energy would be smaller than before the collision, the remainder energy

being carried away by the new particle. Looking for the smallest amount of missing energy

would identify, using appropriate kinematics, the mass of the new particle. Dark matter,

e. g., is assumed to produce precisely such a signature in collider experiments.
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Again, in practice this concept is highly non-trivial, in particular due to muons, which

can be compensated to some extent, and especially due to neutrinos. Thus, it is actually

searched for a difference of missing energy compared to the standard model, and it is thus

not a simple counting experiment, and precise values for the amount of missing energy in

the standard model are needed.

Thus, it is a highly complicated theoretically problem to identify further properties of

missing energy events to identify cases where the missing energy can be unambiguously

associated with the production of a new particle, even if this is as simple as an abundance

of missing energy events.

3.6.4 Precision observables

A third possibility is the measurement of some quantities very precisely. Any deviation

from the expected standard model value is then indicating new physics. To identify the

type and origin of such new physics, however, requires then careful theoretical calculations

of all relevant models, and comparison with the measurement. Thus, a single deviation

can usually only indicate the existence of new physics, but rarely unambiguously identify

it. The advantage of such precision measurements is that they can usually be performed

with much smaller experiments than collider experiments, but at the price of only very

indirect information. Searches for dark matter or a neutron electric dipole moment larger

than the standard model value are two examples of such low-energy precision experiments.

But it is also possible to conduct such investigations at collider. As an example,

consider the rather popular oblique (electroweak) radiative corrections. Start with a gen-

eralization of the formulas for the W and Z bosons masses as

M2
W =

v2
W

2
g2
i

M2
Z =

1

2
v2
Z(g2

h + g2
i ),

thus permitting that the W and the Z perceive the vacuum expectation value of the Higgs

differently. At tree-level, vW and vZ coincide in the standard model with the tree-level

condensate v. Radiative corrections make all these quantities running, i. e., evolving with

the momentum scale q2 as g2
h(q

2), g2
i (q

2), v2
W (q2), and v2

Z(q2).

Now, rescale the weak isospin gauge field and the hypercharge gauge field as W̃ a
µ =

giW
a
µ and B̃µ = giBµ. The propagator Dij

µν , with i = 1..3 or B, or i = +,−, 3 and A, of

these gauge bosons can then be written as

Dij
µν(q) = gµνΠij(q)− qµqνΠT

ij(q),
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with the longitudinal and transverse self-energies Π and ΠT , respectively. Define now vW

and vZ as

1/2v2
Z =

v2

2
− Π3B =

v2

2
− Π3A + Π33

1/2v2
W =

v2

2
+ Π+− − Π3A

and the couplings

1

g2
i

=
1

g2
iu

− ΠT
33 − ΠT

3B =
1

g2
iu

− ΠT
3A

1

g2
h

=
1

g2
hu

− ΠT
BB − ΠT

3B =
1

g2
hu

+ ΠT
3A − ΠT

AA

where giu and ghu are the unrenormalized coupling constants.

In the standard model, the dominant contributions at q2 = 0 come from the third

generation fermions and the Higgs. Computing the difference v2
W −v2

Z at q2 = 0 in leading

order perturbation theory yields

v2
W − v2

Z =
Nc

32π2

(
m2
t +m2

b −
2m2

tm
2
b

(m2
t −m2

b)
ln

(
m2
t

m2
b

)
+

M2
Wm

2
H

m2
H −M2

W

ln

(
m2
H

M2
W

)
− M2

Zm
2
H

m2
H −M2

Z

ln

(
m2
H

M2
Z

))
.

This is often also expressed as the Veltman ρ parameter as

ρ =
v2
W

v2
Z

= 1 +
Nc

32v2π2

(
(m2

t +m2
b)−

2m2
tm

2
b

(m2
t −m2

b)
log

(
m2
t

m2
b

)
+

M2
Wm

2
H

m2
H −M2

W

ln

(
m2
H

M2
W

)
− M2

Zm
2
H

m2
H −M2

Z

ln

(
m2
H

M2
Z

))
.

New physics will modify these results. In particular, additional heavy fermion generations

will add further terms, which could be detectable.

The deviation from the standard model can be parametrized by three parameters, the

Peskin-Takeuchi parameters S, T , and U ,

S = 16π

(
∂

∂q2
Π33|q2=0 −

∂

∂q2
Π3Q|q2=0

)
T =

4π

sin2 θW cos2 θWM2
Z

(
ΠWW |q2=0 − Π33|q2=0

)
U = 16π

(
∂

∂q2
ΠWW |q2=0 −

∂

∂q2
Π33|q2=0

)
.



Chapter 3. Why physics beyond the standard model? 35

At the current level of approximation, these parameters take the values

S =
Nc

6π

(
1− yQ ln

m2
b

m2
t

)
T =

Nc

4π sin2 θW cos2 θWM2
Z

(
m2
t +m2

b −
2m2

tm
2
b

(m2
t −m2

b)
ln
m2
t

m2
b

+
M2

Wm
2
H

m2
H −M2

W

ln
m2
H

M2
W

− M2
Zm

2
H

m2
H −M2

Z

ln
m2
H

M2
Z

)
U =

Nc

6π

(
−5m4

t − 22m2
tm

2
b + 5m4

b

3(m2
t −m2

b)
2

+
m6
t − 3m4

tm
2
b − 3m2

tm
4
b +m6

b

(m2
t −m2

b)
3

ln
m2
t

m2
b

)
.

Since all input quantities can be determined independently directly from experiments,

it is straightforward to compute the values of S, T , and U in the standard model. On

the other hand, these three quantities can be also (indirectly) measured experimentally.

Thus, comparing both ways of determining them should yield coinciding results inside

the standard model. Thus, not only deviations from the theoretical value but also any

discrepancies between both ways of determination should indicate new physics.

3.6.5 Anomalous couplings

Another interesting observable are the couplings of the standard model, which are essen-

tially determined by cross-sections. In particular, at tree-level all scattering processes with

a single interaction are directly proportional to the square of the coupling constants, and

perturbatively higher orders can be computed. They can therefore be measured precisely.

This allows for two different types of tests.

One is a comparison of some coupling measured in different processes. Since every

interaction affects multiple particles in the standard model, this is possible. The second is

that certain coupling constants are related due to the coupling universality in non-Abelian

gauge theories as well as the Goldstone boson equivalence theorem. This affects especially

the electroweak three-point and fout-point couplings. Thus, measuring anomalous values

of these couplings would directly hint at new effects.

This is usually described in the κ framework. This defines κ =actual coupling/coupling

in the standard model. Thus, if the standard model is the accurate theory, all κ = 1.

Theoretically, this is modelled by modifiyng tree-level interactions as g → κg, while ex-

perimentally cross sections are measured and then divided by the theoretical expectations.

This corresponds to an energy-independent modification of the couplings, and thus is es-

pecially sensitive to the high-energy tail of interactions, where single tree-level processes
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dominate. Current measurements yield essentially always that either κ is consistent with

one or, if not yet statistically significantly detected, an upper bound.

3.6.6 Low-energy effective theories

Especially observations of the type discussed in section 3.6.4 and 3.6.5 are rather ambigu-

ous, and can arise from very many types of new physics. Conversely, any deviation can

usually be accommodated by many models. Thus systematically searching for such effects

is at the same time highly model-dependent and not very constraining.

To avoid having to scan all possible models for all possible kinds of deviations has led to

the use of low-energy effective theories. This approach, well developed for use in hadronic

physics, is based on the following recipe: Start with the standard-model Lagrangian. Then

add all possible higher-dimensional operators, up to some canonical dimension, which can

be build from the standard-model fields and are compatible with the desired symmetries,

usually, but not always, the symmetries of the standard model. Concerning the latter point

e. g. explicit violations of C, P , CP or the custodial symmetry are often admitted, as they

are not generically conserved in many BSM models. Finally, perturbation theory is done.

Of course, this yields unitarity violation as such a theory is generically non-renormalizable.

This introduces additional counter-terms and an explicit cutoff, which become parameters

of the theory, and need to be fixed experimentally.

These deviations are usually encoded in terms of dimensionless Wilson coefficients c ,

which multiply these additional terms as c/Λn, with n a suitable power to make the terms

in the Lagrangian having the correct canonical dimensions. Usually approaches limit n

to a maximum value, yielding a low-energy effective theory up to a certain order in Λ.

The scale Λ is given then as scale of new physics. Experiments will only be able to give

expressions for the combinations, but theoretially often a common scale is assumed for

all terms. Thus experimental limits are usually upper bounds to the combinations c/Λn,

which can be satisfied by either making Λ large or the c small. Note that the various

options of which terms are admitted to the effective theory can yield different limits for

the Wilson coefficients. Conversely, for any given extension of the standard model at high

energies, such a low-energy effective theory can be derived, providing predictions for the

Wilson coefficients. However, this approximation will break down once the energies probed

experimentally are of the same size as Λ, in which case the framework will no longer be

reliable. It is thus particularily suited for extensions with a large Λ.

While this point is disadvantageous, the setup is still desirable as it allows to system-

atically parametrize all deviations in precision measurements of the types done in sections

3.6.4 and 3.6.5. Especially, it identifies the sectors of the standard model relevant to a
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deviation, and the dimensionful couplings give an estimate of the energy scale where new

physics becomes relevant, if either a deviation is measured or a lower bound if none is

measured and the couplings have therefore to be reduced.

While conceptually rather clean, and tested in hadron physics, this is mostly useful

at tree-level, as the standard-model allows for many possible operators and thus requires

many additional inputs at loop-level. Also, because field redefinitions in the standard-

model and Fierz transformations allow many equivalent writings of the low-energy effective

theory, but with differing values of coupling constants, it is mandatory to make sure that

any conventions are strictly observed.



Chapter 4

Supersmmetry

Supersymmetry is much more than a particular theory. It is a conceptual idea, on which

a multitude of theories rest. Supersymmetric quantum field theories have furthermore

unique features, not shared by any other type of quantum field theories. They are therefore

particular interesting candidates for our understanding of nature. Also, theories more

complex than quantum field theories, like string theories, very often induce as the low-

energy effective quantum field theories supersymmetric theories.

Supersymmetry offers not always a compelling solution to the issues of the standard

model, but often an attractive one. Although, there are many technical details unsolved

of how these solutions should be implemented. It is therefore worthwhile to understand

the basics of it.

However, there are also several reasons which make supersymmetry rather suspect.

The most important one is that supersymmetry is not realized in nature. Otherwise the

unambiguous prediction of supersymmetry would be that for every bosonic particle (e. g.

the photon) an object with the same mass, but different spin-statistics (for the photon

the spin-1/2 photino), should exist, which is not observed. The common explanation for

this is that supersymmetry in nature has to be broken either explicitly or spontaneously.

However, how such a breaking could proceed such that the known standard model emerges

is not known. It is only possible to parametrize this breaking, yielding an enormous amount

of free constants and coupling constants, for the standard model more than a hundred,

while the original standard model has only about thirty.

4.1 The conceptual importance of supersymmetry

To contemplate what supersymmetry implies it is worthwhile to have a look at a, somewhat

hand waving, version of the Coleman-Mandula theorem.

38
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All previous symmetries in particle physics are of either of two kinds. One are the

external symmetries, like translational and rotational ones. These are created by the

momentum and angular momentum operators. The other one are internal ones, like electric

charges. The difference between both is that external charge operators carry a Lorentz

index, while internal ones are Lorentz scalars. The natural question from a systematic

point of view is, whether there are other conserved quantities besides momentum and

angular momentum, which have a Lorentz index.

The Coleman-Mandula theorem essentially states that this is impossible in a quantum

field theory. Since the most general vector and anti-symmetric tensors are already assigned

to the momentum and angular momentum operator, the simplest one would be a symmetric

tensor operator Qµν . Acting with it on a single particle state would yield

Qµν |p〉 = (αpµpν + βηµν)|p〉,

where the eigenvalue is the most general one compatible with Poincare symmetry, with

eigenvalues α and β. Since a symmetry is looked for, Q must be diagonalizable simulta-

neously with the Hamiltonian, and therefore these must be momentum-independent. One

could ask what if the eigenvalues themselves would have a direction, and the single-particle

state would thus be characterized by two vectors. In this case, the scalar product of these

two vectors would single out a direction, and therefore break the isotropy of space-time,

and thus the Poincare group. Lacking any experimental evidence for this so far, this

possibility is excluded, and would anyhow alter the complete setting.

So far, there is no contradiction. Acting with Qµν on a two-particle state of two

identical particles of the type would yield

Qµν |p, q〉 = (α(pµpν + qµqν) + 2βηµν)|p, q〉.

In this case, it was assumed that Q is a one-particle operator, i. e. its charge is localized on

a particle, and the total charge is obtained by the sum of the individual charges. Though

operators of other types can be considered, even in lack of physical evidence, this would

only complicate the argument in the following, without changing the outcome. This will

therefore be ignored.

Now consider elastic scattering of these two particles. SinceQ should describe a symme-

try, the total charge before and afterwards must be the same. Furthermore, 4-momentum

conservation must hold. This implies that

pµpν + qµqν = p′µp
′
ν + q′µq

′
ν

pµ + qµ = p′µ + q′µ
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The only solution to these equations is p = p′ and q = q′ or p = q′ and q = p′. Hence

no interaction occurs, since the second possibility is indistinguishable for two identical

particles. Hence, any theory with such a conserved symmetric tensor charge would be

non-interacting, and therefore not interesting. The generalized version of this statement is

the Coleman-Mandula theorem, which includes all the subtleties and possible extensions

glossed over here.

How does supersymmetry change the situation? For this simple example of elastic scat-

tering, this is rather trivial. Supersymmetry will be defined by allowing to change the spin

of the particles. Thus, it does not affect the example, as spin plays no role in this process,

as in an elastic scattering the particle identities are not changed. In the more general case,

it can be be shown that for the more general Coleman-Mandula theorem it is actually

an assumption that this never happens. Hence, introducing such a symmetry violates the

assumption, and therefore invalidates the argument. Again, the complete proof is rather

subtle. This leaves the question open, whether any interesting, consistent, non-trivial,

let alone experimentally relevant, theories actually harbor supersymmetry. The second

question is still open, and no experimental evidence in strong favor of supersymmetry has

so far been found.

The first question is, whether such theories can be formulated. Indeed, it will be shown

that there are interesting, consistent, and non-trivial supersymmetric theories. Further-

more, it will be shown that supersymmetry is, from a conceptual point, a fundamental

change. This can already be inferred from the following simple argumentation.

Since Poincare symmetry remains conserved in a supersymmetric theory, any operator

which changes a boson into a fermion must carry itself a half-integer spin, and thus be a

spinor Qa. Otherwise, the spin on the left-hand side and the right-hand side would not

be conserved. Furthermore, if it is a symmetry, it must commute with the Hamiltonian

[Qa, H] = 0. In addition, so must its anti-commutator

[{Qa, Qb} , H] = 0

In the simplest case, a spinor has two independent components, and therefore the anti-

commutator can have up to four independent components. Since two spinors form together

an object of integer spin, it must therefore be (at least) a vector. The only-vector-valued

operator, however, is the momentum operator Pµ. Therefore, one would expect that

{Qa, Qb} ∼ Pµ. (4.1)

It will be shown that this is indeed the correct structure. However, this means that

supersymmetry enlarges indeed the Poincare symmetry non-trivially, since otherwise all
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(anti)commutator relation would be closed within the supersymmetry operators Qa, there-

fore fulfilling the original goal. Moreover, the operators Qa therefore behave, in a certain

sense to be made precise later, like a square-root of the momentum operator. Similar

like the introduction of i as the square-root of −1, this concept will require to enlarge

the concept of space-time by adding additional, fermionic dimensions, giving birth to the

concept of superspace. This already shows how conceptually interesting supersymmetry

is, and that it is therefore worthwhile to pursue it for its own sake, even if no experimental

evidence in favor of it exists.

4.2 Non-interacting supersymmetric quantum field the-

ories

Supersymmetry is a theory, which will relate bosons and fermions, as will be seen. Thus, it

requires to have both of them. To show, what supersymmetry is and how it comes about,

it is useful to start outh with a non-interacting theory.

4.2.1 Fermions

While bosons can be incorporated in supersymmetric theories rather straightforwardly, a

little more is needed in case of fermions. It will be found that supersymmetry requires the

same number of bosonic and fermionic degrees of freedom to appear in a theory. Fermions

in particle physics are encountered, e. g., in the form of electrons, which are described by

Dirac spinors. These spinors include not only the electron, but also its antiparticle. As

both have the possibility to have spin up or down, these are four degrees of freedom. This

would require at least four bosons to build a supersymmetric theory. This is already quite

a number of particles. However, it is also possible to construct fermions which are their

own antiparticles. Therefore the number of degrees of freedom is halved. These are called

Majorana fermions. Since these work quite a little differently than ordinary fermions,

these will be introduced in this section. However, as yet this is a purely theoretical

concept. No Majorana fermions have been observed in nature so far, although there are

speculations that neutrinos, which are usually described by ordinary fermions, may be

Majorana fermions, but there is no clear experimental evidence for this. These Majorana

fermions, with identical particle and anti-particle, can mathematically also described as

only one particle. This the so-called Weyl-fermion formulation1. It is this formulation,

1Note that in the more general case of non-supersymmetric theories there are subtle differences between

Weyl fermions and Majorana fermions, especially if the number of dimensions differ from 4.
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which will be used predominantly here. However, also the Majorana formulation is useful,

and will be introduced briefly.

Note that fermions always have to have at least spin 1/2 as a consequence of the

so-called CPT-theorem (or, equivalently, Lorentz invariance). These are two degrees of

freedom. Hence, it is not possible to construct a supersymmetric theory with less than

two fermionic and two bosonic degrees of freedom, at least in four dimensions.

As the spinors describing fermions are actually complex, and only by virtue of the

equations of motion are reduced to effectively two degrees of freedom, in principle also four

bosonic degrees of freedom are needed off-shell, that is without imposing the equations of

motions. This will be ignored for now, and will only be taken up later, when it becomes

necessary to take this distinction into account when quantizing the theory.

It is useful to introduce a compact index notation to treat Weyl spinors. This will

be done, similarly to the case of special relativity, by the position of the indices. This

notation is essentially based on the structure of the Lorentz group.

The Lorentz group consists out of rotations J and boosts K. In general, commutators

of J and K do not vanish. However, defining skew versions of these operators

A =
1

2
(J + iK)

B =
1

2
(J − iK)

this is the case. The Lorentz algebra becomes then a direct product of two SU(2) algebras

[Ai, Aj] = εijkAk

[Bi, Bj] = εijkBk

[Ai, Bj] = 0. (4.2)

Hence, any representation of the Lorentz group can be assigned two independent quan-

tum numbers, which are either integer or half-integer. E. g. scalars are then just twice

the trivial case. Right-handed and left-handed fermions, however, belong to the (1/2, 0)

and (0, 1/2) representations, vectors like the momentum belong to the (1/2, 1/2) repre-

sentation, and antisymmetric tensors like the generators of angular momentum to the

(1, 0) + (0, 1) representation. The simplification will now be used on distinguishing indices

of the two different representations.

For this purpose, define the meaning of the index position for a left-handed spinor χ

by (
χ1

χ2

)
= iσ2χ =

(
χ2

−χ1

)
. (4.3)
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Hence, given an ordinary left-handed spinor χ with components χ1 and χ2, the corre-

sponding right-handed spinor ψ has components χ1 and χ2.

Since scalars are obtained by multiplying left-handed spinors with right-handed spinors,

these can be obtained as

αTβ = (α1α2)

(
β1

β2

)
= α1β1 + α2β2 = αaβa.

This is very similar to the case of special relativity. Note that spinors are usually Grassmann-

valued. Hence the order is relevant. The common convention is that the indices appear

from top left to bottom right. Otherwise a minus-sign appears in the case of Grassmann-

spinors,

αaβa = −βaαa,

and correspondingly for more elements

αaβbγaδb = −αaγaβbδb = −γaαaδbβb.

From the definition (4.3), it is also possible to read-off a ’metric’ tensor, which can be used

to raise and lower an index, the totally anti-symmetric rank two tensor εab, yielding

χa = εabχb.

where ε12 = 1 and ε12 = −1.

This fixes the notation for left-handed spinors. Since there are also right-handed

spinors, it is necessary to introduce a corresponding notation for them. However, in gen-

eral the same notation could quickly lead to ambiguities. Therefore, a different convention

is used: Left-handed spinors receive also upper and lower indices, but these in addition

have a dot, (
ψ1̇

ψ2̇

)
= −iσ2ψ =

(
−ψ2̇

ψ1̇

)
.

It is then possible to contract these two indices analogously to obtain a scalar, but this

time the ordering will be defined to be from bottom left to top right

αTβ = αȧβ
ȧ.

Given this index notation, there are no ambiguities left in case of expressions with explicit

indices. To be able to separate these also without using the indices explicitly, usually

right-handed spinors are written as ψ̄. This is not the same as the conventional Dirac-bar,

and the equalities

ψ1̇ = ψ̄1̇∗

ψ2̇ = ψ̄2̇∗
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hold. However, since complex conjugation is involved when it comes to treating left-handed

spinors, here the definition is

χ̄ȧ = χ∗ȧ

Therefore, a scalar out of left-handed spinors can now be written as

χ†χ = χ̄χ

and similarly

ψ†ψ = ψψ̄.

Another scalar combination, which will appear often is

ψ̄ · χ̄ = ψ̄†χ̄ = εabψ
∗
aχ

b∗ = −ψ∗1χ∗2 − ψ∗2χ∗1.

Having now available a transformation which transforms a left-handed spinor into a right-

handed spinor, it is natural to investigate what happens if both are combined into one

single 4-component spinor. To obtain the correct transformation properties under Lorentz

transformation, this object is

Ψ =


ψ1̇

ψ2̇

−ψ2̇∗

ψ1̇∗

 .

Since there are only two independent degrees of freedom, the spinor Ψ cannot describe, e.

g., an electron. Its physical content is made manifest by performing a charge conjugation

CΨ =

(
0 iσ2

−iσ2 0

)(
ψ∗

−iσ2ψ

)
=

(
ψ

−iσ2ψ
∗

)
= Ψ,

i. e., it is invariant under charge conjugation and thus describes a particle which is its own

antiparticle, like the photon. Spin 1/2-particles with this property are called Majorana

fermions, and thus this is a Majorana spinor. Note that this combination is not possi-

ble for arbitrary dimensions (and arbitrary space-time manifolds), but is correct in four

dimensional Minkowski space-time. In this case, which covers almost all of this lecture,

Weyl and Majorana fermions can be used synonymously.

4.2.2 The simplest supersymmetric theory

This is sufficient to set the scene for a first supersymmetric quantum field theory.

As discussed previously, it will be necessary to have the same number of fermionic

and bosonic degrees of freedom. This requires at least two degrees of freedom, since it
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is not possible to construct a fermion with only one. Consequently, two scalar degrees of

freedom are necessary. The simplest system with this number of degrees of freedom is a

non-interacting system of a complex scalar field φ and a free Weyl fermion χ, which will

be described by the undotted spinor. The corresponding Lagrangian is given by

L = ∂µφ†∂µφ+ iχ†σ̄µ∂µχ. (4.4)

Note that here already with the fully quantized theory will be dealt. The corresponding

physics will be invariant under a supersymmetry transformation if the action is invariant,

up to anomalies. Since it is assumed that the fields vanish at infinity this requires invari-

ance of the Lagrangian under the supersymmetry transformation up to a total derivative.

The supersymmetry transformations can be constructed by trial and error. Here, they

will be introduced with hindsight of the results, and afterwards their properties will be

analyzed. The transformation

A′ = A+ δA

takes for the scalar field the form

δφ = ξaχa = (−iσ2ξ)
Tχ. (4.5)

Herein, ξ is a constant, Grassmann-valued spinor. By dimensional analysis, ξ has units of

1/
√

mass. The corresponding transformation law for the spinor is

δχ = −iσµξ̄∂µφ = σµσ2ξ
∗∂µφ. (4.6)

The pre-factor is fixed by the requirement that the Lagrangian is invariant under the

transformation. The combination of ξ with σµ guarantees the correct transformation

behavior of the expression under Lorentz transformation in spinor space. The derivative,

which appears, is necessary to construct a scalar under Lorentz transformation in space-

time, and to obtain the correct mass-dimension. It is the only object which can be used

for this purpose, as it is the only one which appears in the Lagrangian (4.4), besides

the scalar field. The general structure is therefore fixed by the transformation properties

under Lorentz transformation. That the pre-factors are in fact also correct can be shown

by explicit calculation,

δL = ∂µ((δφ)†)∂µφ+ ∂µφ
†∂µ(δφ) + (δχ)†iσ̄µ∂µχ+ χ†iσ̄µ∂µ(δχ) (4.7)

= i∂µχ
†σ2ξ

∗∂µφ+ iχ†σ̄νσµσ2ξ
∗∂ν∂µφ− i∂µφ†∂µ(ξTσ2χ)− iξTσ2σ

µσ̄νχ∂ν∂µφ
†

Herein partial integrations have been performed, as necessary to obtain this form. There

are two linearly independent terms, one proportional to ξ∗ and one to ξ in this expression.
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Both have therefore to either individually vanish or be total derivatives. To show this, it

is helpful to note that

σ̄ν∂νσ
µ∂µ = (∂0 − σj∂j)(∂0 + σi∂

i) = ∂0∂
0 − ∂i∂i = ∂µ∂µ, (4.8)

where it has been used that σ2
i = 1. Taking now only the terms proportional to ξ∗ yields

i∂µχ
†σ2ξ

∗∂µφ+ iχ†σ2ξ
∗∂µ∂

µφ = ∂µ(χ†iσ2ξ
∗∂µφ). (4.9)

This term is therefore indeed a total derivative. Likewise, also the term proportional to

ξT can be manipulated to yield a pure total derivative. However, this is somewhat more

complicated, as the combination (4.8) is not appearing. The last term can be rewritten as

−iξTσ2σ
µσ̄νχ∂ν∂µφ

† = ∂µ(φ†iξTσ2σ
µσ̄ν∂νχ) + φ†iξTσ2σ

µσ̄ν∂µ∂νχ

It is then possible to use (4.8) on the last term to obtain

∂µ(φ†iξTσ2σ
ν σ̄µ∂νχ) + φ†iξTσ2∂µ∂µχ.

The first term is already a total derivative. The second term combines with the second-to-

last term of (4.7) to a total derivative. Hence, the total transformation of the Lagrangian

reads

δL = ∂µ(χ†iσ2ξ
∗∂µφ+ φ†iξTσ2σ

ν σ̄µ∂νχ+ φ†iξTσ2∂
µχ)

which is a total derivative.

Therefore, this theory is indeed supersymmetric. The set of fields φ and χ is called a

supermultiplet. To be more precise, it is a left-chiral supermultiplet, because the spinor is

left-handed. Replacing it with a right-handed spinor yields a right-chiral supermultiplet,

without changing the supersymmetry of the theory, although, of course, the transformation

is modified.

There should be a note of caution here. Unfortunately, it will turn out that this

demonstration is insufficient to show supersymmetry of the quantized theory, and it will

be necessary to modify the Lagrangian (4.4). This problem will become apparent when

discussing the supersymmetry algebra. However, most of the calculations performed so

far can be used unchanged.

4.3 Supersymmetry algebra

It turns out that the supersymmetry transformations (4.5) and (4.6) will form an alge-

bra. This algebra can be used to systematically construct supermultiplets, and is useful

for many other purposes. Therefore, this algebra will be constructed here, based first

on the simplest examples of supersymmetry transformations (4.5) and (4.6) and will be

generalized thereafter.
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4.3.1 The superalgebra

The conserved Noether-supercurrent jµ is

jµ = −Kµ +
∂L
∂∂µφ

δφ+
∂L
∂∂µφ†

δφ† +
∂L
∂∂µχ

δχ

= −χ†iσ2ξ
∗∂µφ+ ∂νφ

†iξTσ2σ
ν σ̄µχ+ φ†iξTσ2∂µχ

−∂µφ†ξT iσ2χ+ χ†iσ2ξ
∗∂µφ+ χ†σ̄µσνiσ2ξ

∗∂νφ

Here, and in the following, the necessary contribution from the hermitian conjugate con-

tribution are not marked explicitly. This result can be directly reduced, since some terms

cancel, to

jµ = χ†σ̄µσνiσ2ξ
∗∂νφ− ∂νφ†iξTσ2σ

ν σ̄µχ

= ξT (−iσ2)Jµ + ξ∗iσ2J
µ∗

Jµ = σν σ̄µχ∂νφ
†.

Jµ is the so-called supercurrent, which forms the conserved current by a hermitian combi-

nation, similar to the probability current in ordinary quantum mechanics, iψ†∂iψ+iψ∂iψ
†.

To write the complex-conjugate part of the current, it has been used that

σ2σ
ν σ̄µ = σν σ̄µσ2

which follows by the anti-commutation rules for the Pauli matrices. This permits to

construct the supercharge

Q =

∫
d3xσνχ∂νφ

†.

This indeed generates the transformation for the fields φ and χ. It is now possible to

construct the algebra.

First of all, the (anti-)commutators

[Q̄, Q̄] = 0 [Q,Q] = 0 {Q,Q} = 0 {Q̄, Q̄} = 0

all vanish, since in all cases all appearing fields (anti-)commute. There are thus, at first

sight, only one non-trivial commutator and one non-trivial anti-commutator.

For the non-vanishing cases, it is simpler to evaluate two consecutive applications of

SUSY transformations. To perform this, note first that

[q, [p, f ]] + [p, [f, q]] + [f, [q, p]] = 0.

This can be shown by direct expansion. It can be rearranged to yield

[[q, p], f ] = [q, [p, f ]]− [p, [q, f ]].
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If q and p are taken to be ξQ and η̄Q̄, and f taken to be φ, this implies that the commutator

of two charges can be obtained by determining the result from two consecutive applications

of the SUSY transformations. Using (4.5) and (4.6), it is first possible to obtain the result

for this double application. It takes the form

[ξQ+ ξ̄Q̄, [ηQ+ η̄Q̄, φ]] = −i[ξQ+ ξ̄Q̄, ηT (−iσ2)χ] = iηT (−iσ2)σµ(−iσ2ξ
∗)∂µφ. (4.10)

Subtracting both possible orders of application yields then the action of the commutator

[[ξQ+ ξ̄Q̄, ηQ+ η̄Q̄], φ] = i(ξT (−iσ2)σµ(−iσ2η
∗)− ηT (−iσ2)σµ(−iσ2ξ

∗))∂µφ.

Here it has been used that Q̄ is commuting with φ, as it does not depend on φ†.

Aside from a lengthy expression f(η, ξ), which gives the composition rule for the pa-

rameters, there is one remarkable result: The appearance of −i∂µφ, which is the action of

Pµ on φ, the momentum or generator of translations. Hence, the commutator is given by

[ξQ+ ξ̄Q̄, ηQ+ η̄Q̄] = f(η, ξ)Pµ. (4.11)

In fact, this is not all, due to aforementioned subtlety involving the fermions. This will be

postponed to later.

Though anticipated in the introductory section 4.1, the appearance of the momentum

operator seems at first surprising. Still, this implies that the supercharges are also some-

thing like the squareroot of the momentum operator, which leads to the notion of the

supercharge being translation operators in fermionic dimensions. This idea will be taken

up later when the superspace formulation will be discussed in section 4.5.

Hence, the algebra for the SUSY-charges will not only contain the charges themselves,

but necessarily also the momentum operator. However, the relations are rather simple, as

the supercharges do not depend on space-time and thus (anti-)commute with the momen-

tum operator, as does the latter with itself.

Thus, the remaining item is the anti-commutator of Q with Q̄. For this, again the

commutator is useful, as it can be expanded as

[ηQ, ξ̄Q†] = η1ξ
∗
1(Q2Q

†
2 +Q†2Q2)− η1ξ

∗
2(Q2Q

†
1 +Q†1Q2)

−η2ξ
∗
1(Q1Q

†
2 +Q†2Q1) + η2ξ

∗
2(Q1Q

†
1 +Q†1Q1)

Thus, all possible anticommutators appear in this expression. The explicit expansion of

(4.11) is

(η2ξ
∗
2(σµ)11 − η2ξ

∗
1(σµ)12 − η1ξ

∗
2(σµ)21 + η1ξ

∗
1(σµ)22)P µ.

Thus, by coefficient comparison the anti-commutator is directly obtained as

{Qa, Q
†
b} = (σµ)abPµ. (4.12)

This completes the algebra for the supercharges.
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4.3.2 General properties of superalgebras

The superalgebra is what is a graded Lie algebra. So far, there had only been a single

supercharge. As will be seen, additional supercharges can be introduced. But since even

in the case of multiple supercharges there is still only one momentum operator, the corre-

sponding superalgebras are coupled. In general, this requires the introduction of another

factor δAB, where A and B count the supercharges. In total, it is shown in the Haag-

Lopuszanski-Sohnius theorem that the most general superalgebra, up to rescaling of the

charges, is

{QA
a , Q̄

B
b } = 2δABσ

µ
abPµ (4.13)

{QA
a , Q

B
b } = εabZ

AB, (4.14)

and there is a corresponding anti-commutator for Q̄A and Q̄B. The symbol εab is anti-

symmetric, and thus this anti-commutator couples the algebra of different supercharges.

Furthermore, there appears an additional anti-symmetric operator ZAB called the central

charge. This additional operator can be shown to commute with all other operators,

especially of internal symmetries, and must belong therefore to an Abelian U(1) group.

Still, this quantum number characterize states, if a theory contains states with non-trivial

representations. However, this can only occur if there is more than one supercharge.

Finally, the number of independent supercharges is labeled by N .

The theory with only one supercharge is thus an N = 1 theory. Cases with N > 1 are

calledN -extended supersymmetries. Since the full algebra also involves the Poincare group

generators, it turns out that it is not possible to have an arbitrary number of independent

supercharges. This number depends on the size of the Poincare algebra, and thus on

the number of dimensions. Furthermore, it also depends on the highest spins of particles

involved. Especially, theories above a certain N , 4 in four dimensions, require necessarily

gravitons or spin 3/2 particles. Above a certain N , 8 in four dimensions, even objects

of still higher spins are required. The latter case is not particularly interesting presently,

as it can be shown that a four-dimensional, perturbatively renormalizable, interacting

quantum-field theory cannot include non-trivially interacting particles of spin higher than

2. Including gravitons requires to include gravity, a possibility which will for the moment

not be considered. There is furthermore no physical evidence (yet) for spin 3/2 particles, so

this option will also be ignored. Hence, for any non-gravitational theory in four dimensions,

the maximum is N = 4. The odd values 5 and 3 generate in four dimensions only the

particle and anti-particle content of theories with larger N , and therefore do not provide

different theories: The particle and anti-particle content has to be included to satisfy the

CPT theorem, and hence other possibilities are only relevant from a mathematical point
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of view, but not from a quantum-field-theoretical one.

Hence, in four dimensions there are thus besides N = 1 theories N = 2 theories and

N = 4 theories. The additional charges provide more constraints, so theories with more

supercharges become easier to handle. However, currently there seems to exist no hint

that any other than N = 1-theories could be realized at energy scales accessible in the

foreseeable future. Thus, here primarily this case will be treated. However, given the

importance of such more complicated theories, especially in the context of string theory,

it is worthwhile to gather here some more conceptual points about superalgebras.

All of this applies quantitatively to four dimensions. The number of independent

supercharges can actually be larger or smaller for different dimensionalities, e. g. N = 16

without gravity is possible in two dimensions.

First of all, it should be noted that any theory with N > 1 necessarily contains also

N = 1 supersymmetry. Hence, any theory with N > 1 can only be a special case of

the most general form of a N = 1 theory. The appearance of higher symmetry is then

obtained by restrictions on the type of interactions and the type of particles in the theory.

If, for a given theory, all central charges vanish, the algebra is invariant under a U(N )

rotation of the supercharges, which is true especially for N = 1. In fact, in the case of

N = 1, this R symmetry, or R parity, is just a (global) U(1) group, i. e. an arbitrary phase

of the supersymmetry charges, which is part of the full algebra by virtue of

[TR, Qα] = −i(γ5)βαQβ.

This R symmetry forms an internal symmetry group with generator TR. However, this

symmetry may be explicitly, anomalously, or even spontaneously broken, without break-

ing the supersymmetry itself2. A broken R symmetry indicates merely that the relative

orientation (and size) of the supersymmetry charges is (partly) fixed.

From the algebra (4.13-4.14) it can be read off that supercharges must have dimension

of mass
1
2 , and hence central charges of mass. This observation is of significance, as it

embodies such theories with an inherent mass-scale. In fact, it can be shown that the

mass of massive particles which form a supermultiplet in an extended supersymmetry

must obey the constraint

M ≥ 1

N
tr
√
Z†Z,

and thus there is a minimum mass. If the mass satisfies the bound, such particles are

2This is not true in theories which satisfy the conformal version of the Poincare group, i. e. conformal

theories. In this case, the R symmetry needs necessarily to be intact, and the combination of supersym-

metry, conformal symmetry, and R symmetry forms together the superconformal symmetry.



Chapter 4. Supersmmetry 51

called Bogomol’nyi-Prasad-Sommerfeld (BPS) states3.

Even if the scale symmetry is broken, the superalgebras imposes constraints. Especially,

in theories withR parity, this yields a connection between theR current and the trace of the

energy-momentum tensor, which is intimately connected to the scale violation. Especially,

various relations between R parity and scale operators remain intact even if both the R

parity and the scale symmetry are broken at the quantum level. However, because of

the Higgs sector, the standard model of particle physics is classically not scaleless, and

therefore these relation do not apply in particle physics, until an extension of the standard

model is found and experimentally supported which has both symmetries.

4.3.3 Supermultiplets

As already noted, supersymmetry requires different multiplets of particles to be present in

a theory. This is a central concept, and requires further scrutiny. To simplify the details,

once more mainly N = 1 superalgebras will be considered.

A supermultiplet is a collection of fields which transform into each other under super-

symmetry transformations. The naming convention is that a fermionic superpartner of a

field a is called a-ino, and a bosonic super-partner s-a.

One result of the algebra obtained in the previous subsections was that the momentum

operator (anti-)commutes with all supercharges. Consequently, also P 2 (anti-)commutes

with all supercharges,

[Qa, P
2] = [Q̄, P 2] = {Q,P 2} = {Q̄, P 2} = 0.

Since the application of P 2 just yields the mass of a pure state, the masses of a particle s

and its super-partner ss must be degenerate, symbolically

P 2|s〉 = m2|s〉
P 2|ss〉 = P 2Q|s〉 = QP 2|s〉 = Qm2|s〉 = m2Q|s〉 = m2|ss〉.

Further insight can be gained from considering the general pattern of the spin in a super-

multiplet. The first step should be to show the often assured statement that the number

of bosonic and fermionic degrees of freedom equals. Here, this will be done only for mass-

less states. The procedure can be generalized to massive states, but this only complicates

matters without adding anything new.

3That this is the same name as for certain topological excitations in gauge theories is not coincidental.

In extended supersymmetric gauge theories both quantities are related.
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As a starting point consider some set of massless states. Every state is then charac-

terized by its four-momentum pµ, with p2 = 0, it spin s, and its helicity h, which for a

massless particle can take only the two values h = ±s if s 6= 0 and zero otherwise.

Taking the trace of the spinor indices in (4.13) yields

QiαQ
†jα +Q†jαQiα = δijP

0.

Applying to this a rotation operator by 2π and taking the trace over states with the same

energy but different spins and helicities yields∑
sh

〈
p, s, h

∣∣(QiαQ
†jα +Q†jαQiα

)
e−2πiJ3

∣∣ p, s, h〉 = δij
∑
sh

〈
p, s, h

∣∣P 0e−2πiJ3
∣∣ p, s, h〉 .

Since the supercharges are fermionic they anticommute with the rotation operator. Fur-

thermore, the trace is cyclic, as it is a finite set of states. Thus, the expression can be

rewritten as ∑
sh

〈
p, s, h

∣∣QiαQ
†jαe−2πiJ3 −QiαQ

†jαe−2πiJ3
∣∣ p, s, h〉 = 0,

and thus also the right-hand-side must vanish. However, the right-hand-side just counts

the number of states, weighted with 1 or −1, depending on whether the states are bosonic

or fermionic. The number of helicity states differ, depending on whether the states are

massive or not, yielding ∑
s≥0

(−1)2s(2s+ 1)ns = 0 (4.15)

n0 + 2
∑
s≥0

(−1)2sns = 0, (4.16)

for the massive and the massless case, respectively. ns is the number of states with the

given spin, and n0 the number of massless spin-0 particles. The factor 2 actually does

not arise from the formula, as the trace is also well-defined when taking only one helicity

into account. It is the CPT theorem which requires to include both helicity states for a

physical theory.

In case of the massive Wess-Zumino model, the numbers are n0 = 2 and n1/2 = 1,

yielding n0 − 1(2)n1/2 = 0. Note that this therefore counts on-shell degrees of freedom.

For the massless case, the ns are the same, but this time the 2 comes from a different

place, 2 + 2(−1)1 = 0.

So far, it is only clear that in a supermultiplet bosons and fermions must be present

with the same number of degrees of freedom, but not necessarily their relative spins, as
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long as the conditions (4.15-4.16) are fulfilled. In the free example, one was a spin-0

particle and one a spin-1/2 particle. This pattern of a difference in actual spin of 1/2 is

general.

This can be seen by considering the commutation relations of the supercharges under

rotation. Since the supercharges are spinors, they must behave under a rotation δε as

δεQ = −iεσ
2
Q = iε[J,Q],

where J is the generator of rotations. In particular, for the third component follows

[J3, Q] = −1

2
σ3Q

and thus

[J3, Q1] = −1

2
Q1 [J3, Q2] =

1

2
Q2 (4.17)

for both components of the spinor Q. It then follows directly that the super-partner of

a state with total angular momentum j and third component m has third component

m± 1/2, depending on the transformed spinor component. This can be seen as

J3Q1|jm〉 = (Q1J3 − [Q1, J3])|jm〉 =

(
Q1m−

1

2
Q1

)
|jm〉 = Q1

(
m− 1

2

)
|jm〉.

Likewise, the other spinor component of Q yields the other sign, and thus raises instead of

lowers the third component. Of course, this applies vice-versa for the hermitian conjugates.

To also determine the value of j, assume a massless state with momentum (p, 0, 0, p).

The massive case is analogous, but more tedious. Start with the lowest state with m = −j.
Then, of course, the state is annihilated by Q1 and Q†2, as they would lower m further.

Also Q†1 annihilates the state, which is a more subtle result. The anti-commutator

yields the result

Q†1Q1 +Q1Q
†
1 = (σµ)11P

µ = p0 − p3,

where the minus-sign in the second term appears due to the metric. Thus〈
pj − j

∣∣∣Q†1Q1 +Q1Q
†
1

∣∣∣ pj − j〉 = p0 − p3 = p− p = 0 (4.18)

but also

〈pj − j|Q†1 = (Q1|pj − j〉)† = 0,

as discussed above. Hence the first term in (4.18) vanishes, and leaves〈
pj − j

∣∣∣Q1Q
†
1

∣∣∣ pj − j〉 = 0.
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But this is just the norm of Q†1|pj − j〉. A zero-norm state is however not appropriate

to represent a particle state, and thus Q†1 has to annihilate the state as well, the only

alternative to obtain the same result.

This leaves only Q2|pj − j〉 as a non-zero state. This state has to be proportional to

a state of type |pj − j + 1/2〉. Since Q2 is Grassmann-valued, and therefore nil-potent, a

second application of Q2 yields again zero. Furthermore, since Q1 and Q2 anticommute,

its application also yields zero,

Q1Q2|pj − j〉 = −Q2Q1|pj − j〉 = 0.

The application of Q†1 can be calculated as in the case of (4.18). But the appearing

momentum combination is p1 +p2, being zero for the state. This leaves only Q†2. Applying

it yields

Q†2Q2|pj − j〉 = ((σµ)22P
µ −Q2Q

†
2)|pj − j〉 = (p0 + p3 + 0)|pj − j〉 = 2p|pj − j〉.

Hence, this returns the original state. Thus, the value of j in a supermultiplet can differ

only by one half, and there are only two (times the number of internal quantum number)

states in each supermultiplet. It does not specify the value of j, so it would be possible to

have a supermultiplet with j = 0 and j = 1/2, as in the example above.

Note that only the states m = 0 and m = −1/2, but not m = +1/2, the anti-

particle state, are contained in the supermultiplet. This is called a chiral supermultiplet.

Alternatively, it would be possible to have j = 1/2 and j = 1, the vector supermultiplet,

or j = 2 and j = 3/2, the gravity supermultiplet appearing in supergravity.

While algebraically the anti-state is not necessary, any reasonable quantum field theory

is required to have CPT-symmetry. Thus for any supermultiplet also the corresponding

antiparticles, the antimultiplet, have to appear in the theory as well. By this, the missing

m = 1/2 state above is introduced into the theory.

To have supermultiplets which include more states requires to work with an N > 1

algebra, where the additional independent supercharges permit further rising and lowering.

It is then possible to have supermultiplets, which include more different spin states. Also,

the absence of central charges was important, since the anti-commutator of the fields has

been used. E.g. in N = 2 SUSY, the supermultiplet contains two states with j = 0 and

two with m = ±1/2. This is also the reason why theories with N 6= 1 seem to be no

good candidates for an extension of the standard model: SUSY, as will be seen below,

requires that all superpartners transform the same under other transformations, like e. g.

gauge transformations. In an N = 2 theory, there would be a left-handed electron and a

right-handed electron, both transforming under all symmetries in the same way. But in
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the standard model, the weak interactions couple differently to left-handed electrons and

right-handed electrons, and thus it is not compatible with N > 1 SUSY. For N = 1 SUSY,

however, independent chiral multiplets (and, thus, more particles) can be introduced to

solve this problem. Since also the quarks are coupled differently in the weak interactions,

this applies to all matter-fields, and thus it is not possible to enhance some particles with

N = 1 and others with N > 1 SUSY.

One of the key quantities in the above discussion has been spin. However, spin is

considered usually a good quantum number because it is a well-defined observable, as it

commutes with the Hamiltonian. This is no longer precisely true when supersymmetry is

involved. Rather, spin has a similar standing a sthe megnatic quantum number. Hence, a

more general concept is needed.

A particle species is specified as a representation of the Poincare group or of one of its

subgroup, i. e. fields are orbits in the Poincare group. Such orbits can be classified using

Casimir invariants, as group theory shows.

One of the Casimirs is P 2, the square of the momentum operator, yielding the rest

mass of a particle The spin appears as a second Casimir of the Poincare groupbuild from

the Pauli-Lubanski vector

Wµ =
1

2
εµνρσP

νMρσ, (4.19)

being, due to the Levi-Civita tensor, orthogonal to the momentum vector, and thus linearly

independent. Its square W 2 is the searched-for second Casimir operator. In the rest frame

of a massive particle

[Wi,Wj] = imεijkWk (4.20)

holds. This is, up to a normalization, just the spin algebra. This especially implies that its

eigenvalues behave, up to a factor of m, like the ones of a spin, and indeed the eigenvalues

of W 2 are thus spin eigenvalues.

In a supersymmetric theory, this is no longer true. The commutator of W µ with a

supercharge Q yields

[W µ, Q] =
1

2
εµνρσPν [Mρσ, Q] = iσµνQPν (4.21)

σµν =
i

4
(σµσ̄ν − σν σ̄µ)

and thus

[W 2, Q] = W µ[Wµ, Q] + [W µ, Q]Wµ = 2iP µσµνP
νQ

and therefore W 2 is no longer a suitable operator to characterize a particle, as it no longer

belongs to the maximal set of commuting operators.
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The problem arises, because of the connection of the superalgebra and the momentum

operators. A suitable solution is therefore to generalize the Pauli-Lubanski-vector to a

quantity also involving the supercharges. As it will turn out a suitable choice is the

superspin, defined as

Sµ = W µ − 1

4
QσµQ̄.

To check this, consider the commutation relation of the second part with a supercharge[
−1

4
QσµQ̄, Q

]
= 2Qσµσ̄νPν = 2σν σ̄µQPν ,

which directly follows from the superalgebra. This implies, together with (4.21),

[Sµ, Q] = −1

2
QP µ, (4.22)

where it has been used that (iσµν + σν σ̄µ/2) = gµν/2, as can be shown by explicit calcu-

lation. Since Sµ is Hermitian, the commutation relation with Q̄ follows directly. Further-

more, Sµ commutes with Pµ as the Pauli-Lubanski vector does and so does the supercharge.

Combining all of this together yields

[Sµ, Sν ] = iεµνρσP
ρSσ,

which reduces in the rest system in the same way as in (4.20) to

[Si, Sj] = imεijkSk.

This is again the same type of spin-algebra, characterized by eigenvalues s, as before.

Thus, the superspin acts indeed as a spin.

It then only remains to construct an adequate Casimir operator. Define for this the

antisymmetric matrix

Cµν = SµP ν − SνP µ,

which commutes with the supercharges

[Cµν , Q] = [Sµ, Q]P ν − [Sν , Q]P µ =
1

2
(−QP µP ν +QP νP µ) = 0.

The square of this operator, C2 = CµνCµν , commutes with the supercharges and also with

P µ, as it is a scalar. It remains to show that this Casimir is indeed different from P 2. An

explicit calculation shows

C2 = 2m2S2 − 2(SP )2

which in the rest frame for a massive particle reduces to

C2 = −2m4s(s+ 1)
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where S is the superspin in the rest frame and zero, integer, or half-integer. The situation

for massless particles is as before, yielding for every spin only the corresponding helicities.

Therefore, any particle can be assigned to representations of the Poincare group with

the continuous parameters mass m2 ≥ 0 and the discrete superspin S, where the latter

coincides in the rest frame, but only there, with the usual spin. Due to this coincidence,

usually no difference is made between superspin and spin in name, and both expressions

are used synonymously. Note that

[S3,W 3] = 0,

and therefore the eigenvalues of both operators can be used to characterize the magnetic

quantum number, especially in the rest frame. Thus, the above discussed counting in the

rest frame is indeed legit.

It should be noted that the eigenvalue of the superspin can be used to characterize the

supermultiplet, as the supercharges do not change it, but change between states inside

the supermultiplet. Since the spin operator and supercharges do not commute, their

application then changes the spin of particles belonging to the same supermultiplet.

E. g. for a supersin 0, the supercharges create the four states of the Wess-Zumino

model. A superspin of 1/2 creates the vector multiplet, and of 1 the gravity multiplet.

For different numbers of supercharges then also the number of particles in a multiplet at

fixed superspin changes.

4.3.4 Off-shell supersymmetry

Now, it turns out that the results so far are not complete. If in (4.10) instead of φ the

superpartner χ is used, it turns out that complications arise. Thus, something has to be

modified.

To see this inconsistency, start by first performing two supersymmetry transformations

on χ

δηδξχa = [ηQ+ η̄Q̄, [ξQ+ ξ̄Q̄, χa]] = −i[ηQ+ η̄Q̄, σµ(iσ2ξ
∗)a∂µφ]

= −i(σµ(iσ2ξ
∗))a∂µ[ηQ+ η̄Q̄, φ]

= −i(σµ(iσ2ξ
∗))a(η

T (−iσ2)∂µχ). (4.23)

To simplify this further, note that for any three spinors η, ρ, λ

λaη
bρb + ηaρ

bλb + ρaλ
bηb = 0 (4.24)

holds. This follows by explicit calculation. E.g., for a = 1

λ1η1ρ2 − λ1η2ρ1 + η1ρ1λ2 − η1ρ2λ1 + ρ1λ1η2 − ρ1λ2η1 = 0.
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To rearrange the terms such that they cancel always an even number of transpositions are

necessary, and thus the Grassmann nature is not changing the signs. The case a = 2 can

be shown analogously. Now, identify λ = σµ(−iσ2)ξ∗, η = η, and ρ = ∂µχ. Thus, (4.23)

can be rewritten as

δηδξχ = −i
(
ηa∂µχ

T (−iσ2)σµ(−iσ2)ξ∗ + ∂µχa(σ
µ(−iσ2ξ

∗))T (−iσ2)η
)
.

Using

(−iσ2)σµ(−iσ2) = (−σ̄µ)T , (4.25)

which can be checked by explicit calculation, shortens the expressions significantly. Per-

forming also a transposition, it then takes the form

δηδξχ = −iηa(ξ+σ̄µ∂µχ) + ∂µχa(σ
µ(−iσ2ξ

∗)T (−iσ2)η)

= −iηa(ξT σ̄µ∂µχ)− iηT (−iσ2)σµ(−iσ2)ξ∗∂µχa,

where also the second term became transposed. To construct the transformation in reverse

order is achieved by exchanging η and ξ, thus yielding

(δηδξ − δξδη)χa = i(ξT (−iσ2)σµ(−iσ2)η)∗ − ηT (−iσ2)σµ(−iσ2)ξ∗)∂µχa

+iξa(η
T σ̄µ∂µχ)− iηa(ξT σ̄µ∂µχ). (4.26)

The first term is exactly the same as in (4.10), but with η and ξ exchanged. Hence, if this

term would be the only one, the commutator of two SUSY transformations would be, in

fact, the same irrespective of whether it acts on φ or χ, as it should. But it is not. The

two remaining terms seem to make this impossible.

However, on closer inspection it becomes apparent that in both terms the expression

σ̄µ∂µχ exists. This is precisely the equation of motion for the field χ, the Weyl equation.

Thus the two terms vanish, if the field satisfies its equation of motion. In a classical

theory, this would be sufficient. However, in a quantum theory exist virtual particles, i.

e., particles which not only not fulfill energy conservation, but also not their equations

of motions. Hence such particles, which are called off (mass-)shell, are necessary. Thus

the algebra so far is said to close only on-shell. Hence, although the theory described

by the Lagrangian (4.4) is classically supersymmetric, it is not so quantum-mechanically.

Quantum effects break the supersymmetry of this model.

Therefore, it is necessary to modify (4.4), to change the theory, to obtain one which is

also supersymmetric on the quantum level. Actually, this result is already an indication

of how this can be done. Off-shell, the number of degrees of freedom for a Weyl-fermion

is four, and not two, as there are two complex functions, one for each spinor component.
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Thus, the theory cannot be supersymmetric off-shell, as the scalar field has only two

degrees of freedom. To make the theory supersymmetric off-shell, more (scalar) degrees

of freedom are necessary, which, however, do not contribute at the classical level.

This can be done by the introduction of an auxiliary scalar field F , which has to be

complex to provide two degrees of freedom. It is called auxiliary, as it has no consequence

for the classical theory. The later can be most simply achieved by giving no kinetic term

to this field. Thus, the modified Lagrangian takes the form

L = ∂µφ
†∂µφ+ χ†iσ̄µ∂µχ+ F †F. (4.27)

It should be noted that this field has mass-dimension two, instead of one as the other

scalar field φ. The equation of motion for this additional field is

∂µ
δL
δ∂µF

− δL
δF

= F † = 0(= F ).

Thus, indeed, at the classical level it does not contribute.

Of course, if it should contribute at the quantum level, it cannot be invariant under a

SUSY transformation. The simplest (and correct) guess is that this transformation should

only be relevant off-shell. As it must make a connection to χ, the ansatz is

δξF = −iξ†σ̄µ∂µχ
δξF

† = i∂µχ
†σ̄µξ,

where ξ has been inserted as its transpose to obtain a scalar. The appearance of the

derivative is also enforced to obtain a dimensionally consistent equation.

This induces a change in the Lagrangian under a SUSY transformation as

δLF = Fi∂µχ
†σ̄µξ − F †iξ†σ̄µ∂µχ.

This expression is not a total derivative. Hence, to obtain a supersymmetric theory addi-

tional modifications for the transformation laws of the other fields are necessary. However,

since part of the fermion term already appears, the modifications

δχ = σµσ2ξ
∗∂µφ+ ξF

δχ† = i∂µφ
†ξT (−iσ2)σµ + F †ξ†

immediately lead to cancellation of the newly appearing terms, and one additional total

derivative,

δLF = F †ξ†iσ̄µ∂µχ+ χ†iσ̄µξ∂µF + Fi∂µχ
†σ̄µξ − F †ξ†iσ̄µ∂µχ

= ∂µ(iχ†σ̄µξF ) + F †ξ†iσ̄µ∂µχ− F †ξ†iσ̄µ∂µχ
= ∂µ(iχ†σ̄µξF )
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Thus, without modifying the transformation law for the φ-field, the new Lagrangian (4.27)

indeed describes a theory which is supersymmetric on-shell. To check this also off-shell, the

commutator of two SUSY transformations has to be recalculated, which will be skipped

here, as a full proof requires the recalculation also of all (anti-)commutators. This is a

tedious work, but finally it turns out that the theory indeed has the same commutation

relations, which hold also off-shell. In particular, the supercurrent is not modified at all,

as no kinetic term for F appears, and the surface term and the one coming from the

transformation of χ exactly cancel.

4.4 Interacting supersymmetric quantum field theo-

ries

4.4.1 The Wess-Zumino model

The theory treated so far was non-interacting and, after integrating out F using its equa-

tion of motion, had a very simple particle content. Of course, any relevant theory should

be interacting. The simplest case will be constructed in this section. It is an extension of

the free theory.

The starting point is the Lagrangian (4.27), supplemented with a yet unspecified in-

teraction

L = ∂µφ
†∂µφ+ χ†iσ̄µ∂µχ+ F †F + Li(φ, φ†, χ, χ†, F, F †) + L†i .

The last term is just the hermitian conjugate of the second-to-last term, necessary to make

the Lagrangian hermitian. It is now necessary to find an interaction Lagrangian Li such

that supersymmetry is preserved.

Since the theory should be perturbatively renormalizable, the maximum dimension (for

the relevant case of 3+1 dimensions) of the interaction terms is 4. The highest dimensional

fields are F and χ. Furthermore, the interaction terms should be scalars. Thus the possible

form is restricted to

Li = U(φ, φ†)F − 1

2
V (φ, φ†)χaχa.

The −1/2 is introduced for later convenience. On dimensional grounds, with F having

dimension mass2 and χ mass
3
2 , no other terms involving these fields are possible. In

principle it would appear possible to also have a term Z(φ, φ†), depending only on the

scalar fields. However, such a term could not include derivative terms. Under a SUSY

transformation φ is changed into χ. Hence, the SUSY transformation will yield a term

with three φ fields and one χ field for dimensional reasons, and no derivatives or F fields.
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But all kinetic terms will include at least one derivative, as well as any transformations of

the F field. The only possible term would be the one proportional to χ2. But its SUSY

transformation includes either an F field or the derivative of a φ-field. Hence none could

cancel the transformed field. Since no derivative is involved, it can also not be changed

into a total derivative, and thus such a term is forbidden.

Further, on dimensional grounds, the interaction term U can be at most quadratic in

φ and V can be at most linear.

The free part of the action is invariant under a SUSY transformation. It thus suffices

to only investigate the interacting part. Furthermore, if Li is invariant under a SUSY

transformation, so will be L†i . Thus, to start, consider only the second term. Since a

renormalizable action requires the potentials U or V to be polynomial in the fields, the

transformation rule is for either term, called Z here,

δξZ =
δZ

δφ
δξφ+

δZ

δφ†
δξφ
†.

The contribution from the SUSY transformation acting on the potential V yields

δV

δφ
(ξaχa)(χ

bχb) +
δV

δφ†
(ξȧχȧ)(χ

aχa).

Again, none of these terms can be canceled by any other contribution appearing, since

none of these can involve three times the χ field. Also, both cannot cancel each other,

since the contributions are independent. As noted, the first term can be at maximum of

the form a + bφ, and thus only a common factor. By virtue of the identity (4.24) setting

λ = ρ = η = χ it follows that this term is zero: In the case of all three spinors equal, the

terms are all identical. This, however, does not apply to the second term, as no identity

exist if one of the indices is dotted. There is no alternative other than to require that

V is not depending on φ†. Hence, the function V can be, and in four dimensions for

renormalizable theories is, a holomorphic function4 of the field φ. Being holomorphic is

a quite strong constraint on a function, and hence it is quite useful in practice to obtain

various general results for supersymmetric theories.

As an aside, this fact is of great relevance, as it turns out that it is not possible

to construct the standard model Yukawa interactions due to this limitation with only

one Higgs doublet as it is done in the non-supersymmetric standard model, but instead

requires at least two doublets. The more detailed reason is once more the necessity to have

two independent supermultiplets to represent the left-right asymmetry of the electroweak

4In theories with both left chiral supermultiplets and right chiral supermultiplets, e. g. N = 2 theories,

it is possible to also form a further potential which depends on both, the so-called Kähler potential. Kähler

potentials are, in a sense, generalizations of holomorphic potentials, and hence also quite constraining.
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interaction of the standard model, and this requires ultimately the doubling of Higgs

particles in the minimal supersymmetric standard model. However, it is not required that

both have the same mass.

This is already sufficient to restrict the function V to the form

V = M + yφ.

The first term gives a mass to the fermionic fields, and the second term provides a Yukawa

interaction. It is convenient, as will be shown latter, to write a generating functional for

this term V as

V =
δW

δφδφ

with

W = B + Aφ+
1

2
Mφ2 +

1

6
yφ3. (4.28)

This function W is called the superpotential for historically reasons, and will play a central

role, as will be seen later. The linear term is not playing a role here, but can be important

for the breaking of SUSY, as will be discussed later. The constant is essentially always

irrelevant.

The next step is to consider all terms which produce a derivative term upon a SUSY

transformation. These are

−iUξ†σ̄µ∂µχ+ i
1

2
V χTσ2σ

µσ2ξ
∗∂µφ− i

1

2
V ξ†σ2σ

µTσ2χ∂µφ

= −iUξ†σ̄µ∂µχ− i
1

2
V ξ†σ2σ

µTσ2χ∂µφ− i
1

2
V ξ†σ2σ

µTσ2χ∂µφ

= −iUξ†σ̄µ∂µχ− i
1

2
V ξ†σ̄µχ∂µφ− i

1

2
V ξ†σ̄µχ∂µφ

= −iUξ†σ̄µ∂µχ− iV ξ†σ̄µχ∂µφ,

where (4.25) was used twice. The combination of derivatives of φ and χ cannot be produced

by any other contribution, since all other terms will not yield derivatives. Since neither

U nor V are vectors, there are also no possibilities for a direct cancellation of both terms.

The only alternative is thus that both terms could be combined to a total derivative. This

is possible, if

U =
δW

δφ
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as can be seen as follows

−iξ†σ̄µ (U∂µχ+ χV ∂µφ)

= −iξ†σ̄µ
(
U∂µχ+ χ∂µ

δW

δφ

)
= −iξ†σ̄µ

(
δW

δφ
∂µχ+ χ∂µ

δW

δφ

)
= −iξ†σ̄µ∂µ

(
δW

δφ
χ

)
.

This is indeed a total derivative. Hence, by virtue of the form of the superpotential (4.28)

U =
δW

δφ
= A+Mφ+

1

2
yφ2.

This fixes the interaction completely. It remains to check that also all the remaining terms

of the SUSY transformation cancel or form total derivatives. These terms are

δU

δφ
Fξaχa −

1

2
V (ξaχaF + χaξaF )

=
δ2W

δφδφ
Fξaχa −

1

2

δ2W

δφδφ
(ξaχaF + ξaχaF ) = 0,

and hence the theory is, in fact, supersymmetric. Here it has been used how spinor scalar-

products of Grassmann numbers can be interchanged, giving twice a minus-sign in the

second term.

This permits to write down the full, supersymmetric Lagrangian of the Wess-Zumino

model. It takes the form

L = ∂µφ
†∂µφ+ χ†iσ̄µ∂µχ+ F †F + MφF − 1

2
Mχχ+

1

2
yφ2F − 1

2
yφχχ (4.29)

+ M∗φ†F † − 1

2
M∗(χχ)† +

1

2
y∗φ†2F † − 1

2
y∗φ†(χχ)†,

where linear and constant terms have been dropped, and which is now the full, supersym-

metric theory.

The appearance of three fields makes this theory already somewhat involved. However,

the field F appears only quadratically, and without derivatives in the Lagrangian remains

an auxiliary field, just as

LF = F †F +
δW

δφ
F +

δW †

δφ†
F †.

Thus, it is directly possible to integrate out F . This yields

L = ∂µφ
†∂µφ+ χ†iσ̄µ∂µχ−MM∗φ†φ− 1

2
MχT (−iσ2)χ− 1

2
M∗χ†(iσ2)χ†T

−y
2

(Mφφ†2 +M∗φ†φ2)− yy∗φ2φ†2 − 1

2
(yφχaχa + y∗φ†χa†χ†a) (4.30)
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There are a number of interesting observations to be made in this Lagrangian. First of all,

at tree-level it is explicit that the fermionic and the bosonic field have the same mass. Of

course, SUSY guarantees this also beyond tree-level. Secondly, the interaction-structure

is now surprisingly the one which was originally claimed to be inconsistent with SUSY.

The reason for this is that of course also in the SUSY transformations the equations of

motions for F and F † have to be used. As a consequence, these transformations are no

longer linear, thus making such an interaction possible. Finally, although two masses and

three interactions terms do appear, there are only two independent coupling constants,

M and y. That couplings for different interactions are connected in such a non-trivial

way is typical for SUSY. It was one of the reasons for hoping that SUSY would unify

the more than thirty independent masses and couplings appearing in the standard model.

Unfortunately, as will be discussed below, the necessity to break SUSY jeopardizes this,

leading, in fact, for the least complex theories to many more independent couplings and

masses, about three-four times as much.

4.4.2 Majorana form

For many actual calculations the form (4.30) of the Wess-Zumino model is actually some-

what inconvenient. It is often more useful to reexpress it in terms of Majorana fermions

Ψ =

(
(iσ2)χ∗

χ

)
,

and the bosonic fields

A =
1√
2

(φ+ φ†)

B =
1√
2

(φ− φ†).

It can then be verified by direct expansion that the new Lagrangian in terms of these fields

for a single flavor becomes

L =
1

2
Ψ̄(iγµ∂µ −M)Ψ +

1

2
∂µA∂µA−

1

2
M2A2 +

1

2
∂µB∂µB −

1

2
M2B2

−MgA(A2 +B2) +
1

2
g2(A2 +B2)2 − g(AΨ̄Ψ + iBΨ̄γ5Ψ)

where M and g = y have been chosen real for simplicity. In this representation, A and B

do no longer appear on equal footing: A is a scalar field while B is necessarily pseudoscalar,

due to its coupling to the fermions. Therefore, it can also only appear quadratic and not

linear in the three-scalar term, explaining the absence of a BA2 term. Still, despite these
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differences, this is a standard Lagrangian for which the Feynman rules are known. It will

now be used to demonstrate the convenient behavior of a supersymmetric theory when it

comes to renormalization.

4.4.3 The scalar self-energy to one loop

A benefit of supersymmetric theories is that they solve the so-called naturalness problem.

What this explicitly means, and how it is solved, will be discussed here.

The naturalness problem is simply the observation that the Higgs particle is rather

light, although the theory would easily permit it to be much heavier, of the order of

almost the Planck scale, without loosing its internal consistency. The reason for this

is the unconstrained nature of quantum fluctuations. Supersymmetric theories make it

much harder for the Higgs to be very heavy, in fact, its mass becomes exponentially

reduced compared to a non-supersymmetric theory. To see this explicitly, it is simplest

to perform a perturbative one-loop calculation of the scalar self-energy in a theory with

a very similar structure as the Wess-Zumino model, but with a fermion-boson coupling

which is instead chosen to be h for the moment. This can be regarded as a simple mock-up

of the electroweak sector of the standard model, dropping the gauge fields.

At leading order, there are three classes of diagrams appearing in the one-particle

irreducible set of Feynman diagrams. The first is a set of tadpole diagrams, the second

a set of one-loop graphs with internal bosonic particles, and the third the same, but

with fermionic particles. These will be calculated in turn here. The calculation will be

performed for the case of the A boson. It is similar, but a little more tedious, for the B

boson.

The mathematically most simple ones are the tadpole diagrams. There are two of them,

one with an A boson attached, and one with a B boson attached. Their contribution Πt

to the self-energy is

Πt = −12

2
g2

∫
d4p

(2π)4

1

p2 −M2 + iε
− 4

2
g2

∫
d4p

(2π)4

1

p2 −M2 + iε
, (4.31)

where the first term stems from the A-tadpole and the second one from the B-tadpole,

and the factors 1/2 are symmetry factors. These integrals are divergent. Regularizing

them by a cut-off Λ2 turns it finite. This expression can then be calculated explicitly to
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yield

Πt =
ig2

π2

Λ2

√
1 +

M2

Λ2
−M2 ln

Λ + Λ
√

1 + M2

Λ2

M


≈ ig2

π2

(
Λ2 −M2 ln

(
Λ

M

)
+O(1)

)
. (4.32)

This result already shows all the structures which will also appear in the more compli-

cated diagrams below. First of all, the result is not finite as the cutoff is removed, i.e.,

by sending Λ to infinity. In fact, it is quadratically divergent. In general, thus, this ex-

pression would need to be renormalized to make it meaningful. Since the leading term

is momentum-independent, this will require a renormalization of the mass, which is thus

quadratically divergent. This is then the origin of the naturalness problem: In the process

of renormalization, the first term will be subtracted by a term −Λ2 + δm2, where the

first term will cancel the infinity, and the second term will shift the mass to its physical

value. However, even a slight change in Λ or g2 would cover even a large change in δm,

if the final physical mass is small. There is no reason why it should be small therefore,

and thus the mass is not protected. If, e.g., the first would not be present, but only the

logarithmic second one, the cancellation would be of type M2 ln
(

Λ
M

)
+ δm2. Now, even

large changes in Λ will have only little effect, and thus there is no fine-tuning involved to

obtain a small physical mass. This will be exactly what will happen in a supersymmetric

theory: The quadratic term will drop out in contrast to a non-supersymmetric one, and

thus will provide a possibility to obtain a small physical mass without fine tuning of g, Λ

and M .

The next contribution stems from the loop graphs involving a boson splitting in two.

With an incoming A boson, it can split in either two As, two Bs, or two χs. The contri-

bution from the bosonic loops are once more identical, up to a different prefactor due to

the different coupling. Their contribution is

−1

2
((6Mg)2 + (2Mg)2)

∫
d4p

(2π)4

1

p2 −M2 + iε

1

(p− q)2 −M2 + iε
,

where the factor 1/2 is a symmetry factor and q is the external momentum of the A

particle. An explicit evaluation of this expression is possible, and discussed in many texts

on perturbation theory. This is, in particular when using a cutoff-regularization, a rather

lengthy exercise. However, to explicitly show how the naturalness problem is solved, it is

only interesting to keep the quadratically divergent piece of the contribution. However,

the integrand scales as 1/p4 for large momenta. Thus, the integral is only logarithmically
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divergent, and will thus only contribute at order M2 ln(Λ/M), instead of at Λ2. For the

purpose at hand, this contribution may therefore be dropped.

This leaves the contribution with a fermion loop. It reads

−2h2

∫
d4p

(2π)4

tr((γµp
µ +M)(γν(p

ν − qν) +M))

(p2 −M2 + iε)((p− q)2 −M2 + iε)
.

The factor of 2 in front stems from the fact that for a Majorana fermion particle and

anti-particle are the same. Thus, compared to an ordinary fermion, which can only split

into particle and anti-particle to conserve fermion number, the Majorana fermion can split

into two particles, two anti-particles, or in two ways in one particle and an anti-particle, in

total providing a factor four. This cancels the symmetry factor 1/2 and lets even a factor

of 2 standing. Using the trace identities tr1 = 4, trγµ=0, and trγµγν = 4gµν this simplifies

to

−8h2

∫
d4p

(2π)4

p(p− q) +M2

(p2 −M2 + iε)((p− q)2 −M2 + iε)
.

Since the numerator scales with p2, the integral is quadratically divergent. Again, it

suffices to isolate this quadratic piece, yielding

−ih
2

π2
Λ2 +O

(
M2 ln

Λ2

M2

)
.

This cannot cancel the previous contribution, unless g = h. However, for a supersymmetric

theory, supersymmetry dictates g = h. But then this is just the negative of (4.32), and

thus cancels exactly this contribution. Thus, all quadratic divergences appearing have

canceled exactly, and only the logarithmic divergence remains. As has been allured to

earlier, this implies a solution of the naturalness problem. In fact, it can be shown that

this result also holds in higher order perturbation theory, and only logarithmic divergences

appear, thus lower than just the superficial degree of divergence.

In fact, in the present case it is possible to reduce the number of divergences even fur-

ther. For simplicity, the calculation above has been performed with the F field integrated

out. Keeping this field explicitly, it is found (after a more tedious calculation) that the

mass of the bosons (and fermions) become finite, and the divergences are all pushed into

a wave-function renormalization. Hence, the masses of the particles become fixed, making

supersymmetric theories much more predictive (and ’natural’) than non-supersymmetric

ones.

This feature of canceling quadratic divergences is no accident, but is a general feature

of supersymmetric theories. Since fermions and bosons contribute with opposite sign,

the fact that supersymmetry requires a precise match between both species leads always

to cancellations which lower the degree of divergences. This is one of the most striking

benefits of supersymmetric theories.
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4.5 Superspace formulation

4.5.1 Supertranslations

After having now a first working example of a supersymmetric theory and seen its benefits,

it is necessary to understand a bit more of the formal properties of supersymmetry. The

possibly most striking feature is the somewhat mysterious relation (4.12). It is still not

very clear what the appearance of the momentum operator in the SUSY algebra signifies.

It will turn out that this connection is not accidental, and lies at the heart of a very

powerful, though somewhat formal, formulation of supersymmetric theories in the form

of the superspace formulation. This formulation will permit a more direct understanding

of why the supermultiplet is as it is, and will greatly aid in the construction of more

supersymmetric theories. For that reason, it has become the preferred formulation used

throughout the literature.

To start with the construction of the super-space formulation, note that the supercharge

Q is a hermitian operator. Thus, it is possible to construct a unitary transformation from

it by exponentiating it, taking the form5

U(θ, θ∗) = exp(iθQ) exp(iθ̄Q̄).

Note that the expressions in the exponents are appropriate scalar products, and that θ

and θ∗ are independent, constant spinors.

Acting with U on any operator φ yields thus a new operator φ dependent on θ and θ∗

U(θ, θ∗)φU(θ, θ∗)−1 = φ(θ, θ∗)

by definition. This is reminiscent of ordinary translations. Given the momentum operator

Pµ, and the translation operator V (x) = exp(ixP ), a field φ at some point, say 0, acquires

a position dependence by the same type of operation,

V (x)φ(0)V (x)† = φ(x).

Thus, in a sense, the operator U provides a field with an additional fermionic coordinate.

Of course, this interpretation is done with hindsight, as any unitary operator is providing

a field acted upon an additional degree of freedom.

That this interpretation actually makes sense can be most easily seen by applying the

operator U twice. To evaluate the operator

U(ξ, ξ∗)U(θ, θ∗) = exp(iξQ) exp(iξ̄Q̄) exp(iθQ) exp(iθ̄Q̄)

5The order of Q and Q̄ is purely conventional, see below.
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it is most convenient to use the Baker-Campbell-Hausdorff formula

exp(A) exp(B) = exp

(
A+B +

1

2
[A,B] +

1

6
[[A,B], B] + ...

)
.

The commutator of ξQ and ξ̄Q̄ for the first two factors can be reduced to the known

commutation relation (4.12) in the following way

[iξQ, iξ̄Q̄] = i2[ξaQa,−ξb∗Q†b]
= i2(−ξaQaξ

b∗Q†b + ξb∗Q†bξ
aQa)

= i2ξaξb∗(QaQ
†
b +Q+

b Qa)

= i2ξaξb∗{Qa, Q
†
b}

= i2ξaξb∗(σµ)abPµ,

where (4.12) has already been used in the end. This is an interesting result. First of all, it

is practical. Since Pµ commutes with both Q and Q† all of the higher terms in the Baker-

Campbell-Hausdorff formula vanish. Secondly, the appearance of the momentum operator,

though not unexpected, lends some support to the idea of interpreting the parameters θ

and ξ as fermionic coordinates and U as a translation operator in this fermionic space.

But to make this statement more definite, the rest of the product has to be analyzed as

well. Note that since all of the formulation has been covariant throughout the expression

iξaξb∗(σµ)ab, though looking a bit odd at first sight, has actually to be a four vector to

form again a Lorentz invariant together with Pµ. Of course, this quantity, as a product

of two Grassmann numbers, is an ordinary number, so this is also fine. Note further that

since P commutes with Q, this part can be moved freely in the full expression.

Combining the next term is rather straight-forward,

U(ξ, ξ∗)U(θ, θ∗) = exp(i2ξaξb∗(σµ)abPµ) exp(i(ξQ+ ξ̄Q̄)) exp(iθQ) exp(iθ̄Q̄)

= exp(i2ξaξb∗(σµ)abPµ)×

× exp

(
i

(
ξQ+ ξ̄Q̄+ θQ− 1

2
[ξQ+ ξ̄Q̄, θQ]

))
exp(iθ̄Q̄)

= exp(i2(ξaξb∗ + ξaθb∗)(σµ)abPµ) exp(i(ξQ+ ξ̄Q̄+ θQ)) exp(iθ̄Q̄)

where it has been used that Q commutes with itself. Also, an additional factor of i2 has

been introduced. The next step is rather indirect,

exp(i2(ξaξb∗ + ξaθb∗)(σµ)abPµ) exp(i((ξ + θ)Q+ ξ̄Q̄)) exp(iθ̄Q̄) (4.33)

= exp(i2(ξaξb∗ + ξaθb∗)(σµ)abPµ) exp(i(ξ + θ)Q)×
× exp(iξ̄Q̄) exp(−i(ξaξb∗)(σµ)abPµ) exp(iθ̄Q̄)

= exp(i2ξaθb∗(σµ)abPµ) exp(i(ξ + θ)Q) exp(i(ξ̄ + θ̄)Q̄).
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In the second-to-last step, the identity exp i(A + B) = exp iA exp iB exp([A,B]/2) has

been used, which follows from the Baker-Campbell-Hausdorff formula in this particular

case by moving the commutator term on the other side. Also, it has been used that Q̄

commutes with itself to combine the last two factors.

Hence, in total two consecutive operations amount to

U(ξ, ξ∗)U(θ, θ∗) = exp(i2ξaθb∗(σµ)abPµ) exp(i(ξ + θ)Q) exp(i(ξ̄ + θ̄)Q̄).

This result is not of the form U(f(ξ, ξ∗), g(θ, θ∗)), and thus the individual supertransfor-

mations do not form a group. This is not surprising, as the algebra requires that also the

momentum operator must be involved. A better ansatz is thus

U(aµ, ξ, ξ
∗) = exp(iPa) exp(iξQ) exp(iξ̄Q̄).

Since the momentum operator commutes with both Q and Q̄, it follows directly that

U(aµ, ξ, ξ
∗)U(bµ, θ, θ

∗) = exp(i(aµ + bµ + iξaθb∗(σµ)ab)Pµ) exp(i(ξ + θ)Q) exp(i(ξ̄ + θ̄)Q̄)

= U(aµ + bµ + iξaθb∗(σµ)ab, ξ + θ, ξ∗ + θ∗),

and consequently

U(xµ, ξ, ξ
∗)U(aµ, θ, θ

∗)φ(0)U(xµ, ξ, ξ
∗)−1U(aµ, θ, θ

∗)−1 = φ(xµ+aµ+iξaθb∗(σµ)ab, ξ+θ, ξ
∗+θ∗).

This then forms a group, as it should be, the group of supertranslations. The group is

not Abelian, as a minus sign appears if θ and ξ are exchanged in the parameter for the

momentum operator. However, the ordinary translations form an Abelian subgroup of

this group of supertranslations. It is now also clear why there is a similarity to ordinary

translations, compared to other unitary transformations: The latter only form a simple

direct product group with ordinary translations, which is not so in case of the supertrans-

lations. In this case, it is a semidirect product. This also justifies to call the parameters

ξ and ξ∗ supercoordinates in an abstract superspace.

The construction of these supertranslations, and by this the definition of fermionic

supercoordinates and thus an abstract superspace, will now serve as a starting point for

the construction of supersymmetric theories using this formalism.

4.5.2 Coordinate representation of supercharges

Ordinarily, infinitesimal translations U(εµ) can be written in terms of a derivative

U(εµ) = exp(−iεµP µ) ≈ 1− iεµP µ = 1 + εµ∂µ. (4.34)



Chapter 4. Supersmmetry 71

If the correspondence of θ and θ∗ should be taken seriously, such a differential representa-

tion for supertranslations should be possible. Hence for

U(εµ, ξ, ξ
∗)φ(xµ, θ, θ

∗)U(εµ, ξ, ξ
∗)−1 = φ(xµ, θ, θ

∗) + δφ

with εµ and ξ and ξ∗ all infinitesimal it should be possible to write for δφ

δφ = (εµ − iθaξb∗(σµ)ab)∂µφ+ ξa
∂φ

∂θa
+ ξ∗a

∂φ

∂θ∗a
.

In analogy to (4.34), this implies that in the expression

δφ = ((εµ∂µ − iθaξb∗(σµ)ab)∂µ − iξaQa − iξ∗aQa†)φ

it is necessary to identify

Qa = i
∂

∂θa
(4.35)

Qa† = i
∂

∂θ∗a
+ θb(σµ)ba∂µ. (4.36)

To form the second part of the Q† part, it is necessary to note that ξ∗aQ
a† = −ξa∗Q†a,

giving the overall sign.

This representation of Q and Q† is only making sense, if these operators fulfill the

corresponding algebra. In particular, Q and Q† must commute with themselves. That is

trivial in case of Q. Since θ and θ∗ are independent variables, this is also the case for Q†.

Furthermore, the anticommutation relation (4.12) has to be fulfilled6. This can be checked

explicitly

{Qa, Q
†
b} =

{
i
∂

∂θa
, i

∂

∂θ∗b
+ θc(σµ)cb∂µ

}
=

{
i
∂

∂θa
, i

∂

∂θ∗b

}
+

{
i
∂

∂θa
, θc(σµ)cb∂µ

}
=

{
i
∂

∂θa
, θc
}
i(σµ)cb∂µ

= i(σµ)ab∂µ = (σµ)abPµ.

where the fact that derivatives with respect to Grassmann variables anticommute has been

used in going from the second to the third line and furthermore that

∂θa(θ
bφ) + θb∂θaφ = (∂θaθ

b)φ+ (∂θaφ)θb + θb∂θaφ = δabφ+ (∂θaφ)θb − (∂θaφ)θb,

6This is sufficient, as the commutator can be constructed from the anti-commutator, as has been done

backwards in section 4.3.1.
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using the anticommutativity of Grassmann numbers. Hence, the operators (4.35) and

(4.36) are in fact a possible representation of the supersymmetry algebra, and there indeed

exists a derivative formulation for these operators. This again emphasizes the strong

similarity of the supersymmetry algebra and the translation algebra, once for fermionic

and once for bosonic coordinates in the super space.

4.5.3 Supermultiplets

Now, given this superspace, the first question is what the vectors in this superspace repre-

sent. The simplest vector will have only components along one of the coordinates, which

will be taken to be θ for now. Furthermore, these vectors are still functions. But their de-

pendence on the Grassmann variables is by virtue of the properties of Grassmann numbers

rather simple. Thus such a vector Φ(x, θ) can be written as

Φ(x, θ) = φ(x) + θχ(x) +
1

2
θθF (x).

The θ-variables are still spinors, and the appearing products are still scalar products.

Due to the antisymmetry of the scalar product, the last term does not vanish, though of

course quantities like θ2
a vanish. The names for the component fields have been selected

suggestively, but at the moment just represent arbitrary (bosonic or fermionic, complex)

functions. Not withstanding, the set of the field (φ, χ, F ) is called a chiral supermultiplet7.

To justify the notation, it is sufficient to have a look at the infinitesimal transformation

properties of Φ under U(0, ξ, ξ∗). Of course, a non-zero translation parameter would just

shift the x-arguments of the multiplet, and is thus only a notational complication. The

change in the field is thus, as usual, given by

δΦ = (−iξaQa − iξ∗aQa†)Φ = (−iξaQa + iξa∗Q†a)Φ

=

(
ξa

∂

∂θa
+ ξa∗

∂

∂θa∗
+ iξa∗θb(σµ)ba∂µ

)(
φ(x) + θcχc +

1

2
θcθcF

)
= δξφ+ θaδξχa +

1

2
θaθaδξF,

where the last line is by definition the change in the individual components of the super-

field. Since Φ is not depending on θa∗, the derivative with respect to this variable can be

dropped. It thus only remains to order the result by powers in θ.

At order zero, a contribution can only come from the action of the θ-derivative on the

χ term. This yields

δξφ = ξχ

7Actually a left one, as only the left-handed spinor χ appears.
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for the transformation rule of the φ-field.

At order one appears

δξχa = ξaF − iξb∗(σµ)ab∂µφ = ξaF − i(iσ2ξ
∗)b(σ

µ)ab∂µφ,

giving the transformation for the χ-field.

Finally, because θa are Grassmann variables, order two is the highest possible order,

yielding

1

2
θθδξF = iξb∗θa(σµ)abθ

c∂µχc = −1

2
θθεaciξb∗(σµ)ab∂µχc

= −1

2
θθiξa∗(σTµ)abε

bc∂µχc

= −1

2
θθi(iσ2ξ

∗)a(σ
Tµ)εbc∂µχc

= −1

2
θθiξ∗d(iσ2)da(σ

Tµ)ab(iσ2)bc∂µχc

=
1

2
θθ(−i)ξ∗d(σ̄µ)dc∂µχc

=
1

2
θθ(−i)ξ†(σ̄µ)∂µχ

where it has been used that

θaθb = −1

2
εabθcθc. (4.37)

This can be shown simply by explicit calculation, keeping in mind that θa2 = 0 and

ε12 = 1 = −ε12, as well as (iσ2)cd = εcd and σ̄µ = iσ2σ
Tµiσ2.

Thus, the transformation rules for the field components are

δξφ = ξχ

δξχa = ξaF − i(iσ2ξ
∗)b(σ

µ)ab∂µφ

δξF = −iξ†(σ̄µ)∂µχ. (4.38)

These are exactly the transformation rules obtained in section 4.3.4. Thus, a chiral super-

multiplet under a supertranslation transforms in exactly the same way as the field content

of a free (or interacting, in case of the Wess-Zumino model) supersymmetric theory. This

result already indicates that supersymmetric theories can possibly be formed by using

scalars with respect to supertranslation in much the same way as ordinary theories are

built from scalars with respect to Lorentz transformations. The following will show that

this is indeed the case. Actually, this is not exactly the way it turns out, but the idea is

similar.
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4.5.4 Other representations

All of this can be repeated, essentially unchanged, for a right chiral multiplet, where the

dependence on θ is replaced by the one on θ∗. Including both, θ and θ∗ actually does not

provide something new, but just leads to a reducible representation. That is most easily

seen by considering the condition

∂

∂θ∗a
Φ(x, θ, θ∗) = 0.

If this condition applies to the field Φ then so does it to the transformed field δΦ, since in

the latter expression

∂

∂θ∗c
δΦ =

∂

∂θ∗c

(
−iθa(σµ)abξ

b∗∂µΦ + ξa
∂Φ

∂θa
+ ξ∗a

∂Φ

∂θ∗a

)
at no point an additional dependence on θ∗ is introduced. Hence, the fields Φ(x, θ) form an

invariant subgroup of the SUSY transformation, and likewise do Φ(x, θ∗). Any represen-

tation including a dependence on θ and θ∗ can thus be only a reducible one. Nonetheless,

this representation is useful, as it will permit to construct a free supersymmetric theory.

Before investigating this possibility, one question might arise. To introduce the super-

vectors Φ, the particular supertranslation operator

UI(x, θ, θ
∗) = exp(ixP ) exp(iθQ) exp(iθ̄Q̄),

called type I, has been used. Would it not also have been possible to use the operators

UII(x, θ, θ
∗) = exp(ixP ) exp(iθ̄Q̄) exp(iθQ)

Ur(x, θ, θ
∗) = exp(ixP ) exp(iθQ+ iθ̄Q̄)?

The answer to this question is, in fact, yes. Both alternatives could have been used. And

these would have generated different translations in the field. In fact, when using the

expression Φi = UiΦ(0, 0, 0)Ui to generate alternative superfields the relations

Φr(x, θ, θ
∗) = ΦI

(
xµ − 1

2
iθaσµabθ

b∗, θ, θ∗
)

= ΦII

(
xµ +

1

2
iθaσµabθ

b∗, θ, θ∗
)

(4.39)

would have been found. An explicit expression, e. g. in case of the left supermultiplet

would be

Φr(x, θ, θ
∗) = φ+θχ+

1

2
θθF−1

2
iθaσµabθ

b∗∂µφ+
1

4
i(θθ)(∂µχ

aσµabθ
b∗)− 1

16
(θθ)(θ̄θ̄)∂2φ, (4.40)

which is obtained by the Taylor-expansion in θ from the relation (4.39).
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I. e., the different supertranslations lead to unitarily equivalent supervectors, which

can be transformed into each other by conventional translations, and thus a unitary trans-

formation. This already suggests that these are just unitarily equivalent representations

of the same algebra. This can be confirmed: For each possibility it is possible to find a

representation in terms of derivatives which always fulfills the SUSY algebra. Hence, all of

these representations are equivalent, and one can choose freely the most appropriate one,

which in the next section will be the type-I version.

4.5.5 Constructing interactions from supermultiplets

For now, lets return to the (left-)chiral superfield, and the type-I transformations.

Inspecting the transformation rules under a supertranslation of a general superfield

one thing is of particular importance: The transformation of the F -component of the

superfield, (4.38), corresponds to a total derivative. As a supertranslation is nothing else

than a SUSY transformation this implies that any term which is constructed from the

F -component of a superfield will leave the action invariant under a SUSY transformation.

Hence, the question arises how to isolate this F -term, and whether any action can be

constructed out of it.

The first question is already answered: This can be done by twofold integration. Due

to the rules for analysis of Grassmann variables, it follows that∫
dθ1

∫
dθ2Φ =

∫
dθ1

∫
dθ2

(
φ+ θaχa +

1

2
θaθaF

)
=

∫
dθ1(χ2 + θ1F ) = F.

Thus twofold integration is isolating exactly this part.

The answer to the second question is less obvious. A single superfield will only con-

tribute a field F . That is not producing a non-trivial theory. However, motivated by

the construction of Lorentz invariants by building scalar products, the simplest idea is to

consider a product of two superfields. This yields a superscalar

ΦΦ =

(
φ+ θχ+

1

2
θθF

)2

= φ2 + 2φθχ+ θθφF + (θχ)(θχ),

and all other terms vanish, as they would be of higher order in θ. Using (4.37), the last

term can be rearranged to yield

θaχaθ
bχb = −θaθbχaχb =

1

2
θθεabχaχb = −1

2
θθχaχa =

1

2
(θθ)(χχ), (4.41)

and thus

ΦΦ = φ2 + 2φθχ+
1

2
θθ(2Fφ− χχ).
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Isolating the F -term and multiplying with a constant M/2, which is not changing the

property of being a total derivative under SUSY transformations, yields

W2 = MφF − M

2
χχ.

However, this is a well-known quantity, it is exactly the terms quadratic in the fields in

the Lagrangian (4.29) which are not part of the free Lagrangian, and to which one has to

add, of course, also the hermitian conjugate to obtain a real action, even though both are

separately SUSY invariant.

The fact that only terms of order two in the fields could have been obtained is clear, as

only a square was evaluated. It is surprising at first sight that in fact all terms quadratic

to this order have been obtained. However, in the construction of the Wess-Zumino La-

grangian the minimal set has been searched for, and this here is then the minimal set.

Note then that this implies that when stopping at this point, the Lagrangian for a mas-

sive, but otherwise free, supersymmetric theory has been obtained, as can be checked by

integrating out F . Note that obtaining the free part of the Lagrangian, or a massless

supersymmetric theory, can also be performed by the present methods, but requires some

technical complications to be discussed later.

This suggests that it should be possible to obtain the full interaction part of the Wess-

Zumino model by also inspecting the product of three superfields, as this is the highest

power in fields appearing in (4.29). And in fact, evaluating the F -component of such a

product yields∫
d2θΦ3 = 3φ2F − φχχ+ 2φ

∫
d2θ(θχ)(θχ)

= 3φ2F − φχχ+ 2φ

∫
d2θ(−1

2
θθ)(χχ) = 3φ2F − 3φχχ.

Multiplying this with y/6 exactly produces the terms which are cubic in the fields in the

Wess-Zumino Lagrangian (4.29). Thus, this Lagrangian could equally well be written as

L = ∂µφ∂
µφ† + χ†iσ̄µ∂µχ+ F †F +

∫
d2θ(W +W †)

with

W =
M

2
ΦΦ +

y

6
ΦΦΦ,

being the superpotential. In contrast to the one introduced in section 4.4.1 this superpo-

tential now includes all interactions of the theory, not only the ones involving the φ terms.

Thus, it was indeed possible to construct the supersymmetric theory just by usage of prod-

ucts of superfields. This construction principle carries over to more complex situations,

and can be considered as the construction principle for supersymmetric theories.
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The generalization to fields with an internal degree of freedom, like flavor or charge, is

straightforward, yielding a superpotential of type

W =
Mij

2
ΦiΦj +

yijk
6

ΦiΦjΦk,

just as in the case of the original treatment of the Wess-Zumino model.

In principle, the free part can be constructed in a similar manner. However, it turns

out to be surprisingly more complicated in detail. While so far only the field ΦI(x, θ, 0) has

been used, for the free part it will be necessary to use in addition the quantity Φr(x, θ, θ
∗).

The free part can then be obtained from (4.40) by the expression∫
d4θΦr(x, θ, θ

∗)†Φr(x, θ, θ
∗) = −1

4
φ†∂2φ− 1

4
∂2φφ† + F †F

+

∫
d4θ

1

4
((i(χ̄θ̄)(θθ)∂µχ

a†σµabθ
b∗ − iθaσµab∂µχ

b(θ̄θ̄)(θχ)

+∂µφ
†θaσµabθ

b∗θcσνcdθ
d∗∂νφ)

Since the action is the only quantity of interest, partial integrations are permitted. Thus

φ†∂2φ = −∂φ†∂φ. Furthermore, applying (4.41) twice yields the relation

(θ̄χ̄)(θ̄χ̄) = −1

2
(θ̄θ̄)(χ̄χ̄),

which, of course holds similarly for unbarred quantities. This can be used to reformulate

the second line to isolate products of θ2θ̄2, and also for the third line. These manipulations

together yield∫
d4θΦr(x, θ, θ

∗)†Φr(x, θ, θ
∗) =

1

2
∂µφ

†∂µφ+ F †F + iχ̄σ̄µ∂µχ+
1

2
∂µφ

†∂µφ

= ∂µφ
†∂µφ+ iχ̄σ̄µ∂µχ+ F †F,

which is exactly the Lagrangian of the free supersymmetric theory, or, more precisely, the

integration kernel of the action. Hence, the complete Wess-Zumino model Lagrangian can

be written as

L =

∫
d4θΦ†rΦr +

∫
d2θ

(
M

2
ΦIΦI +

y

6
ΦIΦIΦI

)
+

∫
d2θ̄

(
M

2
ΦIIΦII +

y

6
ΦIIΦIIΦII

)
,

which is in fact now an expression where supersymmetry is manifest, and the last term just

creates the Hermitiean conjugate of the second-to-last term to have a hermitiean action.



78 4.6. Supersymmetric gauge theories

4.6 Supersymmetric gauge theories

All relevant theories in particle physics are actually not of the simple type consisting only

out of scalars and fermions, but are gauge theories. Therefore, to construct the standard

model it is necessary to work with supersymmetric gauge theories. In the following the

superspace formalism is actually less practically useful, so it will not be used.

4.6.1 Supersymmetric Maxwell theory

The simplest gauge theory to construct is a supersymmetric version of Maxwell theory.

The photon is a boson with spin 1. Hence its super-partner, the photino, has to be a

fermion. The photon has on-shell two degrees of freedom, so the photino has to be a Weyl

fermion. Off-shell, however, the photon has three degrees of freedom, corresponding to

the three different magnetic quantum numbers possible. So another auxiliary degree of

freedom is necessary to cancel all fermionic degrees of freedom. This other off-shell bosonic

degree of freedom will be the so-called D field.

Will this be a flavor of quantum electron dynamics then, just with the Dirac electron

replaced by a Weyl one and one field added? The answer to this is a strict no. Since

the supersymmetry transformation just acts on the statistical nature of particles it cannot

change an uncharged photon into a charged photino. Thus, the photino has also to have

zero charge, as does the D boson. The simplest supersymmetric gauge theory is then

the free supersymmetric Maxwell theory, as there are no interactions possible between

uncharged particles. Its form has thus to be of the type

L = −1

4
FµνF

µν + iλ†σ̄µ∂µλ+
1

2
D2. (4.42)

Note that the absence of charge also implies that no covariant derivative can appear.

Hence, the photino λ has to be invariant under a gauge transformation, as D has to be.

Thus the gauge dynamics is completely contained in the photon field.

To construct the SUSY transformation for Aµ, it is necessary that is has to be real,

as Aµ is a real field. Furthermore, it has to be a Lorentz vector. Finally, since it is an

infinitesimal transformation it has to be at most linear in the transformation parameter

ξ. The simplest quantity fulfilling these properties is

δξAµ = ξ†σ̄µλ+ λ†σ̄µξ.

As noted, the photino is a gauge scalar. It can therefore not be directly transformed

with the field Aµ, but a gauge-invariant combination of Aµ is necessary. The simplest

such quantity is Fµν . To absorb the two indices, and at the same time provide the correct
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transformation properties under Lorentz transformation, the SUSY transformations should

be of the form

δξλ =
i

2
σµσ̄νξFµν + ξD

δξλ
† = − i

2
ξ†σ̄νσµFµν + ξ†D,

where the pre-factor has been chosen with hindsight. In principle, it could also be deter-

mined a-posterior, provided that otherwise these simplest forms work. The terms contain-

ing the D field have been added in analogy with the Wess-Zumino model. Finally, the

SUSY transformation for the D-boson has to vanish on-shell, and thus should be propor-

tional to the equations of motion of the other fields. Furthermore, it is a real field, and

thus its transformation rule has to respect this, similarly as for the photon. In principle,

its transformation could depend on the equations of motions of both the photon and the

photino. However, inspired by the properties of the F boson in the Wess-Zumino model

the ansatz is one depending only on the equations of motion of the photino, which is indeed

sufficient. The transformation rule such constructed is

δξD = −i(ξ†σ̄µ∂µλ− ∂µλ†σ̄µξ),

which has all of the required properties.

It remains to demonstrate that these are the correct transformation rules and that

the theory is supersymmetric. Since ξ is taken to be infinitesimal and Grassmann, it is

sufficient to evaluate the transformations once more only up to an order linear in ξ.

The transformation of the photon term yields

−1

4
δξ(FµνF

µν) = −1

4
((δξFµν)F

µν + Fµν(δξF
µν)) = −1

2
FµνδξF

µν

= −1

2
F µν(∂µδξAν − ∂νδξAµ) = −Fµν∂µδξAν = −Fµν∂µ(ξ†σ̄νλ+ λ†σ̄νξ),

where the antisymmetry of Fµν has been used. The only term which can cancel this

is the one part from the transformation of the spinors being proportional to Fµν . This

contribution is

δ
Fµν
ξ (iλ†σ̄µ∂µλ) = i(δξλ

†)σ̄µ∂µλ+ iλ†σ̄µ∂µ(δξλ)

=
1

2

(
ξ†σ̄νσµFµν σ̄

ρ∂ρλ+ (∂ρλ
†)σ̄ρσµσ̄νξFµν

)
.

The structure of this term is already quite similar, but the product of three σs is different.

However, since the σ are Pauli matrices, it is always possible to rewrite them in terms of

single ones,

σ̄µσν σ̄ρ = gµν σ̄ρ − gµρσ̄ν + gνρσ̄µ − iεµνρσσ̄σ, (4.43)
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where ε is totally antisymmetric. This simplifies the expression at lot. The contraction

gµνFµν vanishes, since g is symmetric and Fµν is antisymmetric. Because

Fµν∂ρλ = −λ(∂ρ∂µAν − ∂ρ∂νAµ),

this expression is symmetric in two indices. Thus any contraction with the ε-tensor also

vanishes. Thus, the expression reduces to

ξ†Fµν(−gνρσ̄µ + gµρσ̄ν)∂ρλ+ (∂ρλ
†)(gµρσ̄ν − gνρσ̄µ)ξFµν

= −2Fµνξ
†σ̄µ∂νλ+ 2(∂µλ†)σ̄νFµν = 2Fµν(ξ

†σ̄ν∂µλ+ ∂µλ†σ̄νξ).

This precisely cancels the contribution from the photon transformation, when combined

with the factor 1/2.

The expressions involving D are simpler. The contribution from the photino term is

δDξ (iλ†σ̄µ∂µλ) = iDξ†σ̄µ∂µλ− i∂µλ†σ̄µξD,

which cancels against the contribution from the D term

δξ
1

2
D2 = DδξD = −iD(ξ†σ̄µ∂µλ− ∂µλ†σ̄µξ).

Thus the Lagrangian (4.42) describes indeed a supersymmetric theory, consisting of the

non-interacting photon, the photino, and the D-boson.

Of course, it would once more be possible to construct the theory just from the D-

component of a super-vector. This will not be done here.

4.6.2 Supersymmetric Yang-Mills theory

A much more interesting theory will be the supersymmetric version of the non-Abelian

gauge theory, again neglecting the matter part. The first thing to do is to count again

degrees of freedom. The gauge field is in the adjoint representation. For SU(N) as a

gauge group there are therefore N2 − 1 independent gauge fields. On-shell, this has to be

canceled by exactly the same number of fermionic degrees of freedom, so the same number

of fermions, called gauginos. Quarks or electrons are in the fundamental representation of

the gauge group, and thus there are a different number, e. g. N for SU(N). This cannot

match, and the super-partners of the gauge fields, the gauginos, have therefore to be also

in the adjoint representation of the gauge group. Therefore, they are completely different

from ordinary matter fields like quarks or leptons. Hence, for each field in the standard

model below it will be necessary to introduce an independent superpartner.
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Of course, to close the SUSY algebra also off-shell, it will again be necessary to intro-

duce additional scalars. However, also these have to be in the adjoint representation of

the gauge group. In this case, it is useful to write the Lagrangian explicitly in the index

form. This yields the Lagrangian

L = −1

4
F a
µνF

µν
a + iλ†aσ̄

µDab
µ λb +

1

2
DaDa

F a
µν = ∂µA

a
ν − ∂νAaµ − efabcAbµAcν

Dab
µ = δab∂µ + efabcAcµ, (4.44)

where fabc are the structure constants of the gauge group and Dab
µ is the covariant deriva-

tive in the adjoint representation. The gauge bosons transform in the usual way, but the

gaugino and the D-boson transform under gauge transformations in the adjoint represen-

tation. I. e., they transform like the gauge field, except without the inhomogeneous term

as gλg−1, when written as algebra elements. Thus, even the D2 term is gauge invariant,

as no derivatives are involved.

Making the ansatz

δξA
a
µ = ξ†σ̄µλ

a + λa†σ̄µξ

δξλ
a =

i

2
σµσ̄νξF a

µν + ξDa

δξλ
a† = − i

2
ξ†σ̄νσµF a

µν + ξ†Da

δξD
a = −i(ξ†σ̄µDab

µ λ
b −Dab

µ λ
†σ̄µξ)

as the most simple generalization of the Abelian case is actually working. The reason for

this is simple: After expressing everything in components, all quantities (anti-)commute.

Furthermore, under partial integration

Dab
µ λ

bF µνa = (∂µλ
a + efabcAcµλ

b)F µνa = −λa∂µF µνa − ef bacAcµλbF µνa

= −λa∂µF µνa − efabcAcµλaF µνb = −λaDab
µ F

µνb. (4.45)

Thus, all manipulations performed in section 4.6.1 can be performed equally well in case

of the non-Abelian theory. Therefore, only those terms which appear in addition to the

Abelian case have to be checked.

The most simple is the modification of the D-term by the appearance of the covariant

derivative. These terms trivially cancel with the corresponding gaugino term just as in

the Abelian case, as there also a covariant derivative appears

δDξ (iλ†aσ̄
µDab

µ λb) = iDaξ
†σ̄µDab

µ λb − iDab
µ λ
†
aσ̄

µξDb

δξ
1

2
D2 = DaδξD

a = −iDa(ξ
†σ̄µDab

µ λb −Dab
µ λ
†
bσ̄

µξ).
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The next contribution stems from the appearance of the covariant derivative in the gaugino

term. The contribution form the gauge boson-gaugino coupling cancels with the contribu-

tion from the self-coupling of the gauge bosons. This contribution alone gives

−1

2
F a
µνδ

AA
ξ F µν

a + δλξ (iλ†aσ̄µef
abcAµcλb)

=
efabc

2
F a
µν((ξ

†σ̄µλb + λ†bσ̄
µξ)Acν + Abµ(ξ†σ̄νλc + λ†cσ̄

νξ))

+
efabc

2
F ρσ
a (ξ†σ̄ρσσσ̄µA

µ
cλb − λ

†
bσ̄µσρσ̄σξA

µ
c ) (4.46)

The last expression can be reformulated using (4.43). Since the following proceeds identi-

cally for the contributions proportional to λ and λ†, only the former will be investigated

explicitly. Applying therefore (4.43) to the third contribution yields

efabc

2
F ρσ
a ξ†(gρσσ̄µ − gρµσ̄σ + gσµσ̄ρ − iερσµδσ̄δ)λbAµc .

The first term yields zero, as the trace of F vanishes. The contribution with the ε-

tensor vanishes, as fabcF ρσ
a Aµc is symmetric in the three Lorentz indices, and therefore

also vanishes upon contraction with the ε-tensor, as an explicit calculation shows. The

remaining two terms then exactly cancel the two terms from the transformation of F a
µν ,

just by relabeling the Lorentz indices, and shifting them appropriately up and down.

Therefore, also this contribution is not violating supersymmetry.

Then, only the term from the transformation of the gauge boson in the covariant

derivative coupling to the gauginos remains. Its transformation is

δAξ (iλ†aσ̄µef
abcAµcλc) = iefabcλ†aσ̄

µ(ξ†σ̄µλc + λ†cσ̄µξ)λb.

This contribution contains λ cubed, and can therefore not be canceled by any other con-

tribution. However, rewriting the first term in explicit index notation yields

iefabcλ∗iaσ̄
µ
ijλbjλ

∗
ckσ̄µklξl.

The expression σ̄µijσ̄µkl is symmetric in the first and third index for each term individually,

and the expression λ∗iaλ
∗
ck is antisymmetric in exact these two indices. Therefore, this

contribution drops out, and similarly for the second contribution.

Thus, all in all this theory is supersymmetric and therefore the supersymmetric gen-

eralization of Yang-Mills theory, called often super-Yang-Mills theory, or SYM, for short.

4.6.3 Supersymmetric QED

The Abelian gauge theory contained only an uncharged fermion, the photino. To obtain a

supersymmetric version of QED a U(1)-charged fermion is necessary. Since this cannot be
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introduced into the vector supermultiplet of the photon, the most direct way to introduce it

is by the addition of a chiral supermultiplet which will be coupled covariantly to the vector

supermultiplet. This introduces only a Majorana electron, but this will be sufficient for

the beginning. Of course, compensating scalar fields to make the theory supersymmetric

will be required. Hence, at least a combination of supersymmetric Maxwell theory and a

Wess-Zumino theory is required.

The minimally coupled version is

L = (Dµφ)†Dµφ+ iχ†σ̄µDµχ+ F †F − 1

4
FµνF

µν + iλ†σ̄µ∂µλ+
1

2
D2. (4.47)

This theory contains now the photon, its super-partner the photino, the (Majorana) elec-

tron, its super-partner the selectron, and the auxiliary bosons F and D. In essence, this

Lagrangian is the sum of the non-interacting Wess-Zumino model and the supersymmetric

Abelian gauge theory, where in the former the derivatives have been replaced by gauge

covariant derivatives. This implies that all newly added fields, φ, χ, and F , are charged,

and transform under gauge transformations. Only the photino and the D-boson remain

uncharged.

Of course, also the derivatives appearing in the supersymmetry transformations of

electron, the selectron, and the F -boson have to be replaced by their covariant counter-

parts. Thus the minimal set of rules for the matter sector reads

δξφ = ξχ

δξχ = σµσ2ξ
∗Dµφ+ ξF

δξF = −iξ†σ̄µDµχ

while those for the gauge sector are left unchanged

δθAµ = θ†σ̄µλ+ λ†σ̄µθ

δθλ =
i

2
σµσ̄νθFµν + θD

δθD = −i(θ†σ̄µ∂µλ− ∂µλ†σ̄µθ)

However, even with (4.45), it can then be shown that this theory is not yet supersym-

metric under these transformation. The reason is that supersymmetry requires additional

interactions as will be discussed below. The Lagrangian (4.47) is indeed, in contrast to

ordinary QED, not the most general8 one which can be written with this field content

and which is supersymmetric, gauge-invariant, and renormalizable. It is possible to add

8Here, and in the following, Wess-Zumino-like couplings, which are in fact gauge-invariant and super-

symmetric, will be ignored.
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additional interactions which do have all of these properties. However, this will require

not only a fixed constant of proportionality between ξ and θ, but also a minor change in

the transformation of the F field.

Further interactions between the matter and the gauge sector have to be gauge-

invariant, and will also be chosen to be perturbatively renormalizable. These two require-

ments already limit the number of possible terms severely to the interaction terms φ†χλ,

λ†χ†φ, and φ†φD. All other terms are either not gauge-invariant, not Lorentz-invariant

or not at the same time (superficially) renormalizable, like terms involving F . Hence the

interaction Lagrangian takes the form

A(φ†χλ+ λ†χ†φ) +Bφ†φD.

Checking all terms for their invariance under supersymmetry transformations is a long

and tedious exercise, which will not be performed here. Only those elements will be

presented, which influence either the values of A and B, or modify the supersymmetry

transformations themselves.

The first step is to check all contributions from the transformed part of the interaction

Lagrangian which are linear in the D-field. These will occur either from transformations

of the photino λ or from the term proportional to B when either of the other fields are

transformed. This yields

A(φ†χθD + θ†χ†Dφ) +B(χ†ξ†φD + φ†ξχD).

No other contribution in the Lagrangian will produce such terms which couple the matter

fields to the D-boson. Thus, these have to cancel by themselves. This is only possible if

Aθ = −Bξ, (4.48)

yielding already a constraint for the transformation parameters. Thus, in contrast to the

case when two gauge sectors are coupled, coupling two supersymmetric sectors cannot be

done independently. The reason is again that both supersymmetry transformations are

tied to the momentum transformation, thus not permitting to leave them independent.

The transformation of the φ-fields in the A-term will yield terms having only fermionic

degrees of freedom,

A((χ†ξ†)(χλ) + (λ†χ†)(ξχ)).

The only other term which can generate such a combination of the electron and the photino

field stems from the photon-electron coupling term, which reads

−qχ†σ̄µχ(δθAµ) = −qχ†σ̄µχ(θ†σ̄µλ+ λ†σ̄µθ).
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This has the same field content as the previous contribution, when the relation between ξ

and θ is used, but not the same Lorentz structure. To recast the expression, the identity

(χ†σ̄µχ)(λ†σ̄µθ) = χ∗aσ̄
µ
abχbλ

∗
c σ̄µcdθd

= χ∗aχbλ
∗
cθdσ

µ
abσ̄µcd = −2χ∗aχbλ

∗
cθdδacδbd = 2(χ†λ†)(χθ),

where the involved identity for the σ-matrices follows from direct evaluation, can be used.

Evaluating the previous expression then yields

−2qθ((χ†θ†)(χλ) + (χ†λ†)(χθ)).

This implies the relation

Aξ = 2qθ. (4.49)

Together with the condition (4.48) this implies that A and B, and θ and ξ have to be

proportional to each other, the constant of proportionality involving the charge. However,

a relative factor is still permitted, and is required to be fixed. As the covariant derivative

already provided one constraint, it is not surprising that the selectron-photon coupling

term provides another one. Taking the supersymmetry transformation of the interaction

term between two selectrons and one photon yields, when taking only the transformation

of the photon field,

−iq(φ†(∂µφ)δθA
µ − (∂µφ)†φδθA

µ)

= iq((∂µφ
†)φ(θ†σ̄µλ+ λ†σ̄µθ)− φ†(∂µφ)(θ†σ̄µλ+ λ†σ̄µθ)). (4.50)

Terms with such a contribution can also be generated by both interaction terms, if in the

A case the electron and in the B case the D-boson is transformed. Specifically,

Ai(φ†(σµσ2ξ
∗∂µφ)λ+ λ†(∂µφ

†)ξTσ2σ
µφ)− iB(φ†φ(θ†σ̄µ∂µλ− (∂µλ

†)σ̄µθ)).

To simplify this expression, the relation (4.25) can be used in both A-terms, yielding

Ai(φ†(∂µφ)ξ†σ̄µλ− (∂µφ
†)φλ†σ̄µξ)− iB(φ†φ(θ†σ̄µ∂µλ− (∂µλ

†)σ̄µθ)).

Integrating further in the B-term by parts yields

Ai(φ†(∂µφ)ξ†σ̄µλ− (∂µφ
†)φλ†σ̄µξ)− iB(((∂µφ

†)φ+ φ†(∂µφ))θ†σ̄µλ

−((∂µφ
†)φ+ φ†(∂µφ))λ†σ̄µθ). (4.51)

Now, in both contributions, (4.50) and (4.51), terms appear proportional to λ and to λ†

of the same structure. So both will be vanishing independently, if the pre-factors combine

in the same way. The prefactor of λ is

iq((∂µφ
†)φ− φ†∂µφ)θa + Aiφ†(∂µφ)ξa + iB((∂µφ

†)φ+ φ†∂µφ)θa.
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This will vanish, if the conditions

qθa +Bθa = 0

−qθa + Aξa +Bθa = 0

are met. Together with the condition (4.48) and (4.49), this yields the result

A = −
√

2q

B = −q

θ = − 1√
2
ξ.

Actually, this result is not unique, and it would be possible to replace A by −A and θ by

−θ, without problems. So this can be freely chosen, and the conventional choice is the

one adopted here.

With these choices, all variations performed will be either total derivatives or will cancel

each other. However, one contribution is not working out, which is the one involving the

F -contribution from the variation of the electron in the A-term. It yields

−
√

2q(φ†ξλF + λ†ξ†F †φ) (4.52)

Since there is no other term available which contains both the selectron and the photino,

it is not possible to cancel this contribution. The only possibility is to modify the trans-

formation rule for the F -boson as

δξF = −iξ†σ̄µDµχ+
√

2qλ†ξ†φ.

The only consequence of this modification is that the FF † term transforms, restricted to

the photino contributions, as

δλξ (FF †) =
√

2q(φ†ξλF + λ†ξ†F †φ),

canceling exactly the offending contribution.

Thus, finally the Lagrangian for supersymmetric QED reads

L = (Dµφ)†Dµφ+ iχ†σ̄µDµχ+ F †F − 1

4
FµνF

µν + iλ†σ̄µ∂µλ+
1

2
D2

−
√

2q((φ†χ)λ+ λ†(χ†φ))− qφ†φD.

A number of remarks are in order. First, though two essentially independent sectors have

been coupled, this lead not to a product structure with two independent supersymmetry

transformations, but only to one common transformation. The deeper reason for this is
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the appearance of the momentum operator in both supersymmetry algebras, inevitably

coupling both. The second is that the combination of gauge symmetry and supersymmetry

required the introduction of interaction terms between both sectors to yield a supersym-

metric theory. This interaction is so strongly constrained that its structure is essentially

unique, and besides no new coupling constants appear compared to the two original theo-

ries. Again, supersymmetry is tightly constraining. Third, the equation of motion for the

D-boson yields D = qφ†φ. As a consequence, integrating out the D-boson lets a quadratic

interaction term −q2/2(φ†φ)2 appear. This is a necessary ingredient for the possibility of

a Brout-Englert-Higgs effect, driven by a selectron condensation. Thus, even the simplest

non-trivial supersymmetric gauge-theory provides much more possibilities than ordinary

QED.

It should be noted that the supersymmetry transformation derived here is not unique.

It is possible to write down a set of transformations which only involve ordinary derivatives

instead of covariant derivatives, and again a slightly modified transformation for the F

boson. Both formulations yield identically the same physical results, and especially the

Lagrangian is the same. However, for the purpose of generalizing to theories like super-

gravity, the present formalism, called the de Wit-Freedman formalism, is more useful. The

difference between both sets of transformations is essentially only how gauge conditions

transform under supersymmetry transformations. In the formalism using only ordinary

derivatives, the gauge conditions are not transformed covariantly, and therefore any su-

persymmetry transformation must be accompanied by a gauge transformation to also

maintain the gauge condition intact. Since gauge transformation do not change physics,

it is thus rather a matter of convenience from a physical perspective.

4.6.4 Supersymmetric QCD

Again, having the standard model in mind, it is necessary to generalize supersymmetric

QED to a non-Abelian version, the simplest of which is supersymmetric QCD. However,

in the following the gauge group will not be made explicit, and thus the results are valid

for any (semi-)simple Lie group as gauge group.

Since in QCD, and in the standard model in general, the fermions are in the fundamen-

tal representation, while the gauge fields are in the adjoint representation, it is not possible

to promote somehow the matter fields to the super partners of the gauge bosons, despite

these being charged in the supersymmetric version of Yang-Mills theory. It is therefore

again necessary to introduce the matter fields as independent fields, together with their

superpartners, and couple them minimally to the gauge fields. Therefore, besides the

gauge-fields, the gluons, their superpartner, the gluinos, the D-bosons, there will be the
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quarks, their superpartners, the squarks, and the F -bosons.

Fortunately, the results of supersymmetric QED, together with those for supersym-

metric Yang-Mills theory, can be generalized. It is thus possible to write down the trans-

formation rules and the Lagrangian immediately. The only item which requires some

more investigation are couplings between the fundamental sector and the adjoint sector.

This applies in particular to the appearing quark-gluino-squark couplings. In general,

uncontracted indices would imply a gauge-variant term, which may not appear in the

Lagrangian. To obtain appropriate contractions, it is, e. g., necessary to write instead of

φ†iφiD
α the terms

φ†Dφ = φ†ταDαφ = φ†i (τ
αDα)ijφj,

where the index i takes values in the fundamental representation, while the index α takes

values in the adjoint representation. Such combinations are gauge-invariant, when traced.

Of course, this has also to be applied to the coupling term appearing in the transformation

rule for the F -boson. Taking thus the non-Abelian versions of the transformation rules as

δξφ
i = ξχi

δξχ
i = σµσ2ξ

∗Dij
µ φ

j + ξF i

δξF
i = −iξ†σ̄µDij

µ χ
j −
√

2qφiταλα†ξ†

δξA
α
µ = − 1√

2

(
ξ†σ̄µλ

α + λα†σ̄µξ
)

δξλ
α = − i

2
√

2

(
σµσ̄νξFα

µν + 2ξDα
)

δξD
α =

i√
2

(
ξ†σ̄µDαβ

µ λβ −Dαβ
µ λβ†σ̄µξ

)
it is possible to show that the non-Abelian generalization can be constructed just by

covariantizing all derivatives, and replacing coupling terms by gauge-invariant ones. This

yields

L = −1

4
Fα
µνF

µν
α + iλα†σ̄µDαβ

µ λβ +
1

2
DαDα

+Dij
µ φjD

µ
ikφ
†
k + χ†i iσ̄

µDij
µ χj + F †i Fi

+MφiFi −
1

2
Mχiχi +

1

2
yijkφiφjFk −

1

2
yijkφiχjχk + h.c.

−
√

2e(φ†χλ+ λ†χ†φ)− gφ†φD, (4.53)

where it should be noted that inter-representation couplings equal, e. g.,

φ†χλ = φ†ταχλα = φ†iτ
α
ijχ

a
jλ

α
a

φ†φD = φ†ταφDα = φ†iτ
α
ijφjD

α.
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Note that the coupling constants y acquired gauge indices in the fundamental represen-

tation. Similar to the Higgs-fermion coupling in the standard model, relations between

the different elements of y ensure gauge invariance of these couplings, and these could be

determined by explicit evaluation. Note further that the interaction between the matter

sector in the fundamental representation and the gauge-sector in the adjoint representa-

tion is completely fixed by gauge symmetry and supersymmetry, and there is no room

left for any other interaction. In particular, despite the fact that six fields interact with

altogether 11 interaction vertices, there are only three independent parameters, the mass

parameter M , the Yukawa coupling y, which is constrained by gauge symmetry, and the

gauge-coupling e. E. g., the mixed term appearing from the supersymmetry transfor-

mation of the F coupling in the Yukawa term vanishes due to the antisymmetry of the

y-matrix, which is necessary to ensure gauge invariance.

It is worthwhile to evaluate the terms including a D explicitly after using its equation

of motion, which reads
δL
δD†α

= Dα − eφ†ταφ = 0,

and similarly for F . After integrating out both the D field and F field, this yields the

total self-interaction (or potential V ) of the φ field,

V = |M |2φ†φ+
1

2
e2(φ†ταφ)2 − yijky∗lmkφiφjφ

†
lφ
†
m.

This potential is positive definite, and all of the couplings are uniquely defined. Thus,

in contrast to the case of the standard model, the Higgs-potential, as this is the role

the squark plays, is completely determined due to supersymmetry. This puts, at least

perturbatively, strong constraints on the Higgs mass in the supersymmetric version of the

standard model. This will be discussed in more detail later.

One remark should be added. It is in principle possible to add to the Lagrangian (4.53)

a further term proportional to θεµνρσF
ρσ
a F µν

a , with θ a new coupling constant, a so-called

topological term. Due to the antisymmetric tensor, any contribution of such a term drops

out in perturbation theory, and it can only contribute beyond perturbation theory. It

indeed does so, and plays an important role in topics like chiral symmetry breaking and

anomalies. This is already true in the non-supersymmetric version. However, in nature it

is experimentally known that for any such term in the standard model the parameter θ is

very small, and only an upper bound of about 10−10 is known.

However, from the point of view of supersymmetry, this term is conceptually interest-

ing. After rescaling the gauge fields with the coupling constant g, it is possible to combine

this term with the term F a
µνF

µν
a in such a way as that the whole theory now depends

entirely on the complex combination G = g + iθ, the holomorphic coupling. Unbroken
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supersymmetry then ensures that the partition function, and thus any quantity, is holomor-

phic in G, which permits many highly non-trivial statements, also in the non-perturbative

domain. However, the details of this are beyond the scope of this lecture.

4.7 Gauge theories with N > 1

Gauge theories with more than one supercharge are only of very limited phenomenological

use in the context of particle physics, as for intact supersymmetry parity cannot be broken;

left-handed fermions and right-handed fermions are treated on equal footing. Since the

weak interactions do break parity, this is at odds with experiment. However, they are rele-

vant for several reasons. One is that in some extensions of the standard model it is possible

to start without parity breaking, and such a theory could be supersymmetrized. However,

these are rather involved constructions, which do not appear very promising. Second, the-

ories with larger supersymmetries are more constrained, which helps in obtaining results.

They therefore can serve as better accessible, simplified models of ordinary theories. Third,

gauge theories with extended supersymmetries play an important role in the context of

string theory.

The simplest extension is the N = 2 supersymmetric version of Yang-Mills theory.

This requires the combination of a N = 1 gauge supermultiplet with a chiral multiplet.

However, because now the chiral multiplet and the gauge multiplet is related by the

extended supersymmetry, also the members of the chiral multiplet must be in the adjoint

representation, in contrast to the case of super QCD. Hence, there are the gauge field, the

gauginos and the corresponding D field, as well as a complex adjoint scalar φ, a Majorana

fermion ψ, and the corresponding complex F fields.

The Lagrangian of this theory for a simple Lie-algebra is9

L = −(Dµφ)†Dµφ− 1

2
ψ̄γµD

µψ + F †F − 2
√

2gfabc<(λTaψcφ
†
b) + igfabcφ†bφcDa

+
1

2
D2 − 1

4
F a
µF

µν
a −

1

2
λ̄γµD

µλ+
g2θ

64π2
εµνρσF

µν
a F a

ρσ.

The theory has no free parameters, besides the gauge coupling g and the θ parameter.

The two supersymmetry transformations differ by the way on which supermultiplets they

act. One acts on the conventional two sets, but the other acts on the mixed sets (φ, λ, F )

and (A,−ψ,D), though with the same supersymmetry transformation. Furthermore, this

theory has a SU(2) R-symmetry which transforms between the two sets.

9A term −D has to be added, if the gauge group is U(1), a case which will not be considered here.
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This theory supports a Higgs effect, and indeed in this case the masses of the particles

turn out to be unaffected by radiative corrections. I. e., the tree-level masses are already

exact, and saturate the BPS bound. This will not be detailed further here, but should

give an idea of how strongly the dynamics are constrained by supersymmetry.

The only further non-trivial extension possible without adding gravity is the N = 4

case. This is the combination of two N = 2 theories, which therefore has an SU(4) R-

symmetry, permitting the fields to give different supersymmetry transformations. This

theory is somewhat involved. It contains besides the gauge supermultiplet a left-chiral

supermultiplet with complex fields ψ and φ, and two more left-chiral, denoted by primes
′, multiplets and their complex conjugates. The lengthy Lagrangian, after integrating out

the auxiliary fields for brevity, reads

L = −(Dµφ)†Dµφ− (Dµφ
′)†Dµφ′ − (Dµφ

′′)†Dµφ′′ − 1

2
ψ̄γµD

µψ − 1

2
ψ̄′γµD

µψ′

−1

2
ψ̄′′γµD

µψ′′ − 1

2
λ̄γµD

µλ− 2
√

2gfabc<(φaψ
′
bψ
′′
c )− 2

√
2gfabc<(λTaψcφ

†
b)

−2
√

2gfabc<(φ′bψ
′′T
c ψa)− 2

√
2gfabc<(φ′′cψ

′T
b ψa) + 2

√
2gfabc<(ψ

′T
b λaφ

′†
c )

+2
√

2gfabc<(ψ
′′T
b λaφ

′′†
c )− 1

4
F a
µνF

µν
a +

g2θ

64π2
εµνρσF

µν
a F ρσ

a

+g2fadef bce(φaφ
†
b + φbφ

†
a)(φ

′
cφ
′
d + φ

′′†
c φ

′′†
d ) +

g2

2

∣∣∣fabc(φ′†b φ′c − φ′′bφ′′†c )
∣∣∣2

−g
2

2
fabcfadeφ†bφcφ

†
dφe + 2g2

∣∣fabcφ′bφ′′c ∣∣2
Though it does not look like it, the potential in the scalars can be symmetrized, albeit

of the expense of becoming even more lengthy. However, it is possible to rewrite the

Lagrangian in a much shorter form by exploiting the SU(4) R symmetry. Collecting for

each color a the right-handed fermions in an SU(4) vector Ψ = (ψR, λR, ψ
′
R, ψ

′′
R) and the

scalars into an antisymmetric SU(4) tensor

Φ =


0 φ∗ φ′′ −φ′

−φ∗ 0 −φ′† −φ′′†

−φ′′ −φ′† 0 φ

φ′ φ
′′† −φ 0

 (4.54)

separately, this yields

L = −1

2
(DµΦij)a(D

µΦij)†a −
1

2
ΨT
Lia(γµD

µΨRi)a +
1

2
ΨT
Rai(γµD

µΨLi)a

−
√

2gfabc<(ΦijaΨ
T
LibΨLjc)−

g2

8

∣∣fabcΦij
b Φkl

c

∣∣2 − 1

4
F a
µνF

µν
a +

g2θ

64π2
εµνρσF

µν
a F ρσ

a ,
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which is more compact, but treats the gaugino not explicitly different from the matter

particles. However, the SU(4) R-parity is manifest. In both cases, N = 2 and N = 4, the

proof of the supersymmetry is rather lengthy, and will be skipped here.

For N = 4, the potential is a sum of squares, and thus the vacuum energy is always

zero. Hence, supersymmetry remains unbroken in this theory. Furthermore, there exists

evidence that there is an exact mapping of the N = 4 theory at a given coupling to another

N = 4 theory with the same structure but with inverse coupling, thus linking a strongly

interacting theory and a weakly interacting theory. This is a so-called duality, which are

quite useful, if truly existing.

4.8 The β-function of super-Yang-Mills theory

A remarkable fact, stated here without proof, of super-Yang-Mills theories is that for

vanishing θ the only appearing infinity is in the one-loop correction to the β-function. As

a consequence, the one-loop form is exact, and given by

β(g) = − g3

4π2

(
11

12
C1 −

1

6
Cf

2 −
1

12
Cs

2

)
C1δcd = fabcfabd

Cf
2 δcd =

∑
fermions

trτ cτ d

Cs
2δcd =

∑
scalars

trτ cτ d,

i. e. determined by the representations of the various involved particles. Most notably,

for the N = 4 case the requirements on the involved fields balance the Ci such that the

β-function vanishes. Hence, this theory is finite, i. e. no renormalization is necessary.

Moreover, as the β function vanishes, the coupling does not depend on the energy scale.

As a consequence, the theory is scale-free, and hence conformal. But this also means that

it lacks any kind of observables, and has thus no dynamics. However, such a behavior

makes the possibility of a duality also more plausible.

It should be noted that many supersymmetric theories beyond super-Yang-Mills theory

exhibit similar features, i. e. perturbative β-functions which contain only a finite number

of terms. In some rare cases, supersymmetry provides strong enough constraints to show

that this is true even non-perturbatively. However, such theories, which include N = 4

super-Yang-Mills theory, usually have such strict constrains that they exhibit little or no

dynamics.
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4.9 Supersymmetry breaking

All of the theories investigated so far have manifest supersymmetry. As a consequence, as

it was shown generally, the masses of the particles and the sparticles have to be degenerate.

This is not what is observed in nature: There is no scalar particle with unit electric charge

and the mass of the electron in nature. This is an experimentally very well established fact.

Nor has any superpartner for any known particle been found so far. Indeed, if they exist,

most of them need to be extremely heavy, significantly above 100 GeV in mass. Otherwise

the equal coupling strength to the known forces would have made them observable in

experiments long ago. Supersymmetry can therefore not be a symmetry of nature. It is

therefore necessary to break supersymmetry in some way.

For the breaking of symmetries two prominent mechanisms are available in quantum

field theories. A breaking can either be by explicit breaking or by spontaneous breaking.

There is also the breaking by quantum anomalies in the quantization process. However,

so far no really attractive, consistent, and experimentally relevant mechanisms to break

supersymmetry by anomalies has been found. This option will therefore not be followed

here.

Explicit breaking refers to the case when some term is added to the Lagrangian which

spoils the symmetry of the theory present without this term. A tree-level mass term for

quarks in QCD is such a case, where chiral symmetry is broken by this. If the term is

superrenormalizable, like a mass-term, this is not affecting the high-energy properties of

an asymptotically free theory, and the breaking is said to be soft. However, low-energy

properties may be qualitatively different. If the offending term is small compared to all

other scales of the theory, its effect is possibly weak, and the symmetry is said to be broken

mildly only. Relations due to the original symmetry may therefore be still approximately

valid. However, since interacting quantum field theories are non-linear by nature, there is

no guarantee for this.

Spontaneous breaking appears when the Lagrangian is invariant under a symmetry

transformation, but the ground-state is not10. E. g., the magnetization of a ferromagnet

with no external magnetic field is an example of such a case. In field theory, QCD with

massless fermions is another example. Also there, the chiral symmetry is spontaneously

broken, yielding (approximately) the known masses of the hadrons.

Unfortunately, adding an explicit breaking is not always possible. An example is the

so-called breaking of electroweak gauge symmetry in the standard model. In this case, any

10There are some subtleties involved here what is precisely meant by ground-state in a quantum field

theory. This subtleties are often irrelevant, especially in the following discussion. Hence, they will be

glossed over.
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explicit breaking term will spoil renormalizability11. Also, explicit breaking terms have in

general less attractive properties, varying from theory to theory. Therefore, spontaneous

breaking is more desirable. However, any spontaneous mechanism for supersymmetry

breaking known so far is not consistent with the requirements of experiments. Therefore,

it is required to introduce explicit breaking of supersymmetry. Unfortunately, no simple

possibility is known to obtain acceptable results, and therefore many of the attractive

properties of supersymmetry are lost. In particular, almost a hundred additional coupling

constants and parameters will be necessary even for the simplest supersymmetric extension

of the standard model. This will be detailed in section 4.10. In this section, only the

underlying mechanisms will be discussed.

4.9.1 Dynamical breaking

Spontaneous breaking of supersymmetry requires that some quantity ω′, which is not

invariant under supersymmetry transformations, δω′ 6= 0, must develop a vacuum expec-

tation value12,

〈0|ω′|0〉 6= 0.

Since this implies that ω′ belongs to a supermultiplet of some kind, there exists a field ω

such that

ω′ = i[Q,ω].

This implies

〈0|ω′|0〉 = 〈0|i[Q,ω]|0〉 = 〈0|iQω − iωQ|0〉 6= 0.

Since Q is hermitian, this implies that Q|0〉 6= 0, as otherwise this expectation value would

vanish. Conversely, this implies that if supersymmetry is unbroken, the vacuum state is

uncharged with respect to supersymmetry, Q|0〉 = 0. It can be shown that this exhausts

all possibilities.

The implications of this can be obtained when noting that there exist a connection

between supersymmetry generators and the Hamiltonian, and thus the energy. The com-

mutation relations for the Qa yield

{Q1, Q
†
1} = (σµ)11Pµ = P0 + P3

{Q2, Q
†
2} = (σµ)22Pµ = P0 − P3.

11Actually, not superficially, but still.
12There are once more field-theoretically subtleties involved with this statement, which will be glossed

over here.
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Thus the Hamiltonian H = P0 is given by

H =
1

2

(
Q1Q

†
1 +Q†1Q1 +Q2Q

†
2 +Q†2Q2

)
.

Taking the expectation value of H yields

〈0|H|0〉 =
1

2

∑
a

(
(Qa|0〉)2 +

(
Q†a|0〉

)2
)
.

Hence, the ground-state energy for the case of unbroken supersymmetry is zero, as none

of the right-hand terms can be different from zero, as announced earlier. Since the right-

hand side is a sum of squares it also follows that in case of spontaneous supersymmetry

breaking the vacuum energy is not zero, but is larger than zero.

To detect breaking, it is necessary to specify the object ω′, which breaks the supersym-

metry. In principle, this can also be a composite operator. Such mechanisms are known,

e. g., in QCD. Here, it will be restricted to the case where ω′ is an elementary field. The

situation in the non-gauge case and the gauge case are a little different, and will be treated

in turn in the following.

4.9.1.1 The O’Raifeartaigh model

The O’Raifeartaigh model is a non-gauge model, essentially an extension of the Wess-

Zumino model, which can exhibit spontaneous supersymmetry breaking. To study the

possible elementary fields for developing a vacuum expectation value it is helpful to recon-

sider the transformations under supersymmetry in the Wess-Zumino model

δξφ = i[ξQ, φ] = ξχ

δξχ = i[ξQ, χ] = −iσµiσ2ξ
∗∂µφ+ ξF

δξF = i[ξQ, F ] = −iξ†σ̄µ∂µχ.

Phenomenologically, so far Lorentz-symmetry-respecting models are most interesting, and

thus any condensates may not break this symmetry. This rules out already χ, ∂µχ and

∂µφ, as all of these have a definite direction. Hence, the only field remaining is the scalar

F field. The value of F is fixed by its equation of motion as

F = −δW
†

δφ†
= −

(
Mφ+

1

2
yφ2

)†
. (4.55)

The contribution of F to the Hamiltonian, and thus the interaction energy, is given by

FF †. This is a positive definite contribution. Its lowest value is achieved, as can be seen

from (4.55), exactly when all φ-fields vanish. In this case, the contribution of F to the
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ground-state energy is zero, and is thus not able to break supersymmetry. It is necessary

to force F to a value different from zero. For this purpose, it is actually insufficient to

just add a constant term to (4.55). Though this formally shifts F to a value different from

zero for φ = 0, it is always possible to shift it back if φ is replaced by a non-zero, constant

value. A non-zero, constant value for all the fields will not produce kinetic energy. So, the

only other contribution could come from the Yukawa coupling to the fermions. However,

it is still permitted to set these to zero. Thus, the ground state energy becomes once more

zero, and supersymmetry is intact, despite the non-vanishing value of F and φ. This is in

fact not a contradiction: The shift in the φ-field can then be taken to be a renormalization

of the field, and the resulting theory is in fact supersymmetric.

It thus requires a more complicated approach. However, including a linear term

is already a good possibility, but it turns out to be impossible with just one flavor.

O’Raifeartaigh showed that it is possible, if there are at least three flavors. The parameters

of the superpotential are then chosen as

Ai = −gM2δi2

Mij =
m

2
(δi1δj3 + δi3δj1)

yijk =
g

3
(δi2δj3δk3 + δi3δj2δk3 + δi3δj3δk2),

with g, m, and M real and positive, yielding a superpotential

W = mφ1φ3 + gφ2(φ2
3 −M2).

As the Wess-Zumino-Lagrangian is supersymmetric for any form of the superpotential, this

choice is not breaking supersymmetry explicitly. However, even at tree-level the minimum

energy is non-zero, thus supersymmetry is spontaneously broken. This can be seen as

follows. The equations of motion for the three F †i fields take the form

F †1 = −mφ3

F †2 = −g(φ2
3 −M2)

F †3 = −mφ1 − 2gφ2φ3,

and correspondingly for the Fi. From these equations of motion it follows that, at least

at tree-level, either the field F1 or the field F2 will have a vacuum expectation value. This

cannot be shifted away by a wave-function renormalization of φ3, since anything shifting

F1 to zero will shift F2 to a non-zero value. Putting it differently, these equations of

motions force F1 and F2 to have different values. Since the contributions of the Fi to the

vacuum energy is a sum of squares of type FiF
†
i , at least the contribution from one flavor

is always non-zero.
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The contribution of the Yukawa term may at first seem to be a tempting possibility

to change the situation. However, this would require that the field χ acquires a vacuum

expectation value. This would require that the vacuum has to have a non-zero spinor com-

ponent, as then 〈0|χi|0〉 would be non-zero. This would clearly break Lorentz invariance,

and is thus not admissible.

It therefore remains to minimize the potential energy with respect to the fields φi and

Fi. Writing the potential explicitly yields

V =
∑
i

FiF
†
i = m2|φ3|2 + g2|φ2

3 −M2|2 + |mφ1 + 2gφ2φ3|2. (4.56)

This has to be minimal for the vacuum state. Since φ1 can always be chosen such that

the third term vanishes, it remains to check the first two terms. Rewriting the expression

in terms of the real part A and the imaginary part B of φ3 yields the expression

V = g2M4 + (m2 − 2g2M2)A2 + (m2 + 2g2M2)B2 + g4(A2 +B2)2.

If the first expression is positive, i. e. m2 ≥ 2g2M2, the lowest values of V is achieved for

A = B = 0. Otherwise, a solution with A and B non-zero exists. This provides little

qualitative new results for the present purpose, and so only the first case will be treated.

In this case, φ3 = 0, and consequently thus φ1 = 0. The value of φ2 is not constrained

at all, and φ2 could take, in principle, any value. Therefore, it is called a flat direction of

the potential. Under certain circumstances, this may pose a problem in the form of an

instability, but this is of no interest here.

With this result, F2 acquires a vacuum expectation value of size gM2, and the vacuum

energy is the positive value g2M4. Since M has the dimension of mass, this vacuum energy

at the same time gives the scale of supersymmetry breaking. If g would be of order one,

M = 1 TeV would, e. g., signal a breaking of supersymmetry at the scale 1 TeV, which

would be accessible at the LHC.

It is noteworthy that

0 6= 〈0|[Q,χ]|0〉 =
∑
n

(〈0|Q|n〉〈n|χ|0〉 − 〈0|χ|n〉〈n|Q|0〉).

Since Q and χ are both fermionic, this implies that there exists a state |n〉, which must

also be fermionic, which couples to the vacuum by the generator Q such that 〈0|Q|n〉 is

non-zero. Since it couples in such a way to the vacuum, it can be shown that it is massless.

This is the SUSY version of the Goldstone theorem, which differs by the appearance of

a massless fermionic mode from the conventional one. That is, of course, due to the fact

that the supercharge is fermionic.
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Since the mass-matrix of the superpotential has only entries in the (13)-submatrix, this

implies that the flavor 2 fermion is massless, and can take this role. Due to the relation to

the Goldstone theorem, it is called goldstino, though there is no Goldstone boson in the

theory. Consequently, also the boson φ2 is not having a mass. This correlates to the fact

that φ2 is the flat direction in the superpotential: Moving in this direction is not costing

any energy, similar to a Goldstone excitation in conventional theories.

That supersymmetry is indeed broken can also be seen explicitly by the masses of the

remaining two flavors. By diagonalizing the mass-term for the other two fermion flavors,

it is directly obtained that there exists two linear combinations, both with masses m. The

mass-terms for the scalars are obtained by taking the quadratic terms of the potential

(4.56), yielding

m2φ3φ
†
3 + gM2(φ2

3 + φ†23 ) +m2φ1φ
†
1.

This confirms the masslessness of the φ2 boson. Furthermore, real and imaginary part of

the flavor 1 have mass m2. The flavor 3 has real and imaginary parts with different masses,

m2 ± gM2. This already implies that the supermultiplets are no longer mass-degenerate,

and supersymmetry is indeed broken.

However, when summing up everything, it turns out that the relation

∑
scalars

m2
s = 0+0+m2 +m2 +m2 +gM2 +m2−gM2 = 2

∑
fermions

m2
f = 2(0+m2 +m2) (4.57)

holds. Note that the complex scalars correspond to two scalar particles, while each Weyl

fermion represents one particle with two different spin orientation. It turns out that

this relations holds generally for this (F -type) spontaneous breaking of supersymmetry.

This implies that the masses of the particles and their super-partners have to be quite

similar. As a consequence, such a mechanism is not suitable for the standard model, since

otherwise already super-partners would have been observed13. More fundamentally, when

constructing the minimal supersymmetric standard model, it will turn out that there is

no gauge-invariant scalar field which could play the role of the second flavor in this model.

Since the superpotential has to be gauge-invariant term-by-term, it is thus not possible

to have a linear term in that case in the superpotential, and this type of spontaneous

supersymmetry breaking is not permitted.

13Adding an additional heavy fourth generation may seem at first sight a tempting possibility to evade

this constraint. However, it can be shown that for the charge structure of the standard model further

constraints exist which forces always at least one super-partner to be light enough to be already detected.
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4.9.1.2 Spontaneous breaking of supersymmetry in gauge theories

Interactions are necessary for a spontaneous breaking of supersymmetry. The simplest

non-trivial case of a gauge theory is that of supersymmetric QED. In the matter sector,

the breaking of supersymmetry can only proceed once more due to a Wess-Zumino-like

interaction, which is not present in supersymmetric QED. Therefore, the field F cannot

develop a vacuum expectation value, and neither the electron nor the selectron are possible

candidates, due to the arguments in the preceding section. Inspecting the remaining

transformation rules

i[ξQ,Aµ] = − 1√
2

(ξ†σ̄µλ+ λ†σ̄µξ)

i[ξQ, λ] = − i

2
√

2
σµσ̄νFµνξ +

1√
2
ξD

i[ξ,D] =
i√
2

(ξ†σ̄µ∂µλ− (∂µλ)†σ̄µξ),

then, by the same reasoning as before, suggests that the only field which can provide a

scalar condensate is the D-field. However, the contribution of the D-boson to the potential

is just eDφ†φ, and the equation of motion is D = eφ†φ. Thus, there is no sum of terms,

as in the Wess-Zumino case, which can be exploited to construct a potential which offers

the possibility for supersymmetry breaking.

However, there is another possibility, the addition of the so-called Fayet-Iliopoulos

term. In this case, the D-sector of the Lagrangian is replaced by

LD = M2D +
1

2
D2 − gDφ†φ.

The D-field is gauge-invariant, thus this Lagrangian is also still gauge-invariant. Further-

more, the SUSY transformation of D is a total derivative, and thus any linear term in

D is also not spoiling supersymmetry, and this Lagrangian is therefore a perfectly valid

extension of supersymmetric QED. The new equation of motion for D is then

D = −M2 + gφφ,

yielding the contribution
1

2
(−M2 + gφ†φ)2 (4.58)

to the Hamiltonian’s potential energy. The sign of g can be selected freely. If g is greater

than zero, then a minimum of this potential energy14 is obtained at |φ| = M/
√
g. In this

14Note that the arguments on which fields can acquire such a vacuum expectation values are no longer

valid anymore, since instead of the supersymmetry transformations for this case the gauge transformation

have to be investigated.



100 4.9. Supersymmetry breaking

case, the potential energy contribution is zero, and supersymmetry is unbroken. However,

the scalar condensate is equivalent to a Higgs-effect, giving the bosons a mass. But if

g < 0, then the minimum is obtained for 〈φ〉 = 0, with a potential energy contribution

which is non-zero, M4/2. Thus, supersymmetry is broken in this case, and the D field

acquires the expectation value −M2.

As a consequence, the selectron field acquires a mass by its interaction with the D-

field, but the other fields remain massless, in particular the photon, the photino, and

the electron. Thus, the degeneration in the mass spectrum of the matter fields is indeed

broken, signaling consistently the breakdown of supersymmetry. Note that the sum-rule

(4.57) cannot be applied here, as this supersymmetry breaking proceeds by a different

mechanism.

Unfortunately, this mechanism cannot be extended to non-Abelian gauge groups, as

in this case the D field is no longer gauge-invariant, and neither is its supersymmetry

transformation anymore a total derivative. Thus, in the non-Abelian case, supersymmetry

breaking by the Fayet-Iliopoulos mechanism is not possible.

Also utilizing then just the QED sector of the standard model is not an option: In

the standard model the single φ†φ in (4.58) is replaced with a sum over all fields carrying

electric charge, and with their respective positive and negative charges. Thus, the cor-

responding minimum would be obtained by some of the squark fields and slepton fields

developing a vacuum expectation value, and some not. As a consequence, in the standard

model case, the breaking of supersymmetry with a Fayet-Iliopoulos term would imply the

breaking of the electromagnetic symmetry and color gauge symmetry, which is not com-

patible with experiment. Therefore, also this second mechanism of spontaneous breaking

of supersymmetry is not viable for the standard model, and it is necessary to turn to

explicit breaking.

4.9.2 Explicit breaking

Thus, at the present time, no satisfactory mechanism exists for the breaking of super-

symmetry. Therefore, it is necessary to parametrize this lack of knowledge in the form

of explicitly supersymmetry breaking terms15. However, if some of the specific properties

of supersymmetric theories, in particular the better renormalization properties and the

protection of the scalar masses, should be retained, it is not possible to add arbitrary

terms to the Lagrangian.

To ensure the survival, or at least only minor modification, of these properties, it is

necessary to restrict the explicit supersymmetry breaking contributions to soft contribu-

15Of course, it cannot be excluded that supersymmetry in nature is in fact explicitly broken.
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tions. Soft contributions are such contributions which become less and less relevant with

increasing energy in an asymptotically free theory. This ensures that supersymmetry be-

comes effectively restored at large energies. To ensure such a property, it is necessary that

the terms contain coupling constants which have a positive energy dimensions. In case of

the theories discussed so far, these can appear in the form of two types of terms.

One type of such terms are masses which do not emerge from a superpotential. In

particular, such terms are allowed even without integrating out the F -bosons. Such masses

are possible for both, the bosonic fields and the fermionic fields, but not for the auxiliary

fields, as their mass dimensions are not permitting renormalizable mass terms. However,

these cannot appear for gauge bosons, as in standard gauge theories. Thus, e. g., in

supersymmetric QCD, such terms would be of type

−1

2

(
mλλλ+mχχχ+m†λλ

†λ† +m†χχ
†χ† + 2m2

φφ
†φ
)

Note that all mass terms are gauge-invariant. Also, since this is an effective parametriza-

tion, all masses, mλ, mχ, and mφ, are independent parameters. Furthermore, these masses

may be complex. When the F -field would be integrated out, the additional mass terms

for the quarks and the squarks would mix with those introduced above. Not only is such

a Lagrangian not explicitly supersymmetric anymore, but, since the super-partners are no

longer mass-degenerate, also the spectrum is manifestly no longer supersymmetric.

Furthermore, an additional possibility are three-boson couplings. These couplings

would be of type

aijkφiφjφk + bijkφ
†
iφjφk + cijkφ

†
iφ
†
jφk + dijkφ

†
iφ
†
jφ
†
k,

where, of course, not all couplings are independent, but are constrained by gauge-invariance.

That such couplings break supersymmetry is evident, as they not include the particles and

their super-partners equally.

All in all, to the three independent parameters of the supersymmetric QCD, the gauge

coupling, and the two Wess-Zumino parameters g and M , four more have emerged, three

masses, and at least one three-boson coupling. All of these additions are in fact super-

symmetry breaking. Inside such a model, there is no possibility to predict the values of

the additional coupling constants. However, in cases where the (broken) supersymmetric

theory is just the low-energy limit of a unified theory at some higher scale, this underly-

ing theory can provide such predictions, at least partially. E. g., in the cases above, the

expectation values of fields have been obtained in terms of the masses and the coupling

constants of the fields, or vice versa.

This already closes the list of possible soft supersymmetry breaking terms, although

for specific models much more possibilities may exist.
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4.9.3 Breaking by mediation

As has been seen, non-explicit supersymmetry-breaking faces the problem that the re-

lation between particles are inconsistent with experiment. Explicit breaking, however,

introduces numerous additional parameters. A compromise is supersymmetry-breaking

by mediation. In this case, dynamical breaking of supersymmetry is made possible by

additional particles and interactions. Thereby the problem of experimentally unwanted

breaking of electromagnetism or the strong interaction as well as relations like (4.57) can

be circumvented. Furthermore, this usually requires much less parameters as an explicit

breaking, and provides a dynamical origin.

Of course, just adding more generations or variously charged particles will not solve

the problem. Though this may circumvent the simple sumrule (4.57), this will lead to

other problems, like too strong Yukawa-interactions for the additional generations to be

easily compatible with the observed Higgs particle, or conflicts with further sum-rules

specific to the standard model. Also, breaking of the electromagnetic interaction and

strong interaction can usually not be avoided in this way.

The alternative is then the addition of a complete new sector of particles, including

their own interactions. This sector is arranged such that supersymmetry breaking is

possible. To communicate this to the standard model requires some kind of interaction.

This is performed by so-called messengers. These are further, usually again additional,

particles, which are made quite heavy, significantly above the electroweak scale. In this

way, even small breakings will be able to introduce substantial effects. This is usually done

by resolving the explicit breaking parameters into effective vertices of interactions with

this messenger particles. This can be achieved in a similar way as in the Higgs and weak

interaction effects at low-energy, where both effects only appear as point-interaction, in

the form of the fermion masses and the effective four-fermion interaction of the effective

Fermi theory.

This procedure seems still to be an ad hoc resolution of the problem. To embed this

in a less ad-hoc framework, two particular possibilities have been pursued.

One is gauge mediation. In this case it is assumed that the three standard-model gauge

interactions are just part of one unified gauge-interaction at high scales, see also chapter

7, and so is the supersymmetry-breaking sector. The breaking of this master gauge theory

has then separated the standard-model, and fractured it into three interactions, and the

breaking sector at some high-scale. The surplus gauge-bosons at this high scale then

usually have masses of the breaking scale, but still interact with both sectors. In this way

they can act as messengers. While this scenario is in general very attractive, as it solves

many problems of the standard model, it also has its own problems. Especially, the larger
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mass hierarchies emerging in this case are usually accidental, and not well understood.

An alternative is gravity-mediated supersymmetry-breaking, where the gravitino acts

as messenger. As this setup requires a full super-gravity theory, it will not be detailed

here any further. However, it appears phenomenologically somewhat more appealing,

as it is compatible with experimental results with rather little effort, mainly due to the

weak interaction of gravity. It usually leads to keV-scale gravitinos, but since they couple

gravitationally, and thus very weak, this is not at odds with phenomenology.

4.10 A primer on the minimal supersymmetric stan-

dard model

4.10.1 The supersymmetric minimal supersymmetric standard

model

From the previous examples of simple theories it is clear that a supersymmetry trans-

formation cannot change any quantum number of a field other than the spin. In the

standard model, however, none of the bosons has the same quantum numbers as any of

the fermions. Hence, to obtain a supersymmetric version of the standard model, it will be

necessary to construct for each particle in the standard model a new super-partner. Of

course, additional fields need also be included, like appropriate F -bosons and D-bosons.

Here, the supersymmetric version of the standard model with the least number of ad-

ditional fields will be introduced, the so-called minimal supersymmetric standard model

(MSSM). Furthermore, since no viable low-energy supersymmetry breaking mechanism for

such a theory is (yet) known, supersymmetry will be broken explicitly. This will require

roughly 100 new parameters. This may seem a weakness at first. However, the advantage

is that any kind of supersymmetry at high energies can be accommodated by such a theory.

Hence, if there are no additional particles or sectors, for which no experimental evidence

exists so far, any supersymmetric high-energy theory will look at accessible energies like

this minimal-supersymmetric standard model.

The MSSM requires the following new particles

• The photon is uncharged. Therefore, its super-partner has also to be uncharged, and

to be a Weyl fermion, to provide two degrees of freedom. It is called the photino

• The eight gluons carry adjoint color charges. This requires eight Weyl fermions

carrying adjoint color charges as well, and are called gluinos
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• Though massive, the same is true for the weak bosons, leading to the charged super-

partners of the W-bosons, the winos, and of the Z-boson, the zino, together the

binos. Except for the photino all gauginos, the gluinos and the binos, interact

through covariant derivatives with the original gauge-fields

• Assuming that all neutrinos are massive, no distinction between left-handed and

right-handed leptons is necessary, except for the parity-violating weak interactions.

However, no new interactions should be introduced due to the superpartners, and

hence the superpartners cannot be spin-1 bosons, which would be needed to be

gauged. Therefore these superpartners are taken to be scalars, called the sneutrinos,

the selectron, the smuon, and the stau, together the sleptons

• The same applies to quarks, requiring the fundamentally charged squarks

• The Higgs requires a fermionic superpartner, the higgsino. However, requiring super-

symmetry forbids that the Higgs has the same type of coupling to all the standard

model fields. Therefore, a second set of Higgs particles is necessary, with their cor-

responding super-partners. These are the only new particles required which are not

introduced as superpartners of existing particles

• Of course, a plethora of auxiliary D and F bosons will be necessary

It is necessary to discuss the formulation of these fields, and the resulting Lagrangian, in

more in detail.

The electroweak interactions act differently on left-handed fermions and right-handed

fermions. It thus fits naturally to use independent left-handed chiral multiplets and right-

handed chiral multiplets to represent the fermions, together with their bosonic superpart-

ners, the sfermions. However, both Weyl-spinors can be combined into a single Dirac-

spinor, as the total number of degrees of freedom match. The electroweak interaction can

then couple by means of the usual 1±γ5 coupling asymmetrically to both components. In

this context, it is often useful to use the fact that a charge-conjugated right-handed spinor

is equivalent to a left-handed one, as discussed previously, permitting to use exclusively

left-handed chiral multiplets, where appropriate charge-conjugations are included.

Furthermore, for each flavor it is necessary to introduced two chiral multiplets, giving

a total of 12 supermultiplets for the quarks and the leptons each. The mixing of quark

and lepton flavors proceeds in the same way as in the standard model. This requires thus

already the same number of parameters for CKM-matrix and the PMNS-matrix as in the

standard model.
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The gauge-bosons are much simpler to introduce. Again, a gauge-multiplet is needed

for the eight gluons. As electroweak symmetry breaking is not yet implemented, and

actually cannot without breaking supersymmetry as well as noted below, there is actually

a SU(2) gauge multiplet and an U(1) gauge multiplet, which do not yet represent the weak

gauge bosons and the photon. Instead, before mixing, these are called W± and W 0, and

B. Only after mixing, the W 0 and the B combine to the Z and the conventional photon.

Concerning interactions, there are, of course, the three independent gauge couplings

of the strong force, the weak force, and electromagnetic forces, to be denoted by g, g′

and e. After electroweak symmetry breaking, g′ and e will mix, just as in the standard

model. Note that the coupling of the gauge multiplets and the chiral multiplets will

induce additional interactions, as in case of supersymmetric QED and suspersymmetric

QCD. However, no additional parameters are introduced by this.

It remains to choose the superpotential for the 24 chiral multiplets, and to introduce the

Higgs fields. The parity violating weak interactions imply that a mass-term, the component

of the superpotential proportional to χχ, is not gauge-invariant, since a product of two

Weyl-spinors of the type χχ is not, if only the left-hand-type component is transformed

under such a gauge transformation. This is just as in the standard model. Therefore, it

is not possible, also in the MSSM, to introduce masses for the fermions by a tree-level

term. Again, the only possibility will be one generated dynamically by the coupling to the

Higgs field16. There, however, a problem occurs. In the standard model this is mediated

by a Yukawa-type coupling of the Higgs field to the fermions. However, it is necessary,

for the sake of gauge-invariance, to couple the two weak charge states of the fermions

differently, one to the Higgs field, and one to its complex conjugate. This is not possible in

a supersymmetric theory, as the holomorphic superpotential can only depend on the field,

and not its complex conjugate. It is therefore necessary to couple both weak charge states

to different Higgs fields. This makes it possible to provide a gauge-invariant Yukawa-

coupling for both states, but requires that there are two complex Higgs doublets instead

of one complex Higgs doublets in the MSSM. Furthermore, also these fields need to be

part of chiral supermultiplets, and therefore their partners, the higgssinos, are introduced

as Weyl fermions. However, for the Higgs bosons, which have no chirality, the limitations

on a mass-term do not apply, and one can therefore be included in the superpotential.

Before writing down the superpotential explicitly, it is necessary to fix the notation.

Left-handed Quark fields will be denoted by u, d, ..., and squark fields by Q̃ = ũ, d̃, .... Note

that always a u-type quark and a d-type quark form a doublet with respect to the weak

16Actually, a gaugino condensation would also be possible, if a way would be known how to trigger it

and reconcile the result with the known phenomenology of the standard model.
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interactions, and equivalently the squarks. Right-handed quarks are denoted as ū, d̄, ... and

the corresponding squarks as ˜̄q = ˜̄u, ˜̄d, .... These form singlets with respect to the weak

interactions. This notation corresponds to left-handed fields, which are obtained from the

original right-handed fields, to be denoted by, e. g. uR, by charge conjugation. The index

L for left-handed will always be suppressed. Likewise, the left-handed leptonic doublets,

including an electron-type fermion and a neutrino-type fermion, are denoted as ν, e, ...,

and the corresponding sleptons as L = ν̃, ẽ, .... Consequently, the right-handed leptons

are denoted as ν̄, ē, ... and the singlet sleptons as ˜̄l = ˜̄ν, ˜̄e, .... The two Higgs doublets are

denoted by Hu and Hd, denoting to which type of particle they couple. The corresponding

higgsinos are denoted by H̃u and H̃d. In contradistinction to the quarks, where the doublet

consists out of a component of u and d-quarks, the doublets for the Higgs are formed in

the form H+
u and H0

u, and H0
d and H−d . The reason for this is that after giving a vacuum

expectation value to the Higgs-field and expanding all terms of the potentials, effective

mass-terms for the u-type quarks will then finally couple only to Hu-type Higgs fields,

and so on. The remaining fields are the gluons g with super-partner gluinos g̃, the gauge

W -bosons W with super-partner winos W̃ , and the gauge field B with its super-partner

bino B̃. After mixing, the usual W -bosons W± with superpartner winos W̃±, the Z-boson

with superpartner zino Z̃ and the photon γ with the photino γ̃ will be obtained.

With this notation, it is possible to write down the superpotential for the MSSM as

W = ỹiju ˜̄uiQ̃jHu − ỹijd ˜̄diQ̃jHd + ỹijν¯̃eiL̃jHu − ỹije ˜̄eiL̃jHd + µHuHd, (4.59)

where gauge-indices have been left implicit on both, the couplings and the fields, and the

auxiliary fields have already been integrated out. The appearing Yukawa-couplings y are

the same as in the standard model. In particular, vanishing neutrino masses would be

implemented by yijν = 0. If only the masses of the heaviest particles, the top, bottom, and

the τ should be retained, this requires that all y-components would be zero, except for

y33
u = yb, y

33
d = yt and y33

e = yτ , leaving gauge indices implicit. The choice of this potential

is not unique, but the one for which the MSSM is most similar to the standard model.

In principle, it would also be possible to add contributions like

λijke L̃iL̃j ˜̄ek + λijkL L̃iQ̃j
˜̄dk + µiLL̃iHu (4.60)

and

λijkB ˜̄ui
˜̄dj

˜̄dk. (4.61)

In all cases, these are couplings of squarks and/or sleptons. Since these carry the same

charges as their counterparts, they will also carry the same lepton and baryon numbers.

As a consequence, the squarks Q̃ from the multiplets including the particle-like left-handed
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quarks carry baryon number B = 1/3, while those from the anti-particle-like right-handed

chiral multiplets carry baryon number −1/3. Similarly, the fields L̃ carry lepton number

L = 1 and ē -1. Thus the interaction vertices in (4.60) violate lepton number conserva-

tion and the ones of (4.61) baryon number conservation. On principal grounds, there is

nothing wrong with this, as both quantities are violated by non-perturbative effects also

in the standard model. However, these violations are very tiny, even below nowadays ex-

perimental detection limit. Interaction vertices like (4.60) and (4.61), on the other hand,

would provide very strong, and experimentally excluded, violations of both numbers, as

long as the coupling constants λi and µL would not be tuned to extremely small values.

Such a fine-tuning is undesirable.

However, such direct terms could be excluded, if all particles in the MSSM would carry

an additional multiplicatively conserved quantity, called R-parity, which is defined as

R = (−1)3B+L+2s,

with s the spin. This is just the discrete Z2 subgroup of the U(1) R-symmetry of an N = 1

supersymmetry, which can be retained even after supersymmetry breaking in the MSSM.

Such a quantum number would be violated by interaction terms like (4.60) and (4.61),

and these are therefore forbidden17. The contribution 2s in the definition of R implies

that particles and their super-partners always carry opposite R-parity. This has some

profound consequences. One is that the lightest superparticle (LSP) cannot decay into

ordinary particles. It is thus stable. This is actually an unexpected bonus: If this particle

would be electromagnetically uncharged, it is a natural dark matter candidate. However,

it has also to be uncharged with respect to strong interactions, as otherwise it would be

bound in nuclei. This is not observed, at least as long as its mass is not extremely high,

which would be undesirable, as then all superparticles would be very massive, preventing

a solution of the naturalness problem by supersymmetry. Therefore, it interacts only very

weakly, and is thus hard to detect. Not surprisingly, it has not be detected so far, if it

exists.

Summarizing, the assumption of R-parity restricts the superpotential to the form

(4.59), and thus fixes the MSSM completely.

Returning then to this remaining possible superpotential (4.59), the parameter µ char-

acterizes the masses of the Higgs and higgsinos. In comparison to the standard model with

two independent parameters in the Higgs sector, this is the only new parameter entering

the theory when including the Higgs sector and keeping supersymmetry unbroken. The

17A non-perturbative violation of R-parity notwithstanding, as for baryon and lepton number in the

standard model.
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self-interaction of the Higgs field will be entirely determined, due to supersymmetry, just

by the already included parameters, thus having potentially less parameters than in case

of the standard model.

Unfortunately, there is a catch. Writing all gauge components explicitly, the mass term

for the Higgs takes the form

µHuHd = µabHa
uH

b
d = µεabH

a
uH

b
d,

where the index structure of the parameter µ is dictated by gauge invariance. The corre-

sponding interaction terms in the Lagrangian are then of the form

δW

δHi

F i + h.c. = µ(H1
uF

2
d +H2

dF
1
u −H2

uF
1
d −H1

dF
2
u ) + h.c..

Integrating out all F -bosons in the Higgs sector yields the mass term for the Higgs, just

as in the Wess-Zumino model. This produces

|µ|2(H i
uH

i†
u +H i

dH
i†
d ).

This implies firstly that both Higgs doublets are mass-degenerate. More seriously, it

implies that this common mass is positive. In the conventional treatment of electro-

weak symmetry, however, a negative mass is mandatory to obtain a perturbatively valid

description of electroweak symmetry. Since the appearance of the positive mass is a direct

consequence of supersymmetry, as was seen in case of the Wess-Zumino model, there seems

to be no possibility to have at the same time perturbative symmetry breaking and intact

supersymmetry. One alternative would be non-perturbative effects, which has not been

excluded so far. However, it seems somewhat more likely that it is not possible to have

unbroken supersymmetry but so-called broken gauge symmetry simultaneously, and this

has lead to a search for a common origin of both phenomena.

After analyzing the features which make the MSSM different from the standard model,

it is instructive to see how the standard-model-type interactions are still present.

This is straightforward in the case of the gauge-boson self-interactions, as these are

automatically included in the non-Abelian field-strength tensors appearing already in the

supersymmetric version of Yang-Mills theory, (4.44). It is more interesting to investigate

how the usual Dirac-type quarks and gluons and their coupling to the strong and weak

interactions are recovered.

The simpler case is the parity-preserving strong interactions. Due to the gauge-

covariant derivative, the coupling of a quark-type left-handed Weyl-fermion is

−1

2
gχ†qσ̄

µAµχq = −1

2
gχ†qiσ̄µA

µ
ijχqj, (4.62)
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where in the second expression the gauge indices are made explicit, keeping in mind that

Aµ = ταAαµ is matrix-valued. The right-handed contribution can be rewritten as a left-

handed Weyl fermion by virtue of charge conjugation,

ψu = χcq̄ = iσ2χ
∗
q̄.

χq̄ = −iσ2χ
c∗
q̄

The original coupling of the right-handed fermion, which will be the anti-particle, is

1

2
gχ†q̄σ̄

µA∗µχq̄ =
1

2
g(−iσ2χ

c∗
q̄ )†σ̄µA∗µ(−iσ2χ

c∗
q̄ )

= −1

2
gχcTq̄ σ2σ̄µσ2A

∗
µχ

c∗
q̄ = −1

2
gχc†q̄ σ

µAµχ
c
q̄. (4.63)

In the last step, it has been used that σ2σ̄
µσ2 = −σµT , and that A∗µ = ATµ , since the Aµ

are hermitian. The remaining step is just rewriting everything in indices and rearranging.

Combining (4.62) and (4.63) yields

−1

2
g(χc†q̄ σ

µAµχ
c
q̄ + χ†qσ̄

µAµχq) = −1

2
gΨ̄γµAµΨ

with ΨT = (χcq̄χ). This is precisely the way an ordinary Dirac quark Ψ would couple

covariantly to gluons. Hence, by combining two chiral multiplets and one gauge multiplet,

it is possible to recover the couplings of the standard model strong interactions.

The electromagnetic interaction, which is also parity-preserving, emerges in the same

way, just that the photon field is not matrix-valued.

The weak interaction violates parity maximally by just coupling to the left-handed

components. In the standard model, its coupling is given by

−1

2
g′Ψ̄e

1− γ5

2
γµWµ

1− γ5

2
Ψ.

However, the action of (1− γ5)/2 on any spinor is to yield

1− γ5

2

(
χē

χe

)
=

(
0

χe

)
,

and thus reduces the Dirac-spinor to its left-handed component. Thus, only the coupling

−1

2
gχ†eσ̄

µWµχe

remains. This is precisely the coupling of a left-handed chiral multiplet to a gauge multi-

plet. It is therefore sufficient just to gauge the left-handed chiral multiplets with the weak

interactions to obtain the standard-model-type coupling. In addition also inter-generation

mixing has to be included, but this proceeds in the same way as in the the standard-model,

and is therefore not treated explicitly. This concludes the list of standard model couplings.
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4.10.2 Breaking the supersymmetry in the MSSM

Since no mechanism is yet known how to generate supersymmetry breaking in a way which

would be in a accordance with all observations, and without internal contradictions, this

breaking is only parametrized in the MSSM, and requires a large number of additional free

parameters. Together with the original about 30 parameters of the standard model, these

are then more than 130 free parameters in the MSSM. Exactly, there are 105 additional

parameters in the MSSM, not counting contributions from massive neutrinos.

These parameters include masses for all the non-standard model superpartners, that

is squarks and sleptons, as well as photinos, gluinos, winos, and binos. Only for the Hig-

gsinos it is not possible to construct a gauge-invariant additional mass-term, due to the

chirality of the weak interactions, in much the same way as for quarks and leptons in the

standard model. One advantage is, however, offered by the introduction of these free mass

parameters: It is possible to introduce a negative mass for the Higgs particles, reinstanti-

ating the same way to describe the breaking of electroweak symmetry as in the standard

model. That again highlights how electroweak symmetry breaking and supersymmetry

breaking may be connected. These masses also permit to shift all superpartners to such

scales as they are in accordance with the observed limits so far. However, if the masses

would be much larger than the scale of electroweak symmetry breaking, i. e., 250 GeV,

it would again be very hard to obtain results in agreement with the observations without

fine-tuning. However, such mass-matrices should not have large off-diagonal elements, i.

e., the corresponding CKM-matrices should be almost diagonal. Otherwise, mixing would

produce flavor mixing also for the standard model particles exceeding significantly the

observed amount.

In addition, it is possible to introduce triple-scalar couplings. These can couple at will

the squarks, sleptons, and the Higgs bosons in any gauge-invariant way. Again, obser-

vational limits restrict the magnitude of these couplings. Furthermore, some couplings,

in particular certain inter-family couplings, are very unlikely to emerge in any kind of

proposed supersymmetry breaking mechanism, and therefore are usually omitted.

Finally, the mass-matrices in the Higgs sector may have off-diagonal elements, without

introducing mixing in the quark sector. This are contributions of the type

b(H1
uH

2
d −H2

uH
1
d) + h.c.,

where the mass parameter b may also be complex.

The arbitrariness of these enormous amount of coupling constants can be reduced, if

some model of underlying supersymmetry breaking is assumed. One, rather often, invoked

one is that the minimal supersymmetric standard model is the low-energy limit of a super-
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gravity theory, the so-called mSUGRA scenario. Though by now experimentally ruled out,

it is still interesting as the simplest representative of such types of models.

In the mSUGRA case, it is, e. g., predicted, that the masses of the superpartners of

the gauge-boson superpartners should be degenerate at the breaking scale,

Mg̃ = MW̃ = MB̃ = m1/2, (4.64)

and also the masses of the squarks and sleptons should be without mixing and degenerate

m2
Q̃

= m2
q̃ = m2

L̃
= m2

l̃
= m2

01, (4.65)

and these masses also with the ones of the Higgs particles,

m2
H = m2

0.

Furthermore, all trilinear bosonic couplings would be degenerate, with the same value

A0. If the phase of all three parameters, A0, m1/2, and m0 would be the same, also CP

violation would not differ from the one of the standard model. The latter is an important

constraint, as the experimental limits on such violations are very stringent, although not

yet threatening to rule out the MSSM proper.

Of course, as the theory interacts, all of these parameters are only degenerate in such a

way at the scale where supersymmetry breaks. Since the various flavors couple differently

in the standard model, and thus in the minimal supersymmetric standard model, the

parameters will again differ in general at the electroweak scale, or any lower scale than

the supersymmetry breaking scale.

4.10.3 MSSM phenomenology

4.10.3.1 Coupling unification and running parameters

In the electroweak theory it is found that at some energy scale the electromagnetic and the

weak coupling become both of the same value. This is known as electroweak unification.

Of course, if also the strong coupling would become of the same value at the same energy,

this would strongly indicate that all three couplings originate from one coupling at this

unification scale, and become different at low energies because the gauge group to which

the unified coupling corresponds becomes broken at this unification scale. This is also the

idea behind so-called grand-unified theories (GUT) that at large energies there exists one

gauge-group, say SU(5), which becomes broken by a Higgs effect, similar to that one in

the standard model, to yield the product gauge group SU(3)×SU(2)×U(1) of the standard

model at the unification scale. This unification is of course also interesting, as any evidence
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of it would support the idea of gauge-mediated supersymmetry-breaking. This idea will

be taken up again in chapter 7. But supsymmetry enforces the idea, as will be discussed

now.´
To check, whether such a unification actually occurs, it is necessary to determine the

running of the effective coupling constants with the energy (renormalization) scale. There

are three couplings18, the strong one g, the weak one g′, and the electromagnetic one. It

is always possible to write the electromagnetic one as e/ sin θW . The angle θW is known

as the Weinberg angle. In the standard model its value originates from the electroweak

symmetry breaking. Its measured value is 28.7°. The relevant couplings are then

α1(Q) = g(Q)2

4π
=Q=mZ 0.119 (4.66)

α2(Q) = g′(Q)2

4π
=Q=mZ 0.0338 (4.67)

α3(Q) = 5
3

e(Q)2

4π cos2 θW
=Q=mZ 0.0169 (4.68)

In this case the appropriate mixed combination for the electromagnetic coupling has been

used. The factor 5/3 appears as in an Abelian gauge theory there is a certain freedom in

redefining the charge and the generator of gauge transformation not present in non-Abelian

gauge theories. It has been set here to a conventional value, which would be expected if

the standard model product gauge groups would indeed originate from a common one at

high energies.

To one-loop order, all coupling constants evolve according to the renormalization group

equation
dαi
d lnQ

= − βi
2π
α2
i , (4.69)

where βi is the first coefficient in a Taylor expansion of the so-called β-function for the

coupling i. For a non-Abelian coupling its value is given by

βi =
11

3
CA −

2

3
CAn

a
f −

1

3
nf −

1

6
ns,

where CA is the adjoint or second Casimir of the gauge group with value N for a SU(N)

group. The numbers naf , nf , and ns are the number of adjoint fermionic chirality states,

fundamental fermionic chirality states and the number of complex scalars charged under

this coupling, respectively. In the Abelian case, the value of βi is given by

βi = −2

3

∑
f

Y 2
f −

1

3

∑
s

Y 2
s ,

with Yf and Ys the charge of fermions and scalars with respect to the interaction. This

stems from the fact that the charge for matter minimally coupled to an Abelian gauge-field

18Other couplings, like the Higgs-self-coupling or the Yukawa couplings do not unify at this scale.
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can be chosen freely, while this is not the case for a non-Abelian case. The fact that the Yf

and Ys are rational numbers in the standard model is another indication for the U(1) part

of the standard model to be emerged from some other gauge group by symmetry breaking.

As the coefficients of the β-functions do not depend on the couplings themselves, the

differential equation (4.69) is readily integrated to yield

αi(Q)−1 = αi(Q0)−1 +
βi
2π

ln
Q

Q0

,

where αi(Q0) is the initial condition, the value of the coupling at some reference scale Q0.

As already indicated in (4.66-4.68), this reference scale will be the Z-boson mass, as all

three couplings have been measured with rather good precision at this scale at LEP and

LEP2.

The question to be posed is now whether the three couplings αi(Q) have at some energy

Q the same value. To obtain a condition, it is most simple to use the linear system of

equations to eliminate Q and αi(Q) in favor of the known measured values. This yields

the conditional equation

Bx =
α3(mZ)−1 − α2(mZ)−1

α2(mZ)−1 − α1(mZ)−1
=
β2 − β3

β1 − β2

= Bt.

With the values given in (4.66-4.68) the left-hand side is readily evaluated to be Bx = 0.72.

The right-hand side depends only on the β-functions, and therefore to this order only on

the particle content of the theory.

In the standard model, there are no scalars charged under the N = 3 strong interac-

tions, but 12 chirality states of fermions, yielding β1 = 7. The positive value indicates

that the strong sector is described by an asymptotically free theory. For the N = 2 weak

interactions, there are 12 left-handed chiral states (6 quarks and 6 leptons), and one Higgs

field, yielding β2 = 19/6. Taking all electromagnetically charged particles, and the nor-

malization factor 5/3, into account, β3 = −41/10. Note that also some components of the

Higgs field are electromagnetically charged. Evaluating Bt yields 115/218 ≈ 0.528. Thus,

in the standard model, to this order the couplings will not match. This is also not changed

in higher orders of perturbation theory.

The situation changes in the MSSM. For β1, there are now in addition the gluinos,

giving one species of adjoint fermionic chiralities, and 12 squarks, yielding β1 = 3. The

same applies to the weak case with one species of adjoint winos and zinos, 12 sleptons

and squarks, two higgsinos and one additional Higgs doublet. Altogether this yields β2 =

−1. The change of sign is remarkably, indicating that the supersymmetric weak sector is

no longer asymptotically free, as is the case in the standard model. The anti-screening
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contributed from the additional degrees of freedom is sufficient to change the behavior of

the theory qualitatively. The case of β3 finally changes to −33/5, after all bookkeeping is

done. Together, this yields Bt = 5/7 = 0.714. This is much closer to the desired value of

0.72, yielding support for the fact that the MSSM emerges from a unified theory. Taking

this result to obtain the unification scale, it turns out to be QU ≈ 2.2× 1016 GeV, which

is an enormously large scale, though still significantly below the Planck scale of 1019 GeV.

This result is not changing qualitatively, if the calculation is performed to higher order nor

if the effects from supersymmetry breaking and breaking of the presumed unifying gauge

group is taken into account. Thus the MSSM, without adding any constraint, seems a

natural candidate for a theory emerging from a grand unified one, being one reason for its

popularity and of supersymmetry in general. However, exact unification is never achieved

in the MSSM, and therefore requires further contributions to occur.

These results suggest to also examine the running of other parameters as well. In

particular, the parameters appearing due to the soft breaking of supersymmetry are par-

ticularly interesting, as their behavior will be the effect which obscures supersymmetry in

nature, if it exists.

The first interesting quantity is the mass of the gauge-boson superpartners, the gaug-

inos. The running is given by a very similar expression as for the coupling constants,

dMi

d lnQ
= − βi

2π
αiMi.

The β-function can be eliminated using the equation for the running of the coupling (4.69).

This yields the equation

0 =
1

αi

dMi

d lnQ
− Mi

α2
i

dαi
d lnQ

=
d

d lnQ

Mi

αi
.

This implies immediately that the ratio of the gaugino mass for the gauge group i divided

by the corresponding gauge coupling is not running, i. e., it is renormalization group-

invariant.

If there exists a scale mU at which the theory unifies, like suggested by the running of

the couplings, then also the masses of the gauginos should be equal. As discussed previ-

ously, this would be the case in supergravity as the origin of the minimal supersymmetric

standard model. This would yield

Mi(mU)

αi(mU)
=

m1/2

αU(mU)
,

and since the ratios are renormalization-group invariant it follows that

M1(Q)

α1(Q)
=
M2(Q)

α2(Q)
=
M2(Q)

α2(Q)
.
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Since the αi are known, e. g., at Q = mZ , it is possible to deduce the ratio of the gaugino

masses at the Z-mass, yielding

M3(mZ) = α3(mZ)
α2(mZ)

M2(mZ) ≈ 1

2
M2 (4.70)

M1(mZ) = α1(mZ)
α2(mZ)

M2(mZ) ≈ 7

2
M2.

This implies that the masses of the gluinos to the winos to the bino behave as 7 : 2 : 1.

This implies that the gluino is the heaviest of the gauginos. Note that the masses are not

necessarily the masses of the original gauge bosons in the electroweak sector. The bino and

the winos will together with the higgsinos form the final mass eigenstates. Therefore, the

running of the parameters will provide already guiding predictions on how supersymmetry

breaking is provided in nature, if the observed mass pattern of these particles matches

this prediction, provided once more that higher-order and non-perturbative corrections

are small.

An even more phenomenologically relevant result is obtained by the investigation of the

scalar masses, i. e., the masses of the Higgs, the squarks, and the sleptons. Retaining only

the top-quark Yukawa coupling yt, which dominates all other Yukawa couplings at one

loop, and a unified three-scalar coupling A0, the corresponding third-generation evolution

equations and Higgs evolution equation are given by

dm2
Hu

d lnQ
=

1

4π

(
3Xt

4π
− 6α2M

2
2 −

6

5
α3M

2
3

)
(4.71)

dm2
Hd

d lnQ
=

1

4π

(
−6α2M

2
2 −

6

5
α3M

2
3

)
dm2

t̃L

d lnQ
=

1

4π

(
Xt

4π
− 32

3
α1M

2
1 − 6α2M

2
2 −

2

15
α3M

2
3

)
(4.72)

dm2
t̃R

d lnQ
=

1

4π

(
2Xt

4π
− 32

3
α1M

2
1 −

32

15
α3M

2
3

)
(4.73)

Xt = 2|yt|2
(
m2
Hu +m2

t̃l
+m2

t̃r
+ A2

0

)
.

A number of remarks are in order. The quantity Xt emerges from the Yukawa couplings

to the top quark. Therefore, the down-type Higgs doublet will, to leading order, not

couple, and therefore its evolution equation will not depend on this strictly positive quan-

tity. Furthermore, the Higgs fields couple to leading order not to the strong interaction,

while the squarks do. Hence the former have no term depending on α1, while the latter

do. Similarly, only squarks from the left-handed chiral multiplet couple directly to the

weak interactions, and therefore receive contributions from the weak interaction propor-

tional to α2. Still, all of these particles couple electromagnetically, and therefore receive

contributions proportional to α3.
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Since all couplings αi are strictly positive, the values of the masses can only decrease

by the top-quark contribution Xt when lowering the scale Q. In particular, this implies

that the mass of Hd will, at this order, only increase or at best stay constant. The

strongest decrease will be observed for the Hu contribution, as the factor three in front

of Xt magnifies the effect. Furthermore, the largest counteracting contribution (72 = 49

and 22 = 4 and the largest α1!) due to the gluino term is absent for the Higgs fields.

Therefore, the mass of the Hu will decreases fastest from its unification value
√
µ2 +m2

0

at the unification scale. In fact, this decrease may be sufficiently strong to drive the mass

parameter negative at the electroweak scale. This would trigger electroweak symmetry

breaking by the same mechanism as in the ordinary standard model. Using parameters

which prevent the squark masses from becoming negative, and thus preserving vitally

the color gauge symmetry, this indeed happens. Again, explicitly broken, but unified,

supersymmetry provides the correct low-energy phenomenology of the standard model.

4.10.3.2 The electroweak sector

One of the most interesting questions in contemporary standard model physics is the

origin of the value of the mass of the Higgs boson. In the standard model, this is an

essentially independent parameter. However, in the minimal supersymmetric extension of

the standard model, this parameter is less arbitrary, due to the absence of the hierarchy

problem, and the fact that part of the Higgs couplings are determined by supersymmetry,

like the four-Higgs coupling.

To determine the Higgs mass, it is first necessary to determine the electroweak symme-

try breaking pattern. To do this, the first step is an investigation of the Higgs potential.

This is more complicated than in the standard model case, due to the presence of a second

Higgs doublet.

At tree-level, the quadratic term for the Higgs fields is determined by the contribution

from the supersymmetric invariant term, and the two contributions from explicit breaking,

yielding together

V1 = (|µ|2+m2
Hu)(H+

u H
+†
u +H0

uH
0+
u )+(|µ|2+m2

Hd
)(H0

dH
0†
d +H−d H

−†
u )+b(H+

u H
−
d −H

0
uH

0
d)+h.c.,

where the Higgs fields are labeled by their electric instead of the hypercharge. The pa-

rameters m2
Hi

can have, despite their appearance, both signs.

The quadratic part of the potential originates from two contributions. Both are from

the D couplings and F couplings for the groups under which the Higgs fields are charged,

the weak isospin group SU(2) and the hypercharge group U(1). Since these contributions

are four-point vertices, there are no contributions from explicit supersymmetry breaking.
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Thus, the quartic part of the potential takes the form

V2 =
e2 + g′2

8
(H+

u H
+†
u +H0

uH
0+
u −H0

dH
0†
d −H

−
d H

−†
d )2 +

g′2

8
|H+

u H
0†
d +H0

uH
−†
d |

2,

where g′ is the gauge coupling of the weak isospin gauge group and e the one of the weak

hypercharge group.

To obtain the experimentally measured electroweak phenomenology, this potential has

to have a non-trivial minimum, especially if all other fields vanish. The latter also implies

that the cubic coupling appearing in the Lagrangian due to the supersymmetry breaking

are not relevant for this question, as they always involve at least one other field.

It is possible to simplify this question. The expressions are invariant under a local gauge

transformation, as is the complete Lagrangian. If therefore any of the fields has a non-

vanishing value at the minimum, it is always possible to perform a gauge transformation

such that a specific component has this, and the other ones vanish. Choosing then H+
u to

be zero, the potential must be extremal at this value of H+
u . Finding a minimum is then

a classical analysis. Requiring further that electromagnetism is unbroken yields H−d = 0.

Therefore, only the electrically neutral components of both Higgs doublets matter. To

avoid CP violations, H0
u and H0

d must also be real. If there should exist a non-trivial

minimum, this implies that the product H0
uH

0
d must be positive, as otherwise all terms

would be positive. By a global U(1) gauge transformation, both fields can then be chosen

to be positive.

The direction H0
u = H0

d is pathologically, as the highest-order term vanishes, a so-

called flat direction. For the potential to be still bounded from below, thus providing a

perturbatively stable vacuum state, requires

2|µ|2 +m2
Hu +m2

Hd
> 2b(> 0).

Therefore, not the masses of both H0
u and H0

d can be negative simultaneously.

It is not possible to restrict the solution and the parameters further just from the

Lagrangian at this point. However, it is experimentally possible to fix at least a particular

combination of the associated vacuum expectation values 〈H0
u〉 and 〈H0

d〉. Studying the

coupling to the electroweak gauge bosons masses yields a mass term in the Lagrangian of(
1

2
(e2 + g

′2)ZµZ
µ +

1

2
g2(W+

µ W
µ+ +W−

µ W
µ−)

)
(〈H0

u〉2 + 〈H0
d〉2). (4.74)

The value for the combined condensate is therefore the same19 as in the standard model,

(174 GeV)2.

19Note a factor of
√

2 due to the MSSM conventions.
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It is furthermore possible to determine mass-bounds for the Higgs. Defining

tan β =
〈Hu〉
〈Hd〉

,

the resulting expressions become relatively simple. It is furthermore useful that the mass-

matrix assumes a block-diagonal form, so that it is possible to reduce the complexity

further by studying only doublets at each time.

The first doublet to be studied are the (non-condensing) imaginary parts of H0
u and

H0
d . This yields two linear combinations as mass eigenstates. One is a massless mode, and

will become effectively the longitudinal component of the Z0. The orthogonal combination

is commonly referred to as the A0, and is a pseudo-scalar. This is an uncharged second

Higgs field (the first one will be one of the condensed ones). It is one of the extra Higgs

particles not present in the standard model. In practical calculations, the parameter b is

often traded for the mass of this particle, m− = mA0 .

The next pair is H+
u and H+

d . Linear combinations will have masses 0 and m2
W +m2

A0 .

The charged massless combinations will become the longitudinal component of the W±.

The other states, usually just called H±, correspond to an electrical charged Higgs particle,

which is not appearing in the standard model.

Finally, masses for the condensing real parts of H0
u and H0

d are

m2
h0 =

1

2

(
m2
A0 +m2

Z −
√

(m2
A0 +M2

Z)2 − 4m2
A0m2

Z cos2(2β)

)
m2
H0 =

1

2

(
m2
A0 +m2

Z +
√

(m2
A0 +M2

Z)2 − 4m2
A0m2

Z cos2(2β)

)
for the twolinear combinations h0 and H0, giving two more neutral, scalar Higgs particles.

So instead of the one of the standard model, there are two in the minimal supersymmetric

standard model.

The masses for the fieldsA0, H± andH0 are all containing a contributionmA0

√
2b/sin(2β),

which is unconstrained, and could, in principle, become arbitrarily large. This is not the

case for the mass of h0. If the A0 mass would be small, it is possible to expand the root,

yielding

m2
h0 ≈ m2

A0 cos2(2β) ≤ m2
A0 .

For large masses of the A0 it becomes

m2
h0 ≈ m2

Z cos2(2β) ≤ m2
Z , (4.75)

where only the experimental known mass of the Z-boson enters. Thus, though the bounds

are not known, the mass is constrained. Since the experimental bounds for the A0 indicate
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a rather large mass, the second expression (4.75) is more appropriate. Unfortunately, such

a low mass for the lightest neutral Higgs boson is excluded experimentally. Even if the

more precise formulas would be used, instead of the approximate ones, the situation is not

improving qualitatively.

That could have been already a dismissal of the minimal version of a supersymmetric

standard model. However, the leading quantum correction to this bound yields

m2
h0 ≤ m2

Z +
3m4

t

2π2(〈Hu〉2 + 〈Hd〉2)
ln

√
m2
t̃1

+m2
t̃2√

2mt

, (4.76)

where mt is the known top quark mass and mt̃i are the masses of the staus after mixing be-

tween the left and right multiplets occurred, which, in principle, can be different. Already

for masses of the order of the experimentally excluded stau masses the bound is increased

by these radiative corrections above the Higgs mass. On the one hand, this is good for the

minimal supersymmetric standard model, but on the other hand this implies that leading

order corrections are large, and subleading corrections may be relevant. This reduces the

predictiveness of the bound, as then the other parameters enter in various ways.

There is a further problem with the corrections (4.76) to the Higgs mass. The condition

for forming a Higgs condensate can be reformulated as

1

2
m2
Z = −|µ|2 +

m2
Hd
−m2

Hu
tan2 β

tan2 β − 1
.

For example let tan β become large, i. e., the condensate 〈Hu〉 is much larger than the

condensate 〈Hd〉. Then the condition becomes

1

2
m2
Z = −|µ|2 −m2

Hu .

Both parameters on the right-hand side are not constrained immediately by physics. How-

ever, if both parameters would be much larger than the mass of the Z boson, it would be

necessary for them to cancel almost exactly. If this would be the case, it would immedi-

ately raise the same questions as in the original fine-tuning problem of the standard model

if the Higgs mass would be much larger than the ones of the weak bosons. This is therefore

also called the little fine-tuning problem or little hierarchy problem. The experimentally

established mass of the Higgs is, in fact, borderline. Together with the large lower limits

for the masses of the other sparticles, the MSSM, though still consistent with experiment,

becomes in fact increasingly fine-tuned, therefore abolishing its original motivation. Still,

it is not excluded, and may yet describe nature.

That this is indeed somewhat of a problem becomes apparent when considering the

renormalization constant for the mass of the Higgs boson, which is given by the integral



120 4.10. A primer on the minimal supersymmetric standard model

of (4.71), and is approximately

δm2
Hu ≈ −

3y2
t

8π2
(m2

t̃1
+m2

t̃2
) ln

 √
2ΛU√

m2
t̃1

+m2
t̃2

 , (4.77)

where it was assumed that the stau masses give the dominant contributions, due to the

condition (4.76). The value of the unification scale is still of the order of 1016 GeV. If there-

fore the mass shift due to the leading quantum corrections should be small, this yields

approximately that the geometric average of the stau masses should not be larger than

about 150 GeV. Otherwise the quantum corrections alone would produce a fine-tuning

problem. This condition is, however, in violation of the bound of 500 GeV necessary to

shift the h0 Higgs boson out of the current experimental reach. Therefore, it cannot be per-

mitted. Shifting then the stau masses to the required value yields a mass correction large

compared to the Z-mass, actually, it becomes exponentially worse due to the logarithmic

dependence. Thus a fine-tuning problem arises. Whether this constitutes a problem, or

just an aesthetic displeasure, is not only a question of personal taste. It also is a challenge

to understand whether nature prefers for what reasons theories with or without finetuning.

4.10.3.3 Mass spectrum

So far, the masses of the Higgs bosons and the electroweak bosons have been calculated.

The gluons also remain massless, in accordance with observation. The remaining mass

spectrum for the minimal supersymmetric standard model at tree-level will be discussed

in the following.

The first particles are the remaining ones from the standard model. These have to

acquire, of course, their observed masses. Due to the parity violating nature of the weak

interactions, these masses can effectively arise only due to the Yukawa interaction with the

Higgs particles. In unitary gauge, these couplings can be split into a contribution which

contains only the Higgs vacuum expectation values

yχχH = yχχ〈H〉+ yχχ(H − 〈h〉)
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and behave therefore as mass terms. Thus, the masses are given by

muct = yuct〈Hu〉 = yuct

√
2mW sin β

g′

mdsb = ydsb〈Hd〉 = ydsb

√
2mW cos β

g′

meµτ = yeµτ 〈Hd〉 = yeµτ

√
2mW cos β

g′

mνeνµντ = yνeνµντ 〈Hu〉 = yνeνµντ

√
2mW sin β

g′
.

The twelve Yukawa couplings are all free parameters of the minimal supersymmetric stan-

dard model. As is visible, it strongly depends on the value of β, whether these couplings

are strong, preventing perturbative descriptions, or weak enough that at sufficiently high

energies perturbation theory is adequate.

The situation for the gluinos is actually simpler. Since the color symmetry is unbroken,

no other fermions exist with the quantum numbers of the gluinos, and they do not couple

to the parity violating weak interactions. Thus, the only contribution comes from the

explicit supersymmetry breaking term

−1

2
M1g̃g̃ −

1

2
M∗

1 g̃
†g̃†.

The mass parameter can be complex in general, but the corresponding tree-level mass will

just be its absolute value. Therefore, the value of the mass of the gluinos is unconstrained

in the minimal supersymmetric standard model, but by virtue of relation (4.70) it is tied

to the masses of the other gauginos in case of unification.

The situation becomes more complicated for the so-called neutralinos, the super-

partners of W 0 and B, the wino W̃ 0 and the bino B̃. These fermions are electrically

uncharged, and can both mix, similar to their standard-model versions. Furthermore,

the neutral superpartners of the two Higgs fields, the higgsinos H̃0
d and H̃0

u are both also

fermionic and uncharged. Hence, these can mix with the binos and the winos as well. The

gauge eigenstate is therefore

G̃0T = (B̃, W̃ 0, H̃0
d , H̃

0
u).

The most direct mixing is due to the interaction mediated by the weak F -boson in the

Wess-Zumino-like contribution to the superpotential, which leads to the contributions

1

2
µ(H̃0

uH̃
0
d + H̃0

dH̃
0
u) +

1

2
µ∗(H̃0†

u H̃
0†
d + H̃0†

d H̃
0†
u ).
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Furthermore, the weak gauge symmetry and supersymmetry demand the existence of

couplings of the generic type

−
√

2g′HuH̃uW̃ = −
√

2g′(Hu + 〈Hu〉)H̃uW̃ (4.78)

to ensure supersymmetry in the super Yang-Mills part of the weak symmetry. If the

Higgs fields condense, these yield a mixing term proportional to the condensates. The

condensate is uncharged, and therefore this mixing can only combine two neutral fields or

two of opposite charge. Hence, only the fields H̃0
d and H̃0

u will mix with the neutral wino

and the bino by this mechanism. Finally, the wino and the bino can have masses due to

the explicit supersymmetry breaking, similar to the gluinos,

−1

2
M2W̃

0W̃ 0 − 1

2
M3B̃B̃ + h.c..

No such contribution exist for the higgsinos, as it is not possible to write down such a term

while preserving explicitly the weak gauge symmetry. Thus, all four fields mix. The mass

eigenstates are denoted by χ̃i with i = 1, ..., 4, and are called neutralinos. These particles

interact only weakly, like the neutrinos, and hence their name. Since the a-priori unknown

parameters M2, M3 and µ, as well as β, enter their mass matrix, their masses cannot

be predicted. However, if any of the neutralinos would be the lightest supersymmetric

particles, then by virtue of R-parity conservation it would be stable. Since it interacts

so weakly, it would be a perfect candidate for dark matter, which cannot be provided by

neutrinos since their mass is too small. In fact, at least for some range of parameters

the masses of the neutralinos would be such that they are perfectly compatible with the

properties required for cold, non-baryonic, dark matter.

A similar situation arises for the charged counterpart of the neutralinos, the charginos.

These stem from the mixing of the charged higgsinos and the charged winos. Since the

positively and negatively charged particles cannot mix, two doublets appear instead of one

quartet,

G̃+ =

(
W̃+

H̃+
u

)

G̃− =

(
W̃−

H̃−d

)
(4.79)

where the charged winos are linear combinations W̃ 1 ± iW̃ 2 of the off-diagonal winos.

Similar as in the case of the neutralinos, there is a contribution from the weak F -term
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and the condensation of the neutral Higgs fields from the super Yang-Mills action, which

mixes both components of each doublet. Performing the algebra leads to masses of the

charginos

|mχ̃±i
|2 =

1

2

(
M2

2 + |µ|2 + 2m2
W )∓

√
(M2

2 + |µ|2 + 2m2
W )2 − 4|µM2 −m2

W sin(2β)|2
)

where the upper and lower sign refer to the two members of each charged doublet. There-

fore there is always one pair of oppositely charged charginos having the same mass, as

would be expected from CPT.

Thus remains the largest group of additional particles, the sfermion superpartners of

the fermionic standard model particles. These contain the squarks and sleptons. For-

tunately, due to the presence of the strong charge, squarks and sleptons will not mix.

However, the three families within each sector could in principle mix. Since such mixings

would have to be very small to be not in conflict with flavor changing currents observed

in experiments, these will be neglected20. Furthermore, compared to the scale of the su-

persymmetric parameters, only the Yukawa couplings of the third family can give any

significant contribution, and will only be considered in this case. Therefore, the first two

and the third family will be treated in turns.

The masses are in the end driven by the common scale at unification, m0, and then

various contributions from running. Most remarkable, the squark masses will tend to be

larger than the slepton masses. Also, the weak isospin splittings give a measure of β as

m2
d̃L
−m2

ũL
= m2

ẽL
−m2

ν̃e = −m2
W cos(2β),

and in the same manner for the second family. This constraint could be used to experimen-

tally verify and/or predict parameters of the theory. The present experimental constraints

favor a rather large β, such that the down-type sfermions would be heavier.

The situation for the third family is similar, though the additional Yukawa coupling

tends to drive the masses to smaller values than for the first two families. In fact, in most

scenarios the stop will be the lightest of the squarks, and in some regions of the parameter

space the mass would be driven to negative values and thus initiate the breaking of color

symmetry, excluding these values for the parameters. The situation for the sbottom, stau,

and stau sneutrino is similar, just that all parameters are exchanged for their equivalent of

that type. Because their Yuakaw couplings are smaller the masses of these super-partners

will be larger than the ones of the stops.
20In fact, the absence of strong mixing sets strong limits on the properties of the mass matrices in the

squark and slepton sector. Since these are only parameters in the MSSM, this raises the questions why the

should be so specifically shaped. It is often assumed that whatever mechanism drives the flavor physics

of the standard model will also be responsible for this feature of the MSSM.
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Technicolor

Technicolor is the first prototype theory for compositness approaches. The idea is that

the hierarchy problem associated with the mass of the Higgs boson can be circumvented if

the Higgs boson is not an elementary particle but a composite object. If its constituents

in turn are made of particles with masses which do not suffer from a hierarchy problem,

in particular fermions which have masses only affected logarithmically by perturbative

quantum corrections, then the hierarchy problem simply would not exist.

However, such models require that interactions are non-perturbative such that the

Higgs can be a bound state. It would, as atoms, appear as an elementary particle only on

energy scales significantly below the binding energy.

Such a construction is actually rather intuitive, and even realized in the standard model

already. In QCD, bound states of quarks occur which actually have the same quantum

numbers as the Higgs, e. g. the σ meson or the ηc/b mesons. In fact, already within

QCD condensates with the quantum numbers of the Higgs condensate can be constructed,

which induce the breaking of the electroweak symmetry. Only because the size of such

condensates is then also given by the hadronic scale, and thus of order tens to hundreds of

MeV, this is not sufficient to provide quantitatively for the observed electroweak symmetry

breaking. Qualitatively it is the case.

Thus, the simplest extension is to postulate a second, QCD-like theory with typical

energy scales in the TeV range with bound states which provide a composite Higgs, in

addition to the standard model. Such theories are called technicolor theories.

Technicolor theories are also prototype theories for generic new strong interactions

at higher energy scales, since at low energies such theories often differ from technicolor

theories only by minor changes in the spectrum and concerning interaction strengths. Also,

most of these suffer from similar problems as technicolor. Studying technicolor is therefore

providing rather generic insight into standard model extensions with strongly interacting

124
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gauge interactions above the electroweak scale.

5.1 Simple technicolor

5.1.1 General setup

The simplest version of technicolor is indeed just an up-scaled version of QCD, though

with a more general gauge group SU(NT ), with Nf additional fermions Q, the techni-

quarks. The techniquarks are massless at tree-level. They are placed in the fundamental

representation of SU(NT ), and there are, in addition, the N2
T − 1 gauge bosons, called

technigluons. Therefore, the total gauge group of the such extended standard model is

SU(NT )×SU(3)×SU(2)×U(1). The techniquarks harbor, similar to the ordinary quarks,

a chiral symmetry. In such a theory the elementary particles include, besides the techni-

particles, all the fermions and gauge bosons of the standard model, but no Higgs.

Such a theory then looks very much like QCD, though may have a different number

of colors. Therefore, its dynamics are ought to be quite similar. In particular, technicolor

confines, and techniquarks can only be observed bound in technihadrons. This dynamics

will therefore be determined by a typical scale. In QCD, this scale is ΛQCD, which is

of order 1 GeV. This number is an independent parameter of the theory, and essentially

replaces the coupling constant gs of the elementary theory by dimensional transmutation.

Now, in technicolor therefore there exists also such a scale ΛT , the technicolor scale. To

be of any practical use, it must be of the same size as the electroweak scale, otherwise

the hierarchy problem will emerge again, though possibly less severe as a little hierarchy

problem. Assume then that this scale is of the size 1 TeV instead of 1 GeV like in QCD.

Then the dynamics of the technicolor theory would be the same as that of QCD, though

at a much higher energy scale, and possibly with a different number of colors and flavors.

Besides the technimesons, which will play an important role in the electroweak sector

as discussed below, there are also technibaryons. If they are fermionic, i. e. if NT is odd,

the lightest one can be stable, similar to the proton, and may thus exist as a remnant

particle, and in particular is a dark matter candidate. However, in general these particles

would be too strongly interacting, at least by quantum loop effects, than to be undetected

by now. Hence, their decay into standard model particle is desirable, requiring a violation

of the associated technibaryon number. If the number of technicolors NT is even, the

technibaryons are bosons, and could in that case oscillate by mixing into mesonic states

of the standard model, and would therefore decay also´ by such channels.

Another similarity with QCD is even more important. The techniquarks are so far
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massless. As in QCD, the chiral symmetry of the techniquarks is assumed to be broken

spontaneously by the dynamics of the technigluons. The associated condensate will have

a size of about ΛT , and will give the techniquarks an effective constituent mass of the

order of ΛT as well. Thus, technihadrons will have in general masses of multiple times the

constituent techniquark mass. The only exception are the arising number of Goldstone

bosons, similar to the pions and other pseudoscalar mesons of QCD. How many such

Goldstone bosons appear depends on the number of techniflavors. In the present setup,

their number will be N2
f − 1. As in QCD, these will be pseudoscalar bound states of a

techniquark Q and an anti-techniquark Q̄. If the techniquarks have the same weak charges

and electromagnetic charges as the ordinary quarks, these technipions will just have the

correct quantum numbers such that they can become the longitudinal components of the

weak isospin W -bosons1, instead of the would-be Goldstone bosons of the Higgs mecha-

nism. Mixing with the hypercharge interaction will then lead as usual to the electroweak

interactions. The Higgs is actually not one of the Goldstone bosons, but will be a scalar

meson, the analogue of the σ meson of QCD. Thus, it is expected to be more massive, but

also more unstable than the Goldstone mesons.

Note that for massless techniquarks the Goldstone bosons will be exactly massless.

This can give rise to problems, as discussed below. However, it is not possible to give

the techniquarks an explicit mass, because they have to be coupled chirally to the weak

isospin. Thus, this remains a problem for Nf > 2 in such simple technicolor theories, and

how to resolve it will be discussed after illustrating other problems of this simplest setup.

The actual quantitative values for the various scales introduced can be estimated if

the numbers of QCD are just scaled up naively to ΛT , and the scaling to the number of

technicolors NT is done using the large-NT approximation. The basic relation relates the

electroweak condensate v ≈ 246 GeV with the decay constant of the technipion. The later

can then be related to the relation of the technicolor scale and the QCD scale with the

pion decay constant in QCD fQCD, which is measured to be about 92 MeV,

v = 〈Q̄LQR〉
1
3 = fT =

√
NT

3

ΛT

ΛQCD

fQCD,

with the technichiral condensate 〈Q̄LQR〉. Solving for the technicolor scale yields

ΛT ≈
√

3

NT

fT
fQCD

ΛQCD ≈
√

3

NT

0.7 TeV.

in the MS scheme with a ΛQCD of about 250 MeV. Due to the breaking of the chiral

symmetry, the effective mass of the techniquarks at lower energies is approximately also

1Which already mix with the original pions, as pointed out before.
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given by

mQ(0) ≈ v.

Though these are rather small masses, the techniquarks are not observable alone, similar

to quarks at low energies. Thus, their direct detection is complicated by bound states,

and their respective masses rather sets the scale for observation.

The mass of the Goldstone technipion is about

MπT ≈
√
Nf

2
v,

and thus in the right region for them to be components of the W and Z bosons, if the

number of flavors is not too large. Of course, QCD-like dynamics imply more bound states.

Thus, masses of the low lying non-Goldstone bosons would start at about 2v & 500 GeV,

plus binding effects. Assuming a QCD-like hierarchy, the next lightest state would be the

techniρ, which would have a mass

MρT ≈
√

3

NT

vMρ

fQCD

≈ 3.3 TeV

N
1
2
T

,

and therefore would be sufficiently heavy to escape detection so far.

After outlining these general properties of simple technicolor, it is worthwhile to in-

vestigate possible realization, and using them to discuss shortcomings of this type of

technicolor. This will force one to consider other realizations of the technicolor idea.

5.1.2 Susskind-Weinberg-Technicolor

The simplest (and ruled out2) realization of the general setup is given by the Susskind-

Weinberg version of technicolor. These theories have as a gauge group SU(NT )×SU(3)

×SU(2)×U(1). There are 2Nf flavors in the fundamental representation of SU(NT ), each

flavor being either a member of a left-handed weak isospin doublet or a right-handed weak

isospin singlet of techniquarks, in analogy to the fermions of the standard model. Despite

their name, the techniquarks are chosen singlets under color. Their weak hypercharge

is then determined by requiring to have an anomaly-free theory. This requires that the

electric charges of the flavors are 1/2 and −1/2, for the +1/2 and −1/2 weak isospin

charges of the weak isospin doublet, respectively.

For NT = 4 and Nf = 2 this gives with the above formulas a techniscale ΛT of

about 600 GeV. Alternatively, by embedding this theory in a minimal GUT, a value of the

2Note that in the context of extended technicolor such theories for NT = 3 and 2Nf between 6 and 12

become interesting again, as will be discussed in section 5.3.2.1.
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electroweak scale of 270 GeV can be obtained. Both numbers are in rather good agreement

with the expectations.

The techniquarks will then acquire an effective mass of about 260 GeV, already in

disagreement with current observational limits. Furthermore, the techniquarks can form

technimesons with about twice this mass, and technibaryons, for NT = 4 containing four

techniquarks, and thus of a mass of about 1-2 TeV. However, these technibaryons would be

(almost) stable, since in such a theory techniquark number is in the same way conserved as

ordinary baryon (or quark) number in the standard model. At first, this may seem like a

candidate for dark matter, but since it is potentially both weakly and electromagnetically

charged, it cannot fulfill the role of dark matter, and is actually rather a problem for the

consistency with cosmological observations. Extended technicolor introduced later will

make it again unstable, and therefore remove this burden from technicolor. In fact, once

unstable, it will have a spectacular decay pattern, generating heavy quarks abundantly.

Arranging the numbers differently for clarity, take only Nf = 2. The chiral symmetry of

the techniquarks will then be the exact global chiral group SU(2)L×SU(2)R×U(1)V×U(1)A.

Like in QCD, the techniquark condense and break chiral symmetry, providing the massless

techniquarks with mass. This will break the chiral group down to SU(2)×U(1)V×U(1)A.

This will be accompanied by massless Goldstone bosons, the technipions. If the broken

SU(2) subgroup and the U(1)V is actually gauged to become the product group of the

electroweak sector of the standard model, the technipions will have the correct charge

structure to become the longitudinal components of the W± and the Z bosons. As a

consequence, the scattering of W± and Z bosons will become dominated by the strong

techniforce at energies above ΛT , one of the most important signatures for technicolor.

The remaining symmetry part, U(1)A, is actually anomalous, as in QCD, and therefore

is not present on the quantum level. As a consequence, the techniη′ will also be anoma-

lously heavy, as the η′ of QCD, about 1-2 TeV by upscaling. It is therefore also safe from

detection.

More phenomenological interesting are the analogues of the QCD ρ-mesons, the techniρs.

Its mass in this case is expected to be about 1-2 TeV, and should be the first new compos-

ite particle, which is sufficiently stable and distinct to be detectable as an unambiguous

signal for technicolor. The only potentially lighter particle is the technicolor version of

the QCD σ-meson. However, its quantum numbers are that of the Higgs, and thus cannot

easily be distinguished from a standard model Higgs. Furthermore, if faithfully upscaled

from QCD, its widths will be so large that it will be essentially not visible. Since the width

of the actually observed Higgs is small, this needs to be avoided.

The situation becomes even more awkward when including a larger number of tech-
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niflavors to obtain better agreement with the electroweak scale. As in QCD, the larger

chiral symmetry group SU(2Nf )×SU(2Nf ) will be broken down to SU(2Nf ), thus there are

N2
f −1 Goldstone bosons. Of these N2

f /4−1 turn out to be uncharged under the standard

model forces, and thus interact weakly. They therefore also do not acquire any mass, and

are called therefore techniaxions. Unfortunately, though with them comes an additional

source of CP violation, they are ultimately incompatible with cosmological observations.

Even more problematic, the electromagnetically charged technipions not absorbed by the

W± are massless up to standard model corrections, which amount to about 6 GeV. Such

particles are experimentally ruled out.

5.1.3 Farhi-Susskind-Technicolor

As pointed out, this simplest versions of technicolor have a number of shortcomings. A bit

more useful are the more general Farhi-Susskind versions of technicolor. In this a fourth

generation is added to the standard model, though having possibly a different electric

charge structure within the ranges permitted by anomaly freedom. Furthermore, this

additional generation is gauged under the technicolor gauge group SU(NT ).

As a consequence, the associated chiral symmetry group is SU(8)×SU(8)×U(1)V×U(1)A.

Since with respect to the techniforce all the technifermions are equal, all will condense,

breaking the chiral group down to SU(8)×U(1), with the anomaly-mediated breaking of

U(1)A, and including the gauged subgroup SU(2)×U(1) of the electroweak sector. This

gives for each of the four flavors, technitop, technibottom, technielectron and technineu-

trino a chiral condensate and in total 63 Goldstone bosons, and one massive one due to

the axial anomaly. The four condensates can then act together to give the electroweak

condensate, making a lower mass of about roughly 150 GeV for each possible.

Classifying the Goldstone bosons, there are again four excitations having the quantum

numbers of the ordinary Higgs field, and thus three of them provide the longitudinal

degrees of freedom of the W± and Z bosons, and one appears similar to the standard

model Higgs, though with a potentially large mass due to the axial anomaly. For example,

the Goldstone boson giving the Z boson’s longitudinal component, the neutral technipion,

is given by the combination

t̄iT t
i
T − b̄iT biT + ν̄TνT − ēT eT ,

where the index on the technitop and the technibottom correspond to their QCD color

charge.

Besides the one appearing like the standard model Higgs, there are two more neutral

electrically ones, and two electrically charged ones. The remaining ones have weak and/or
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color charges. Some of them are expected to be almost massless, making the model

not viable in its current form. Depending on the assignment of the electric charge to

the technifermions, these particles can be either stable or decay. However, stable colored

technigoldstone bosons would be expected to bind to ordinary nuclear matter, thus setting

strong limits on their existence. However, the quantum numbers of these objects are the

same as the ones of leptoquarks in GUTs, making a distinction, if found, complicated.

Similarly, technivectormesons will have the same charge structure as gluons, but have in

general masses of the order of a few hundred GeV. They will therefore appear in radiative

corrections of strong processes, and can thus be accessed at such energies in principle,

though the QCD background may make this in practice complicated.

However, such simple setups run in general into problems with precision tests of elec-

troweak observables, like the S, T , and U parameters. In particular, such theories permit

that the techniquarks would appear in intermediate states. Since the flavors are mixed

in the standard model, a further flavor would permit to enhance flavor-changing neutral

currents, leading to a much too large splitting of the mass of the short-lived and long-lived

kaons, if the technicolor scale would not be too high to provide electroweak symmetry

breaking. Another problem is the top mass, which is almost of the same size as the tech-

nicolor condensate. Thus, top quarks should be sensitive to the composite structure of the

Higgs to an extent which is incompatible with current experimental constraints. Also, if

the techniquarks carry a conserved technibaryonic quantum number, this yields problems

with cosmological observations.

All of these problems appear predominantly because of the assumption that technicolor

is just QCD at a higher scale. Therefore, most attempts to remedy these problems aim at

distorting these similarities.

5.2 Extending technicolor

There are several proposals how to deal with the problems introduced by adding a simple

technicolor sector to the standard model, without affecting the virtues of such an extension.

The most successful so far is extended technicolor, though here also some other proposals

will be discussed.

5.2.1 Extended technicolor and standard model fermion masses

There is another reason that the simplest technicolor models are not sufficient. This is

that not only electroweak symmetry is broken by the Higgs, but also the fermion masses

are generated by Yukawa couplings to the Higgs. To obtain the different masses of the
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standard-model fermions requires the condensate of the techniquarks to be coupled dif-

ferently to all the standard model fermions. This is usually done by adding further

massive gauge bosons with mass of a second scale ΛETC > ΛT , the extended techni-

color scale, and coupled also to the standard model fermions. By this also the flavor

group of the standard model becomes gauged in the extended technicolor gauge group,

say, SU(≥6)F×SU(NT )×SU(3)×SU(2)×U(1). In general, this is achieved, very similar to

GUTs, by having a large extended technicolor (ETC) master gauge group, which contains

all the other gauge groups, including the technicolor gauge group. All fermions, standard

model ones and technifermions alike, are then embedded in representations of this master

gauge group.

The breaking of the flavor group provides then a mechanism for the generation of

the fermion mass, by their coupling to the now heavy flavor gauge bosons. However,

despite giving a mechanism how the standard model fermion masses are generated, it is

still a problem how to generate their relative sizes without the introduction of either new

parameters or new fields. Note that this also explicitly breaks the chiral symmetry of QCD

by fermion masses, as in the standard model.

Another problem is that the resulting effective couplings have to be very specific such

that the hierarchy of fermion masses is obtained. E. g., quarks of mass a few GeV require

a ΛETC of 2 TeV, while the top quark would rather require much less.

Nonetheless, such extended technicolor models are an important building block for

promising technicolor theories, and therefore will be discussed here.

In general, the setting is to start with the master gauge group of extended technicolor

G. It is broken by strong interactions at some scale ΛETC into the gauge group of one of the

technicolor theories described previously. Then, at some lower scale ΛTC, the technicolor

interactions become strong, leading to electroweak symmetry breaking as before. To avoid

the hierarchy problem, it is often convenient not to make a single step from extended

technicolor to technicolor, but have one or more intermediate steps, which in a natural

way generate a hierarchy of scales. This is also known as a tumbling gauge theory scenario.

The initial driving mechanism of the first breaking is not necessarily specified. A possibility

would be that the master gauge group is part of a supersymmetric gauge theory, which

provides naturally a hierarchy-protected Higgs mechanism, as an initial starting point.

A variation on this theme are triggering models. In this case the fact that QCD breaks

the electroweak symmetry is used to plant a seed of breaking also an extended technicolor

gauge group. This seed is then amplified by a suitable arrangement of interactions such

that the right hierarchy of scales emerge. This can also be done with other triggers than

QCD.
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The extended technicolor gauge bosons, which have become massive on the order of

ΛETC still interact with all particles. In particular, they mediate four-fermion couplings

purely between techniparticles, between ordinary standard model particles and technipar-

ticles, and between standard model particles. Similarly to the electroweak interactions,

they are perceived at the scale ΛTC and below as effective four-fermion couplings. Since

the technifermions condense, the mixed couplings have a contribution which couple the

standard-model particles to the technicolor condensate, schematically

g2T̄ γµTD
µν
ETC(p2)q̄γνq

p2�ΛETC→ g2

M2
ETC

T̄ γµT q̄γ
µq

p2�ΛT→ g2〈T̄ T 〉
M2

ETC

q̄q,

with extended technicolor coupling constant g, the mass of the extended technigluonMETC,

and the techni fermion condensate 〈T̄ T 〉. Thus the techniquark condensate indeed also

generates the masses of the standard model fermions on top of the W and Z boson masses.

The size of the quark masses is given approximately by

mq ≈ β
NTΛ3

TC

Λ2
ETC

(5.1)

where the factor β depends on the structure of the theory. For β ≈ 1, a ’natural’ size, this

yields an upper limit on ΛETC from the masses of the light quarks, to be about not much

more than an order of magnitude larger than ΛTC, and this only if ΛTC is not too large

itself. On the other hand, if ΛETC should not be too large, this is an upper bound for the

quark masses, which can be produced. In fact, if ΛTC is not much smaller than one to two

orders of magnitude than ΛETC, and NT is not too large, reproducing the bottom quark

mass, and much less the top quark mass, is hardly possible.

An advantage of such an interaction is that, depending on the detailed structure of the

interactions, this can provide some of the mixing of the standard model CKM matrices.

However, the same holds for the effective four-techniquark coupling, coupling states of

two techniquarks also to the techniquark condensate. This gives rise to larger masses

for the technigoldstone bosons, and in particular of techniaxions. Unfortunately, the size

of this effect is essentially given by the ratio of the extended technicolor scale and the

technicolor scale. If both scales are not very far apart, the effect is unfortunately not large

enough to give those particles too light in technicolor theories a sufficiently large mass to

be compatible with experimental bounds. Increasing the extended technicolor scale is not

a solution, since this spoils the masses of the light standard model fermions. A solution

to this will be the walking technicolor theories discussed in section 5.3.

A further downside is that also a coupling between four standard model fermions is

induced, which contributes to, e. g., flavor-changing neutral currents. As a result, e. g.,
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the mass difference between the two neutral kaon states K0
S and K0

L, δm2
K , is modified by

ETC contributions to
δm2

K

m2
K

→ δm2
K

m2
K

+ γ
f 2
Km

2
K

Λ2
ETC

.

Herein is γ the effective coupling between standard model quarks. If assumed to be of the

same size as the Cabibbo angle, which mediates the mixing in the standard model and is

of order 10−2, ΛETC has to be of order 103 TeV for this to be compatible with experiment.

This substantially exceeds the expected size. It is one of the persisting challenges of

extended technicolor theories to provide at the same time the mass of the top quark

without having such currents to be so large that they are in conflict with experiments.

Actually, this problem also affects other beyond-the-standard-model theories, most notably

supersymmetry. It thus makes evident that one of the greatest challenges is to understand

the flavor structure of the standard model.

A further problem is that such an interaction yields corrections to quantities like the

coupling of the Z boson: If the Z boson is first converted into a techniquark pair, and

then these convert via extended technigluon exchange into ordinary standard model gauge

bosons, this will yield vertex corrections. These are essentially given by ratios of the

technicolor scale, giving the coupling to the Z boson of the techniquarks, and the ex-

tended technicolor scale, relevant for the conversion ratio of techniquarks to standard

model fermions. Since this ratio is not too large, the corrections are significant, and

indeed ruled out.

Thus, it is a challenge to construct extended-technicolor models which are consistent

with observations.

5.2.2 Techni-GIM

Techni-GIM models try to solve the problem of flavor-changing neutral currents by im-

itating the Glashow-Illiopoulos-Maiani (GIM) mechanism of the standard model. This

mechanism has been proposed to explain why no strangeness-changing neutral currents

have been observed. Such currents would exist if there would be only three quarks, up,

down, and strange, with the strange quark being a singlet under the weak interactions.

The GIM mechanism shows that if there is a fourth quark, the charm quark, promoting the

strange quark to being its weak isospin-doublet partner, interference effects will remove

such currents. This also requires that the mixing of down and strange quarks is only due

to the Cabibbo angle. Essentially that boils down to the fact that diagrams where initial

state fermion lines and final state fermion lines are connected vanish (up to corrections

proportional to the mass splittings) due to the mixing, and the only possibility is by an
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intermediate state with two weak gauge bosons. That is, e. g., the reason why the decay

of K+ to π+ is suppressed compared to the decay into π0.

Techni-GIM models capitalize on this idea by adjusting the particle content such that

at tree-level no flavor-changing currents can occur. Radiative corrections can then be

arranged such that they are not in conflict with experimental observations.

This is achieved by introducing instead of one common extended technicolor gauge

group three, one for each weak multiplet. I. e., there is one extended technicolor gauge

group coupled to the three generations of left-handed doublets, and one each for the three

generations of two pairs of right-handed singlets. Thus, flavor-changing neutral currents

are avoided, since they couple left-handed fermions and right-handed fermions differently.

The price to be paid is a proliferation of gauge-groups. Furthermore, since the gauge

groups are the same for both quarks and leptons, the gauge bosons act as leptoquarks.

However, the effects can be adjusted such that, e. g., proton decay rates are not in violation

of experimental bounds. Unfortunately, the relation (5.1) still holds, indicating that it is

again a serious problem to obtain heavy quarks.

5.2.3 Non-commuting extended technicolor

Non-commuting extended technicolor is the first model to play with a recurring idea to

solve the challenges imposed by the flavor structure of the standard model: To treat the

third generation of standard model fermions differently. In this case the non-commuting

implies that the third generation is actually charged under the extended technicolor gauge

group but not under the ordinary weak isospin gauge group. By breaking the extended

technicolor gauge group first down to a SU(2) group for the third generation, a sequence

of breakings is generated which finally ends up with the appropriate structure for the

standard model supplemented by some technicolor interaction to break the electroweak

symmetry by the formation of a chiral condensate.

The sequence for the extended technicolor gauge group G is then

SU(3)c × SU(NT )×G× SU(2)1+2 × U(1)
f→ SU(3)c × SU(NT )× SU(2)3 × SU(2)1+2 × U(1)Y
u→ SU(3)c × SU(NT )× SU(2)1+2+3 × U(1)Y
v→ SU(3)c × SU(NT )× U(1)em

where f , u, and v denote the condensates which hide the corresponding symmetries. The

indices on the SU(2) groups denote which generations are charged under the corresponding

gauge group. It then depends on the quantum numbers of these condensates how much of
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them enters in the hiding of the various groups, and therefore to which extent the mass

generation of the individual standard model fermions is dominated by which interaction.

It could either be that the third generation now indeed obtains the bulk of its mass from

the electroweak symmetry breaking effect, but it is also possible to arrange it that this

contribution is minor.

Irrespective of the details, in the end such a structure can be arranged such that the

standard model fermion masses come out with roughly the right size. It is even possible

to accommodate the two orders difference of magnitude of the τ and the top, despite that

they have to be both charged under the ETC gauge group to provide an anomaly-free

theory.

A distinct prediction of this theory is that by breaking SU(2)3×SU(2)1+2 to SU(2)1+2+3

the three gauge bosons associated with the broken gauge group become massive with

masses of the order of u, just above the electroweak scale v. These W ′ and Z ′ gauge bosons,

since originally mediating a weak-like force between the third generation members, should

have similar properties than the electroweak W and Z bosons. This gives quite unique

signatures to be searched for, in particular in the form of effective four-point couplings of

standard model fermions in weak channels. The lower mass limits for them are currently

above 500 GeV, giving constraints on u. However, some related models like top-flavor

models, and other theories having a further weakly interacting gauge group at the TeV

scale, can also provide such heavy copies of the W and Z bosons. Indeed, nowadays

generically new neutral vector bosons are denoted by Z ′, unless qualitatively very different

for the Z in some particular model. In fact, even the techniρ would appear like such a Z ′.

An extension of this idea (tumbling technicolor) plays with the possibility of a sequence

of breaking theories, and each of the corresponding condensates is associated with one or

more of the fermion masses, generating their hierarchy naturally.

5.3 Walking technicolor

5.3.1 Generic properties

The basic reason why a similarity of technicolor to QCD is problematic is that in QCD

almost all non-trivial dynamics is concentrated in a narrow window around ΛQCD. That is

because the running coupling of QCD changes rather quickly from strong to weak over a

very narrow range of energies. In the electroweak sector, however, the dynamics is spread

out over a much larger range of energy scales in relation to its fundamental scale v, since

both the masses of the fermions and electroweak symmetry breaking must occur. Thus,
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a viable realization of the technicolor idea of strong dynamics paired with electroweak

phenomenology must reflect the slow evolution of the electroweak physics. This is the aim

of walking technicolor by replacing the fast running QCD evolution with a much slower,

walking, behavior.

As a consequence, such a theory has more intrinsic scales than QCD. QCD is essentially

only characterized by the one scale when it becomes strong. A walking theory can have up

to three scales. Assuming the walking theory to be also asymptotically free, there exists

a scale where it changes from being a theory acting strongly enough to break electroweak

symmetry to an almost free theory. A second scale must occur at low energy when it stops

walking, and the third scale is the one where it becomes sufficiently strong to confine

techniquarks. Of course, the latter two may coincide, but the first two may not, or the

theory would no longer be walking anymore.

To implement such an idea, it is required that the running coupling becomes weak

much slower. Since the coupling is given implicitly by the β function by

t =

∫ g(t)

g

dg′

β(g′)
,

where g = g(ΛT ) is some chosen initial conditions, and t = ln(µ/ΛT ). The β function to

three-loop order in a QCD-like setup is given by

β(g) = −β0
g3

16π2
− β1

g5

(16π2)2
− β2

g7

(16π2)3
+O(g9)

β0 =
11

3
CA −

4

3
NfTR (5.2)

β1 =
34

3
C2
A −

20

3
CATRNf − 4CRTRNf (5.3)

β2 =
2857

54
C3
A −

1415

27
C2
ANfTR +

158

27
CA(NfTR)2

−205

9
CACFNfTR +

44

9
CF (NfTR)2 + 2(CF )2NfTR. (5.4)

Here, Nf is the number of flavors in the fundamental representation, and TR is the Dynkin

index of the group. If the function β is very close to zero for some value of g, g(t) becomes

a very slowly varying function of t when it reaches this value.

E. g., to leading order of the β function of technicolor with techniquarks in the fun-

damental representation of an SU(NT ) techni gauge group with gauge coupling gT this

yields

βT = − g3
T

16π2

(
11

3
NT −

8

3
Nf

)
+O(g5)

requiring about Nf ≈ 11NT/8. Note that the standard model charges of these techniquarks

are not relevant at this order. Therefore, by judiciously choosing the gauge group and
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the number of flavors, it is possible to construct a β function giving a theory that has the

desired walking behavior. More possibilities are offered by exchanging the representation of

the techniquarks. Using instead of fundamental techniquarks adjoint techniquarks shows

that for NT = 2 the β function with Nf = 2 already vanishes to two-loop order. The

existence of a zero of the β-function at two loop is known as the Banks-Zak fix-point.

It should be noted that this argumentation can only be superficial: The β function

is dependent on the renormalization scheme, and the running coupling can be defined in

many ways. It is therefore a much more subtle task to indeed show that a theory is walking

than the outline discussed here. However, the general gist of finding a theory with, more

or less, constant interaction strength over a large momentum range remains.

Staying for a moment with the assumption that the coupling and β-function give the

correct picture, the big advantage is that the coupling evolves slowly with energies. There-

fore, the theory stays strong over a wide range of energies. As a consequence, techni bound

states can no longer spoil various electroweak precision measurements. Furthermore, when

arranging this walking behavior for the range between ΛTC and ΛETC, the interaction of

the standard model fermions among each other and mediated by the extended techniglu-

ons will be essentially independent of energy, and thus remain small, while the electroweak

dynamics only given by the technicolor dynamics is staying essentially unaltered. In fact,

what happens is that (5.1) is modified to

mq ≈ γ
NTΛ2

TC

ΛETC

(5.5)

and thus quark masses of order one to two GeV are possible for reasonably chosen values

of ΛTC and ΛETC between one and a few tens of TeV.

A similar replacement also takes place for the masses of the Goldstone boson masses

which are not absorbed by the W and Z bosons. Their mass is now found to be of order

NTΛTC, and thus sufficiently large to be not detectable yet.

A variation on the idea of walking technicolor is given by low-scale technicolor. In this

case the techniquarks necessary to make the theory walk are in different representations of

the gauge group. Since their respective energy scales are thus different, the corresponding

condensates, which add up quadratically to form the electroweak condensate, form at

different energies. These scales are widely separated due to the walking behavior. As a

consequence, techni bound states could have masses of the same size as the top quark,

though being sufficiently weakly coupled to escape detection so far. However, even with

the relation (5.5) this is only marginally sufficient to obtain the bottom quark mass, and

for the top quark an excessively fine-tuned value of γ would be required.
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5.3.2 Realization of walking technicolor theories

Though there are thus still significant problems in realizing a phenomenologically fully

consistent extended walking technicolor theory, it is quite likely that some walking behavior

is an important part for many proposals of strong interactions beyond the standard model.

Thus the classification of such theories, and the construction of viable models with them,

has become an important goal in itself.

5.3.2.1 The conformal window

To identify viable technicolor sectors, it is important to understand the generic properties

of gauge theories with a simple Lie algebra and a number of flavors in one or more repre-

sentations. There are four different types of behaviors, which are expected to occur, and

so far have been the only ones encountered.

If there are no fermions coupled to the theory, the resulting Yang-Mills theory shows

for any Lie algebra the same qualitative behavior of a running theory, with a fast transition

between weak interactions and strong interactions towards small energies.

When fermions are present, the following type of behaviors can emerge, depending on

the number of massless flavors. However, for some Lie algebras some of the cases may

merge, if the behavior evolves too quickly with the number of flavors. Still, if formally

a fractional number of flavors is admitted, the following set of possibilities seems to be

common to all gauge groups.

For a small number of flavors, all these theories remain running, and chiral symmetry

breaks spontaneously. These theories behave essentially like QCD. When adding more

flavors, the theories slow down, and become gradually more and more walking. At a critical

number of flavors, even the walking stops altogether, and the theories become conformal,

i. e., scaleless without chiral symmetry breaking and without any observable dynamics.

This behavior persist for a range of flavors, and this range is also called the conformal

window3. Finally, above a second critical number of flavors, the theories lose asymptotic

freedom, and thus become more strongly coupled the larger the energies. For massive

flavors, the theories follow a similar pattern, but such a theory can never be conformal,

and walking will only be possible in a range where the energies are large compared to the

fermion masses, as the walking behavior is similar to a conformal behavior.

What the precise number of flavors for a given gauge algebra and representation is,

is a highly non-trivial question of current research. For some cases, rather good results

3It is not yet entirely clear, if this conformality is just a behavior persisting from the infrared up to a

(large) scale, or for all energies. This would require an exact solution for the β function to test whether

it is really or only almost constant.
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have been obtained. E. g., for SU(3), the theory is QCD-like up to about 8-9 fundamen-

tal flavors, is walking up to 10-12 flavors, stays conformal up to 16 flavors, and looses

asymptotic freedom for 17 or more flavors. For SU(2) with adjoint fermions, the theory is

possible QCD-like or walking for one flavor, conformal for two flavors, and loses asymptotic

freedom for three or more flavors.

For the purpose of extended technicolor theories, the technicolor sector can be chosen

both as a walking theory or as a conformal theory. In case of a conformal theory, the

coupling to the standard model with its intrinsic mass scale, like the one induced by QCD,

will break the conformality, and make the theory walking.

However, having the right qualitative properties is not guaranteeing that the theory

also exhibits the right quantitative properties. It is therefore, in principle, necessary to

check for each theory whether its quantitative features are phenomenologically viable.

5.3.2.2 An example: Minimal walking technicolor

To give an example, one of the recently studied technicolor theories will be introduced

here. This will be the so-called minimal walking technicolor. The name originates from

the fact that the theory is tuned such as to yield minimal disagreement for the S, T , and

U parameters.

The theory itself consists, besides the standard model, of an SU(2) technicolor sector

with two flavors in the adjoint representation. Thus, the technicolor sector alone is a

conformal theory, but this conformality is broken by the standard model. To avoid an

anomaly, it is also necessary to couple to the theory a fourth generation of standard model

leptons, but no fourth generation of quarks. The additional leptons and the techniquarks

do not necessarily have, again for anomaly reasons, the expected charges for such particles

with respect to the weak and the electromagnetic charges, and all are uncharged under

color.

The detailed charges for the new particles are actually not uniquely fixed, but can be

parametrized by a single parameter. E. g., a possible assignment for the hypercharge for

the techniquarks is 1/2 for the left-handed techniquarks and 1 and 0 for the right-handed

up-type and down-type techniquarks, yielding an electric charge of±1 for the techniquarks.

The right-handed electron has the charge −2 and the right-handed neutrino the charge

−1, while the left-handed ones have the charges of −2 and −1. Thus, these particles can

have quite different signatures as the standard model particles. A more standard-model

selection would be giving the neutrinos a charge of zero, yielding for the new leptons a

charge of −1, as usual. The quarks would then have the conventional charges as well.

Such a theory has an interesting set of bound states. Combining a techniquark and a
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techniantiquark yields technimesons. There are three technipions, which will take the role

of the longitudinal modes of the W s and the Z. The technisigma will then act like a Higgs

particle. Moreover, technibaryons in such a theory are also bosons. Because of a pecu-

liarity of the group structure of SU(2), the fact that SU(2) is pseudo-real, technibaryons

and technimesons can mix. This leads to the interesting possibility that a longitudinally

polarized W or Z can oscillate into a technibaryon. In addition to these bosonic bound

states, there are also fermionic ones, which consists out of a techniquark and a technigluon.

Thus, there will be a plethora of bound states at the TeV scale in such a theory.

Nonetheless, at current energies there will be little observable of this theory by construc-

tion, at least to leading order in perturbation theory and in chiral effective models, which

will not be discussed in detail here. Thus, such a theory is currently still in agreement

with the standard model. However the additional neutrino must be very heavy, compared

to the other neutrinos, at least above the Z mass. Also, for the additional lepton the lower

mass bound is quite high, of the order of a few hundred GeV.

In the current setup of this theory, extended technicolor is not explicitly incorporated.

Rather, a number of four-fermion terms appear with couplings adjusted to reproduce the

standard model phenomenology. In this sense, minimal walking technicolor is currently

an effective theory.

5.4 Topcolor-assisted technicolor

To also cope with the top quark, another proposal for a higgsless standard model, which

alone fails, can be incorporated into the technicolor setup. This is the so-called topcolor

approach.

Originally, to circumvent some of the problems appearing with the plethora of addi-

tional particles introduced by models, one approach, called topcolor, was to let instead a

top quark condensate take the role of the Higgs. To provide such a mechanism, there is

instead of SU(3)c a double group SU(3)1+2×SU(3)3. Only the top-quark is a triplet under

the second gauge group, while all the other quarks are triplets under the first group. If

this product group is broken at some scale to SU(3)c there will be the ordinary gluons

and in addition 8 massive topgluons. If the relative size of the couplings are chosen with

hindsight, the massless SU(3)c gluons will be predominantly from the group SU(3)1+2,

thus not altering the strong interactions significantly for the light quarks, while the ones

connected to the top quark are mostly the massive topgluons.

The interaction with the topgluons then induces only for the top-quark an effective
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four-top coupling involving the topgluon mass Mtopgluon

− g2
t

M2
topgluon

(t̄RtL)(t̄LtR).

Such couplings have been studied in various effective models, and it has been found that

they induce rather generically bound states of t and t̄, if the coupling gt is sufficiently large

at small energies. In particular, it also generically leads to a condensate of the same type,

〈t̄t〉 = vt, and thus an effective Higgs as a bound state of tops with its condensate effectively

obtained from a top condensate. The required size of the coupling is approximately

g2
t =

g2
3Λ2

t

M2
topgluon

>
8π2

Nc

,

where g3 is the topcolor gauge coupling, and Λt is the scale associated with the breaking

of SU(3)1+2×SU(3)2. Since the bound-state has the quantum numbers of the Higgs, it

can also be coupled by a Yukawa coupling to the top, therefore implying that it can also

generate the mass of the top quark itself by the condensation requiring mt = gtvt. However,

in pure topcolor theories vt has to be either too small to make up the entire electroweak

condensate, or gt is too small to induce symmetry breaking, or the top quark mass is too

large. Therefore, top quark condensation can only be an additional mechanism.

An interesting opportunity appears when topcolor is used to supplement technicolor,

leading to so-called top-color assisted technicolor theories. This has the advantage that the

main technicolor sector is not needing so strong interactions that violations of experimental

bounds become inevitable when attempting to cover also the top quark. At the same time,

the combination of topcolor and technicolor condensates is sufficient to produce the large

top quark mass. A drawback is that the bottom quark has to be also charged under

topcolor, being the weak isospin partner of the top quark. Thus, its mass would also

receive the same large contributions, in disagreement with experiments. A possibility to

remove this is by also doubling the weak hypercharge group for the third and the other

generations. Since top and bottom have different weak hypercharges, it is possible to

rearrange the interactions such that the bottom mass is small compared to the top mass,

if the additional weak hypercharge interaction is sufficiently strong. This is called tilting

the vacuum, though it mainly distorts the condensate structure.

However, even models constructed in this way have the problem that the topgluons (or

toppions) are usually too light to get everything else right, and therefore spoil consistency

with the standard model results. To ameliorate this problem, but without introducing yet

another gauge interaction, a possibility is to introduce another quark χ in the topcolor

sector, which has left-handed components charged under SU(3)3 and its right-handed
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contribution charged under SU(3)1+2. A gauge-invariant mass matrix for the top and χ

quark can then be written as

(t̄Lχ̄L)

(
0 gtv

Mtχ Mχχ

)(
tR

χR

)
+ h.c.,

where Mtχ and Mχχ are free parameters. The obtained masses for the mass eigenstates

are thus

m2
i =

1

2

(
M2

tχ +M2
χχ + (gtv)2 ±

√(
M2

tχ +M2
χχ + (gtv)2

)2 − 4g2
t v

2M2
tχ

)
(5.6)

Chosen appropriately, the lighter of the two eigenstates acquires the mass of the top

quark, while the other is much more heavier, and can easily have a mass in the TeV range.

Expanding the masses in this case gives

m2
1 =

g2
t v

2M2
tχ

M2
tχ +M2

χχ + (gtv)2
+O

(
g4
t v

4M4
tχ

M6
χχ

)
m2

2 = M2
tχ +M2

χχ + (gtv)2 +O
(
g2
t v

2M2
tχ

M4
χχ

)
For sufficiently large Mχ, the one state is much lighter, and a suitable top quark mass

can be obtained. In fact, electroweak precision measurements favor a mass of about 4

TeV for Mχ. The corresponding Higgs particle contains now also contributions not only

from technicolor and top quarks, but also from the χ quark, making it generically heavier,

about 1 TeV. This requires tuning to make it again light enough to be compatible with

experiments. Furthermore, this model can be be extended such that technicolor can be

removed, and only a combination of a top and a χ-condensate account for electroweak

symmetry breaking. In fact, the electroweak condensate is now proportional to the inverse

of the sine of the mixing angle squared of the top and the χ quark, permitting an hierarchy

of scales in agreement with experiment.

This mechanism of introducing a second partner state such that by mixing a heavy

and a light particle emerge, is called see-saw. It is often used to provide a doublet with

very different masses by appropriately mixing two similar particles.

The strong interactions among top quarks produces also further bound states, in par-

ticular relatively light toppions and topρs, which will couple strongly to the bound state

which acts as the Higgs. Hence, these will show up strongly at the scale Λt in weak gauge

boson processes.

Such models, of course, leave open the mechanism how to break SU(3)1+2×SU(3)3

to SU(3)c in the first place. Also, the scale Λt has to be of order a few TeV, and can
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therefore introduce a little hierarchy problem. However, this is usually attributed to other

mechanisms at a higher scale. Another feature is that generically also a partner fermion to

the bottom quark is necessary, also to cancel any anomalies. It then requires some further

construction and adequate choice of parameters to prevent the bottom quark to acquire

a mass comparable to the top quark, but it is possible to do so. As in case of the χ, also

this partner will be a weak isospin singlet. The production of these particles would also be

one of the prime signals for topcolor theories, in particular of the partner of the bottom

quark which is generically lighter than the one of the top quark.

5.5 Partial compositness

Note that in general the introduction of additional elementary scalars, which can have

varying technicolor and standard model charges, can remove many or even most of the

problems technicolor theories have. The advantage compared to the Higgs boson of the

standard model, for which to remove technicolor was invented in the first place, is that

these Higgses can have a rather large mass, as they only contribute partly to the elec-

troweak effects, the rest coming from technicolor. Therefore, they can be embedded in a

higher-scale theory, like a supersymmetric one, where their masses become protected by

additional symmetries from a hierarchy problem. This appears to be a valid alternative

in case neither supersymmetric particles nor any other light new particles are found, but

strong interactions in weak gauge boson scattering indicate a strongly interacting theory

as the origin of electroweak symmetry breaking. In particular, even if these scalars do

not condense, they can mediate additional interactions between the technicondensates,

removing several of the large effects incompatible with the experimental observations in

technicolor models, including the top mass. Such modification of technicolor theories usu-

ally go under the name of partial compositness. In case also the scalars interact strongly

such theories are also known as Abbott-Farhi models.

5.6 Dualities

An important concept is dualities. This is the statement that two different theories are

actually showing the same physics, if the involved quantities, fields, symmetries, and

coupling constants, are reinterpreted. In particular, in the limit of a large gauge-group

with at the same time limited matter content it is found that the perturbation series of

different gauge theories coincide. This suggests that in this limit the theories could be

identical. Since the proof is perturbative, this has the status of a conjecture.
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This is particularly interesting as often corrections turn out to be small or negligible

when going to smaller gauge groups. Since such theories are often also related by exchang-

ing a weak coupling for a strong coupling, this implies that theories of different complexity

can be used to describe each other.

This happens especially for strongly constrained theories, e. g. conformal theories. The

best example is the AdS/CFT correspondence, which links a classical supergravity theory

in a high-dimensional space to N = 4 super Yang-Mills theory in the limit of an infinitely

large gauge group at infinitely strong coupling. The later is a non-dynamical theory, as

superconformality forbids non-trivial scattering. Thus, this is not yet useful. It is, however,

conjectured that deforming the theory to become interesting could keep the duality still.

As this links a quantum theory to a (comparatively) simpler classical theory, this is very

useful. It is, however, not yet clear if this duality can be stretched to relevant theories.

In the same direction exist dualities between different theories in the conformal window

of section 5.3.2.1. They are suspected to exist between theories at the upper edge and

lower edge of the conformal window, which relates again strong-coupling theories and

weak-coupling theories. This is not well established, but would be helpful, as the stronger

interacting ones at the lower edge are more interesting for phenomenology.
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Other extensions of the standard

model

In the following briefly some other possibilities to add particles to the standard model are

presented, which still adhere to a four-dimensional space time and ordinary quantum field

theories without gravity. In contrast to the theories discussed in the later chapters, these

require less drastic changes at the electroweak or 1 TeV scale to our current picture of

nature.

6.1 nHDM models

There is a generic trait for many BSM scenarios: The appearance of additional scalar

particles, being them elementary or composite. All of these models have a very similar

low-energy behavior, essentially the standard model with more Higgs-like particles. These

can be either in the same representation as the standard-model Higgs, or also in a different

one. This whole class of models is hence known as n-Higgs models. Particularly important

are models which have copies of the standard model Higgs. These models are called n-

Higgs doublet models (nHDM). Particularly important is the case of n = 2, so-called

2HDM. Of course, nH(D)M models can also be stand-alone models. The extended Higgs

sector can have an enlarged custodial symmetry, which can be partly intact. This allows

for further conserved quantum numbers.

A generic feature of 2HDM is that it is usually possible to have only one of the Higgs

particles condense. This is achieved by a suitable choice of basis in the custodial space and

gauge space, and this basis is called the Higgs basis. However, in this basis usually the

Higgs particles are not eigenstates of the mass operator, and tree-level mixing is possible.

To avoid this requires a different basis, the so-called mass basis, in which the vacuum

145
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expectation value will be distributed over multiple Higgs doublets/multiplets.

The other Higgs particles then form an additional quadruplet, of which one behaves

like a heavier copy of the standard-model Higgs, two are electrically charged, and one

is a pseudoscalar. The additional Higgs particles can partly even be lighter than the

standard-model Higgs, and they can play the roles of axions in some cases. They can also

be arranged to take part in the see-saw mechanism of section 5.4.

The situation quickly escalates if adding further Higgs doublets without having strin-

gent symmetry conditions. Especially, already the 2HDM has five instead of two indepen-

dent parameters in the Higgs sector, showing the strong growth of the parameter-space

dimensionality with more Higgs particles. Special care has also to be taken that these do

not accidentally break other symmetries, especially the electromagnetic gauge symmetry.

Depending on the details of the models, supersymmetric models, technicolor models,

and the not yet discussed extra-dimensional models of chapter 8 can have nH(D)Ms as

low-energy effective theory, as well as many others. In such cases the extended custodial

symmetries and parameters are usually constrained compared to stand-alone nHDMs.

Thus, nHDMs also play an important role in constructing non-minimal effective theories

as a next step beyond the leading low-energy effective theories of section 3.6.6.

6.2 Little Higgs

The idea of the Higgs as an emergent state is also the primary guideline for the construction

of little Higgs models. If the Higgs would be the Nambu-Goldstone boson of a broken global

symmetry, it would naturally be light, in fact even massless if the symmetry-breaking

would be only spontaneous, similar to the pion in QCD. The simplest case would be an

additional global symmetry with some particles charged under it, which becomes broken

at the TeV scale.

However, such a simple model is usually inappropriate, and more refined approaches

are necessary. One of them is the idea of collective symmetry breaking. To become more

formal, such physics is usually described using a non-linear σ-model

L =
1

2
∂µφ∂

µφ+
1

2

(φ∂µφ)(φ∂µφ)

|f 2 − φ2|
. (6.1)

If f is zero, this reduces to a free scalar theory. This Lagrangian can be linearized to the

linear sigma model by the introduction of another field σ to

L =
1

2
∂µΦ∂µΦ− λ

4

(
ΦΦ− µ2

λ

)2

. (6.2)
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where Φ = (φ, σ). If the symmetry is broken, f 2 = φ2 + σ2 and f is a function of the

parameters λ and µ. The field φ is massless, and plays the role of the Goldstone boson,

here the Higgs boson. The original Lagrangian (6.2) is invariant under a symmetry group

G acting on Φ, while the effective Lagrangian is only so under a smaller symmetry group

G/H acting on φ. Thus, to specify the non-linear sigma model, a strength f and a

symmetry breaking pattern G → G/H is necessary. At an order 4πf ∼ Λ, the effective

description in terms of (6.2) breaks down, as then the energy is sufficiently large to excite

σs.

To achieve decent agreement with experiment is challenging with this concept. It is

necessary to take a group G with a gauged subgroup SU(2)×U(1) to obtain a Higgs with

correct properties. Also, there must be explicit breaking, which can be modeled by a

mass-term m2φ2 in (6.1). Though this approach gives a first possibility, it turns out that

it endows a (little) hierarchy problem, since the emerging Higgs is again having a mass

sensitive to corrections at the scale Λ.

As a remedy, the mentioned collective symmetry breaking was introduced. The basic

idea is to use a product group G1×G2 which has a gauged electroweak group SU(2)×U(1)

in each of the factor groups Gi. In such a setup, radiative mass corrections between

both factor groups actually cancel, at least at (one-)loop level, such that the Higgs mass

is protected. However, to obtain reasonable masses for the top quark and the Higgs

simultaneously requires an additional vectorial partner of the top quark, usually denoted

by T . Then the top quark can have a large mass, without its (large) Yukawa coupling to

the Higgs leading to large radiative corrections of its mass, since the latter are canceled

by contributions from its T partner.

Such subtle cancellations are a hallmark of the various little Higgs models. Popular

examples for the choice of G are the minimal moose model (SU(3)L×SU(3)R/SU(3)V )4,

where even a SU(3)×SU(2)×U(1) subgroup is gauged, leading to additional gauge bosons

which become heavy by the symmetry breaking, the littlest Higgs model with SU(5)/SO(5)

having a gauged (SU(2)×U(1))2 subgroup, and the simplest little Higgs model with group

G being (SU(3)×U(1)/SU(2))2 with gauged subgroup SU(3)×U(1).

However, in all cases some fine-tuning appears at some point to obtain results in

agreement with experimental data. A radical approach to remedy the problem is by

introducing an additional global Z2 symmetry, under which standard model and additional

particles are differently charged. The action of this symmetry is to exchange the subgroups

Gi of G. This is called T parity. Provided T -parity is not developing an anomaly, what

indeed happens for some models, the lightest additional particle is stable, and thus a dark

matter candidate.
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Note that the additional symmetry can also be part of a strongly-interacting theory,

akin to the technicolor theories of chapter 5. In this context such theories are usually

called compositness models, as the Higgs then becomes a composite Goldstone boson of

the strongly interacting theory, rather than being an elementary scalar as in proper little

Higgs theories.

6.3 Hidden sectors

The generic idea of hidden sectors is that in addition to the standard model there is a

second set of particles which have very weak or no coupling to the standard model particles,

and a set of very heavy messenger particles connecting this hidden sector to the standard

model. Provided that these particles are not gravitationally bound in significant numbers

to ordinary astrophysical objects, such a sector will not be detectable unless the energies

reached become of order of the messenger masses.

A simple example for a hidden sector would be a hidden QCD with some gauge group1

SU(N) and hidden quarks charged under this symmetry. The mediator is a U(1), i. e.

a QED-like symmetry with a gauge boson Z ′. This symmetry is broken at the TeV

scale, making the Z ′ very heavy. If the hidden quarks also have mass of this size, but the

hidden QCD is unbroken, a high-energetic Z ′ can be produced by standard model particles,

and then decay into a hidden hadron, which decays to the lightest state, generically a

hidden pion, which can then decay through a virtual Z ′ to standard model particles.

Though this scenario is not solving any of the problems of the standard model, it is

neither in contradiction to any observation, and has therefore to be taken into account

when developing possible search strategies at experiments.

Another possibility is the quirk scenario. In this case the hidden quarks, called quirks,

are in addition also charged like standard model quarks, but very heavy compared to

the intrinsic scale Λhidden of the hidden gauge theory. Then the quirks themselves act as

mediators. As a consequence, hidden glueballs would be quasi-stable on collider time-

scales, giving unique missing energy signatures.

Another possibility is if the hidden theory is almost conformal, and only coupled weakly

to the standard model. In this case the conformal behavior of the hidden particles will

generate very distinctive signatures, as their kinematic behavior is quite distinct from

anything the standard model offers on these energy scales. Such hidden (quasi-)conformal

particles are also called unparticles.

Finally, mirror world scenarios have essentially a copy of the standard model as hidden

1N has to be larger than two for compatibility with experiment.
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particles. Thus, this allows the existence of mirror worlds, which do, however, only interact

weakly through the messenger and gravitationally with the usual standrad model. This

allows to have whole mirror galaxies gravitationally bound to ours as candidates for dark

matter. Variations on this idea keep the interaction strengths, but vary the masses of the

particles.

Most of such hidden sectors, or sometimes also called hidden valley theories, have very

specific signatures. These include long-lived particles, which decay to standard model

particles on distances of meters to kilometers, and (partly) dark jets. The latter refer

to the generation of a jet in stronhly interacting hidden sector theories, which are then

transformed (partly) to ordinary strongly-interacing particles, and thus jets, appearing

possibly substantially removed from an interaction site. Searching for such scenarios re-

quires expeirment to be sensitive away from an interaction point at colliders.

6.4 Flavons

A serious obstacle in technicolor theories, as well as many other scenarios, had been the

generation of the mass spectrum of the fermions. To remedy this problem, a variation of

a hidden sector can be introduced.

In this case all Yukawa couplings of the standard model are dropped, i. e., all fermions

are exactly massless. Then there exists an additional global symmetry, the flavor symme-

try, which has symmetry group U(3)6. Some part of it is broken by QCD due to chiral

symmetry breaking, generating most of the mass for the up, down and strange quark, but

(almost) nothing for leptons, and not enough for the heavier quarks. To provide it, quarks

and leptons are coupled to a further field, called flavon, by a messenger particle. Neither

are charged under the standard model gauge interactions. The flavon then condenses,

and the messenger couples the condensate back to the standard model fermions, providing

their masses. Though this is not explaining the mass hierarchy, this splits the dynamics of

the fermion mass generation from electroweak symmetry breaking, which could then, e. g.,

be provided by a simpler technicolor theory than the top-color assisted extended walking

technicolor.

Integrating out the messenger field will generate couplings between the Higgs (or what-

ever replaces it) and the standard model fermions, which will essentially look like the

standard-model Yukawa couplings. The Yukawa couplings will then be proportional to

the ratio of the electroweak condensate squared and the mass of the messenger particle.

Assuming the lightest particle, neutrinos, to have a coupling to the messengers of order 1

then yields a mass for the messenger of order ΛGUT, and therefore further consequences of
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these particles will not be harmful to present electroweak precision measurements. This

scenario is also known as the Froggat-Nielsen mechanism.

6.5 Higgs portal

Dark matter is generically rather simply realized by a hidden sector of, more or less,

arbitrary structure. In its simplest form this sector is only gravitationally coupled to the

standard model, making dark matter only observable by its gravitational action. While

possible, this is not very attractive.

On the other hand, direct detection places stringent limits on the interaction of dark

matter with the standard model. Strong interactions are ruled out, and weak interactions

only marginally allowed. Electromagnetic interactions are only possible if the electric

charge is very small compared to the other standard-model particles, so-called milli-charged

particles. If such a case is undesirable, e. g. because of it being hard to reconcile with a

GUT structure, there is only one possibility left. This is the Higgs.

Because it is possible to construct a gauge-invariant and otherwise symmetry-compatible

operator φ†φ from the standard-model Higgs field, it is possible to construct, e. g. for a

scalar dark matter particle d, a renormalizable coupling

LHP = gd†dφ†φ

with an undetermined and free coupling constant g. Since now the Higgs interaction is the

mediator to the dark matter sector, this is called a Higgs portal. If the dark matter particle

carries a conserved symmetry, in the simplest case a parity for a real scalar particle, this

also allows for a very massive dark matter particle, a so-called weakly-interacting massive

particle (WIMP), without having all of the dark matter decaying during the evolution of

the universe to standard-model particles.

Such scenarios are not easy to exclude, as g is in such simple models not constrained.

It is also possible to have different Lorentz structures, internal symmetries, or even gauge

symmetries for the dark matter sector. Also, multiple dark matter particles could all be

coupled in this way. In experiment, this would show up as a too large invisible decay

width of the Higgs in missing energy signatures. Given that the Higgs width cannot yet

be measured directly, this gives relatively large freedom to create Higgs portals.
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6.6 Left-right-symmetric models

A very constraining feature of the standard-model is the weak parity violation, as it forbids

independent masses for fermions and imposes strong anomaly cancellation features. It is

also quite cumbersome in supersymmetric extensions of the standard-model.

These problems are avoided in so-called left-right symmetric models. In such models

the weak interaction is embedded in a larger gauge symmetry such that the uncharged

right-handed standard-model fermions and the charged left-handed fermions are put into

a common multiplet. This is arranged such that the right-handed particles correspond

to charges then broken by a Brout-Englert-Higgs effect, and are thus no longer charged

under the remaining gauge symmetry. The left-handed fermions are. Thereby, a variation

on the GUT idea provides this effect. It is also possible to enlarge this scenario to have

this effect in a full GUT2.

Such scenarios therefore give rise to additional heavy gauge bosons and heavier Higgs

siblings, at a, more or less, arbitrary scale at or above the TeV scale. This can therefore

be tested by finding such particles.

6.7 Axions

A problem yet only briefly mentioned is the insufficient breaking of CP symmetry in the

standard model. In fact, there exists another possible source of CP symmetry violation

in the standard model. For both the weak interactions and the strong interactions it is

possible to add a term

L = θεµνρσF
µνF ρσ (6.3)

to the standard model, a so-called topological term with the vacuum angle θ. The latter is

bounded for topological reasons. Since effects of such a term are genuine non-perturbative,

and suppressed like exp(1/g), they are irrelevantly small for the weak interaction. However,

for the strong interaction an upper limit of the order of 10−10 for θ exists3.

While θ is an independent parameter of the standard model, and its value therefore

needs to be taken from experiment, its value is so close to zero that it is suspicious. It

is not simple to find a structural embedding of the standard model such that θ becomes

2In fact, the SU(5) GUT of section 7.2 treats left-hand fermions and right-hand fermions both vectorial,

but in different multiplets of the gauge symmetry.
3Formal reasons suggest that actually a term like (6.3) is generically not contributing. However,

even in absence of this motivation for axions, the ensuing phenomenology for axions remains valid as an

independent (less motivated) scenario.
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zero, or at least very small. Thus, there is no easy solution to this so-called strong CP

problem.

One possibility is that this is actually a dynamical effect. To achieve this, an additional

scalar field, the so-called axion, is introduced, which couples to the topological term (6.3).

Adding a suitable symmetry breaking to the axion sector, the term becomes dynamically

suppressed, and therefore compensates strong CP violation. This symmetry, known as the

Peccei-Quinn symmetry, is usually a global U(1).

In addition, such axions can be designed such that they can also act as dark matter

candidates, therefore resolving two problems at once. Such axions would be produced in

strong interactions, but usually strongly suppressed as they only couple through (6.3).

Especially, this is (at least) a dimension five operator, and therefore suppressed by a scale

related to the axion. Still, this implies that sources with a lot of strong interactions, e.

g. the sun, will produce eventually axions, and these are therefore accessible in direct

detection experiments.

A generalization of axions are axion-like particles (ALPs). They are usually not moti-

vated by any issue in particular, but merely denote particles which weakly interact with

the standard model. This can happen, as in the axion case, by a higher-dimensional oper-

ator or by utilizing the fact that hypercharge is an Abeian interaction. In the latter case,

they receive a very small electric charge, of order 10−4 electron charges, or less. These

are then also called milli-charged particles. Also known as feebly interacting particles

(FIMPs), such particles can be both light or heavy. They can either be considered as one

more possibility of new physics or as a dark matter candidate.

A unique signature of such particle is their ability to regenerate photons. By shining a

laser on a wall, the laser is absorbed. However, milli-charged particle can be created from

this beam, and then travel through the wall. Interacting with a strong electromagnetic

field afterwards, they can be agained converted into photons, and thus a weak laser beam

emerges after the wall. Such light-shining-through a wall experiments have been done, but

so far without any hints of a signal.

6.8 Inflaton and quintessence

Another problem solvable by one or more additional scalar fields is the inflation problem

of section 3.4.2. It can be shown that already the electroweak phase transition and the

strong phase transition4 leads to an inflationary period, but in both cases far too short

and too ineffective as they are not first order. Thus, having a third phase transition in an

4Actually, to the best of our current knowledge both are only crossovers rather than phase transition.
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additional sector could solve the problem. For this an additional scalar field with suitable

potential and symmetry can be introduced, the inflaton5.

However, it turns out that there is a reason for why both known cases are far too

inefficient. In both cases the potential rises at large field values (classically) like a fourth

power. Such a steep potential is accelerating phase transitions too much to yield long

inflationary periods. To avoid this problem, slower rising potentials are necessary, e. g. of

type φ2 lnφ, giving rise to the so-called slow-roll mechanism. While such potentials are

in a quantum-field theoretical setting difficult to handle, they show in a quasi-classical

treatment promising results.

Such a mechanism, depending on the energy scale it would act upon, could be discov-

ered in the properties of the cosmological microwave background, especially its polarization

(so-called r-mode). This is essentially an imprint of the gravitational waves created by the

process. A direct observation of the gravitational wave background radition would also be

able to provide information about such a mechanism.

5There are many similar scenarios, and the name quintessence is also attached to them.
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Grand unified theories

The first example of a high-scale BSM scenario will be the grand-unified theories (GUTs).

While they become only relevant at rather high scales, compared e. g. to 1 TeV, they are

very often needed to make extensions at a lower scale complete or more consistent. Thus, it

is worthwhile to start with them, and have them available later. Note that supersymmetric

GUTs form a field of its own, not touched upon in this lecture.

7.1 Setup

The most important motivation for GUTs is the following: As outlined before, the fact that

the electromagnetic couplings have small ratios of integers for quarks and leptons cannot

be explained within the standard model. However, this is necessary to exclude anomalies,

as has been discussed beforehand. This odd but important coincidence suggests that

possibly quarks and leptons are not that different as it is the case in the standard model.

The basic idea of grand unified theories is that this is indeed so, and that at sufficiently

high energies a underlying symmetry relates the gauge interactions of quarks and leptons,

enforcing these ratios of electric charge. This is only possible, if the gauge interactions,

and thus the gauge group SU(3)color×SU(2)weak×U(1)em is also embedded into a single

group, since otherwise this would distinguish quarks from leptons due to their different

non-electromagnetic charges. Another motivation besides the electromagnetic couplings

for this to be the case is that the running couplings, the effective energy dependence of

the effective gauge couplings, of all three interactions almost meet at a single energy scale,

of about 1015 GeV, the GUT scale, as has been discussed in section 4.10.3.1. They do not

quite, but if the symmetry between quarks and leptons is broken at this scale, it would

look in such a way from the low-energy perspective. If all gauge interactions would become

one, this would indeed require that all the couplings would exactly match at some energy

154
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scale.

These arguments are the basic idea behind GUTs. The underlying mechanism will

now be discussed for a simple (and already experimentally excluded) example. Since there

are very many viable options for such grand-unified theories, all of which can be made

compatible with what is known so far, there is no point as to give preference of one over the

other, but instead just to discuss the common traits for the simplest example. Also, GUT

ideas are recurring in other beyond-the-standard model scenarios. E. g., in supersymmetric

or technicolor extensions the required new parameters are often assumed to be not a real

additional effect, but, at some sufficiently high scale, all of these will emerge together with

the standard model parameters from such a GUT. In these cases the breaking of the GUT

just produces further sectors, which decouple at higher energies from the standard model.

Here, the possibility of further sectors to be included in the GUT will not be considered

further.

The basic idea is that such a GUT is as simple as possible. The simplest version com-

patible with just the structure of the standard model requires to have a Yang-Mills theory

with a single, simple gauge group, and the matter fields belong to given representations of

it. As noted, the standard model gauge group is SU(3)color×SU(2)weak×U(1)em. This is a

rank 4 Lie group, 2 for SU(3) and 1 for SU(2) and U(1). Thus, at least a group of rank 4

is necessary, excluding, e. g., SU(4) with rank 3 or G2 with rank 2. Furthermore, fermions

are described by complex-valued spinors, and thus complex-valued representations must

exist. This would be another reason against, e. g., G2, which has only real representations.

Another requirement is that no anomalies appear in its quantization.

Taking everything together, the simplest Lie groups admissible are SU(5) or SO(10),

both having rank 4, as well as the rather popular cases of rank 6, 7, and 8, the groups E6,

E7, and E8, respectively.

Now, take SU(5) for example. It has 24 generators, and thus 24 gauge bosons are

associated with it. Since the standard model only offers 12 gauge bosons, there are 12 too

many. These can be removed when they gain mass from a Brout-Englert-Higgs effect, if

the masses are sufficiently large, say of order of 1015 GeV as well. Thus, in addition to new

heavy gauge bosons, a number of additional Higgs fields, or other mediators of symmetry

breaking, are necessary in GUTs.

It should be noted that the idea of GUTs in this simple version, i. e., just be enlarging

the gauge group, cannot include gravity. This is forbidden by the Coleman-Mandula

theorm of section 4.1. To circumvent it requires again to move to supersymmetric GUTs.
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7.2 A specific example

Lets take as a specific example SU(5) for the construction of a GUT. It has 24 generators,

and therefore there are 24 gauge bosons. 8 will be the conventional gluons Gµ, 3 the Wµ of

the weak isospin bosons, and 1 the hypercharge gauge boson Bµ, leaving 12 further gauge

bosons. These 12 additional gauge bosons can be split in four groups of three X, Y , X+,

and Y +, making them complex in contrast to the other gauge bosons for convenience. The

general gauge field Aµ can then be split as

Aµ = Aaµτa = Gi
µdiag(λi, 0, 0) +W i

µdiag(0, 0, 0, σi) (7.1)

− 1√
15
Bµdiag(−2,−2,−2, 3, 3) +

√
2(Xc

µx
c + Y c

µy
c +Xc†

µ ξ
c + Y c†

µ χ
c)

=
√

2


1√
2
Gi
µλ

i

X1†
µ Y 1†

µ

X2†
µ Y 2†

µ

X3†
µ Y 3†

µ

X1
µ X2

µ X3
µ

Y 1
µ Y 2

µ Y 3
µ

1√
2
W i
µσi

−
1√
15


−2

−2

−2

3

3

Bµ

where λ are the Gell-Mann matrices, σ are the Pauli matrices, and the remaining generators

of SU(5), the matrices xµ, yµ, ξµ, and χµ, have no entries on the diagonal. This assignment

is necessary to obtain the correct charges of the known gauge bosons. This can be seen as

follows. Gauge bosons transform under an algebra element as

[τa, Aµ] = [τa, τ b]Abµ = ifabcτ cAbµ.

Take for example τa to be the generator of Bµ. This matrix commutes with the ones of

all the normal gauge field bosons, so their contributions are zero1. These particles are

not charged. However, the matrices associated with the new gauge bosons do not. The

appearing coefficients fabc then show that the gauge bosons Xµ and Yµ carry electric charge

5/3, while their complex conjugate partners have the corresponding anti-charge −5/3. In

much the same way it can be shown that the three elements of each of the four fields

can be arranged such that these gauge bosons carry the same color and weak isospin as

the (left-handed) quarks and leptons. Since they can therefore couple leptons and quarks

directly, they are referred to as leptoquarks, mediating e. g. proton decay as discussed

below.

Arranging the fermions turns out to be a bit more complicated. Each family consists

of 16 fermionic particles, 12 quarks and 4 leptons, counting two quark and lepton flavors

1The mixing of the weak fields and the photon has not been performed, therefore the weak isospin

bosons are electrically neutral.
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with three colors for the quarks and left-handed and right-handed chiralities separately.

The fundamental representation of SU(5) is only of dimension 5, and can therefore not

accommodate this number of particles. Also, the assignment in multiple copies of the

fundamental representation cannot yield the correct quantum numbers. Therefore, the

matter fields must be arranged in a non-trivial way.

It is an exercise in group theory, not to be repeated here in detail, that the simplest

possibility is to assign the 16 particles to three different multiplets. In this construction

the right-handed neutrino νR become a singlet under SU(5). Since already in the standard

model it couples to the remaining physics only by the Yukawa coupling to the Higgs, and

thus with a strength measured by its very small mass, this appears appropriate. The

remaining particles of a family are put in two further multiplet structures. The right-

handed down quarks and left-handed electron and electron neutrino can be put into an

anti-5 (anti-fundamental) multiplet ψ

ψ =


dc1
dc2
dc3
eL

−νL

 ,

while the remaining particles can be arranged in a 10-multiplet χ

χ =
1√
2


0 uc3 −uc2 −u1

L −d1
L

−uc3 0 uc1 −u2
L −d2

L

uc2 −uc1 0 −u3
L −d3

L

u1
L u2

L u3
L 0 −ec

d1
L d2

L d3
L ec 0

 ,

where c denotes the charge-conjugate of a right-handed particles ψR, i. e.,

ψc = iγ2γ0(ψ̄R)T .

This multiplet structures is in fact necessary to provide an anomaly-free theory.

This appears to be a quite awkward way of distributing particles, and also not be

symmetric at all. However, without proof, this distribution yields that all fermions have

the correct quantum numbers. In particular, the correct electric charges are assigned -

and exactly those. Hence, this embedding implies the mysterious relation of quark charges

and lepton charges of the standard model in a natural way. Furthermore, it also implies

that right-handed quarks are not interacting weakly, in this sense yielding parity violation

of the weak interactions as well.
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The remaining problem is now the presence of the X and Y gauge bosons. At the

current level, these are massless. Even if they would be coupled to the Higgs field of the

standard model, this would have to occur in the same way as with the W and Z bosons,

thus yielding approximately the same masses. That is in contradiction to experiments,

and therefore some way has to be found to provide them with a sufficiently heavy mass as

to be compatible with experiments.

The simplest possibility is to have again a Brout-Englert-Higgs mechanism, like in

the electroweak sector. Since the latter may not be affected, two sets of Higgs fields are

necessary. The simplest possibility is to have one multiplet of Higgs fields Σ = Σaτa in the

24-dimensional adjoint representation of SU(5), and another one H in the fundamental

five-dimensional one. The prior will be used to break the SU(5) to the unbroken standard

model gauge group, and the second to further break it to the broken standard model.

To have the correct breaking of SU(5), the vacuum expectation value for Σ must take

the form 〈Σ〉 = wdiag(1, 1, 1,−3/2,−3/2). The 3-2 structure is necessary to guarantee

that the condensate is invariant under SU(3)-color and SU(2)-weak-isospin rotations. Such

a condensate can be arranged for with an appropriate self-interaction of the Higgs fields.

That this condensation pattern removes only the X and Y gauge bosons can be directly

seen from the interaction of Σ with the gauge bosons, which is given by

Lkinetic
Σ =

1

2
tr((∂µΣ− ig[Aµ,Σ])+(∂µΣ− ig[Aµ,Σ]))

Σ→〈Σ〉
=

25

8
g2w2(X+

µ X
µ + Y +

µ Y
µ),

where g is the SU(5) gauge coupling. The structure of the remaining term is then just

that of a mass-term for the X and Y gauge bosons, and because of the particular structure

chosen only for them. The corresponding masses can be read off directly and are

MX = MY =
5

2
√

2
gw.

Choosing a potential such that w is sufficiently large thus makes the additional gauge

bosons unobservable with current experiments. At the same time, any Higgs interactions

having such a signature will give 12 of the 24 Higgs bosons of Σ a mass of order w as

well. The other 12 are absorbed as longitudinal degrees of freedom of the X and Y

gauge bosons. Thus no trace of them remains at accessible energies. Similarly choosing

〈H〉 = (0, 0, 0, 0, v/
√

2) yields

Lkinetic
H = (∂µH − igAµH)†(∂µH − igAµH)

H→〈H〉
=

g2v2

4

(
Y +
µ Y

µ +W+
µ W

µ− +
1

2 cos2 θW
ZµZ

µ

)
.

This provides an additional mass shift for the Y bosons, and for the W and Z bosons

their usual standard model masses. Out of the 10 independent degrees of freedom in the
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fundamental representation 3 are absorbed as longitudinal degrees of freedom of the W

and Z bosons, leaving seven Higgs bosons. One of them has the quantum numbers of the

standard model Higgs boson, while the other six decompose into two triplets (like quarks)

under the strong interactions. By introducing appropriate couplings between Σ and H

bosons, it is possible to provide these six with a mass of order w, thus also making them

inaccessible at current energies.

It remains to show how fermion masses are protected from becoming also of order w.

Actually, it is not possible to construct a coupling between Σ and the fermions which is

renormalizable. However, it is possible to construct a Yukawa coupling to the H Higgs

bosons. For example, for the first generation a mass term for the fermions is generated of

type

L1 = −gdv√
2

(d̄d+ ēe)− 2
guv√

2
ūu,

where gd and gu are (arbitrary) Yukawa couplings. Since these are expressions at the GUT

scale, this implies the same mass for down quarks and electrons at this scale. Transferring

these results to the scale of the Z mass yields results which are in good agreement with

experiment for some mass ratios, notably the bottom-to-τ ratio is about three, close to the

experimental value of 2.4. However, in particular the light quark masses are not obtained

reasonably well, showing that this most simple GUT is not sufficient to reproduce the

standard model alone.

7.3 Running coupling

After this very specific example, it is also possible to make some more general statements,

which will be done in this and the next section.

One of the motivation to introduce a grand-unified theory was the almost-meeting of

the running couplings of the standard model when naively extrapolated to high energies.

Because of the requirement that the structure of GUTs should be simple, all matter fields

couple with the same covariant derivative to the GUT gauge bosons as

Dµ = ∂µ − igτaAaµ, (7.2)

where g is the gauge coupling, Aaµ the gauge boson field, and τa are the generators of

the group, e. g. SU(5) yielding (7.1), in the representation of the matter fields. Here, it

will be assumed that each generation of standard model matter fields fill exactly one (or

more) multiplet(s) of the theory, but no further additional particles are needed to fill up

the multiplets, and no multiplets contain particles from more than one generation.
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The expression (7.2) has to be compared to the covariant derivatives of matter fields

in the standard model, which is given by

Dµ = ∂µ − igsτ saGa
µ − igiτwa W a

µ + igh
y

2
Bµ.

The strong interaction is parametrized by gs, the strong coupling constant, Ga
µ are the

gluons, and the τ s are either Gell-Mann matrices for quarks or zero for leptons. For the

electroweak sector, only energies are considered at which the weak symmetry is essentially

manifest. Therefore, it is useful to employ the corresponding notations. Then, the weak

isospin bosons W a
µ come with the weak isospin coupling gi and the Pauli matrices τw.

The influence of parity violation is neglected here for the sake of the argument2. Finally,

there is the hypercharge gauge boson Bµ with the corresponding coupling gh. Since the

hypercharge group is the Abelian U(1), instead of representation matrices the hypercharge

quantum numbers y appear, depending on the particle species in question, and have to be

determined from experiment in the standard model.

Choosing a suitable basis with the same normalization of τ s and τw unification implies

that at the unification scale gs = gi = g. It is a bit more tricky for the hypercharges.

One of the generators of the unified gauge group, say τh, must be proportional to the

hypercharges y, cτh|flavor = y for any given element of the matter multiplet. An example

for SU(5) is given in (7.1). Staying with the assumption that each family belongs to one

multiplet of the GUT implies that the corresponding hypercharges of the family members

are essentially the eigenvalues of the generator τh. Taking the squared trace then yields

1

4
tr(yy) =

10

3
!

= c2tr(τhτh) = c2TR

where no sum over h is implied but over the multiplet, and TR = 2 is the Dynkin index3.

Thus, c =
√

5/3, and hence g = cgh. As emphasized earlier, the values y are not con-

strained by the standard model to have the prescribed values. Here, however, the values

of y are fixed by the generator τh. This automatically requires the electric charges to

have their values of the standard model. GUTs provide the quantization of electric charge

observed in the standard model automatically, implying in particular that the electric

charges of different particles have rational ratios.

The electric charge e is then given by

e =
gigh√
g2
i + g2

h

=

√
5

3
g (7.3)

2In case of the gauge group SU(5), as discussed in the previous section, the parity violation is actually

manifest in the multiplet structure of the matter particles.
3Here a direct embedding of the SU(2) Pauli matrices for the gauge group of the GUT is used, requiring

this normalization.
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and the Weinberg angle θW by

sin2 θW =
gh√
g2
h + g2

i

=
3

8
. (7.4)

These relations only hold when the GUT’s gauge symmetry is manifest, i. e. supposedly

at the GUT scale. To check, whether this actually makes sense, it is necessary to let

these values run down to the scale of the standard model and see whether the predictions

agree with the observed values. The Weinberg angle (7.4) is useful here, as it known

experimentally quite well.

Using (7.4), it follows that

sin2 θW =
3

8
− α−1

i + α−1
h

2π

109

24
ln

ΛGUT

µ
.

To eliminate the unknown scale ΛGUT another of the evolution equations of section 4.10.3.1

can be used. Particularly convenient is the combination

α−1
i + α−1

h −
8

3
αs =

67

6π
ln

ΛGUT

µ
,

yielding

sin2 θW =
23

134
+
α−1
i + α−1

h

αs

109

201
.

Using the experimental values α−1
i + α−1

h = 128 and αs = 0.12 at the Z-boson mass,

µ = MZ yields ΛGUT ≈ 8 × 1014 GeV, αs(ΛGUT) ≈ 1/42, and sin2 θW (MZ) = 0.207. The

latter number is uncomfortably different from the measured value of 0.2312(2), implying

that at least at one-loop order this GUT proposal is not acceptable.

Unfortunately, this problem is not alleviated by higher-order corrections, and turns

out to be quite independent of the particular unification group employed, and many other

details of the GUT. This implies that unification cannot occur with the simple setup

discussed here. Only when other particles, in addition to the minimum number needed

to realize the GUT, are brought into play with masses between the electroweak and the

GUT scale a perfect unification can be obtained. Supersymmetry, e. g., provides such a

unification rather naturally, though also not in the simplest setup. Of course, the fact

that ΛGUT is much closer to MP than to the electroweak scale could also be taken as a

suggestion that quantum gravity effects may become relevant in the unification process.

These are open questions.

7.4 Baryon number violation

A reason not to easily abandon GUT theories after the disappointment concerning the

running couplings is that they naturally provide baryon number violation, which is so
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necessary to explain the matter-antimatter asymmetry of the universe. That such a pro-

cess is present in GUTs follows immediately from the fact that quarks and leptons couple

both to the same gauge group as one multiplet. Thus, gauge bosons can mediate transfor-

mations between them, just as the weak gauge bosons can change quark or lepton flavor

individually. Whether some quantum numbers are still conserved depends on the details

of the GUT. A GUT with gauge group SU(5), e. g., preserves still the difference of baryon

number B and lepton number L, B − L. For the gauge group SO(10), not even this is

conserved.

The profound consequence of baryon and lepton number violation is the decay of pro-

tons to leptons. It is, in principle, a very well defined experimental problem to measure

this decay rate, though natural background radiation makes it extremely difficult in prac-

tice. To estimate its strength, assume for a moment that the masses of the gauge bosons

mediating this decay are much heavier than the proton, which is in light of the experi-

mental situation rather justified. Then the decay can be approximated by a four-fermion

coupling, very much like a weak decay can be approximated by such a coupling at energies

much smaller than the masses of the mediating W and Z bosons.

The corresponding interaction is then encoded in the Lagrangian

L =
4GGUT√

2
(ūγµuēγµd) (7.5)

for quark fields u and d and the electron field e. This vertex permits that a d quark and a

u quark scatter into a u quark and an electron. The corresponding decay channel of the

proton would then be into a positron and a neutral pion, the lightest one permitted by

electric charge and energy conservation involving charged leptons. The effective coupling

GGUT is then given by

GGUT√
2

=
g2

8m2
GUT

=
π

2m2
GUT(α−1

i (mGUT) + α−1
h (mGUT))

,

in complete analogy to the weak case, and mGUT ≈ ΛGUT the mass-scale of the leptoquark

gauge bosons. The life-time at tree-level can then be calculated in standard perturbation

theory in leading order to be

τp→e+π0 ∼ 192π3

G2
GUTm

5
p

∼ m4
GUT(α−1

i (mGUT) + α−1
h (mGUT))

m5
p

.

Plugging in the previous numbers, the formidable result is about 1031 years. That appears

quite large, but the current experimental limit in this channel is about 1034 years, clearly

exceeding this value. Thus, at least this very simple approximation would yield that a

GUT is in violation of the experimental observation by about three orders of magnitude.
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However, pre-factors and higher order corrections depend very much on the GUT under

study, and can raise the decay time again above the experimental limit. Finding proton

decay, or increasing further the limit, would provide therefore information on the structure

of permitted GUTs. However, the search becomes experimentally more and more chal-

lenging, so that pushing the boundaries further is an expensive and demanding challenge.

Nonetheless, this is a worthwhile problem: If no proton decay should be observed ere

reaching the standard model decay rate, this would imply that baryon number violation

would proceed in a rather unexpected way. Or would need to be an initial condition of

the big bang.

7.5 Flavor universality violations and leptoquark phe-

nomenology

The explicit examples of GUTs so far used fermion multiplets which do not mix generation.

However, larger representation or larger unification gauge groups would allow to embed

multiple generations into a multiplet. This could also explain the existence of generations.

Such a setup has one additional feature compared to the previous ones. Because the differ-

ent generations reside in the same multiplet, leptoquarks can no mediate intergeneration

decays. As a consequence, a GUT would enhanced such effects compared to those in the

standard model, where they stem from the off-diagonal Higgs interaction, yielding the

CKM/PMNS matrix4.

In the standard model, the only difference between the generations stems from the

masses. The intergeneration mixing in the quark sector due to the CKM matrix creates

well-established effects. However, this also implies that there is quite some background

for any searches. In the lepton sector, however, the smallness of the neutrino masses make

intergeneration transitions negligbly small in the charged lepton sector5. Eliminating mass

effects, leptons should be treated (almost) universally in the same way in the standard

model. Lepton flavor universality violations (LFUV) are thus a very clean signal for

some GUT scenarios. It would also provide a clean access to leptoquark physics, as it is

parametrized by similar couplings as (7.5).

Despite some hints in (semi-)leptonic decays of heavy mesons, however, so far no

unambigous signal of lepton-flavor universlity violations have been found. Still, it remains

an important search channel, due to its small standard model background. This is also

true for oscillations experiments, e. g. e→ µγ.

4Of course, rather than to enhance, they could replace them, making such a scenario harder to detect
5Neutrino oscialltions are actually the corresponding effect in the neutrino sector
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7.6 Asymptotic safety

There is one interesting feature of the β-function (2.7). Formally, there can be β-functions

such that the running coupling goes to a finite value if the energy scale is send to infinity.

This is a third option compared to asymptotic freedom, in this context also called a

Gaussian fixpoint, where the coupling vanishes, and an infinitely strongly coupled theory.

This third scenario is called asymptotic safety.

Studying the perturbative expressions for the coefficients (5.2-5.4) already suggests

that it should be possible to construct such a solution by a judicious choice of the theory

content even at weak asymptotic coupling. This has indeed been done. It is yet not clear

whether any such constructed theory could resolve any of the problems of the standard

model in a convincing way, but it is certainly an interesting option.

Even more interesting is that theories which are perturbatively ill-defined by the ap-

pearance of a Landau pole could change to an asymptotically safe theory once the non-

perturbative β-function is used. Of course, this requires to know the later to check.

Fortunately, in recent times progress has been made in non-perturbative calculations. In

some cases, this is also possible by adding suitable matter content even at weak coupling.

As a consequence, unified models with many fermions and scalars, and sufficiently large

gauge groups, appear as a viable, ultraviolet stable scenario. It remains to be seen whether

they are also phenomenologically viable. However, so far they do not seem to encounter

more serious problems than other GUT candidates.

7.7 The physical spectrum of GUTs

The discussion of the BEH effect in the standard model in section 2.1, and those following

on BSM physics, was performed in perturbation theory. This is actually not quite correct,

as will be discussed now. While this has (likely) implications for the selection of which

theories are exactly suitable extensions of the standard model, this does not touch upon

the qualitative properties discussed, for which perturbation theory remains therefore a

suitable guideline.

The problem arises as that in a non-Abelian gauge theory the asymptotic state space

can, in principle, not contain any elementary particles. The reason is that the asymptotic

fields cannot be free fields, since otherwise the state space has changed from a space

of gauge-dependent objects to one of gauge-singlets, and thus a local symmetry would

become a global symmetry. These two spaces are not unitarily equivalent, and therefore

this is strictly speaking not possible beyond perturbation theory where all results are
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by construction smooth in the gauge coupling. A simple example is already QED: In

perturbation theory only electrons, protons, and photons appear, but no hydrogen atom,

despite being a stable state.

This point can be formalized in the context of axiomatic field theory, and is known as

Haag’s theorem: The state spaces of an interacting theory and a non-interacting theory

are not unitarily equivalent, no matter how weak the coupling. Hence, strictly speaking

perturbation theory expands around the wrong vector space. However, this theorem does

not make any statements about the quantitative size of the non-analytic contributions. It is

thus well possible that they are a negligible effect, and thus perturbation theory implicitly

assumes that this is the case, and the dominant contribution comes actually from the

analytic part. In the standard model, this seems to be true, vindicating the discussion of

section 2.1, and indeed perturbation theory describes exceedingly well observations. But

it will be seen that this does not need to be true beyond perturbation theory.

While in the standard model this is found to be a small effect, this is due to the special

structure of it. This does not need to hold beyond, and turns out indeed to be a special

problem for GUTs.

Hence, in the following a correct construction will be provided, and in the end shown

why, and under which conditions, perturbation theory can still give the dominant part of

the answer. To establish the answer, it is useful to start just with the standard model, and

neglect for the moment all non-essential parts. This amounts to the weak gauge fields,

now yielding degenerate masses for the W± and Z because of the absence of QED, or more

precisely the hypercharge, and the Higgs.

7.7.1 The Osterwalder-Seiler-Fradkin-Shenker argument

If now the symmetry cannot be broken, the question is what is about the apparent sym-

metry breaking by the vacuum expectation value of the Higgs field. The answer is that it

was actually a gauge condition which gave the Higgs a vacuum expectation value. E. g.

the ’t Hooft gauge condition of section 2.1.2 singles out a particular direction by explic-

itly introducing a choice of direction for the vacuum expectation value of the Higgs field.

However, this choice is part of the gauge choice, and any choice of direction would yield

an equally valid, though possibly more cumbersome, result.

Now, rather than fixing a direction once and for all, it is equally possible, just as in the

construction of general linear covariant gauges, to average over all possible such choices.

Then, the result would be that the vacuum expectation values would be the average over

all possible direction, but this is zero, as all directions are equally preferred. Actually,

without fixing this global degree of freedom the same result would be ensuing.
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This seems to have drastic consequences, as without vacuum expectation value the

whole construction breaks down, and especially there is no tree-level mass for the gauge

bosons. This is in fact correct, and actually it can be shown that in such a gauge the

masses of the gauge bosons remain massless to all orders in perturbation theory. But this

is not a consequence of picking somehow a ’wrong’ gauge: All gauge choices, which can be

satisfied by all orbits6 are equally acceptable. Thus, this cannot be a conceptual problem.

In fact, in such gauges the fluctuations of the Higgs field are no longer small enough to

justify perturbation theory, and hence the applicability of perturbation theory rests on the

choice of a suitable gauge. In a more simple diction, this is just the statement that only

in suitable coordinates perturbation theory makes sense.

In this section, the main question is different: Since the non-vanishing of the Higgs

expectation value is apparently only due to the choice of a particular gauge, how it is still

possible to identify the Brout-Englert-Higgs effect? This question has two layers.

The first is how to construct a quantity, which is still identifying the Higgs effect, even

if the direction of the Higgs condensate is not fixed by the gauge choice. In the analogy of

a magnet, on any single field configuration in the path integral, the Higgs field will still be

aligned. Thus, the relative orientation of the Higgs field would not be influenced, especially

as the different possibilities of direction in the ’t Hooft gauge condition are connected by

a global gauge transformation. Thus, an observable like

〈v2〉 =

〈∣∣∣∣∫ ddxφ(x)

∣∣∣∣2
〉

(7.6)

would have the desired property. Note that a quantity like

〈v2〉 =

〈∫
ddx |φ(x)|2

〉
,

would not work. Though it is non-zero for non-vanishing relative local alignment, it will

actually never vanish, expect when the Higgs field is only in a measure-zero region of

space non-zero, and vanishes otherwise. However, especially in a scalar-QCD-like phase,

this can hardly be expected, and thus this observable cannot distinguish between a QCD-

like behavior and a BEH-like behavior.

However, in a gauge theory this is not enough7. To show that this really distinguishes

6Or actually by all orbits up to a measure zero set.
7Note that for global symmetries similar considerations apply, and without explicit symmetry breaking

a quantity like (7.6) would be more appropriate than the usual local order parameters, which do not involve

an integration. Indeed, the ordinary local order parameters vanish without any external disturbance

breaking explicitly the symmetry, and the symmetry remains unbroken. Thus, parameters like (7.6)

should be rather seen as an indication for a metastability against external explicit symmetry breaking,

rather than a real breaking of symmetries.
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between the BEH case and any alternatives, the observable must also be gauge-invariant

under local gauge transformations, and (7.6) is not.

Thus, the question is, whether there is any gauge-invariant possibility to detect the

BEH effect. The answer to this appears to be that it is not the case. However, the rea-

soning, the so-called Osterwalder-Seiler-Fradkin-Shenker argument, is not entirely trivial,

and there is at least one loophole.

The problem is that to answer this question it is necessary to go beyond perturbation

theory, as it was already seen that perturbation theory provides not even for the restricted

case of only differing global gauge choices the correct answer. But calculations beyond

perturbation theory are always more involved, and often require assumptions and/or ap-

proximations.

The probably strongest statement about the situation in the present theory can be

obtained using a so-called lattice discretization, i. e. an approximation where rather than

to consider the ordinary space-time, the situation is considered on a discrete and finite

lattice of space-time points. The original theory is then obtained in the limit of infinite

volume and zero spacing between them. For asymptotically free theories, it can be shown

that there is some neighborhood around infinite volume and zero discretization where the

approach becomes smooth, and thus this is a valid approach to deal with them8. But for

not asymptotically free theories, especially those suffering from the triviality problem of

section 3.1, no such statement exists9.

Thus, for the following it is necessary to make the assumption that either the limit

exists and is smooth, or if not, this has no direct implication for the result. The latter

is not a too high a hope: Since this only states that it should be valid up to at least

some maximum discretization, which corresponds to some maximum energy, this is the

statement that the results should be true in the sense of a low-energy effective theory.

The steps for the construction will only be outlined, as the technical details are too

involved to present them here, and would require a thorough discussion of a discrete

formulation of the theory. The first restriction is to work at fixed Higgs length φ†φ = 1.

This is actually only a technical simplification, and can be dropped. This situation is

obtained when sending the Higgs-self-coupling to infinity.

The next step is to switch to unitary gauge. This is always possible, since unitary

gauge does not require the BEH effect to be active to be well-defined, in contrast to ’t

8Though in practice it is usually impossible to make reliable statements on how large this neighborhood

is.
9Actually, this can be an indication that the theory just does not exist without an explicit cutoff, and

then the theory is ill-defined, no matter the method.
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Hooft gauges10. Since the length of the Higgs field is fixed, there are no Higgs degrees of

freedom left in the action, and the action is classically minimized by a vanishing gauge

field. It is for this fact important that there is a Higgs field and that the Higgs field fully

breaks the gauge symmetry. Otherwise other configurations could minimize the action.

Consider now any gauge-invariant operator11. Since the only gauge-invariant operators

possible are compositions of the terms in the Lagrangian, any such operator can also be

written as composition of such gauge-invariant operators. Thus, the full expectation value

must be equivalent to a path integral over such gauge-invariant operators.

In the next step, expand the exponential in a series in these operators around vanishing

fields, and thus vanishing field-strength tensors. On a finite, discrete lattice, this will

always result in a convergent series.

The series can be merged with the expression for the gauge-invariant operator. Thus,

the result is some series in gauge-invariant operators. Each term of the series is analytic.

On a finite lattice, it can then be shown that this series is, for any gauge-invariant operator,

bounded from above by a geometric series parametrized by the parameters. This is again

only possible because of the additional potential term induced by the Higgs effect, and

thus the presence of one additional parameter. The series is therefore uniformly bounded,

and since every term is analytic, a general mathematical theorem guarantees then that

the whole expression is an analytic function.

The whole argument fails only if any parameter of the theory either vanishes or diverges.

Thus, on the boundaries of the phase diagram it is still possible to have a phase transition,

but there can be no phase transition cutting the phase diagram in separate disconnected

pieces. Thus, the phase diagram is connected, though may have phase transitions with

end-points, and, of course, cross-overs.

It is visible that being on the lattice is important in the argument. It was also important

that all Higgs degrees of freedom could be removed by either freezing or using the unitary

gauge in an intermediate step. If the number of Higgs degrees of freedom is such that this

is not possible, the argument does not hold. Thus, if the gauge symmetry is only partly

broken by the Higgs field, a separation may still exist. Also, if there are surplus Higgs

fields or other BSM structures, the minimum structure may be more complicated, and the

argument may not apply. Finally, when adding the remainder of the standard model, the

10Fixing a gauge is permitted, as only gauge-invariant statements are made, and no approximations are

performed which would break gauge invariance. Thus, the final result is gauge-invariant even though a

gauge has been fixed in an intermediate step.
11The so-called Gribov-Singer ambiguity in gauge-fixing beyond perturbation theory is one of the reasons

why this proof does not pertain to gauge-dependent quantities, and they may, and do, change non-

analytically in the phase diagram, providing the perturbative picture of the BEH-QCD separation.
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situation is more involved, especially due to the presence of the fermion fields, and there

is no similar simple argument. Thus, the phase diagram of more complicated theories has

not yet been classified with the same level of rigor.

7.7.2 The Fröhlich-Morchio-Strocchi mechanism

In the previous subsection the problem arose that the Higgs and W/Z fields are actually

not really gauge-invariant, and in fact the whole Higgs mechanism is not. The question thus

arose what is actually measured when seeing peaks associated with electroweak particles

in cross sections. As before, it is simpler to first discuss only the case with the Higgs

and the gauge bosons and afterwards continuing to include the remainder of the standard

model, which in this case is actually possible. Finally, it will be discussed how this gives

rise to conflicts in BSM theories.

The first realization necessary is that to describe physical objects requires operators

which are manifestly gauge-invariant. For a non-Abelian gauge theory, like the one under

discussion, this is only possible in case of composite operators, i. e. operators involving

more than a single field, since any single-field operators are gauge-dependent.

Such gauge-invariant operators can then only be classified in terms of global quantum

numbers, i. e. in the present case spin and parity as well as the custodial structure. Any

open gauge index would yield that the quantity in question would change under a gauge

transformation.

The simplest example of such an operator would be

O0+(x) = φ†i (x)φi(x),

created from the Higgs field φ and being a scalar and a singlet under the custodial sym-

metry, as well as a gauge-singlet. This operator creates a Higgs and an anti-Higgs at the

same space-time point, and therefore corresponds to a bound state of two Higgs particles,

just like a meson in QCD. It is a well-defined physical state, and therefore observable.

So far, this is formally all correct. However, the immediate question appearing is that

the description of the observed Higgs agrees very well with the one obtained in perturbation

theory, and thus the elementary Higgs. However, such a bound state, as is shown in QCD,

can have widely different properties from its constituents. Thus, the two views seem to be

at odds with each other.

However, there is a resolution for this apparent paradox, the so-called Fröhlich-Morchio-

Strocchi (FMS) mechanism. The mechanism itself will actually not be the explanation, as

it is actually only a description of how to determine perturbatively the mass of this state.
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To do this, consider the propagator of the composite state,

〈O0+(y)†O0+(x)〉 = 〈φ†j(y)φj(y)φ†i (x)φi(x)〉.

As usual, the poles of this correlation function will give the mass of the particle. As the

next step, select a gauge, like the ’t Hooft gauge, in which the vacuum expectation value

vni of the Higgs field does not vanish, and rewrite φi(x) = vni + ηi(x). Then perform a

formal expansion in the quantum fluctuation field η, yielding to leading order

〈φ†j(y)φj(y)φ†i (x)φi(x)〉 = v4 + v2〈η†i (y)ηi(x)〉+O
((ηi

v

)3
)
.

Neglecting the higher order contributions, the only pole on the right-hand side is the one of

the propagator of the fluctuation field. Thus, to this order, the masses coincide12, and the

bound state has the same mass as the elementary particle, showing why the perturbative

result provides the correct mass for the observable state. Thus, this justifies why it is

correct to use perturbation theory, and the perturbative spectrum, to obtain the mass of

the Higgs13.

In the same way, it is possible to construct a non-perturbative partner state for the

gauge bosons,

Oa1−µ(x) = trτaX†DµX (7.7)

X =

(
φ1 −φ∗2
φ2 φ∗1

)
,

which is a custodial triplet, and a gives the corresponding index. Using that the vacuum

expectation value is constant, this yields

〈Oa†1−µ(y)Oa1−µ(x)〉 ∼ v4g2〈W i
µ(y)W µ

i (x)〉+O
(η
v

)
and thus the mass of the W and Z are obtained, as well as the correct number of states,

trading a custodial triplet for a gauge triplet. Note that because the masses of the gauge

bosons are both scheme-invariant and gauge-parameter-invariant in perturbation theory

in ’t-Hooft-type gauges, this is actually an even stronger statement than for the Higgs

itself.

12Beyond leading order in the weak coupling constant the mass of the Higgs becomes scheme-dependent.

It is then necessary to do this comparison in the pole scheme.
13The validity of the expansion, and whether for a given set of parameters, the expansion is actually

valid is a dynamical question, and requires to determine both sides non-perturbatively, or the left-hand-

side by experiment. It works for the ones in the standard model, but by far not for all possible parameter

sets of the theory.
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It is possible to construct also operators for other quantum numbers, but only these

two channels have a leading non-zero contribution given by one of the elementary fields.

This also implies that in this expansion there are no other bound states than just these

two14.

This shows why the perturbative predictions provide the correct results. In fact, also

scattering processes are dominated by the higher-order perturbative corrections, if the ratio

η/v is sufficiently small. Hence, to a very good approximation a perturbative description

of this theory can be sufficient. Given the good accuracy of the perturbative description of

the most recent experimental results, the non-perturbative corrections for the investigated

processes are at most at the percent level, at least at currently accessible energies.

7.7.3 Adding the rest of the standard model

Adding the remainder of the standard model is possible, but requires a careful distinction

of the various cases. Right-handed neutrinos, if the neutrinos are also Dirac fermions, are

anyhow gauge singlets, and therefore pose no problems.

For left-handed (or Majorana) neutrinos and leptons a problem arises. These particles

are not confined, and carry a weak charge. However, a similar solution exists as for the

Higgs and the weak gauge bosons. Form the composite operator

O 1
2
(x) = φi(x)ψi(x),

where the field ψi(x) is a (left-handed) fermion field of any of the above enumerate types.

Because the Higgs is a scalar, this hybrid is still a spin-1/2 fermion. The correlation

function expands then as

〈(φi(y)ψi(y))†φj(x)ψj(x)〉 ∼ v2〈ψi(y)†ψi(x)〉+O
(η
v

)
,

and therefore to the elementary fermion propagator, showing in the same way that the

bound state has the same mass as the elementary fermion. Again, beyond leading order,

the elementary mass has to be evaluated in the pole scheme.

Colored particles are forced asymptotically into hadrons due to confinement. Hadrons,

like mesons, which are also with respect to the weak gauge symmetry singlets are therefore

gauge-invariant. However, this is not the case for those states which are intrageneration-

non-flavor-singlets, like nucleons. Since intrageneration flavor is actually the weak gauge

charge - up and down are gauge indices - these are again exchanged for custodial indices

working very much as for the vector bosons and leptons, but on the level of hadrons.

14Whether this is true beyond leading order is still an open question. Since no formal proof exists, this

requires to perform actual non-perturbative calculations, which is quite non-trivial.
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Somewhat trickier is the situation with the U(1) hypercharge, or the electric charge.

Electric charge is an observable quantity, in contrast to the weak (and color) charge. The

reason for this originates from the Abelian nature of this interaction. Given a field φ(x)

with an Abelian charge, it is possible to construct an operator of type

exp

(
i

∫
dsµAµ

)
φ(x)

where Aµ is an Abelian gauge field, and the path is a closed path15 originating at infinity

and ending at x. Such a phase factor is also called a Dirac phase. This object is ac-

tually gauge-invariant, but carries a conserved charge, the electromagnetic charge. This

is possible for an Abelian gauge theory, because the gauge fields are not matrix-valued,

and therefore commute, which is the key in making the phase factor cancel in any gauge

transformation. In a non-Abelian gauge theory, it is no longer possible16 to construct such

a canceling phase factor, and hence there is no gauge-invariant charge. Physically, this

corresponds to an infinite superposition of particles described by the field φ and arbitrary

many photons, and thus it is a combination of the particle and a photon cloud, which

creates a state which is both gauge-invariant and charged. But again, this is only possible

for Abelian symmetries17.

This completes the standard model.

7.7.4 Beyond the standard model

The same considerations apply beyond the standard model. However, the key in the

standard model was the global custodial symmetry could become a proxy for the weak

gauge interaction, because it is the same group. Thus, a problem with multiplicities may

arise, not to mention dynamical effects, if this is no longer the case.

Indeed, in some toy theories, like toy-GUTs with SU(N > 2) with a single Higgs field in

the fundamental representation, this leads to qualitative differences in the physical spectra

and the spectrum of elementary particles, which becomes arbitrarily bad with increasing

N . The reason is that in this case only a U(1) custodial symmetry exists, which creates

no non-trivial degeneracies, and especially not the triplet structure needed for the weak

gauge bosons. This can be seen by considering the generalization of (7.7). Because there

15This is somewhat symbolically, and requires a more precise formulation to avoid a path dependence.
16There is no full proof yet, but the evidence is overwhelmingly substantial.
17There are non-Abelian gauge theories for which a finite number of gauge bosons and matter fields

create gauge-invariant states. These are, however, conventional bound states, and especially do not create

a physical gauge charge.
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is no non-trivial custodial symmetry, the corresponding operator is

Oµ = φ†Dµφ.

The correlator then expands to leading order to

〈O†µOµ〉 = nanb〈W a
µW

b
µ〉+O

(η
v

)
,

where n is the direction of the vacuum expectation values. Herein n is the direction of

the vacuum expectation value, and thus only the correlator 〈WN
µ W

N
µ 〉 in the direction

of the Higgs vacuum-expectation value contributes. However, following the perturbative

construction of section 7.2, it turns out that this is only the most massive gauge boson

in the spectrum. Hence, especially no massless vector particles, which could play the role

of photons or gluons, appear, and only a single state is present. This is not changed by

higher orders. Thus, a different low-energy spectrum arises.

In other theories, different results arise, but generically such mismatches appear. But

this does not need to happen. E. g. for the 2HDMs of section 6.1 no conflict, as in the

standard model, arises. It is not yet generally clear, what is the decisive structural feature

leading to agreement or disagreement between the perturbative and physical spectrum, but

this is likely connected to the combination of gauge group, custodial group, and available

representations.

The bottom line is that the possibility that a purely perturbative determination of

the observable spectrum can fail. This implies that a careful (re)analysis of models are

necessary to ensure that their observable spectrum can coincide with what is already

known, the spectrum of the standard-model. This remains to be done for most of the

theories discussed in this lecture.



Chapter 8

Large extra dimensions

As will be seen, the large difference in scale between gravity and the standard model can be

explained by the presence of additional dimensions. Also, string theories, as discussed in

chapter 9.1, typically require more than just four dimensions to be well-defined. Such extra

dimensions are not (yet) seen, and therefore their effects must not (yet) be detectable. The

simplest possibility to make them undetectable with current methods is by making them

compact, i. e., of finite extent. Upper limits for the extensions of such extra dimensions

depend strongly on the number of them, but for the simplest models with two extra

dimensions sizes of the order of micrometer are still admissible. Such cases with extensions

large compared to the Planck length are called large extra dimensions. They should be

contrasted to the usually small extensions encountered in string theory, which could be

of the order of the Planck length. Here, the observable consequences of such large extra

dimensions will be discussed.

Models of large extra dimensions separate in various different types. One criterion

to distinguish them is how the additional dimensions are made finite, i. e. how they are

compactified. There are simple possibilities, like making them periodic, corresponding to

a toroidal compactification, or much more complicated ones like warped extra dimensions.

The second criterion is whether only gravity can move freely in the additional dimensions,

while the standard model fields are restricted to the uncompactified four-dimensional sub-

manifold, then often referred to as the boundary or a brane, or if all fields can propagate

freely in all dimensions.

Here, a number of these models will be discussed briefly, and one particular simple

example also in a certain depth to introduce central concepts like the Kaluza-Klein tower

of particle states, in some detail.

One thing about these large extra dimensions is that they can also be checked by tests

of gravity instead of collider experiments. If there are 4 + n dimensions, the gravitational

174
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force is given by

F (r) ∼ G4+n
N m1m2

rn+2
=

1

Mn+2
s

m1m2

rn+2
,

where G4+n
N is the 4+n-dimensional Newton’s constant and correspondingly Ms the 4+n-

dimensional Planck mass. If the additional n dimensions are finite with a typical size L,

then at large distances the perceived force is

F (r) ∼ 1

Mn+2
s Ln

m1m2

r2
=
GNm1m2

r2
,

with the four-dimensional Newton constant GN . Thus, at sufficiently long distances the

effects of extra dimensions is to lower the effective gravitational interactions by a factor

of order Ln. On the other hand, by measuring the gravitational law at small distances,

deviations from the 1/r2-form could be detected, if the distance is smaller or comparable

to L. This is experimentally quite difficult, and such tests of gravity have so far only

been possible down to the scale of about two hundred µm. If the scale M4+n should be of

order TeV, this excludes a single and two extra dimensions, but three are easily possible.

Indeed, string theories suggest n to be six or seven, thus there are plenty of possibilities.

In fact, in this case the string scale becomes the 4 + n-dimensional Planck scale, and is

here therefore denoted by Ms. The following will discuss consequences for particle physics

of these extra dimensions.

8.1 Separable gravity-exclusive extra dimensions

8.1.1 General setup

The simplest example of large extra dimensions is given by theories which have n additional

space-like dimensions, i. e., the metric signature is diag(−1, 1, ..., 1). Furthermore, these

additional dimensions are taken to be separable so that the metric separates into a product

g4+n = g4 × gn.

Furthermore, for the additional dimensions to be gravity exclusive the other fields have

to be restricted to the 4-dimensional brane of uncompactified dimensions. In terms of the

Einstein equation (2.18) this implies that the total energy momentum tensor TMN takes

the form

TMN =

(
Tµν 0

0 0

)
, (8.1)
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where the indices M and N count all dimensions and µ and ν only the conventional

four. Furthermore, in such models the extra dimensions are compact, having some fixed

boundary conditions.

The Einstein-Hilbert action is then

SEH = − 1

2G
1+n/2
N4+n

∫
d4+nz

√
|g4+n|R4+n (8.2)

with again the generalized Newton constant GN4+n, the metric g and the Ricci scalar R.

The action then factorizes as

SEH = −M
n+2
s

2

∫
d4+nz

√
|g4+n|R4+n = −1

2
M2

P

∫
d4x
√
−g4R4.

The actual gravity mass-scale Ms is related to the perceived 4-dimensional Planck scale

by

MP = Ms(2πRMs)
n
2 = Ms

√
VnMn

s ,

with the volume of the additional (compact) dimensions Vn, which have all the same

compactification radius R. For an Ms of order 1 TeV, the compactification radius for n = 2

to n = 6 ranges from 10−3 to 10−11 m, being at n = 2 just outside the experimentally

permitted range.

Treating the theory perturbatively permits to expand the metric as

gMN = ηMN +
2

M
1+n

2
s

HMN ,

with the usual Minkowski metric ηAB = diag(−1, 1, ..., 1) and the metric fluctuation field

HAB. The Einstein-Hilbert action is then given by an integral over the Einstein-Hilbert

Lagrangian

LEH = −1

2
HMN∂

2HMN+
1

2
HN
N ∂

2HM
M−HMN∂M∂NH

L
L+HMN∂M∂LH

L
N−

1

M
1+n

2
s

HMNTMN .

Since the additional dimensions are finite, it is possible to expand hMN in the additional

coordinates in a series of suitable functions fn, embodying the structure of the extra

dimensions

HMN(x0, .., x3, x4, ..., x3+n) =
∑

m1,...,mn

fn(k4
m1,...,mn

x4 + ...k3+n
m1,...,mn

x3+n)HMN(x0, ..., x3)

km1,..,mn =
(
K
(πm1

R

)
, ..., K

(πmn

R

))T
The energies k can be related in the usual way to masses, k2

m = m2
KKm, as in quantum

mechanics. These are the Kaluza-Klein masses. The field hMN for a fixed mass can then
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be decomposed into four four-dimensional fields. These are a spin-2 graviton field Gµν ,

i = 1, .., n − 1 spin-1 fields1 Aiµ, i = 1, ..., (n2 − n − 2)/2 scalars Si and a single further

scalar h. These obey equations of motions

(∂2 +m2
KKn)Gn

µν =
1

MP

(
Tµν +

(
∂µ∂ν
m2
KKn

+ ηµν

)
T λλ
3

)
(8.3)

(∂2 +m2
KKn)Aniµ =

(∂2 +m2
KKn)Sin = 0

(∂2 +m2
KKn)hn =

√
3(n−1)
n+2

3MP

T µµ .

Soft modes are the zero-modes of the Fourier-transformed fields, i. e., those with m2
KK =

0. The fields A and S do not couple to the standard model via the energy momentum

tensor, and the graviton coupling is suppressed by the Planck mass, in agreement with the

observation that gravity couples weakly. This also applies for the radion h, which couples to

the trace of the energy-momentum tensor, corresponding to volume fluctuations. However,

because of its quantum numbers, it will (weakly) mix with the Higgs.

Finally, since mKKn ∼ kn ∼ n/R for a mode n, the level splitting of the Kaluza-Klein

modes is associated to the size of the extra dimensions. The splitting is thus given by

δmKK = mKKn −mKKn−1 ∼
1

R
≈ 2πMs

(
Ms

MP

) 2
n

.

which is generically of order meV for n = 2 to MeV for n = 6. Thus, to contemporary

experiments with their limited resolution of states the tower of Kaluza-Klein states will

appear as a continuum of states.

8.1.2 An explicit example

The simplest example of the general discussion before has n additional dimensions with

the same size R/(2π) and periodic boundary conditions, i. e., they are torus-like, and the

total space is M4 × T n, with M denoting a Minkowski space endowed with a metric g.

First consider only the gravity sector. To exhibit the general properties it is useful to

make a perturbative expansion. In this case, the metric is rewritten as

gMN = ηMN + 16πG4+n
N HMN ,

1Originally, Kaluza and Klein in the 1930s aimed at associating this field with the electromagnetic one,

which failed.
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where g is the full 4 + n-dimensional metric, η is the 4 + n-dimensional flat Minkowski

metric diag(−1,+1, ...,+1), h denotes the 4+n-dimensional metric fluctuation field, G4+n
N

is the 4 + n-dimensional Newton constant, and α and β will run2 in the following from

1 to 4 + n. Assuming G4+n
N h to be only a small correction to η permits to expand the

higher-dimensional Lagrangian of general relativity

L =

√
| det g|R

(16πG4+n
N )2

,

with the Ricci scalar

R = RM
M

RMN = ∂KΓKMN − ∂MΓKNK + ΓKLKΓLMN − ΓKLNΓLMK

ΓKMN =
1

2
(∂NgKM + ∂MgKN − ∂KgMN) .

The linearized form is then

L =
1

4

(
∂KHMN∂KHMN − ∂KHM

M ∂KH
N
N − 2∂KH

KM∂NHNM + 2∂KH
KM∂MH

N
N

)
and higher-order terms have been neglected.

This Lagrangian is invariant under the coordinate transformation

HMN → HMN + ∂MζN + ∂NζM , (8.4)

for some arbitrary functions ζM satisfying ∂2ζM = 0. For simplicity, this gauge freedom

will be fixed to the de Donder gauge, imposing

∂M
(
HMN −

ηMN

2
HL
L

)
= 0, (8.5)

and furthermore HM
M = 0. With this, the equation of motion for HMN becomes

∂2
(
HMN −

ηMN

2
H
)

= 0. (8.6)

Counting the number of constraint equations yields3 that only (3+n)(4+n)/2−1 degrees

of freedom are left unfixed. Simply speaking, there are 4 + n constraints imposed by the

de Donder condition, and further D conditions could be imposed on the ζ functions due

to the arbitrariness still left. Thus the number of degrees of freedom for the graviton field

2The summation convention for these and other indices will always be over their respective subset only.
3Note that no space-time torsion appears in a perturbative treatment and that then hαβ is symmetric.

It must also represent a (classically) massless field.
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in 4 + n dimensions. Hence, in four dimensions there are two, and in five dimensions five,

and so on.

This field HMN is then split as

HMN =
1√
Vn

(
hµν + ηµνφii Aµi

Aνj 2φij

)
MN

, (8.7)

where i, ... denotes compactified dimensions, and µ, ... the ordinary four space-time di-

mensions, and Vn is the volume (2πR)n of the compactified dimensions. This yields a

redistribution of the degrees of freedom to one spin-2 field h, n four-dimensional (massive)

spin-1 vector fields, and n(n + 1)/2 scalars. Since the additional dimensions are just T n,

the expansion functions are the Fourier functions. This yields

hµν(xµ, xi) =
∑
~n

h~nµν(xµ) exp

(
2πinix

i

R

)
Aµi(xµ, xi) =

∑
~n

A~nµi(xµ) exp

(
2πinix

i

R

)
φij(xµ, xi) =

∑
~n

φ~nij(xµ) exp

(
2πinix

i

R

)
,

where the vector ~n contains the Fourier mode number in each extra dimension i. Defining

the Kaluza-Klein mass of a state as

m2
~n =

4π~n2

R2

and inserting the mode-expanded field (8.7) in the equation of motion (8.6) yields

(∂2 +m2
~n)
(
h~nµν −

ηµν
2
hρ~nρ

)
= 0

(∂2 +m2
~n)A~nµi = 0

(∂2 +m2
~n)φ~nij = 0.

The zero modes with ~n = ~0 are massless. They correspond therefore to the graviton,

n(n+1)/2 massless scalars and n massless gauge bosons. In addition, there are an infinite

tower, the so-called Kaluza-Klein tower, of massive spin 2, spin 1, and spin 0 states with

masses m~n. Of course, the number of degrees of freedom has not truly become infinite,

but it merely appears that the fifth dimension has been traded for this tower.

The effective coupling of matter to this gravitational field can now be directly discussed

with these four-dimensional fields. In the present case, the matter fields are only permitted
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to propagate in the four-dimensional space-time. Their coupling to gravity is therefore

minimally given by∫
dnx

∫
d4x
√∣∣det

(
ηµν + 16πG4+n

N (hµν + ηµνφ)
)∣∣L,

where φ = φii and the details of the standard model particles are encoded in L, and none of

them has a dependence on the xi. It is useful to go to Fourier space. In this case the integral

over the n extra dimensions becomes a sum over the Kaluza-Klein modes. In addition, a

volume factor for the extra dimensions appears, V n. This factor can be combined with

the (small scale) G4+n
N as V

−1/2
n G4+n

N to yield the large scale GN , the ordinary Newton

constant of four-dimensional physics.

Performing then an expansion in 16πGN to leading order yields∑
~n

∫
d4x (1 + 8πGNh+ 32πGNφ)

×
(
L+ (ηµν − 16πGNhµν − 16πGNηµνφ)

δL
δgµν

(gµν = ηµν)

)
≈

∑
~n

∫
d4x

(
L+

δL
δgµν

(2ηµν − 16πGN(hµν + φηµν)) + L (8πGNhµν + 32πGNφηµν)

)
=

∑
~n

∫
d4x

(
L+ ηµν

δL
δgµν

+ 16πGN

(
(hµν + φηµν)

(
ηµνL − 2

δL
δgµν

)))
,

using

1 =
1

4
ηµνηµν

h = ηµνh
µν .

In this the energy-momentum tensor

Tµν =

(
−ηµνL+ 2

δL
δgµν

(gµν = ηµν)

)
(8.8)

is recognized, yielding the final result

S − 8πGN

∑
~n

∫
d4x

(
hµνTµν + φT µµ

)
.

Herein S denotes the action of the fields without gravitational interaction, which is ob-

tained from the first two terms and resuming the expansion. The second term gives the

coupling to the effective graviton, which is only mediated by the graviton and the trace

of the φij, which is called in this context the dilaton, and in general before radion. Thus,
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as discussed generally above, the gauge fields decouple in this approximation completely

from the dynamics, and also all but effectively one of the scalar fields.

Before proceeding, it is worthwhile to take a look at the physical contents of the theory.

The gravitative fields are still depending on the choice of coordinate system inherited from

Hαβ and given by the transformation (8.4). If aiming at a description in terms of effective

particles, this is rather tedious. In particular, gauge-fixing and the introduction of gauge-

fixing degrees of freedom would be necessary. It is therefore useful to define instead physical

fields, which are invariant under the coordinate transformations.

Without going into details, the field redefinitions for the Fourier modes4

ωµν = hµν −
iniR

2π~n2
(∂µAνi + ∂νAµi)− (P T

ij + 3PL
ij )

(
2

3

∂µ∂ν
m2
~n

− ηµν
3

)
φij

Bµi = P T
ij

(
Aµj −

inkR

π~n2
∂µφjk

)
Φij =

√
2

(
P T
ikP

T
jl +

1

1− n

(
1−

√
2 + n

3

)
P T
ijP

T
kl

)
φkl (8.9)

P T
ij = δij −

ninj
~n2

PL
ij =

ni
nj
~n2

yields fields which are indeed invariant under coordinate transformations. As an example

this will be checked for the scalar field. Since the extra dimensions are now compact, also

the arbitrary functions ζi are expanded in Fourier modes, yielding

ζα(xµ, xi) =
∑
~n

ζ~nα(xµ) exp

(
2πinix

i

R

)
.

The scalar fields transform as

φij → φij + ∂iζj + ∂jζi. (8.10)

Since the extra dimensions are discrete, the derivatives ∂i with respect to extra-dimensional

coordinates can be replaced after Fourier transformation by ni. This yields

φ~nij → φ~nij + niζ
~n
j + njζ

~n
i .

As a consequence, zero modes do not change since for these ni = 0. For non-zero ~n, the

relation

niP
T
ij = ni

(
δij −

ninj
~n2

)
= nj − nj

~n2

~n2
= 0

4Some care has to be taken for the zero modes.
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holds. Thus, inserting the transformed field (8.10) into (8.9), the contribution from niζj

drop out, confirming that Φij is invariant under coordinate transformations. The argu-

ments for Bµ and ωµν are similar, though more lengthy. In particular, also the zero modes

of both fields are invariant without redefinition. Hence, a replacement is only necessary

for non-zero modes.

This is simple for the φ field, since only its trace appears. Tracing the expression (8.9)

yields

P T
ijφ

~n
ji =

3

2

√
2

3(n+ 2)
Φii.

The expression P T contains a Kronecker-δ, yielding the trace of φ. The expressions ni are

just derivatives in the compact dimensions. By partial integration, and using that Tµν is

a conserved quantity, these do not contribute to the integral5. Thus, up to the pre-factor,

φ can be replaced by Φ in the Lagrangian.

For the contribution from hµν , it should first be noted that the contribution involving

the Aµ are proportional to ni, which is effectively a derivative once more and thus can

be dropped. The term involving the φ is again either a derivative, which also vanishes,

and terms containing either another δij or ni. Then, only the trace of δij thus remains,

multiplied with ηµν . But this just implies a further contribution to the T µµ φ term. After

once more replacing the φ with the Φ and sorting the pre-factors, the final Lagrangian in

terms of the physical fields is

∑
~n

(
L+ ηµν

δL
δgµν

+ 8πGN

(
(ωµν + ξ~nΦηµν)

(
ηµνL − 2

δL
δgµν

)))
. (8.11)

where

ξ~n =

{
1 for ~n = ~0√

2
3(n+2)

else
.

Thus, the only remaining ingredient is to specify the matter system to which the theory

is coupled to and determine the energy-momentum tensor.

The (symmetrized) energy-momentum tensor for a theory of a gauge-field Cµ, a scalar

5Here it has been used that the compact dimension is just a torus. For more complicated spaces, pos-

sibly with non-trivial boundary conditions, the vanishing of boundary terms has to be checked explicitly.
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∆ and a fermion ψ is given by6

Tµν = (−ηµνηρσ + ηµρηνσ + ηµσηνρ)(Dρ∆)†Dσ∆ + ηµνm
2
∆∆†∆

+
1

4
ηµνF

a
ρσF

aρσ − F aρ
µ F a

νρ

−ηµν
(
ψ̄iγρDρψ −mψψ̄ψ +

i

2
∂ρ(ψ̄γ

ρψ)

)
+
i

2
ψ̄(γµDν + γνDµ)ψ

− i
4

(∂µψ̄γνψ + ∂νψ̄γµψ)

Dµ = ∂µ + igCa
µτ

a

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν

where τa are the generators of the gauge group. Inserting, e. g., the scalar sector’s energy-

momentum tensor into (8.11) yields the description of the interaction of the scalar with

the gravitational field for a mode ~n as

1

16πGN

L~n = −
(
ω~nµν −

1

2
ηµνω

~nρ
ρ

)
(Dµ∆)†Dν∆− 1

2
h~nµµ m

2
∆∆†∆

+ξ~nΦ~n
(
(Dµ∆)†Dµ∆− 2m2

∆∆†∆
)
,

and similarly for the gauge and fermion sector. With standard methods, it is possible

to obtain Feynman rules and then calculate the influence of the additional particles to

cross-sections. The generic features of such contributions will be discussed next.

For example, at tree-level the decay of a non-zero Kaluza-Klein mode of the graviton7

to two massless gauge bosons is just obtained from the tree-level coupling. The calculations

yield straightforwardly a decay width of

Γω→γγ = Nc
(16πGNm

~n2
ω )

160π
.

To obtain numerical values, it is necessary to specify GN further. Generically, this 4 + n-

dimensional Planck constant is given by the combination

1

GN

= Mn+2
s Rn,

and Ms ∼ 1/G4+n
N is the intrinsic scale of the process causing the extra dimensions to be

compactified, e. g., the scale of the string theory. This scale can then be rather low, if the

compactification radius is sufficiently large. Multiplying with the n-dimensional volume

6The derivation, and why it has to be symmetrized, is a rather lengthy discussion, and can be found

in most texts on relativistic field theory, and thus will be skipped here.
7Note that the couplings to the zero-modes is generically suppressed by the gravitational coupling.
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factor is what makes from the small scale Ms a large scale GN perceived in four dimensions.

This also sets limits for the size of extra dimensions if Ms is fixed. Setting, e. g., Ms to

about 1 TeV, the size of R varies between 10−4 eV (about a mm) for two additional extra

dimensions8 to a couple of hundred MeVs at n = 6 or 7, which is the number of additional

dimensions suggested by string theories.

Entering its value of about 2.4×1018 GeV gives for the decay into two photons (Nc = 1)

a life-time of

τω→γγ ≈ 3× 109

(
100 MeV

m~n
ω

)3

years.

Since (m~n
ω)2 = 4π~n2/R2 it now depends on the size of the additional dimensions for the

final result. R compatible with precision measurements of small-distance gravity are of the

size of eV to much larger scales, making a life-time of larger than the age of the universe

easily possible, and thus the Kaluza-Klein state essentially stable. This makes it then also

a viable dark-matter candidate.

A corresponding decay to gluons requires a follow-up hadronization, and therefore

corresponds to at least a decay into two pions. Thus, this decay channel only opens up

for masses starting at a few hundred of MeVs of ω. If the mass becomes even larger, there

are also alternative couplings for real decays possible. First follow decays to light quarks

and leptons, and then finally to heavy quarks and electroweak gauge bosons and finally to

the Higgs. This permits a decrease of the life-time down to fractions of a year, but, very

generically, the particle is still stable on collider time-scales, if not the compactification

radius becomes very small.

There is an additional interesting possibility. The masses of the Kaluza-Klein tower of

states is evenly spaced. Thus even, if the mass of the lowest state is small, say a couple of

MeV, a highly excited Kaluza-Klein state could decay to it under the emission of a ladder

of particles with energies of the order of the splitting. This could, under certain kinematic

conditions, give a quite interesting signature of a shower of particles and a final missing

energy at the endpoint of the shower in a collider.

The situation for the dilaton Φ is somewhat different. Since it couples to the trace

of the energy-momentum tensor, it turns out not to have a tree-level coupling to gauge

bosons. Thus it cannot, as the graviton, decay into two photons, and thus would be

absolutely stable if light enough. If somewhat heavier, it could decay into two light leptons

or quarks, but would have a very long life-time, as this becomes suppressed as 1/(m2
fmΦ)

due to kinematics, with mf the fermion mass. Thus, the decay to neutrinos is negligible,

which would be the only real decay channel mandatory open by the maximum size of R

8One additional extra dimension gives a size significantly larger than a mm, which is excluded by

experiments.
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for any reasonable number of extra dimensions in accordance with experiments. If R is

then sufficiently large, but not large enough to permit decay into two light quarks (and

consecutively to two pions), the dilaton is essentially stable on the time-scale of the age

of the universe, making it another dark matter candidate.

Another interesting effect of the presence of the Kaluza-Klein tower of states is the

appearance of effective four-fermion couplings. For example, if four fermions couple by

the exchange of a state ~n dilaton9, the corresponding tree-level matrix element is given by

M = −n− 1

n+ 2

4πC4

3
mf1mf2 f̄2f2f̄1f1. (8.12)

The function C4 encodes the details of the exchanged dilaton, and reads

C4 =
(16πGN)2

8π
D(q2, ~n) =

(16πGN)2

8π

1

q2 −m~n2
Φ + iε

,

where q2 is the exchanged momentum. The problem is now that there is not only one

possible exchange but instead an infinite tower of Kaluza-Klein states can be exchanged.

Hence, the total amplitude is given by a sum over ~n. This is particularly problematic,

as in most cases the level spacing of Kaluza-Klein states are very narrow, and thus the

corresponding masses are quite similar, given similar contributions to C4, in particular if

q2 is much larger than 1/R2.

In fact, for the purpose of observing Kaluza-Klein states at a collider like the LHC

the exchanged four-momentum q2 can be safely taken to be much larger than 1/R2, if the

string scale MS should be at the TeV scale, and the number of extra dimensions be small,

not more than ten. Then the level spacing is of order of (a couple of) MeV, while q2 is

deep in the GeV or higher range. It is then a rather good approximation to instead of

performing a sum over all states to do an integration, i. e.,

D(q2) =
∑
~n

D(q2, ~n)→
∫
dm2

~nρ(m2
~n)D(q2, ~n)

with the density of Kaluza-Klein states

ρ(m2
~n) =

Rnm2
~n

(4π)
n
2 Γ
(
n
2

) ,
which is just the level-density for an n-dimensional sphere for states spaced as ~n2. The

problem is now that the integral will diverge with this level density. Thus it requires

regularization, and in principle renormalization. A common assumption is once more

9In principle, this interferes with the exchange of a graviton and standard model processes. These are

neglected for the sake of simplicity, and do not change generically the result.
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that the compactification is due to an underlying string theory. This can be most easily

modeled by an explicit upper cutoff by the string scale M2
s , and thus at the level of TeV.

The integral can then be performed, yielding

D(q2) =
(q2)

n
2
−1Rn

Γ
(
n
2

)
(4π)

n
2

(
π − 2iI

(
Ms√
q2

))

I(x) =

{
1
2

ln(x− 1) +
∑n

2
−1

k=1
x2k

2k
n even

−1
2

ln
√
x+1√
x−1

+
∑n−1

2
k=1

x2k−1

2k−1
n odd

.

The real part comes from resonant production of real Kaluza-Klein states, while the imag-

inary part stems from the continuum of other states. If MS is large compared to q2, which

occurs at the LHC if the string scale is several TeV, the expression can be approximated

by

D(q2) ≈ −iRn


ln
M2
s

q2

4π
n = 2

2

(n−2)Γ(n2 )
Mn−2
s

(4π)
n
2

n > 2
.

Thus, the effectively induced four-fermion coupling is almost energy-independent, and

looks like a contact interaction. This will give rise to corrections to the standard model

processes. Combining the expression for D(q2) with the original matrix element (8.12)

show that these additional interactions scale as 1/M4
S, and thus are strongly suppressed.

However, if the large extra dimensions would not be present, the corresponding corrections

due to gravity would be suppressed by the Planck mass instead, and therefore effectively

irrelevant. The presence of the larger extra dimensions amplifies the effect of gravity in

this case by sixty orders of magnitude. Thus, looking for signatures of this type has been

done at experiments, in particular in two-to-two fermion scattering processes, providing

further constraints on the presence of extra dimensions10. Similar calculations can be

done for other processes, like the scattering of fermions to weak gauge bosons with their

subsequent decays, and similar corrections arise.

A serious problem arises when the universally coupling Kaluza-Klein modes show up

in processes forbidden, or strongly suppressed, in the standard model, like proton decay.

The standard model limit for proton decay by an effective four fermion vertex is about

1015 GeV, thus much larger than the comparable effect from the larger extra dimensions

if Ms should be of order TeV. Thus this leads to a contradiction if not either MS is again

set very large (or the number of dimensions n), and thus large extra dimensions become

once more undetectable, or additional custodial physics is added to this simple setup. This

usually leads, like in the case of technicolor, to rather complex setups.

10Of course, such corrections appear generically in almost all theories, see e. g. technicolor, and thus

measuring them provides immediately constraints on many theories simultaneously.
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8.1.3 Black holes

A rather popular possible signature for large extra dimensions are the production and

decay of black holes. The Schwarzschild radius of a 4 + n-dimensional black hole for n

compact dimensions characterized by the 4 + n-dimensional Planck scale Ms is given by

RB ∼
1

Ms

(
MB

Ms

) 1
n+1

,

with the black hole mass MB. If in a high-energy collisions two particles with center-

of-mass energy s larger than M2
s come closer than RB, a black hole of mass MB ≈ s is

formed. The cross-section is thus essentially the geometric one,

σ ≈ πR2
B ∼

1

M2
s

(
MB

Ms

) 2
n+1

.

It therefore drops sharply with the scale Ms. However, its decay signature is quite unique.

It decays by Hawking radiation, i. e., by the absorption of virtual anti-particles, making

their virtual partner particles real. The expectation value for the number of particles for

the decay of such a black hole is

〈N〉 ∼
(
MB

Ms

)n+2
n+1

,

and therefore rises quickly when the energies of the colliding particles, and thus the mass

of the produced black hole, significantly exceeds the scale of the compactified dimensions.

8.2 Universal extra dimensions

The alternative to gravity-exclusive extra dimensions are such which are accessible to all

fields equally. This implies that the theory is fully Poincare-invariant prior to compactifi-

cation in contrast to the previous case. As a consequence, such theories can in general not

resolve the hierarchy problem. However, they provide possibilities how anomalies can be

canceled, e. g. in six dimensions, without need to assign specific charges to particles. In

addition, one of the Kaluza-Klein modes can often serve as a dark matter candidate. On

the other hand, since particle physics has been tested to quite some high energy with no

deviations observed, this imposes severe restrictions on the size of extra dimensions, being

usually of order inverse TeV, and thus sub-fermi range, rather than µm.

When compactifying the additional dimensions in such theories care has to be taken

when imposing the boundary conditions. The reason is that fermions in a box with anti-

periodic boundary conditions will develop an effective mass of order 1/L, where L is the
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compactification scale. This is the same process as occurs at finite temperature, and is

due to the fact that only odd frequencies in a Fourier-expansion of a fermion field have the

right periodicity, (2n+1)L, instead of 2nL as for bosons, as required by the spin 1/2 nature

of fermions. Therefore, chiral boundary conditions are required. The mass-spectrum of all

standard model particles for a compactification along a single extra dimension with open

(chiral) boundary conditions, a so-called orbifold, is then given by

M2
j =

π2j2

L2
+m2

0,

where m0 is the mass of the standard model particle, and its Kaluza-Klein excitations

have mass Mj, and j counts the excitation.

The advantage of such universal extra dimensions is that they can provide a natural

way of explaining the (flavor) hierarchies of the standard model by localizing the fermions

on branes inside the bulk instead of the standard model brane. This idea will be repeated

similarly in section 8.3 for warped extra dimensions. Here, it is sufficient to have a look

at the action of a fermion propagating in the bulk described by the action

S =

∫
d4xdyψ̄(iΓµ∂µ + iΓ5∂y + φ(y))ψ

where the Γµ denote the 4× 4 five-dimensional version of the Dirac γ matrices11,

Γ0...3 = γ0...3 =

(
0 σ0...3

σ̄0...3 0

)

Γ5 =

(
−i 0

0 i

)
σ = (1, ~σ)

σ̄ = (1,−~σ).

The field φ(y) denotes the brane, and its interaction with the fermions will localize them

on the brane.

The idea is now to separate the fermion field as

ψ(x, y) =
∑
n

(fL(n, y)ψL(n, x) + fR(n, y)ψR(n, x))

iΓ5ψL = ψL

iΓ5ψR = −ψR
11In an odd number d of dimensions there exist two possible inequivalent representations of the Dirac

algebra, one is d− 1-dimensional, as chosen here, and one is d+ 1-dimensional. The latter is not lending

itself easily for the purpose of obtaining the standard model on a brane.
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which implies that ψL and ψR are left-handed and right-handed fermions with respect to

four dimensions. A simple version of a brane is given by φ(y) = 2µ2y. It is then possible

to get such a decomposition if fL,R are chosen as

fL(n, y) = (−∂y + φ(y))nfL(0, y)

fR(n, y) =
1

µ
(∂y + φ(y))fL(n, y)

fL,R(0, y) =

√
µ√
π
2

exp

(
∓
∫ y

0

φ(y′)dy′
)
.

To have a normalizable mode, fL,R(0,∞) must be finite, leaving only the left-handed so-

lutions for now. Right-handed fermions thus require localization on a different brane, e. g.

with φR = −φ. The remaining left-handed zero-mode of the fermion is thus exponentially

localized at y = 0 due to this pre-factor function. Entering this expression into the Dirac

equation shows that the zero-mode is furthermore massless. Choosing other functions per-

mits to have fermions localized at different values of y. The non-zero modes have, as usual,

a large mass of order the inverse size of the dimension, and are thus not (yet) observable.

The advantage is then the following. Assume that (only) the Higgs field h(x) is not

propagating into the extra dimension. Furthermore, take the right-handed fermions to

be localized at a different position y = r. This setting is called split fermions. The

standard-model Yukawa coupling then reads with a coupling matrix C5∫
d4xdy(h(x)ψTL(x, y)C5ψR(x, y) + h.c.)

j=0
=

∫
d4xh(x)ψL(0, x)ψR(0, x)

∫
dyfL(0, y)fR(0, y) = e−

µ2r2

2

∫
d4xh(x)ψL(0, x)ψR(0, x).

Thus the Yukawa coupling is exponentially suppressed if the fields are sufficiently far (but

not exponentially so) separated, and thus give a natural explanation for the large mass

hierarchies observed in the standard model, if the different flavors are located on differ-

ent branes inside the bulk. Also, e. g., graviton-mediated proton decay, which has been

a challenge for non-universal extra dimensions, is reduced exponentially by the reduced

overlap with the standard-model brane. To prevent that the other standard-model inter-

actions suffer a similar fate requires them to propagate also in the bulk, or requires other

amendments.

As has already been encountered when discussing the sum-of-states for the explicit ex-

ample of gravity-exclusive large extra dimensions, the higher-dimensional theories are usu-

ally not renormalizable prior to compactification. Furthermore, because compactification

explicitly breaks the Lorentz invariance of the 4 + n-dimensional theory, boundary-terms
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appear which are usually also divergent. Both facts are usually taken to be an indication

for these theories to be also only low-energy effective theories of, e. g., a string theory.

The problem of divergent boundary terms can be reduced by imposing boundary con-

ditions such that this effect is minimized. As a consequence of these terms and their

compensation usually states of different mass can mix. However, in general arbitrary mix-

ing is not possible. In five-dimensional theories of this type the Kaluza-Klein states j

acquire a conserved quantum number (−1)j. Thus, a state with the lowest Kaluza-Klein

mass with j = 1 cannot decay in a state with j = 0, and thus standard-model particles. As

a consequence, such states provide dark matter candidates. This is especially attractive,

as a compactification radius in such models of about (1 TeV)−1 is well possible, giving

such particles a mass of roughly the same size and making them therefore accessible at

accelerator-based experiments.

8.3 Warped extra dimensions

In models with warped extra dimensions, also known as Randall-Sundrum models, the

additional dimensions have an intrinsic curvature k in such a way that the energy scales

depend exponentially on the separation ∆y of two points in the additional dimensions,

exp(−2∆yk). By positioning different effects at different relative positions, large scale

differences can appear naturally, e. g., MH ∼ exp(−∆yk)MP . In particular, the different

Yukawa couplings for the standard model fermions can be explained by having different

wave functions for different fermion species in the additional dimension, which then have

different overlap with the Higgs wave function, therefore permitting very different couplings

to the Higgs, even if the difference is of order unity in a flat space. This is very similar to

the concept of split fermions in the case of universal extra dimensions in section 8.2.

8.3.1 Minimal model

In the minimal version of warped extra dimensions there is only one additional dimension.

This one is orbifolded, i. e., it is compactified on a radius πR with opposite points iden-

tified12, giving the additional coordinate y the range from 0 to πR. The invariant length

element is then

ds2 = gMNdX
MdXN = e−2k|y|ηµνdx

µdxν − dy2.

Taking the absolute value of y is necessary, because y can take also negative values to

−πR, which are then identified with the original ones by the absolute value. This con-

12Topologically, this is S1/Z2.
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struction is necessary to permit this metric to be a solution of the Einstein equations of

the five-dimensional space. Indeed, such a space is obtained from an anti-de Sitter space

with a cosmological constant. The details of the construction are not entirely trivial. In

particular, the cosmological constant necessary to warp the extra dimension sufficiently

strongly such that their size is compatible with measurements has to be almost canceled

in the four-dimensional space to obtain one in agreement with experiment.

The fifth dimension is bounded by two end-points, which are four-dimensional. These

two end-points are called branes. Due to the explicit exponential, both are not the same,

but differ by a metric factor of exp(2kπR). One of the branes is identified with the present

four-dimensional world. Its Planck mass is then related to the Planck mass of the bulk

Mg, i. e., inside the total volume, by

M2
P =

M3
g

k

(
1− e−2πkR

)
.

A natural size for k is about Mg itself, and it is also natural to have kR & 1. Then the

Planck mass and the bulk Planck mass are again of the same magnitude, despite that

otherwise only natural scales appear.

Why there is nonetheless no discrepancy between the electroweak and the Planck scale

is explained thus differently in such models than in the large extra dimensional models

beforehand. Take the brane at y = πR to be our world. Assume that the Higgs H is

confined to this brane. It is then described by the action

S =

∫
d4x
√
|g(y = πR)|(gµν(y = πR)(DµH)+(DνH)− λ(HH+ − V 2)2)

=

∫
d4x(ηµν(D

µH)+(DνH)− λ(HH+ − e−2πkRV 2)2),

where in the second step the Higgs field has been rescaled by H → exp(πkR)H, to

remove the exponential from the four-dimensional induced metric. As a consequence, the

expectation value of the Higgs is 〈H〉 = exp(−πkR)V = v, and by this a quantity naturally

of the same scale as the Planck mass is scaled down to the much smaller electroweak scale

by the exponential pre-factor. To have the correct numbers for a V of the size of the

Planck scale kR ≈ 11 is needed. This solves the hierarchy problem, or actually makes it

nonexistent. Such a value of kR can be obtained if a radion field, as part of the graviton

field, acts in the bulk. For the reason that V is scaled down to v, our brane at y = πR is

usually called the infrared brane, in distinction to the ultraviolet brane at y = 0.

A further interesting distinction to the case of large extra dimensions is in the induced

additional particle content. For large extra dimensions, the Kaluza-Klein states form

almost a continuum. Here, this is not the case. After separating the graviton field, as in
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the case of large extra dimensions, in a four-dimensional graviton, the radion, and further

states which do not couple to the standard model field, these can be Fourier expanded in

the extra dimension as

hµν(x, y) =
∞∑
n=0

hnµν(x)gn(y).

However, the base functions this time are not the ordinary Fourier functions exp(iknr),

but more complex functions due to the warped geometry. The associated masses of the

Kaluza-Klein gravitons are then

mn
KK = xGn ke

−πkR,

where xGn are rather well approximated by the zeros of the Bessel function for n > 0, thus

3.8, 7.0, 10,... going to nπ for large n. Depending on the precise size of k and kR, the

lightest excitation has mass of size a few TeV, and thus the level spacing is of similar order.

Due to the warping, also the coupling is modified compared to the large-extra dimension

case (8.3), with an effective Lagrangian

L = − 1

MP

T µνh(0)
µν −

eπkR

MP

T µν
∑
n>0

h(n)
µν .

Hence, only the ordinary graviton couples weakly to matter, while the Kaluza-Klein gravi-

tons couple at the TeV scale, and could therefore be much more easily observed.

8.3.2 Extra-dimensional propagation of standard model parti-

cles

So far, all the standard model fields have been restricted to the infrared brane. Permitting

further particles to also propagate in the fifth dimensions requires some subtle changes.

Gauge fields will then have five components, instead of four. Furthermore, it is neces-

sary to specify boundary conditions. Usually on either brane Dirichlet boundary conditions

A5 = 0 or von Neumann conditions ∂5Aµ = 0 on the branes are imposed, even in mixed

form. That these two boundary conditions are the most important ones can be seen by

the example of a scalar field Φ. The associated current along the extra dimension J5 is

given as usual by

J5 = iΦ†∂5Φ

However, particles should not vanish or be created at the boundaries of the extra dimen-

sion. This is prevented by imposing either of the two boundary conditions, since then
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the current automatically vanishes. Note that imposing the boundary conditions corre-

sponds to require the fields to be either odd (Dirichlet) or even (Neumann) under the

transformation y → −y.

Returning to the gauge field, choosing an appropriate gauge and Dirichlet boundary

conditions make the fifth component vanish altogether. The remaining gauge field can

then be decomposed into Kaluza-Klein modes. As they are spin one instead of spin two

particles, the mass spectrum is slightly different then for the gravitons and given by

mn
KK = xAnke

−πkR,

with xAn for n > 0 being 2.5, 5.6, 8.0, and moving also towards nπ for large values of

n. Physically, the absence of the fifth component of the field can then be interpreted as

that this component provides the necessary longitudinal degree of freedom for the massive

Kaluza-Klein gauge bosons. Unfortunately, as in the graviton case, the Kaluza-Klein

modes couple enhanced by a factor k exp(πkR) to the standard model particles as in case

of the graviton. This can only be avoided at the cost of having the geometry such that

all new physics is moved to rather large energies, reintroducing the hierarchy problem, or

by rather subtle manipulations on the kinetic terms of the gauge bosons on the ultraviolet

brane.

This changes, if also the fermions can propagate into the bulk. However, this is again

complicated by the chiral nature of fermions. As noted, chirality of five-dimensional

fermions is fundamentally different from the one of four-dimensional ones. This can be

remedied by introducing a second set of fermions with opposite chirality of the standard

model ones. To avoid that all of them are visible, it is necessary to give them different

boundary conditions. Only fields with von Neumann boundary conditions on both branes

are found to have (up to the Higgs effect) massless modes, and can therefore represent the

standard model fermions. Fermions with Dirichlet boundary conditions on at least one

boundary immediately acquire a Kaluza-Klein mass. Therefore, they will not be visible

below the TeV scale.

There is another twist to this. On top of the Kaluza-Klein and Higgs mass, there is

usually also a bulk mass of order ck for some constant c. This can be counteracted by

choosing the mixed boundary conditions

(∂y + cLk)ψL = 0 (8.13)

on the branes at y = 0 and y = kR, for the desired left-handed fermion for the standard

model. As a consequence, the five-dimensional Fourier mode of the solution of the Dirac

equation still has a zero-energy/zero-mass mode. Furthermore, in the fifth dimension this
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implies a behavior of the fermion field as

ψ ∼ e−(cL− 1
2)k|y|.

Hence, the field is exponentially localized towards either of the branes, depending on the

precise value of cL. A similar calculation for the right-handed fermions in the standard

model yields that cL − 1/2 is replaced by cR + 1/2. The masses of the Fourier-expansion,

and thus the Kaluza-Klein modes, is then given by

mn
KK ≈ π

(
n+

1

2

(∣∣∣∣cL,R ∓ 1

2

∣∣∣∣− 1

)
− (−1)n

4

)
ke−πkR (8.14)

for n > 0 and zero for n = 0. Since the gauge bosons have no such localization due to

their boundary conditions, they will couple to all these fields equally. The exponential

localization outside the standard-model brane then provides that from a four-dimensional

perspective the interaction of fermions and gauge bosons is not appearing enhanced.

Since the Higgs boson is (yet) localized to a brane, the effective overlap of a fermion

field, and thus its interaction strength, is strongly determined by how much it is localized

on the brane. This is exponentially controlled by the parameters ci. Thus, even very small

differences in the ci can yield huge effects, and thus naturally explain why the different

masses of the fermions generated by the Higgs-Yukawa couplings are so very large without

requiring the couplings to be actually very different.

Still, such scenarios require quite a number of amendments, like extra symmetries or

particles, to make them compatible not only qualitatively but also quantitatively with

experimental precision measurements.

8.3.3 Symmetry breaking by orbifolds

With the orbifolds it is also possible to provide symmetry breaking. Take for example

the SU(5) GUT of section 7.2. In this case it was necessary to introduce numerous addi-

tional Higgs fields to remove the additional gauge bosons, acting as leptoquarks, from the

spectrum to have a decent proton life time. This can also be achieved by orbifolded extra

dimensions. Take for example a single extra dimensions with boundary conditions.

To see this note first that Dirichlet boundary conditions generate an expansion for a

field of type

φ(x, y) =

√
2

πR

∞∑
n=1

φ(n, x) sin
ny

R
,

while Neumann boundary conditions lead to

φ(x, y) =
1√
πR

φ(0, x) +

√
2

πR

∞∑
n=1

φ(n, x) cos
ny

R
.
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Hence, only for Neumann boundary conditions a zero-mode with zero Kaluza-Klein mass

exist, while the lightest excitation in the Dirichlet case has a mass 1/R. Finally in the

case of a mixed boundary condition, i. e., Dirichlet at one end and Neumann at the other,

again a zero-mode is forbidden, and the period is halved. E. g., Dirichlet conditions at

y = 0 and Neumann conditions at y = πR yields

φ(x, y) =

√
2

πR

∞∑
n=1

φ(n, x) sin
ny

2R
,

and vice verse.

Now take the SU(5) gauge field. It is splitted into the standard model fields of gluons,

W , Z, and the photon. Furthermore the X and Y gauge fields appear. In addition,

universal extra dimensions dictate to have a further fifth component for all gauge fields.

The fifth dimension is different then the ordinary four dimensions by its different structure.

In addition to ordinary parity transformations in four dimensions, there is then also an

exclusive five-dimensional parity transformation y → −y. The fifth component of the

gauge field must then have opposite parity under y → −y. This can be seen from the

fact that ∂y is necessarily odd under y → −y. The component Fµ5 = ∂µA5 − ∂5Aµ of the

field-strength tensor must have a definite parity under this transformation, or otherwise

the theory would not respect the orbifold structure of the theory. Thus, Aµ and A5 have

opposite boundary conditions.

Choosing then Neumann boundary conditions for the standard model fields automat-

ically makes their fifth component having Dirichlet boundary conditions, making them

heavy. To also remove the X and Y gauge bosons together with their fifth component

from the low-energy realm requires them to have mixed boundary conditions. By this,

the GUT symmetry appears to be explicitly broken since all additional fields have become

massive. This is the concept of symmetry breaking by orbifolding.

8.4 Deconstructed extra dimensions

An alternative flavor of (large) extra dimensions are obtained from so-called deconstructed

extra dimensions. In this case the extra dimensions are not continuous, but are discrete,

i. e., contain only a finite number of points, like a lattice. This removes the ultraviolet

divergences encountered by having an infinite number of Kaluza-Klein states, making the

theory renormalizable. This can also be viewed by a finite, in case of the extra dimension

being compactified, or infinite set of four-dimensional space-times, which are distinguished

by a discrete quantum number.
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As an example, take only one additional dimension, with N points and radius R.

Then each of the N points is a complete four-dimensional space-time, and is also called a

brane. Take now a gauge-field Aµ(x, y) with y the (discrete) fifth coordinate. On a given

brane, the fifth coordinate is fixed and denotes the brane. There are then four gauge-field

components depending on the remaining four coordinates x, just as a normal gauge field

would. This can, e. g., give the gluons of QCD. There is another field, the fifth component

of the gauge field, depending on a fixed brane again on the four coordinates. It can be

shown to behave like an adjoint Higgs field.

Expanding the gauge field in a discrete Fourier series shows the presence of further,

heavier Kaluza-Klein modes as copies of these fields. From a low-energy perspective, like

an experiment, these appear in addition to the gauge theory described by the zero modes

as N − 1 copies of these gauge theory, which are broken by the additional N − 1 adjoint

Higgs fields, giving the Kaluza-Klein modes of the gauge fields their mass. The remaining

zero-mode of the A5 component can be rearranged such that it can take the role of the

standard model Higgs, breaking the electroweak symmetry13.

Similarly, it is possible to introduce fermions having the correct chiral properties by

choosing appropriate boundary conditions, as before14. As a bonus, tuning the parameters

appropriately, it is possible to make Kaluza-Klein fermions condense, essentially realizing

a topcolor mechanism, and thus providing the mechanism unspecified in topcolor theories.

13Theories exploiting the same mechanism to obtain the standard model Higgs for a continuous extra

dimensions are sometimes called gauge-Higgs unifying theories or also holographic Higgs theories.
14In fact, the domain-wall fermions of lattice gauge theory are a very similar concept to a deconstructed

theory. However, in this case the limit R→ 0 is taken, making all Kaluza-Klein modes infinitely heavy in

the end.
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Quantum gravity

9.1 String theory

9.2 Non-commutative geometry

One further possibility to quantize gravity is to postulate the existence of a minimal length,

similar to the postulate of a minimal phase space volume ∆x∆p ∼ ~ in ordinary quantum

mechanics. This is also similar to the idea of a maximum speed in general relativity. As

there, the existence of such a minimal length, which is typically of the order of the Planck

length 10−20 fm, has profound consequences for the structure of space-time. Especially,

coordinate operators do no longer commute, just like coordinate and momenta do not

commute in quantum mechanics, i. e. [Xi, Xj] 6= 0.

The same effect can be reached by postulating canonical commutation relations for

coordinates, in addition to the ones between coordinates and momenta. Thus, this ansatz is

called non-commutative geometry. Since there is a minimal length, there is also a maximal

energy, and hence all quantities become inherently finite, and renormalization is no longer

necessary. On the downside of this approach, besides an enormous increase in technical

complexity, is that in general relativity neither coordinates nor energies themselves are

any longer physical entities, like in special relativity or in quantum (field) theories. Thus,

the precise physical interpretation of a non-commutative geometry is not entirely clear.

Furthermore, so far it was not possible to establish a non-commutative theory which, in a

satisfactory manner, provides a low-energy limit sufficiently similar to the standard model.

Particularly cumbersome is that it is very hard to separate the ultraviolet regime where

the non-commutativity becomes manifest and the infrared, where the coordinates should

again effectively commute. This problem is known as IR-UV mixing.

197
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9.3 Loop quantum gravity

In contrast to asymptotic safety in section 7.6, loop quantum gravity goes a step further,

and postulates that quantum gravity cannot be canonically quantized. Rather, different

variables need to be used for quantization. Especially, the basic requirement is that the

degrees of freedom in the path integral to be integrated over are diffeomorphism, i. e.

coordinate-transformation, invariant.

This avoids many conceptually tricky problems, which are similar to those arising in

(non-)Abelian gauge theories. In fact, a similar reformulation exists also for ordinary non-

Abelian gauge theories, and thus it appears in principle possible. In the latter case, the

gauge-invariant degrees of freedom are so-called Wilson loops, exponentiated line-integrals

over gauge-fields. In the same way the new variables are loop integrals over the metric, and

thus the name. However, the downside is that the ensuing theory is much more involved,

and contains a substantial, probably infinite, number of degrees of freedom and potential

non-localities. This makes work with this theory, even at the perturbative level, very much

more involved. In particular, it may even be only possible in a genuine non-perturbative

way.

9.4 Supergravity

The second important gauge theory, besides Yang-Mills theory with or without matter,

is gravity. Gravity can be considered as a gauge theory for translations. Therefore,

local supersymmetry will therefore create gravity. Without going into too much details,

especially as many questions on off-shell supergravity have not been solved, here only a

short introduction is made.

9.4.1 General relativity

Before talking about gravity in a particle physics setup, it seems appropriate to quickly

repeat the basics of classical general relativity.

The basic dynamical variable is the metric, which describes the the invariant length

element ds by

ds2 = gµνdx
µdxν .

The inverse of the metric is given by the contravariant tensor

gµνgνλ = δµλ .
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As a consequence, for any derivative δ

δgµν = −gµλgνρδgλρ (9.1)

holds. The metric is assumed to be non-vanishing and has a signature such that its

determinant is negative,

g = det gµν < 0.

The covariant volume element dV is therefore given by

dV = hd4x

h =
√
−g =

√
− det gµν > 0,

implying that h is real (hermitian), and has derivative

δh =
1

2
hgµνδgµν = −1

2
hgµνδg

µν (9.2)

as a consequence of (2.14).

The most important concept of general relativity is the covariance (or invariance) under

a general coordinate transformation xµ → x′µ (diffeomorphism) having

dx
′µ =

∂x
′µ

∂xν
dxν = Jµν dx

ν

det(J) 6= 0,

where the condition on the Jacobian J follows directly from the requirement to have an

invertible coordinate transformation everywhere. Scalars φ(x) are invariant under such

coordinate transformations, i. e., φ(x) → φ(x′). Covariant and contravariant tensors of

n-th order transform as

T ′µ...ν(x
′) =

∂xµ
∂x′α

...
∂xν
∂x′β

Tα...β(x)

T ′µ...ν(x′) =
∂x
′µ

∂xα
...
∂x
′ν

∂xβ
Tα...β(x)

respectively, and contravariant and covariant indices can be exchanged with a metric

factor, as in special relativity. As a consequence, the ordinary derivative ∂µ of a tensor

Aν of rank one or higher is not a tensor. To obtain a tensor from a differentiation the

covariant derivative must be used

DµAν = ∂µAν − ΓλµνAλ (9.3)

Γλµν =
1

2
gλσ(∂µgνσ + ∂νgµσ − ∂σgµν),
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where Γ are the Christoffel symbols. Only the combination hAν , yielding a tensor density,

obeys

Dµ(hAν) = ∂µ(hAν).

As a consequence, covariant derivatives no longer commute, and their commutator is given

by the Riemann tensor Rλρµν as

[Dµ, Dν ]A
λ = Rλ

ρµνA
ρ

Rλ
ρµν = ∂µΓλνρ − ∂νΓλνρ + ΓλµσΓσνρ − ΓλνρΓ

σ
µρ,

which also determines the Ricci tensor and the curvature scalar

Rµν = Rλ
νµλ

R = Rµ
µ,

respectively.

These definitions are sufficient to write down the basic dynamical equation of general

relativity, the Einstein equation

Rµν =
1

2
gµνR + gµνΛ = −κTµν

which can be derived as the Euler-Lagrange equation from the Einstein-Hilbert Lagrangian1

L =
1

2κ
hR− 1

κ
hΛ + hLM ,

where LM is the matter Lagrangian yielding the covariantly conserved energy momentum

tensor Tµν

Tµν =

(
−ηµνL+ 2

δLM
δgµν

(gµν = ηµν)

)
, (9.4)

and again κ = 16πGN is Newton’s constant, and Λ gives the cosmological constant (with

arbitrary sign).

For the purpose of quantization it is useful to rewrite the first term of the Lagrangian,

the Einstein-Hilbert contribution LE, as

LE =
1

2κ
hgµν(ΓλσλΓ

σ
µν − ΓλµσΓσνλ) + ∂µV

µ

V λ =
1

2κ
h(gµλgστ − gµσgλτ )∂µgστ .

The second term is a total derivative, and therefore quite often can be dropped.

1In the following usually the cosmological constant term will be absorbed in the matter part.



Chapter 9. Quantum gravity 201

There is an important remark to be made about classical general relativity. The pos-

sibility of making a general coordinate transformation leaving physics invariant has the

consequence that both energy and three momentum loose their meaning as physically

meaningful concepts, just like charge in a non-Abelian gauge theory. Indeed it is possible

to alter the energy of a system by performing a space-time coordinate transformation.

Only the concept of total energy (or momentum) of a localized distribution of particles

when regarded from far away in an otherwise flat space-time can be given an (approxi-

mate) physically meaning, similarly to electric charge. Therefore, many concepts which

are usually taken to be physical lose this meaning when general relativity is involved. This

carries over to any quantum version.

9.4.2 The Rarita-Schwinger field

The metric, as a symmetric tensor, describes a spin 2 object. Supersymmetrizing gravity

therefore requires a spin 3/2 field, which is the so-called Rarita-Schwinger field. This field

will be the associated gauge field for the local supersymmetry, just as the metric field is

the gauge field for the local translation symmetry.

In analogy to conventional gauge theories, the Rarita-Schwinger field is required to

transform under a local transformation as

Ψµ → Ψµ + ∂µε

where ε is a spinor-valued function. This follows in essentially the same as for vector fields

from teh representation theory of the Lorentz group. Thus, a Rarita-Schwinger field Ψ

carries both, a vector index and a spinor index. This was to be expected, as this couples

effectively a spin 1 and a spin 1/2 object to create spin 3/2, just as for the metric two

spin 1 indices are coupled to spin 2. As the supercharges are Weyl/Majorana spinors, so

are the Rarita-Schwinger components.

Since the transformation is linear, it is an Abelian gauge theory, and the corresponding

field strength tensor

Ωµν = ∂µΨν − ∂νΨµ

is therefore gauge invariant, but carries also a spinor index.

It is still necessary to postulate a Lagrangian for the theory, which is gauge-invariant.

Introducing Ψ̄ = Ψ†γ0, a possibility is

L = −Ψ̄µγ
µνρ∂νΨρ.

γµνρ =
1

2
{γµ, γρσ}

γµν =
1

2
[γµ, γν ]
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As for the Maxwell case, there are no gauge-invariant, perturbatively renormalizable

further interaction terms possible. Without interactions, only non-interacting Rarita-

Schwinger fields are possible. The equation of motion is, similar to the Dirac equation,

γµνρ∂νΨρ = 0.

It follows that the Rarita-Schwinger field can have (classically) physical modes only for

d > 3, similar like the vector potential only for d > 2. This equation of motion also implies

γµΨµν = 0,

which is Rarita-Schwinger form of the Maxwell equations. The equations of motions can

be solved in a similar way as the free Dirac equation, and creates the free-field solutions.

It is possible to add a mass term, yielding

L = −Ψ̄µ(γµνρ∂ν −mγµρ)Ψρ,

in contrast to the vector gauge fields.

9.4.3 Supergravity

The actual supergravity action is somewhat involved. Here, only the situation will be

considered without additional matter fields, as they would have to be supersymmetrized

as well. As shown above, the coupling of different matter multiplets leads to intertwining

of those, which leads to a rather involved result. Also, the cosmological constant will be

set to zero in the following.

The coupling between fermions and gravity actually is not a straightforward exercise in

itself2. The approach taken here is based on exchanging the metric in favor of a different

type of dynamical variables, the so-called vierbeins, defined as

gµν = eaµηabe
b
ν

where η is the space-time-constant Minkowski metric, and also the indices a and b run

therefore from 0 to 3. This relation implies

eµagµνe
ν
b = ηab,

i. e. the vierbein is the matrix field which yields a transformation of some given metric

to the Minkowski metric. This field is therefore sometimes also called a frame field, as it

2In fact, there is more than one possibility, and they differ at the quantum level. Without experimental

input, it is at the current time not possible to decide which one is correct. Here, the most prevalent

construction is chosen.
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locally transforms the metric to a Minkowski frame. Both indices of the vierbein can be

raised and lowered using the Minkowski metric.

The Lagrangian of the simplest N = 1 supergravity is then

L =
det e

2κ

(
eaµebνRµνab − Ψ̄µγ

µνρDνΨρ

)
Rµνab = ∂µωνab − ∂νωµab + ωµacω

c
ν b − ωνacω c

µ b

Dν = ∂ν +
1

4
ωνabγ

ab

ωνab = 2eµ[a∂[νe
µ]
b] − eµ[ae

σ
b]eνc∂

µecσ

where the brackets around the indices indicates that the expression has to be antisym-

metrized with respect to the same-type indices. It is seen that the covariant derivative

couples gravity and the Rarita-Schwinger field. This theory is therefore coupled. The in-

volvement of the vierbein also makes the Einstein-Hilbert part more involved, and modifies

the Riemann tensor, which now involves different types of indices.

The, now local, supersymmetry transformations of the fields are, without proof,

δeaµ =
1

2
ε̄γaΨµ

δΨµ = Dµε,

with the spinor 1/2 field ε(x).

9.5 Introduction

The following will discuss the quantization of the simplest possible string system, the

simple, non-interacting, bosonic string. This will still be a formidable task, and will

yield a number of rather generic properties of string theories, like the natural appearance

of gravitons, the need for additional dimensions, and the problems encountered with, e.

g., tachyons. In particular the natural appearance of the graviton makes string theories

rather interesting, given the intrinsic problems of quantum gravity. Further advantages of

more sophisticated string theories are that they have generically few parameters, are not

featuring space-time singularities such as black holes on a quantum level, and often have

no need for renormalization, thus being consistent ultraviolet completions. The price to

be paid is that only rather complicated string theories even have a chance to resemble the

standard model, their quantization beyond perturbation theory is not yet fully solved, and

it is unclear how to identify a string theory which has a vacuum state which is compatible

with standard model physics. Furthermore, in general genuine string signatures usually

only appear at energy levels comparable to the Planck scale, making an experimental
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investigation, or even verification of stringy properties of physics, almost impossible with

the current technology.

How comes the idea of string theory about? Generically, as motivates all the searches

beyond the standard model, the understanding has been increased by looking at ever

shorter distances and at ever high energies. The current confirmed state of affairs is then

the standard model. Going back to quantum gravity, a similar insight can be gained.

In the perturbative approach, the ratio of free propagation to a tree-level exchange of a

graviton is essentially given by the interaction strength of gravity times a free graviton

propagator, which is essentially given by the inverse of GNE
2, with E the energy of the

graviton. Thus the corresponding ratio is

Afree

A1g

=
~c5

GNE2
=
M2

P

E2

where M2
P = ~c5/GN is again the Planck mass, this time in standard units. Since MP is

once more of the order of 1019 GeV, this effect is negligible for typical collider energies

of TeV. However, if the energy becomes much larger than the scale, the ratio of free

propagation to exchange of a graviton becomes much smaller than one, indicating the

breakdown of perturbation theory.

This is not cured by higher order effects. E. g., in case of the two-graviton exchange,

the corresponding amplitude ratio becomes

A2g

Afree

∼ (~GN)2
∑

Intermediate states

∫ E

0

dE ′E
′3 ∼ 1

M4
P

∫
dE ′E

′3 →∞ for E →∞ (9.5)

This gets even worse with each higher order of perturbation theory. Thus, perturbation

theory completely fails for quantum gravity. Either non-perturbative effects kick in, or

something entirely different. That might be string theory.

The basic idea behind string theory is to try something new. The problem leading

to the divergence of (9.5) is that with ever increasing energy ever shorter distances are

probed, and by this ever more gravitons are found. This occupation with gravitons is then

what ultimately leads to the problem. The ansatz of string theory is then to prevent such

an effect. This is achieved by smearing out the interaction over a space-time volume. For

a conventional quantum field theory such an inherent non-locality usually comes with the

loss of causality. String theories, however, are a possibility to preserve causality and smear

out the interaction in such a way that the problem is not occurring.

However, the approach of string theory actually goes (and, as a matter of fact, has to

go) a step further. Instead of smearing only the interaction, it smears out the particles

themselves. Of course, this occurs already anyway in quantum physics by the uncertainty
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principle. But in quantum field theory it is still possible to speak in the classical limit

of a world-line of a particle. In string theory, this world line becomes a world sheet.

In fact, string theories can also harbor world volumes in the form of branes. However,

a dynamical theory of such branes, called M(atrix)-theory, is still not known, despite

many efforts. One of the problems in formulating such a theory is that internal degrees of

freedom of a world volume are also troublesome, and can once more give rise to consistency

problems. String theory seems to be singled out to be theory with just enough smearing to

avoid the problems of quantum field theory and at the same time having enough internal

rigidity as to avoid new problems. The details of this are beyond the scope of this lecture,

which thus only introduces string theory.

One feature of string theory is that there is usually no consistent solution in four space-

time dimensions, but typically more are required. How many more is actually a dynamical

property of the theory: It is necessary to solve it to give an answer. In perturbation theory,

it appears that ten dimensions are required, but beyond perturbation theory indications

have been found that rather elven dimensions are necessary. Anyway, the number is usually

too large. Thus, some of the dimensions have to be hidden, which can be performed

by compactification, as with the setup for large extra dimensions. Indeed, as has been

emphasized, large extra dimensions are rather often interpreted as a low-energy effective

theory of string theory.

Since the space-time geometry of string theory is dynamic, as in case of quantum

gravity, the compactification is a dynamical process. It turns out that already classically

there are a huge number of (quasi-)stable solutions having a decent compactification of the

surplus dimensions, but all of them harbor a different low-energy physics, i. e., a different

standard model. To have the string theory choose the right vacuum, thus yielding the

observed standard model, turns out to be complicated, though quantum effects actually

improve the situation. Nonetheless, this problem remains a persistent challenge for string

theories. This is known as the landscape problem.

Here, these problems will be left aside in favor for a very simple string theory. This

theory will exhibit many generic features of string theory, despite requiring 26 (large)

dimensions and, at least perturbatively, will not have a stable vacuum state. The latter

will be signaled by the existence of a tachyon, a particle traveling faster than the speed of

light, which is another generic, though beatable, problem of string theories.

To give a more intuitive picture for the peculiarities and properties of string theory in

the following a point particle and its quantization will be compared step-by-step to the

quantization of the string theory.
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9.6 Classic string theories

In the following the number of dimensions will be D, and the Minkowski metric will take

the form

ηµν =


−1 0

0

1 0
. . .

0 1

 .

It is actually a good question why the signature of the Minkowski metric should be like

this, and also string theory so far failed to provide a convincing answer. But before turning

to string theory, it makes sense to set the stage with a relativistic point particle.

9.6.1 Point particle

To become confident with the concepts take a classical particle moving along a world line

in D dimensions. Classically, a trajectory is described by the D − 1 spatial coordinates

xi(t) as a function of time t = x0. More useful in the context of string theory is a redundant

description in terms of D functions Xµ(τ) of a variable τ , which strictly monotonously

increases along the world line. A natural candidate for this variable is the eigentime, which

thus parametrizes the world line of the particle.

The simplest Poincare-invariant action describing a free particle of mass m in terms of

the eigentime is then given by

Spp = −m
∫
dτ
√
−∂τXµ∂τXµ. (9.6)

This thus tells that the minimum action is obtained for the minimum (geodetic) length of

the world line. Variation along the world line

δẊµ ≡ δ∂τX
µ = ∂τδX

µ
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yields the equation of motion as

δSpp = −m
∫
dτ

(√
−ẊµẊµ −

√
−
(
Ẋµ + δẊµ

)(
Ẋµ + δẊµ

))

= −m
∫
dτ

(√
−ẊµẊµ −

√
−
(
ẊµẊµ + 2ẊµδẊµ

))

= −m
∫
dτ

√−ẊµẊµ −

√√√√−ẊµẊµ

(
1 + 2

ẊµδẊµ

ẊµẊµ

)
Taylor

= m

∫
dτ

ẊµδẊµ√
−ẊµẊµ

where in the last line use has been made of the infinitesimality of δẊµ and the square root

has been Taylor-expanded.

Defining now the D-dimensional normalized speed as

uµ =
Ẋµ√
−ẊµẊµ

(9.7)

yields the equation of motion after imposing the vanishing of the action under the variation

and a partial integration as

mu̇µ = 0 (9.8)

This is nothing else then the equation of motion for a free relativistic particle, which of

course reduces to the one of Newton in the limit of small speeds. This also justifies the

interpretation of m as the rest mass of the particle.

With τ the eigentime the action is indeed Poincare-invariant. This can be seen as

follows. A Poincare transformation is given by

X ′µ = Λµ
νX

ν + aµ.

Inserting this expression for the argument of the square root yields

∂τ (Λµ
νX

ν + aµ) ∂τ
(
Λ ω
µ Xω + aµ

)
=

(
Λµ
νΛ

ω
µ

)
∂τX

ν∂τXω.

Since the expression in parenthesis is just δων because of the (pseudo-)orthogonality of

Lorentz transformations, this makes the expression invariant. Since the eigentime is in-

variant by definition, this shows the invariance of the total action.
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Additionally, it is also reparametrization invariant, i. e., it is possible to transform the

eigentime to a different variable without changing the contents of the theory, as it ought

to be: Physics should be independent of the coordinate systems imposed by the observer.

This is what ultimately leads to the diffeomorphism (diff) invariance of general relativity.

To show this invariance also for the action (9.6) take an arbitrary (but invertible)

reparametrization τ ′ = f (τ). This implies

τ̇ ′ =
dτ ′

dτ

dτ =
dτ ′

τ̇ ′
,

yielding the transformation property of the integral measure. For the functions follows

then

Ẋµ′ (τ ′) = Ẋµ (τ)
dτ

dτ ′
= Ẋµ 1

τ̇ ′

Hence the scalar product changes as

Ẋµ′Ẋµ′ =
1

τ̇ ′2
ẊµẊµ.

One power of τ̇ ′ is removed by the square root, and the remaining one is then compensated

by the integral measure.

Showing this explicitly for the action (9.6) was rather tedious, and it is useful to rewrite

the action. For this purpose it is useful to introduce a metric along the world line. Since the

world line is one-dimensional, this metric is only a single function γττ (τ) of the eigentime.

This yields a trivial example of a tetrad η

η (τ) := (−γττ (τ))
1
2 ,

which in general is a set of N (by definition positive) orthogonal vectors on a manifold.

However, the manifold is just one-dimensional for a world line, and thus the tetrad is again

only a scalar. In analogy to the string case, γττ can also be denoted as the world-line metric.

Taking the tetrad as an independent function a new action is defined as

S ′pp =
1

2

∫
dτ

(
ẊµẊµ

η
− ηm2

)
.

Under a reparametrization τ → τ ′(τ) it is defined that the functions X and η transform

as

X (τ) = X (τ ′ (τ))

η′ (τ ′) = η (τ)
dτ

dτ ′
=

1

τ̇ ′
η (τ) (9.9)
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This makes the expression invariant under diffeomorphisms: The transformation of η (9.9)

takes care of the extra factor of τ̇ ′, and also makes the second expression invariant.

To show that the new action is indeed equivalent to the old, and that η is thus just

an auxiliary function, can be shown by using the equation of motion for η. Using the

Euler-Lagrange equation this time yields

0 =
d

dτ

∂L

∂η̇
− ∂L

∂η
=

ẊµẊµ

η2
+m2

=⇒ η2 = −Ẋ
µẊµ

m2
.

Thus knowledge of X determines η completely, since no derivatives of η appear. Inserting

this expression into 9.9 leads to

S ′pp =
1

2

∫
dτ

 ẊµẊµ√
− ẊµẊµ

m2

−

√
−Ẋ

µẊµ

m2
m2


=

m

2

∫
dτ

− −ẊµẊµ√
−ẊµẊµ

−
√
−ẊµẊµ


= −m

∫
dτ

√
−ẊµẊµ = Spp.

Thus S ′pp is indeed equivalent to Spp. However, one advantage remains to be exploited. By

separation of the mass S ′pp can also be applied to the case of m = 0 directly, which is only

possible in a limiting process for the original action Spp.

9.6.2 Strings

For strings, the world line becomes a world sheet. As a consequence, at any fixed eigentime

τ the string has an extension. This extension can be infinite or finite. In the latter case,

the string can be closed, i. e., its ends are connected, or open. In string theories usually

only finite strings appear, with lengths L of size the Planck length. Furthermore, open

strings have usually to have their ends located on branes. This is not necessary for the

simple case here, which will be investigated both for open and closed strings.

Analogous to the eigentime then an eigenlength σ can be introduced. Both parameters

together describe any point on the world-sheet. The functions Xµ describing the position

of the points of the world-sheet are therefore functions of both parameters, Xµ = Xµ(σ, τ).

Furthermore, as for the point particle, these functions should be reparametrization invari-

ant

Xµ (σ, τ) = Xµ (σ′ (σ, τ) , τ ′ (σ, τ)) (9.10)
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such that the position of the world sheet is not depending on the parametrization.

Derivatives with respect to the two parameters will be counted by Latin indices a, ...,

∂a,b,... = ∂τ , ∂σ

∂0 = ∂τ

∂1 = ∂σ.

It is then possible to define the induced metric on the world sheet as

hab = ∂aX
µ∂bXµ,

as a generalization of hττ = ẊµẊµ, which as a metric has already been used to define

the action (9.6) in analogy to the Einstein-Hilbert action.
√
− dethabdτdσ is then an

infinitesimally element of the world sheet area.

The simplest possible Poincare-invariant action which can be written down for this

system is the Nambu-Goto action

SNG =

∫
M

dτdσLNG

in which M is the world-sheet of the string and LNG is the Nambu-Goto Lagrangian

LNG = − 1

2πα′

√
− dethab = − 1

2πα′

√
∂τXµ∂σXµ∂σXρ∂τXρ − ∂τXµ∂τXµ∂σXρ∂σXρ,

again the direct generalization of the point-particle action. In particular, the minimum

area of the world sheet minimizes the action.

The constant α′ is the so-called Regge slope, having dimension Mass squared. In

principle, it could be set to one in the following for the non-interacting string, but due

to its importance in the general case, it will be left explicit. The Regge slope can be

associated with the string tension T as T = 1/(2πα′).

The Nambu-Goto action has two symmetries. One is diffeomorphism invariance. This

can be seen directly, as in the case of the point particle, except that now the Jacobian

appears. The second invariance is Poincare invariance, which leaves the world-sheet pa-

rameters τ and σ invariant. However, the functions Xµ transform as

X ′µ = Λµ
νX

ν + aµ

∂aΛ
µ
νX

ν∂bΛ
γ
µXγ =

δγν︷ ︸︸ ︷
Λµ
νΛ

γ
µ ∂aX

ν∂bXγ = ∂aX
µ∂bXµ.

Thus, the induced metric is Poincare invariant, and hence also the action as well as the

Lagrangian and any other quantity constructed from it is.
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It is once more rather cumbersome to use an action involving a square root. To

construct a simpler action, it is useful to introduce a world-sheet metric γab (τ, σ). This

metric is taken to have a Lorentz signature for some chosen coordinate system

γab =

(
+ 0

0 −

)
.

Thus, this metric is traceless, and has a determinant smaller zero. With it the new action,

the Brink-Di Vecchia-Howe-Deser-Zumino or Polyakov action,

SP = − 1

4πα′

∫
M

dτdσ (−γ)
1
2 γabhab (9.11)

is constructed, where γ denotes det γab.

As in case of the point particle, the world-sheet metric γab has to have a non-trivial

transformation property under diffeomorphisms,

∂ω′c

∂ωa
∂ω′d

∂ωb
γ′cd (τ ′, σ′) = γab (τ, σ) ,

where the variables ω denote either σ and τ , depending on the index. This guarantees

that for all invertible reparametrizations, which are continuous deformations of the identity

transformation, the metric is still traceless and has negative determinant.

To obtain the relation of the Polyakov action to the Nambu-Goto action it is again

necessary to obtain its equation of motion. This is most conveniently obtained using the

variational principle. For this, the general relation for determinants of metrics

δγ = γγabδγab = −γγabδγab

is quite useful.

Abbreviating the Polyakov Lagrangian by LP and performing a variation with respect

to γ yields

δSP = − 1

4πα′

∫
dτdσ

(
LP − (−γ − δγ)

1
2
(
γab + δγab

)
hab

)
= − 1

4πα′

∫
dτdσ

(
LP −

(
−γ + γγcdδγcd

) 1
2
(
γab + δγab

)
hab

)
= − 1

4πα′

∫
dτdσ

(
LP − (−γ)

1
2
(
1− γcdδγcd

) 1
2
(
γab + δγab

)
hab

)
.

Expanding the term with indices cd up to first order in the variation leads to

δSP = − 1

4πα′

∫
dτdσ

(
LP − (−γ)

1
2

(
1− 1

2
γcdδγcd

)(
γab + δγab

)
hab

)
= − 1

4πα′

∫
dτdσ

(
LP − (−γ)

1
2

(
γab + δγab − 1

2
γcdγabδγcd

)
hab

)
.
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The second term is again the Polyakov Lagrangian, canceling the zero-order term. Then

only

δSP = − 1

4πα′

∫
dτdσ (−γ)

1
2

(
hab −

1

2
γabγcdh

cd

)
δγab

is left.

The condition that this expression should vanish yields the equation of motion for the

world-sheet metric as

hab =
1

2
γabγcdh

cd (9.12)

Division of each side by its determinant finally yields

hab

(−h)
1
2

=
1

2

γab
(
γcdh

cd
)(

det−1
2
γabγcdhcd

) 1
2

=
1

2

γab
(
γcdh

cd
)((

1
2
γcdhcd

)2
det−γab

) 1
2

=
γab

(−γ)
1
2

In the second line it has been used that γcdh
cd is a scalar, permitting it to pull it out of

the determinant. The result implies that h and γ are essentially proportional.

Inserting this result in the Polyakov action yields

SP = − 1

4πα′

∫
dτdσγabγab (−h)

1
2 = − 1

2πα′

∫
dτdσ (−h)

1
2 = SNG

showing that it is indeed equivalent to the Nambu-Goto action, where the fact that the

diffeomorphism invariant quantity γabγab is two, due to the Lorentz signature of γ, has

been used.

The Polyakov action thus retains the Poincare and diffeomorphism invariance of the

Nambu-Goto action. The Poincare invariance follows since γ is Poincare invariant, since

it is proportional to the Poincare-invariant induced metric, thus

γab′ = Λγab = γab.

The diffeomorphism invariance follows directly from the transformation properties of the

world-sheet metric, in total analogy with the point-particle case, but considerably more

lengthy since track of both variables has to be kept.

The redundancy introduced with the additional degree of freedom γ grants a further
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symmetry. This is the so-called Weyl symmetry, given by

X ′µ (τ, σ) = Xµ (τ, σ)

h′ab = hab

γ′ab = e2ω(τ,σ)γab.

for arbitrary functions ω (τ, σ). The origin of this symmetry comes from the unfixed

proportionality of induced metric and the world-sheet metric. The expression of γ in

terms of the induced metric h is invariant under this transformation,

γ′ab

(−γ′)
1
2

=
γabe

2ω

(−γ′)
1
2

=
γabe

2ω

(−γe4ω)
1
2

=
γab

(−γ)
1
2

.

Also the action is invariant. To see this note that γab is indeed a metric. Since γabγ
ab has

to be a constant, as noted before, this implies that

γ′ab = e−2ωγab.

As a consequence, the expression appearing in the action transforms as

(−γ′)
1
2 γ′ab =

(
−γe4ω

) 1
2 γabe−2ω = (−γ)

1
2 γab.

Thus, the Weyl invariance is indeed a symmetry.

The Polyakov action can also be viewed with a different interpretation. Promoting

the world-sheet indices to space-time indices and taking the indices µ to label internal

degrees of freedom, then the Polyakov action just describes D massless Klein-Gordon

fields Xµ (with internal symmetry group SO(D− 1,1)) in two space-time dimensions with

a non-trivial metric γ, which is dynamically coupled to the fields. This is an example of a

duality of two theories, which plays an important role for more complicated theories. E.

g., dualities between certain string theories on certain background metrics with so-called

supergravity theories, the AdS/CFT correspondence, had an enormous impact recently on

both string theory and quantum field theory.

9.7 Quantized theory

9.7.1 Light cone gauge

As the Poincare and Weyl symmetry introduce a gauge symmetry, it is easier to perform

the quantization in a fixed gauge. Particularly useful for this purpose in the present context

is the light-cone gauge. Though this gauge is not keeping manifest Poincare covariance, it
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is very useful (similar to the case of quantizing electrodynamics in Coulomb rather than

linear covariant gauges). Proving that the theory is still covariant after quantization is

non-trivial, but possible. Hence, this will not be shown here.

To formulate light-cone gauge light-cone coordinates are useful. They are introduced

by the definitions

x± =
1√
2

(
x0 ± x1

)
xi = xi, i = 2, ..., D − 1,

and thus mix the time-coordinate and one, now distinguished, spatial coordinate. Since

the zero-component is the only one involving a non-positive sign in the metric this yields

the following relation between covariant and contravariant light-cone coordinates

x± =
1√
2

(x0 ∓ x1)

x− = −x+

x+ = −x−

xi = xi.

This implies the metric

aµbµ = a+b+ + a−b− + aibi = −a+b− − a−b+ + aibi,

which is equivalent to the conventional one

−a+b− − a−b+ + aibi = −1

2

(
a0 + a1

) (
b0 − b1

)
− 1

2

(
a0 − a1

) (
b0 + b1

)
+ aibi

= −a0b0 + a1b1 + aibi = aµbµ.

Aim of the gauge fixing is to restore the original number of independent degrees of free-

dom. In case of the point particle this amounts to remove the eigentime τ . This is most

conveniently done by the condition

τ ≡ x+,

thus being the light-cone gauge condition for the point particle. This is more convenient

than the more conventional choice τ = x0. With this x+ corresponds to the time and p−

to the energy . Correspondingly, x− and p+ are now longitudinal degrees of freedom while

xi and pi are transverse ones. This immediately follows from the scalar product

∂

∂a+

(
−a+b− + ...

)
= −b−,

and correspondingly for the derivative with respect to x+ which produces p−.



Chapter 9. Quantum gravity 215

9.7.2 Point particle

To demonstrate the principles, it is once more convenient to first investigate the point

particle. However, one should be warned that the resulting theory is actually flawed due

to the appearance of unphysical (non-normalizable) states. It should therefore be taken

rather as a mathematical than a physical discussion.

Returning to the parametrization of the point particle of section 9.6.1, the gauge con-

dition to fix the diffeomorphism invariance becomes

X+ (τ) = τ.

The action is given by equation (9.9), thus

S ′pp =
1

2

∫
dτ

(
ẊµẊµ

η
− ηm2

)

=
1

2

∫
dτ

(
1

η

(
−Ẋ+Ẋ− − Ẋ−Ẋ+ + Ẋ iẊ i

)
− η2m

)
=

1

2

∫
dτ

(
1

η

(
−2Ẋ−τ̇ + Ẋ iẊ i

)
− η2m

)
=

1

2

∫
dτ

(
1

η

(
−2Ẋ− + Ẋ iẊ i

)
− ηm2

)
.

As usual, the Lagrangian yields the canonical conjugated momenta by the expression

Pµ =
∂L

∂Ẋµ

yielding

P− = −1

η

Pi =
Ẋ i

η

With this the Hamiltonian can be readily constructed as

H =
∑

PQ̇− L

= P−Ẋ
− + PiẊ

i − L

= −Ẋ
−

η
+ ηPiPi +

Ẋ−

η
− 1

2
Ẋ iẊ i +

1

2
ηm2

= ηPiPi −
1

2
ηPiPi +

1

2
ηm2 =

P iP i +m2

2P+
.
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Where it has been used that

P+ = −P− =
1

η
,

and it is thus possible to remove η and P− from the expression.

In this result the variable X+ is no longer a dynamical variable, and thus the gauge

is fixed. Furthermore it follows that Pη = 0, since the Lagrangian does not depend on

η̇. Hence η is not a dynamical variable. This was expected, since it was already in the

classical case only used to make the Lagrangian more easily tractable

For the quantization then the usual canonical commutation relations are imposed as[
Pi, X

j
]

= −iδ ji[
P−, X

−] = −i

The relations for P+ is provided by the other relations, since P− is the energy and thus

H = P− = −P+. (9.13)

That is essentially the relativistic mass-shell equation, implying once more that P+ is not

an independent degree of freedom. The resulting Hamilton operator is the one of a D −
2-dimensional harmonic oscillator, but supplemented with the additional unconstrained

degree of freedom P−. The spectrum of this is known, being a relativistic scalar (with all

its sicknesses) and states |k−, ki〉.

9.7.3 Open string

Again, the first step is to fix the gauge. For that purpose first the permitted range for the

world-sheet parameters have to be chosen, which will be

−∞ ≤ τ ≤ +∞
0 ≤ σ ≤ L. (9.14)

Thus, L is the length of the string. Again, it is chosen that

τ = X+. (9.15)

This deals again with the diffeomorphism degree of freedom. To also take care of the Weyl

freedom a second condition is necessary, which will be chosen to be

∂σγσσ = 0 (9.16)

det γab = −1 (9.17)
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The conditions (9.15-9.17) fixes these degrees of freedom completely, provided that the

world-sheet is parametrized by the eigenvariables in such a way that one and only one set

of eigentime and eigenlength correspond to a given point on the world sheet. In the case

of the point particle, it can be shown that this condition is actually superfluous, since even

in case of a doublebacking world line this would not contribute to a path integral. For

string theory, this is something not yet really simply understood.

A way to get an intuition for the significance of these gauge condition is by the use of

the invariant length. The choice of τ = X+ is of course always possible. Then start by

the definition

f = γσσ

(
1

− det γab

) 1
2

.

Now perform a reparametrization which leaves τ invariant. This implies

f ′ = f
dσ

dσ′
.

because of the transformation properties of the γab. Hence, the length element dl = fdσ

is invariant under this reparametrization. Therefore, it can be considered as an invariant

length-element, since it is not changing under a change of the eigenlength of the string.

In fact, this can be used to define the σ coordinate, by setting it equal to
∫
dl along the

world sheet,

σ =

∫ σ

0

dl.

As a consequence, f can no longer depend on σ, since dl is σ-independent. Secondly, it

is then possible to make a Weyl-transformation to rescale det γ such that it becomes -1,

yielding (9.17), and fixing the Weyl invariance. Since f is Weyl-invariant by construction,

this implies that ∂σγσσ trivially vanishes, yielding (9.16). Thus, in this coordinate system

the gauge condition are fulfilled, and therefore are a permitted choice.

Since γ is by construction symmetric, these gauge condition permit to rewrite it in a

simpler way. It then takes the form

γ =

(
γττ γτσ

γστ γσσ

)

=

(
−γσσ (τ) γτσ (τ, σ)

γτσ (τ, σ) γ−1
σσ (τ) (1− γ2

τσ (τ, σ))

)
,

thereby eliminating two of the four variables in γab, and also reducing their dependence

on the world sheet parameters.
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It is furthermore useful to define the average and variation of the X− coordinate for

the following as

Z− (τ) =
1

L

∫ L

0

dσX− (τ, σ)

Y − (τ, σ) = X− (τ, σ)− Z− (τ) .

This is the starting point to rewrite the action in a more useful form.

Start by rewriting the Lagrangian as

LP = − 1

4πα′

∫ L

0

dσ

=1︷ ︸︸ ︷
(−γ)

1
2 γab∂aX

µ∂bXµ

= − 1

4πα′

∫ L

0

dσ

(
1− γ2

τσ

γσσ
∂σX

µ∂σXµ + γτσ∂τX
µ∂σXµ + γτσ∂σX

µ∂τXµ − γσσ∂τXµ∂τXµ

)
.

Now, it is useful to investigate the expressions piece-by-piece. Start with

1− γ2
τσ

γσσ
∂σX

µ∂σXµ =
1− γ2

τσ

γσσ
∂σX

i∂σX
i

where it has been used that

∂σX
+ = ∂στ = 0

follows trivially from the gauge conditions. Next, use furthermore that

γτσ(

=−∂τ τ∂σX−︷ ︸︸ ︷
∂τX

+∂σX+ +∂τX
−

=−∂σX+︷ ︸︸ ︷
∂σX− +∂τX

i∂σX
i) = γτσ

(
−∂σX− + ∂σX

i∂τX
i
)

and

−γσσ
(
∂τX

+∂τX+ + ∂τX
−∂τX− + ∂τX

i∂τX
i
)

= −γσσ
(
−2∂τX

− + ∂τX
i∂τX

i
)
.

Reinserting everything into the Lagrangian yields

LP = − 1

4πα′

∫ L

0

dσ
(1− γ2

τσ

γσσ
∂σX

i∂σX
i − 2γτσ

(
−∂σX− + ∂τX

i∂σX
i
)

−γσσ
(
−2∂τX

− + ∂τX
i∂τX

i
) )
.

Employing now the relations for the average and variation this yields

LP = − 1

4πα′

(
γσσ2L∂τZ

− +

∫ L

0

dσ
(
γσσ
(
−∂τX i∂τX

i
)

+2γτσ
(
∂σY

− − ∂τX i∂σX
i
)

+
1− γ2

τσ

γσσ
∂σX

i∂σX
i
))
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In the resulting expression there is no τ -derivative of Y − appearing, which is thus a non-

dynamical field, behaving like a Lagrange factor for γτσ, which therefore is fixed to

∂σγτσ = 0, (9.18)

and thus does not depend on σ.

Returning to the boundary condition of this open3 string yields

(∂σX
µ) (τ, 0) = (∂σX

µ) (τ, L) = 0, (9.19)

because otherwise the fields would not be continuously differentiable at the boundaries,

which is imposed like for wave-functions. These are von Neumann conditions in the terms

of the large extra dimensions. This is also obtained by varying the Polyakov action. First,

vary with respect to the fields to obtain

− 1

2πα′

∫ ∞
−∞

dτ (−γ)
1
2 ∂σX

µδXµ|σ=L
σ=0 .

Since this has to vanish for arbitrary variations of the fields, this implies the boundary

condition (9.19).

On the other hand, when varying the original action with respect to the fields, this

yields

δSP = SP +
1

4πα′

∫
dτdσγab∂a (Xµ + δXµ) ∂b (Xµ + δXµ)

=
1

4πα′

∫
dτdσγab (∂aX

µ∂bδXµ + ∂αδX
µ∂bXµ) .

Since variation and differentiation are independent, they can be exchanged,

∂aδX
µ = δ∂aX

µ.

Doing a partial integration, keeping an appearing boundary term yields

δSP =
1

4πα′

∫
dτdσγab (∂a∂bX

µδXµ + ∂b∂aXµδX
µ)

− 1

4πα′

∫
dτγab (∂aX

µδXµ + ∂bXµδX
µ) |L0 (9.20)

Note that in the boundary term as a shorthand notation one of the indices is uncontracted.

This is of course always the σ-index for which the total integration has been performed.

3No cyclicity of any function on σ has been imposed, which would be one possibility to implement a

closed string.
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However, the last expression must vanish under variation, implying once more the von

Neumann condition (9.19)

γab (∂aX
µ + ∂bX

µ) = 0.

Incidentally, this also implies for µ = + and a = τ and b = σ that γτσ vanishes on the

boundary.

Since for µ = − the fields are non-dynamical, this implies that ∂σX
− = 0 and that

therefore X− only depends on τ .

To obtain some further useful results, the variation can be repeated after the gauge

has been fixed. This yields

δSP = SP +
1

4πα′

∫
dτdσ

(
γσσ
(
2∂τ

(
X− + δX−

)
− ∂τ

(
X i + δX i

)
∂τ
(
X i + δX i

))
+2γτσ

(
∂σ
(
X− + δX−

)
− ∂τ

(
X i + δX i

)
∂σ
(
X i + δX i

))
+

1− γ2
τσ

γσσ
∂σ
(
X i + δX i

)
∂σ
(
X i + δX i

) )
.

Expanding the result and dropping O (δ2) terms and annihilating a term of type SP just

leaves

δSP =
1

4πα′

∫
dτdσ

(
γσσ
(
2∂τδX

− − 2∂τX
i∂τδX

i
)

+2γτσ
(
∂σδX

− − ∂τX i∂σδX
i − ∂τδX i∂σX

i
)

+ 2
1− γ2

τσ

γσσ
∂σX

i∂σδX
i
)

which can be rewritten as

δSP =
1

4πα′

∫
dτdσ

( (
2γτσ∂σδX

−)+

(
−2γτσ∂τX

i∂σδX
i + 2

1− γ2
τσ

γσσ
∂σδX

i∂σX

)
+
(
γσσ2∂τδX

− − 2γσσ∂τX
i∂τδX

i
)
−
(
γτσ∂τδX

i∂σX
i
) )
.

After partial integration of the first term this yields once more that ∂σγτσ still vanishes at

the end of the string.

The second term in parentheses yields after partial integration

−∂σ
(
2γτσ∂τX

i
)

+ ∂σ

(
1− γ2

τσ

γσσ
∂σX

i

)
= −2γτσ∂σ∂τX

i +
1− γ2

τσ

γσσ
∂2
σX

i.

Again, this boundary term has to vanish. The second does this, if the derivative of the X i

with respect to σ does so at the boundary, again yielding (9.19). Since this is not the case

for the τ -derivative, this again requires γτσ = 0 at the boundary of the string. Hence, this

implies that both the function and its first derivative vanishes on the boundary. Because

of the equation of motion for γτσ (9.18), this implies

γτσ ≡ 0,
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and it can be dropped everywhere.

This eliminates one degree of freedom, leaving only

Z− (τ) , γσσ (τ) , X i (τ, σ) ,

which is a rather short list. Furthermore, this simplifies the Polyakov Lagrangian to

LP = − L

2πα′
γσσ∂τZ

− +
1

4πα′

∫ L

0

dσ

(
γσσ∂τX

i∂τX
i − 1

γσσ
∂σX

i∂σX
i

)
,

which will now serve as the starting point for quantization. It should be noted that the

gauge-fixing was the reason for eliminating the degrees of freedom, reducing the set to a

one more manageable for the following.

The first step for quantization is then the calculation of the canonical momenta

P− = −P+ =
∂LP

∂ (∂τZ−)
= − L

2πα′
γσσ (9.21)

Πi =
δLP

δ (∂τX i)
=

1

2πα′
γσσ∂τX

i =
P+

L
∂τX

i.

From this the Hamiltonian is immediately constructed to be

H = P−∂τZ
− +

∫ L

0

dσΠi∂τX
i − L

=
L

4πα′P+

∫ L

0

dσ

(
2πα′ΠiΠi +

1

2πα′
∂σX

i∂σX
i

)
(9.22)

This is the Hamiltonian for D− 2 free fields X i and the conserved quantity P+, as can be

seen form the equations of motion

∂τZ
− =

∂H

∂P−
=

H

P+

∂τP
+ = − ∂H

∂Z−
= 0

∂τX
i =

δH

δΠi
= 2πα′cΠi (9.23)

∂τΠ
i = − δH

δX i
=

c

2πα′
∂2
σX

i, (9.24)

where a partial integration has been performed in (9.24) and c is defined as

c :=
L

2πα′P+
.

Inserting (9.23) in (9.24) yields the wave equation for X i

∂2
τX

i = c2∂2
σX

i,
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where c takes the role of the wave speed. Thus, the transverse degrees of freedom form

waves along the string.

Since P+ and L are constants of motion, so is c. Thus, given the boundary conditions

for the open string, the equations of motions can be solved, yielding

X̂ i (τ, σ) = Ẑi +
P̂ i

P+
τ + i (2α′)

1
2

n=∞∑
n=−∞,n 6=0

αin
n
e−

πincτ
L cos

πnσ

L
(9.25)

αi−n = αi+n . (9.26)

The relation (9.26) applies since the X i are real functions. For the purpose at hand also

the center-of-mass variables

Ẑi (τ) =
1

L

∫ L

0

dσX̂ i (τ, σ)

P̂ i (τ) =

∫ L

0

dσΠi (τ, σ) =
P+

L

∫ L

0

dσ∂τX
i (τ, σ)

have been introduced. Thus, the center-of-mass of the string follows a free, linear trajectory

in space, which overlays the transverse motions of the oscillations transverse to the string.

Herein Ẑi and P̂ i in (9.25) have to be taken at τ = 0, and will become Schrödinger

operators in the quantization procedure to come now.

The quantization procedure is started as usually with imposing equal-time canonical

commutation relations [
Z−, P+

]
= −i[

X i (σ) ,Πj (σ′)
]

= iδijδ (σ − σ′)

Performing a Fourier expansion this is equivalent to the relations[
X̂ i, P̂ j

]
= iδij[

αim, α
j
n

]
= mδijδm,−n (9.27)

Here, a non-standard, though useful, normalization of (9.27) has been performed.

The natural consequence is now that every transverse component behaves as a harmonic

oscillator with a non-standard normalization. The corresponding creation and annihilation

operators are then given for m > 0

αim = ~
√
ma

αi−m = ~
√
ma†

−1 =
[
a†, a

]
(9.28)
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where m gives the oscillator level for direction i. So far, so standard.

Defining now the momentum vector k = (k+, ki) the state |0, k〉 of lowest excitation

has the properties

P+ |0, k〉 = k+ |0, k〉
P i |0, k〉 = ki |0, k〉
αim |0, k〉 = 0 for m > 0 (9.29)

Therefore k is the center-of-mass momentum. Higher excited states are then denoted by

|N, k〉 and can be constructed as

|N, k〉 =

(
D−1∏
i=2

∞∏
n=1

(
αi−n

)Nin√
(nNinNin)!

)
|0, k〉 ,

just as ordinary oscillator states. Therefore, Nin are the occupation numbers for each

direction and level. In particular, these can be interpreted as internal degrees of freedom,

while the motion of the center-of-mass corresponds to a particle like behavior of the whole

string. As will be discussed below, from this point of view every state corresponds to a

certain particle with a certain spin.

The total set of states (9.25) forms the Hilbert space of a single string, H1. In particular,

|0, 0〉 is not the vacuum, but merely a momentum-zero string with no internal excitations,

except zero-point oscillations: A quantum-mechanical string always quivers. The vacuum

is devoid of a string, its Hilbert-space H0 is denoted by the single state |vac〉. However,

none of the operators so far can mediate between H0 and H1, but only act inside H1. Since

there are no interactions, an N -string Hilbert space can be build just as a product space

of H1s as

hn = |vac〉 ⊕H1 ⊕ ...⊕Hn.

where the states are implicitly symmetrized, yielding a Fock space, since the string states

are bosonic, given that there creation and annihilation operators fulfill bosonic canonical

commutation relations, (9.28).

Since the states are just free states, it is straightforward to construct the number-state

version of the Hamiltonian. For this purpose, it is necessary to calculate the explicit form

of the canonical momentum operators Πi first as

Πi =
P+

L

(
∂τX

i
)

=
P+

L

(
P̂ i

P+
+
πc

L
(2α′)

1
2

n=+∞∑
n=−∞,n6=0

αine
−πincτ

L cos
πnσ

L

)
.
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In addition, also ∂σX
i is required, and is given by

∂σX
i = −iπ

L
(2α′)

1
2

n=+∞∑
n=−∞,n 6=0

αine
−πincτ

L sin
πnσ

L
.

Putting everything together yields the Hamiltonian

L

4πα′P+

∫ L

0

dσ

(
2παΠiΠi +

1

2πα′
∂σX

i∂σX
i

)
=

L

4πα′P+

(
2πα′P iP i +

∫ L

0

dσ

( π

4α′LP+

n=+∞∑
n=−∞n6=0

αine
−πincτ

L cos
πnσ

L

m=+∞∑
m=−∞,m 6=0

αime
−πmncτ

L cos
πmσ

L

− π

4α′LP+

n=+∞∑
n=−∞n6=0

αine
−πincτ

L sin
πnσ

L

m=+∞∑
m=−∞,m 6=0

αime
−πimcτ

L sin
πmσ

L

))
,

where in the integration σ was replaced by πσ/L. Since sine and cosine are orthogonal,

the integrations can be performed explicitly. Those over cos yield πδn−m, while those over

sin yield −πδn−m. This leads to

H =
P iP i

2P+
+

1

2P+α′

n=+∞∑
n=−∞n6=0

αinα
i
−n,

and finally by rearranging to

H =
P iP i

2P+
+

1

2P+α′

∞∑
n=1

αi−nα
i
n + A.

This Hamiltonian is already in normal order, and A is a (divergent) constant which appears

in the process of normal ordering.

The actual value of A can be determined by explicitly verifying the Lorentz covariance

of the result, since the Hamiltonian is just the energy, and thus a zero-component of a

four-vector. However, in light-cone gauge this is far from trivial, and this will therefore be

done here only in a rather sketchy way.

First, consider the zero-point energy. Every oscillator will have a zero-point energy of

ω/2 = 1/(2P+α′), while the transverse momenta P i will be 0. In total, at zero excitation,

it should be expected that

〈0, 0|H|0, 0〉 = A,

due to the normal ordering. Due to the non-standard normalization, each oscillator actu-

ally contributes nω/2 of vacuum energy to this value. These oscillations appear for D− 2



Chapter 9. Quantum gravity 225

dimensions. Rewriting A as ωA this yields4

A =
D − 2

2

∞∑
n=1

n,

which is, of course, infinite. However, in contrast to normal quantum mechanics or quan-

tum field theory, the vacuum energy is not necessarily irrelevant, but may couple to gravity.

It is therefore necessary to maintain Lorentz invariance when treating it, and it cannot be

absorbed just in a redefinition of the zero-point energy, as in quantum mechanics.

To regularize the result Lorentz-invariantly, it is necessary to include a cut-off function

e
− ε|kσ |√

γσσ

kσ =
nπ

L
,

in the sum, and taking the limit ε → 0 only after summation. The factor of
√
γσσ
−1 is

required to maintain the effects of reparametrization invariance correctly. The reason for

this is simple. Outside light-cone gauge, the string length is not fixed, but can be changed

by a reparametrization. Therefore, kσ, which depends on the length of the string, changes

under such transformations. Including the function of γσσ exactly cancels this effect.

Inserting this expression into the sum permits to evaluate it exactly, yielding

A =
D − 2

2

∞∑
n=1

ne
− ε|kσ |√

γσσ

=
D − 2

2

(
2LP+α′

ε2π
− 1

12
+O (ε)

)
,

where the second line of (9.21) has been used. The first term is proportional to L and can

therefore be absorbed in the action by an additional term proportional to

−
∫
dσ (−γ)

1
2 = −L.

This is a constant, and therefore is not changing the action. In fact, the value of the

action has to be regularized itself by a similar expression, and also regularized by e−ε.

Thus, by appropriately selecting the pre-factors, both terms cancel. Since also the last

term vanishes in the limit of ε→ 0, the only thing remaining is

A =
2−D

24
, (9.30)

which is known as the Casimir energy, and can be traced back to the fact that the string

is only of finite length. Thus, the string has indeed a non-zero vacuum energy. In contrast

4With standard normalization, n would be replaced by 1, changing nothing qualitatively.
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to the first contribution, this constant, non-divergent term cannot be naturally absorbed

by a counter term in the action without spoiling Lorentz invariance.

Having now obtained the Hamiltonian and the state space, it is about time to determine

the properties of the physical state space. In particular, the question is whether the

string excitations can be interpreted as particle states, the original motivation to study

it. For that purpose the primary object is of course whether the states satisfy the energy-

momentum relation of a point particle, and if yes, what are their masses.

The corresponding operator for the rest mass is just given by the mass-shell equation,

where it is to be used that P− = H to yield

m2 = 2P+H − P iP i, (9.31)

as a result of the light-cone equation

m2 = P+P− + P−P+ − P iP i.

Inserting the result (9.30) into (9.31) for the lowest-energy state yields

m2 = 2P+

(
P iP i

2P+
+

1

2P+α′
(N + A)

)
− P iP i

=
1

α′

(
N +

2−D
24

)
.

That is quite an important result, as it implies that the mass is only dependent on the

state sum N defined as

N =
D−1∑
i=2

∞∑
n=1

nNin

and the space-time dimensionality D. Thus, mass becomes an intrinsic property rather

than an external parameter as in the standard model. The importance of the Regge slope

is now also clear, as it links as constant of proportionality the number of a state and its

rest mass.

The lowest state is of course N = 0, hence |0, k〉, and this yields

m2 =
2−D
24α′

Since for any phenomenologically relevant string theory D > 2 the rest mass of the lowest

state is imaginary, m2 < 0. Thus it is a tachyon. That is of course unfortunate, since

interpreting this as a particle is very problematic. E. g., constructing a theory of such a

non-interacting scalar tachyon yields a potential energy proportional to m2φ2/2. Hence,

the vacuum state is unstable. Of course, this would be the lowest approximation, and it
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could still be that the bosonic string theory is nonetheless stable, but this is unknown so

far. Fortunately, in particular in supersymmetric string theories tachyons usually do not

appear, so they provide a possibility to circumvent this problem without having to deal

with it explicitly.

The first non-tachyonic state is obtained for the state αi−1 |0, k〉 with N = 1. Its mass

reads

m2 =
26−D

24α′
. (9.32)

Since there are D − 2 ways to obtain N = 1, this state is D − 2-times degenerate. To be

still Lorentz invariant, these transverse modes must form a representation of SO(D − 2)

for a massless particle and SO(D − 1) for a massive particle. The former follows because

there is no rest-frame for a massless particle, and the minimum momentum is at least

P µ =
(
E,E,~0

)
, thus having less symmetry then the one for a massive particle in the rest

frame being P µ = (m,~0).

As a consequence, in D = 4 massive bosonic particles have integer spin j > 0 as repre-

sentations of SO(3) with 2j+1-fold degeneracies. Massless particles, however, are denoted

by their helicity forming a representation of the group SO(2), having only one state with

positive helicity. Because of CPT symmetry the number of states is actually doubled, since

a state with positive helicity can be transformed by CPT into one with negative helicity.

Put it in another view, the lowest non-trivial representation of SO(3) is 3-dimensional,

a spin-1 state with three magnetic quantum numbers. For SO(2), the lowest non-trivial

representation has actually only two possible magnetic quantum numbers, either 1 or -1.

However, CPT guarantees that if one exists, then so does the other.

Going back to D dimensions there are thus D− 1 states for massive bosonic particles,

but only D− 2 for massless ones. Since the degeneracy for the N = 1 states is D− 2, this

implies that their mass must be zero. From this immediately follows that the theory is

only Lorentz-invariant in D = 26 dimensions, since otherwise (9.32) would not yield zero.

This implies also A = −1, due to (9.30).

Hence, this indirect inference yields that the consistency of the string theory with

Lorentz and CPT invariance requires a certain number of dimensions, different to quantum

field theories, which at least in principle can be formulated in any number of space-time

dimensions. Note that this is actually a quantum effect, since only quantization yields the

mass-dimension relation (9.32).

A more formal argument will be given below, when it can be done simultaneously for

both the open and the closed string, which will be analyzed now.
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9.7.4 Closed string spectrum

A closed string is obtained when instead of open boundaries periodic boundaries are im-

posed. In this case the light-cone gauge conditions become.

Xµ (τ, L) = Xµ (τ, 0)

∂σX
µ (τ, L) = ∂σX

µ (τ, 0)

γab (τ, L) = γab (τ, 0)

Similarly, it is then possible to quantize the closed string as the open string. However,

this provides another ambiguity, since the zero position of σ can now be anywhere along

the string. Consequently, a shift of the zero point is another symmetry of the system as

σ′ = σ + s (τ) .

To fix it requires another gauge condition, which is conveniently chosen as

γτσ (τ, 0) = 0

This implies that lines of constant τ are orthogonal to lines of constant σ at σ = 0. This

reduces the problem to translations about one string length as

σ′ = σ + s (τ) mod L. (9.33)

Nonetheless, this is sufficient to start.

Up to the formulation of the Hamiltonian then everything is as for the open string

case. Of course, the solutions to the equations of motion are now different, respecting the

new boundary conditions. They read

X i (τ, σ) = X i +
P i

P+
τ + i

(
α′

2

) 1
2

∞∑
n=−∞n6=0

(
αin
n
e−

2πin(σ+cτ)
L +

βin
n
e

2πin(σ−cτ)
L

)
,

in analogy to point quantum mechanics of a particle in a periodic box. As a consequence,

there are now two independent sets of Fourier coefficients, α and β. These corresponds to

oppositely directed waves along the string with α being those running in the left direction

and β to the right direction.

Nonetheless, quantization proceeds as usual with the canonical quantization conditions[
Z−, P−

]
= −i[

X i, P i
]

= iδij[
αim, α

j
n

]
= mδijδm,−n[

βim, β
j
n

]
= mδijδm,−n.
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Thus, the system is again that of a set of free oscillators with a superimposed center-of-

mass motion. The eigenstates are thus

|N,R, k〉 =

(
D−1∏
i=2

∞∏
n=1

∞∏
r=1

(
αi−n

)Nin (βi−n)Rin
(nNinNin!rRinRin!)

1
2

)
|0, 0, k〉 .

Herein N counts the number of left-moving states and R the number of right-moving

states. It is then possible to obtain again the Hamiltonian in number-operator form, and

to obtain the mass-shell equation as

m2 = 2P+H − P iP i =
2

α′
(N +R + A+B) ,

and in the same way as previously also

A = B =
2−D

24

is obtained.

However, in this case the values of N and R are restricted, since all physical states

have to be invariant under the residual gauge freedom (9.33). To see this, the operator

for translations on the string is useful. To obtain it, the simplest starting point is the

energy-momentum tensor on the world-sheet. It is given by

T ab = −4π (−γ)−
1
2
δL

δγab
(9.34)

= − 4π

(−γ)
1
2

δ

δγab

(
− 1

4πα′
(−γ)

1
2 γcd∂cX

µ∂dXµ

)

=
1

α′ (−γ)
1
2

(
δ (−γ)

1
2

δγab
γcd∂cX

µ∂dXµ + (−γ)
1
2
δγcd

δγab
∂cX

µ∂dXµ

)

=
1

α′ (−γ)
1
2

(
− 1

2 (−γ)
1
2

δγ

δγab
γcd∂cX

µ∂dXµ + (−γ)
1
2 ∂aX

µ∂bXµ

)

=
1

α′ (−γ)
1
2

(
− 1

2 (−γ)
1
2

γγabγcd∂cX
µ∂dXµ + (−γ)

1
2 ∂aX

µ∂bXµ

)

=
1

α′

(
∂aX

µ∂bXµ −
1

2
γabγcd∂cX

µ∂dXµ

)
=

1

α′

(
∂aXµ∂bXµ −

1

2
γab∂cX

µ∂cXµ

)
.

To argue that this indeed is an energy-momentum tensor5, it is necessary to show that

it has the necessary properties of an energy-momentum tensor, in particular it has to be

conserved and traceless, and its ττ -component must equal the Hamilton operator.

5In quantum field theory this is already a non-obvious fact, lest in string theory.
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Start with its conservation. The elements of the energy-momentum tensors appear to

be not invariant under diffeomorphisms, since the appearing expressions for γab are not,

since it seems there are no compensating factor of det γ. However, the expression in terms

of the Lagrangian is, so there must be a hidden invariance. This is in fact only possible if

the energy-momentum tensor is a constant, which would imply its conservation.

Using (9.12), this can be obtained explicitly

∂aT
ab =

1

α′
∂a

(
∂aXµ∂bXµ −

1

2
γab∂cX

µ∂cXµ

)
=

1

α′

(
∂ah

ab − ∂a
(

1

2
γabγcdhcd

))
=

1

α′
(
∂ah

ab − ∂ahab
)

= 0,

and thus the energy-momentum tensor is conserved.

The next condition is the one of tracelessness. Calculating the trace T aa explicitly yields

γab
δL

δγab
=

1

(−γ)
1
2

(
γab∂

aXµ∂bXµ − ∂cXµ∂cXµ

)
=

1

(−γ)
1
2

(∂aXµ∂aXµ − ∂cXµ∂cXµ) = 0 (9.35)

= γab
T ab

(−γ)
1
2

,

where it has been used that γabγab = 2. Finally, this yields

T aa
1

(−γ)
1
2

= 0,

confirming that the energy-momentum tensor is indeed traceless. Incidentally, this shows

that the classical energy-momentum tensor vanishes when the equations of motions are

fulfilled, by virtue of (9.35) and the fact that the Lagrange function is not depending on

the τ -derivatives of γab.

Using (9.12), this could also be shown more directly as

T aa =
1

α′

(
∂aXµ∂aXµ −

1

2
γaa∂

cXµ∂cXµ

)
=

1

α′

(
∂aXµ∂aXµ −

1

2
γaaγcd∂

cXµ∂dXµ

)
=

1

α′
(∂aXµ∂aXµ − ∂aXµ∂aXµ) = 0,

and thus the same result.
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Finally, the ττ component should be the Hamiltonian. To show this, it is simpler to

go backwards. By reexpressing the Hamiltonian (9.22) as a function of ∂σX
µ and ∂τX

µ it

becomes

H =
L

4πα′P+

∫ L

0

dσ

(
2πα′ΠiΠi +

1

2πα′
∂σX

i∂σX
i

)
=

L

4πα′P+

∫ L

0

dσ

(
2πα′

P+

L

P+

L
∂τX

i∂τX
i +

1

2πα′
∂σX

i∂σX
i

)
.

Using now (9.21) changes this to

H =
1

4πα′

∫ L

0

dσ

(
2πα′

P+

L
∂τX

i∂τX
i +

1

2πα′
L

P+
∂σX

i∂σX
i

)
=

1

4πα′

∫ L

0

dσ

(
2πα′

γσσ
2πα′

∂τX
i∂τX

i +
1

2πα′
2πα′

γσσ
∂σX

i∂σX
i

)
=

1

4πα′

∫ L

0

dσ

(
γσσ∂τX

µ∂τXµ +
1

γσσ
∂σX

µ∂σXµ

)
.

The expansion of i to µ in the last line was permitted because this is only an addition

of zero in the second term and also a zero in the first term by virtue of the boundary

conditions after exchange of integration and differentiation.

To bring the ττ component of the energy-momentum tensor into the same form it can

be expressed as

T ττ =
1

α′
(∂τXµ∂τXµ − γττ∂τXµ∂τXµ − γττ∂σXµ∂σXµ)

=
1

α′

(
∂τXµ∂τXµ −

1

2
(γττγττ ) ∂τX

µ∂τXµ

−1

2
γττγτσ∂τX

µ∂σXµ −
1

2
γττγτσ∂σX

µ∂τXµ −
1

2
γττγσσ∂σX

µ∂σXµ

)
.

Because of the gauge condition γττ and −γσσ are related, and yielding that the square of

γττ is −1, because otherwise the gauge condition for the determinant would be violated,

given that γτσ vanishes. This yields

T ττ =
1

α′

(
1

2
∂τX

µ∂τXµ +
1

2
∂σX

µ∂σXµ

)
=

1

2α′
(
γσσ2∂τX

µ∂τXµ + ∂σX
µ∂σXµ

)
=

1

2α′
γσσ

(
γσσ∂τX

µ∂τXµ +
1

γσσ
∂σX

µ∂σXµ

)
,

which concludes

H = − 1

2π

∫ L

0

dσγσσT ττ
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where the factor γσσ is actually part of the measure to make the expression diffeomorphism

invariant, and thus shows the correct relation between the Hamiltonian and the energy-

momentum tensor.

Hence, it is permitted to use this expression for the energy-momentum tensor to obtain

the operator of linear translation. It is given by the στ component, as in case of classical

mechanics. Since γτσ = 0 this component is given by

T στ =
1

α′
(∂σXµ∂τXµ) = 2πcΠi∂σX

i,

since the ± have a vanishing σ component each. Integrating yields the operator as

P = −
∫ L

0

dσΠi∂σX
i

=
2π

L

(
∞∑
n=1

(
αi−nα

i
n − βi−nβin

)
+ A−B

)
=

2π

L
(N −R) .

The residual gauge freedom is essentially giving that the coordinates hop around the string

by an integer times L, permitting to turn left-moving into right-moving modes. This can

be restricted by enforcing

N = R. (9.36)

Thus, the expectation value of translations along the string is zero, and any physical state

has a localized coordinate system on the string. With other words, the number of left and

right moving modes must be the same.

The lowest state is given again by

m2 =
2

α′
2

2−D
24

=
2−D

6α′
,

and is therefore again a tachyon. The lowest excited state is given by |1, 1, k〉

m2 =
26−D

6α′
.

However, in contrast to the previous case, it is not constructed by a single creation operator

with just one space-time index, but by two as

|1, 1, k〉 = αi−1β
j
−1 |0, 0, k〉 ,

and therefore is a tensor state eij. As in the case of large extra dimensions, this state can

be separated as

eij =
1

2

(
eij + eji − 2

D − 2
δijekk

)
+

1

2

(
eij − eji

)
+

1

D − 2
δijekk.
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The first term is traceless symmetric, the second antisymmetric and the third scalar.

Furthermore, the occupation numbers Nin and Rin can vary freely as long as N = R is

fulfilled. Therefore, the number of states is substantially increased with respect to the

open string spectrum at the same N . Whether it is necessarily massless, and thus again

D = 26, is not a trivial question, but will turn out to be correct. This time, the helicity

of the state will be useful to show this will yield a graviton, an axion, and a dilaton.

To verify the assignment of spin, a little more formal investigation is useful. Note that

it is always possible to obtain a spin algebra from creation and annihilation operators,

when summing over oscillators, called the Schwinger representation. In case of the open

string, the corresponding operators are given by

Sij = −i
∞∑
n=1

1

n

(
αi−nα

j
n − α

j
−nα

i
n

)
(9.37)

and the ones for the closed string are completely analogous, just requiring that it is now

necessary to sum over both, left-moving and right-moving modes. The two indices already

indicate that these will be the corresponding n-dimensional generalization of the spin.

That (9.37) are indeed spin operators can be shown by explicitly calculating the cor-

responding algebra. Start by evaluating the commutator as

[
Sij, Skl

]
= −

∞∑
n=1

∞∑
m=1

1

nm

[
αi−nα

j
n − α

j
−nα

i
n, α

k
−mα

l
m − αl−mαkm

]
= −

∞∑
n=1

∞∑
m=1

1

nm
(
[
αi−nα

j
n, α

k
−mα

l
m − αl−mαkm

]
−
[
αj−nα

i
n, α

k
−mα

l
m − αl−mαkm

]
)

= −
∞∑
n=1

∞∑
m=1

1

nm
(
[
αi−nα

j
n, a

k
−mα

l
m

]
−
[
αi−nα

j
n, α

l
−mα

k
m

]
−
[
αj−nα

i
n, α

k
−mα

l
m

]
+
[
αj−nα

i
n, α

l
−mα

k
m

]
).

It is simpler to evaluate each of the four terms individually. For this the relation

[ab, c] = a [b, c] + [a, c] b

for double commutators is quite useful, as well as the quantization conditions (9.27) are



234 9.7. Quantized theory

necessary. In the following the summation is kept implicit. This yields for the first term[
αi−nα

j
n, α

k
−mα

l
m

]
= αi−n

[
αin, α

k
−mα

l
m

]
+
[
αi−n, α

k
−mα

l
m

]
αjn

= αi−nα
k
−m
[
αjn, α

l
m

]
+ αi−n

[
αjn, α

k
−m
]
αlm

+αk−m
[
αi−n, α

l
m

]
αin +

[
αi−n, α

k
−m
]
αlmα

j
n

= αi−nα
k
−mnδ

jlδn,−m + αi−nα
l
mnδ

jkδn,m

−αk−mαjnnδilδ−n,−m − αlmαjnnδikδ−n,m
= n(αi−nα

k
nδ

jl + αi−nα
l
nδ

jk − αk−nαjnδil − αl−nαjnδik), (9.38)

for the second term[
αi−nα

j
n, α

l
−mα

k
m

]
= αi−n

[
αjn, α

l
−mα

k
m

]
+
[
αi−n, α

l
−mα

k
m

]
αjn

= αi−nα
l
−m
[
αjn, α

k
m

]
+ αi−n

[
αjn, α

l
−m
]
αkm

+αl−m
[
αi−n, α

k
m

]
αjn +

[
αi−n, α

l
−m
]
αkmα

j
n

= αi−nα
l
−mnδ

jkδn,−m + αi−nα
k
mnδ

jlδn,m

−αl−mαjnnδikδ−n,−m − αkmαjnnδilδ−n,m
= n(αi−nα

l
nδ

jk + αi−nα
k
nδ

jl − αl−nαjnδik − αk−nαjnδil), (9.39)

for the third term[
αj−nα

i
n, α

k
−mα

l
m

]
= αj−n

[
αin, α

k
−mα

l
m

]
+
[
αj−n, α

k
−mα

l
m

]
αin

= αj−nα
k
−m
[
αin, α

l
m

]
+ αj−n

[
αin, α

k
−m
]
αlm

+αk−m
[
αj−n, α

l
m

]
αin +

[
αj−n, α

k
−m
]
αlmα

i
n

= αj−nα
k
−mnδ

ilδn,−m + αj−nα
l
mnδ

ikδn,m

−αk−mαinnδjlδ−n,−m − αlmαinnδjkδ−n,m
= n(αj−nα

k
nδ

il + αj−nα
l
nδ

ik − αk−nαinδjl − αl−nαinδjk), (9.40)

and finally the fourth[
αj−nα

i
n, α

l
−mα

k
m

]
= αj−n

[
αin, α

l
−mα

k
m

]
+
[
αj−n, α

l
−mα

k
m

]
αin

= αj−nα
l
−m
[
αin, α

k
m

]
+ αj−n

[
αin, α

l
−m
]
αkm

+αl−m
[
αj−n, α

k
m

]
αin +

[
αj−n, α

l
−m
]
αkmα

i
n

= αi−nα
l
−mnδ

ikδn,−m + αj−nα
k
mδ

ijδn,m

−αl−mαinnδjkδ−n,−m − αkmαinnδjlδ−n,m
= n(αj−nα

l
nδ

ik + αj−nα
k
nδ

ij − αl−nαinδik − αk−nαinδjl). (9.41)
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Combining (9.38-9.41) permits to drop the summation over m. In addition, for every δ

each term appears twice, reducing the total expression to

[
Sij, Skl

]
= −2

∞∑
n=1

1

n
(αi−nα

k
nδ

jl + αi−nα
l
nδ

jk + αj−nα
k
nδ

il + αj−nα
l
nδ

ik

−αk−nαjnδil − αl−nαjnδik − αk−nαinδjl − αl−nαinδjk).

Reordering, expanding −1 to i2, and combing terms with the same δ permits to reconstruct

spin operators. Finally, the result becomes[
Sij, Skl

]
= 2i

(
δjlSik + δjkSil + δilSjk + δikSil

)
.

Thus, indeed the operators satisfy a spin algebra. If all indices are different then the

commutator vanishes. Since furthermore all diagonal elements of the Sij vanish only

elements with the same indices remain. For example this leaves[
S12, S23

]
= 2iS13.

The commutator hence contains always the two unequal indices in the same order. Since

the spin operator is antisymmetric by definition also the correct exchange property for the

arguments of the commutator is obtained, completing the construction.

To see how the helicity emerges investigate first the 23 component of the spin operator,

being the one relevant in a four-dimensional sub-space. The helicity of the lowest excitation

of the open string is then given by

〈1, k|S23 |1, k〉 = −i
∞∑
n=1

1

n
〈1, k|

(
α2
−nα

3
n − α3

−nα
2
n

)
|1, k〉 = 〈1, k| i |1, k〉 = i.

Thus the value is 1. For the lowest excitation of the closed string, the value is found

analogously to be two. Thus the lowest excitation of the open string is a vector particle

while the one of the closed string is rather a graviton, in accordance with the previous

considerations.

Comparing all results a number of interesting observations are obtained. Since vector

particles always harbor a gauge symmetry, the open string already furnishes a gauge theory.

Since it is non-interacting, this gauge theory has to be non-interacting as well, leaving

only a U(1) gauge theory. A more detailed calculation would confirm this. Therefore, it

is admissible to call the state |1, k〉 a photon.

Similarly, a spin 2 particle couples to a conserved tensor current. Since the only

one available is the energy-momentum tensor, the symmetric contribution of the lowest

excitation of the closed string can be interpreted as a graviton. The antisymmetric particle
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can be given the meaning of an axion, as it is equivalent to a 2-form gauge boson. Finally,

the scalar particle is then the dilaton, as in the case of large extra dimensions.

Calculating the helicity gives already the correct result for the photon and the graviton.

Indeed, for the axion and the dilaton a value of zero is obtained, as they would have also

in a generic quantum field theory of these particles.

It should be noted that it can be shown that a string theory turns out to be only

consistent if it at least contains the closed string, with the open string being an optional

addition. Thus, the graviton is there in any string theory.

9.7.4.1 Dualities

It could be easily imagined that there are many different string theories, like there are many

different field theories. However, the number of consistently quantizable string theories

is very limited, and only five are known today. Furthermore, it can be shown that these

string theories are dual to each other.

To get an idea of the concept of dualities, note the following. The Polyakov action (9.11)

can also be viewed with a different interpretation: Promoting the world-sheet indices to

space-time indices and taking the indices µ to label internal degrees of freedom, then

the Polyakov action just describes D massless scalar fields Xµ (with internal symmetry

group SO(D − 1,1)) in two space-time dimensions with a non-trivial metric γ, which

is dynamically coupled to the fields. This is an example of a duality of two theories.

This also demonstrates why two-dimensional field theories have played a pivotal role in

understanding string theories. Another such relation is the AdS/CFT correspondence,

which state that certain classical (super)gravity theories on a so-called anti de Sitter space,

a special case of a curved space-time, are dual to (super)conformal field theories.

A more typical example for a string theory is the following. Start with the closed

string, now also periodic in the eigentime. The condition (9.36) implies that any solution

for the open string has the form

Xµ = Xµ
L +Xµ

R.

It is convenient to write the left-moving and right-moving solutions for the following as

Xµ
L =

xµ

2
+
L2pµ

2
(τ − σ) +

iL

2

∑
n6=0

αµn
n
e−2in(τ−σ)

Xµ
R =

xµ

2
+
L2pµ

2
(τ + σ) +

iL

2

∑
n 6=0

βµn
n
e−2in(τ+σ),

where xµ and pµ are the position and momentum of the center of mass, and the α and β

are the Fourier coefficients of the excited modes.
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Now compactify one of the dimensions on a circle of radius R. This will only affect

the zero-modes, so for the following the sum of excited states is dropped. Also, only

the functions in the direction of the compactified dimension, say number 25, are affected.

Assume that the string is warped W times around the compact dimensions. The left-

moving and right-moving solutions for the ground-state take then the form

X25
L =

x25 + c

2
+ (αp25 +WR)(τ + σ)

X25
R =

x25 − c
2

+ (αp25 −WR)(τ − σ)

X25 = x25 +
2αK

R
τ + 2WRσ.

where c is an arbitrary constant which just turns the zero-point of the world-sheet coor-

dinates around the compactified dimensions. Also, the center of mass momentum is then

quantized as in the large extra dimension theories, and given by

p25 =
K

R

where K is describing the Kaluza-Klein mode, and is thus enumbered by an integer.

Now a duality transformation can be performed by mapping W → K and R → α/R.

Then the zero-mode takes the form

X25 = x25 + 2WRτ + 2
2αK

R
σ.

However, this is exactly the expression which would be obtained if a string would wind

K times around a compact dimension of size α/R for the W th Kaluza-Klein mode. Since

these parameters only appear in the zero mode, the remaining part of the solution is

the same. Hence, these two theories have the same solutions under this mapping of the

parameters, they are dual to each other. Such relations are called duality relations. In

general, when the exact solutions are not known like in the present case, it is much harder

to establish the duality of two theories. In particular, a duality in a classical theory could

be broken by quantum effects. Therefore, most dualities so far have only been conjectured

on the basis that no counter-example for them is known.

Since all known, consistent quantum string theories are dual to each other, the idea

that there is a common underlying structure, the mentioned M-theory, is very appealing,

though unproven.
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9.8 Virasaro algebra

9.8.1 The algebra

The property of being consistent only in a certain number of dimensions can be linked to

an algebraic structure, the Virasaro algebra. For this, it is useful to not use a particular

gauge, but rather a more general setting. For the following, this essentially boils down to

use instead of the canonical commutation relations (9.27)

[αµm, α
ν
n] = mδm+nη

µν (9.42)

and thus to permit quantized oscillations in all directions. Of course, this is to be expected:

These oscillations are the same as in light cone gauge, as the remainder coordinate func-

tions are completely determined by the reduced set of spatial directions due to the present

symmetries, and therefore were not needed to be given explicitly.

The starting point for the construction of the algebra is then the Fourier expansion of

the diagonal elements of the world-sheet energy momentum tensor. For this purpose, it is

useful to set the string length to 2π, to avoid a proliferation of factors of L. Classically,

for the open string, its is defined as

Taa = α′
∞∑

n=−∞

Lne
−inξa ,

(no summation over a implied) where the Ln are the expansion modes and the ξa are the

momenta along the directions σ and τ on the world-sheet. Because of the two different

movement directions on the closed string, the modes for the τ and σ directions are different,

Tττ = 4α′
∞∑

n=−∞

L̃ne
−inξτ

Tσσ = 4α′
∞∑

n=−∞

Lne
−inξσ .

These modes can be expressed in terms of the Fourier coefficients α as

Lm =
1

2πα′

∫ 2π

0

dσeimσTττ

∣∣∣∣
τ=0

=
1

2πα′

∫ 2π

0

dσe−imσTσσ

∣∣∣∣
τ=0

=
1

2

∞∑
n=−∞

αµm−nα
µ
n

for the open string and

Lm =
1

2

∞∑
n=−∞

αµm−nα
µ
n

L̃m =
1

2

∞∑
n=−∞

βµm−nβ
µ
n
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for the closed string. Note that the energy momentum tensor vanishes by being the

equation of motion (9.34) of a cyclic variable. From the vanishing of the energy momentum

tensor then follows Lm = L̃m = 0 for all m, the so-called Virasaro constraints. Since Lm is

not differing between open and closed strings, it will not be differentiated in the following

between both, except for the presence or absence of the second mode L̃m.

When now quantizing the system, there appears an ordering problem for L0, as α−n is

not commuting with αn, see (9.42). Thus, an ambiguity arises, and therefore the quantum

version of L0 and L̃0 are defined as

L0 =
α2

0

2
+

1

2

∞∑
n=1

α−nαn = a+
1

2

∞∑
n=1

α−nαn,

and similarly for L̃0. The constant a can be determined when observing that the mass

operator m2, defined to be the Hamiltonian minus P 2, is given by

m2 =
2

α′

∞∑
n=1

αnα−n = − 1

α′

(
a−

∞∑
n=1

α−nαn

)
,

since the same operator ordering problem arises. Since the mass is invariant under the

gauge choice the value of a can be read off (9.30), as then −A = a = 1.

The Virasaro algebra is now given by the algebra of the operators Lm. For m+ n 6= 0,

it can be straightforwardly, albeit tediously, shown that

[Lm, Ln] = (m− n)Lm+n,

using the canonical commutator relations for the αs (9.27). However, it is more compli-

cated if m+ n = 0. It is direct to show that for any m

[Lm, α
µ
n] = −nαµm+n. (9.43)

holds. The commutator is now given by

[Lm, Ln] =
1

2

(
−1∑

p=−∞

(
(m− p)αµpα

µ
m+n−p + pαµn+pα

µ
m−p
)

+
∞∑
p=0

(
pαµm−pα

µ
n+p + (m− p)αµm+n−pα

µ
p

))

=
1

2

(
−1∑

p=−∞

(m− p)αµpα
µ
m+n−p +

n−1∑
p=−∞

(p− n)αµpα
µ
n+m−p

+
∞∑
p=n

(p− n)αµn+m−pα
µ
p +

∞∑
p=0

(m− p)αµm+n−pα
µ
p

)
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Now it remains to bring the terms all in the same order as necessary for the definitions of

the Lm. This is again a somewhat tedious exercise, and ultimately yields

[Lm, Ln] = (m− n)Lm+n +
d

12
(m3 −m)δm+n

where the last term is called the central extension of the algebra.

9.8.2 Physical states

One of the main advantages of the Virasaro algebra is to permit a simple identification

of physical states, and to check that only physical states of a string theory contribute to

observables. As in quantum mechanics and in quantum field theory, a state p is considered

to be physical if it has a positive norm and positive semi-definite inner product with other

physical states q,

〈p|p〉 > 0

|〈p|q〉|2 ≥ 0.

There may exist other states in a theory. One such class are states with zero inner product

with any physical state p, so-called spurious states,

〈p|z〉 = 0, (9.44)

These spurious state then do not contribute to any observable. What is not permitted are

states with negative norm or overlaps, so-called ghost states g, as these would spoil any

probability interpretation of the theory.

Physical states can now be shown to behave as

Lm>0|p〉 = 0 (9.45)

(L0 − a)|p〉 = 0, (9.46)

while spurious states obey besides the second condition (9.46) also (9.44) for all physical

states. The correctness of this assignment follows from the fact that the conditions (9.45)

and (9.46) can be shown to correspond to the vanishing of the quantized world-sheet energy

momentum tensor, and thus imply the satisfaction of the equations of motion.

Since the adjoint of Lm is L−m, spurious states can be written as

|z〉 =
∑
n>0

L−n|χn〉,

where the χn satisfy

(L0 − a+ n)|χn〉 = 0.
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This implements both conditions for spurious states (9.46) and (9.44) by construction.

Since for m < −2 the Lm can be rewritten, using the Virasaro algebra, in terms of L−1

and L−2, this can be simplified to

|z〉 = L−1|χ1〉+ L−2|χ2〉.

A state can be both physical and spurious. By construction, it follows that such states

have zero scalar product with any physical states including themselves, i. e., they have

zero inner norm. Such states are called null states.

Such null states n can be constructed using spurious states of the form

|n〉 = L−1|χ1〉.

Such a state fulfills all conditions of being physical, except

L1|χ1〉 = L1L−1|χ1 >= 2L0|χ1〉 = 2(a− 1)|χ1〉, (9.47)

using the Virasaro algebra. Only since a = 1, the state is physical. Given the definition

of L−1, it actually follows that |χ〉 = |0, k〉, i. e. the state where the string has no internal

excitations. Incidentally, this implies that the tachyon is not a physical state. Furthermore,

this implies that any physical state is actually an equivalence class of states

|p〉 ∼ |p〉+ |n〉,

as no measurement can differentiate between the original state and the one where an

arbitrary zero norm state has been added. In fact, an infinite number of such null states

can be constructed. These are required to cancel in any physical process contribution from

negative norm states, the ghost states, very similar to the situation in gauge theories. This

is, however, beyond the present scope. In fact, in light-cone gauge such states do not arise,

implying that the theory is well-defined. the reason for their appearance here is that the

covariant formulation is not fully fixing the reparametrization invariance, as it explicitly

contains unphysical degrees of freedom, the additional X±, just like in an ordinary gauge

theory.
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n-Higgs doublet model, 145

n-Higgs model, 145

Nambu-Goto action, 210

Naturalness problem, 65

Neutralino, 122

Neutrino, 4

Mass, 5

Right-handed, 9

Neutrino oscillation, 9

Newton’s constant, 17, 200

Higher-dimensional, 175

nHDM, 145

Non-commutative geometry, 197

Nucleosynthesis, 29

Null state, 241

O’Raifeartaigh model, 96

Oblique radiative corrections, 33

Orbifold, 188, 190, 194

Symmetry breaking, 195

Oscillation, 11

Osterwalder-Seiler-Fradkin-Shenker argu-

ment, 167

p value, 31

Parity violation, 10

Partial compositness, 143

Particle

Quantization, 216

Relativistic, 206

Pauli-Lubanski vector, 55

Peccei-Quinn symmetry, 152

Perturbation theory, 164

Perturbativity, 22

Peskin-Takeuchi parameters, 34

Photino, 78, 103

Photon, 6, 8, 78, 235

Planck length, 197, 209

Planck mass, 204

Higher-dimensional, 175

Planck scale, 23, 176

PMNS matrix, 5, 11

Poincare

Invariance, 207
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String, 210

Transformation, 207

Poincare symmetry

and supersymmetry, 40

Polyakov action, 211

Precision measurement, 33

Proton decay, 162

QCD, 5

Supersymmetric, 87

QED

Supersymmetric, 83, 86

Quantum gravity, 204

Quark, 4, 88

Quintessence, 153

Quirk, 148

R symmetry, 50, 90

r-mode, 153

R-parity, 107

Radion, 177, 180, 191

Randall-Sundrum model, 190

Rarita-Schwinger field, 201

Regge slope, 210

Renormalization, 20

Renormalization group equation, 112

Reparametrization

Invariance, 208

ρ parameter, 34

Ricci tensor, 17, 200

Riemann tensor, 17, 200

Rotation, 42

Running coupling, 11, 136

Gauge, 112

Walking, 136

Running mass, 12

Gauginos, 114

Higgs, 115

stop, 115

S parameter, 34, 130

Scalar, 179

Scale, 11, 12

Schwinger representation, 233

Sector, 4

Electroweak, 6

Force, 5

Matter, 4

See-saw, 142, 146

Selectron, 83, 104

Selectron condensation, 87

Sfermion, 104

Shift symmetry, 228

σ-model

Linear, 146

Non-linear, 146

Significance, 31

Global, 31

Local, 31

Simplest little Higgs model, 147

Slepton, 104

Slow-roll, 153

Smuon, 104

Sneutrino, 104

Soft breaking, 93

Spin, 233

Spinor

Contraction convention, 43

Metric tensor, 43

Scalar product, 44

Spurious state, 240

Squark, 88, 104

Standard model, 4

Supersymmetric, 103
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Stau, 104

Strange, 4

String, 209

Bosonic, 203

Closed, 209, 228, 236

Excitation, 226

Mass, 226

Hilbert space, 223

Open, 209

Quantization, 222, 228

Tension, 210

Vacuum instability, 226

String theory, 174, 203, 204

Bosonic, 227

Dimensionality, 227

Duality, 236

Gravity, 236

Landscape, 205

Physical state, 240

Strong CP problem, 152

Strong force, 5

Structure constants, 81

Superalgebra, 48

Extended, 49

Off-shell, 60

On-shell, 58

Supercharge, 47, 49

Differential representation, 71

Supercoordinate, 70

Supercurrent, 47

Supergravity, 49, 203

Supermultiplet, 46, 51

Chiral, 54

Gravity, 54

Left-chiral, 46, 72

Mass, 51

Right-chiral, 46, 74

Spin, 51

Vector, 54

Superpartner, 51

Superpotential, 62, 76

Superscalar, 75

Superspace, 68, 70

Superspin, 56

Supersymmetry, 38

Non-linear, 64

Supersymmetry transformatioN

Supergravity, 203

Supertransformation, 70

Free theory, 45

Maxwell theory, 78

QCD, 88

QED, 83, 87

Yang-Mills theory, 81

Supertranslation, 70

Differential representation, 71

Type I, 74

Type II, 74

Type r, 74

Supervector, 72

SUSY breaking

D-type, 99

Explicit, 100

F -type, 98

Gauge mediation, 102

Gravity mediation, 103

Mediation, 102

Soft, 101

SYM, 82

N = 2, 90

N = 4, 91

Symmetry
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External, 39

Internal, 39

T parameter, 34, 130

T parity, 147

Tachyon, 203, 205, 226, 232, 241

Tau, 5

Tau neutrino, 5

Techniaxion, 129

Technibaryon, 125

Mass, 128

Technibaryon number, 125

Technichiral condensate, 126

Technicolor, 124, 149

Extended, 130

Master gauge group, 131

Non-commuting, 134

Farhi-Susskind, 129

Minimal walking, 139

Scale, 125–127

Extended, 131

Signature, 128

Simple, 125

Susskind-Weinberg, 127

Topcolor assisted, 141, 149

Tumbling, 135

Walking, 136

Techniflavor, 126

Technigluon, 125

Technihadron, 125

Technilepton, 129

Mass, 129

Technimeson, 125, 128, 129, 135

Mass, 127, 128, 130, 137

Techniquark, 125, 129

Mass, 127–129

Tetrad, 208

Third generation, 134

Top, 5, 130, 140

Vectorial partner, 147

Top-flavor model, 135

Topcolor, 140, 196

Topgluon, 140

Topological term, 89, 151

Toppion, 141

Topρ, 142

Triggering model, 131

Triviality problem, 20

Tumbling gauge theory, 131

U parameter, 34, 130

Ultraviolet completion, 20

Unification, 22

Unification scale, 111

Unparticle, 148

Up, 4

Vacuum angle, 151

Vacuum energy, 225

Vacuum tilting, 141

Veltman ρ parameter, 34

Vierbein, 202

Virasaro algebra, 238, 239

Central extension, 240

Virasaro constraints, 239

Volume fluctuation, 177

W± boson, 5, 7

Physical, 170

W
′± boson, 135

Weak force, 5

Weak interaction, 5, 172

Weak isospin, 6

Weak mixing angle, 8

Weinberg angle, 8
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GUT, 161

Wess-Zumino model, 63

Weyl fermion, 41

Weyl symmetry, 213

Gauge-fixing, 216

Wilson coefficients, 36

WIMP, 150

Wino, 104

Wit-Freedman formalism, 87

World line, 206

World sheet, 205, 209

Area, 210

World volume, 205

World-sheet

Parameter range, 216

Yang-Mills theory

Supersymmetric, 81

Yukawa interaction, 10

Z boson, 5, 8

Physical, 170

Z ′ boson, 135, 148

Zino, 104


