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Chapter 1

Introduction

At the end of 2009 the largest particle physics experiment so far has been started, the LHC
at CERN. With proton-proton collisions at a center-of-mass energy of up to 14 TeV, there
are two major objectives. One is to complete the current picture of the standard model
of particle physics. To do so, it was required to find the Higgs boson, the last missing
particle in the standard model. This has been achieved in 2012. However, still many of
the parameters of the standard model are only known at a less than satisfactory precision,
or even not yet measured directly, leaving at the minimum a long program for the LHC
and future experiments

The second objective is to search for new physics beyond the standard model. For
various reasons it is believed that there will be new phenomena appearing in particle
physics at a scale of 1 TeV. Though this is not guaranteed, there is motivation for it, as
will be discussed in section 3.5.

Afterwards, a number of possibilities will be presented. In particular, grand unified
theories, technicolor, extended Higgs sectors or additional (possibly hidden) sectors ex-
tending the standard model in one way or another by additional forces and particles will
be presented. These are candidates to resolve some of these issues. A more elaborate
approach is to impose a new structure on particle physics. This is done in particular by
supersymmetry as an extra (though broken) symmetry of nature. This is the one extension
most commonly believed to be the candidate for beyond-the-standard-model physics. Su-
persymmetry is in general also an important ingredient in theories which go a step further
and endow the very arena of physics, space-time, by a different structure. In particular,
supergravity theories and string theories do so. Hence, supersymmetry will be treated
in the most detailed fashion of all extensions in this lecture. In addition, as an example
of a (non-supersymmetric) string theory will be given at the end of this lecture. A sim-

pler case of such an extension is given by large extra dimensions, which will be discussed



beforehand.

In fact, the most popular sequence of extensions of the standard model is supersymme-
try at relatively low scales of some (tens of) TeVs, grand-unified theories at scales of 10'2
TeV, and string theory at the Planck scale of 106 TeV. While by no means guaranteed,
and, depending on perspective, not an even likely sequence of extensions, it will serve
as the prototypical way of how to construct theories extending the standard model. Its
nature as a role model makes it also very useful in understanding the current discourse on
the subject, or when participating in talks or conferences on the topic of this lecture.

A useful list of literature for the present lecture is given by

e Aitchison, “Supersymmetry in particle physics” (Cambridge)
e Andersen et al., “Discovering technicolor”, 1104.1255

e Bambi et al. “Introduction to particle cosmology”, Springer
e Bedford, “An introduction to string theory”, 1107.3967

e Bohm, Denner, and Joos, “Gauge theories”, Teubner

e Cheng, “Introduction to extra dimensions”, 1003.1162

e Dolgov, “Cosmology and physics beyond the standard model”, Cosmology and Grav-

itation, American Institute of Physics
e Han et al., “Kaluza-Klein states from large extra dimensions”, hep-ph/98113504

e Hill and Simmons, “Strong dynamics and electroweak symmetry breaking”, hep-
ph/0203079

e Kalka, “Supersymmetrie”, Teubner

e Lane, “Two lectures on technicolor”, hep-ph/0202255

e Maas, “Brout-Englert-Higgs physics: From foundations to phenomenology”, 1712.04721
e Morrissey et al., “New physics at the LHC”, 0912.3259

e Piai “Lectures on walking technicolor, holography, and gauge/gravity dualities”,
1004.0176

e Polchinski, “String theory”, Cambridge University Press

e Rovelli, “A dialog on quantum gravity”, hep-th/0310077
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e Shifman, “Advanced topics in quantum field theory”, Cambridge

e Siegel, “Fields”, hep-th/9912205

e Weinberg, “The quantum theory of fields III” (as well as I and II) (Cambridge)
e Wess et al. “Supersymmetry and supergravity” (Princeton)

However, the topic is developing, and will be even more rapidly do so as soon as something
is found at the LHC or elsewhere. In particular, it is not possible to cover only a serious
fraction of all proposals for physics beyond the standard model. This is particularly
true, as most proposals features sufficient freedom so that they can be adapted to any
new observation being in conflict with them. Hence, this lecture can only present a small
selection, which is necessarily both not even exhaustive on a principle level and a subjective
selection by the lecturer. Still, all the more popular proposals in their most general form
should be covered.

Note that this lecture has necessarily some overlap with the astroparticle physics lecture
and the advanced general relativity and quantum gravity lecture, as those fields are tightly
connected. However, here the emphasis will be on microscopical models and their tests
and predictions in earthbound experiments, rather than on cosmological implications.
Furthermore, this brings with it that the focus will be on observables accessible in colliders,
and thus frequently the Higgs and/or electroweak observables.

Finally, right now new experimental results and observations from astronomy flood in
on an almost weekly basis. Essentially all of them confirm our knowledge, and those which
do not have often relevant uncertainties attached to them. Taking this seriously is very
important, as not doing so has given rise to various false claims of new physics, as will
be discussed in section 3.6.1. Therefore, adding a discussion of the current experimen-
tal situation makes no sense within these lecture notes, as it will be probably outdated
by the time the lecture is actually given. I will therefore only comment orally on new
developments, and of course adapt the lecture for any developing situations.

Finally, I would like to point out that the research of my group, my collaborators,
and myself has in the last few years rose doubt about the standard way how new theories
beyond the standard model are constructed, especially low-energetic completions. These
findings do contradict at some points the models presented in this lecture. However,
at the current time our results are not yet established beyond doubt, and certainly not
mainstream. Also, frequently the current ideas form an integral part to understand our
results, as well as it is necessary to understand mainstream research in this area and its

history. I therefore present in this lecture the current mainstream ideas on new physics.



I will only briefly introduce our own ideas in the section 7.7 on more recent theoretical

developments.



Chapter 2

A brief reminder of known physics

2.1 The standard model

2.1.1 The sectors of the standard model

The! standard model of elementary particle physics is our best description of high-energy
physics up to an energy of about a few hundred GeVs to one TeV?. Within the standard
model there exists a number of sectors. One sector is the matter sector. It contains three
generations, or families, of matter particles. These particles are fermions, i.e., they have
spin 1/2. Each generation contains four particles, which are split into two subsets, quarks
and leptons. The different particles types are called flavors.

The first family contains the up and down quarks, having masses about 2-5 MeV each,
with the down quark being heavier than the up quark. Since their mass is very small
compared to the scale of the strong interactions, around 1 GeV, it is very hard to measure
their mass accurately, even at large energies. The leptons are the electron and the electron
neutrino. The electron has a mass of 511 keV. The masses of the neutrinos will be discussed
after the remaining generations have been introduced. All stable matter around us, i. e.,
nuclei and atoms, are just made from the first family. Particles from the other families
decay to the first family on rather short time-scales, and can therefore only be generated
in the laboratory, in high-energy natural processes, or virtually.

The other two families are essentially identical copies of the first one, and are only

distinguished by their mass. The second family contains the strange quark, with a mass

IThe following contains contributions from Hill and Simmons, “Strong dynamics and electroweak
symmetry breaking”, hep-ph/0203079, 2003 and Morrissey, Plehn, and Tait “New physics at the LHC”,

0912.3259, 2009.
2For a detailed introduction to the standard model see also the lecture on the standard model.
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between 80 and 100 MeV, and the charm quark with a mass of about 1.5 GeV. The leptons
in this family are the muon with roughly 105 MeV mass, and its associated neutrino, the
muon neutrino. The final, third, family contains the bottom quark with a mass of about
4.2 GeV, and the extraordinary heavy top quark with a mass of about 175 GeV. The

corresponding leptons are the tau with 1777 MeV mass and its associated tau neutrino.

Of the neutrino masses only an upper limit is known, which is roughly 0.2 eV from
cosmological observations, or about 2 eV from direct measurements, and 0.45 eV for the
electron neutrino. However, it is sure that their mass, whatever it is, is not the same for
all neutrinos, but the masses differ by 50 meV and 9 meV. It is, however, not clear yet,
whether one of the neutrinos is massless, or which of the neutrinos is heaviest. It could
be either that the one in the first family is lightest, which is called a normal hierarchy of
masses, or it could be heaviest, which is called an inverted hierarchy. Experimental results
are not yet able to distinguish both cases. It is also still possible, though theoretically
unlikely, that one of the neutrinos is massless. It is also still possible that neutrinos are
their own anti-particles, so-called Majorana particles. This would have a unique signature
in terms of neutrinoless double-3 decays. Advanced direct measurements of the neutrino

mass should help clarify at least a few of these questions until 2030.

These matter particles interact. The particles mediating the forces are called force
carriers and make up the force sector. The quarks have a force, which is exclusive to them,
the strong force, which binds together the nucleons in nuclei and quarks into nucleons or
in general hadrons. This strong force is mediated by gluons, massless spin-1 particles. The
description of the strong interactions is by a gauge theory, called quantumchromodynamics,
or QCD for short. Quarks and gluons can be arranged as multiplets of the gauge group of
QCD, which is SU(3). The associated charges are called color, and there are three quark
colors and three anti-quark colors, as well as eight gluon colors. From a group-theoretical
point of view, the (anti-)quarks appear in the (anti-)fundamental representation of SU(3)

and the gluons in the adjoint representation.

All matter particles are affected by the weak force, visible in, e. g., S-decays. It is
transmitted by the charged W bosons and the neutral Z boson. These bosons also
have spin 1, but, in contrast to the gluons, are massive. The W bosons have about
81 GeV mass, while the Z boson has a mass of about 90 GeV. Thus, this force only
acts over short distances. This force is described by the weak interaction, again a gauge
theory. The gauge group of this theory is SU(2), into which all particles can be arranged
as doublets. However, this interaction violates parity maximally, and thus only couples
to left-handed particles. But it is in a sense even stranger, as it not couples to the

particles of the matter sector directly, but only to certain linear combinations, which also
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contain admixtures of right-handed particles proportional to the mass of the particles.
This behavior is parametrized, though not explained, by the CKM and PMNS matrix for
the quarks and for the leptons, respectively. It is mysteriously very different for both, the
one for the quarks being strongly diagonal-dominant, while the one for the leptons more
or less equally occupied. Both introduce also an explicit violation of CP into the standard
model. The actual amount for the quarks is quite large, even though the actual process is
kinematically substantially suppressed. For the leptons it is not yet firmly established, but
experiments strongly hint at a non-zero, and possibly even maximal, CP violating effect.
However, also for the leptons the actual consequences are strongly suppressed, in this case
by the small neutrino masses.

Finally, all electrically charged particles, and thus everything except gluons and neutri-
nos, are affected by the electromagnetic interactions. These are mediated by the photons,
massless spin-1 particles. The corresponding theory is again a gauge theory, having gauge
group U(1). It is actually entangled with the weak interactions in a certain way, and thus
both theories are often taken together as the electroweak sector of the standard model.

Together with the strong interactions, the gauge group of the standard model is there-
fore SU(3)cotor X SU(2) weak X U(1)em®. Obtaining this structure in theories beyond the stan-
dard model will be a recurring theme in this lecture. It should be noted that this group
structure is not directly related to the actual group structure. In particular, the groups
SU(2) and U(1) are the weak isospin and hypercharge groups, and a mixture of them fi-
nally represents the weak interactions and the electromagnetic interactions. In particular,
left-handed fermions and right-handed fermions have different hypercharges while they
have the same electromagnetic charges.

However, because of the parity violation of the weak interactions, the masses of the
particles cannot be intrinsic properties of them, as otherwise no consistent gauge theory
can be formulated. Therefore, the mass is attributed to be a dynamically generated effect.
Its origin is from the dynamics of the Higgs particle, which interacts with all fields of
the standard model except gluons. Still, it is often taken to be a part of the electroweak
sector*. This particle is a scalar boson, and is by now experimentally as well established
as the other particles in the standard model.

The particular self-interactions of the Higgs particle obscures the gauge group, they
hide or, casually spoken, break the symmetry group of the standard model down to

SU(3)color XU(1)em. This occurs, because the Higgs field forms a condensate, very much

3 Actually, it is S(U(3)xU(2))=(SU(3)/Z3)color X (SU(2) /Z2)weak X U(1)em, to be precise. This is actually
not a trivial matter, and can be used as a restriction when constructing grand-unified theories in chapter

7, see e. g. O’'Raifeartaigh “Group structure of gauge theories”, Cambridge, 1986.
4See the lecture on electroweak physics from SS 2016.
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like Cooper pairs in a superconductor. As a consequence of the interactions with this
condensate the particles directly interacting with the Higgs boson acquire a mass, i. e.
all quarks and leptons and the weak gauge bosons W and Z. Only the photon remains

massless, despite its coupling to the Higgs, as it endows the unbroken U(1),,, symmetry.

2.1.2 The Brout-Englert-Higgs effect

This Brout-Englert-Higgs effect is a very generic process®, and it reappears in different
forms in the majority of beyond-the-standard-model (BSM) scenarios to be described in
this lecture, and also in the literature. It is therefore worthwhile to detail it more for
the standard model. Begin by considering the SU(2)xU(1) part of the standard model
with one complex scalar field in the fundamental representation of the weak isospin group
SU(2). The covariant derivative is given by

iDy = 0, — gW'Qu — ghBM%

= 0, —gW, Q" —gW, Q" — gW}Q* — g B J

"9

with the charge basis expressions

+ (Q' +1Q?)
? NG
wE = Wl} + sz

8 V2

Note that there are two gauge coupling constants, g; and gy, for the subgroups SU(2) and
U(1), respectively, which are independent. The hypercharge y of the particles are, in the
standard model, an arbitrary number, and have to be fixed by experiment. The relevance
of this observation will be discussed in section 2.1.4, and in particular in chapter 7. The

Q" are the generators of the gauge group SU(2), and satisfy the algebra
[Qav Qb] = iEachc

within the representation t of the matter field on which the covariant derivative acts. In
the standard model, these are either the fundamental representation ¢t = 1/2, i. e. doublets,
and thus the Q* = 7% are just the Pauli matrices, or singlets ¢ = 0, in which case it is the

trivial representation with the Q¢ = 0.

5This presentation is quite simplified, but the standard view. A more accurate quantum-field-

theoretical description will be given in section 7.7.
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Returning to the gauge bosons, linear combinations

Wi = Z,cosby + A, sinOy

B, = —Z,sinfy + A, cosbOy

can be written where Z, (4,,) is the Z-boson (photon). Then the electromagnetic coupling

constant e is defined as

g; sinfy, = e = gy, cos Oy, (2.1)
implying the relation
1 1
e g g

This definition (2.1) introduces the weak mixing, or Weinberg, angle

tan Oy, = Ih.

9i

The conventional electric charge, determining the strength of the coupling to the photon

field A, is thus defined as
eQ=e(Q"+31). (2:2)
where 1 is the unit matrix in the appropriate representation of the field, i. e. either the

number one or the two-dimensional unit matrix.

The total charge assignment for the standard model particles is then

e Left-handed neutrinos: ¢t = 1/2, t3 = 1/2, y = —1 (Q = 0), color singlet (may be

their own anti-particles, if right-handed neutrinos do not exist)
e Left-handed leptons: ¢t =1/2, t3 = —1/2, y = —1 (Q = —1), color singlet

e Right-handed neutrinos: ¢ = 0, y = 0 (@ = 0), color singlet (not experimentally
observed yet)

e Right-handed leptons: t =0, y = —2 (Q = —1), color singlet

e Left-handed up-type (u,c,t) quarks: ¢t = 1/2, t3 = 1/2, y = 1/3 (Q = 2/3), color
triplet

e Left-handed down-type (d,s,b) quarks: t = 1/2, t3 = —1/2, y = 1/3 (Q = —1/3),

color triplet
e Right-handed up-type quarks: t =0, y = 4/3 (Q = 2/3), color triplet

e Right-handed down-type quarks: t =0, y = —2/3 (Q = —1/3), color triplet
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Wt t=1,t3=1,y=0 (Q = 1), color singlet
e W:t=1,t3=—-1,y=0 (Q = —1), color singlet

e Z:t=1,t3=0,y =0 (Q = 0), color singlet

v:t=0,y=0 (Q =0), color singlet

Gluon: t =0, y =0 (Q = 0), color octet
e Higgs: t =1/2,t3==+1/2, y=1(Q = 0,+1), color singlet

Note that the right-handed neutrinos have no charge, and participate in the gauge inter-
actions only by neutrino oscillations, i. e., by admixtures due to the PMNS matrix and
their interaction with the Higgs boson. Any theory beyond the standard model has to
reproduce this assignment.

It is now possible to discuss the Brout-Englert-Higgs effect in more detail. The complex

doublet scalar Higgs-boson can be written as

. ( f ) 23)

and the Lagrangian for H takes the form
Ly = (D,H)'(D"H) - V(H) (2.4)

with some (renormalizable) potential V. To generate the masses in the standard model
it must be assumed that (the quantum version of) the Higgs potential has an unstable

extremum for H = 0 and a nontrivial minimum, e. g.

V(H) = %(HTH —v?)? (2.5)

The Higgs boson then develops a vacuum expectation value v, the Higgs condensate. It is
always possible to find a gauge, e. g. the 't Hooft gauge, in which v is real and oriented

along the upper component, and thus to be annihilated by the electric charge to make it

v-(3)

In the conventions used here, the value of v is v = (2Gr)~/? ~ 250 GeV, where G is

neutral,

Fermi’s constant. Note that the operator @) defined by (2.2) acting on the Higgs vacuum
expectation value yields zero, which implies that the condensate is uncharged, and this

implies that the photon remains massless.
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Inserting the decomposition of H into vacuum expectation value v and quantum fluc-

tuations h = H — v into (2.4) generates the masses of the weak gauge bosons as

Liass = 1/2(0n)'0h + 1/2M3,WIW*™ +1/2M} 2, Z" — 1/2M} hh'
A 1
—\/7_.7\411(#}1T + (h1)?h) — g/\(hhT)2
M
+1/2 (hh* + TH(h + hT)) (GZWIWE + (gi + 97) 2, 2")

MH = vV2\

giv
My, = 5
v MW
M, = —1/g¢3 2 = )
z 2 92+ 91 cos Oy

Here, the electromagnetic interaction has been dropped for clarity. This Lagrangian also
exhibits the coupling of the Higgs h field to itself and to the W and Z fields. It implies
that the Higgs mass is just a rewriting of the four-Higgs coupling, and either has to be
measured to fix the other.

The matter fields couple with maximal parity violation to the weak gauge fields, i. e.
their covariant derivatives have the form, for, e. g. the left-handed weak isospin doublet

of bottom quark and top quark W, = (¢, b),,

i} _ 1 1— 1. 1-
Ui Du¥e = Wi 0,0 — sy, 275 pIWHE 50 275tWM -
% 1— 1= 7
—gm“ 2751514# + gby“ 275 bA, — VYpetan 0"V 7,

The problem with a conventional mass term would be that it contains the combination
U, Wp, with Ug being the sum of the right-handed bottom and top, which is not a singlet
under weak isospin transformation, and thus would make the Lagrangian gauge-dependent,
yielding a theory which is not physical.
This can be remedied by the addition of an interaction between the fermions and the
Higgs of the Yukawa form
¢V - Htp+ ¢V, - H'bg, (2.6)

where - indicates a scalar product in isospin space, and which couples the left-handed
fermions and right-handed fermions to the Higgs field. This combination is gauge-invariant
and physically sensible for arbitrary Yukawa couplings g, and g;. When the Higgs develops
its vacuum expectation value, masses m; = g,v and my = gyv arise for the top quark and
bottom quark, respectively. This mechanism is replicated for both the other quarks and

all leptons, though one of the neutrinos may remain massless without contradiction.
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It should be noted that (2.6) can, in general, contain also off-diagonal terms, i. e.
terms mixing different flavors. In the standard representation, the quark and lepton
fields have been rotated such that they do not appear. The price to be payed is the
appearance of the CKM and PMNS matrices in the weak interaction. However, oth-
erwise a fixed flavor would not have a fixed mass. The consequence of this are oscil-
lation phenomena. Note also that thus intergeneration effects, including CP violation,
thereby originate from the Higgs-Yukawa interaction, and not from the weak interac-
tion. They only yield intergeneration effects for left-handed particles. Note that in ab-
sence of electromagnetism and when all Yuakaw couplings vanish, the standard model has
a global SU(2)niggs X (SU(3)1eft-handed generation X SU (6)right-handed flavor)” Symmetry, where the
square originates from the replication in the quark sector and the lepton sector, assuming
right-handed neutrinos exists. This structure needs to arise in the low-energy limit in
one way or another from any theory beyond the standard model, either as an emergent
symmetry, an embedded symmetry, or as an explicit symmetry. Its breaking pattern is

also known as a texture.

Another interesting feature of the Higgs sector is the fact that (2.3) has actually more
than the minimum necessary number of degrees of freedom for a sensible theory, yield-
ing the SU(2)piges above. In principle, two degrees of freedom would be sufficient for a
consistent theory. However, then there would be not enough degrees of freedom to make
all three gauge bosons, W* and Z, massive simultaneously, and thus three or more are
required by phenomenology. Theoretical consistency then requires at least four, and thus
twice as many. Since these two sets of degrees of freedom are not distinguished by the
weak interaction this gives rise to this additional SU(2)piges symmetry, the so-called custo-
dial symmetry. This symmetry implies that the W* and Z would be mass-degenerate in
absence of QED. QED, and also the Yukawa interactions (2.6), break this symmetry ex-
plicitly. In fact, QED is nothing but gauging the U(1) subgroup of the SU(2)pjggs custodial
symmetry. While the symmetry is thus not manifest in the standard model, its original
structure is still imprinted as an explicitly broken symmetry, which has to be replicated

in one way or the other by any extension of the standard model.

2.1.3 Running coupling

There is a further important concept in the standard model, and actually in all quantum
field theories, which will be a recurring theme in the search for beyond-the-standard model
physics. This is the running of a coupling, or, more generically, the running of a quantity,

known from the renormalization program in quantum field theory. The derivative for a
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coupling with respect to the renormalization scale defines the 3 function as

d 3
L = Blg) = ~Boga— + O(g"), (2.7)

dlnp,:

where the last equality defines the perturbative expansion with the  function coefficients
B; at order 7 of perturbation theory. Integrating this equation in leading order perturbation

theory yields
Ar 1+%‘f)ﬁoln2—z ﬂolng—z’

a(q?) =

which introduces the scale A of a theory as a boundary condition of the ordinary differential
equation (2.7). The value of A can be determined, e. g., by evaluating g(u) perturbatively
to this order. It plays the role of a characteristic scale of the theory in question. The
value of 3y depends on the theory under scrutiny, as well as the type and representation of
the matter fields which couple to the interaction in question, e. g. for a gauge theory with

gauge group G including fermions and Higgs fields in the fundamental representation it is

11 2 1
= —Cy—N;— 2N 2.9
ﬂO 3 A 3 f 6 H ( )

where C4 is the adjoint Casimir of the group, and N; and Ny counts the number of
fermions and Higgs flavors, respectively, which are charged in the fundamental represen-
tation of the gauge group. Plugging this in for the standard model, the values of 5, for
the strong interactions, the weak isospin, and the hypercharge are 7, 19/6, and -41/6,
respectively, if the Higgs effect and all masses are neglected, i. e., at very high energies,
¢*> > 250 GeV. Remapping this to the weak interactions and electromagnetism is only
shifting the respective value for the weak interactions and the hypercharge weakly.

Plugging these values in (2.8) implies that for a positive §y the coupling decreases with
increasing energy, while it increases for a negative value of ;. The former behavior is
known as asymptotic freedom. The latter, in contrast, yields eventually a singularity at
high energies, called a Landau pole. This may indicate the breakdown of the theory, or
merely the inadequacy of perturbation theory at high energies. If g(u — o) becomes a
non-zero constants, this is referred to as asymptotic safety and to be discussed in more
detail in section 7.6.

Similar equations like (2.9) actually hold also for all other parameters in a quantum field
theory, in particular masses. Rather generically, the masses of the particles all decrease
when increasing the measured momenta. Thus, the masses of particles become less and
less relevant the higher the energy. That is a very important feature in many scenarios

which rely on symmetries only broken by such mass terms, called a soft breaking.



14 2.1. The standard model

2.1.4 Anomalies

There is one particular important property of the standard model, which is very much
restricting its structure, and which is recurring in extensions of the standard model. That
is the absence of anomalies. An anomaly is that some symmetry, which is present on
the classical level, is not present when considering the quantum theory. The symmetry is
said to be broken by quantum effects. Generically, this occurs if the action of a theory is
invariant under a symmetry, but the measure of the path integral is not. Constructing a
theory which is at the same time anomaly-free and consistent with the standard model is
actually already quite restricting, and therefore anomalies are an important tool to check
the consistency of new proposals for physics beyond the standard model. This will be
therefore discussed here in some detail.

Anomalies fall into two classes, global anomalies and local anomalies. Global anomalies
refer to the breaking of global symmetries by quantum effects. The most important one of
these global anomalies is the breaking of dilatation symmetry. This symmetry corresponds
to rescaling all dimensionful quantities, e. g., x — Az. Maxwell theory, massless QED,
Yang-Mills theory, and massless QCD are all invariant under such a rescaling, at the
classical level, though not the Higgs sector of the standard model. This is no longer the
case at the quantum level. By a process called dimensional transmutation, surfacing in
the renormalization process, an explicit scale is introduced into the theory, and thereby
the quantum theory is no longer scale-invariant. Such global anomalies have very direct
consequences. E. g., this dilatation anomaly leads to the fact that the photon is massless
in massless QED. Another example is the so-called axial anomaly, which occurs due to the
breaking of the global axial symmetry of baryons. A consequence of it is the anomalously
large 1" mass.

In contrast to the global anomalies, the local anomalies are a more severe problem. A
local anomaly occurs, when a quantum effect breaks a local gauge symmetry. The conse-
quence of this would be that observable quantities depend on the gauge, and therefore the
theory makes no sense. Thus, such anomalies may not occur. There are two possibilities
how such anomalies can be avoided. One is that no such anomalies occurs, i. e., the path
integral measure must be invariant under the symmetry. The second is by anomaly cancel-
lation, i. e., some parts of the measure are not invariant under the symmetry, but the sum
of all such anomalous terms cancel. It is the latter mechanism which makes the standard
model anomaly-free. However, the price to pay for this is that the matter content of the
standard model has to follow certain rules. It is thus rather important to understand how
this comes about. Furthermore, any chiral gauge theory beyond the standard model faces

similar, or even more severe, problems.
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Eventually, see the lecture on quantum field theory II, the requirement for the absence

of gauge anomalies boils down to the condition
b b
Z (tr {T}ff,TLf} Tff —tr {T}%f,TRf} TEf) =0,
f

where the 7 are the generators of the theory’s total, usually product, gauge group, and Ly
and Ry indicate the representation of the left-handed fermions and right-handed fermions,
respectively, summed over all fermions f present in the theory. There are now two possi-
bilities how to obtain an anomaly-free theory. Either, the theory is anomaly-free, if each
of the terms is individually zero, or they cancel. Indeed, the expression tr{7% 7°}7¢, the
so-called symmetric structure constant, is zero for all (semi-)simple Lie groups, except for
SU(N > 3) and U(1). Unfortunately, these are precisely those appearing in the standard
model, except for the SU(2) of weak isospin. For the group SU(3) of QCD, this is actually
not a problem, since QCD is vectorial, and thus 7, = 7g,, and the terms cancel for each
flavor individually. Thus remains only the part induced by the hypercharge.

In this case, each generation represents an identical contribution to the total result, as
the generations are just identical copies concerning the generators. It is thus sufficient to
consider one generation. The right-handed contributions are all singlets under the weak
isospin, and thus they only couple vectorially to electromagnetism, and therefore yield
zero. The contributions from the left-handed doublet contain then the generators of the
weak isospin, 7%, and the electric charge Q@ = 72 + 1y/2. The possible combinations

contributing are
trre{r? ¢} (2.10)
trQ{r?, 7°} (2.11)
trreQ? (2.12)
trQ3. ( )
The contribution (2.10) vanishes, as this is a pure SU(2) expression. The term (2.13) is
not making a difference between left and right, and is therefore also vanishing. It turns
out that (2.11) and (2.12) lead to the same result, so it is sufficient to investigate (2.12).

Since the isospin group is SU(2), the anti-commutator of two Pauli matrices just gives a

Kronecker-¢ times a constant, yielding in total

Q{7 = 553" Qy,
f

where )¢ is the electric charge of the member f of the generation in units of the electric

charge. It has to vanish to prevent any gauge anomaly in the standard model, which is
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fulfilled: - N
D Q=0-1D)+N(5-5)=-1+7"=0.
7 3 3 3

Therefore, there is no gauge anomaly in the standard model. However, this is only possible,
because the electric charges have certain ratios, and the number of colors N, is three. This
implies that the different sectors of the standard model, the weak isospin, the strong
interactions, and electromagnetism, very carefully balance each other, to provide a well-
defined theory. Such a perfect combination is one of the reasons to believe that the
standard model is part of a larger theory, which imposes this structure. This leads to the
concept of grand-unified theories in chapter 7.

There is actually a further possible anomaly, the so-called Witten anomaly, which
comes from the parity violation. This is a problem exclusively applying to the Sp(N)
gauge groups, and to SU(2) of the weak interactions because SU(2)~Sp(1), as well as
O(N < 6) groups, except for SO(2), if the number of chiral (Weyl) fermions is not even. It
will not be detailed here, see again the lecture on quantum field theory II. In the standard
model, it is canceled because the number of weak fermion states is even. This would not
be the case, if, e. g., there would be a single triplet of fermions charged under the weak
isospin. In technicolor theories, to be discussed in chapter 5, this is a constraint, as in

such theories multiplets with an odd number of fermions may appear.

2.2 General relativity

As will be discussed later, one of the objectives of many proposals for physics beyond the
standard model is to include a quantized version of gravity. Therefore, here quickly the
basics of gravity necessary in the following will be repeated®. The basic ingredient will be

the local metric g, (x), which will later often be split as

gul/(x) = N + hW(I)

where 7, is the constant Minkowski metric around which the quantum corrections to the
metric hy, fluctuate. Both classically and quantum, the metric describes the invariant
length-element ds by

ds?® = g dztdz” .

The inverse of the metric is required to exist and is given by the contravariant tensor g,

gw/gw\ = 55

6A more detailed introduction is given in the lecture on advanced general relativity and quantum

gravity.



Chapter 2. A brief reminder of known physics 17

As a consequence, for any derivative § of g,,
59" = —g"*g"P8 gy, (2.14)

holds. The metric is assumed to be non-vanishing and symmetric and has a signature such

that its determinant is negative,
g =detg,, <0.
The covariant volume element dV is therefore given by
dV = wd'z
w = =/ detgm >0,

implying that w is real (hermitian), and has derivative
Lo 1 »
ow = Swg 0Gu = —§ng§g (2.15)
as a consequence of (2.14).
The most important concept of general relativity is the covariance (or invariance) under

a general coordinate transformation r, — ], (diffeomorphism) as

! /'LL
= 2 gy prdg
oxV

det(J) # O,

where the condition on the Jacobian J follows directly from the requirement to have an
invertible coordinate transformation everywhere. Scalars ¢(z) are invariant under such
coordinate transformations, i. e., ¢(z) — ¢(z’). Covariant and contravariant tensors of
n-th order transform as

ozr, Ox,
= o 1o plx
ox!, " 9, o..8(7)

or'* oz’
= R €))

Jz® " OxP

T,..()

T,’u"'V(ZL‘/>
(2.16)

respectively, and contravariant and covariant indices can be exchanged with a metric
factor, as in special relativity. As a consequence, the ordinary derivative 0, of a tensor
A, of rank one or higher is not a tensor. To obtain a tensor from a differentiation the

covariant derivative must be used

DA, = 9,A,—T),A, (2.17)

1
Ffl\,l/ = _gAU(

2 8ugua + augua - aaguu)y
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where I' are the Christoffelsymbols. Only the combination wA,, yielding a tensor density,
obeys
D, (wA,) = 0,(wA,).

As a consequence, covariant derivatives no longer commute, and their commutator is given
by the Riemann tensor Ry, as

[D,,D,)A* = R) A°

puv

Ry, = 0.I,,—-0,I,,+T,Iy, —T) I

puv po vp vpT pp?

which also determines the Ricci tensor and the curvature scalar

RHV = Rz)/\,u)\
R = R,

respectively.
These definitions are sufficient to write down the basic dynamical equation of general

relativity, the Einstein equation
1
R, — §gw,R + g = =K1, (2.18)

which can be derived as the Euler-Lagrange equation from the Lagrangian”
1 1
Ezw(—R——A—l—EM) , (2.19)
2K K

where the first two terms are the Einstein-Hilbert Lagrangian Lgg. The quantity A is the
cosmological constant, a parameter of the theory, which is measured to be small but non-
zero. Ly is the matter Lagrangian yielding the covariantly conserved energy momentum
tensor 7}, which is the variation of £j; with respect to the metric. In flat-space time it

becomes the usual one,

0Ly
TNV = (—anLM + 2W(‘q/’“j = 77“1,)> . (220)

The second constant k = 16mGy is Newton’s constant. It describes the strength of the
coupling of matter to gravity.

There is an important remark to be made about classical general relativity. The pos-
sibility of making a general coordinate transformation leaving physics invariant has the

consequence that coordinates, and thus also both energy and three momentum as their

In the following, usually, the cosmological constant term g, A will be absorbed in the matter part.
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canonical conjugate momenta, loose their meaning as physically meaningful concepts, just
like charge in a non-Abelian gauge theory. Indeed it is possible to alter the energy of a
system by performing a space-time coordinate transformation. Only the concept of to-
tal energy (or momentum) of a localized distribution of particles when regarded from far
away in an otherwise flat space-time can be given an (approximate) physically meaning,
similarly to charges. Therefore, many concepts which are usually taken to be physical
loose their meaning when general relativity is involved. This carries over to any quantum

version.



Chapter 3

Why physics beyond the standard

model?

Before discussing actual BSM scenarios, it is useful to understand why they appear nec-

essary and how they could be discovered.

There are a number of reasons to believe that there exists physics beyond the standard
model. These reasons can be categorized as being from within the standard model, by
the existence of gravity, and by observations which do not fit into the standard model.
Essentially all of the latter category are from astronomical observations, and there are
currently only very few observations in terrestrial experiments which are reproducible
and do not perfectly agree with the standard model, and none which disagree with any

reasonable statistical and systematical accuracy.

Of course, it should always be kept in mind that the standard model has never been
completely solved. Though what has been solved, in particular using perturbation theory,
agrees excellently with measurements, it is a highly non-linear theory. It cannot a-priori
be excluded that some of the reasons to be listed here are actually completely within the

standard model, once it is possible to solve it exactly.

Many of the observations to be listed can be explained easily, but not necessarily, by
new physics at a scale of 1 TeV. However, it cannot be exclude that there is no new
phenomena necessary for any of them up to a scale of 10'> GeV, called the GUT scale for
reasons to become clear in chapter 7, or possibly up to the Planck scale of 10 GeV, in
which case the energy domain between the standard model and this scale is known as the

great desert.

20
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3.1 Inconsistencies of the standard model

There are a number of factual and perceived flaws of the standard model, which make it
likely that it cannot be the ultimate theory.

The one most striking reason is the need for renormalization. It is not possible to deter-
mine within the standard model processes at arbitrary high energies. The corresponding
calculations break down eventually, and yield infinities. Though we have learned how to
absorb this lack of knowledge in a few parameters, the renormalization constants, it is
clear that there are things the theory cannot describe. Thus it seems plausible that at
some energy scale these infinities are resolved by new processes, which are unknown so far.
In this sense, the standard model is often referred to as an effective low-energy theory of
the corresponding high-energy theory, or sometimes also called ultraviolet completion.

This sought-for high-energy theory is very likely not a (conventional) quantum field
theory, as this flaw is a characteristic of such theories. Though theories exist which reduce
the severity of the problem, supersymmetry at the forefront of them, it appears that it is
not possible to completely resolve it for any theory compatible with observations!, though
this cannot be excluded. Thus, it is commonly believed that the high-energy theory
is structurally different from the standard model, like string theory to be discussed in
chapter 9.4.1.

In a similar vain, there is also a very fundamental question concerning the Higgs sector.
At the current time, it is not yet clear whether there can exist, even in the limited sense of
a renormalizable quantum field theory, a meaningful theory of an interacting scalar field.
This is the so-called triviality problem. So far, it is essentially only clear that the only
consistent four-dimensional theory describing a spin zero boson alone is one without any
interactions. Whether this can be changed by adding additional fields, as in the standard
model, is an open question. However, since this problem can be postponed to energy scales
as high as 10' GeV, or possibly even higher, this question is not necessarily of practical
relevance.

There are a number of aesthetic flaws of the standard model as well. First, there
are about 35 different free parameters of the theory, varying by at least twelve orders of
magnitude. There is no possibility to understand their size or nature within the standard
model, and this is unsatisfactory. Even if their origin alone could be understood, their
relative size is a mystery as well. This is particularly true in case of the Higgs and the
electroweak sector in general. There is no reason for the Higgs to have a mass which is

small compared to the scale of the theory from which the standard model emerges. In

'Some special theories, especially conformal theories, or lower-dimensional theories do not need renor-

malization, they are intrinsically finite.
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particular, no symmetry protects the Higgs mass from the underlying theory, which could
make it much more massive, and therefore inconsistent with experimental data, than all
the other standard model particles. Why this is not so is called the hierarchy problem,
despite the fact that it could just be accidentally so, and not a flaw of the theory. Even if
this scale should be of the order of a few tens of TeV, there is still a factor of possibly 100
involved, which is not as dramatic as if the scale would be, say, 10! GeV. Therefore, this

case is also called the little hierarchy problem.

There is another strikingly odd thing with these parameters. The charges of the leptons
and quarks need not to be the same just because of QED - in contrast to the weak or
strong charge, actually. They could differ, and in particular do not need to have the ratio of
small integer numbers as they do: —1 to 2/3 or 1/3. This is due to the fact that the gauge
group of QED is Abelian. However, if they would not match within experimental precision,
which is more than ten orders of magnitude, then actually the standard model would not
work, and neither would physics with neutral atoms. This is due to the development of
a quantum anomaly, i. e., an effect solely related to quantizing the theory which would
make it inconsistent, as discussed in section 2.1.4. Only with the generation structure of
quarks and leptons with the assigned charges of the standard model this can be avoided.
This is ultimately mysterious, and no explanation exists for this in the standard model,

except that it is necessary for it to work, which is unsatisfactory.

There is also absolutely no reason inside the standard model why there should be
more than one family, since the aforementioned cancellation works within each family
independently and is complete. However, at least three families are necessary to have
inside the standard model CP violating processes, i. e. processes which favor matter over
anti-matter. As will be discussed in section 3.4.4, such processes are necessary for the
observation that the world around us is made from matter. But there is no reason, why
there should only be three families, and not four, five, or more. And if there should be
a fourth family around, why its neutrino is so heavy compared to the other ones, as can

already be inferred from existing experimental data.

In this context it is also important that it is not yet clear whether the ground state
of the standard model is actually the world we are living in, or whether this is just a
metastable state which could collapse at some point in the future to the true ground
state, with potentially catastrophic consequences. Finding the answer to this question is
currently primarily a question of computability, but it is already clear that the answer is
sensitive to the mass ratio of the Higgs to the top quark, two not related quantities in
the standard model. This makes it again suspicious why these two numbers should be so

close. This is known as the electroweak stability problem.
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Finally, when extrapolating the running gauge couplings to an energy scale of about
10'® GeV their values almost meet, suggesting that at this scale a kind of unification could
be possible. However, they do not meet exactly, and this is somewhat puzzling as well.
Why should this seem to appear almost, but not perfectly so?

Though often referred to as beyond the standard model, the conventional realization
of neutrino oscillations can be accommodated in the standard model just by making them
Dirac fermions, i. e. introducing so-far unobserved right-handed neutrinos, and the intro-
duction of parameters for their masses, and a second CKM-matrix in the lepton sector,
the PMNS matrix. This will therefore not be considered beyond the standard model for
the scope of this lecture. This does not explain why their masses are several orders of
magnitude smaller than all the other fermions masses nor why the PMNS matrix is so
different from the CKM matrix, and this will be a subject of this lecture.

Also, questions of computability, in particular within perturbation theory, are deemed
here to be completely irrelevant in this lecture, since its nature and not our ability to
compute something which decides about physics. Thus, especially the concept of pertur-
bativity, i. e. the demand that the theory is readily accessible to perturbative calculations,

will not be considered as a valid constrain for anything.

3.2 Gravity

3.2.1 Problems with quantization

One obviously, and suspiciously, lacking element of the standard model is gravity. Up to
now no consistent quantization of gravity has been obtained beyond reasonable doubt.
Usually the problem is that a canonical quantized theory of gravity is not renormalizable
perturbatively. This is visible when writing down the Lagrangian of gravity (2.19): The
coupling constant involved, x or equivalently Newton’s constant, is dimensionful. Super-
ficial (perturbative) power counting immediately implies that the theory is perturbatively
non-renormalizable. As a consequence, an infinite hierarchy of counter terms, all to be
fixed by experiment, would be necessary to perform perturbative calculations, spoiling
any predictivity of the theory. In pure gravity, these problems occur at two-loop order,
for matter coupled to gravity already at the leading order of radiative corrections.

In particular, this implies that the theory is not reliable beyond the scale y/x. Though
this may be an artifact of perturbation theory, this has led to developments like super
quantum gravity based on local supersymmetry or loop quantum gravity.

Irrespective of the details, the lack of gravity is an obvious flaw of the standard model.
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Along with this lack comes also a riddle. The natural scale of quantum gravity is given

by the Planck scale

1
Mp = —— ~1.22 x 10'? GeV.

e~

This is 17 orders of magnitude larger than the natural scale of the electroweak interactions,
and 19 orders of magnitude larger than the one of QCD. The origin of this mismatch is
yet unsolved, and also known as (a) hierarchy problem

One of the most popular explanations, discussed in detail in chapter 8, is that this is
only an apparent mismatch: The scales of gravity and the standard model are the same, but
gravity is able to propagate also in additional dimensions not accessible by the remainder
of the standard model. The mismatch comes from the ratio of the total volumes, the
bulk, an the apparent four dimensional volume, which is thus only a boundary, a so-called

brane.

3.2.2 Asymptotic safety

Reiterating, the problem with the renormalizability of quantum gravity is a purely per-
turbative statement, since only perturbative arguments have been used to establish it.
Thus, the possibility remains that the theory is not having such a problem, it is said to be
asymptotically safe, and the problem is a mere artifact of perturbation theory. In this case,
when performing a proper, non-perturbative calculation, no such problems would arise.
In fact, this includes the possibility that x imposes just an intrinsic cutoff of physics, and
that this is simply the highest attainable energy, similarly as the speed of light is the max-
imum velocity. As a consequence, the divergences encountered in particle physics then
only results from taking the improper limit energy— oo > k.

This concept of asymptotic safety can be illustrated by the use of a running coupling,
this time the one of quantum gravity. The naive perturbative picture implies that the
running gravitational coupling increases without bounds if the energy is increased, similarly
to the case of QCD if the energy is decreased: The theory hits a Landau pole. Since
the theory is non-linearly coupled, an increasing coupling will back-couple to itself, and
therefore may limit its own growth, leading to a saturation at large energies, and thus
becomes finite. This makes the theory then perfectly stable and well-behaved. However,
such a non-linear back-coupling cannot be captured naturally by perturbation theory,
which is a small-field expansion, and thus linear in nature. It thus fails in the same way as
it fails at small energies for QCD. Non-perturbative methods, like renormalization-group
methods or numerical simulations, have provided indication that indeed such a thing may

happen in quantum gravity, though this requires further confirmation.
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As an aside, it has also been proposed that a similar solution may resolve both the
hierarchy problem and the triviality problem of the Higgs sector of the standard model,
when applied to the combination of Higgs self-coupling and the Yukawa couplings, and
possibly the gauge couplings.

This scenario will be discussed in more detail in section 7.6.

3.3 Observations from particle physics experiments

There are two generic types of particle physics experiments to search for physics beyond
the standard model, both based on the direct interaction of elementary particles. One are
those at very high energies, where the sheer violence of the interactions are expected to
produce new particles, which can then be measured. The others are very precise low-energy
measurements, where very small deviations from the standard model are attempted to be
detected. Neither of these methods has provided so far any statistically and systematically
robust observation of a deviation from the standard model. Indeed, it has happened quite
often that a promising effect vanishes when the statistical accuracy is increased. Also,
it has happened that certain effects have only been observed in some, but not all, of
conceptually similar experiments. In these cases, it can again be a statistical effect, or
there is always the possibilities that some, at first glance, minor difference between both
experiments can fake such an effect at one experiment, or can shadow it at the other. So
far, the experience was mostly that in such situation a signal was faked, but this then
usually involves are very tedious and long search for the cause.

At the time of writing, while almost daily new results are coming in, there are few
remarkable results, and which await further scrutiny. The two most prominent are the
muon g — 2 and lepton flavor universality violation. The first originates from the fact
that the measured value of anomalous magnetic moment of the muon differs from the one
expected in the standard model in experiments. The other refers to the fact that the
decays of bottom quarks to leptons does not happen, up to trivial mass effects, at the
same rate into different types of leptons. Both effects have been seen at a less than fully
convincing statistical accuracy in experiments, and currently larger efforts are undertaken
to increase the statistics.

On the other hand, both effects are dominated by hadronic, and thus theoretically
hard to control, uncertainties. Once from hadronic vacuum fluctuations, and once from
the structure of the meson into which the bottom quark is embedded. It is thus entirely
possible that both will, as so often in the past, turn out to be just deficiencies in our ability

to estimate the systematic errors of calculations.
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But then, maybe not.

3.4 Astronomical observations

During the recent decades a number of cosmological observations have been made, which

cannot be reconciled with the standard model. These will be discussed here.

3.4.1 Dark matter

One of the most striking observation is that the movement of galaxies, in particular how
matter rotates around the center of galaxies, cannot be described just by the luminous
matter seen in them and general relativity. That is actually a quite old problem, and
known since the early 1930s. Also gravitational lensing, the properties of hot intergalactic
clouds in galaxy clusters, the evolution of galaxy clusters and the properties of the large-
scale structures in the universe all support this finding. In fact, most of the mass must be
in the form of invisible dark matter. This matter is concentrated in the halo of galaxies, as
analyses of the rotation curves show. This matter cannot just be due to non-self-luminous
objects like planets, brown dwarfs, cold matter clouds, or black holes, as the necessary
density of such objects would turn up in a cloaking of extragalactic light and of light from
globular clusters. This matter is therefore not made out of any conventional objects, in
particular, it is non-baryonic. Furthermore, it is gravitational but not electromagnetically
active. It also shows different fluid dynamics (observed in the case of colliding galaxies)
as ordinary luminous matter. Also, the dark matter cannot be strongly interacting, as it
otherwise would turn up as bound in nuclei.

Thus this matter has to have particular properties. The only particle in the standard
model which could have provided it would have been a massive neutrino. However, though
the neutrinos do have mass, the upper limits on their mass is so low, and the flux of cosmic
neutrinos too small, to make up even a considerable fraction of the dark matter. This can
be seen by a simple estimate. If the neutrinos have mass and would fill the galaxy up to

the maximum possible by Fermi-statistics, their density would be

_Pr
v 7_(_2
with the Fermi momentum pg in the non-relativistic case given by m,v,. Since neutrinos
have to be bound gravitationally to the galaxy, their speed is linked via the Virial theorem

to their potential energy
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with Newton’s constant Gy and R the radius of the galaxy. Putting in the known numbers,
and using furthermore that the observational results imply that n,, the total number of
neutrinos approximated to be inside a sphere size the galaxy, must give a total mass larger
than the one of the galaxy leads to the bound

1

1

0.001c\* [ 1kpc)?2

» > 100 eV ,
e e (3) ( R )

yielding even for a neutrino at the speed of light a lower bound for the mass of about 3
eV, which is excluded by direct measurements in tritium decays.

Therefore, a different type of particles is necessary to fill this gap. In fact, many
theories offer candidates for such particles, in particular supersymmetry. But so far none
has been detected, despite several dedicated experimental searches for dark matter. These
proceed either by trying to produce them in high-energetic collisions or by searching them
from astronomical sources using highly sensitive detectors of a wide variety of techniques,
including underground detectors and satellites.

These yielded only very few candidates for an observation of dark matter particles,
and those are hard to distinguish from background, in particular natural radioactivity and
cosmic rays. Though, every once in a while, satellites find excesses in cosmic rays which
seem to hint for signals of dark matter annihilation, but so far none of these has survived
further scrutiny. The origin of dark matter stays therefore mysterious.

But not only the existence of dark matter, also its properties are surprising. The
observations are best explained by dark matter which is in thermal equilibrium. But how
this should be achieved if it is really so weakly interacting is unclear. The best guess so
far is that it is more strongly interacting with itself than with ordinary matter and/or
consists out of more than a single particle type.

On the other hand, the fact that dark matters needs to interact gravitationally is also
posing problems, not only a solution. In particular, there is no reason why it should neither
form celestial dark bodies, which should be observable by passing in front of luminous
matter, or why it should not be bound partly in the planets of our solar system, or other
celestial bodies. Only if it is temperature is so high that binding is prohibited this would
be in agreement, but then the question remains why it is so hot, and what is the origin of
the enormous amount of energy stored in the dark matter.

It should be noted that there are also attempts to explain these observations by a depar-
ture of gravity from its classical behavior also at long distances. Though parametrizations
exist of such a modification, often called modified Newtonian dynamics, or MOND, which
are compatible with observational data, no clean explanation or necessity for such a modi-

fication in classical general relativity has been established. This proposal is also challenged
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by observations of colliding galaxies which show that the center-of-mass of the total matter
and the center of luminous matter move differently, which precludes any simple modifica-
tion of the laws of gravity, and is much more in-line with the existence of dark matter.
In the same vain, some dwarf galaxies have become candidates to have vastly different
amounts, in either direction, of dark matter and ordinary matter than other galaxies.
Still, this cannot be excluded yet. In this class of solutions falls also the possibility that
asymptotic safety of quantum gravity may be related to the apparent existence of dark

matter.

3.4.2 Inflation

A second problem is the apparent smoothness of the universe around us, while having
at the same time small highly non-smooth patches, like galaxies, clusters, super clusters,
walls and voids. In the standard model of cosmological evolution this can only be obtained
by a rapid phase of expansion (by a factor ~ €%) of the early universe, at temperatures
much larger than the standard model scale, but much less than the gravity scale. This is
called inflation. During the inflationary period, space-time itself expanded at superluminal
velocities, which is not in contradiction to general relativity. Therefore, large parts of mat-
ter, which equilibrated beforehand, were no longer causally connected, but still maintained
their common equilibrium. Only afterwards they started to develop differently, leading to
the small regions of inhomogeneities.

Also the standard model can create such periods of inflation, especially the elctroweak
and strong crossovers/phase transitions. But they occurred far too late in the evolution of
the universe, and could not sustain more than a factor of perhaps e* —e® expansion. Thus,
none of the standard model physics can explain inflation, nor act as an agitator for it. In
particular, it is also very complicated to find a model which at the same time explains the
appearance of inflation and also its end after just the right amount.

However, the predictions of inflation have been very well confirmed by the investigation
of the cosmic microwave background radiation, including non-trivial features and up to
rather high precision. They also are important for the curvature of the universe to be

discussed next.

3.4.3 Curvature and cosmic expansion

Another problem is the apparent flatness of the universe. Over large scales, the angle

sum of a triangle is observed to be indeed 7. This is obtained from the cosmic microwave
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background radiation, in particular the position of the quadrupole moment?, but also that
the large-scale structure in the universe could not have been formed in the observed way
otherwise. For a universe, which is governed by Einstein’s equation of general relativity,
this can only occur if there is a certain amount of energy inside it. Even including the
unknown dark matter, the amount of registered mass can provide at best about 30% of
the required amount to be in agreement with this observation. The other contribution,
amounting to about 70%, of what origin it may ever be, is called dark energy. Even then,

the extreme flatness of the universe also requires an inflationary period to be possible.

A second part of the puzzle is that the cosmic expansion is found to be accelerating.
This is found from distant supernova data, which are only consistent if the universe ex-
pands accelerated today. In particular, other explanations are very hard to reconcile with
the data, as it behaves non-monotonous with distance, in contrast to any kind of light-
screening from any known physical process. Furthermore, the large-scale structures of the
universe indicate this expansion, but also that the universe would be too young (about
10.000.000.000 years) for its oldest stars (about 12-13.000.000.000 years) if this would not
be the case. For such a flat universe such an acceleration within the framework of general
relativity requires a non-zero cosmological constant A, which appears in the Einstein equa-
tions (2.18). This constant could also provide the remaining 70% of the mass to close the
universe, and is in fact a (dark) vacuum energy. Such a constant is covariantly conserved,
since both 7, and the first two terms in (2.18) together are independently in general
relativity, and thus indeed constant. However, the known (quantum) effects contributing
to such a constant provide a much too large value for A, about 10%° times too large. These
include quantities like the chiral condensate and gluon condensates. These are of order
GeV, and in addition would have the wrong sign. What leads to the necessary enormous
suppression is unclear. Also, it is not clear whether this is a valid comparison, as this is a
quantum effect. Thus, this kind of hierarchy problem may also be just a deficiency of the

calculational tools.

Alternatively, weakly broken supersymmetry could remove this contribution, when a
gluino and a squark condensate cancel essentially quark and gluon condensates. Unfor-
tunately, supersymmetry broken sufficiently weakly to be in agreement with the observed
value of the condensates generates in general super partners with masses too close to
those of ordinary matter as that they could have escaped experimental detection. Only

enormous fine-tuning, leading to another hierarchy problem, could prevent this.

2The homogeneity of the universe leads to a vanishing of the monopole moment and the dipole moment
originates from the observer’s relative speed to the background.
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3.4.4 Matter-antimatter asymmetry

In the standard model, matter and antimatter are not perfectly symmetric. Due to the
CP violations of the electroweak forces, matter is preferred above antimatter, i. e., decays
produce more matter than antimatter, and also baryon and lepton number are not inde-
pendently conserved quantities, only their sum is. However, this process is dominantly
non-perturbative. The most striking fact that this is a very weak effect is the half-life
of the proton, which is (experimentally and theoretically) larger than 103* years. Indeed,
only at very high-temperature can the effect become relevant.

After the big-bang, the produced very hot and dense matter was formed essentially from
a system of rapidly decaying and recombining particles. When the system cooled down, the
stable bound states remained in this process, leading first to stable nucleons and leptons in
the baryogenesis, and afterwards to stable nuclei and atoms in the nucleosynthesis. Only
over this time matter could have become dominant over antimatter, leading to the stable
universe observed today. But the electroweak effects would not have been strong enough
for the available time to produce the almost perfect asymmetry of matter vs. antimatter
observed today, by a factor of about 10'°. Thus, a further mechanism must exist which
provides matter dominance today.

There is a profound connection to inflation. It can be shown that inflation would
not have been efficient enough, if the number of baryons would have been conserved in
the process. In particular, the almost-baryon-number conserving electroweak interactions
would have permitted only an inflationary growth of e*~® instead of .

The possibility that this violation is sufficient to create pockets of matter at least as
large as our horizon, but not on larger scales, has been tested, and found to yield only
pockets of matter much smaller than our horizon.

A further obstacle to a standard-model conform breaking of matter-antimatter symme-
try is the necessity for a first order phase transition. This is required since in a equilibrium
(or almost equilibrium like at a higher-order transition), the equilibration of matter vs.
anti-matter counters the necessary breaking. However, the mass of the standard-model

Higgs is too high for this.

3.5 Why one TeV?

There is the common expectation that something of these new theories will show up at
an energy scale of one TeV or slightly above. That the Tevatron has not seen anything
of this is actually not surprising. Since it collides protons and anti-protons, the actually

interacting partons, quarks and gluons, have almost always significantly less energy than
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the maximum energy. So, it is up to the LHC to explore this energy range.

The gateway to this kind of new physics is likely the Higgs. The reason is that the
Higgs is instrumental for the balancing in the standard model. If there is something just
slightly different, it will most likely surface first in the Higgs sector. And the balancing

becomes already quite sensitive to new effects at 1 TeV.

The simplest explanation why 1 TeV is such a crucial scale can be seen, e. g. by the
scattering cross-section of two longitudinally polarized W bosons to two longitudinally
polarized W bosons, a process which in the standard model will occur a-plenty at these

energies. At tree-level, the scattering amplitude without the Higgs is given by

Myw = Ms(cos 9)mi2 + M, (cos6) ln% + Moy(cosb), (3.1)
W

where s is the center-of-mass energy, 6 the angle between the scattered W bosons, and
the amplitudes M; describe the processes of scattering different polarizations of the W
bosons. Unitarity, and thus preservation of causality, requires that this amplitude is
bounded for s — oo, which is obviously not the case for the terms containing M, and
M. Thus, for a center-of-mass energy significantly larger than the W boson mass my,
(in fact, about a TeV), unitarity is violated. In the standard model, interference with
diagrams containing the Higgs removes this problem. This is known as the Goldstone
boson equivalence theorem. But if there are additional contributions, this will be slightly
different. And then the linear dependency in s will magnify this effect. Of course, at
sufficiently large s again unitarity has to be restored, but for some time there would be a

quick and apparent deviation, which should be detectable in experiments.

Hence, all in all, though there is no guarantee that something interesting beyond a
rather light Higgs has to happen at the TeV scale, there is quite some evidence in favor of
it. Time will tell. And what this something may be, this lecture will try to give a glimpse
of.

3.6 How can new physics be discovered?

A task at least as complicated as the theoretical description of new physics is its experimen-
tal observation. One of the objectives of theoretical studies is therefore to provide signals
on which the experiments can focus on. Here, some of the more popular experimental

signatures, which can be calculated theoretically, will be introduced.
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3.6.1 Lessons from the past on reliability

An important point in this respect is the statistical significance of an observation. Since the
observed processes are inherently quantum, it is necessary to obtain a large sample (usually
hundred of millions of events) to identify something new, and still then an interesting effect
may happen only once every hundredth million time. Experimentally identifying relevant
events, using theoretical predictions, is highly complicated, and it is always necessary to
quote the statistical accuracy (and likewise the systematic accuracy) for an event. Usually
a three sigma (likeliness of 99.7%) effect is considered as evidence, and only five sigma
(likeliness 99.9999%) are considered as a discovery, since several times evidence turned in

the end out to be just statistical fluctuations.

To quantify the amount of statistics available, usually the number of events is quoted
in inverse barn, i. e., as an inverse cross section. Consequently, if there is 10 fb=!, a typical
amount of data collected at hadronic colliders like the Tevatron or the LHC, implies that
a process with a cross section of 0.1 fb will be observed in this data set once. The current
aim for the LHC is, however, much larger, at about 3000 fb=! until 2030, and more than
100 fb~! delivered to date.

An important effect in this is the so-called "look-elsewhere’ effect. The amount of exper-
imental measurements, especially using modern machine-learning techniques, has grown
immensely into the thousands. Thus, it is statistically likely that a single measurement
will show deviations at the evidence level, just due to the amount of statistical fluctua-
tions in such a large set of measurements. Thus, the relevance of a statistical fluctuation
is reduced by the fact that in some measurement a large statistical fluctuation is statis-
tically expected. Therefore, an actual statement about reliability needs to take this into
account. Hence, the statistical uncertainty of a single measurement is also called a local
significance, while one which is taking into account the likelihood of finding a deviation
in a large set of measurements is called global significance. Thus, new physics will require
either a single very large local significance and a discovery-level global significance, or
many local discovery-level significant measurements, as in the presence of many anomalies

local and global significance approach each other.

An alternative way to present data is the so-called p-value, which recasts the signifi-
cance into the probability to being a statistical fluctuation, essentially the total probability
minus two times the tail amount at the 3/5 sigma level. Thus, the lower the p value the

more probably something new has been found.
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3.6.2 New particles

When in an interaction two particles exchange another particle, the cross-section of this
process will in the s-channel in the lowest order be proportional to the square of the
propagator D of the exchanged particle, i. e.

1

Dip)= —

where p is the energy transfer, and M is the mass of the new particle. Therefore, the cross-
section will exhibit a peak when the transferred energy equals the mass of the particle.
Such resonances can be identified when the cross section is measured. If the mass does
not belong to any known particle, this signals the observation of a new particle.

In practice, however, this simple picture is complicated by interference, other channels,
a finite decay width of the exchanged particles, and higher order effects, and very often
more than just the two original particles will appear in the final state. Identifying the
peak in any particular channel of the interaction is therefore very complicated, and there
are several instances of ghost peaks known, created by constructive interference. Still, this
is one of the major ways of discovering a new particle directly.

This discovery mode has the advantage that this is a counting experiment, i. e. the
number of particles in the final state are counted and plotted as a (binned) function of the
invariant mass, and then peaks are searched. Thus, no modeling is needed to identify the
new resonance, making it rather robust discoveries. E. g., the Higgs has been discovered
in this way. Of course, theory enters by selecting of which particles invariant mass plots
should be made, as with about 20 particle in the final states at the LHC it becomes even
with modern computers combinatorially challenging, especially when taking three or more

particle decay channels into account, to check every possibility.

3.6.3 Missing energy

In principle akin to the concept of a resonance, the signature of missing energy is also
associated directly with the (non-)observation of a particle. When two particles interact,
the resulting particle may not be virtual, but real and stable, or at least sufficiently long-
lived to escape the detector, in particular when its interactions with the standard model
particles is small. Such a particle would surface in experiments as missing energy, i. e.,
the total observed energy would be smaller than before the collision, the remainder energy
being carried away by the new particle. Looking for the smallest amount of missing energy
would identify, using appropriate kinematics, the mass of the new particle. Dark matter,

e. g., is assumed to produce precisely such a signature in collider experiments.
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Again, in practice this concept is highly non-trivial, in particular due to muons, which
can be compensated to some extent, and especially due to neutrinos. Thus, it is actually
searched for a difference of missing energy compared to the standard model, and it is thus
not a simple counting experiment, and precise values for the amount of missing energy in
the standard model are needed.

Thus, it is a highly complicated theoretically problem to identify further properties of
missing energy events to identify cases where the missing energy can be unambiguously
associated with the production of a new particle, even if this is as simple as an abundance

of missing energy events.

3.6.4 Precision observables

A third possibility is the measurement of some quantities very precisely. Any deviation
from the expected standard model value is then indicating new physics. To identify the
type and origin of such new physics, however, requires then careful theoretical calculations
of all relevant models, and comparison with the measurement. Thus, a single deviation
can usually only indicate the existence of new physics, but rarely unambiguously identify
it. The advantage of such precision measurements is that they can usually be performed
with much smaller experiments than collider experiments, but at the price of only very
indirect information. Searches for dark matter or a neutron electric dipole moment larger
than the standard model value are two examples of such low-energy precision experiments.

But it is also possible to conduct such investigations at collider. As an example,
consider the rather popular oblique (electroweak) radiative corrections. Start with a gen-

eralization of the formulas for the W and Z bosons masses as

2 UI2/V 2
My, = 791'

1
My = 5%}%(92 +97),

thus permitting that the W and the Z perceive the vacuum expectation value of the Higgs
differently. At tree-level, vy and vz coincide in the standard model with the tree-level
condensate v. Radiative corrections make all these quantities running, i. e., evolving with
the momentum scale ¢* as ¢3(¢?), g2(¢*), v (¢?), and v%(q?).

Now, rescale the weak isospin gauge field and the hypercharge gauge field as W,j =
giWy and B, = ¢;B,.. The propagator Dy, with i =1.3 or B, or i = +,—,3 and A, of
these gauge bosons can then be written as

D,(q) = gullij(q) — 4,9.115(q),
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with the longitudinal and transverse self-energies IT and I17, respectively. Define now vy

and vy as

’U2 2

v
1/2v3, = E_HSB = E_HSA"‘HSS
2

1202, = %+H+_—H3A

and the couplings

1 1 1

Z E_HSTS_HgBZE_HgA

1 1 1

E = E_HEB_HsTBzgﬂLHgTA_HﬂA

where ¢;, and gp, are the unrenormalized coupling constants.
In the standard model, the dominant contributions at ¢> = 0 come from the third
generation fermions and the Higgs. Computing the difference v3, —v% at ¢*> = 0 in leading

order perturbation theory yields
N, 2m?2m? m?
2 2 c 2 2 My t
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This is often also expressed as the Veltman p parameter as
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New physics will modify these results. In particular, additional heavy fermion generations
will add further terms, which could be detectable.

The deviation from the standard model can be parametrized by three parameters, the
Peskin-Takeuchi parameters S, T', and U,

d d
S = 167w (8_(_[2 H33|q2:0 - 8_q2 H3Q|q2:0)
4
T = Sil’l2 0W C082 GwM% <HWW|q2:0 - H33|q220)

0 0
U = 167T <8_q2 wa|q2:0 - 8_([2 H33|q20) .
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At the current level of approximation, these parameters take the values
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Since all input quantities can be determined independently directly from experiments,
it is straightforward to compute the values of S, T', and U in the standard model. On
the other hand, these three quantities can be also (indirectly) measured experimentally.
Thus, comparing both ways of determining them should yield coinciding results inside
the standard model. Thus, not only deviations from the theoretical value but also any

discrepancies between both ways of determination should indicate new physics.

3.6.5 Anomalous couplings

Another interesting observable are the couplings of the standard model, which are essen-
tially determined by cross-sections. In particular, at tree-level all scattering processes with
a single interaction are directly proportional to the square of the coupling constants, and
perturbatively higher orders can be computed. They can therefore be measured precisely.
This allows for two different types of tests.

One is a comparison of some coupling measured in different processes. Since every
interaction affects multiple particles in the standard model, this is possible. The second is
that certain coupling constants are related due to the coupling universality in non-Abelian
gauge theories as well as the Goldstone boson equivalence theorem. This affects especially
the electroweak three-point and fout-point couplings. Thus, measuring anomalous values
of these couplings would directly hint at new effects.

This is usually described in the x framework. This defines k =actual coupling/coupling
in the standard model. Thus, if the standard model is the accurate theory, all kK = 1.
Theoretically, this is modelled by modifiyng tree-level interactions as ¢ — kg, while ex-
perimentally cross sections are measured and then divided by the theoretical expectations.
This corresponds to an energy-independent modification of the couplings, and thus is es-

pecially sensitive to the high-energy tail of interactions, where single tree-level processes
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dominate. Current measurements yield essentially always that either x is consistent with

one or, if not yet statistically significantly detected, an upper bound.

3.6.6 Low-energy effective theories

Especially observations of the type discussed in section 3.6.4 and 3.6.5 are rather ambigu-
ous, and can arise from very many types of new physics. Conversely, any deviation can
usually be accommodated by many models. Thus systematically searching for such effects
is at the same time highly model-dependent and not very constraining.

To avoid having to scan all possible models for all possible kinds of deviations has led to
the use of low-energy effective theories. This approach, well developed for use in hadronic
physics, is based on the following recipe: Start with the standard-model Lagrangian. Then
add all possible higher-dimensional operators, up to some canonical dimension, which can
be build from the standard-model fields and are compatible with the desired symmetries,
usually, but not always, the symmetries of the standard model. Concerning the latter point
e. g. explicit violations of C', P, C'P or the custodial symmetry are often admitted, as they
are not generically conserved in many BSM models. Finally, perturbation theory is done.
Of course, this yields unitarity violation as such a theory is generically non-renormalizable.
This introduces additional counter-terms and an explicit cutoff, which become parameters
of the theory, and need to be fixed experimentally.

These deviations are usually encoded in terms of dimensionless Wilson coefficients ¢ ,
which multiply these additional terms as ¢/A™, with n a suitable power to make the terms
in the Lagrangian having the correct canonical dimensions. Usually approaches limit n
to a maximum value, yielding a low-energy effective theory up to a certain order in A.
The scale A is given then as scale of new physics. Experiments will only be able to give
expressions for the combinations, but theoretially often a common scale is assumed for
all terms. Thus experimental limits are usually upper bounds to the combinations ¢/A™,
which can be satisfied by either making A large or the ¢ small. Note that the various
options of which terms are admitted to the effective theory can yield different limits for
the Wilson coefficients. Conversely, for any given extension of the standard model at high
energies, such a low-energy effective theory can be derived, providing predictions for the
Wilson coefficients. However, this approximation will break down once the energies probed
experimentally are of the same size as A, in which case the framework will no longer be
reliable. It is thus particularily suited for extensions with a large A.

While this point is disadvantageous, the setup is still desirable as it allows to system-
atically parametrize all deviations in precision measurements of the types done in sections

3.6.4 and 3.6.5. Especially, it identifies the sectors of the standard model relevant to a
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deviation, and the dimensionful couplings give an estimate of the energy scale where new
physics becomes relevant, if either a deviation is measured or a lower bound if none is
measured and the couplings have therefore to be reduced.

While conceptually rather clean, and tested in hadron physics, this is mostly useful
at tree-level, as the standard-model allows for many possible operators and thus requires
many additional inputs at loop-level. Also, because field redefinitions in the standard-
model and Fierz transformations allow many equivalent writings of the low-energy effective
theory, but with differing values of coupling constants, it is mandatory to make sure that

any conventions are strictly observed.



Chapter 4
Supersmmetry

Supersymmetry is much more than a particular theory. It is a conceptual idea, on which
a multitude of theories rest. Supersymmetric quantum field theories have furthermore
unique features, not shared by any other type of quantum field theories. They are therefore
particular interesting candidates for our understanding of nature. Also, theories more
complex than quantum field theories, like string theories, very often induce as the low-
energy effective quantum field theories supersymmetric theories.

Supersymmetry offers not always a compelling solution to the issues of the standard
model, but often an attractive one. Although, there are many technical details unsolved
of how these solutions should be implemented. It is therefore worthwhile to understand
the basics of it.

However, there are also several reasons which make supersymmetry rather suspect.
The most important one is that supersymmetry is not realized in nature. Otherwise the
unambiguous prediction of supersymmetry would be that for every bosonic particle (e. g.
the photon) an object with the same mass, but different spin-statistics (for the photon
the spin-1/2 photino), should exist, which is not observed. The common explanation for
this is that supersymmetry in nature has to be broken either explicitly or spontaneously.
However, how such a breaking could proceed such that the known standard model emerges
is not known. It is only possible to parametrize this breaking, yielding an enormous amount
of free constants and coupling constants, for the standard model more than a hundred,

while the original standard model has only about thirty.

4.1 The conceptual importance of supersymmetry

To contemplate what supersymmetry implies it is worthwhile to have a look at a, somewhat

hand waving, version of the Coleman-Mandula theorem.

39



40 4.1. The conceptual importance of supersymmetry

All previous symmetries in particle physics are of either of two kinds. One are the
external symmetries, like translational and rotational ones. These are created by the
momentum and angular momentum operators. The other one are internal ones, like electric
charges. The difference between both is that external charge operators carry a Lorentz
index, while internal ones are Lorentz scalars. The natural question from a systematic
point of view is, whether there are other conserved quantities besides momentum and
angular momentum, which have a Lorentz index.

The Coleman-Mandula theorem essentially states that this is impossible in a quantum
field theory. Since the most general vector and anti-symmetric tensors are already assigned
to the momentum and angular momentum operator, the simplest one would be a symmetric

tensor operator @),,. Acting with it on a single particle state would yield

Qul/|p> = (apupv + BWV)|P>;

where the eigenvalue is the most general one compatible with Poincare symmetry, with
eigenvalues v and . Since a symmetry is looked for, () must be diagonalizable simulta-
neously with the Hamiltonian, and therefore these must be momentum-independent. One
could ask what if the eigenvalues themselves would have a direction, and the single-particle
state would thus be characterized by two vectors. In this case, the scalar product of these
two vectors would single out a direction, and therefore break the isotropy of space-time,
and thus the Poincare group. Lacking any experimental evidence for this so far, this
possibility is excluded, and would anyhow alter the complete setting.

So far, there is no contradiction. Acting with @),, on a two-particle state of two

identical particles of the type would yield

Quwlp, @) = (a(pupy + 4uqw) + 2600 |p, q)-

In this case, it was assumed that @) is a one-particle operator, i. e. its charge is localized on
a particle, and the total charge is obtained by the sum of the individual charges. Though
operators of other types can be considered, even in lack of physical evidence, this would
only complicate the argument in the following, without changing the outcome. This will
therefore be ignored.

Now consider elastic scattering of these two particles. Since () should describe a symme-
try, the total charge before and afterwards must be the same. Furthermore, 4-momentum

conservation must hold. This implies that

Pubv + Gty = P05, + 4,4,
putqu = p,+q,
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The only solution to these equations is p = p’ and ¢ = ¢’ or p = ¢’ and ¢ = p’. Hence
no interaction occurs, since the second possibility is indistinguishable for two identical
particles. Hence, any theory with such a conserved symmetric tensor charge would be
non-interacting, and therefore not interesting. The generalized version of this statement is
the Coleman-Mandula theorem, which includes all the subtleties and possible extensions
glossed over here.

How does supersymmetry change the situation? For this simple example of elastic scat-
tering, this is rather trivial. Supersymmetry will be defined by allowing to change the spin
of the particles. Thus, it does not affect the example, as spin plays no role in this process,
as in an elastic scattering the particle identities are not changed. In the more general case,
it can be be shown that for the more general Coleman-Mandula theorem it is actually
an assumption that this never happens. Hence, introducing such a symmetry violates the
assumption, and therefore invalidates the argument. Again, the complete proof is rather
subtle. This leaves the question open, whether any interesting, consistent, non-trivial,
let alone experimentally relevant, theories actually harbor supersymmetry. The second
question is still open, and no experimental evidence in strong favor of supersymmetry has
so far been found.

The first question is, whether such theories can be formulated. Indeed, it will be shown
that there are interesting, consistent, and non-trivial supersymmetric theories. Further-
more, it will be shown that supersymmetry is, from a conceptual point, a fundamental
change. This can already be inferred from the following simple argumentation.

Since Poincare symmetry remains conserved in a supersymmetric theory, any operator
which changes a boson into a fermion must carry itself a half-integer spin, and thus be a
spinor (J),. Otherwise, the spin on the left-hand side and the right-hand side would not
be conserved. Furthermore, if it is a symmetry, it must commute with the Hamiltonian

[Qq, H] = 0. In addition, so must its anti-commutator

[{Qme} ) H] =0

In the simplest case, a spinor has two independent components, and therefore the anti-
commutator can have up to four independent components. Since two spinors form together
an object of integer spin, it must therefore be (at least) a vector. The only-vector-valued

operator, however, is the momentum operator P,. Therefore, one would expect that

{Qus Qu} ~ P,. (A1)

It will be shown that this is indeed the correct structure. However, this means that

supersymmetry enlarges indeed the Poincare symmetry non-trivially, since otherwise all
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(anti)commutator relation would be closed within the supersymmetry operators (), there-
fore fulfilling the original goal. Moreover, the operators (), therefore behave, in a certain
sense to be made precise later, like a square-root of the momentum operator. Similar
like the introduction of ¢ as the square-root of —1, this concept will require to enlarge
the concept of space-time by adding additional, fermionic dimensions, giving birth to the
concept of superspace. This already shows how conceptually interesting supersymmetry
is, and that it is therefore worthwhile to pursue it for its own sake, even if no experimental

evidence in favor of it exists.

4.2 Non-interacting supersymmetric quantum field the-

ories

Supersymmetry is a theory, which will relate bosons and fermions, as will be seen. Thus, it
requires to have both of them. To show, what supersymmetry is and how it comes about,

it is useful to start outh with a non-interacting theory.

4.2.1 Fermions

While bosons can be incorporated in supersymmetric theories rather straightforwardly, a
little more is needed in case of fermions. It will be found that supersymmetry requires the
same number of bosonic and fermionic degrees of freedom to appear in a theory. Fermions
in particle physics are encountered, e. g., in the form of electrons, which are described by
Dirac spinors. These spinors include not only the electron, but also its antiparticle. As
both have the possibility to have spin up or down, these are four degrees of freedom. This
would require at least four bosons to build a supersymmetric theory. This is already quite
a number of particles. However, it is also possible to construct fermions which are their
own antiparticles. Therefore the number of degrees of freedom is halved. These are called
Majorana fermions. Since these work quite a little differently than ordinary fermions,
these will be introduced in this section. However, as yet this is a purely theoretical
concept. No Majorana fermions have been observed in nature so far, although there are
speculations that neutrinos, which are usually described by ordinary fermions, may be
Majorana fermions, but there is no clear experimental evidence for this. These Majorana
fermions, with identical particle and anti-particle, can mathematically also described as

1

only one particle. This the so-called Weyl-fermion formulation®. It is this formulation,

!Note that in the more general case of non-supersymmetric theories there are subtle differences between

Weyl fermions and Majorana fermions, especially if the number of dimensions differ from 4.
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which will be used predominantly here. However, also the Majorana formulation is useful,
and will be introduced briefly.

Note that fermions always have to have at least spin 1/2 as a consequence of the
so-called CPT-theorem (or, equivalently, Lorentz invariance). These are two degrees of
freedom. Hence, it is not possible to construct a supersymmetric theory with less than
two fermionic and two bosonic degrees of freedom, at least in four dimensions.

As the spinors describing fermions are actually complex, and only by virtue of the
equations of motion are reduced to effectively two degrees of freedom, in principle also four
bosonic degrees of freedom are needed off-shell, that is without imposing the equations of
motions. This will be ignored for now, and will only be taken up later, when it becomes
necessary to take this distinction into account when quantizing the theory.

It is useful to introduce a compact index notation to treat Weyl spinors. This will
be done, similarly to the case of special relativity, by the position of the indices. This
notation is essentially based on the structure of the Lorentz group.

The Lorentz group consists out of rotations J and boosts K. In general, commutators

of J and K do not vanish. However, defining skew versions of these operators
1 .
1
B = —(J—-1iK)
2
this is the case. The Lorentz algebra becomes then a direct product of two SU(2) algebras

[Ai, Aj] = enAs
[Bi, Bj] = ¢€;xBy

Hence, any representation of the Lorentz group can be assigned two independent quan-
tum numbers, which are either integer or half-integer. E. g. scalars are then just twice
the trivial case. Right-handed and left-handed fermions, however, belong to the (1/2,0)
and (0,1/2) representations, vectors like the momentum belong to the (1/2,1/2) repre-
sentation, and antisymmetric tensors like the generators of angular momentum to the
(1,0) + (0, 1) representation. The simplification will now be used on distinguishing indices
of the two different representations.

For this purpose, define the meaning of the index position for a left-handed spinor x

<X2> = i09X = ( A2 ) . (4.3)
X —X1
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Hence, given an ordinary left-handed spinor x with components x; and s, the corre-
sponding right-handed spinor v has components ! and y?2.
Since scalars are obtained by multiplying left-handed spinors with right-handed spinors,

these can be obtained as

o' = (ata?) <ﬁ1> = a'B +a?By = a’B,.
5o
This is very similar to the case of special relativity. Note that spinors are usually Grassmann-
valued. Hence the order is relevant. The common convention is that the indices appear
from top left to bottom right. Otherwise a minus-sign appears in the case of Grassmann-
spinors,

aaﬁa = _ﬁaaa>
and correspondingly for more elements
a® 89,0, = —a®y, 36, = —,0%6, 5"
From the definition (4.3), it is also possible to read-off a 'metric’ tensor, which can be used
to raise and lower an index, the totally anti-symmetric rank two tensor €%, yielding
Xa — GabXb-

where €2 = 1 and €5 = —1.

This fixes the notation for left-handed spinors. Since there are also right-handed
spinors, it is necessary to introduce a corresponding notation for them. However, in gen-

eral the same notation could quickly lead to ambiguities. Therefore, a different convention

is used: Left-handed spinors receive also upper and lower indices, but these in addition

¥y P —2/{2
(%)‘ v <w>

It is then possible to contract these two indices analogously to obtain a scalar, but this

have a dot,

time the ordering will be defined to be from bottom left to top right

o' B = .
Given this index notation, there are no ambiguities left in case of expressions with explicit
indices. To be able to separate these also without using the indices explicitly, usually

right-handed spinors are written as ¢. This is not the same as the conventional Dirac-bar,

and the equalities
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hold. However, since complex conjugation is involved when it comes to treating left-handed
spinors, here the definition is
Xa = Xi

Therefore, a scalar out of left-handed spinors can now be written as
X' = xx

and similarly
Dl = gy

Another scalar combination, which will appear often is
)X =PI = eatix™ = —Pixs — Ui

Having now available a transformation which transforms a left-handed spinor into a right-
handed spinor, it is natural to investigate what happens if both are combined into one
single 4-component spinor. To obtain the correct transformation properties under Lorentz
transformation, this object is

¢i

w?
_wé*

1/11*

Since there are only two independent degrees of freedom, the spinor ¥ cannot describe, e.

U —

g., an electron. Its physical content is made manifest by performing a charge conjugation

v (T () - (L) -
—109 0 —1i091 —1090)"

i. e., it is invariant under charge conjugation and thus describes a particle which is its own
antiparticle, like the photon. Spin 1/2-particles with this property are called Majorana
fermions, and thus this is a Majorana spinor. Note that this combination is not possi-
ble for arbitrary dimensions (and arbitrary space-time manifolds), but is correct in four
dimensional Minkowski space-time. In this case, which covers almost all of this lecture,

Weyl and Majorana fermions can be used synonymously.

4.2.2 The simplest supersymmetric theory

This is sufficient to set the scene for a first supersymmetric quantum field theory.
As discussed previously, it will be necessary to have the same number of fermionic

and bosonic degrees of freedom. This requires at least two degrees of freedom, since it
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is not possible to construct a fermion with only one. Consequently, two scalar degrees of
freedom are necessary. The simplest system with this number of degrees of freedom is a
non-interacting system of a complex scalar field ¢ and a free Weyl fermion x, which will

be described by the undotted spinor. The corresponding Lagrangian is given by
L= 0"¢'0,0 +ix'a"0,x. (4.4)

Note that here already with the fully quantized theory will be dealt. The corresponding
physics will be invariant under a supersymmetry transformation if the action is invariant,
up to anomalies. Since it is assumed that the fields vanish at infinity this requires invari-
ance of the Lagrangian under the supersymmetry transformation up to a total derivative.

The supersymmetry transformations can be constructed by trial and error. Here, they
will be introduced with hindsight of the results, and afterwards their properties will be
analyzed. The transformation

A'=A+06A

takes for the scalar field the form

8¢ = %% = (—io2&) . (4.5)

Herein, £ is a constant, Grassmann-valued spinor. By dimensional analysis, ¢ has units of

1/y/mass. The corresponding transformation law for the spinor is
ox = —io" 0,0 = 00267 0,,¢. (4.6)

The pre-factor is fixed by the requirement that the Lagrangian is invariant under the
transformation. The combination of § with o, guarantees the correct transformation
behavior of the expression under Lorentz transformation in spinor space. The derivative,
which appears, is necessary to construct a scalar under Lorentz transformation in space-
time, and to obtain the correct mass-dimension. It is the only object which can be used
for this purpose, as it is the only one which appears in the Lagrangian (4.4), besides
the scalar field. The general structure is therefore fixed by the transformation properties
under Lorentz transformation. That the pre-factors are in fact also correct can be shown

by explicit calculation,

5L = 0,((68))0"6 + 0,010%(50) + (5)1i0" Dy + 11150, (5%) (47)
= i@uxfagg*(?“(ﬁ + iXTﬁ”U“agﬁ*ﬁyﬁu(b — i@ugzﬁTa”({Tagx) — /L.STUQO'MOTanVaM¢T

Herein partial integrations have been performed, as necessary to obtain this form. There

are two linearly independent terms, one proportional to £* and one to £ in this expression.
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Both have therefore to either individually vanish or be total derivatives. To show this, it
is helpful to note that

5" 0,019, = (0y — 079;)(0° + 0,0") = 9,0° — 9,0" = 9", (4.8)

where it has been used that o? = 1. Taking now only the terms proportional to &* yields
10102606 + ix1026°0,0"6 = 9, (xi06" 9. (4.9)

This term is therefore indeed a total derivative. Likewise, also the term proportional to

¢T can be manipulated to yield a pure total derivative. However, this is somewhat more

complicated, as the combination (4.8) is not appearing. The last term can be rewritten as
—i&T o301 x0,0,0" = 0,(¢1i 090570, ) + ¢TiE" 090t 0,0, X
It is then possible to use (4.8) on the last term to obtain
0, ('€ 0907510, x) + 'iET 090,0,.x-
The first term is already a total derivative. The second term combines with the second-to-
last term of (4.7) to a total derivative. Hence, the total transformation of the Lagrangian
reads
oL = 8H(XTZ'02£*8”<;5 + ¢licT o007 510, x + @i 790" x)
which is a total derivative.

Therefore, this theory is indeed supersymmetric. The set of fields ¢ and x is called a
supermultiplet. To be more precise, it is a left-chiral supermultiplet, because the spinor is
left-handed. Replacing it with a right-handed spinor yields a right-chiral supermultiplet,
without changing the supersymmetry of the theory, although, of course, the transformation
is modified.

There should be a note of caution here. Unfortunately, it will turn out that this
demonstration is insufficient to show supersymmetry of the quantized theory, and it will
be necessary to modify the Lagrangian (4.4). This problem will become apparent when
discussing the supersymmetry algebra. However, most of the calculations performed so

far can be used unchanged.

4.3 Supersymmetry algebra

It turns out that the supersymmetry transformations (4.5) and (4.6) will form an alge-
bra. This algebra can be used to systematically construct supermultiplets, and is useful
for many other purposes. Therefore, this algebra will be constructed here, based first
on the simplest examples of supersymmetry transformations (4.5) and (4.6) and will be

generalized thereafter.
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4.3.1 The superalgebra

The conserved Noether-supercurrent j* is

oL oL oL

* = —KM4+ 5o+ St + ——6x
98, 80,0t 90, x

= —x'i026*0"¢ + 0,0 090”5\ + i€ 020, x

—8“¢T§Ti02x + XTiazg*f)“qb + XTé“Jl,iagf*@”gb

Here, and in the following, the necessary contribution from the hermitian conjugate con-
tribution are not marked explicitly. This result can be directly reduced, since some terms

cancel, to

= x16"0,i026* 0" — 0,01t oy Ty

= T (—ion)J" + iy T

JH = a’atx0,¢".
J# is the so-called supercurrent, which forms the conserved current by a hermitian combi-
nation, similar to the probability current in ordinary quantum mechanics, 1191 + ;1.
To write the complex-conjugate part of the current, it has been used that

o90’c" = oV oy

which follows by the anti-commutation rules for the Pauli matrices. This permits to

construct the supercharge
Q= /d%a”x&,qﬂ.
This indeed generates the transformation for the fields ¢ and y. It is now possible to

construct the algebra.

First of all, the (anti-)commutators

@.Ql=0 [QQ =0 {QQr=0 {QQ}=0

all vanish, since in all cases all appearing fields (anti-)commute. There are thus, at first
sight, only one non-trivial commutator and one non-trivial anti-commutator.

For the non-vanishing cases, it is simpler to evaluate two consecutive applications of
SUSY transformations. To perform this, note first that

[, [p, f] + [p, [f, dl] + [f; g, p)] = 0.

This can be shown by direct expansion. It can be rearranged to yield

[lg; pl, f1 = la, [p; f]] = [p, g, f1]-
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If ¢ and p are taken to be £Q and 7Q, and f taken to be ¢, this implies that the commutator
of two charges can be obtained by determining the result from two consecutive applications
of the SUSY transformations. Using (4.5) and (4.6), it is first possible to obtain the result
for this double application. It takes the form

[£Q +£Q, nQ +7Q, ¢]] = —ilsQ + £Q, 0" (—ioe)x] = in" (—io2)o" (—io2g")Dud.  (4.10)
Subtracting both possible orders of application yields then the action of the commutator
[6Q +£Q,nQ +7Q), ¢] = i(¢" (—ion)a" (—ioan’) — 0" (—ion)o" (—i02€"))D,0.

Here it has been used that ) is commuting with ¢, as it does not depend on .
Aside from a lengthy expression f(n, &), which gives the composition rule for the pa-

rameters, there is one remarkable result: The appearance of —id,,¢, which is the action of

P, on ¢, the momentum or generator of translations. Hence, the commutator is given by

[€Q +EQ,nQ +7Q) = f(n, &) Py (4.11)
In fact, this is not all, due to aforementioned subtlety involving the fermions. This will be
postponed to later.

Though anticipated in the introductory section 4.1, the appearance of the momentum
operator seems at first surprising. Still, this implies that the supercharges are also some-
thing like the squareroot of the momentum operator, which leads to the notion of the
supercharge being translation operators in fermionic dimensions. This idea will be taken
up later when the superspace formulation will be discussed in section 4.5.

Hence, the algebra for the SUSY-charges will not only contain the charges themselves,
but necessarily also the momentum operator. However, the relations are rather simple, as
the supercharges do not depend on space-time and thus (anti-)commute with the momen-
tum operator, as does the latter with itself.

Thus, the remaining item is the anti-commutator of ) with (). For this, again the

commutator is useful, as it can be expanded as

MQ.€QT = m&(Q2Q8 + QLQs) — m&(Q2Q1 + Q1Qs)
—szf(Q1Q; + Qng) + 77255(@1@1 + QIQI)

Thus, all possible anticommutators appear in this expression. The explicit expansion of
(4.11) is

(m2&53 (o)1 — M1 (012 — m&3 (o)1 + m& i (0,)22) PP
Thus, by coefficient comparison the anti-commutator is directly obtained as

{Qaa QZ} = (0_M)abpu- (412)
This completes the algebra for the supercharges.
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4.3.2 General properties of superalgebras

The superalgebra is what is a graded Lie algebra. So far, there had only been a single
supercharge. As will be seen, additional supercharges can be introduced. But since even
in the case of multiple supercharges there is still only one momentum operator, the corre-
sponding superalgebras are coupled. In general, this requires the introduction of another

548 where A and B count the supercharges. In total, it is shown in the Haag-

factor
Lopuszanski-Sohnius theorem that the most general superalgebra, up to rescaling of the

charges, is

{Qf7QbB} = 25AB0-§1)P/4 (413)
{Q Q) = ewZ™ (4.14)

and there is a corresponding anti-commutator for Q* and QF. The symbol ¢, is anti-
symmetric, and thus this anti-commutator couples the algebra of different supercharges.
Furthermore, there appears an additional anti-symmetric operator Z4? called the central
charge. This additional operator can be shown to commute with all other operators,
especially of internal symmetries, and must belong therefore to an Abelian U(1) group.
Still, this quantum number characterize states, if a theory contains states with non-trivial
representations. However, this can only occur if there is more than one supercharge.
Finally, the number of independent supercharges is labeled by N

The theory with only one supercharge is thus an N' = 1 theory. Cases with A > 1 are
called NV-extended supersymmetries. Since the full algebra also involves the Poincare group
generators, it turns out that it is not possible to have an arbitrary number of independent
supercharges. This number depends on the size of the Poincare algebra, and thus on
the number of dimensions. Furthermore, it also depends on the highest spins of particles
involved. Especially, theories above a certain N, 4 in four dimensions, require necessarily
gravitons or spin 3/2 particles. Above a certain A/, 8 in four dimensions, even objects
of still higher spins are required. The latter case is not particularly interesting presently,
as it can be shown that a four-dimensional, perturbatively renormalizable, interacting
quantum-field theory cannot include non-trivially interacting particles of spin higher than
2. Including gravitons requires to include gravity, a possibility which will for the moment
not be considered. There is furthermore no physical evidence (yet) for spin 3/2 particles, so
this option will also be ignored. Hence, for any non-gravitational theory in four dimensions,
the maximum is NV = 4. The odd values 5 and 3 generate in four dimensions only the
particle and anti-particle content of theories with larger A, and therefore do not provide
different theories: The particle and anti-particle content has to be included to satisfy the

CPT theorem, and hence other possibilities are only relevant from a mathematical point
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of view, but not from a quantum-field-theoretical one.

Hence, in four dimensions there are thus besides N = 1 theories N’ = 2 theories and
N = 4 theories. The additional charges provide more constraints, so theories with more
supercharges become easier to handle. However, currently there seems to exist no hint
that any other than N = 1-theories could be realized at energy scales accessible in the
foreseeable future. Thus, here primarily this case will be treated. However, given the
importance of such more complicated theories, especially in the context of string theory,
it is worthwhile to gather here some more conceptual points about superalgebras.

All of this applies quantitatively to four dimensions. The number of independent
supercharges can actually be larger or smaller for different dimensionalities, e. g. N = 16
without gravity is possible in two dimensions.

First of all, it should be noted that any theory with A/ > 1 necessarily contains also
N = 1 supersymmetry. Hence, any theory with N' > 1 can only be a special case of
the most general form of a N' = 1 theory. The appearance of higher symmetry is then
obtained by restrictions on the type of interactions and the type of particles in the theory.

If, for a given theory, all central charges vanish, the algebra is invariant under a U(N)
rotation of the supercharges, which is true especially for N' = 1. In fact, in the case of
N =1, this R symmetry, or R parity, is just a (global) U(1) group, i. e. an arbitrary phase
of the supersymmetry charges, which is part of the full algebra by virtue of

[T, Qal = —i(75)aQs.

This R symmetry forms an internal symmetry group with generator Tx. However, this
symmetry may be explicitly, anomalously, or even spontaneously broken, without break-
ing the supersymmetry itself?. A broken R symmetry indicates merely that the relative
orientation (and size) of the supersymmetry charges is (partly) fixed.

From the algebra (4.13-4.14) it can be read off that supercharges must have dimension
of mass%, and hence central charges of mass. This observation is of significance, as it
embodies such theories with an inherent mass-scale. In fact, it can be shown that the
mass of massive particles which form a supermultiplet in an extended supersymmetry

must obey the constraint

1
M > /T/_tr\/ZTZ,

and thus there is a minimum mass. If the mass satisfies the bound, such particles are

2This is not true in theories which satisfy the conformal version of the Poincare group, i. e. conformal
theories. In this case, the R symmetry needs necessarily to be intact, and the combination of supersym-

metry, conformal symmetry, and R symmetry forms together the superconformal symmetry.
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called Bogomol'nyi-Prasad-Sommerfeld (BPS) states®.

Even if the scale symmetry is broken, the superalgebras imposes constraints. Especially,
in theories with R parity, this yields a connection between the R current and the trace of the
energy-momentum tensor, which is intimately connected to the scale violation. Especially,
various relations between R parity and scale operators remain intact even if both the R
parity and the scale symmetry are broken at the quantum level. However, because of
the Higgs sector, the standard model of particle physics is classically not scaleless, and
therefore these relation do not apply in particle physics, until an extension of the standard

model is found and experimentally supported which has both symmetries.

4.3.3 Supermultiplets

As already noted, supersymmetry requires different multiplets of particles to be present in
a theory. This is a central concept, and requires further scrutiny. To simplify the details,
once more mainly N = 1 superalgebras will be considered.

A supermultiplet is a collection of fields which transform into each other under super-
symmetry transformations. The naming convention is that a fermionic superpartner of a
field a is called a-ino, and a bosonic super-partner s-a.

One result of the algebra obtained in the previous subsections was that the momentum
operator (anti-)commutes with all supercharges. Consequently, also P? (anti-)commutes

with all supercharges,
[Qa, P?] = [Q, P?] ={Q, P’} = {Q, P’} = 0.

Since the application of P? just yields the mass of a pure state, the masses of a particle s

and its super-partner ss must be degenerate, symbolically

P?|s) = m?|s)

P*|ss) = P?Qls) = QP%|s) = Qm?®|s) = m*Q|s) = m’|ss).

Further insight can be gained from considering the general pattern of the spin in a super-
multiplet. The first step should be to show the often assured statement that the number
of bosonic and fermionic degrees of freedom equals. Here, this will be done only for mass-
less states. The procedure can be generalized to massive states, but this only complicates

matters without adding anything new.

3That this is the same name as for certain topological excitations in gauge theories is not coincidental.

In extended supersymmetric gauge theories both quantities are related.



Chapter 4. Supersmmetry 53

As a starting point consider some set of massless states. Every state is then charac-
terized by its four-momentum p*, with p? = 0, it spin s, and its helicity h, which for a
massless particle can take only the two values h = +s if s # 0 and zero otherwise.

Taking the trace of the spinor indices in (4.13) yields
Qi Q7 + QU Qo = 0, P".

Applying to this a rotation operator by 27 and taking the trace over states with the same

energy but different spins and helicities yields

Z <p7 S, h ‘ (QiaQUa + QTJana) 6727”'“]3 ‘ Db, S, h> = 6” Z <p7 S, h |P0€727”’J3 ’ b, s, h> :
sh sh

Since the supercharges are fermionic they anticommute with the rotation operator. Fur-
thermore, the trace is cyclic, as it is a finite set of states. Thus, the expression can be

rewritten as
Z <p’ S h |QiOAQTja6_2MJ3 - QiaQTjae_ZWiJS { b, s, h> = 07
sh

and thus also the right-hand-side must vanish. However, the right-hand-side just counts
the number of states, weighted with 1 or —1, depending on whether the states are bosonic
or fermionic. The number of helicity states differ, depending on whether the states are

massive or not, yielding
D (=1)*@2s+1)n, = 0 (4.15)

ng+2» (=1)*n, = 0, (4.16)

for the massive and the massless case, respectively. ng is the number of states with the
given spin, and ng the number of massless spin-0 particles. The factor 2 actually does
not arise from the formula, as the trace is also well-defined when taking only one helicity
into account. It is the CPT theorem which requires to include both helicity states for a
physical theory.

In case of the massive Wess-Zumino model, the numbers are ng = 2 and ny/, = 1,
yielding ng — 1(2)n12 = 0. Note that this therefore counts on-shell degrees of freedom.
For the massless case, the ng are the same, but this time the 2 comes from a different
place, 24 2(—1)1 = 0.

So far, it is only clear that in a supermultiplet bosons and fermions must be present

with the same number of degrees of freedom, but not necessarily their relative spins, as
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long as the conditions (4.15-4.16) are fulfilled. In the free example, one was a spin-0
particle and one a spin-1/2 particle. This pattern of a difference in actual spin of 1/2 is
general.

This can be seen by considering the commutation relations of the supercharges under
rotation. Since the supercharges are spinors, they must behave under a rotation o, as

1€0

56@ = _TQ = iE[J7 Q]7

where J is the generator of rotations. In particular, for the third component follows

[Js,Q] = _%USQ

and thus . .
[J3, Q1] = _§Q1 [J3, Q2] = 5@2 (4.17)

for both components of the spinor ). It then follows directly that the super-partner of
a state with total angular momentum j and third component m has third component

m £ 1/2, depending on the transformed spinor component. This can be seen as

BGQuljm) = (@1~ [Qu i) = (Qum = 301 ) i) = @s (1m 3 ) i)

Likewise, the other spinor component of () yields the other sign, and thus raises instead of
lowers the third component. Of course, this applies vice-versa for the hermitian conjugates.
To also determine the value of j, assume a massless state with momentum (p, 0,0, p).
The massive case is analogous, but more tedious. Start with the lowest state with m = —j.
Then, of course, the state is annihilated by ) and Q;, as they would lower m further.
Also Qi annihilates the state, which is a more subtle result. The anti-commutator

yields the result
QIQ1 + QIQI = (o)uP" =p"—p’,
where the minus-sign in the second term appears due to the metric. Thus
<pj—j‘Q§Q1+Q1QI‘pj—j>=p°—p3=p—p=0 (4.18)

but also
(i — 3@} = (Qilpj — Nt =0,

as discussed above. Hence the first term in (4.18) vanishes, and leaves

(vi—i|@al

pi—3j)=0.
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But this is just the norm of Q“pj — j). A zero-norm state is however not appropriate
to represent a particle state, and thus QJ{ has to annihilate the state as well, the only
alternative to obtain the same result.

This leaves only (Qs|pj — j) as a non-zero state. This state has to be proportional to
a state of type |pj — 7 + 1/2). Since @)y is Grassmann-valued, and therefore nil-potent, a
second application of @)y yields again zero. Furthermore, since )7 and ()2 anticommute,

its application also yields zero,

Q1Q2|pj —j> = —Q2Q1|pj —j> = 0.

The application of QJ{ can be calculated as in the case of (4.18). But the appearing
momentum combination is p; + po, being zero for the state. This leaves only Q; Applying

it yields
Q5Q:2lpj — 3) = ((0,)22P* — Q2Q3)|pj — 5) = (p° + p* + 0)|pj — ) = 2p|pj — j).

Hence, this returns the original state. Thus, the value of j in a supermultiplet can differ
only by one half, and there are only two (times the number of internal quantum number)
states in each supermultiplet. It does not specify the value of j, so it would be possible to
have a supermultiplet with 7 = 0 and j = 1/2, as in the example above.

Note that only the states m = 0 and m = —1/2, but not m = +1/2, the anti-
particle state, are contained in the supermultiplet. This is called a chiral supermultiplet.
Alternatively, it would be possible to have j = 1/2 and 7 = 1, the vector supermultiplet,
or j =2 and j = 3/2, the gravity supermultiplet appearing in supergravity.

While algebraically the anti-state is not necessary, any reasonable quantum field theory
is required to have CPT-symmetry. Thus for any supermultiplet also the corresponding
antiparticles, the antimultiplet, have to appear in the theory as well. By this, the missing
m = 1/2 state above is introduced into the theory.

To have supermultiplets which include more states requires to work with an N' > 1
algebra, where the additional independent supercharges permit further rising and lowering.
It is then possible to have supermultiplets, which include more different spin states. Also,
the absence of central charges was important, since the anti-commutator of the fields has
been used. E.g. in N’ = 2 SUSY, the supermultiplet contains two states with j = 0 and
two with m = £1/2. This is also the reason why theories with N' # 1 seem to be no
good candidates for an extension of the standard model: SUSY, as will be seen below,
requires that all superpartners transform the same under other transformations, like e. g.
gauge transformations. In an N = 2 theory, there would be a left-handed electron and a

right-handed electron, both transforming under all symmetries in the same way. But in
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the standard model, the weak interactions couple differently to left-handed electrons and
right-handed electrons, and thus it is not compatible with N” > 1 SUSY. For /' = 1 SUSY,
however, independent chiral multiplets (and, thus, more particles) can be introduced to
solve this problem. Since also the quarks are coupled differently in the weak interactions,
this applies to all matter-fields, and thus it is not possible to enhance some particles with
N =1 and others with N' > 1 SUSY.

One of the key quantities in the above discussion has been spin. However, spin is
considered usually a good quantum number because it is a well-defined observable, as it
commutes with the Hamiltonian. This is no longer precisely true when supersymmetry is
involved. Rather, spin has a similar standing a sthe megnatic quantum number. Hence, a
more general concept is needed.

A particle species is specified as a representation of the Poincare group or of one of its
subgroup, i. e. fields are orbits in the Poincare group. Such orbits can be classified using
Casimir invariants, as group theory shows.

One of the Casimirs is P2, the square of the momentum operator, yielding the rest
mass of a particle The spin appears as a second Casimir of the Poincare groupbuild from
the Pauli-Lubanski vector

W, = %GWWP”M"”, (4.19)

being, due to the Levi-Civita tensor, orthogonal to the momentum vector, and thus linearly
independent. Its square W? is the searched-for second Casimir operator. In the rest frame

of a massive particle

holds. This is, up to a normalization, just the spin algebra. This especially implies that its
eigenvalues behave, up to a factor of m, like the ones of a spin, and indeed the eigenvalues
of W? are thus spin eigenvalues.

In a supersymmetric theory, this is no longer true. The commutator of W#* with a

supercharge () yields

weQ = %e“”p"Py[Mm, Q| = io™QP, (4.21)
O = %(0”6” —a’ct)
and thus
(W2 Q] = WHW,,,Q] + [W*, QIW,, = 2iP"0,,P"Q

and therefore WW? is no longer a suitable operator to characterize a particle, as it no longer

belongs to the maximal set of commuting operators.



Chapter 4. Supersmmetry 57

The problem arises, because of the connection of the superalgebra and the momentum
operators. A suitable solution is therefore to generalize the Pauli-Lubanski-vector to a
quantity also involving the supercharges. As it will turn out a suitable choice is the
superspin, defined as

St =WH— iQa“Q.

To check this, consider the commutation relation of the second part with a supercharge
{—i@a“@, Q} = 2Qd"c" P, = 20"d"QP,,
which directly follows from the superalgebra. This implies, together with (4.21),
[S*,Q] = —%QP“, (4.22)

where it has been used that (ic"” + ¢¥5#/2) = ¢g"”/2, as can be shown by explicit calcu-
lation. Since S* is Hermitian, the commutation relation with @ follows directly. Further-
more, S* commutes with P, as the Pauli-Lubanski vector does and so does the supercharge.

Combining all of this together yields
[SH, 5] = i€upe PP S7,
which reduces in the rest system in the same way as in (4.20) to
[S%, S9] = ime'i* S,

This is again the same type of spin-algebra, characterized by eigenvalues s, as before.
Thus, the superspin acts indeed as a spin.

It then only remains to construct an adequate Casimir operator. Define for this the
antisymmetric matrix

CH = SHPY — SV PH,

which commutes with the supercharges
1
(€, Q) =[5, QP ~ 8", QIP" = 5 (~QP"P" + QP"P*) = 0.

The square of this operator, C* = C**C,,,, commutes with the supercharges and also with
P#, as it is a scalar. It remains to show that this Casimir is indeed different from P2. An

explicit calculation shows
C? =2m*S* — 2(SP)’

which in the rest frame for a massive particle reduces to

C? = —2m*s(s+ 1)
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where S is the superspin in the rest frame and zero, integer, or half-integer. The situation
for massless particles is as before, yielding for every spin only the corresponding helicities.
Therefore, any particle can be assigned to representations of the Poincare group with
the continuous parameters mass m? > 0 and the discrete superspin S, where the latter
coincides in the rest frame, but only there, with the usual spin. Due to this coincidence,
usually no difference is made between superspin and spin in name, and both expressions
are used synonymously. Note that

[S?, W3] =0,

and therefore the eigenvalues of both operators can be used to characterize the magnetic
quantum number, especially in the rest frame. Thus, the above discussed counting in the
rest frame is indeed legit.

It should be noted that the eigenvalue of the superspin can be used to characterize the
supermultiplet, as the supercharges do not change it, but change between states inside
the supermultiplet. Since the spin operator and supercharges do not commute, their
application then changes the spin of particles belonging to the same supermultiplet.

E. g. for a supersin 0, the supercharges create the four states of the Wess-Zumino
model. A superspin of 1/2 creates the vector multiplet, and of 1 the gravity multiplet.
For different numbers of supercharges then also the number of particles in a multiplet at
fixed superspin changes.

4.3.4 Off-shell supersymmetry

Now, it turns out that the results so far are not complete. If in (4.10) instead of ¢ the
superpartner x is used, it turns out that complications arise. Thus, something has to be
modified.

To see this inconsistency, start by first performing two supersymmetry transformations

on x
Ondexa = [Q +1Q: [6Q +£Q. Xall = —i[nQ +1Q, 0" (i02€")a0,]
= —i(0"(i02€"))adu[nQ + 7Q, 9]
= —i(0"(i02€"))a(n" (—io2)0ux).  (4.23)
To simplify this further, note that for any three spinors n, p, A
a0 + Nap" N + paiy = 0 (4.24)

holds. This follows by explicit calculation. E.g., for a =1

AMMip2 — Ainepr + Mmpide — mpeAi + piAing — prAan = 0.
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To rearrange the terms such that they cancel always an even number of transpositions are
necessary, and thus the Grassmann nature is not changing the signs. The case a = 2 can
be shown analogously. Now, identify A = ¢,(—io2){*, n =1, and p = J,x. Thus, (4.23)

can be rewritten as

0y0ex = —i (1a0uX" (—io2) 0" (=id2)€" + OuXa(0™ (—ioa€"))" (—ioa)n) -

Using
(—ioy)ot(—ioy) = (=), (4.25)

which can be checked by explicit calculation, shortens the expressions significantly. Per-

forming also a transposition, it then takes the form

Sp0ex = —ina(E75"ux) + Ouxa(o"(—ioac") T (—ioa)n)
= —ina(£76"Dux) — in" (—ion)o"(—i02)E DyXas

where also the second term became transposed. To construct the transformation in reverse

order is achieved by exchanging 7 and &, thus yielding

(0nd0e — 0cOy)Xa = (€7 (—ion)o"(—ioa)n)" —n' (—ios)o"(—io2)E")DuXa
+ila(n 54 0ux) — i1a (€1 7"0ux). (4.26)

The first term is exactly the same as in (4.10), but with n and £ exchanged. Hence, if this
term would be the only one, the commutator of two SUSY transformations would be, in
fact, the same irrespective of whether it acts on ¢ or x, as it should. But it is not. The
two remaining terms seem to make this impossible.

However, on closer inspection it becomes apparent that in both terms the expression
"0, x exists. This is precisely the equation of motion for the field x, the Weyl equation.
Thus the two terms vanish, if the field satisfies its equation of motion. In a classical
theory, this would be sufficient. However, in a quantum theory exist virtual particles, i.
e., particles which not only not fulfill energy conservation, but also not their equations
of motions. Hence such particles, which are called off (mass-)shell, are necessary. Thus
the algebra so far is said to close only on-shell. Hence, although the theory described
by the Lagrangian (4.4) is classically supersymmetric, it is not so quantum-mechanically.
Quantum effects break the supersymmetry of this model.

Therefore, it is necessary to modify (4.4), to change the theory, to obtain one which is
also supersymmetric on the quantum level. Actually, this result is already an indication
of how this can be done. Off-shell, the number of degrees of freedom for a Weyl-fermion

is four, and not two, as there are two complex functions, one for each spinor component.
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Thus, the theory cannot be supersymmetric off-shell, as the scalar field has only two
degrees of freedom. To make the theory supersymmetric off-shell, more (scalar) degrees
of freedom are necessary, which, however, do not contribute at the classical level.

This can be done by the introduction of an auxiliary scalar field F', which has to be
complex to provide two degrees of freedom. It is called auxiliary, as it has no consequence
for the classical theory. The later can be most simply achieved by giving no kinetic term
to this field. Thus, the modified Lagrangian takes the form

L=0,0'0'¢+ x"ic"0,x + F'F. (4.27)

It should be noted that this field has mass-dimension two, instead of one as the other

scalar field ¢. The equation of motion for this additional field is
oL oL

—_—— —_— T: p—
5o, F oF 1 ==

Thus, indeed, at the classical level it does not contribute.

aﬂ

Of course, if it should contribute at the quantum level, it cannot be invariant under a
SUSY transformation. The simplest (and correct) guess is that this transformation should

only be relevant off-shell. As it must make a connection to y, the ansatz is
§F = —ig'a"0,x
6 FT = 0ot
where £ has been inserted as its transpose to obtain a scalar. The appearance of the

derivative is also enforced to obtain a dimensionally consistent equation.

This induces a change in the Lagrangian under a SUSY transformation as
6Lp = Fid,x'"¢ — Fligta o, x.

This expression is not a total derivative. Hence, to obtain a supersymmetric theory addi-
tional modifications for the transformation laws of the other fields are necessary. However,

since part of the fermion term already appears, the modifications
ox = 0,028°0,0+EF
o' = 01T (—ion)o” + FiE

immediately lead to cancellation of the newly appearing terms, and one additional total

derivative,
oLp = F'eig"o,x + x1ic"€0, F + Fid,x'o"¢ — FTETiaha,x
= 0,(ix'e"¢F) + Fi¢ticrd,x — FT¢tioro,x
= au(iXT(TMgF)
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Thus, without modifying the transformation law for the ¢-field, the new Lagrangian (4.27)
indeed describes a theory which is supersymmetric on-shell. To check this also off-shell, the
commutator of two SUSY transformations has to be recalculated, which will be skipped
here, as a full proof requires the recalculation also of all (anti-)commutators. This is a
tedious work, but finally it turns out that the theory indeed has the same commutation
relations, which hold also off-shell. In particular, the supercurrent is not modified at all,
as no kinetic term for F appears, and the surface term and the one coming from the

transformation of y exactly cancel.

4.4 Interacting supersymmetric quantum field theo-

ries

4.4.1 The Wess-Zumino model

The theory treated so far was non-interacting and, after integrating out F' using its equa-
tion of motion, had a very simple particle content. Of course, any relevant theory should
be interacting. The simplest case will be constructed in this section. It is an extension of
the free theory.

The starting point is the Lagrangian (4.27), supplemented with a yet unspecified in-

teraction
L =0,0'0"¢ + xTic",x + FIF + Li(¢, o', x, xI, F, F1) + £}

The last term is just the hermitian conjugate of the second-to-last term, necessary to make
the Lagrangian hermitian. It is now necessary to find an interaction Lagrangian £; such
that supersymmetry is preserved.

Since the theory should be perturbatively renormalizable, the maximum dimension (for
the relevant case of 34+1 dimensions) of the interaction terms is 4. The highest dimensional
fields are F' and x. Furthermore, the interaction terms should be scalars. Thus the possible

form 1is restricted to '
‘Ci = U((ba ¢T>F - QV(Qba (bT)XaXa-

The —1/2 is introduced for later convenience. On dimensional grounds, with F' having
dimension mass? and y mass%, no other terms involving these fields are possible. In
principle it would appear possible to also have a term Z(¢, '), depending only on the
scalar fields. However, such a term could not include derivative terms. Under a SUSY
transformation ¢ is changed into y. Hence, the SUSY transformation will yield a term

with three ¢ fields and one y field for dimensional reasons, and no derivatives or F' fields.
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But all kinetic terms will include at least one derivative, as well as any transformations of
the F field. The only possible term would be the one proportional to y2. But its SUSY
transformation includes either an F field or the derivative of a ¢-field. Hence none could
cancel the transformed field. Since no derivative is involved, it can also not be changed
into a total derivative, and thus such a term is forbidden.

Further, on dimensional grounds, the interaction term U can be at most quadratic in
¢ and V' can be at most linear.

The free part of the action is invariant under a SUSY transformation. It thus suffices
to only investigate the interacting part. Furthermore, if £; is invariant under a SUSY
transformation, so will be EZT. Thus, to start, consider only the second term. Since a
renormalizable action requires the potentials U or V to be polynomial in the fields, the
transformation rule is for either term, called Z here,

5 0z
50" * 51

The contribution from the SUSY transformation acting on the potential V' yields

0¢Z 5!

—V(é"xa)(xbxb) — (&%) (X"Xa)-

ov

00 d¢t
Again, none of these terms can be canceled by any other contribution appearing, since
none of these can involve three times the y field. Also, both cannot cancel each other,
since the contributions are independent. As noted, the first term can be at maximum of
the form a + b¢, and thus only a common factor. By virtue of the identity (4.24) setting
A = p =n = x it follows that this term is zero: In the case of all three spinors equal, the
terms are all identical. This, however, does not apply to the second term, as no identity
exist if one of the indices is dotted. There is no alternative other than to require that
V is not depending on ¢'. Hence, the function V' can be, and in four dimensions for

4 of the field ¢. Being holomorphic is

renormalizable theories is, a holomorphic function
a quite strong constraint on a function, and hence it is quite useful in practice to obtain
various general results for supersymmetric theories.

As an aside, this fact is of great relevance, as it turns out that it is not possible
to construct the standard model Yukawa interactions due to this limitation with only
one Higgs doublet as it is done in the non-supersymmetric standard model, but instead
requires at least two doublets. The more detailed reason is once more the necessity to have

two independent supermultiplets to represent the left-right asymmetry of the electroweak

4In theories with both left chiral supermultiplets and right chiral supermultiplets, e. g. A” = 2 theories,
it is possible to also form a further potential which depends on both, the so-called Kéahler potential. Kéahler

potentials are, in a sense, generalizations of holomorphic potentials, and hence also quite constraining.



Chapter 4. Supersmmetry 63

interaction of the standard model, and this requires ultimately the doubling of Higgs
particles in the minimal supersymmetric standard model. However, it is not required that

both have the same mass.

This is already sufficient to restrict the function V' to the form
V =M+ yo.
The first term gives a mass to the fermionic fields, and the second term provides a Yukawa

interaction. It is convenient, as will be shown latter, to write a generating functional for

this term V as

ow
V= S0
with
1 2 1 3
W =B+A¢+ ;M¢* + yo’. (4.28)

This function W is called the superpotential for historically reasons, and will play a central
role, as will be seen later. The linear term is not playing a role here, but can be important
for the breaking of SUSY, as will be discussed later. The constant is essentially always

irrelevant.

The next step is to consider all terms which produce a derivative term upon a SUSY

transformation. These are

1 1
—iUE'e"0,x + iEVXTJQU”ch&*@MqS - i§V§T020“T02)(5H¢
1 1
= —iU§T5“8MX — iéngaga“Tagxﬁﬂgb — i§V§Taga“T02Xa“¢

1 1
= iU 0 — igVE T X0 — i5VE T xO,0
= —iU&'5"0,x — iVETahxd,0,

where (4.25) was used twice. The combination of derivatives of ¢ and y cannot be produced
by any other contribution, since all other terms will not yield derivatives. Since neither
U nor V are vectors, there are also no possibilities for a direct cancellation of both terms.
The only alternative is thus that both terms could be combined to a total derivative. This
is possible, if

oW

V=56
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as can be seen as follows
—i&'a" (U, x + xV0,0)

ow
= —iflgH (U(%X + X0 —— 5 )

ow ow
—  _et=mp [ 22
o (g 205 )

ow
— et
= —i'o"0, (5¢ )

This is indeed a total derivative. Hence, by virtue of the form of the superpotential (4.28)

oW 1
= =A+M —yo.
U= T = A+ Mo+ 500

This fixes the interaction completely. It remains to check that also all the remaining terms

of the SUSY transformation cancel or form total derivatives. These terms are

oU

(5¢F€ Xa__v(£ XaF‘i_Xga )

52W 16°W , o
= 5¢5¢F5 a 5%(6 XaF+5XaF)_Oa

and hence the theory is, in fact, supersymmetric. Here it has been used how spinor scalar-
products of Grassmann numbers can be interchanged, giving twice a minus-sign in the
second term.

This permits to write down the full, supersymmetric Lagrangian of the Wess-Zumino
model. It takes the form

1 1 1
L=0,0'0"¢+x'ic"0,x + F'F + M¢F — 5 Moox + §y¢2F — FYOXX (4.29)

1 1 1
+ MUGTFT = S M () + Sy e T = Syt ()
where linear and constant terms have been dropped, and which is now the full, supersym-
metric theory.
The appearance of three fields makes this theory already somewhat involved. However,

the field F' appears only quadratically, and without derivatives in the Lagrangian remains

an auxiliary field, just as

ow oWt
Lrp=F'F el —F"
F + 50 + 5o
Thus, it is directly possible to integrate out F'. This yields

1

. . . 1. 4.
L = 8M¢T0“¢ + XTza“@uX — MM*¢lp— §MXT(—202)X = §M T(ZUQ)XTT

Y (M667 + M)~y 67 — L (yoxxa +y XML (4.30)



Chapter 4. Supersmmetry 65

There are a number of interesting observations to be made in this Lagrangian. First of all,
at tree-level it is explicit that the fermionic and the bosonic field have the same mass. Of
course, SUSY guarantees this also beyond tree-level. Secondly, the interaction-structure
is now surprisingly the one which was originally claimed to be inconsistent with SUSY.
The reason for this is that of course also in the SUSY transformations the equations of
motions for F' and F' have to be used. As a consequence, these transformations are no
longer linear, thus making such an interaction possible. Finally, although two masses and
three interactions terms do appear, there are only two independent coupling constants,
M and y. That couplings for different interactions are connected in such a non-trivial
way is typical for SUSY. It was one of the reasons for hoping that SUSY would unify
the more than thirty independent masses and couplings appearing in the standard model.
Unfortunately, as will be discussed below, the necessity to break SUSY jeopardizes this,
leading, in fact, for the least complex theories to many more independent couplings and

masses, about three-four times as much.

4.4.2 Majorana form

For many actual calculations the form (4.30) of the Wess-Zumino model is actually some-

what inconvenient. It is often more useful to reexpress it in terms of Majorana fermions

U — ((i%)x*) 7
X

1

A = 2(¢+¢*)

1

V2

It can then be verified by direct expansion that the new Lagrangian in terms of these fields

and the bosonic fields

Sl

B (60— o).

for a single flavor becomes

1. 1 1 1 1
L = U0y — M) + 50" A, A - 5M?AQ +50"BI,B — 5M?BQ

1 _ _
—~MgA(A®> + B?) + §‘(;2(,42 + B*)? — g(AUV + i BU~; )

where M and g = y have been chosen real for simplicity. In this representation, A and B
do no longer appear on equal footing: A is a scalar field while B is necessarily pseudoscalar,
due to its coupling to the fermions. Therefore, it can also only appear quadratic and not

linear in the three-scalar term, explaining the absence of a BA? term. Still, despite these
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differences, this is a standard Lagrangian for which the Feynman rules are known. It will
now be used to demonstrate the convenient behavior of a supersymmetric theory when it

comes to renormalization.

4.4.3 The scalar self-energy to one loop

A benefit of supersymmetric theories is that they solve the so-called naturalness problem.

What this explicitly means, and how it is solved, will be discussed here.

The naturalness problem is simply the observation that the Higgs particle is rather
light, although the theory would easily permit it to be much heavier, of the order of
almost the Planck scale, without loosing its internal consistency. The reason for this
is the unconstrained nature of quantum fluctuations. Supersymmetric theories make it
much harder for the Higgs to be very heavy, in fact, its mass becomes exponentially
reduced compared to a non-supersymmetric theory. To see this explicitly, it is simplest
to perform a perturbative one-loop calculation of the scalar self-energy in a theory with
a very similar structure as the Wess-Zumino model, but with a fermion-boson coupling
which is instead chosen to be h for the moment. This can be regarded as a simple mock-up

of the electroweak sector of the standard model, dropping the gauge fields.

At leading order, there are three classes of diagrams appearing in the one-particle
irreducible set of Feynman diagrams. The first is a set of tadpole diagrams, the second
a set of one-loop graphs with internal bosonic particles, and the third the same, but
with fermionic particles. These will be calculated in turn here. The calculation will be
performed for the case of the A boson. It is similar, but a little more tedious, for the B

boson.

The mathematically most simple ones are the tadpole diagrams. There are two of them,
one with an A boson attached, and one with a B boson attached. Their contribution II,

to the self-energy is

12 d*p 1 4 dp 1
I, = ——g¢° - = 2/ 4.31
! 29 /(2%)4p2—M2+ie 29 (2m)4 p? — M? + i€’ (4:31)

where the first term stems from the A-tadpole and the second one from the B-tadpole,
and the factors 1/2 are symmetry factors. These integrals are divergent. Regularizing

them by a cut-off A? turns it finite. This expression can then be calculated explicitly to
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yield

2 ) A+ A1+ 22
Ht = g A2 1+F—M21H A

T M

i9° (A2 — M’ (%) + (9(1)) . (4.32)

T2

Q

This result already shows all the structures which will also appear in the more compli-
cated diagrams below. First of all, the result is not finite as the cutoff is removed, i.e.,
by sending A to infinity. In fact, it is quadratically divergent. In general, thus, this ex-
pression would need to be renormalized to make it meaningful. Since the leading term
is momentum-independent, this will require a renormalization of the mass, which is thus
quadratically divergent. This is then the origin of the naturalness problem: In the process
of renormalization, the first term will be subtracted by a term —A2% + dm?, where the
first term will cancel the infinity, and the second term will shift the mass to its physical
value. However, even a slight change in A or g% would cover even a large change in dm,
if the final physical mass is small. There is no reason why it should be small therefore,
and thus the mass is not protected. If, e.g., the first would not be present, but only the
logarithmic second one, the cancellation would be of type M?In (%) + dm?. Now, even
large changes in A will have only little effect, and thus there is no fine-tuning involved to
obtain a small physical mass. This will be exactly what will happen in a supersymmetric
theory: The quadratic term will drop out in contrast to a non-supersymmetric one, and
thus will provide a possibility to obtain a small physical mass without fine tuning of g, A
and M.

The next contribution stems from the loop graphs involving a boson splitting in two.
With an incoming A boson, it can split in either two As, two Bs, or two ys. The contri-
bution from the bosonic loops are once more identical, up to a different prefactor due to

the different coupling. Their contribution is

d*p 1 1
(2m)* p? — M2 +ie (p — q)* — M? + i€’

~5 (Mg + 20 [

where the factor 1/2 is a symmetry factor and ¢ is the external momentum of the A
particle. An explicit evaluation of this expression is possible, and discussed in many texts
on perturbation theory. This is, in particular when using a cutoff-regularization, a rather
lengthy exercise. However, to explicitly show how the naturalness problem is solved, it is
only interesting to keep the quadratically divergent piece of the contribution. However,

the integrand scales as 1/p* for large momenta. Thus, the integral is only logarithmically
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divergent, and will thus only contribute at order M?In(A/M), instead of at A%. For the
purpose at hand, this contribution may therefore be dropped.
This leaves the contribution with a fermion loop. It reads
_2h2/ d'p  tr((yup” + M)(n(p” — ¢") + M))
(2m)* (p* — M2 + i€)((p — q)> — M? +ie)

The factor of 2 in front stems from the fact that for a Majorana fermion particle and

anti-particle are the same. Thus, compared to an ordinary fermion, which can only split
into particle and anti-particle to conserve fermion number, the Majorana fermion can split
into two particles, two anti-particles, or in two ways in one particle and an anti-particle, in
total providing a factor four. This cancels the symmetry factor 1/2 and lets even a factor
of 2 standing. Using the trace identities trl = 4, trvy,=0, and trv,7, = 4g,, this simplifies

to

_8h2/ d'p p(p — q) + M? |
(2m)* (p* — M? +ie)((p — q)* — M? + i)
Since the numerator scales with p? the integral is quadratically divergent. Again, it
suffices to isolate this quadratic piece, yielding

—Zﬂi;AQ + 0O (M2 In ;}{—2) .
This cannot cancel the previous contribution, unless ¢ = h. However, for a supersymmetric
theory, supersymmetry dictates g = h. But then this is just the negative of (4.32), and
thus cancels exactly this contribution. Thus, all quadratic divergences appearing have
canceled exactly, and only the logarithmic divergence remains. As has been allured to
earlier, this implies a solution of the naturalness problem. In fact, it can be shown that
this result also holds in higher order perturbation theory, and only logarithmic divergences
appear, thus lower than just the superficial degree of divergence.

In fact, in the present case it is possible to reduce the number of divergences even fur-
ther. For simplicity, the calculation above has been performed with the F' field integrated
out. Keeping this field explicitly, it is found (after a more tedious calculation) that the
mass of the bosons (and fermions) become finite, and the divergences are all pushed into
a wave-function renormalization. Hence, the masses of the particles become fixed, making
supersymmetric theories much more predictive (and 'natural’) than non-supersymmetric
ones.

This feature of canceling quadratic divergences is no accident, but is a general feature
of supersymmetric theories. Since fermions and bosons contribute with opposite sign,
the fact that supersymmetry requires a precise match between both species leads always
to cancellations which lower the degree of divergences. This is one of the most striking

benefits of supersymmetric theories.
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4.5 Superspace formulation

4.5.1 Supertranslations

After having now a first working example of a supersymmetric theory and seen its benefits,
it is necessary to understand a bit more of the formal properties of supersymmetry. The
possibly most striking feature is the somewhat mysterious relation (4.12). It is still not
very clear what the appearance of the momentum operator in the SUSY algebra signifies.
It will turn out that this connection is not accidental, and lies at the heart of a very
powerful, though somewhat formal, formulation of supersymmetric theories in the form
of the superspace formulation. This formulation will permit a more direct understanding
of why the supermultiplet is as it is, and will greatly aid in the construction of more
supersymmetric theories. For that reason, it has become the preferred formulation used
throughout the literature.

To start with the construction of the super-space formulation, note that the supercharge
() is a hermitian operator. Thus, it is possible to construct a unitary transformation from

it by exponentiating it, taking the form?
U(0,0%) = exp(i0Q) exp(ifQ).

Note that the expressions in the exponents are appropriate scalar products, and that 6
and 0* are independent, constant spinors.
Acting with U on any operator ¢ yields thus a new operator ¢ dependent on 6 and 6*

U(0,0%)oU(0,6%) ™ = ¢(0,6")

by definition. This is reminiscent of ordinary translations. Given the momentum operator
P,, and the translation operator V(z) = exp(izP), a field ¢ at some point, say 0, acquires

a position dependence by the same type of operation,

V(2)p(0)V (2)" = é(x).

Thus, in a sense, the operator U provides a field with an additional fermionic coordinate.
Of course, this interpretation is done with hindsight, as any unitary operator is providing
a field acted upon an additional degree of freedom.

That this interpretation actually makes sense can be most easily seen by applying the

operator U twice. To evaluate the operator

U €U(0,0%) = exp(i€Q) exp(i€Q) exp(i0Q) exp(ifQ)

>The order of @ and @ is purely conventional, see below.
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it is most convenient to use the Baker-Campbell—Hausdorff formula
exp(A) exp(B) = exp (A +B+ - [A B] + [[A, B], B] + ) :

The commutator of £Q and £Q for the first two factors can be reduced to the known

commutation relation (4.12) in the following way
[i6Q,i€Q] = " Qu, —€" Q]

= P("QuE"Qh + £ QI Qu)

= 28" (QaQ) + QF Qu)

= "¢ {Qu. Q)

= %" (0" Py
where (4.12) has already been used in the end. This is an interesting result. First of all, it
is practical. Since P, commutes with both () and Q' all of the higher terms in the Baker-
Campbell-Hausdorff formula vanish. Secondly, the appearance of the momentum operator,
though not unexpected, lends some support to the idea of interpreting the parameters
and ¢ as fermionic coordinates and U as a translation operator in this fermionic space.
But to make this statement more definite, the rest of the product has to be analyzed as
well. Note that since all of the formulation has been covariant throughout the expression
i£2€%* (o) 4, though looking a bit odd at first sight, has actually to be a four vector to
form again a Lorentz invariant together with P,. Of course, this quantity, as a product
of two Grassmann numbers, is an ordinary number, so this is also fine. Note further that

since P commutes with @), this part can be moved freely in the full expression.

Combining the next term is rather straight-forward,
U(E,ENU(0,60%) = exp(i%"" (0")anPy) exp(i(£Q + £Q)) exp(i6Q) exp(ifQ)
= exp(i%€°E" (a")ap By X
X exp (z (5@ +EQ +60Q — 1[5@ +£Q, 6@])) exp(i0Q)
= oxp(i®(§7€" + €°0") (0" P) exp(i(6Q + £Q + 6Q)) exp(i6Q)

where it has been used that ) commutes with itself. Also, an additional factor of i> has

been introduced. The next step is rather indirect,

exp(i*(€7€" + £°0") (0" ) Pu) exp(i((€ + 0)Q + £Q)) exp(i0Q)  (4.33)
= exp(i*(£°6" + £°0") (") s P) exp(i(€ + 0)Q) x

x exp(i€Q) exp(—i(£°€") (0")ap Pu) exp(i6Q)
= exp(i*€"0" (0")anPy) exp(i(€ + 0)Q) exp(i(€ + 0)Q).
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In the second-to-last step, the identity expi(A + B) = expidexpiBexp(|[A, B]/2) has
been used, which follows from the Baker-Campbell-Hausdorff formula in this particular
case by moving the commutator term on the other side. Also, it has been used that Q
commutes with itself to combine the last two factors.

Hence, in total two consecutive operations amount to

U(E,EU(0,67) = exp(i*€°0” (0")ap Pyu) exp(i(€ + 0)Q) exp(i(€ + 0)Q).
This result is not of the form U(f(£,£*),g(0,0%)), and thus the individual supertransfor-
mations do not form a group. This is not surprising, as the algebra requires that also the

momentum operator must be involved. A better ansatz is thus

Ulay, €,€%) = exp(iPa) exp(i€Q) exp(iQ).

Since the momentum operator commutes with both @ and Q, it follows directly that

Ula,, &)U, 0,0") = exp(i(a, + b, + igaeb*(a“)ab)PM) exp(i(€ + 0)Q) exp(i(€ + 0)Q)
= U(a" 4+ " +i&%0" (0")ap, € + 0,6 +6%),

and consequently
U2, & E)U (au, 0,07)p(0)U (24, €, ) U (ay, 0,0%) 7 = gt +a"+i& 0" (07 ap, E+0, £ +07).

This then forms a group, as it should be, the group of supertranslations. The group is
not Abelian, as a minus sign appears if § and £ are exchanged in the parameter for the
momentum operator. However, the ordinary translations form an Abelian subgroup of
this group of supertranslations. It is now also clear why there is a similarity to ordinary
translations, compared to other unitary transformations: The latter only form a simple
direct product group with ordinary translations, which is not so in case of the supertrans-
lations. In this case, it is a semidirect product. This also justifies to call the parameters
¢ and & supercoordinates in an abstract superspace.

The construction of these supertranslations, and by this the definition of fermionic
supercoordinates and thus an abstract superspace, will now serve as a starting point for

the construction of supersymmetric theories using this formalism.

4.5.2 Coordinate representation of supercharges

Ordinarily, infinitesimal translations Ul(e,) can be written in terms of a derivative

Ule,) = exp(—ie, P") = 1 — i, P' =1+ €"0,. (4.34)
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If the correspondence of 6 and 6* should be taken seriously, such a differential representa-

tion for supertranslations should be possible. Hence for

Ul & 6) (0, 0,0°)U (€, €,67) 7 = (1, 6,0") + ¢
with €, and § and £* all infinitesimal it should be possible to write for d¢

9¢ 99

5¢ = (e, — 10°6" (0M) ap) Do + £° T

+&

In analogy to (4.34), this implies that in the expression
06 = ("0, — 10°€" (0")ap) Oy — 16" Qu — 16,Q" )

it is necessary to identify

0
o = 1 4.35
Q = i (4.35)
0
QU = i— +6"(0")al,. (4.36)
00x
To form the second part of the QT part, it is necessary to note that £Q = —£¥*Q!

giving the overall sign.

This representation of ) and Q' is only making sense, if these operators fulfill the
corresponding algebra. In particular, Q and Q' must commute with themselves. That is
trivial in case of Q. Since # and #* are independent variables, this is also the case for Q1.
Furthermore, the anticommutation relation (4.12) has to be fulfilled®. This can be checked

explicitly

0 0
oo .0 . cf
(@) = {iggigg + 00,

B {aea 89*} {a(za»e“ )C”a“}
[}
= i(0o")w0, = (0 )abP

where the fact that derivatives with respect to Grassmann variables anticommute has been

used in going from the second to the third line and furthermore that

Opa (%)) + 0°0pa s = (Dpa?) S + (Dpad)8® + 0°Fpap = 3 + (Dpa )0 — (Dpuh)E,

6This is sufficient, as the commutator can be constructed from the anti-commutator, as has been done
backwards in section 4.3.1.
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using the anticommutativity of Grassmann numbers. Hence, the operators (4.35) and
(4.36) are in fact a possible representation of the supersymmetry algebra, and there indeed
exists a derivative formulation for these operators. This again emphasizes the strong
similarity of the supersymmetry algebra and the translation algebra, once for fermionic

and once for bosonic coordinates in the super space.

4.5.3 Supermultiplets

Now, given this superspace, the first question is what the vectors in this superspace repre-
sent. The simplest vector will have only components along one of the coordinates, which
will be taken to be 0 for now. Furthermore, these vectors are still functions. But their de-
pendence on the Grassmann variables is by virtue of the properties of Grassmann numbers

rather simple. Thus such a vector ®(z,6) can be written as
1
O (z,0) = ¢(z) + Ox(z) + 590F(m).

The 6-variables are still spinors, and the appearing products are still scalar products.
Due to the antisymmetry of the scalar product, the last term does not vanish, though of
course quantities like 2 vanish. The names for the component fields have been selected
suggestively, but at the moment just represent arbitrary (bosonic or fermionic, complex)
functions. Not withstanding, the set of the field (¢, x, F) is called a chiral supermultiplet”.

To justify the notation, it is sufficient to have a look at the infinitesimal transformation
properties of ® under U(0,&,£*). Of course, a non-zero translation parameter would just
shift the x-arguments of the multiplet, and is thus only a notational complication. The

change in the field is thus, as usual, given by
00 = (—i'Qq —i6;QN® = (it Q, + i Q)P
0 0 1
= (fa + & + if“*@b(a“)baﬁu) (¢($) + 0. + 5969017)

00 0
1
= §§gz§ + 9“55)(,1 + 59“9(155}7,

where the last line is by definition the change in the individual components of the super-
field. Since @ is not depending on 6%, the derivative with respect to this variable can be
dropped. It thus only remains to order the result by powers in 6.

At order zero, a contribution can only come from the action of the #-derivative on the

x term. This yields
0cp = EX

"Actually a left one, as only the left-handed spinor y appears.
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for the transformation rule of the ¢-field.

At order one appears

5£Xa - gaF - igb*(g“)abauqﬁ - gaF - i(i02§*)b(ou)abau¢>

giving the transformation for the y-field.
Finally, because 68* are Grassmann variables, order two is the highest possible order,

yielding

%995517 = i 0(0") a0 Oy xc = —%eeeacéﬁb*(a“)abé’uxc
— _%eeiga*(a“)abebcauxc
= —%eez’(z‘agg*)a(a“)e“@#xc
— _%eeig;(z’ag)da(aT“)ab(wz)bc@uxc
= (DG adixe
S S ICATR
where it has been used that
pagh — _%eabecec' (4.37)

This can be shown simply by explicit calculation, keeping in mind that #** = 0 and

€2 =1 = —ep9, as well as (i0y)eq = €4 and 7# = ioo0 P ioy.

Thus, the transformation rules for the field components are

o = &x
5€Xa = gaF_i(iO—2§*)b(O—M)abau¢
§eF = —if'(6")0,x. (4.38)

These are exactly the transformation rules obtained in section 4.3.4. Thus, a chiral super-
multiplet under a supertranslation transforms in exactly the same way as the field content
of a free (or interacting, in case of the Wess-Zumino model) supersymmetric theory. This
result already indicates that supersymmetric theories can possibly be formed by using
scalars with respect to supertranslation in much the same way as ordinary theories are
built from scalars with respect to Lorentz transformations. The following will show that
this is indeed the case. Actually, this is not exactly the way it turns out, but the idea is

similar.
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4.5.4 Other representations

All of this can be repeated, essentially unchanged, for a right chiral multiplet, where the
dependence on 0 is replaced by the one on #*. Including both, # and 6* actually does not
provide something new, but just leads to a reducible representation. That is most easily

seen by considering the condition

9 s
8—0;(1)(1}7979 ) = O

If this condition applies to the field ® then so does it to the transformed field 0P, since in

the latter expression

) )
907 oe = 007

(—i&“(o“)abfb*autb +&* o o )

a6: S 5gr

at no point an additional dependence on #* is introduced. Hence, the fields ®(x,#) form an
invariant subgroup of the SUSY transformation, and likewise do ®(z,6*). Any represen-
tation including a dependence on € and 6* can thus be only a reducible one. Nonetheless,
this representation is useful, as it will permit to construct a free supersymmetric theory.
Before investigating this possibility, one question might arise. To introduce the super-

vectors @, the particular supertranslation operator
Ur(x,0,0%) = exp(iz P) exp(i0Q) exp(i0Q),
called type I, has been used. Would it not also have been possible to use the operators

Uri(z,0,0%) = exp(izP)exp(i0Q) exp(ifQ)
Ur(2,0,0") = exp(izP)exp(ifQ +i0Q)?

The answer to this question is, in fact, yes. Both alternatives could have been used. And
these would have generated different translations in the field. In fact, when using the

expression ®; = U;®(0,0,0)U; to generate alternative superfields the relations
* i’ |y a _p nbx * o |y a b *
O,.(x,0,0%) = by | 2" — 5@9 00,07,0,0° | =@ 2" + 529 o,07,0,0 (4.39)

would have been found. An explicit expression, e. g. in case of the left supermultiplet
would be
1

T (00)(00)0*¢, (4.40)

o, (x,0,0%) = qﬁ—i—&x—i—%&@F—%i@“a;‘bﬁb*ﬁuqb—i—ii(@&)(auxaagbﬁb*)

which is obtained by the Taylor-expansion in # from the relation (4.39).
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I. e., the different supertranslations lead to unitarily equivalent supervectors, which
can be transformed into each other by conventional translations, and thus a unitary trans-
formation. This already suggests that these are just unitarily equivalent representations
of the same algebra. This can be confirmed: For each possibility it is possible to find a
representation in terms of derivatives which always fulfills the SUSY algebra. Hence, all of
these representations are equivalent, and one can choose freely the most appropriate one,

which in the next section will be the type-I version.

4.5.5 Constructing interactions from supermultiplets

For now, lets return to the (left-)chiral superfield, and the type-I transformations.

Inspecting the transformation rules under a supertranslation of a general superfield
one thing is of particular importance: The transformation of the F-component of the
superfield, (4.38), corresponds to a total derivative. As a supertranslation is nothing else
than a SUSY transformation this implies that any term which is constructed from the
F-component of a superfield will leave the action invariant under a SUSY transformation.
Hence, the question arises how to isolate this F-term, and whether any action can be
constructed out of it.

The first question is already answered: This can be done by twofold integration. Due

to the rules for analysis of Grassmann variables, it follows that

/d@l/d@@ = /dQl/d02 <¢+0“Xa+ %eaeaF) = /d@l(x2 +6,F)=F.

Thus twofold integration is isolating exactly this part.

The answer to the second question is less obvious. A single superfield will only con-
tribute a field F'. That is not producing a non-trivial theory. However, motivated by
the construction of Lorentz invariants by building scalar products, the simplest idea is to

consider a product of two superfields. This yields a superscalar
1 2
PP = (¢ + 0y + 59917) = ¢? + 200x + 00OF + (6x)(0x),

and all other terms vanish, as they would be of higher order in #. Using (4.37), the last

term can be rearranged to yield

1 1 1
0°xat"xp = —0°0"XaXp = 509€“bxaxb = —500X"xa = 5(66) (xX), (4.41)

and thus .
PP = ¢ + 200y + 590(21% —xX)-
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Isolating the F-term and multiplying with a constant M /2, which is not changing the

property of being a total derivative under SUSY transformations, yields
M
Wy = MoF — 5 XX

However, this is a well-known quantity, it is exactly the terms quadratic in the fields in
the Lagrangian (4.29) which are not part of the free Lagrangian, and to which one has to
add, of course, also the hermitian conjugate to obtain a real action, even though both are
separately SUSY invariant.

The fact that only terms of order two in the fields could have been obtained is clear, as
only a square was evaluated. It is surprising at first sight that in fact all terms quadratic
to this order have been obtained. However, in the construction of the Wess-Zumino La-
grangian the minimal set has been searched for, and this here is then the minimal set.
Note then that this implies that when stopping at this point, the Lagrangian for a mas-
sive, but otherwise free, supersymmetric theory has been obtained, as can be checked by
integrating out F. Note that obtaining the free part of the Lagrangian, or a massless
supersymmetric theory, can also be performed by the present methods, but requires some
technical complications to be discussed later.

This suggests that it should be possible to obtain the full interaction part of the Wess-
Zumino model by also inspecting the product of three superfields, as this is the highest
power in fields appearing in (4.29). And in fact, evaluating the F-component of such a

product yields
[#0w = 3028 - oxcr 20 [ o000
1
= 30F g+ 26 [ POl 300)(00) = 36°F — 3oxx

Multiplying this with y/6 exactly produces the terms which are cubic in the fields in the
Wess-Zumino Lagrangian (4.29). Thus, this Lagrangian could equally well be written as

L = 0,00"¢" + xic"0,x + F'F + / oW + W)

with ur
W= 00+ %(IXDCI),

being the superpotential. In contrast to the one introduced in section 4.4.1 this superpo-
tential now includes all interactions of the theory, not only the ones involving the ¢ terms.
Thus, it was indeed possible to construct the supersymmetric theory just by usage of prod-
ucts of superfields. This construction principle carries over to more complex situations,

and can be considered as the construction principle for supersymmetric theories.
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The generalization to fields with an internal degree of freedom, like flavor or charge, is

straightforward, yielding a superpotential of type

W= =L@, + %@icbjcbk,

just as in the case of the original treatment of the Wess-Zumino model.

In principle, the free part can be constructed in a similar manner. However, it turns
out to be surprisingly more complicated in detail. While so far only the field ®;(z, 6, 0) has
been used, for the free part it will be necessary to use in addition the quantity ®,(x, 8, 6*).
The free part can then be obtained from (4.40) by the expression

[ 00,06V 10,0.0.07) = 100~ 006! + FIF
1 _ __
+ [ a0 (GROE0)0 g — 8010, (39) )
+8,010°0" 07 0°0 00, 0)

Since the action is the only quantity of interest, partial integrations are permitted. Thus
#10%¢p = —0¢p'd¢. Furthermore, applying (4.41) twice yields the relation

which, of course holds similarly for unbarred quantities. This can be used to reformulate
the second line to isolate products of #2602, and also for the third line. These manipulations

together yield

1 1
/ d*0®,(x,0,0%)1®,(2,0,0%) = 5@@* ¢+ FIF +ixe"0,x + 58,@* oao)
= 0,0'0"¢ +ixa"d,x + F'F,
which is exactly the Lagrangian of the free supersymmetric theory, or, more precisely, the

integration kernel of the action. Hence, the complete Wess-Zumino model Lagrangian can

be written as

M M
[— / D1 D, + / 420 (7@@1 n %CI)ICDICI)I) + / 420 (Tpnqm + %(I>H<I>H<I>H> ,

which is in fact now an expression where supersymmetry is manifest, and the last term just

creates the Hermitiean conjugate of the second-to-last term to have a hermitiean action.
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4.6 Supersymmetric gauge theories

All relevant theories in particle physics are actually not of the simple type consisting only
out of scalars and fermions, but are gauge theories. Therefore, to construct the standard
model it is necessary to work with supersymmetric gauge theories. In the following the

superspace formalism is actually less practically useful, so it will not be used.

4.6.1 Supersymmetric Maxwell theory

The simplest gauge theory to construct is a supersymmetric version of Maxwell theory.
The photon is a boson with spin 1. Hence its super-partner, the photino, has to be a
fermion. The photon has on-shell two degrees of freedom, so the photino has to be a Weyl
fermion. Off-shell, however, the photon has three degrees of freedom, corresponding to
the three different magnetic quantum numbers possible. So another auxiliary degree of
freedom is necessary to cancel all fermionic degrees of freedom. This other off-shell bosonic
degree of freedom will be the so-called D field.

Will this be a flavor of quantum electron dynamics then, just with the Dirac electron
replaced by a Weyl one and one field added? The answer to this is a strict no. Since
the supersymmetry transformation just acts on the statistical nature of particles it cannot
change an uncharged photon into a charged photino. Thus, the photino has also to have
zero charge, as does the D boson. The simplest supersymmetric gauge theory is then
the free supersymmetric Maxwell theory, as there are no interactions possible between

uncharged particles. Its form has thus to be of the type
L= —LtE, P iNieraN + LD 4.42

Note that the absence of charge also implies that no covariant derivative can appear.
Hence, the photino A has to be invariant under a gauge transformation, as D has to be.
Thus the gauge dynamics is completely contained in the photon field.

To construct the SUSY transformation for A,, it is necessary that is has to be real,
as A, is a real field. Furthermore, it has to be a Lorentz vector. Finally, since it is an
infinitesimal transformation it has to be at most linear in the transformation parameter

&. The simplest quantity fulfilling these properties is
6eA, = o\ + Mg

As noted, the photino is a gauge scalar. It can therefore not be directly transformed
with the field A,, but a gauge-invariant combination of A, is necessary. The simplest

such quantity is F},,. To absorb the two indices, and at the same time provide the correct
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transformation properties under Lorentz transformation, the SUSY transformations should
be of the form

1
O\ = £0"0"€F,, +ED
55)\T = —%fTa'VU#F;w + {rDa

where the pre-factor has been chosen with hindsight. In principle, it could also be deter-
mined a-posterior, provided that otherwise these simplest forms work. The terms contain-
ing the D field have been added in analogy with the Wess-Zumino model. Finally, the
SUSY transformation for the D-boson has to vanish on-shell, and thus should be propor-
tional to the equations of motion of the other fields. Furthermore, it is a real field, and
thus its transformation rule has to respect this, similarly as for the photon. In principle,
its transformation could depend on the equations of motions of both the photon and the
photino. However, inspired by the properties of the F' boson in the Wess-Zumino model
the ansatz is one depending only on the equations of motion of the photino, which is indeed
sufficient. The transformation rule such constructed is

6D = —i(£'5 9\ — 9, \T516),

which has all of the required properties.

It remains to demonstrate that these are the correct transformation rules and that
the theory is supersymmetric. Since ¢ is taken to be infinitesimal and Grassmann, it is
sufficient to evaluate the transformations once more only up to an order linear in £.

The transformation of the photon term yields

1 v 1 v v 1 v
_Z5£(FWFH ) - —Z(((&FW)F“ + FW((SSFu )) - _§FW5£FH

1
= —§F’““’(0#(5§A1, —0,0¢A,) = —F,,0"'5: A" = —FW(?“(fT&”)\ + Aav¢),
where the antisymmetry of F),, has been used. The only term which can cancel this
is the one part from the transformation of the spinors being proportional to F,. This

contribution is
ST (INTGHD,N) = (8NGO + N30, (3eN)
1
= 3 (61570 F,, 579\ + (9,\1)aP "5 ¢F,,,) .

The structure of this term is already quite similar, but the product of three os is different.
However, since the ¢ are Pauli matrices, it is always possible to rewrite them in terms of
single ones,

Ghova? = g"'aP — g'eY + g"Pat — i G,, (4.43)
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where € is totally antisymmetric. This simplifies the expression at lot. The contraction

g""' F,,, vanishes, since g is symmetric and F},, is antisymmetric. Because
F,0,A = =X(0,0,A, — 0,0,A,),

this expression is symmetric in two indices. Thus any contraction with the e-tensor also

vanishes. Thus, the expression reduces to

ENF(=g""a" + ¢ )I\ + (9,A1) (975" — g"P5")EF
= —2F, &G 0"\ + 2(0"\N)G" F,,, = 2F,, (76" 0"\ + O*\TG7¢).

This precisely cancels the contribution from the photon transformation, when combined
with the factor 1/2.

The expressions involving D are simpler. The contribution from the photino term is
¢ (iAT5"9,\) = iDEG"O,\ — i0,AT6+¢D,
which cancels against the contribution from the D term
1
55502 = Do¢D = —iD('6"9,\ — O \TGHE).

Thus the Lagrangian (4.42) describes indeed a supersymmetric theory, consisting of the
non-interacting photon, the photino, and the D-boson.
Of course, it would once more be possible to construct the theory just from the D-

component of a super-vector. This will not be done here.

4.6.2 Supersymmetric Yang-Mills theory

A much more interesting theory will be the supersymmetric version of the non-Abelian
gauge theory, again neglecting the matter part. The first thing to do is to count again
degrees of freedom. The gauge field is in the adjoint representation. For SU(N) as a
gauge group there are therefore N2 — 1 independent gauge fields. On-shell, this has to be
canceled by exactly the same number of fermionic degrees of freedom, so the same number
of fermions, called gauginos. Quarks or electrons are in the fundamental representation of
the gauge group, and thus there are a different number, e. g. N for SU(N). This cannot
match, and the super-partners of the gauge fields, the gauginos, have therefore to be also
in the adjoint representation of the gauge group. Therefore, they are completely different
from ordinary matter fields like quarks or leptons. Hence, for each field in the standard

model below it will be necessary to introduce an independent superpartner.
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Of course, to close the SUSY algebra also off-shell, it will again be necessary to intro-
duce additional scalars. However, also these have to be in the adjoint representation of
the gauge group. In this case, it is useful to write the Lagrangian explicitly in the index

form. This yields the Lagrangian

]' N = a 1 a
L = —ZFgVF;”+zAgaﬂDubAb+§D D,
Fi, = 0,AL—0,A% —ef*™ AL A
DY = 670, +ef*™ AL, (4.44)

where %€ are the structure constants of the gauge group and Dzb is the covariant deriva-
tive in the adjoint representation. The gauge bosons transform in the usual way, but the
gaugino and the D-boson transform under gauge transformations in the adjoint represen-
tation. I. e., they transform like the gauge field, except without the inhomogeneous term
as gA\g~!, when written as algebra elements. Thus, even the D? term is gauge invariant,
as no derivatives are involved.
Making the ansatz
G Al = £15,A" + \15,¢

? —UV a a
0Nt = 50“0 §F,, +&D
a /’/ —V a a
SN = —550 o' Fi, +¢'D
5D = —i(E'e"DPN — DI ATGH€)
as the most simple generalization of the Abelian case is actually working. The reason for

this is simple: After expressing everything in components, all quantities (anti-)commute.

Furthermore, under partial integration
DZb)\bFuua — (8M)‘a + efabcAZAb)Fuya — _)\aauF/wa - efbacAZAbFlwa
= =\, M — ef“bcA;/\“F“”b = —)\“Dsz“”b. (4.45)
Thus, all manipulations performed in section 4.6.1 can be performed equally well in case
of the non-Abelian theory. Therefore, only those terms which appear in addition to the
Abelian case have to be checked.
The most simple is the modification of the D-term by the appearance of the covariant

derivative. These terms trivially cancel with the corresponding gaugino term just as in

the Abelian case, as there also a covariant derivative appears
0 (IANG* D N,) = iD.E'e" DA, — iDWPALGED,

1
5§§D2 = Da(;gDa = _iDa(gTa-MDzb/\b _ Dzb)\z(?“f)-
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The next contribution stems from the appearance of the covariant derivative in the gaugino
term. The contribution form the gauge boson-gaugino coupling cancels with the contribu-

tion from the self-coupling of the gauge bosons. This contribution alone gives

L SEAFM 4 82 (il ue fr ALN,)

2 M
abc
= L B (€15 + N0 A5 + AL, + Na"E)
efabc s - . i - .
5 ———F"f (5 0,050, ANy — N\, 0,0,0,EAY) (4.46)

The last expression can be reformulated using (4.43). Since the following proceeds identi-
cally for the contributions proportional to A and A', only the former will be investigated

explicitly. Applying therefore (4.43) to the third contribution yields

fabc
2

The first term yields zero, as the trace of F' vanishes. The contribution with the e-

FPUST (gpaau gpu50 + ga,ua-p - iepamia-é)/\bAg'

tensor vanishes, as f®[FP? A* is symmetric in the three Lorentz indices, and therefore
also vanishes upon contraction with the e-tensor, as an explicit calculation shows. The
remaining two terms then exactly cancel the two terms from the transformation of Fj,
just by relabeling the Lorentz indices, and shifting them appropriately up and down.
Therefore, also this contribution is not violating supersymmetry.

Then, only the term from the transformation of the gauge boson in the covariant

derivative coupling to the gauginos remains. Its transformation is
S (IA G e [P ARN) = e f N o™ (£, + AL, &),

This contribution contains A cubed, and can therefore not be canceled by any other con-

tribution. However, rewriting the first term in explicit index notation yields

abc
Z€f Aza ij >\b.7 )\ck Uuklfl

The expression ;0uki 18 symmetric in the first and third index for each term individually,
and the expression AJ, A% is antisymmetric in exact these two indices. Therefore, this
contribution drops out, and similarly for the second contribution.

Thus, all in all this theory is supersymmetric and therefore the supersymmetric gen-

eralization of Yang-Mills theory, called often super-Yang-Mills theory, or SYM, for short.

4.6.3 Supersymmetric QED

The Abelian gauge theory contained only an uncharged fermion, the photino. To obtain a

supersymmetric version of QED a U(1)-charged fermion is necessary. Since this cannot be
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introduced into the vector supermultiplet of the photon, the most direct way to introduce it
is by the addition of a chiral supermultiplet which will be coupled covariantly to the vector
supermultiplet. This introduces only a Majorana electron, but this will be sufficient for
the beginning. Of course, compensating scalar fields to make the theory supersymmetric
will be required. Hence, at least a combination of supersymmetric Maxwell theory and a
Wess-Zumino theory is required.

The minimally coupled version is

L= (D,¢)'D"¢ +ix'a"D,x + F'F — iFWF’“’ + NGO\ + %DZ. (4.47)
This theory contains now the photon, its super-partner the photino, the (Majorana) elec-
tron, its super-partner the selectron, and the auxiliary bosons F' and D. In essence, this
Lagrangian is the sum of the non-interacting Wess-Zumino model and the supersymmetric
Abelian gauge theory, where in the former the derivatives have been replaced by gauge
covariant derivatives. This implies that all newly added fields, ¢, x, and F', are charged,
and transform under gauge transformations. Only the photino and the D-boson remain
uncharged.
Of course, also the derivatives appearing in the supersymmetry transformations of
electron, the selectron, and the F-boson have to be replaced by their covariant counter-

parts. Thus the minimal set of rules for the matter sector reads

bep = &x
dex = 0"02"D,o+ EF
6cF = —i'a"D,x

while those for the gauge sector are left unchanged

A, = 073\ + A\5,0

SoA = %aﬂa—veFWMD
6D = —i(0'6"9,\ — 0, \1"0)

However, even with (4.45), it can then be shown that this theory is not yet supersym-
metric under these transformation. The reason is that supersymmetry requires additional
interactions as will be discussed below. The Lagrangian (4.47) is indeed, in contrast to
ordinary QED, not the most general® one which can be written with this field content

and which is supersymmetric, gauge-invariant, and renormalizable. It is possible to add

8Here, and in the following, Wess-Zumino-like couplings, which are in fact gauge-invariant and super-
symmetric, will be ignored.
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additional interactions which do have all of these properties. However, this will require
not only a fixed constant of proportionality between & and #, but also a minor change in
the transformation of the F' field.

Further interactions between the matter and the gauge sector have to be gauge-
invariant, and will also be chosen to be perturbatively renormalizable. These two require-
ments already limit the number of possible terms severely to the interaction terms ¢y,
AxTp, and ¢T¢D. All other terms are either not gauge-invariant, not Lorentz-invariant
or not at the same time (superficially) renormalizable, like terms involving F'. Hence the

interaction Lagrangian takes the form
A(@'xA + ATxT¢) + BoloD.

Checking all terms for their invariance under supersymmetry transformations is a long
and tedious exercise, which will not be performed here. Only those elements will be
presented, which influence either the values of A and B, or modify the supersymmetry
transformations themselves.

The first step is to check all contributions from the transformed part of the interaction
Lagrangian which are linear in the D-field. These will occur either from transformations
of the photino A or from the term proportional to B when either of the other fields are

transformed. This yields
A("X0D +6'x" Do) + B(x'€'oD + ¢'exD).

No other contribution in the Lagrangian will produce such terms which couple the matter

fields to the D-boson. Thus, these have to cancel by themselves. This is only possible if
Al = —B¢, (4.48)

yielding already a constraint for the transformation parameters. Thus, in contrast to the
case when two gauge sectors are coupled, coupling two supersymmetric sectors cannot be
done independently. The reason is again that both supersymmetry transformations are
tied to the momentum transformation, thus not permitting to leave them independent.
The transformation of the ¢-fields in the A-term will yield terms having only fermionic

degrees of freedom,
ATEN O + (XN (6x)).-
The only other term which can generate such a combination of the electron and the photino

field stems from the photon-electron coupling term, which reads

—qXT6”X(59Au) = —qﬂ&“x(m@)\ + )\Tﬁ,ﬁ).
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This has the same field content as the previous contribution, when the relation between &

and @ is used, but not the same Lorentz structure. To recast the expression, the identity
(xX'7*X) (A15.0) = X505, Xe N 50 peabl
= XaXeAobaolhyOuea = —2X5XoAe0adacOba = 2(x'N1) (x0),

where the involved identity for the o-matrices follows from direct evaluation, can be used.

Evaluating the previous expression then yields

—2¢0((x"0") (xX) + (XA (x0))-
This implies the relation
A€ = 2¢q0. (4.49)
Together with the condition (4.48) this implies that A and B, and 6 and ¢ have to be

proportional to each other, the constant of proportionality involving the charge. However,
a relative factor is still permitted, and is required to be fixed. As the covariant derivative
already provided one constraint, it is not surprising that the selectron-photon coupling
term provides another one. Taking the supersymmetry transformation of the interaction

term between two selectrons and one photon yields, when taking only the transformation
of the photon field,

—iq(¢"(9,0)30 A" — (8,,0) d5pAM)
= iq((0,0")p(01G" N + \'6"0) — ¢'(0,0) (075" \ + AT5+0)). (4.50)

Terms with such a contribution can also be generated by both interaction terms, if in the

A case the electron and in the B case the D-boson is transformed. Specifically,
Ai(¢ (0”026 0,0) X + N1 (9,01 020" 9) — iB(¢Tp (0759, A — (9,AT)5"0)).
To simplify this expression, the relation (4.25) can be used in both A-terms, yielding
Ai(¢1(0,0)€T" X = (9,8N) oA 5"€) — iB(9')(0'5"9 A — (9,AT)5"9)).
Integrating further in the B-term by parts yields
Ai(¢"(0,0)ETT N — (8,07 )9AT6"€) — iB(((9,0") 0 + 67(D,0))017" A
—((0u0N)¢ + ¢'(,9)) A T5"0). (4.51)

Now, in both contributions, (4.50) and (4.51), terms appear proportional to A and to Af
of the same structure. So both will be vanishing independently, if the pre-factors combine

in the same way. The prefactor of A is

iq((0,0")¢ — ¢10,0)0, + Aid' (0,0)&a + iB((0,0")d + 619,0)0,.
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This will vanish, if the conditions
qt, + B0, = 0
—q0, + A&y + Bb, = 0
are met. Together with the condition (4.48) and (4.49), this yields the result

—-q
1

V2

Actually, this result is not unique, and it would be possible to replace A by —A and 6 by

> T =
I

€.

—0, without problems. So this can be freely chosen, and the conventional choice is the
one adopted here.

With these choices, all variations performed will be either total derivatives or will cancel
each other. However, one contribution is not working out, which is the one involving the

F-contribution from the variation of the electron in the A-term. It yields
—V2q(¢TENF + MetFTg) (4.52)

Since there is no other term available which contains both the selectron and the photino,
it is not possible to cancel this contribution. The only possibility is to modify the trans-

formation rule for the F-boson as
0 F = =il D, x + V2qAT€T .

The only consequence of this modification is that the FFT term transforms, restricted to

the photino contributions, as
O (FF') = V2q(¢'¢AF + AT Fg),

canceling exactly the offending contribution.

Thus, finally the Lagrangian for supersymmetric QED reads
1 1
L = (D,®)'D"¢+ix'e"D,x + F'F — 1 F "+ iNGION + §D2
—V24((¢"X)A + AT (xT9)) — a¢ToD.

A number of remarks are in order. First, though two essentially independent sectors have
been coupled, this lead not to a product structure with two independent supersymmetry

transformations, but only to one common transformation. The deeper reason for this is
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the appearance of the momentum operator in both supersymmetry algebras, inevitably
coupling both. The second is that the combination of gauge symmetry and supersymmetry
required the introduction of interaction terms between both sectors to yield a supersym-
metric theory. This interaction is so strongly constrained that its structure is essentially
unique, and besides no new coupling constants appear compared to the two original theo-
ries. Again, supersymmetry is tightly constraining. Third, the equation of motion for the
D-boson yields D = q¢'¢. As a consequence, integrating out the D-boson lets a quadratic
interaction term —q?/2(¢'¢)? appear. This is a necessary ingredient for the possibility of
a Brout-Englert-Higgs effect, driven by a selectron condensation. Thus, even the simplest
non-trivial supersymmetric gauge-theory provides much more possibilities than ordinary
QED.

It should be noted that the supersymmetry transformation derived here is not unique.
It is possible to write down a set of transformations which only involve ordinary derivatives
instead of covariant derivatives, and again a slightly modified transformation for the F'
boson. Both formulations yield identically the same physical results, and especially the
Lagrangian is the same. However, for the purpose of generalizing to theories like super-
gravity, the present formalism, called the de Wit-Freedman formalism, is more useful. The
difference between both sets of transformations is essentially only how gauge conditions
transform under supersymmetry transformations. In the formalism using only ordinary
derivatives, the gauge conditions are not transformed covariantly, and therefore any su-
persymmetry transformation must be accompanied by a gauge transformation to also
maintain the gauge condition intact. Since gauge transformation do not change physics,

it is thus rather a matter of convenience from a physical perspective.

4.6.4 Supersymmetric QCD

Again, having the standard model in mind, it is necessary to generalize supersymmetric
QED to a non-Abelian version, the simplest of which is supersymmetric QCD. However,
in the following the gauge group will not be made explicit, and thus the results are valid
for any (semi-)simple Lie group as gauge group.

Since in QCD, and in the standard model in general, the fermions are in the fundamen-
tal representation, while the gauge fields are in the adjoint representation, it is not possible
to promote somehow the matter fields to the super partners of the gauge bosons, despite
these being charged in the supersymmetric version of Yang-Mills theory. It is therefore
again necessary to introduce the matter fields as independent fields, together with their
superpartners, and couple them minimally to the gauge fields. Therefore, besides the

gauge-fields, the gluons, their superpartner, the gluinos, the D-bosons, there will be the
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quarks, their superpartners, the squarks, and the F-bosons.

Fortunately, the results of supersymmetric QED, together with those for supersym-
metric Yang-Mills theory, can be generalized. It is thus possible to write down the trans-
formation rules and the Lagrangian immediately. The only item which requires some
more investigation are couplings between the fundamental sector and the adjoint sector.
This applies in particular to the appearing quark-gluino-squark couplings. In general,
uncontracted indices would imply a gauge-variant term, which may not appear in the
Lagrangian. To obtain appropriate contractions, it is, e. g., necessary to write instead of
gbjgbiDO‘ the terms

¢o'D¢ = ¢'1° D¢ = §}(r° D)5,
where the index 7 takes values in the fundamental representation, while the index a takes
values in the adjoint representation. Such combinations are gauge-invariant, when traced.
Of course, this has also to be applied to the coupling term appearing in the transformation

rule for the F-boson. Taking thus the non-Abelian versions of the transformation rules as

0 = &X'

dex' = "o DI + EF

0 F' = —itla" DT — V2q¢ TN TE
e’ 1 — \a at —

0y = V2 (£'7. 2% + A15,.8)

SN = ——— (o"G"EF?, + 2¢D)

2v/2

o Z = « « e
5D = E (gTUuD#ﬁ)\ﬂ _ D#'B)\'BTU“f)

it is possible to show that the non-Abelian generalization can be constructed just by
covariantizing all derivatives, and replacing coupling terms by gauge-invariant ones. This
yields
£ = —Lpepmyixetarpesys 1 Lpepe
T Ttwle TR
+D}¢; Dl ¢l + Xlio" Dy x; + F F;
1 1 1
+MoF; — §MXin' + §yijk¢i¢ij — §yijk¢inXk + h.c.
—V2¢(6"A + Ax19) — go'oD, (4.53)

where it should be noted that inter-representation couplings equal, e. g.,
1 _ ta ya _ T _a aya
O'XA = PITXAY = iTinj)\a
¢'oD = ir°¢D* = ¢lrig,D".
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Note that the coupling constants y acquired gauge indices in the fundamental represen-
tation. Similar to the Higgs-fermion coupling in the standard model, relations between
the different elements of y ensure gauge invariance of these couplings, and these could be
determined by explicit evaluation. Note further that the interaction between the matter
sector in the fundamental representation and the gauge-sector in the adjoint representa-
tion is completely fixed by gauge symmetry and supersymmetry, and there is no room
left for any other interaction. In particular, despite the fact that six fields interact with
altogether 11 interaction vertices, there are only three independent parameters, the mass
parameter M, the Yukawa coupling y, which is constrained by gauge symmetry, and the
gauge-coupling e. E. g., the mixed term appearing from the supersymmetry transfor-
mation of the F' coupling in the Yukawa term vanishes due to the antisymmetry of the
y-matrix, which is necessary to ensure gauge invariance.

It is worthwhile to evaluate the terms including a D explicitly after using its equation

of motion, which reads
oL
— =D —epI1% =0,
5Dl P'1%
and similarly for F'. After integrating out both the D field and F' field, this yields the

total self-interaction (or potential V') of the ¢ field,

1
V = MP§T)+ 5 (017°0)° — Yijetiniditrié] Ol

This potential is positive definite, and all of the couplings are uniquely defined. Thus,
in contrast to the case of the standard model, the Higgs-potential, as this is the role
the squark plays, is completely determined due to supersymmetry. This puts, at least
perturbatively, strong constraints on the Higgs mass in the supersymmetric version of the
standard model. This will be discussed in more detail later.

One remark should be added. It is in principle possible to add to the Lagrangian (4.53)
a further term proportional to O€,, - FP7 F!", with 6 a new coupling constant, a so-called
topological term. Due to the antisymmetric tensor, any contribution of such a term drops
out in perturbation theory, and it can only contribute beyond perturbation theory. It
indeed does so, and plays an important role in topics like chiral symmetry breaking and
anomalies. This is already true in the non-supersymmetric version. However, in nature it
is experimentally known that for any such term in the standard model the parameter 6 is
very small, and only an upper bound of about 107° is known.

However, from the point of view of supersymmetry, this term is conceptually interest-
ing. After rescaling the gauge fields with the coupling constant g, it is possible to combine
this term with the term F% F* in such a way as that the whole theory now depends

urt a

entirely on the complex combination G = ¢ + 6, the holomorphic coupling. Unbroken
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supersymmetry then ensures that the partition function, and thus any quantity, is holomor-
phic in G, which permits many highly non-trivial statements, also in the non-perturbative

domain. However, the details of this are beyond the scope of this lecture.

4.7 Gauge theories with N > 1

Gauge theories with more than one supercharge are only of very limited phenomenological
use in the context of particle physics, as for intact supersymmetry parity cannot be broken;
left-handed fermions and right-handed fermions are treated on equal footing. Since the
weak interactions do break parity, this is at odds with experiment. However, they are rele-
vant for several reasons. One is that in some extensions of the standard model it is possible
to start without parity breaking, and such a theory could be supersymmetrized. However,
these are rather involved constructions, which do not appear very promising. Second, the-
ories with larger supersymmetries are more constrained, which helps in obtaining results.
They therefore can serve as better accessible, simplified models of ordinary theories. Third,
gauge theories with extended supersymmetries play an important role in the context of
string theory.

The simplest extension is the N' = 2 supersymmetric version of Yang-Mills theory.
This requires the combination of a N’ = 1 gauge supermultiplet with a chiral multiplet.
However, because now the chiral multiplet and the gauge multiplet is related by the
extended supersymmetry, also the members of the chiral multiplet must be in the adjoint
representation, in contrast to the case of super QCD. Hence, there are the gauge field, the
gauginos and the corresponding D field, as well as a complex adjoint scalar ¢, a Majorana
fermion 1, and the corresponding complex F' fields.

The Lagrangian of this theory for a simple Lie-algebra is’

1-
L = —(Duo)'D 6 — S, D" + F'F = 2V29 [ " ROTYe]) + ig [ G} e D
1 2 1 a v 15 926 v a
+§D — ZF'U‘F# — §>\’YMD“>\ + @EMVPUFAL Fpa'

The theory has no free parameters, besides the gauge coupling ¢ and the 6 parameter.
The two supersymmetry transformations differ by the way on which supermultiplets they
act. One acts on the conventional two sets, but the other acts on the mixed sets (¢, A, F')
and (A, —1, D), though with the same supersymmetry transformation. Furthermore, this

theory has a SU(2) R-symmetry which transforms between the two sets.

9A term —D has to be added, if the gauge group is U(1), a case which will not be considered here.
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This theory supports a Higgs effect, and indeed in this case the masses of the particles
turn out to be unaffected by radiative corrections. I. e., the tree-level masses are already
exact, and saturate the BPS bound. This will not be detailed further here, but should
give an idea of how strongly the dynamics are constrained by supersymmetry.

The only further non-trivial extension possible without adding gravity is the N = 4
case. This is the combination of two N = 2 theories, which therefore has an SU(4) R-
symmetry, permitting the fields to give different supersymmetry transformations. This
theory is somewhat involved. It contains besides the gauge supermultiplet a left-chiral
supermultiplet with complex fields 1) and ¢, and two more left-chiral, denoted by primes
', multiplets and their complex conjugates. The lengthy Lagrangian, after integrating out

the auxiliary fields for brevity, reads

1- 1-
L = —(Du)'D 6 — (Dud) D" — (Do) D¢ — by, D' — S, Do
1- 1-
=0 D" = A, DN — 2V29 fR(Gatby ) — 2V 29 f RN Ye})
—&bem%ww”¢0—2¢bfm%wW)¢J+2¢hfm%w At

2

abe " z 1 a v g 8 v o
+2\/§gf b §R(wa)\a(ﬁc ) 4F/JJ/F(¢ 64 QEMV/)O'FN Fp

g2 F L2 (Gad + o)) (0L + bt d,T) + f“”cwm oo

2
~ LI sloesho. + 207 |10l

Though it does not look like it, the potential in the scalars can be symmetrized, albeit
of the expense of becoming even more lengthy. However, it is possible to rewrite the
Lagrangian in a much shorter form by exploiting the SU(4) R symmetry. Collecting for
each color a the right-handed fermions in an SU(4) vector ¥ = (¢g, Ag, ¥k, V%) and the

scalars into an antisymmetric SU(4) tensor

0 ¢* (z)// _ ¢/

d = :z” —25'* _;” _zT (4.54)
¢ o1 -6 0
separately, this yields
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which is more compact, but treats the gaugino not explicitly different from the matter
particles. However, the SU(4) R-parity is manifest. In both cases, N'= 2 and N/ = 4, the
proof of the supersymmetry is rather lengthy, and will be skipped here.

For N’ = 4, the potential is a sum of squares, and thus the vacuum energy is always
zero. Hence, supersymmetry remains unbroken in this theory. Furthermore, there exists
evidence that there is an exact mapping of the A' = 4 theory at a given coupling to another
N = 4 theory with the same structure but with inverse coupling, thus linking a strongly
interacting theory and a weakly interacting theory. This is a so-called duality, which are

quite useful, if truly existing.

4.8 The [-function of super-Yang-Mills theory

A remarkable fact, stated here without proof, of super-Yang-Mills theories is that for
vanishing 6 the only appearing infinity is in the one-loop correction to the S-function. As

a consequence, the one-loop form is exact, and given by

3
é o, 1, 1
N G N e
Alg) 47r2(12 1T T2
Cl5cd — fabCfabd
Cfo.g = Z trror?
fermions

C50ca = Z trrere,
scalars
i. e. determined by the representations of the various involved particles. Most notably,
for the A/ = 4 case the requirements on the involved fields balance the C; such that the
[S-function vanishes. Hence, this theory is finite, i. e. no renormalization is necessary.
Moreover, as the § function vanishes, the coupling does not depend on the energy scale.
As a consequence, the theory is scale-free, and hence conformal. But this also means that
it lacks any kind of observables, and has thus no dynamics. However, such a behavior
makes the possibility of a duality also more plausible.

It should be noted that many supersymmetric theories beyond super-Yang-Mills theory
exhibit similar features, i. e. perturbative g-functions which contain only a finite number
of terms. In some rare cases, supersymmetry provides strong enough constraints to show
that this is true even non-perturbatively. However, such theories, which include N = 4
super-Yang-Mills theory, usually have such strict constrains that they exhibit little or no

dynamics.
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4.9 Supersymmetry breaking

All of the theories investigated so far have manifest supersymmetry. As a consequence, as
it was shown generally, the masses of the particles and the sparticles have to be degenerate.
This is not what is observed in nature: There is no scalar particle with unit electric charge
and the mass of the electron in nature. This is an experimentally very well established fact.
Nor has any superpartner for any known particle been found so far. Indeed, if they exist,
most of them need to be extremely heavy, significantly above 100 GeV in mass. Otherwise
the equal coupling strength to the known forces would have made them observable in
experiments long ago. Supersymmetry can therefore not be a symmetry of nature. It is
therefore necessary to break supersymmetry in some way.

For the breaking of symmetries two prominent mechanisms are available in quantum
field theories. A breaking can either be by explicit breaking or by spontaneous breaking.
There is also the breaking by quantum anomalies in the quantization process. However,
so far no really attractive, consistent, and experimentally relevant mechanisms to break
supersymmetry by anomalies has been found. This option will therefore not be followed
here.

Explicit breaking refers to the case when some term is added to the Lagrangian which
spoils the symmetry of the theory present without this term. A tree-level mass term for
quarks in QCD is such a case, where chiral symmetry is broken by this. If the term is
superrenormalizable, like a mass-term, this is not affecting the high-energy properties of
an asymptotically free theory, and the breaking is said to be soft. However, low-energy
properties may be qualitatively different. If the offending term is small compared to all
other scales of the theory, its effect is possibly weak, and the symmetry is said to be broken
mildly only. Relations due to the original symmetry may therefore be still approximately
valid. However, since interacting quantum field theories are non-linear by nature, there is
no guarantee for this.

Spontaneous breaking appears when the Lagrangian is invariant under a symmetry
transformation, but the ground-state is not!?. E. g., the magnetization of a ferromagnet
with no external magnetic field is an example of such a case. In field theory, QCD with
massless fermions is another example. Also there, the chiral symmetry is spontaneously
broken, yielding (approximately) the known masses of the hadrons.

Unfortunately, adding an explicit breaking is not always possible. An example is the

so-called breaking of electroweak gauge symmetry in the standard model. In this case, any

10There are some subtleties involved here what is precisely meant by ground-state in a quantum field
theory. This subtleties are often irrelevant, especially in the following discussion. Hence, they will be

glossed over.
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explicit breaking term will spoil renormalizability'!. Also, explicit breaking terms have in
general less attractive properties, varying from theory to theory. Therefore, spontaneous
breaking is more desirable. However, any spontaneous mechanism for supersymmetry
breaking known so far is not consistent with the requirements of experiments. Therefore,
it is required to introduce explicit breaking of supersymmetry. Unfortunately, no simple
possibility is known to obtain acceptable results, and therefore many of the attractive
properties of supersymmetry are lost. In particular, almost a hundred additional coupling
constants and parameters will be necessary even for the simplest supersymmetric extension
of the standard model. This will be detailed in section 4.10. In this section, only the

underlying mechanisms will be discussed.

4.9.1 Dynamical breaking

Spontaneous breaking of supersymmetry requires that some quantity w’, which is not
invariant under supersymmetry transformations, dw’ # 0, must develop a vacuum expec-

tation value!?,

(0[]0} # 0.

Since this implies that w’ belongs to a supermultiplet of some kind, there exists a field w
such that

W =1[Q,w].
This implies
(0]w'[0) = {0[i[Q, w][0) = (0}iQuw — iwQ|0) # 0.

Since @ is hermitian, this implies that Q|0) # 0, as otherwise this expectation value would
vanish. Conversely, this implies that if supersymmetry is unbroken, the vacuum state is
uncharged with respect to supersymmetry, @|0) = 0. It can be shown that this exhausts
all possibilities.

The implications of this can be obtained when noting that there exist a connection
between supersymmetry generators and the Hamiltonian, and thus the energy. The com-

mutation relations for the @, yield

{Qh@{} =(o"nP,= P+ P
{Q2,Q8} = (0")nP,= Py— P

11 Actually, not superficially, but still.
12There are once more field-theoretically subtleties involved with this statement, which will be glossed

over here.
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Thus the Hamiltonian H = P, is given by

1= (Q0] + Qi + 0l + Qs

Taking the expectation value of H yields

1

(O1H10) = 5 >~ ((Qul0)” + (QL10))°)

a

Hence, the ground-state energy for the case of unbroken supersymmetry is zero, as none
of the right-hand terms can be different from zero, as announced earlier. Since the right-
hand side is a sum of squares it also follows that in case of spontaneous supersymmetry
breaking the vacuum energy is not zero, but is larger than zero.

To detect breaking, it is necessary to specify the object w’, which breaks the supersym-
metry. In principle, this can also be a composite operator. Such mechanisms are known,
e. g., in QCD. Here, it will be restricted to the case where w’ is an elementary field. The
situation in the non-gauge case and the gauge case are a little different, and will be treated

in turn in the following.

4.9.1.1 The O’Raifeartaigh model

The O’Raifeartaigh model is a non-gauge model, essentially an extension of the Wess-
Zumino model, which can exhibit spontaneous supersymmetry breaking. To study the
possible elementary fields for developing a vacuum expectation value it is helpful to recon-

sider the transformations under supersymmetry in the Wess-Zumino model

bep =1i[€Q, 9] = &x
dex =1il6Q,x] = —ic"i0x" 0,0 + EF
6F =il€Q,F]= —i'd"0,x.

Phenomenologically, so far Lorentz-symmetry-respecting models are most interesting, and
thus any condensates may not break this symmetry. This rules out already x, d,x and
0,0, as all of these have a definite direction. Hence, the only field remaining is the scalar
F field. The value of F'is fixed by its equation of motion as

SWT

1 ]

The contribution of F' to the Hamiltonian, and thus the interaction energy, is given by
FF*. This is a positive definite contribution. Its lowest value is achieved, as can be seen

from (4.55), exactly when all ¢-fields vanish. In this case, the contribution of F' to the
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ground-state energy is zero, and is thus not able to break supersymmetry. It is necessary
to force I’ to a value different from zero. For this purpose, it is actually insufficient to
just add a constant term to (4.55). Though this formally shifts F' to a value different from
zero for ¢ = 0, it is always possible to shift it back if ¢ is replaced by a non-zero, constant
value. A non-zero, constant value for all the fields will not produce kinetic energy. So, the
only other contribution could come from the Yukawa coupling to the fermions. However,
it is still permitted to set these to zero. Thus, the ground state energy becomes once more
zero, and supersymmetry is intact, despite the non-vanishing value of F' and ¢. This is in
fact not a contradiction: The shift in the ¢-field can then be taken to be a renormalization
of the field, and the resulting theory is in fact supersymmetric.

It thus requires a more complicated approach. However, including a linear term
is already a good possibility, but it turns out to be impossible with just one flavor.
O’Raifeartaigh showed that it is possible, if there are at least three flavors. The parameters

of the superpotential are then chosen as

A = —9M25z‘2
m
M;; = 3(51'15]'3 + di3051)

Yijk = %(5i25j35k3 + 6:30,20k3 + 0i30;30k2),

with g, m, and M real and positive, yielding a superpotential

W = maer1ds + goa(d5 — M?).

As the Wess-Zumino-Lagrangian is supersymmetric for any form of the superpotential, this
choice is not breaking supersymmetry explicitly. However, even at tree-level the minimum
energy is non-zero, thus supersymmetry is spontaneously broken. This can be seen as

follows. The equations of motion for the three F) fields take the form

Ff = —mgo3
Fj = —g(¢5— M%)
F:sT = —mo1 — 290203,

and correspondingly for the F;. From these equations of motion it follows that, at least
at tree-level, either the field Fi or the field F5; will have a vacuum expectation value. This
cannot be shifted away by a wave-function renormalization of ¢3, since anything shifting
F} to zero will shift Fy to a non-zero value. Putting it differently, these equations of
motions force F; and F5 to have different values. Since the contributions of the F; to the
vacuum energy is a sum of squares of type FiFiT, at least the contribution from one flavor

is always non-zero.
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The contribution of the Yukawa term may at first seem to be a tempting possibility
to change the situation. However, this would require that the field y acquires a vacuum
expectation value. This would require that the vacuum has to have a non-zero spinor com-
ponent, as then (0|y;|0) would be non-zero. This would clearly break Lorentz invariance,
and is thus not admissible.

It therefore remains to minimize the potential energy with respect to the fields ¢; and

F;. Writing the potential explicitly yields

V =Y " FF = m’|gs)” + ¢°|¢5 — M** + [mon + 29606 *. (4.56)

This has to be minimal for the vacuum state. Since ¢; can always be chosen such that
the third term vanishes, it remains to check the first two terms. Rewriting the expression

in terms of the real part A and the imaginary part B of ¢3 yields the expression
V — 92M4 + (mQ _ 292M2>A2 4 (mQ +292M2)B2 +g4(142 _}_32)2'

If the first expression is positive, i. e. m? > 2¢g>M?, the lowest values of V is achieved for
A = B = 0. Otherwise, a solution with A and B non-zero exists. This provides little
qualitative new results for the present purpose, and so only the first case will be treated.
In this case, ¢3 = 0, and consequently thus ¢; = 0. The value of ¢, is not constrained
at all, and ¢9 could take, in principle, any value. Therefore, it is called a flat direction of
the potential. Under certain circumstances, this may pose a problem in the form of an
instability, but this is of no interest here.

With this result, F} acquires a vacuum expectation value of size gM?, and the vacuum
energy is the positive value g2 M*. Since M has the dimension of mass, this vacuum energy
at the same time gives the scale of supersymmetry breaking. If ¢ would be of order one,
M =1 TeV would, e. g., signal a breaking of supersymmetry at the scale 1 TeV, which
would be accessible at the LHC.

It is noteworthy that

0 # (0[[@, x][0) = > _({0|Q[n){n|x|0) — (Olx|n)(n|Q0)).
Since ) and x are both fermionic, this implies that there exists a state |n), which must
also be fermionic, which couples to the vacuum by the generator () such that (0|Q|n) is
non-zero. Since it couples in such a way to the vacuum, it can be shown that it is massless.
This is the SUSY version of the Goldstone theorem, which differs by the appearance of
a massless fermionic mode from the conventional one. That is, of course, due to the fact

that the supercharge is fermionic.
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Since the mass-matrix of the superpotential has only entries in the (13)-submatrix, this
implies that the flavor 2 fermion is massless, and can take this role. Due to the relation to
the Goldstone theorem, it is called goldstino, though there is no Goldstone boson in the
theory. Consequently, also the boson ¢5 is not having a mass. This correlates to the fact
that ¢9 is the flat direction in the superpotential: Moving in this direction is not costing

any energy, similar to a Goldstone excitation in conventional theories.

That supersymmetry is indeed broken can also be seen explicitly by the masses of the
remaining two flavors. By diagonalizing the mass-term for the other two fermion flavors,
it is directly obtained that there exists two linear combinations, both with masses m. The

mass-terms for the scalars are obtained by taking the quadratic terms of the potential
(4.56), yielding

m2padl + gM2 (63 + o) + mP¢1¢].

This confirms the masslessness of the ¢5 boson. Furthermore, real and imaginary part of
the flavor 1 have mass m?2. The flavor 3 has real and imaginary parts with different masses,
m? 4+ gM?. This already implies that the supermultiplets are no longer mass-degenerate,

and supersymmetry is indeed broken.

However, when summing up everything, it turns out that the relation

Z m? = 0+0+m?*+m? +m?+gM*+m? —gM?* = 2 Z mfc = 2(0+m?*+m?) (4.57)

scalars fermions

holds. Note that the complex scalars correspond to two scalar particles, while each Weyl
fermion represents one particle with two different spin orientation. It turns out that
this relations holds generally for this (F-type) spontaneous breaking of supersymmetry.
This implies that the masses of the particles and their super-partners have to be quite
similar. As a consequence, such a mechanism is not suitable for the standard model, since
otherwise already super-partners would have been observed!. More fundamentally, when
constructing the minimal supersymmetric standard model, it will turn out that there is
no gauge-invariant scalar field which could play the role of the second flavor in this model.
Since the superpotential has to be gauge-invariant term-by-term, it is thus not possible
to have a linear term in that case in the superpotential, and this type of spontaneous

supersymmetry breaking is not permitted.

13 Adding an additional heavy fourth generation may seem at first sight a tempting possibility to evade
this constraint. However, it can be shown that for the charge structure of the standard model further

constraints exist which forces always at least one super-partner to be light enough to be already detected.
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4.9.1.2 Spontaneous breaking of supersymmetry in gauge theories

Interactions are necessary for a spontaneous breaking of supersymmetry. The simplest
non-trivial case of a gauge theory is that of supersymmetric QED. In the matter sector,
the breaking of supersymmetry can only proceed once more due to a Wess-Zumino-like
interaction, which is not present in supersymmetric QED. Therefore, the field F' cannot
develop a vacuum expectation value, and neither the electron nor the selectron are possible
candidates, due to the arguments in the preceding section. Inspecting the remaining

transformation rules

i[vaAu] = —%(STUM)\—F)\TUHO
Z[§Q7)‘] = _LaﬂaV uué—i_i

Nohed
(§T5#au/\ - (auA)T‘?MQ’

2v/2
, i
il§, D] = 7
then, by the same reasoning as before, suggests that the only field which can provide a
scalar condensate is the D-field. However, the contribution of the D-boson to the potential
is just eD¢'¢, and the equation of motion is D = e¢’¢. Thus, there is no sum of terms,
as in the Wess-Zumino case, which can be exploited to construct a potential which offers
the possibility for supersymmetry breaking.
However, there is another possibility, the addition of the so-called Fayet-Iliopoulos

term. In this case, the D-sector of the Lagrangian is replaced by
1
Lp=M?D+ 502 — gDo' .

The D-field is gauge-invariant, thus this Lagrangian is also still gauge-invariant. Further-
more, the SUSY transformation of D is a total derivative, and thus any linear term in
D is also not spoiling supersymmetry, and this Lagrangian is therefore a perfectly valid
extension of supersymmetric QED. The new equation of motion for D is then

D = —M?+ g6,

yielding the contribution

LM+ ooy (458)

to the Hamiltonian’s potential energy. The sign of g can be selected freely. If g is greater

than zero, then a minimum of this potential energy'* is obtained at |¢| = M/,/g. In this

14Note that the arguments on which fields can acquire such a vacuum expectation values are no longer
valid anymore, since instead of the supersymmetry transformations for this case the gauge transformation
have to be investigated.
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case, the potential energy contribution is zero, and supersymmetry is unbroken. However,
the scalar condensate is equivalent to a Higgs-effect, giving the bosons a mass. But if
g < 0, then the minimum is obtained for (¢) = 0, with a potential energy contribution
which is non-zero, M*/2. Thus, supersymmetry is broken in this case, and the D field
acquires the expectation value —M?2.

As a consequence, the selectron field acquires a mass by its interaction with the D-
field, but the other fields remain massless, in particular the photon, the photino, and
the electron. Thus, the degeneration in the mass spectrum of the matter fields is indeed
broken, signaling consistently the breakdown of supersymmetry. Note that the sum-rule
(4.57) cannot be applied here, as this supersymmetry breaking proceeds by a different
mechanism.

Unfortunately, this mechanism cannot be extended to non-Abelian gauge groups, as
in this case the D field is no longer gauge-invariant, and neither is its supersymmetry
transformation anymore a total derivative. Thus, in the non-Abelian case, supersymmetry
breaking by the Fayet-Iliopoulos mechanism is not possible.

Also utilizing then just the QED sector of the standard model is not an option: In
the standard model the single ¢'¢ in (4.58) is replaced with a sum over all fields carrying
electric charge, and with their respective positive and negative charges. Thus, the cor-
responding minimum would be obtained by some of the squark fields and slepton fields
developing a vacuum expectation value, and some not. As a consequence, in the standard
model case, the breaking of supersymmetry with a Fayet-Iliopoulos term would imply the
breaking of the electromagnetic symmetry and color gauge symmetry, which is not com-
patible with experiment. Therefore, also this second mechanism of spontaneous breaking
of supersymmetry is not viable for the standard model, and it is necessary to turn to

explicit breaking.

4.9.2 Explicit breaking

Thus, at the present time, no satisfactory mechanism exists for the breaking of super-
symmetry. Therefore, it is necessary to parametrize this lack of knowledge in the form
of explicitly supersymmetry breaking terms'®. However, if some of the specific properties
of supersymmetric theories, in particular the better renormalization properties and the
protection of the scalar masses, should be retained, it is not possible to add arbitrary
terms to the Lagrangian.

To ensure the survival, or at least only minor modification, of these properties, it is

necessary to restrict the explicit supersymmetry breaking contributions to soft contribu-

150f course, it cannot be excluded that supersymmetry in nature is in fact explicitly broken.
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tions. Soft contributions are such contributions which become less and less relevant with
increasing energy in an asymptotically free theory. This ensures that supersymmetry be-
comes effectively restored at large energies. To ensure such a property, it is necessary that
the terms contain coupling constants which have a positive energy dimensions. In case of
the theories discussed so far, these can appear in the form of two types of terms.

One type of such terms are masses which do not emerge from a superpotential. In
particular, such terms are allowed even without integrating out the F-bosons. Such masses
are possible for both, the bosonic fields and the fermionic fields, but not for the auxiliary
fields, as their mass dimensions are not permitting renormalizable mass terms. However,
these cannot appear for gauge bosons, as in standard gauge theories. Thus, e. g., in

supersymmetric QCD, such terms would be of type
1
= (m,\)\)\ +maoxx + mAIAN +miy iy + Qmigﬂgb)

Note that all mass terms are gauge-invariant. Also, since this is an effective parametriza-
tion, all masses, my, m,, and m,, are independent parameters. Furthermore, these masses
may be complex. When the F-field would be integrated out, the additional mass terms
for the quarks and the squarks would mix with those introduced above. Not only is such
a Lagrangian not explicitly supersymmetric anymore, but, since the super-partners are no
longer mass-degenerate, also the spectrum is manifestly no longer supersymmetric.
Furthermore, an additional possibility are three-boson couplings. These couplings

would be of type
ijrdidi Ok + bijedl 00k + Cindl Ol + dignodldll,

where, of course, not all couplings are independent, but are constrained by gauge-invariance.
That such couplings break supersymmetry is evident, as they not include the particles and
their super-partners equally.

All in all, to the three independent parameters of the supersymmetric QCD, the gauge
coupling, and the two Wess-Zumino parameters g and M, four more have emerged, three
masses, and at least one three-boson coupling. All of these additions are in fact super-
symmetry breaking. Inside such a model, there is no possibility to predict the values of
the additional coupling constants. However, in cases where the (broken) supersymmetric
theory is just the low-energy limit of a unified theory at some higher scale, this underly-
ing theory can provide such predictions, at least partially. E. g., in the cases above, the
expectation values of fields have been obtained in terms of the masses and the coupling
constants of the fields, or vice versa.

This already closes the list of possible soft supersymmetry breaking terms, although

for specific models much more possibilities may exist.
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4.9.3 Breaking by mediation

As has been seen, non-explicit supersymmetry-breaking faces the problem that the re-
lation between particles are inconsistent with experiment. Explicit breaking, however,
introduces numerous additional parameters. A compromise is supersymmetry-breaking
by mediation. In this case, dynamical breaking of supersymmetry is made possible by
additional particles and interactions. Thereby the problem of experimentally unwanted
breaking of electromagnetism or the strong interaction as well as relations like (4.57) can
be circumvented. Furthermore, this usually requires much less parameters as an explicit
breaking, and provides a dynamical origin.

Of course, just adding more generations or variously charged particles will not solve
the problem. Though this may circumvent the simple sumrule (4.57), this will lead to
other problems, like too strong Yukawa-interactions for the additional generations to be
easily compatible with the observed Higgs particle, or conflicts with further sum-rules
specific to the standard model. Also, breaking of the electromagnetic interaction and
strong interaction can usually not be avoided in this way.

The alternative is then the addition of a complete new sector of particles, including
their own interactions. This sector is arranged such that supersymmetry breaking is
possible. To communicate this to the standard model requires some kind of interaction.
This is performed by so-called messengers. These are further, usually again additional,
particles, which are made quite heavy, significantly above the electroweak scale. In this
way, even small breakings will be able to introduce substantial effects. This is usually done
by resolving the explicit breaking parameters into effective vertices of interactions with
this messenger particles. This can be achieved in a similar way as in the Higgs and weak
interaction effects at low-energy, where both effects only appear as point-interaction, in
the form of the fermion masses and the effective four-fermion interaction of the effective
Fermi theory.

This procedure seems still to be an ad hoc resolution of the problem. To embed this
in a less ad-hoc framework, two particular possibilities have been pursued.

One is gauge mediation. In this case it is assumed that the three standard-model gauge
interactions are just part of one unified gauge-interaction at high scales, see also chapter
7, and so is the supersymmetry-breaking sector. The breaking of this master gauge theory
has then separated the standard-model, and fractured it into three interactions, and the
breaking sector at some high-scale. The surplus gauge-bosons at this high scale then
usually have masses of the breaking scale, but still interact with both sectors. In this way
they can act as messengers. While this scenario is in general very attractive, as it solves

many problems of the standard model, it also has its own problems. Especially, the larger
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mass hierarchies emerging in this case are usually accidental, and not well understood.
An alternative is gravity-mediated supersymmetry-breaking, where the gravitino acts
as messenger. As this setup requires a full super-gravity theory, it will not be detailed
here any further. However, it appears phenomenologically somewhat more appealing,
as it is compatible with experimental results with rather little effort, mainly due to the
weak interaction of gravity. It usually leads to keV-scale gravitinos, but since they couple

gravitationally, and thus very weak, this is not at odds with phenomenology.

4.10 A primer on the minimal supersymmetric stan-
dard model

4.10.1 The supersymmetric minimal supersymmetric standard

model

From the previous examples of simple theories it is clear that a supersymmetry trans-
formation cannot change any quantum number of a field other than the spin. In the
standard model, however, none of the bosons has the same quantum numbers as any of
the fermions. Hence, to obtain a supersymmetric version of the standard model, it will be
necessary to construct for each particle in the standard model a new super-partner. Of
course, additional fields need also be included, like appropriate F-bosons and D-bosons.
Here, the supersymmetric version of the standard model with the least number of ad-
ditional fields will be introduced, the so-called minimal supersymmetric standard model
(MSSM). Furthermore, since no viable low-energy supersymmetry breaking mechanism for
such a theory is (yet) known, supersymmetry will be broken explicitly. This will require
roughly 100 new parameters. This may seem a weakness at first. However, the advantage
is that any kind of supersymmetry at high energies can be accommodated by such a theory.
Hence, if there are no additional particles or sectors, for which no experimental evidence
exists so far, any supersymmetric high-energy theory will look at accessible energies like
this minimal-supersymmetric standard model.

The MSSM requires the following new particles

e The photon is uncharged. Therefore, its super-partner has also to be uncharged, and

to be a Weyl fermion, to provide two degrees of freedom. It is called the photino

e The eight gluons carry adjoint color charges. This requires eight Weyl fermions

carrying adjoint color charges as well, and are called gluinos
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e Though massive, the same is true for the weak bosons, leading to the charged super-
partners of the W-bosons, the winos, and of the Z-boson, the zino, together the
binos. Except for the photino all gauginos, the gluinos and the binos, interact

through covariant derivatives with the original gauge-fields

e Assuming that all neutrinos are massive, no distinction between left-handed and
right-handed leptons is necessary, except for the parity-violating weak interactions.
However, no new interactions should be introduced due to the superpartners, and
hence the superpartners cannot be spin-1 bosons, which would be needed to be
gauged. Therefore these superpartners are taken to be scalars, called the sneutrinos,

the selectron, the smuon, and the stau, together the sleptons
e The same applies to quarks, requiring the fundamentally charged squarks

e The Higgs requires a fermionic superpartner, the higgsino. However, requiring super-
symmetry forbids that the Higgs has the same type of coupling to all the standard
model fields. Therefore, a second set of Higgs particles is necessary, with their cor-
responding super-partners. These are the only new particles required which are not

introduced as superpartners of existing particles

e Of course, a plethora of auxiliary D and F' bosons will be necessary

It is necessary to discuss the formulation of these fields, and the resulting Lagrangian, in
more in detail.

The electroweak interactions act differently on left-handed fermions and right-handed
fermions. It thus fits naturally to use independent left-handed chiral multiplets and right-
handed chiral multiplets to represent the fermions, together with their bosonic superpart-
ners, the sfermions. However, both Weyl-spinors can be combined into a single Dirac-
spinor, as the total number of degrees of freedom match. The electroweak interaction can
then couple by means of the usual 145 coupling asymmetrically to both components. In
this context, it is often useful to use the fact that a charge-conjugated right-handed spinor
is equivalent to a left-handed one, as discussed previously, permitting to use exclusively
left-handed chiral multiplets, where appropriate charge-conjugations are included.

Furthermore, for each flavor it is necessary to introduced two chiral multiplets, giving
a total of 12 supermultiplets for the quarks and the leptons each. The mixing of quark
and lepton flavors proceeds in the same way as in the standard model. This requires thus
already the same number of parameters for CKM-matrix and the PMNS-matrix as in the

standard model.
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The gauge-bosons are much simpler to introduce. Again, a gauge-multiplet is needed
for the eight gluons. As electroweak symmetry breaking is not yet implemented, and
actually cannot without breaking supersymmetry as well as noted below, there is actually
a SU(2) gauge multiplet and an U(1) gauge multiplet, which do not yet represent the weak
gauge bosons and the photon. Instead, before mixing, these are called W* and W, and
B. Only after mixing, the W° and the B combine to the Z and the conventional photon.

Concerning interactions, there are, of course, the three independent gauge couplings
of the strong force, the weak force, and electromagnetic forces, to be denoted by g, ¢
and e. After electroweak symmetry breaking, ¢" and e will mix, just as in the standard
model. Note that the coupling of the gauge multiplets and the chiral multiplets will
induce additional interactions, as in case of supersymmetric QED and suspersymmetric

QCD. However, no additional parameters are introduced by this.

It remains to choose the superpotential for the 24 chiral multiplets, and to introduce the
Higgs fields. The parity violating weak interactions imply that a mass-term, the component
of the superpotential proportional to xy, is not gauge-invariant, since a product of two
Weyl-spinors of the type xx is not, if only the left-hand-type component is transformed
under such a gauge transformation. This is just as in the standard model. Therefore, it
is not possible, also in the MSSM, to introduce masses for the fermions by a tree-level
term. Again, the only possibility will be one generated dynamically by the coupling to the
Higgs field'®. There, however, a problem occurs. In the standard model this is mediated
by a Yukawa-type coupling of the Higgs field to the fermions. However, it is necessary,
for the sake of gauge-invariance, to couple the two weak charge states of the fermions
differently, one to the Higgs field, and one to its complex conjugate. This is not possible in
a supersymmetric theory, as the holomorphic superpotential can only depend on the field,
and not its complex conjugate. It is therefore necessary to couple both weak charge states
to different Higgs fields. This makes it possible to provide a gauge-invariant Yukawa-
coupling for both states, but requires that there are two complex Higgs doublets instead
of one complex Higgs doublets in the MSSM. Furthermore, also these fields need to be
part of chiral supermultiplets, and therefore their partners, the higgssinos, are introduced
as Weyl fermions. However, for the Higgs bosons, which have no chirality, the limitations

on a mass-term do not apply, and one can therefore be included in the superpotential.

Before writing down the superpotential explicitly, it is necessary to fix the notation.
Left-handed Quark fields will be denoted by w, d, ..., and squark fields by Q = @, d, ... Note
that always a u-type quark and a d-type quark form a doublet with respect to the weak

16 Actually, a gaugino condensation would also be possible, if a way would be known how to trigger it
and reconcile the result with the known phenomenology of the standard model.
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interactions, and equivalently the squarks. Right-handed quarks are denoted as @, d, ... and
the corresponding squarks as ¢ = , j, .... These form singlets with respect to the weak
interactions. This notation corresponds to left-handed fields, which are obtained from the
original right-handed fields, to be denoted by, e. g. ug, by charge conjugation. The index
L for left-handed will always be suppressed. Likewise, the left-handed leptonic doublets,
including an electron-type fermion and a neutrino-type fermion, are denoted as v, e, ...,
and the corresponding sleptons as L = 7, ¢,.... Consequently, the right-handed leptons
are denoted as 7, e, ... and the singlet sleptons as [ = v,ée,.... The two Higgs doublets are
denoted by H, and Hy, denoting to which type of particle they couple. The corresponding
higgsinos are denoted by H,, and H,. In contradistinction to the quarks, where the doublet
consists out of a component of u and d-quarks, the doublets for the Higgs are formed in
the form H, and H?, and HJ and H;. The reason for this is that after giving a vacuum
expectation value to the Higgs-field and expanding all terms of the potentials, effective
mass-terms for the u-type quarks will then finally couple only to H,-type Higgs fields,
and so on. The remaining fields are the gluons ¢ with super-partner gluinos g, the gauge
W-bosons W with super-partner winos W, and the gauge field B with its super-partner
bino B. After mixing, the usual W-bosons W= with superpartner winos W=, the Z-boson
with superpartner zino Z and the photon ~ with the photino 4 will be obtained.
With this notation, it is possible to write down the superpotential for the MSSM as

W = §9i,Q,H, — §7d:Q;Hy + §7e;L;H, — §9¢,L; Hy + pH, Hy, (4.59)

where gauge-indices have been left implicit on both, the couplings and the fields, and the
auxiliary fields have already been integrated out. The appearing Yukawa-couplings y are
the same as in the standard model. In particular, vanishing neutrino masses would be
implemented by y% = 0. If only the masses of the heaviest particles, the top, bottom, and
the 7 should be retained, this requires that all y-components would be zero, except for
Y3 =y, Y3 =y, and ¢y = y,, leaving gauge indices implicit. The choice of this potential
is not unique, but the one for which the MSSM is most similar to the standard model.

In principle, it would also be possible to add contributions like
)\ijl?iijék + )\lgqu@]jk + ,UZLEZHU (460)
and
NI Gddy. (4.61)

In all cases, these are couplings of squarks and/or sleptons. Since these carry the same
charges as their counterparts, they will also carry the same lepton and baryon numbers.

As a consequence, the squarks Q from the multiplets including the particle-like left-handed
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quarks carry baryon number B = 1/3, while those from the anti-particle-like right-handed
chiral multiplets carry baryon number —1/3. Similarly, the fields L carry lepton number
L =1 and € -1. Thus the interaction vertices in (4.60) violate lepton number conserva-
tion and the ones of (4.61) baryon number conservation. On principal grounds, there is
nothing wrong with this, as both quantities are violated by non-perturbative effects also
in the standard model. However, these violations are very tiny, even below nowadays ex-
perimental detection limit. Interaction vertices like (4.60) and (4.61), on the other hand,
would provide very strong, and experimentally excluded, violations of both numbers, as
long as the coupling constants \; and p; would not be tuned to extremely small values.
Such a fine-tuning is undesirable.

However, such direct terms could be excluded, if all particles in the MSSM would carry

an additional multiplicatively conserved quantity, called R-parity, which is defined as

)

R = (_1>3B+L+23

with s the spin. This is just the discrete Z, subgroup of the U(1) R-symmetry of an N' =1
supersymmetry, which can be retained even after supersymmetry breaking in the MSSM.
Such a quantum number would be violated by interaction terms like (4.60) and (4.61),

and these are therefore forbidden!”.

The contribution 2s in the definition of R implies
that particles and their super-partners always carry opposite R-parity. This has some
profound consequences. One is that the lightest superparticle (LSP) cannot decay into
ordinary particles. It is thus stable. This is actually an unexpected bonus: If this particle
would be electromagnetically uncharged, it is a natural dark matter candidate. However,
it has also to be uncharged with respect to strong interactions, as otherwise it would be
bound in nuclei. This is not observed, at least as long as its mass is not extremely high,
which would be undesirable, as then all superparticles would be very massive, preventing
a solution of the naturalness problem by supersymmetry. Therefore, it interacts only very
weakly, and is thus hard to detect. Not surprisingly, it has not be detected so far, if it
exists.

Summarizing, the assumption of R-parity restricts the superpotential to the form
(4.59), and thus fixes the MSSM completely.

Returning then to this remaining possible superpotential (4.59), the parameter p char-
acterizes the masses of the Higgs and higgsinos. In comparison to the standard model with
two independent parameters in the Higgs sector, this is the only new parameter entering

the theory when including the Higgs sector and keeping supersymmetry unbroken. The

17A non-perturbative violation of R-parity notwithstanding, as for baryon and lepton number in the

standard model.
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self-interaction of the Higgs field will be entirely determined, due to supersymmetry, just
by the already included parameters, thus having potentially less parameters than in case
of the standard model.

Unfortunately, there is a catch. Writing all gauge components explicitly, the mass term
for the Higgs takes the form

pH, Hy = MabHSHcIl) = MEabHsHsv
where the index structure of the parameter p is dictated by gauge invariance. The corre-

sponding interaction terms in the Lagrangian are then of the form

ow

ST Fithe =p(HF? + HAF! — H?F} — HYF?) + h.c..

Integrating out all F-bosons in the Higgs sector yields the mass term for the Higgs, just

as in the Wess-Zumino model. This produces
|l (Hy Hy + HyHY).

This implies firstly that both Higgs doublets are mass-degenerate. More seriously, it
implies that this common mass is positive. In the conventional treatment of electro-
weak symmetry, however, a negative mass is mandatory to obtain a perturbatively valid
description of electroweak symmetry. Since the appearance of the positive mass is a direct
consequence of supersymmetry, as was seen in case of the Wess-Zumino model, there seems
to be no possibility to have at the same time perturbative symmetry breaking and intact
supersymmetry. One alternative would be non-perturbative effects, which has not been
excluded so far. However, it seems somewhat more likely that it is not possible to have
unbroken supersymmetry but so-called broken gauge symmetry simultaneously, and this
has lead to a search for a common origin of both phenomena.

After analyzing the features which make the MSSM different from the standard model,
it is instructive to see how the standard-model-type interactions are still present.

This is straightforward in the case of the gauge-boson self-interactions, as these are
automatically included in the non-Abelian field-strength tensors appearing already in the
supersymmetric version of Yang-Mills theory, (4.44). It is more interesting to investigate
how the usual Dirac-type quarks and gluons and their coupling to the strong and weak
interactions are recovered.

The simpler case is the parity-preserving strong interactions. Due to the gauge-

covariant derivative, the coupling of a quark-type left-handed Weyl-fermion is

1

_ 1 _
— SO Ay = = 50X Tu A Xy, (4.62)
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where in the second expression the gauge indices are made explicit, keeping in mind that
A, = 7 A is matrix-valued. The right-handed contribution can be rewritten as a left-

handed Weyl fermion by virtue of charge conjugation,
thy, = Xg - ia?X:; :
Xqg = —i02Xg

The original coupling of the right-handed fermion, which will be the anti-particle, is
1

§9X2*5“AZX<7 = 59(—@'02X§-*)T5MAZ(—i02X§-*)
]' C — * \ Ck ]‘ C c
= —50X{ 2T AXT = —SoxG o A (4.63)
In the last step, it has been used that g96%0y = —c*T, and that A5 = AE, since the A,

are hermitian. The remaining step is just rewriting everything in indices and rearranging.
Combining (4.62) and (4.63) yields

1. L 1
—§g(qu0“Auxg + X4 Auxg) = —50U" A

with ¥T = (xgx)- This is precisely the way an ordinary Dirac quark ¥ would couple
covariantly to gluons. Hence, by combining two chiral multiplets and one gauge multiplet,
it is possible to recover the couplings of the standard model strong interactions.

The electromagnetic interaction, which is also parity-preserving, emerges in the same
way, just that the photon field is not matrix-valued.

The weak interaction violates parity maximally by just coupling to the left-handed

components. In the standard model, its coupling is given by

1 ,-1-— 1-—
_—g,\:[le 75 75
2 2 2

However, the action of (1 —5)/2 on any spinor is to yield

00

and thus reduces the Dirac-spinor to its left-handed component. Thus, only the coupling

.
- §gXZO-uW,uX6

.

YW,

remains. This is precisely the coupling of a left-handed chiral multiplet to a gauge multi-
plet. It is therefore sufficient just to gauge the left-handed chiral multiplets with the weak
interactions to obtain the standard-model-type coupling. In addition also inter-generation
mixing has to be included, but this proceeds in the same way as in the the standard-model,

and is therefore not treated explicitly. This concludes the list of standard model couplings.
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4.10.2 Breaking the supersymmetry in the MISSM

Since no mechanism is yet known how to generate supersymmetry breaking in a way which
would be in a accordance with all observations, and without internal contradictions, this
breaking is only parametrized in the MSSM, and requires a large number of additional free
parameters. Together with the original about 30 parameters of the standard model, these
are then more than 130 free parameters in the MSSM. Exactly, there are 105 additional
parameters in the MSSM, not counting contributions from massive neutrinos.

These parameters include masses for all the non-standard model superpartners, that
is squarks and sleptons, as well as photinos, gluinos, winos, and binos. Only for the Hig-
gsinos it is not possible to construct a gauge-invariant additional mass-term, due to the
chirality of the weak interactions, in much the same way as for quarks and leptons in the
standard model. One advantage is, however, offered by the introduction of these free mass
parameters: It is possible to introduce a negative mass for the Higgs particles, reinstanti-
ating the same way to describe the breaking of electroweak symmetry as in the standard
model. That again highlights how electroweak symmetry breaking and supersymmetry
breaking may be connected. These masses also permit to shift all superpartners to such
scales as they are in accordance with the observed limits so far. However, if the masses
would be much larger than the scale of electroweak symmetry breaking, i. e., 250 GeV,
it would again be very hard to obtain results in agreement with the observations without
fine-tuning. However, such mass-matrices should not have large off-diagonal elements, i.
e., the corresponding CKM-matrices should be almost diagonal. Otherwise, mixing would
produce flavor mixing also for the standard model particles exceeding significantly the
observed amount.

In addition, it is possible to introduce triple-scalar couplings. These can couple at will
the squarks, sleptons, and the Higgs bosons in any gauge-invariant way. Again, obser-
vational limits restrict the magnitude of these couplings. Furthermore, some couplings,
in particular certain inter-family couplings, are very unlikely to emerge in any kind of
proposed supersymmetry breaking mechanism, and therefore are usually omitted.

Finally, the mass-matrices in the Higgs sector may have off-diagonal elements, without

introducing mixing in the quark sector. This are contributions of the type
b(H!H? — H?H}) + h.c.,

where the mass parameter b may also be complex.
The arbitrariness of these enormous amount of coupling constants can be reduced, if
some model of underlying supersymmetry breaking is assumed. One, rather often, invoked

one is that the minimal supersymmetric standard model is the low-energy limit of a super-
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gravity theory, the so-called mSUGRA scenario. Though by now experimentally ruled out,
it is still interesting as the simplest representative of such types of models.
In the mSUGRA case, it is, e. g., predicted, that the masses of the superpartners of

the gauge-boson superpartners should be degenerate at the breaking scale,
Mg = My, = Mg = my s, (4.64)

and also the masses of the squarks and sleptons should be without mixing and degenerate

2
ms=m
Q

2N

=m? =mZl, (4.65)

2
=mj i

and these masses also with the ones of the Higgs particles,

Furthermore, all trilinear bosonic couplings would be degenerate, with the same value
Ap. If the phase of all three parameters, Ay, m;/2, and mg would be the same, also CP
violation would not differ from the one of the standard model. The latter is an important
constraint, as the experimental limits on such violations are very stringent, although not
yet threatening to rule out the MSSM proper.

Of course, as the theory interacts, all of these parameters are only degenerate in such a
way at the scale where supersymmetry breaks. Since the various flavors couple differently
in the standard model, and thus in the minimal supersymmetric standard model, the
parameters will again differ in general at the electroweak scale, or any lower scale than

the supersymmetry breaking scale.

4.10.3 MSSM phenomenology
4.10.3.1 Coupling unification and running parameters

In the electroweak theory it is found that at some energy scale the electromagnetic and the
weak coupling become both of the same value. This is known as electroweak unification.
Of course, if also the strong coupling would become of the same value at the same energy,
this would strongly indicate that all three couplings originate from one coupling at this
unification scale, and become different at low energies because the gauge group to which
the unified coupling corresponds becomes broken at this unification scale. This is also the
idea behind so-called grand-unified theories (GUT) that at large energies there exists one
gauge-group, say SU(5), which becomes broken by a Higgs effect, similar to that one in
the standard model, to yield the product gauge group SU(3)xSU(2)xU(1) of the standard

model at the unification scale. This unification is of course also interesting, as any evidence
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of it would support the idea of gauge-mediated supersymmetry-breaking. This idea will
be taken up again in chapter 7. But supsymmetry enforces the idea, as will be discussed
now.

To check, whether such a unification actually occurs, it is necessary to determine the
running of the effective coupling constants with the energy (renormalization) scale. There
are three couplings'®, the strong one g, the weak one ¢', and the electromagnetic one. It
is always possible to write the electromagnetic one as e/sinfy,. The angle 6y is known
as the Weinberg angle. In the standard model its value originates from the electroweak

symmetry breaking. Its measured value is 28.7°. The relevant couplings are then

;@) =4 0119 (4.66)
w(Q) =L, . 00338 (4.67)
a3(Q) = %% =Q=m, 0.0169 (4.68)

In this case the appropriate mixed combination for the electromagnetic coupling has been
used. The factor 5/3 appears as in an Abelian gauge theory there is a certain freedom in
redefining the charge and the generator of gauge transformation not present in non-Abelian
gauge theories. It has been set here to a conventional value, which would be expected if
the standard model product gauge groups would indeed originate from a common one at
high energies.

To one-loop order, all coupling constants evolve according to the renormalization group

equation
da; Bi o
= ——Q. s
dln @ 2r !
where f3; is the first coefficient in a Taylor expansion of the so-called S-function for the

(4.69)

coupling 7. For a non-Abelian coupling its value is given by

11 1 1

2 a
Bi = 30,4 - gCAnf - gnf - 6”5;

where C4 is the adjoint or second Casimir of the gauge group with value N for a SU(N)
group. The numbers n%, ny, and n, are the number of adjoint fermionic chirality states,
fundamental fermionic chirality states and the number of complex scalars charged under

this coupling, respectively. In the Abelian case, the value of j; is given by
2 p 1 2
Bi = —ngjyf _gzszys,

with Y; and Y; the charge of fermions and scalars with respect to the interaction. This

stems from the fact that the charge for matter minimally coupled to an Abelian gauge-field

80ther couplings, like the Higgs-self-coupling or the Yukawa couplings do not unify at this scale.
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can be chosen freely, while this is not the case for a non-Abelian case. The fact that the Y}
and Y are rational numbers in the standard model is another indication for the U(1) part
of the standard model to be emerged from some other gauge group by symmetry breaking.
As the coefficients of the S-functions do not depend on the couplings themselves, the
differential equation (4.69) is readily integrated to yield
Q7 = (@) + S 2
where a;(Qo) is the initial condition, the value of the coupling at some reference scale Q.
As already indicated in (4.66-4.68), this reference scale will be the Z-boson mass, as all
three couplings have been measured with rather good precision at this scale at LEP and
LEP2.
The question to be posed is now whether the three couplings «;(Q)) have at some energy
@ the same value. To obtain a condition, it is most simple to use the linear system of
equations to eliminate @ and «;(Q) in favor of the known measured values. This yields

the conditional equation

ag(mz)™t — as(mg)™? =P B,

B. = az(mz)™t —ar(myg)! B B — B B

With the values given in (4.66-4.68) the left-hand side is readily evaluated to be B, = 0.72.
The right-hand side depends only on the S-functions, and therefore to this order only on
the particle content of the theory.

In the standard model, there are no scalars charged under the N = 3 strong interac-
tions, but 12 chirality states of fermions, yielding 5, = 7. The positive value indicates
that the strong sector is described by an asymptotically free theory. For the N = 2 weak
interactions, there are 12 left-handed chiral states (6 quarks and 6 leptons), and one Higgs
field, yielding o = 19/6. Taking all electromagnetically charged particles, and the nor-
malization factor 5/3, into account, $3 = —41/10. Note that also some components of the
Higgs field are electromagnetically charged. Evaluating B; yields 115/218 ~ 0.528. Thus,
in the standard model, to this order the couplings will not match. This is also not changed
in higher orders of perturbation theory.

The situation changes in the MSSM. For (3, there are now in addition the gluinos,
giving one species of adjoint fermionic chiralities, and 12 squarks, yielding 8, = 3. The
same applies to the weak case with one species of adjoint winos and zinos, 12 sleptons
and squarks, two higgsinos and one additional Higgs doublet. Altogether this yields S =
—1. The change of sign is remarkably, indicating that the supersymmetric weak sector is

no longer asymptotically free, as is the case in the standard model. The anti-screening
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contributed from the additional degrees of freedom is sufficient to change the behavior of
the theory qualitatively. The case of 3 finally changes to —33/5, after all bookkeeping is
done. Together, this yields B, = 5/7 = 0.714. This is much closer to the desired value of
0.72, yielding support for the fact that the MSSM emerges from a unified theory. Taking
this result to obtain the unification scale, it turns out to be Qy ~ 2.2 x 10'% GeV, which
is an enormously large scale, though still significantly below the Planck scale of 10* GeV.
This result is not changing qualitatively, if the calculation is performed to higher order nor
if the effects from supersymmetry breaking and breaking of the presumed unifying gauge
group is taken into account. Thus the MSSM, without adding any constraint, seems a
natural candidate for a theory emerging from a grand unified one, being one reason for its
popularity and of supersymmetry in general. However, exact unification is never achieved
in the MSSM, and therefore requires further contributions to occur.

These results suggest to also examine the running of other parameters as well. In
particular, the parameters appearing due to the soft breaking of supersymmetry are par-
ticularly interesting, as their behavior will be the effect which obscures supersymmetry in
nature, if it exists.

The first interesting quantity is the mass of the gauge-boson superpartners, the gaug-

inos. The running is given by a very similar expression as for the coupling constants,

dM; Bi

dnQ 27

The S-function can be eliminated using the equation for the running of the coupling (4.69).
This yields the equation

0= adinQ o2dinQ dinQ a;

This implies immediately that the ratio of the gaugino mass for the gauge group ¢ divided
by the corresponding gauge coupling is not running, i. e., it is renormalization group-
invariant.

If there exists a scale my at which the theory unifies, like suggested by the running of
the couplings, then also the masses of the gauginos should be equal. As discussed previ-
ously, this would be the case in supergravity as the origin of the minimal supersymmetric

standard model. This would yield
Mi(mU) My

ozi(mU) aU(mU) ’

and since the ratios are renormalization-group invariant it follows that

M (Q) _ Ms(Q) _ Ms(Q)
a1(Q)  a(Q) (@)
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Since the «; are known, e. g., at () = my, it is possible to deduce the ratio of the gaugino

masses at the Z-mass, yielding

az(m 1

Ms(mz) = %Mﬂmz) ~ §M2 (4.70)
a1 (m 7

Ml(mz) = %Mg(mz> ~ §M2

This implies that the masses of the gluinos to the winos to the bino behave as 7 : 2 : 1.
This implies that the gluino is the heaviest of the gauginos. Note that the masses are not
necessarily the masses of the original gauge bosons in the electroweak sector. The bino and
the winos will together with the higgsinos form the final mass eigenstates. Therefore, the
running of the parameters will provide already guiding predictions on how supersymmetry
breaking is provided in nature, if the observed mass pattern of these particles matches
this prediction, provided once more that higher-order and non-perturbative corrections
are small.

An even more phenomenologically relevant result is obtained by the investigation of the
scalar masses, i. e., the masses of the Higgs, the squarks, and the sleptons. Retaining only
the top-quark Yukawa coupling y,;, which dominates all other Yukawa couplings at one
loop, and a unified three-scalar coupling Ag, the corresponding third-generation evolution

equations and Higgs evolution equation are given by

371?1% - % (i_)? — G M; — g%M:?) (4.71)
jiztgég - % (% B %0‘1]‘412 — 6ap M3 — %agM:?) (4.72)
fﬁf&} - i (24_)7? - %0‘1]‘412 - ?—E%Mi) (4.73)

Xy = 2yl (m, +m +md 4+ A3).
A number of remarks are in order. The quantity X; emerges from the Yukawa couplings
to the top quark. Therefore, the down-type Higgs doublet will, to leading order, not
couple, and therefore its evolution equation will not depend on this strictly positive quan-
tity. Furthermore, the Higgs fields couple to leading order not to the strong interaction,
while the squarks do. Hence the former have no term depending on oy, while the latter
do. Similarly, only squarks from the left-handed chiral multiplet couple directly to the
weak interactions, and therefore receive contributions from the weak interaction propor-
tional to aw. Still, all of these particles couple electromagnetically, and therefore receive

contributions proportional to as.
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Since all couplings «; are strictly positive, the values of the masses can only decrease
by the top-quark contribution X; when lowering the scale (). In particular, this implies
that the mass of Hy will, at this order, only increase or at best stay constant. The
strongest decrease will be observed for the H, contribution, as the factor three in front
of X; magnifies the effect. Furthermore, the largest counteracting contribution (72 = 49
and 22 = 4 and the largest ay!) due to the gluino term is absent for the Higgs fields.
Therefore, the mass of the H, will decreases fastest from its unification value \/m
at the unification scale. In fact, this decrease may be sufficiently strong to drive the mass
parameter negative at the electroweak scale. This would trigger electroweak symmetry
breaking by the same mechanism as in the ordinary standard model. Using parameters
which prevent the squark masses from becoming negative, and thus preserving vitally
the color gauge symmetry, this indeed happens. Again, explicitly broken, but unified,

supersymmetry provides the correct low-energy phenomenology of the standard model.

4.10.3.2 The electroweak sector

One of the most interesting questions in contemporary standard model physics is the
origin of the value of the mass of the Higgs boson. In the standard model, this is an
essentially independent parameter. However, in the minimal supersymmetric extension of
the standard model, this parameter is less arbitrary, due to the absence of the hierarchy
problem, and the fact that part of the Higgs couplings are determined by supersymmetry,
like the four-Higgs coupling.

To determine the Higgs mass, it is first necessary to determine the electroweak symme-
try breaking pattern. To do this, the first step is an investigation of the Higgs potential.
This is more complicated than in the standard model case, due to the presence of a second
Higgs doublet.

At tree-level, the quadratic term for the Higgs fields is determined by the contribution
from the supersymmetric invariant term, and the two contributions from explicit breaking,

yielding together
Vi = (|p*+miy,) (H, B+ HYHY )+ (|l +m3y, ) (HHY + Hy H D +b(H, Hy —HHY)+-h.c.,

where the Higgs fields are labeled by their electric instead of the hypercharge. The pa-
rameters qui can have, despite their appearance, both signs.

The quadratic part of the potential originates from two contributions. Both are from
the D couplings and F' couplings for the groups under which the Higgs fields are charged,
the weak isospin group SU(2) and the hypercharge group U(1). Since these contributions

are four-point vertices, there are no contributions from explicit supersymmetry breaking.
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Thus, the quartic part of the potential takes the form

62 +g/2 9/2
Vo= — = (HHT o+ HOHT = HyHY' = Hy Hy ' + S [HEH + HOH P,

where ¢’ is the gauge coupling of the weak isospin gauge group and e the one of the weak
hypercharge group.

To obtain the experimentally measured electroweak phenomenology, this potential has
to have a non-trivial minimum, especially if all other fields vanish. The latter also implies
that the cubic coupling appearing in the Lagrangian due to the supersymmetry breaking
are not relevant for this question, as they always involve at least one other field.

It is possible to simplify this question. The expressions are invariant under a local gauge
transformation, as is the complete Lagrangian. If therefore any of the fields has a non-
vanishing value at the minimum, it is always possible to perform a gauge transformation
such that a specific component has this, and the other ones vanish. Choosing then H,;" to
be zero, the potential must be extremal at this value of H. Finding a minimum is then
a classical analysis. Requiring further that electromagnetism is unbroken yields H; = 0.
Therefore, only the electrically neutral components of both Higgs doublets matter. To
avoid CP violations, H? and HY) must also be real. If there should exist a non-trivial
minimum, this implies that the product H’H? must be positive, as otherwise all terms
would be positive. By a global U(1) gauge transformation, both fields can then be chosen
to be positive.

The direction HY = HY is pathologically, as the highest-order term vanishes, a so-
called flat direction. For the potential to be still bounded from below, thus providing a

perturbatively stable vacuum state, requires
2 2 2
2|pl” +miy, +my, > 2b(>0).

Therefore, not the masses of both H? and HY can be negative simultaneously.

It is not possible to restrict the solution and the parameters further just from the
Lagrangian at this point. However, it is experimentally possible to fix at least a particular
combination of the associated vacuum expectation values (H.) and (HJ). Studying the

coupling to the electroweak gauge bosons masses yields a mass term in the Lagrangian of
1 / 1 vt
(5(62 +97) 22" + 59" (W W+ W W )) (CHO)* + (Hg)?).  (4.74)

19

The value for the combined condensate is therefore the same'” as in the standard model,

(174 GeV)2.

19Note a factor of v/2 due to the MSSM conventions.
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It is furthermore possible to determine mass-bounds for the Higgs. Defining

(H.)

tanﬁ = m,

the resulting expressions become relatively simple. It is furthermore useful that the mass-
matrix assumes a block-diagonal form, so that it is possible to reduce the complexity
further by studying only doublets at each time.

The first doublet to be studied are the (non-condensing) imaginary parts of H? and
HY. This yields two linear combinations as mass eigenstates. One is a massless mode, and
will become effectively the longitudinal component of the Z°. The orthogonal combination
is commonly referred to as the A°, and is a pseudo-scalar. This is an uncharged second
Higgs field (the first one will be one of the condensed ones). It is one of the extra Higgs
particles not present in the standard model. In practical calculations, the parameter b is
often traded for the mass of this particle, m_ = m 4o.

The next pair is H,” and H;. Linear combinations will have masses 0 and m?, +m?,.
The charged massless combinations will become the longitudinal component of the W=,
The other states, usually just called H*, correspond to an electrical charged Higgs particle,
which is not appearing in the standard model.

Finally, masses for the condensing real parts of H? and HY are

1

mi, = 5 (mio +m? — \/(mio + M%)? — 4m?,m3, cos2(26))
1

My = 5 <m?40 +m% + \/(mio + M2%)? — 4m?,m3, cos2(2ﬁ))

for the twolinear combinations h° and H°, giving two more neutral, scalar Higgs particles.
So instead of the one of the standard model, there are two in the minimal supersymmetric
standard model.

The masses for the fields A%, H* and H? are all containing a contribution m 4o \/W ,
which is unconstrained, and could, in principle, become arbitrarily large. This is not the
case for the mass of h?. If the A° mass would be small, it is possible to expand the root,
yielding

mio ~ m?o cos?(28) < m%o.
For large masses of the A° it becomes
mio = mycos?(28) < my, (4.75)

where only the experimental known mass of the Z-boson enters. Thus, though the bounds

are not known, the mass is constrained. Since the experimental bounds for the A? indicate
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a rather large mass, the second expression (4.75) is more appropriate. Unfortunately, such
a low mass for the lightest neutral Higgs boson is excluded experimentally. Even if the
more precise formulas would be used, instead of the approximate ones, the situation is not
improving qualitatively.

That could have been already a dismissal of the minimal version of a supersymmetric

standard model. However, the leading quantum correction to this bound yields

[ 2 2

< + 1
e =T R (HY + (Hy?) T vomy

where m; is the known top quark mass and m;, are the masses of the staus after mixing be-

tween the left and right multiplets occurred, which, in principle, can be different. Already
for masses of the order of the experimentally excluded stau masses the bound is increased
by these radiative corrections above the Higgs mass. On the one hand, this is good for the
minimal supersymmetric standard model, but on the other hand this implies that leading
order corrections are large, and subleading corrections may be relevant. This reduces the
predictiveness of the bound, as then the other parameters enter in various ways.

There is a further problem with the corrections (4.76) to the Higgs mass. The condition
for forming a Higgs condensate can be reformulated as
my;, — my, tan®

tan? 3 — 1

1
57”'122 = —|ul*+

For example let tan  become large, i. e., the condensate (H,) is much larger than the

condensate (Hy). Then the condition becomes

1
Sy = —|ul* —my,.

2

Both parameters on the right-hand side are not constrained immediately by physics. How-
ever, if both parameters would be much larger than the mass of the Z boson, it would be
necessary for them to cancel almost exactly. If this would be the case, it would immedi-
ately raise the same questions as in the original fine-tuning problem of the standard model
if the Higgs mass would be much larger than the ones of the weak bosons. This is therefore
also called the little fine-tuning problem or little hierarchy problem. The experimentally
established mass of the Higgs is, in fact, borderline. Together with the large lower limits
for the masses of the other sparticles, the MSSM, though still consistent with experiment,
becomes in fact increasingly fine-tuned, therefore abolishing its original motivation. Still,
it is not excluded, and may yet describe nature.

That this is indeed somewhat of a problem becomes apparent when considering the

renormalization constant for the mass of the Higgs boson, which is given by the integral
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of (4.71), and is approximately

3y? 2A
omy; ~ —8—7‘%2(7@1 +mZ ) In # : (4.77)

where it was assumed that the stau masses give the dominant contributions, due to the
condition (4.76). The value of the unification scale is still of the order of 10'6 GeV. If there-
fore the mass shift due to the leading quantum corrections should be small, this yields
approximately that the geometric average of the stau masses should not be larger than
about 150 GeV. Otherwise the quantum corrections alone would produce a fine-tuning
problem. This condition is, however, in violation of the bound of 500 GeV necessary to
shift the hY Higgs boson out of the current experimental reach. Therefore, it cannot be per-
mitted. Shifting then the stau masses to the required value yields a mass correction large
compared to the Z-mass, actually, it becomes exponentially worse due to the logarithmic
dependence. Thus a fine-tuning problem arises. Whether this constitutes a problem, or
just an aesthetic displeasure, is not only a question of personal taste. It also is a challenge

to understand whether nature prefers for what reasons theories with or without finetuning.

4.10.3.3 Mass spectrum

So far, the masses of the Higgs bosons and the electroweak bosons have been calculated.
The gluons also remain massless, in accordance with observation. The remaining mass
spectrum for the minimal supersymmetric standard model at tree-level will be discussed

in the following.

The first particles are the remaining ones from the standard model. These have to
acquire, of course, their observed masses. Due to the parity violating nature of the weak
interactions, these masses can effectively arise only due to the Yukawa interaction with the
Higgs particles. In unitary gauge, these couplings can be split into a contribution which

contains only the Higgs vacuum expectation values

yxxH = yxx(H) +yxx(H — (1))
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and behave therefore as mass terms. Thus, the masses are given by

Muct = Yuer{Hu) = yuctw

Masy = Yasp(Ha) = ydst

Mepr = Yepr (Ha) = meM
Moare = Yoo (Hu) = yueWTM.

9

The twelve Yukawa couplings are all free parameters of the minimal supersymmetric stan-
dard model. As is visible, it strongly depends on the value of 3, whether these couplings
are strong, preventing perturbative descriptions, or weak enough that at sufficiently high
energies perturbation theory is adequate.

The situation for the gluinos is actually simpler. Since the color symmetry is unbroken,
no other fermions exist with the quantum numbers of the gluinos, and they do not couple
to the parity violating weak interactions. Thus, the only contribution comes from the
explicit supersymmetry breaking term

Mgy — M5
The mass parameter can be complex in general, but the corresponding tree-level mass will
just be its absolute value. Therefore, the value of the mass of the gluinos is unconstrained
in the minimal supersymmetric standard model, but by virtue of relation (4.70) it is tied
to the masses of the other gauginos in case of unification.

The situation becomes more complicated for the so-called neutralinos, the super-
partners of W° and B, the wino W° and the bino B. These fermions are electrically
uncharged, and can both mix, similar to their standard-model versions. Furthermore,
the neutral superpartners of the two Higgs fields, the higgsinos H 9 and ﬁg are both also
fermionic and uncharged. Hence, these can mix with the binos and the winos as well. The

gauge eigenstate is therefore
GOT (B, WO, 10, 1Y),
The most direct mixing is due to the interaction mediated by the weak F-boson in the
Wess-Zumino-like contribution to the superpotential, which leads to the contributions
1

- - 1 o o
Sp(ESEY + AV + L (YA + AL,
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Furthermore, the weak gauge symmetry and supersymmetry demand the existence of

couplings of the generic type
—V2¢H,HW = 24 (H, + (H))H,W (4.78)

to ensure supersymmetry in the super Yang-Mills part of the weak symmetry. If the
Higgs fields condense, these yield a mixing term proportional to the condensates. The
condensate is uncharged, and therefore this mixing can only combine two neutral fields or
two of opposite charge. Hence, only the fields lf[g and ﬁg will mix with the neutral wino
and the bino by this mechanism. Finally, the wino and the bino can have masses due to

the explicit supersymmetry breaking, similar to the gluinos,

MO — CMLBB 4 e
No such contribution exist for the higgsinos, as it is not possible to write down such a term
while preserving explicitly the weak gauge symmetry. Thus, all four fields mix. The mass
eigenstates are denoted by x; with ¢ = 1,...,4, and are called neutralinos. These particles
interact only weakly, like the neutrinos, and hence their name. Since the a-priori unknown
parameters Ms, M3 and u, as well as 3, enter their mass matrix, their masses cannot
be predicted. However, if any of the neutralinos would be the lightest supersymmetric
particles, then by virtue of R-parity conservation it would be stable. Since it interacts
so weakly, it would be a perfect candidate for dark matter, which cannot be provided by
neutrinos since their mass is too small. In fact, at least for some range of parameters
the masses of the neutralinos would be such that they are perfectly compatible with the
properties required for cold, non-baryonic, dark matter.

A similar situation arises for the charged counterpart of the neutralinos, the charginos.
These stem from the mixing of the charged higgsinos and the charged winos. Since the

positively and negatively charged particles cannot mix, two doublets appear instead of one

B I~V+
+
« = <H~J >

quartet,

(4.79)

where the charged winos are linear combinations W' + iW? of the off-diagonal winos.

Similar as in the case of the neutralinos, there is a contribution from the weak F-term
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and the condensation of the neutral Higgs fields from the super Yang-Mills action, which
mixes both components of each doublet. Performing the algebra leads to masses of the

charginos

mgs? = (M§ 1l 4+ 2m) F (M3 + 4+ 2mi )2 — Alud, — md, sin(%)\?)
where the upper and lower sign refer to the two members of each charged doublet. There-
fore there is always one pair of oppositely charged charginos having the same mass, as
would be expected from CPT.

Thus remains the largest group of additional particles, the sfermion superpartners of
the fermionic standard model particles. These contain the squarks and sleptons. For-
tunately, due to the presence of the strong charge, squarks and sleptons will not mix.
However, the three families within each sector could in principle mix. Since such mixings
would have to be very small to be not in conflict with flavor changing currents observed
in experiments, these will be neglected?’. Furthermore, compared to the scale of the su-
persymmetric parameters, only the Yukawa couplings of the third family can give any
significant contribution, and will only be considered in this case. Therefore, the first two
and the third family will be treated in turns.

The masses are in the end driven by the common scale at unification, mg, and then
various contributions from running. Most remarkable, the squark masses will tend to be

larger than the slepton masses. Also, the weak isospin splittings give a measure of [ as

2 2 2 2 2
mg —mg, =mg —m; = —my cos(25),

and in the same manner for the second family. This constraint could be used to experimen-
tally verify and/or predict parameters of the theory. The present experimental constraints
favor a rather large (3, such that the down-type sfermions would be heavier.

The situation for the third family is similar, though the additional Yukawa coupling
tends to drive the masses to smaller values than for the first two families. In fact, in most
scenarios the stop will be the lightest of the squarks, and in some regions of the parameter
space the mass would be driven to negative values and thus initiate the breaking of color
symmetry, excluding these values for the parameters. The situation for the sbottom, stau,
and stau sneutrino is similar, just that all parameters are exchanged for their equivalent of
that type. Because their Yuakaw couplings are smaller the masses of these super-partners

will be larger than the ones of the stops.

20Tn fact, the absence of strong mixing sets strong limits on the properties of the mass matrices in the
squark and slepton sector. Since these are only parameters in the MSSM, this raises the questions why the
should be so specifically shaped. It is often assumed that whatever mechanism drives the flavor physics
of the standard model will also be responsible for this feature of the MSSM.



Chapter 5

Technicolor

Technicolor is the first prototype theory for compositness approaches. The idea is that
the hierarchy problem associated with the mass of the Higgs boson can be circumvented if
the Higgs boson is not an elementary particle but a composite object. If its constituents
in turn are made of particles with masses which do not suffer from a hierarchy problem,
in particular fermions which have masses only affected logarithmically by perturbative
quantum corrections, then the hierarchy problem simply would not exist.

However, such models require that interactions are non-perturbative such that the
Higgs can be a bound state. It would, as atoms, appear as an elementary particle only on
energy scales significantly below the binding energy.

Such a construction is actually rather intuitive, and even realized in the standard model
already. In QCD, bound states of quarks occur which actually have the same quantum
numbers as the Higgs, e. g. the o meson or the 7., mesons. In fact, already within
QCD condensates with the quantum numbers of the Higgs condensate can be constructed,
which induce the breaking of the electroweak symmetry. Only because the size of such
condensates is then also given by the hadronic scale, and thus of order tens to hundreds of
MeV, this is not sufficient to provide quantitatively for the observed electroweak symmetry
breaking. Qualitatively it is the case.

Thus, the simplest extension is to postulate a second, QCD-like theory with typical
energy scales in the TeV range with bound states which provide a composite Higgs, in
addition to the standard model. Such theories are called technicolor theories.

Technicolor theories are also prototype theories for generic new strong interactions
at higher energy scales, since at low energies such theories often differ from technicolor
theories only by minor changes in the spectrum and concerning interaction strengths. Also,
most of these suffer from similar problems as technicolor. Studying technicolor is therefore

providing rather generic insight into standard model extensions with strongly interacting
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gauge interactions above the electroweak scale.

5.1 Simple technicolor

5.1.1 General setup

The simplest version of technicolor is indeed just an up-scaled version of QCD, though
with a more general gauge group SU(Nr), with Ny additional fermions @), the techni-
quarks. The techniquarks are massless at tree-level. They are placed in the fundamental
representation of SU(Nr), and there are, in addition, the N2 — 1 gauge bosons, called
technigluons. Therefore, the total gauge group of the such extended standard model is
SU(Nr)xSU(3)xSU(2)xU(1). The techniquarks harbor, similar to the ordinary quarks,
a chiral symmetry. In such a theory the elementary particles include, besides the techni-
particles, all the fermions and gauge bosons of the standard model, but no Higgs.

Such a theory then looks very much like QCD, though may have a different number
of colors. Therefore, its dynamics are ought to be quite similar. In particular, technicolor
confines, and techniquarks can only be observed bound in technihadrons. This dynamics
will therefore be determined by a typical scale. In QCD, this scale is Aqcp, which is
of order 1 GeV. This number is an independent parameter of the theory, and essentially
replaces the coupling constant g, of the elementary theory by dimensional transmutation.
Now, in technicolor therefore there exists also such a scale A7, the technicolor scale. To
be of any practical use, it must be of the same size as the electroweak scale, otherwise
the hierarchy problem will emerge again, though possibly less severe as a little hierarchy
problem. Assume then that this scale is of the size 1 TeV instead of 1 GeV like in QCD.
Then the dynamics of the technicolor theory would be the same as that of QCD, though
at a much higher energy scale, and possibly with a different number of colors and flavors.

Besides the technimesons, which will play an important role in the electroweak sector
as discussed below, there are also technibaryons. If they are fermionic, i. e. if N is odd,
the lightest one can be stable, similar to the proton, and may thus exist as a remnant
particle, and in particular is a dark matter candidate. However, in general these particles
would be too strongly interacting, at least by quantum loop effects, than to be undetected
by now. Hence, their decay into standard model particle is desirable, requiring a violation
of the associated technibaryon number. If the number of technicolors N is even, the
technibaryons are bosons, and could in that case oscillate by mixing into mesonic states
of the standard model, and would therefore decay also” by such channels.

Another similarity with QCD is even more important. The techniquarks are so far
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massless. As in QCD, the chiral symmetry of the techniquarks is assumed to be broken
spontaneously by the dynamics of the technigluons. The associated condensate will have
a size of about A, and will give the techniquarks an effective constituent mass of the
order of Ay as well. Thus, technihadrons will have in general masses of multiple times the
constituent techniquark mass. The only exception are the arising number of Goldstone
bosons, similar to the pions and other pseudoscalar mesons of QCD. How many such
Goldstone bosons appear depends on the number of techniflavors. In the present setup,
their number will be N]% — 1. As in QCD, these will be pseudoscalar bound states of a
techniquark () and an anti-techniquark (). If the techniquarks have the same weak charges
and electromagnetic charges as the ordinary quarks, these technipions will just have the
correct quantum numbers such that they can become the longitudinal components of the
weak isospin WW-bosons!, instead of the would-be Goldstone bosons of the Higgs mecha-
nism. Mixing with the hypercharge interaction will then lead as usual to the electroweak
interactions. The Higgs is actually not one of the Goldstone bosons, but will be a scalar
meson, the analogue of the o meson of QCD. Thus, it is expected to be more massive, but
also more unstable than the Goldstone mesons.

Note that for massless techniquarks the Goldstone bosons will be exactly massless.
This can give rise to problems, as discussed below. However, it is not possible to give
the techniquarks an explicit mass, because they have to be coupled chirally to the weak
isospin. Thus, this remains a problem for Ny > 2 in such simple technicolor theories, and
how to resolve it will be discussed after illustrating other problems of this simplest setup.

The actual quantitative values for the various scales introduced can be estimated if
the numbers of QCD are just scaled up naively to Ar, and the scaling to the number of
technicolors Np is done using the large- N approximation. The basic relation relates the
electroweak condensate v = 246 GeV with the decay constant of the technipion. The later
can then be related to the relation of the technicolor scale and the QCD scale with the
pion decay constant in QCD fqcp, which is measured to be about 92 MeV,

o o NT AT
_fT—\/ 3 AQCDfQCD7

with the technichiral condensate (Q.Qr). Solving for the technicolor scale yields

Wl

v = <QLQR>

in the MS scheme with a Aqcp of about 250 MeV. Due to the breaking of the chiral

symmetry, the effective mass of the techniquarks at lower energies is approximately also

"Which already mix with the original pions, as pointed out before.
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given by
mq(0) =~ v.

Though these are rather small masses, the techniquarks are not observable alone, similar
to quarks at low energies. Thus, their direct detection is complicated by bound states,
and their respective masses rather sets the scale for observation.

The mass of the Goldstone technipion is about

/N
M, ~ va,

and thus in the right region for them to be components of the W and Z bosons, if the
number of flavors is not too large. Of course, QCD-like dynamics imply more bound states.
Thus, masses of the low lying non-Goldstone bosons would start at about 2v 2 500 GeV,
plus binding effects. Assuming a QCD-like hierarchy, the next lightest state would be the

technip, which would have a mass

_ [3 vM, _33TeV
’ Nr fqep Né ’

M,

and therefore would be sufficiently heavy to escape detection so far.
After outlining these general properties of simple technicolor, it is worthwhile to in-
vestigate possible realization, and using them to discuss shortcomings of this type of

technicolor. This will force one to consider other realizations of the technicolor idea.

5.1.2 Susskind-Weinberg-Technicolor

The simplest (and ruled out?) realization of the general setup is given by the Susskind-
Weinberg version of technicolor. These theories have as a gauge group SU(Np)xSU(3)
xSU(2)xU(1). There are 2N; flavors in the fundamental representation of SU(Nr), each
flavor being either a member of a left-handed weak isospin doublet or a right-handed weak
isospin singlet of techniquarks, in analogy to the fermions of the standard model. Despite
their name, the techniquarks are chosen singlets under color. Their weak hypercharge
is then determined by requiring to have an anomaly-free theory. This requires that the
electric charges of the flavors are 1/2 and —1/2, for the +1/2 and —1/2 weak isospin
charges of the weak isospin doublet, respectively.

For Ny = 4 and Ny = 2 this gives with the above formulas a techniscale Ap of
about 600 GeV. Alternatively, by embedding this theory in a minimal GUT, a value of the

2Note that in the context of extended technicolor such theories for Ny = 3 and 2N + between 6 and 12

become interesting again, as will be discussed in section 5.3.2.1.
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electroweak scale of 270 GeV can be obtained. Both numbers are in rather good agreement

with the expectations.

The techniquarks will then acquire an effective mass of about 260 GeV, already in
disagreement with current observational limits. Furthermore, the techniquarks can form
technimesons with about twice this mass, and technibaryons, for Ny = 4 containing four
techniquarks, and thus of a mass of about 1-2 TeV. However, these technibaryons would be
(almost) stable, since in such a theory techniquark number is in the same way conserved as
ordinary baryon (or quark) number in the standard model. At first, this may seem like a
candidate for dark matter, but since it is potentially both weakly and electromagnetically
charged, it cannot fulfill the role of dark matter, and is actually rather a problem for the
consistency with cosmological observations. Extended technicolor introduced later will
make it again unstable, and therefore remove this burden from technicolor. In fact, once

unstable, it will have a spectacular decay pattern, generating heavy quarks abundantly.

Arranging the numbers differently for clarity, take only Ny = 2. The chiral symmetry of
the techniquarks will then be the exact global chiral group SU(2),xSU(2)gxU(1)y xU(1) 4.
Like in QCD, the techniquark condense and break chiral symmetry, providing the massless
techniquarks with mass. This will break the chiral group down to SU(2)xU(1)y xU(1)4.
This will be accompanied by massless Goldstone bosons, the technipions. If the broken
SU(2) subgroup and the U(1)y is actually gauged to become the product group of the
electroweak sector of the standard model, the technipions will have the correct charge
structure to become the longitudinal components of the W+ and the Z bosons. As a
consequence, the scattering of W=+ and Z bosons will become dominated by the strong

techniforce at energies above Ar, one of the most important signatures for technicolor.

The remaining symmetry part, U(1) 4, is actually anomalous, as in QCD, and therefore
is not present on the quantum level. As a consequence, the technin’ will also be anoma-
lously heavy, as the 1’ of QCD, about 1-2 TeV by upscaling. It is therefore also safe from

detection.

More phenomenological interesting are the analogues of the QCD p-mesons, the technips.
Its mass in this case is expected to be about 1-2 TeV, and should be the first new compos-
ite particle, which is sufficiently stable and distinct to be detectable as an unambiguous
signal for technicolor. The only potentially lighter particle is the technicolor version of
the QCD o-meson. However, its quantum numbers are that of the Higgs, and thus cannot
easily be distinguished from a standard model Higgs. Furthermore, if faithfully upscaled
from QCD, its widths will be so large that it will be essentially not visible. Since the width
of the actually observed Higgs is small, this needs to be avoided.

The situation becomes even more awkward when including a larger number of tech-
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niflavors to obtain better agreement with the electroweak scale. As in QCD, the larger
chiral symmetry group SU(2N;)xSU(2Ny) will be broken down to SU(2Ny), thus there are
N7 —1 Goldstone bosons. Of these N7/4—1 turn out to be uncharged under the standard
model forces, and thus interact weakly. They therefore also do not acquire any mass, and
are called therefore techniaxions. Unfortunately, though with them comes an additional
source of CP violation, they are ultimately incompatible with cosmological observations.
Even more problematic, the electromagnetically charged technipions not absorbed by the
W# are massless up to standard model corrections, which amount to about 6 GeV. Such

particles are experimentally ruled out.

5.1.3 Farhi-Susskind-Technicolor

As pointed out, this simplest versions of technicolor have a number of shortcomings. A bit
more useful are the more general Farhi-Susskind versions of technicolor. In this a fourth
generation is added to the standard model, though having possibly a different electric
charge structure within the ranges permitted by anomaly freedom. Furthermore, this
additional generation is gauged under the technicolor gauge group SU(N7).

As a consequence, the associated chiral symmetry group is SU(8)xSU(8)x U(1)y xU(1) 4.
Since with respect to the techniforce all the technifermions are equal, all will condense,
breaking the chiral group down to SU(8)xU(1), with the anomaly-mediated breaking of
U(1)4, and including the gauged subgroup SU(2)xU(1) of the electroweak sector. This
gives for each of the four flavors, technitop, technibottom, technielectron and technineu-
trino a chiral condensate and in total 63 Goldstone bosons, and one massive one due to
the axial anomaly. The four condensates can then act together to give the electroweak
condensate, making a lower mass of about roughly 150 GeV for each possible.

Classifying the Goldstone bosons, there are again four excitations having the quantum
numbers of the ordinary Higgs field, and thus three of them provide the longitudinal
degrees of freedom of the W* and Z bosons, and one appears similar to the standard
model Higgs, though with a potentially large mass due to the axial anomaly. For example,
the Goldstone boson giving the Z boson’s longitudinal component, the neutral technipion,

is given by the combination
T i o -
rty — bpby + bpvr — erer,

where the index on the technitop and the technibottom correspond to their QCD color
charge.
Besides the one appearing like the standard model Higgs, there are two more neutral

electrically ones, and two electrically charged ones. The remaining ones have weak and/or
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color charges. Some of them are expected to be almost massless, making the model
not viable in its current form. Depending on the assignment of the electric charge to
the technifermions, these particles can be either stable or decay. However, stable colored
technigoldstone bosons would be expected to bind to ordinary nuclear matter, thus setting
strong limits on their existence. However, the quantum numbers of these objects are the
same as the ones of leptoquarks in GUTs, making a distinction, if found, complicated.
Similarly, technivectormesons will have the same charge structure as gluons, but have in
general masses of the order of a few hundred GeV. They will therefore appear in radiative
corrections of strong processes, and can thus be accessed at such energies in principle,
though the QCD background may make this in practice complicated.

However, such simple setups run in general into problems with precision tests of elec-
troweak observables, like the S, T, and U parameters. In particular, such theories permit
that the techniquarks would appear in intermediate states. Since the flavors are mixed
in the standard model, a further flavor would permit to enhance flavor-changing neutral
currents, leading to a much too large splitting of the mass of the short-lived and long-lived
kaons, if the technicolor scale would not be too high to provide electroweak symmetry
breaking. Another problem is the top mass, which is almost of the same size as the tech-
nicolor condensate. Thus, top quarks should be sensitive to the composite structure of the
Higgs to an extent which is incompatible with current experimental constraints. Also, if
the techniquarks carry a conserved technibaryonic quantum number, this yields problems
with cosmological observations.

All of these problems appear predominantly because of the assumption that technicolor
is just QCD at a higher scale. Therefore, most attempts to remedy these problems aim at

distorting these similarities.

5.2 Extending technicolor

There are several proposals how to deal with the problems introduced by adding a simple
technicolor sector to the standard model, without affecting the virtues of such an extension.
The most successful so far is extended technicolor, though here also some other proposals

will be discussed.

5.2.1 Extended technicolor and standard model fermion masses

There is another reason that the simplest technicolor models are not sufficient. This is
that not only electroweak symmetry is broken by the Higgs, but also the fermion masses

are generated by Yukawa couplings to the Higgs. To obtain the different masses of the
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standard-model fermions requires the condensate of the techniquarks to be coupled dif-
ferently to all the standard model fermions. This is usually done by adding further
massive gauge bosons with mass of a second scale Agrc > Ap, the extended techni-
color scale, and coupled also to the standard model fermions. By this also the flavor
group of the standard model becomes gauged in the extended technicolor gauge group,
say, SU(>6)pxSU(N7)xSU(3)xSU(2)xU(1). In general, this is achieved, very similar to
GUTs, by having a large extended technicolor (ETC) master gauge group, which contains
all the other gauge groups, including the technicolor gauge group. All fermions, standard
model ones and technifermions alike, are then embedded in representations of this master
gauge group.

The breaking of the flavor group provides then a mechanism for the generation of
the fermion mass, by their coupling to the now heavy flavor gauge bosons. However,
despite giving a mechanism how the standard model fermion masses are generated, it is
still a problem how to generate their relative sizes without the introduction of either new
parameters or new fields. Note that this also explicitly breaks the chiral symmetry of QCD

by fermion masses, as in the standard model.

Another problem is that the resulting effective couplings have to be very specific such
that the hierarchy of fermion masses is obtained. E. g., quarks of mass a few GeV require

a Agrc of 2 TeV, while the top quark would rather require much less.

Nonetheless, such extended technicolor models are an important building block for

promising technicolor theories, and therefore will be discussed here.

In general, the setting is to start with the master gauge group of extended technicolor
G. Tt is broken by strong interactions at some scale Agt¢ into the gauge group of one of the
technicolor theories described previously. Then, at some lower scale Arq, the technicolor
interactions become strong, leading to electroweak symmetry breaking as before. To avoid
the hierarchy problem, it is often convenient not to make a single step from extended
technicolor to technicolor, but have one or more intermediate steps, which in a natural
way generate a hierarchy of scales. This is also known as a tumbling gauge theory scenario.
The initial driving mechanism of the first breaking is not necessarily specified. A possibility
would be that the master gauge group is part of a supersymmetric gauge theory, which

provides naturally a hierarchy-protected Higgs mechanism, as an initial starting point.

A variation on this theme are triggering models. In this case the fact that QCD breaks
the electroweak symmetry is used to plant a seed of breaking also an extended technicolor
gauge group. This seed is then amplified by a suitable arrangement of interactions such
that the right hierarchy of scales emerge. This can also be done with other triggers than
QCD.
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The extended technicolor gauge bosons, which have become massive on the order of
Agrc still interact with all particles. In particular, they mediate four-fermion couplings
purely between techniparticles, between ordinary standard model particles and technipar-
ticles, and between standard model particles. Similarly to the electroweak interactions,
they are perceived at the scale At and below as effective four-fermion couplings. Since
the technifermions condense, the mixed couplings have a contribution which couple the
standard-model particles to the technicolor condensate, schematically
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with extended technicolor coupling constant g, the mass of the extended technigluon Mgrc,
and the techni fermion condensate (T'T). Thus the techniquark condensate indeed also
generates the masses of the standard model fermions on top of the W and Z boson masses.

The size of the quark masses is given approximately by

2
AETC

mg = 3 (5.1)
where the factor 8 depends on the structure of the theory. For g = 1, a 'natural’ size, this
yields an upper limit on Agrc from the masses of the light quarks, to be about not much
more than an order of magnitude larger than Arc, and this only if Ap¢ is not too large
itself. On the other hand, if Agrc should not be too large, this is an upper bound for the
quark masses, which can be produced. In fact, if A7¢ is not much smaller than one to two
orders of magnitude than Agtc, and N7 is not too large, reproducing the bottom quark
mass, and much less the top quark mass, is hardly possible.

An advantage of such an interaction is that, depending on the detailed structure of the
interactions, this can provide some of the mixing of the standard model CKM matrices.
However, the same holds for the effective four-techniquark coupling, coupling states of
two techniquarks also to the techniquark condensate. This gives rise to larger masses
for the technigoldstone bosons, and in particular of techniaxions. Unfortunately, the size
of this effect is essentially given by the ratio of the extended technicolor scale and the
technicolor scale. If both scales are not very far apart, the effect is unfortunately not large
enough to give those particles too light in technicolor theories a sufficiently large mass to
be compatible with experimental bounds. Increasing the extended technicolor scale is not
a solution, since this spoils the masses of the light standard model fermions. A solution
to this will be the walking technicolor theories discussed in section 5.3.

A further downside is that also a coupling between four standard model fermions is

induced, which contributes to, e. g., flavor-changing neutral currents. As a result, e. g.,
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the mass difference between the two neutral kaon states K¢ and K7, dm%, is modified by
ETC contributions to

2 2 2,2
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Herein is 7 the effective coupling between standard model quarks. If assumed to be of the
same size as the Cabibbo angle, which mediates the mixing in the standard model and is
of order 1072, Agrc has to be of order 10® TeV for this to be compatible with experiment.
This substantially exceeds the expected size. It is one of the persisting challenges of
extended technicolor theories to provide at the same time the mass of the top quark
without having such currents to be so large that they are in conflict with experiments.
Actually, this problem also affects other beyond-the-standard-model theories, most notably
supersymmetry. It thus makes evident that one of the greatest challenges is to understand
the flavor structure of the standard model.

A further problem is that such an interaction yields corrections to quantities like the
coupling of the Z boson: If the Z boson is first converted into a techniquark pair, and
then these convert via extended technigluon exchange into ordinary standard model gauge
bosons, this will yield vertex corrections. These are essentially given by ratios of the
technicolor scale, giving the coupling to the Z boson of the techniquarks, and the ex-
tended technicolor scale, relevant for the conversion ratio of techniquarks to standard
model fermions. Since this ratio is not too large, the corrections are significant, and
indeed ruled out.

Thus, it is a challenge to construct extended-technicolor models which are consistent

with observations.

5.2.2 Techni-GIM

Techni-GIM models try to solve the problem of flavor-changing neutral currents by im-
itating the Glashow-Illiopoulos-Maiani (GIM) mechanism of the standard model. This
mechanism has been proposed to explain why no strangeness-changing neutral currents
have been observed. Such currents would exist if there would be only three quarks, up,
down, and strange, with the strange quark being a singlet under the weak interactions.
The GIM mechanism shows that if there is a fourth quark, the charm quark, promoting the
strange quark to being its weak isospin-doublet partner, interference effects will remove
such currents. This also requires that the mixing of down and strange quarks is only due
to the Cabibbo angle. Essentially that boils down to the fact that diagrams where initial
state fermion lines and final state fermion lines are connected vanish (up to corrections

proportional to the mass splittings) due to the mixing, and the only possibility is by an
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intermediate state with two weak gauge bosons. That is, e. g., the reason why the decay
of K* to 7t is suppressed compared to the decay into 7.

Techni-GIM models capitalize on this idea by adjusting the particle content such that
at tree-level no flavor-changing currents can occur. Radiative corrections can then be
arranged such that they are not in conflict with experimental observations.

This is achieved by introducing instead of one common extended technicolor gauge
group three, one for each weak multiplet. I. e., there is one extended technicolor gauge
group coupled to the three generations of left-handed doublets, and one each for the three
generations of two pairs of right-handed singlets. Thus, flavor-changing neutral currents
are avoided, since they couple left-handed fermions and right-handed fermions differently.
The price to be paid is a proliferation of gauge-groups. Furthermore, since the gauge
groups are the same for both quarks and leptons, the gauge bosons act as leptoquarks.
However, the effects can be adjusted such that, e. g., proton decay rates are not in violation
of experimental bounds. Unfortunately, the relation (5.1) still holds, indicating that it is

again a serious problem to obtain heavy quarks.

5.2.3 Non-commuting extended technicolor

Non-commuting extended technicolor is the first model to play with a recurring idea to
solve the challenges imposed by the flavor structure of the standard model: To treat the
third generation of standard model fermions differently. In this case the non-commuting
implies that the third generation is actually charged under the extended technicolor gauge
group but not under the ordinary weak isospin gauge group. By breaking the extended
technicolor gauge group first down to a SU(2) group for the third generation, a sequence
of breakings is generated which finally ends up with the appropriate structure for the
standard model supplemented by some technicolor interaction to break the electroweak
symmetry by the formation of a chiral condensate.

The sequence for the extended technicolor gauge group G is then

SU(3). x SU(Nr) x G x SU(2)142 x U(1)
SU(3). x SU(Nz) x SU(2)3 x SU(2)142 x U(1)y
SU(3). x SU(Nz) x SU(2)142+3 x U(1)y

SU3)e X SU(Nz) X U(1)em

s 1= =

where f, u, and v denote the condensates which hide the corresponding symmetries. The
indices on the SU(2) groups denote which generations are charged under the corresponding

gauge group. It then depends on the quantum numbers of these condensates how much of
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them enters in the hiding of the various groups, and therefore to which extent the mass
generation of the individual standard model fermions is dominated by which interaction.
It could either be that the third generation now indeed obtains the bulk of its mass from
the electroweak symmetry breaking effect, but it is also possible to arrange it that this
contribution is minor.

Irrespective of the details, in the end such a structure can be arranged such that the
standard model fermion masses come out with roughly the right size. It is even possible
to accommodate the two orders difference of magnitude of the 7 and the top, despite that
they have to be both charged under the ETC gauge group to provide an anomaly-free
theory.

A distinct prediction of this theory is that by breaking SU(2)3xSU(2)142 to SU(2)142+3
the three gauge bosons associated with the broken gauge group become massive with
masses of the order of u, just above the electroweak scale v. These W’ and Z’ gauge bosons,
since originally mediating a weak-like force between the third generation members, should
have similar properties than the electroweak W and Z bosons. This gives quite unique
signatures to be searched for, in particular in the form of effective four-point couplings of
standard model fermions in weak channels. The lower mass limits for them are currently
above 500 GeV, giving constraints on u. However, some related models like top-flavor
models, and other theories having a further weakly interacting gauge group at the TeV
scale, can also provide such heavy copies of the W and Z bosons. Indeed, nowadays
generically new neutral vector bosons are denoted by Z’, unless qualitatively very different
for the Z in some particular model. In fact, even the technip would appear like such a Z’.

An extension of this idea (tumbling technicolor) plays with the possibility of a sequence
of breaking theories, and each of the corresponding condensates is associated with one or

more of the fermion masses, generating their hierarchy naturally.

5.3 Walking technicolor

5.3.1 Generic properties

The basic reason why a similarity of technicolor to QCD is problematic is that in QCD
almost all non-trivial dynamics is concentrated in a narrow window around Agcp. That is
because the running coupling of QCD changes rather quickly from strong to weak over a
very narrow range of energies. In the electroweak sector, however, the dynamics is spread
out over a much larger range of energy scales in relation to its fundamental scale v, since

both the masses of the fermions and electroweak symmetry breaking must occur. Thus,
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a viable realization of the technicolor idea of strong dynamics paired with electroweak
phenomenology must reflect the slow evolution of the electroweak physics. This is the aim
of walking technicolor by replacing the fast running QCD evolution with a much slower,
walking, behavior.

As a consequence, such a theory has more intrinsic scales than QCD. QCD is essentially
only characterized by the one scale when it becomes strong. A walking theory can have up
to three scales. Assuming the walking theory to be also asymptotically free, there exists
a scale where it changes from being a theory acting strongly enough to break electroweak
symmetry to an almost free theory. A second scale must occur at low energy when it stops
walking, and the third scale is the one where it becomes sufficiently strong to confine
techniquarks. Of course, the latter two may coincide, but the first two may not, or the
theory would no longer be walking anymore.

To implement such an idea, it is required that the running coupling becomes weak

much slower. Since the coupling is given implicitly by the S function by

/g(t) dg’
t = —_—
. B

where g = g(Ar) is some chosen initial conditions, and ¢t = In(u/Ar). The § function to

three-loop order in a QCD-like setup is given by
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Here, Ny is the number of flavors in the fundamental representation, and T is the Dynkin
index of the group. If the function /3 is very close to zero for some value of g, g(t) becomes
a very slowly varying function of ¢ when it reaches this value.

E. g., to leading order of the § function of technicolor with techniquarks in the fun-

damental representation of an SU(Np) techni gauge group with gauge coupling gr this

3
g 11 8
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requiring about Ny ~ 11 N7 /8. Note that the standard model charges of these techniquarks

yields

are not relevant at this order. Therefore, by judiciously choosing the gauge group and
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the number of flavors, it is possible to construct a g function giving a theory that has the
desired walking behavior. More possibilities are offered by exchanging the representation of
the techniquarks. Using instead of fundamental techniquarks adjoint techniquarks shows
that for Ny = 2 the 8 function with Ny = 2 already vanishes to two-loop order. The

existence of a zero of the S-function at two loop is known as the Banks-Zak fix-point.

It should be noted that this argumentation can only be superficial: The S function
is dependent on the renormalization scheme, and the running coupling can be defined in
many ways. It is therefore a much more subtle task to indeed show that a theory is walking
than the outline discussed here. However, the general gist of finding a theory with, more

or less, constant interaction strength over a large momentum range remains.

Staying for a moment with the assumption that the coupling and g-function give the
correct picture, the big advantage is that the coupling evolves slowly with energies. There-
fore, the theory stays strong over a wide range of energies. As a consequence, techni bound
states can no longer spoil various electroweak precision measurements. Furthermore, when
arranging this walking behavior for the range between Arc and Agrc, the interaction of
the standard model fermions among each other and mediated by the extended techniglu-
ons will be essentially independent of energy, and thus remain small, while the electroweak
dynamics only given by the technicolor dynamics is staying essentially unaltered. In fact,
what happens is that (5.1) is modified to

NrAi

my =7y
q
Agrc

(5.5)
and thus quark masses of order one to two GeV are possible for reasonably chosen values

of Arc and Agrc between one and a few tens of TeV.

A similar replacement also takes place for the masses of the Goldstone boson masses
which are not absorbed by the W and Z bosons. Their mass is now found to be of order

NrArc, and thus sufficiently large to be not detectable yet.

A variation on the idea of walking technicolor is given by low-scale technicolor. In this
case the techniquarks necessary to make the theory walk are in different representations of
the gauge group. Since their respective energy scales are thus different, the corresponding
condensates, which add up quadratically to form the electroweak condensate, form at
different energies. These scales are widely separated due to the walking behavior. As a
consequence, techni bound states could have masses of the same size as the top quark,
though being sufficiently weakly coupled to escape detection so far. However, even with
the relation (5.5) this is only marginally sufficient to obtain the bottom quark mass, and

for the top quark an excessively fine-tuned value of v would be required.



Chapter 5. Technicolor 139

5.3.2 Realization of walking technicolor theories

Though there are thus still significant problems in realizing a phenomenologically fully
consistent extended walking technicolor theory, it is quite likely that some walking behavior
is an important part for many proposals of strong interactions beyond the standard model.
Thus the classification of such theories, and the construction of viable models with them,

has become an important goal in itself.

5.3.2.1 The conformal window

To identify viable technicolor sectors, it is important to understand the generic properties
of gauge theories with a simple Lie algebra and a number of flavors in one or more repre-
sentations. There are four different types of behaviors, which are expected to occur, and
so far have been the only ones encountered.

If there are no fermions coupled to the theory, the resulting Yang-Mills theory shows
for any Lie algebra the same qualitative behavior of a running theory, with a fast transition
between weak interactions and strong interactions towards small energies.

When fermions are present, the following type of behaviors can emerge, depending on
the number of massless flavors. However, for some Lie algebras some of the cases may
merge, if the behavior evolves too quickly with the number of flavors. Still, if formally
a fractional number of flavors is admitted, the following set of possibilities seems to be
common to all gauge groups.

For a small number of flavors, all these theories remain running, and chiral symmetry
breaks spontaneously. These theories behave essentially like QCD. When adding more
flavors, the theories slow down, and become gradually more and more walking. At a critical
number of flavors, even the walking stops altogether, and the theories become conformal,
i. e., scaleless without chiral symmetry breaking and without any observable dynamics.
This behavior persist for a range of flavors, and this range is also called the conformal
window?®. Finally, above a second critical number of flavors, the theories lose asymptotic
freedom, and thus become more strongly coupled the larger the energies. For massive
flavors, the theories follow a similar pattern, but such a theory can never be conformal,
and walking will only be possible in a range where the energies are large compared to the
fermion masses, as the walking behavior is similar to a conformal behavior.

What the precise number of flavors for a given gauge algebra and representation is,

is a highly non-trivial question of current research. For some cases, rather good results

3Tt is not yet entirely clear, if this conformality is just a behavior persisting from the infrared up to a
(large) scale, or for all energies. This would require an exact solution for the /5 function to test whether

it is really or only almost constant.
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have been obtained. E. g., for SU(3), the theory is QCD-like up to about 8-9 fundamen-
tal flavors, is walking up to 10-12 flavors, stays conformal up to 16 flavors, and looses
asymptotic freedom for 17 or more flavors. For SU(2) with adjoint fermions, the theory is
possible QCD-like or walking for one flavor, conformal for two flavors, and loses asymptotic
freedom for three or more flavors.

For the purpose of extended technicolor theories, the technicolor sector can be chosen
both as a walking theory or as a conformal theory. In case of a conformal theory, the
coupling to the standard model with its intrinsic mass scale, like the one induced by QCD,
will break the conformality, and make the theory walking.

However, having the right qualitative properties is not guaranteeing that the theory
also exhibits the right quantitative properties. It is therefore, in principle, necessary to

check for each theory whether its quantitative features are phenomenologically viable.

5.3.2.2 An example: Minimal walking technicolor

To give an example, one of the recently studied technicolor theories will be introduced
here. This will be the so-called minimal walking technicolor. The name originates from
the fact that the theory is tuned such as to yield minimal disagreement for the S, 7', and
U parameters.

The theory itself consists, besides the standard model, of an SU(2) technicolor sector
with two flavors in the adjoint representation. Thus, the technicolor sector alone is a
conformal theory, but this conformality is broken by the standard model. To avoid an
anomaly, it is also necessary to couple to the theory a fourth generation of standard model
leptons, but no fourth generation of quarks. The additional leptons and the techniquarks
do not necessarily have, again for anomaly reasons, the expected charges for such particles
with respect to the weak and the electromagnetic charges, and all are uncharged under
color.

The detailed charges for the new particles are actually not uniquely fixed, but can be
parametrized by a single parameter. E. g., a possible assignment for the hypercharge for
the techniquarks is 1/2 for the left-handed techniquarks and 1 and 0 for the right-handed
up-type and down-type techniquarks, yielding an electric charge of +1 for the techniquarks.
The right-handed electron has the charge —2 and the right-handed neutrino the charge
—1, while the left-handed ones have the charges of —2 and —1. Thus, these particles can
have quite different signatures as the standard model particles. A more standard-model
selection would be giving the neutrinos a charge of zero, yielding for the new leptons a
charge of —1, as usual. The quarks would then have the conventional charges as well.

Such a theory has an interesting set of bound states. Combining a techniquark and a
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techniantiquark yields technimesons. There are three technipions, which will take the role
of the longitudinal modes of the W's and the Z. The technisigma will then act like a Higgs
particle. Moreover, technibaryons in such a theory are also bosons. Because of a pecu-
liarity of the group structure of SU(2), the fact that SU(2) is pseudo-real, technibaryons
and technimesons can mix. This leads to the interesting possibility that a longitudinally
polarized W or Z can oscillate into a technibaryon. In addition to these bosonic bound

states, there are also fermionic ones, which consists out of a techniquark and a technigluon.

Thus, there will be a plethora of bound states at the TeV scale in such a theory.
Nonetheless, at current energies there will be little observable of this theory by construc-
tion, at least to leading order in perturbation theory and in chiral effective models, which
will not be discussed in detail here. Thus, such a theory is currently still in agreement
with the standard model. However the additional neutrino must be very heavy, compared
to the other neutrinos, at least above the Z mass. Also, for the additional lepton the lower

mass bound is quite high, of the order of a few hundred GeV.

In the current setup of this theory, extended technicolor is not explicitly incorporated.
Rather, a number of four-fermion terms appear with couplings adjusted to reproduce the
standard model phenomenology. In this sense, minimal walking technicolor is currently

an effective theory.

5.4 Topcolor-assisted technicolor

To also cope with the top quark, another proposal for a higgsless standard model, which
alone fails, can be incorporated into the technicolor setup. This is the so-called topcolor

approach.

Originally, to circumvent some of the problems appearing with the plethora of addi-
tional particles introduced by models, one approach, called topcolor, was to let instead a
top quark condensate take the role of the Higgs. To provide such a mechanism, there is
instead of SU(3). a double group SU(3);,2xSU(3)3. Only the top-quark is a triplet under
the second gauge group, while all the other quarks are triplets under the first group. If
this product group is broken at some scale to SU(3). there will be the ordinary gluons
and in addition 8 massive topgluons. If the relative size of the couplings are chosen with
hindsight, the massless SU(3). gluons will be predominantly from the group SU(3)i,2,
thus not altering the strong interactions significantly for the light quarks, while the ones

connected to the top quark are mostly the massive topgluons.

The interaction with the topgluons then induces only for the top-quark an effective
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four-top coupling involving the topgluon mass M;opgiuon

9
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Such couplings have been studied in various effective models, and it has been found that
they induce rather generically bound states of ¢ and #, if the coupling g; is sufficiently large
at small energies. In particular, it also generically leads to a condensate of the same type,
(tt) = vy, and thus an effective Higgs as a bound state of tops with its condensate effectively

obtained from a top condensate. The required size of the coupling is approximately
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where g3 is the topcolor gauge coupling, and A; is the scale associated with the breaking
of SU(3)142xSU(3),. Since the bound-state has the quantum numbers of the Higgs, it
can also be coupled by a Yukawa coupling to the top, therefore implying that it can also
generate the mass of the top quark itself by the condensation requiring m; = g,v;. However,
in pure topcolor theories v; has to be either too small to make up the entire electroweak
condensate, or g; is too small to induce symmetry breaking, or the top quark mass is too
large. Therefore, top quark condensation can only be an additional mechanism.

An interesting opportunity appears when topcolor is used to supplement technicolor,
leading to so-called top-color assisted technicolor theories. This has the advantage that the
main technicolor sector is not needing so strong interactions that violations of experimental
bounds become inevitable when attempting to cover also the top quark. At the same time,
the combination of topcolor and technicolor condensates is sufficient to produce the large
top quark mass. A drawback is that the bottom quark has to be also charged under
topcolor, being the weak isospin partner of the top quark. Thus, its mass would also
receive the same large contributions, in disagreement with experiments. A possibility to
remove this is by also doubling the weak hypercharge group for the third and the other
generations. Since top and bottom have different weak hypercharges, it is possible to
rearrange the interactions such that the bottom mass is small compared to the top mass,
if the additional weak hypercharge interaction is sufficiently strong. This is called tilting
the vacuum, though it mainly distorts the condensate structure.

However, even models constructed in this way have the problem that the topgluons (or
toppions) are usually too light to get everything else right, and therefore spoil consistency
with the standard model results. To ameliorate this problem, but without introducing yet
another gauge interaction, a possibility is to introduce another quark x in the topcolor

sector, which has left-handed components charged under SU(3)s; and its right-handed
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contribution charged under SU(3);.2. A gauge-invariant mass matrix for the top and yx

quark can then be written as

_ 0 GtV tr
(trxr) +h.c,
My, My XR

where M;, and M,, are free parameters. The obtained masses for the mass eigenstates

are thus

1 2
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Chosen appropriately, the lighter of the two eigenstates acquires the mass of the top
quark, while the other is much more heavier, and can easily have a mass in the TeV range.

Expanding the masses in this case gives
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For sufficiently large M,, the one state is much lighter, and a suitable top quark mass
can be obtained. In fact, electroweak precision measurements favor a mass of about 4
TeV for M,. The corresponding Higgs particle contains now also contributions not only
from technicolor and top quarks, but also from the y quark, making it generically heavier,
about 1 TeV. This requires tuning to make it again light enough to be compatible with
experiments. Furthermore, this model can be be extended such that technicolor can be
removed, and only a combination of a top and a y-condensate account for electroweak
symmetry breaking. In fact, the electroweak condensate is now proportional to the inverse
of the sine of the mixing angle squared of the top and the x quark, permitting an hierarchy
of scales in agreement with experiment.

This mechanism of introducing a second partner state such that by mixing a heavy
and a light particle emerge, is called see-saw. It is often used to provide a doublet with
very different masses by appropriately mixing two similar particles.

The strong interactions among top quarks produces also further bound states, in par-
ticular relatively light toppions and topps, which will couple strongly to the bound state
which acts as the Higgs. Hence, these will show up strongly at the scale A; in weak gauge
boson processes.

Such models, of course, leave open the mechanism how to break SU(3);,1oxSU(3);3
to SU(3). in the first place. Also, the scale A; has to be of order a few TeV, and can
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therefore introduce a little hierarchy problem. However, this is usually attributed to other
mechanisms at a higher scale. Another feature is that generically also a partner fermion to
the bottom quark is necessary, also to cancel any anomalies. It then requires some further
construction and adequate choice of parameters to prevent the bottom quark to acquire
a mass comparable to the top quark, but it is possible to do so. As in case of the x, also
this partner will be a weak isospin singlet. The production of these particles would also be
one of the prime signals for topcolor theories, in particular of the partner of the bottom

quark which is generically lighter than the one of the top quark.

5.5 Partial compositness

Note that in general the introduction of additional elementary scalars, which can have
varying technicolor and standard model charges, can remove many or even most of the
problems technicolor theories have. The advantage compared to the Higgs boson of the
standard model, for which to remove technicolor was invented in the first place, is that
these Higgses can have a rather large mass, as they only contribute partly to the elec-
troweak effects, the rest coming from technicolor. Therefore, they can be embedded in a
higher-scale theory, like a supersymmetric one, where their masses become protected by
additional symmetries from a hierarchy problem. This appears to be a valid alternative
in case neither supersymmetric particles nor any other light new particles are found, but
strong interactions in weak gauge boson scattering indicate a strongly interacting theory
as the origin of electroweak symmetry breaking. In particular, even if these scalars do
not condense, they can mediate additional interactions between the technicondensates,
removing several of the large effects incompatible with the experimental observations in
technicolor models, including the top mass. Such modification of technicolor theories usu-
ally go under the name of partial compositness. In case also the scalars interact strongly

such theories are also known as Abbott-Farhi models.

5.6 Dualities

An important concept is dualities. This is the statement that two different theories are
actually showing the same physics, if the involved quantities, fields, symmetries, and
coupling constants, are reinterpreted. In particular, in the limit of a large gauge-group
with at the same time limited matter content it is found that the perturbation series of
different gauge theories coincide. This suggests that in this limit the theories could be

identical. Since the proof is perturbative, this has the status of a conjecture.
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This is particularly interesting as often corrections turn out to be small or negligible
when going to smaller gauge groups. Since such theories are often also related by exchang-
ing a weak coupling for a strong coupling, this implies that theories of different complexity
can be used to describe each other.

This happens especially for strongly constrained theories, e. g. conformal theories. The
best example is the AdS/CFT correspondence, which links a classical supergravity theory
in a high-dimensional space to N/ = 4 super Yang-Mills theory in the limit of an infinitely
large gauge group at infinitely strong coupling. The later is a non-dynamical theory, as
superconformality forbids non-trivial scattering. Thus, this is not yet useful. It is, however,
conjectured that deforming the theory to become interesting could keep the duality still.
As this links a quantum theory to a (comparatively) simpler classical theory, this is very
useful. It is, however, not yet clear if this duality can be stretched to relevant theories.

In the same direction exist dualities between different theories in the conformal window
of section 5.3.2.1. They are suspected to exist between theories at the upper edge and
lower edge of the conformal window, which relates again strong-coupling theories and
weak-coupling theories. This is not well established, but would be helpful, as the stronger

interacting ones at the lower edge are more interesting for phenomenology.



Chapter 6

Other extensions of the standard

model

In the following briefly some other possibilities to add particles to the standard model are
presented, which still adhere to a four-dimensional space time and ordinary quantum field
theories without gravity. In contrast to the theories discussed in the later chapters, these
require less drastic changes at the electroweak or 1 TeV scale to our current picture of

nature.

6.1 nHDM models

There is a generic trait for many BSM scenarios: The appearance of additional scalar
particles, being them elementary or composite. All of these models have a very similar
low-energy behavior, essentially the standard model with more Higgs-like particles. These
can be either in the same representation as the standard-model Higgs, or also in a different
one. This whole class of models is hence known as n-Higgs models. Particularly important
are models which have copies of the standard model Higgs. These models are called n-
Higgs doublet models (nRHDM). Particularly important is the case of n = 2, so-called
2HDM. Of course, nH(D)M models can also be stand-alone models. The extended Higgs
sector can have an enlarged custodial symmetry, which can be partly intact. This allows
for further conserved quantum numbers.

A generic feature of 2HDM is that it is usually possible to have only one of the Higgs
particles condense. This is achieved by a suitable choice of basis in the custodial space and
gauge space, and this basis is called the Higgs basis. However, in this basis usually the
Higgs particles are not eigenstates of the mass operator, and tree-level mixing is possible.

To avoid this requires a different basis, the so-called mass basis, in which the vacuum
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expectation value will be distributed over multiple Higgs doublets/multiplets.

The other Higgs particles then form an additional quadruplet, of which one behaves
like a heavier copy of the standard-model Higgs, two are electrically charged, and one
is a pseudoscalar. The additional Higgs particles can partly even be lighter than the
standard-model Higgs, and they can play the roles of axions in some cases. They can also
be arranged to take part in the see-saw mechanism of section 5.4.

The situation quickly escalates if adding further Higgs doublets without having strin-
gent symmetry conditions. Especially, already the 2HDM has five instead of two indepen-
dent parameters in the Higgs sector, showing the strong growth of the parameter-space
dimensionality with more Higgs particles. Special care has also to be taken that these do
not accidentally break other symmetries, especially the electromagnetic gauge symmetry.

Depending on the details of the models, supersymmetric models, technicolor models,
and the not yet discussed extra-dimensional models of chapter 8 can have nH(D)Ms as
low-energy effective theory, as well as many others. In such cases the extended custodial
symmetries and parameters are usually constrained compared to stand-alone nHDMs.
Thus, nHDMs also play an important role in constructing non-minimal effective theories

as a next step beyond the leading low-energy effective theories of section 3.6.6.

6.2 Little Higgs

The idea of the Higgs as an emergent state is also the primary guideline for the construction
of little Higgs models. If the Higgs would be the Nambu-Goldstone boson of a broken global
symmetry, it would naturally be light, in fact even massless if the symmetry-breaking
would be only spontaneous, similar to the pion in QCD. The simplest case would be an
additional global symmetry with some particles charged under it, which becomes broken
at the TeV scale.

However, such a simple model is usually inappropriate, and more refined approaches
are necessary. One of them is the idea of collective symmetry breaking. To become more

formal, such physics is usually described using a non-linear o-model

1(60,6)(60"9)
2 [P

If f is zero, this reduces to a free scalar theory. This Lagrangian can be linearized to the

L= % GO D+ (6.1)

linear sigma model by the introduction of another field o to

1 2\ ?
L= 50,20"® — 2 (cbcp - MT) . (6.2)
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where ® = (¢,0). If the symmetry is broken, f2 = ¢? + 02 and f is a function of the
parameters A and p. The field ¢ is massless, and plays the role of the Goldstone boson,
here the Higgs boson. The original Lagrangian (6.2) is invariant under a symmetry group
G acting on @, while the effective Lagrangian is only so under a smaller symmetry group
G/H acting on ¢. Thus, to specify the non-linear sigma model, a strength f and a
symmetry breaking pattern G — G/H is necessary. At an order 4w f ~ A, the effective
description in terms of (6.2) breaks down, as then the energy is sufficiently large to excite

gs.

To achieve decent agreement with experiment is challenging with this concept. It is
necessary to take a group G with a gauged subgroup SU(2)xU(1) to obtain a Higgs with
correct, properties. Also, there must be explicit breaking, which can be modeled by a
mass-term m?¢? in (6.1). Though this approach gives a first possibility, it turns out that
it endows a (little) hierarchy problem, since the emerging Higgs is again having a mass

sensitive to corrections at the scale A.

As a remedy, the mentioned collective symmetry breaking was introduced. The basic
idea is to use a product group G; X Gy which has a gauged electroweak group SU(2)xU(1)
in each of the factor groups G;. In such a setup, radiative mass corrections between
both factor groups actually cancel, at least at (one-)loop level, such that the Higgs mass
is protected. However, to obtain reasonable masses for the top quark and the Higgs
simultaneously requires an additional vectorial partner of the top quark, usually denoted
by T. Then the top quark can have a large mass, without its (large) Yukawa coupling to
the Higgs leading to large radiative corrections of its mass, since the latter are canceled

by contributions from its 1" partner.

Such subtle cancellations are a hallmark of the various little Higgs models. Popular
examples for the choice of G are the minimal moose model (SU(3);xSU(3)z/SU(3)y)*,
where even a SU(3)xSU(2)xU(1) subgroup is gauged, leading to additional gauge bosons
which become heavy by the symmetry breaking, the littlest Higgs model with SU(5)/SO(5)
having a gauged (SU(2)xU(1))? subgroup, and the simplest little Higgs model with group
G being (SU(3)xU(1)/SU(2))? with gauged subgroup SU(3)xU(1).

However, in all cases some fine-tuning appears at some point to obtain results in
agreement with experimental data. A radical approach to remedy the problem is by
introducing an additional global Zs symmetry, under which standard model and additional
particles are differently charged. The action of this symmetry is to exchange the subgroups
G; of G. This is called T" parity. Provided T-parity is not developing an anomaly, what
indeed happens for some models, the lightest additional particle is stable, and thus a dark

matter candidate.
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Note that the additional symmetry can also be part of a strongly-interacting theory,
akin to the technicolor theories of chapter 5. In this context such theories are usually
called compositness models, as the Higgs then becomes a composite Goldstone boson of
the strongly interacting theory, rather than being an elementary scalar as in proper little

Higgs theories.

6.3 Hidden sectors

The generic idea of hidden sectors is that in addition to the standard model there is a
second set of particles which have very weak or no coupling to the standard model particles,
and a set of very heavy messenger particles connecting this hidden sector to the standard
model. Provided that these particles are not gravitationally bound in significant numbers
to ordinary astrophysical objects, such a sector will not be detectable unless the energies
reached become of order of the messenger masses.

A simple example for a hidden sector would be a hidden QCD with some gauge group*
SU(N) and hidden quarks charged under this symmetry. The mediator is a U(1), i. e.
a QED-like symmetry with a gauge boson Z’. This symmetry is broken at the TeV
scale, making the Z’ very heavy. If the hidden quarks also have mass of this size, but the
hidden QCD is unbroken, a high-energetic Z’ can be produced by standard model particles,
and then decay into a hidden hadron, which decays to the lightest state, generically a
hidden pion, which can then decay through a virtual Z’ to standard model particles.
Though this scenario is not solving any of the problems of the standard model, it is
neither in contradiction to any observation, and has therefore to be taken into account
when developing possible search strategies at experiments.

Another possibility is the quirk scenario. In this case the hidden quarks, called quirks,
are in addition also charged like standard model quarks, but very heavy compared to
the intrinsic scale Apjgqen Of the hidden gauge theory. Then the quirks themselves act as
mediators. As a consequence, hidden glueballs would be quasi-stable on collider time-
scales, giving unique missing energy signatures.

Another possibility is if the hidden theory is almost conformal, and only coupled weakly
to the standard model. In this case the conformal behavior of the hidden particles will
generate very distinctive signatures, as their kinematic behavior is quite distinct from
anything the standard model offers on these energy scales. Such hidden (quasi-)conformal
particles are also called unparticles.

Finally, mirror world scenarios have essentially a copy of the standard model as hidden

LN has to be larger than two for compatibility with experiment.
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particles. Thus, this allows the existence of mirror worlds, which do, however, only interact
weakly through the messenger and gravitationally with the usual standrad model. This
allows to have whole mirror galaxies gravitationally bound to ours as candidates for dark
matter. Variations on this idea keep the interaction strengths, but vary the masses of the
particles.

Most of such hidden sectors, or sometimes also called hidden valley theories, have very
specific signatures. These include long-lived particles, which decay to standard model
particles on distances of meters to kilometers, and (partly) dark jets. The latter refer
to the generation of a jet in stronhly interacting hidden sector theories, which are then
transformed (partly) to ordinary strongly-interacing particles, and thus jets, appearing
possibly substantially removed from an interaction site. Searching for such scenarios re-

quires expeirment to be sensitive away from an interaction point at colliders.

6.4 Flavons

A serious obstacle in technicolor theories, as well as many other scenarios, had been the
generation of the mass spectrum of the fermions. To remedy this problem, a variation of
a hidden sector can be introduced.

In this case all Yukawa couplings of the standard model are dropped, i. e., all fermions
are exactly massless. Then there exists an additional global symmetry, the flavor symme-
try, which has symmetry group U(3)°. Some part of it is broken by QCD due to chiral
symmetry breaking, generating most of the mass for the up, down and strange quark, but
(almost) nothing for leptons, and not enough for the heavier quarks. To provide it, quarks
and leptons are coupled to a further field, called flavon, by a messenger particle. Neither
are charged under the standard model gauge interactions. The flavon then condenses,
and the messenger couples the condensate back to the standard model fermions, providing
their masses. Though this is not explaining the mass hierarchy, this splits the dynamics of
the fermion mass generation from electroweak symmetry breaking, which could then, e. g.,
be provided by a simpler technicolor theory than the top-color assisted extended walking
technicolor.

Integrating out the messenger field will generate couplings between the Higgs (or what-
ever replaces it) and the standard model fermions, which will essentially look like the
standard-model Yukawa couplings. The Yukawa couplings will then be proportional to
the ratio of the electroweak condensate squared and the mass of the messenger particle.
Assuming the lightest particle, neutrinos, to have a coupling to the messengers of order 1

then yields a mass for the messenger of order Agyr, and therefore further consequences of
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these particles will not be harmful to present electroweak precision measurements. This

scenario is also known as the Froggat-Nielsen mechanism.

6.5 Higgs portal

Dark matter is generically rather simply realized by a hidden sector of, more or less,
arbitrary structure. In its simplest form this sector is only gravitationally coupled to the
standard model, making dark matter only observable by its gravitational action. While

possible, this is not very attractive.

On the other hand, direct detection places stringent limits on the interaction of dark
matter with the standard model. Strong interactions are ruled out, and weak interactions
only marginally allowed. FElectromagnetic interactions are only possible if the electric
charge is very small compared to the other standard-model particles, so-called milli-charged
particles. If such a case is undesirable, e. g. because of it being hard to reconcile with a

GUT structure, there is only one possibility left. This is the Higgs.

Because it is possible to construct a gauge-invariant and otherwise symmetry-compatible
operator ¢'¢ from the standard-model Higgs field, it is possible to construct, e. g. for a

scalar dark matter particle d, a renormalizable coupling
Lyp = ngdﬁﬁTﬁb

with an undetermined and free coupling constant g. Since now the Higgs interaction is the
mediator to the dark matter sector, this is called a Higgs portal. If the dark matter particle
carries a conserved symmetry, in the simplest case a parity for a real scalar particle, this
also allows for a very massive dark matter particle, a so-called weakly-interacting massive
particle (WIMP), without having all of the dark matter decaying during the evolution of

the universe to standard-model particles.

Such scenarios are not easy to exclude, as g is in such simple models not constrained.
It is also possible to have different Lorentz structures, internal symmetries, or even gauge
symmetries for the dark matter sector. Also, multiple dark matter particles could all be
coupled in this way. In experiment, this would show up as a too large invisible decay
width of the Higgs in missing energy signatures. Given that the Higgs width cannot yet

be measured directly, this gives relatively large freedom to create Higgs portals.
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6.6 Left-right-symmetric models

A very constraining feature of the standard-model is the weak parity violation, as it forbids
independent masses for fermions and imposes strong anomaly cancellation features. It is
also quite cumbersome in supersymmetric extensions of the standard-model.

These problems are avoided in so-called left-right symmetric models. In such models
the weak interaction is embedded in a larger gauge symmetry such that the uncharged
right-handed standard-model fermions and the charged left-handed fermions are put into
a common multiplet. This is arranged such that the right-handed particles correspond
to charges then broken by a Brout-Englert-Higgs effect, and are thus no longer charged
under the remaining gauge symmetry. The left-handed fermions are. Thereby, a variation
on the GUT idea provides this effect. It is also possible to enlarge this scenario to have
this effect in a full GUT2.

Such scenarios therefore give rise to additional heavy gauge bosons and heavier Higgs
siblings, at a, more or less, arbitrary scale at or above the TeV scale. This can therefore

be tested by finding such particles.

6.7 Axions

A problem yet only briefly mentioned is the insufficient breaking of CP symmetry in the
standard model. In fact, there exists another possible source of CP symmetry violation
in the standard model. For both the weak interactions and the strong interactions it is

possible to add a term
L = 0¢,,0 F" F° (6.3)

to the standard model, a so-called topological term with the vacuum angle . The latter is
bounded for topological reasons. Since effects of such a term are genuine non-perturbative,
and suppressed like exp(1/g), they are irrelevantly small for the weak interaction. However,
for the strong interaction an upper limit of the order of 10719 for @ exists®.

While € is an independent parameter of the standard model, and its value therefore
needs to be taken from experiment, its value is so close to zero that it is suspicious. It

is not simple to find a structural embedding of the standard model such that # becomes

2In fact, the SU(5) GUT of section 7.2 treats left-hand fermions and right-hand fermions both vectorial,

but in different multiplets of the gauge symmetry.
3Formal reasons suggest that actually a term like (6.3) is generically not contributing. However,

even in absence of this motivation for axions, the ensuing phenomenology for axions remains valid as an

independent (less motivated) scenario.
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zero, or at least very small. Thus, there is no easy solution to this so-called strong CP
problem.

One possibility is that this is actually a dynamical effect. To achieve this, an additional
scalar field, the so-called axion, is introduced, which couples to the topological term (6.3).
Adding a suitable symmetry breaking to the axion sector, the term becomes dynamically
suppressed, and therefore compensates strong CP violation. This symmetry, known as the
Peccei-Quinn symmetry, is usually a global U(1).

In addition, such axions can be designed such that they can also act as dark matter
candidates, therefore resolving two problems at once. Such axions would be produced in
strong interactions, but usually strongly suppressed as they only couple through (6.3).
Especially, this is (at least) a dimension five operator, and therefore suppressed by a scale
related to the axion. Still, this implies that sources with a lot of strong interactions, e.
g. the sun, will produce eventually axions, and these are therefore accessible in direct
detection experiments.

A generalization of axions are axion-like particles (ALPs). They are usually not moti-
vated by any issue in particular, but merely denote particles which weakly interact with
the standard model. This can happen, as in the axion case, by a higher-dimensional oper-
ator or by utilizing the fact that hypercharge is an Abeian interaction. In the latter case,
they receive a very small electric charge, of order 10™* electron charges, or less. These
are then also called milli-charged particles. Also known as feebly interacting particles
(FIMPs), such particles can be both light or heavy. They can either be considered as one
more possibility of new physics or as a dark matter candidate.

A unique signature of such particle is their ability to regenerate photons. By shining a
laser on a wall, the laser is absorbed. However, milli-charged particle can be created from
this beam, and then travel through the wall. Interacting with a strong electromagnetic
field afterwards, they can be agained converted into photons, and thus a weak laser beam
emerges after the wall. Such light-shining-through a wall experiments have been done, but

so far without any hints of a signal.

6.8 Inflaton and quintessence

Another problem solvable by one or more additional scalar fields is the inflation problem
of section 3.4.2. It can be shown that already the electroweak phase transition and the
strong phase transition? leads to an inflationary period, but in both cases far too short

and too ineffective as they are not first order. Thus, having a third phase transition in an

4Actually, to the best of our current knowledge both are only crossovers rather than phase transition.
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additional sector could solve the problem. For this an additional scalar field with suitable
potential and symmetry can be introduced, the inflaton®.

However, it turns out that there is a reason for why both known cases are far too
inefficient. In both cases the potential rises at large field values (classically) like a fourth
power. Such a steep potential is accelerating phase transitions too much to yield long
inflationary periods. To avoid this problem, slower rising potentials are necessary, e. g. of
type ¢?In ¢, giving rise to the so-called slow-roll mechanism. While such potentials are
in a quantum-field theoretical setting difficult to handle, they show in a quasi-classical
treatment promising results.

Such a mechanism, depending on the energy scale it would act upon, could be discov-
ered in the properties of the cosmological microwave background, especially its polarization
(so-called r-mode). This is essentially an imprint of the gravitational waves created by the
process. A direct observation of the gravitational wave background radition would also be

able to provide information about such a mechanism.

5There are many similar scenarios, and the name quintessence is also attached to them.



Chapter 7

Grand unified theories

The first example of a high-scale BSM scenario will be the grand-unified theories (GUTSs).
While they become only relevant at rather high scales, compared e. g. to 1 TeV, they are
very often needed to make extensions at a lower scale complete or more consistent. Thus, it
is worthwhile to start with them, and have them available later. Note that supersymmetric

GUTs form a field of its own, not touched upon in this lecture.

7.1 Setup

The most important motivation for GUTs is the following: As outlined before, the fact that
the electromagnetic couplings have small ratios of integers for quarks and leptons cannot
be explained within the standard model. However, this is necessary to exclude anomalies,
as has been discussed beforehand. This odd but important coincidence suggests that
possibly quarks and leptons are not that different as it is the case in the standard model.
The basic idea of grand unified theories is that this is indeed so, and that at sufficiently
high energies a underlying symmetry relates the gauge interactions of quarks and leptons,
enforcing these ratios of electric charge. This is only possible, if the gauge interactions,
and thus the gauge group SU(3)color XSU(2)weak X U(1)em is also embedded into a single
group, since otherwise this would distinguish quarks from leptons due to their different
non-electromagnetic charges. Another motivation besides the electromagnetic couplings
for this to be the case is that the running couplings, the effective energy dependence of
the effective gauge couplings, of all three interactions almost meet at a single energy scale,
of about 10*® GeV, the GUT scale, as has been discussed in section 4.10.3.1. They do not
quite, but if the symmetry between quarks and leptons is broken at this scale, it would
look in such a way from the low-energy perspective. If all gauge interactions would become

one, this would indeed require that all the couplings would exactly match at some energy
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scale.

These arguments are the basic idea behind GUTs. The underlying mechanism will
now be discussed for a simple (and already experimentally excluded) example. Since there
are very many viable options for such grand-unified theories, all of which can be made
compatible with what is known so far, there is no point as to give preference of one over the
other, but instead just to discuss the common traits for the simplest example. Also, GUT
ideas are recurring in other beyond-the-standard model scenarios. E. g., in supersymmetric
or technicolor extensions the required new parameters are often assumed to be not a real
additional effect, but, at some sufficiently high scale, all of these will emerge together with
the standard model parameters from such a GUT. In these cases the breaking of the GUT
just produces further sectors, which decouple at higher energies from the standard model.
Here, the possibility of further sectors to be included in the GUT will not be considered
further.

The basic idea is that such a GUT is as simple as possible. The simplest version com-
patible with just the structure of the standard model requires to have a Yang-Mills theory
with a single, simple gauge group, and the matter fields belong to given representations of
it. As noted, the standard model gauge group is SU(3)color X SU(2)weak X U(1)em. This is a
rank 4 Lie group, 2 for SU(3) and 1 for SU(2) and U(1). Thus, at least a group of rank 4
is necessary, excluding, e. g., SU(4) with rank 3 or Gy with rank 2. Furthermore, fermions
are described by complex-valued spinors, and thus complex-valued representations must
exist. This would be another reason against, e. g., Gy, which has only real representations.

Another requirement is that no anomalies appear in its quantization.

Taking everything together, the simplest Lie groups admissible are SU(5) or SO(10),
both having rank 4, as well as the rather popular cases of rank 6, 7, and 8, the groups Eg,
E;, and Eg, respectively.

Now, take SU(5) for example. It has 24 generators, and thus 24 gauge bosons are
associated with it. Since the standard model only offers 12 gauge bosons, there are 12 too
many. These can be removed when they gain mass from a Brout-Englert-Higgs effect, if
the masses are sufficiently large, say of order of 10*® GeV as well. Thus, in addition to new
heavy gauge bosons, a number of additional Higgs fields, or other mediators of symmetry

breaking, are necessary in GUTs.

It should be noted that the idea of GUTs in this simple version, i. e., just be enlarging
the gauge group, cannot include gravity. This is forbidden by the Coleman-Mandula

theorm of section 4.1. To circumvent it requires again to move to supersymmetric GUTs.
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7.2 A specific example

Lets take as a specific example SU(5) for the construction of a GUT. It has 24 generators,
and therefore there are 24 gauge bosons. 8 will be the conventional gluons G,, 3 the W, of
the weak isospin bosons, and 1 the hypercharge gauge boson B,,, leaving 12 further gauge
bosons. These 12 additional gauge bosons can be split in four groups of three X, Y, X+,
and Y, making them complex in contrast to the other gauge bosons for convenience. The

general gauge field A, can then be split as
A, = Alr, = G diag(X,0,0) + W) diag(0,0,0,0") (7.1)
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where \ are the Gell-Mann matrices, o are the Pauli matrices, and the remaining generators
of SU(5), the matrices z#, y*, £#, and x*, have no entries on the diagonal. This assignment
is necessary to obtain the correct charges of the known gauge bosons. This can be seen as

follows. Gauge bosons transform under an algebra element as
(7%, Ay = [7, 7 AD = if*ere A

Take for example 7° to be the generator of B,,. This matrix commutes with the ones of
all the normal gauge field bosons, so their contributions are zero'. These particles are
not charged. However, the matrices associated with the new gauge bosons do not. The
appearing coefficients £ then show that the gauge bosons X, and Y, carry electric charge
5/3, while their complex conjugate partners have the corresponding anti-charge —5/3. In
much the same way it can be shown that the three elements of each of the four fields
can be arranged such that these gauge bosons carry the same color and weak isospin as
the (left-handed) quarks and leptons. Since they can therefore couple leptons and quarks
directly, they are referred to as leptoquarks, mediating e. g. proton decay as discussed
below.

Arranging the fermions turns out to be a bit more complicated. Each family consists

of 16 fermionic particles, 12 quarks and 4 leptons, counting two quark and lepton flavors

'The mixing of the weak fields and the photon has not been performed, therefore the weak isospin

bosons are electrically neutral.
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with three colors for the quarks and left-handed and right-handed chiralities separately.
The fundamental representation of SU(5) is only of dimension 5, and can therefore not
accommodate this number of particles. Also, the assignment in multiple copies of the
fundamental representation cannot yield the correct quantum numbers. Therefore, the
matter fields must be arranged in a non-trivial way.

It is an exercise in group theory, not to be repeated here in detail, that the simplest
possibility is to assign the 16 particles to three different multiplets. In this construction
the right-handed neutrino vg become a singlet under SU(5). Since already in the standard
model it couples to the remaining physics only by the Yukawa coupling to the Higgs, and
thus with a strength measured by its very small mass, this appears appropriate. The
remaining particles of a family are put in two further multiplet structures. The right-
handed down quarks and left-handed electron and electron neutrino can be put into an

anti-5 (anti-fundamental) multiplet v
di
ds
=1 d5 |,
€r

while the remaining particles can be arranged in a 10-multiplet x
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i 2 B e 0

—e

where ¢ denotes the charge-conjugate of a right-handed particles g, i. e.,

P =ivav0(Yr)"

This multiplet structures is in fact necessary to provide an anomaly-free theory.

This appears to be a quite awkward way of distributing particles, and also not be
symmetric at all. However, without proof, this distribution yields that all fermions have
the correct quantum numbers. In particular, the correct electric charges are assigned -
and exactly those. Hence, this embedding implies the mysterious relation of quark charges
and lepton charges of the standard model in a natural way. Furthermore, it also implies
that right-handed quarks are not interacting weakly, in this sense yielding parity violation

of the weak interactions as well.
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The remaining problem is now the presence of the X and Y gauge bosons. At the
current level, these are massless. Even if they would be coupled to the Higgs field of the
standard model, this would have to occur in the same way as with the W and Z bosons,
thus yielding approximately the same masses. That is in contradiction to experiments,
and therefore some way has to be found to provide them with a sufficiently heavy mass as
to be compatible with experiments.

The simplest possibility is to have again a Brout-Englert-Higgs mechanism, like in
the electroweak sector. Since the latter may not be affected, two sets of Higgs fields are
necessary. The simplest possibility is to have one multiplet of Higgs fields ¥ = ¥%7% in the
24-dimensional adjoint representation of SU(5), and another one H in the fundamental
five-dimensional one. The prior will be used to break the SU(5) to the unbroken standard
model gauge group, and the second to further break it to the broken standard model.

To have the correct breaking of SU(5), the vacuum expectation value for ¥ must take
the form (¥) = wdiag(1,1,1,—3/2,—3/2). The 3-2 structure is necessary to guarantee
that the condensate is invariant under SU(3)-color and SU(2)-weak-isospin rotations. Such
a condensate can be arranged for with an appropriate self-interaction of the Higgs fields.

That this condensation pattern removes only the X and Y gauge bosons can be directly

seen from the interaction of ¥ with the gauge bosons, which is given by

£ = Zr((0,5 — gl 5705 — igla*, 1)) P EY Zghu(x x4 v, v,
where g is the SU(5) gauge coupling. The structure of the remaining term is then just
that of a mass-term for the X and Y gauge bosons, and because of the particular structure
chosen only for them. The corresponding masses can be read off directly and are

My = My = igw.
2V/2
Choosing a potential such that w is sufficiently large thus makes the additional gauge
bosons unobservable with current experiments. At the same time, any Higgs interactions
having such a signature will give 12 of the 24 Higgs bosons of 3 a mass of order w as
well. The other 12 are absorbed as longitudinal degrees of freedom of the X and Y
gauge bosons. Thus no trace of them remains at accessible energies. Similarly choosing

(H) = (0,0,0,0,v/v/2) yields

Lhinetie = (9,H —igAH)" (0" H — igA"H)
2,,2
H—(H) g-v 4 + — 1
= LYY R W 24" )
4 ( p T W +200829W g )

This provides an additional mass shift for the Y bosons, and for the W and Z bosons

their usual standard model masses. Out of the 10 independent degrees of freedom in the
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fundamental representation 3 are absorbed as longitudinal degrees of freedom of the W
and Z bosons, leaving seven Higgs bosons. One of them has the quantum numbers of the
standard model Higgs boson, while the other six decompose into two triplets (like quarks)
under the strong interactions. By introducing appropriate couplings between Y and H
bosons, it is possible to provide these six with a mass of order w, thus also making them
inaccessible at current energies.

It remains to show how fermion masses are protected from becoming also of order w.
Actually, it is not possible to construct a coupling between ¥ and the fermions which is
renormalizable. However, it is possible to construct a Yukawa coupling to the H Higgs
bosons. For example, for the first generation a mass term for the fermions is generated of
type

L) = —M(Jd + ee) — ZM”ELU,

V2 V2

where g4 and g, are (arbitrary) Yukawa couplings. Since these are expressions at the GUT
scale, this implies the same mass for down quarks and electrons at this scale. Transferring
these results to the scale of the Z mass yields results which are in good agreement with
experiment for some mass ratios, notably the bottom-to-7 ratio is about three, close to the
experimental value of 2.4. However, in particular the light quark masses are not obtained
reasonably well, showing that this most simple GUT is not sufficient to reproduce the

standard model alone.

7.3 Running coupling

After this very specific example, it is also possible to make some more general statements,
which will be done in this and the next section.

One of the motivation to introduce a grand-unified theory was the almost-meeting of
the running couplings of the standard model when naively extrapolated to high energies.
Because of the requirement that the structure of GUTs should be simple, all matter fields

couple with the same covariant derivative to the GUT gauge bosons as
D, =0, —igTa A}, (7.2)

where g is the gauge coupling, Aj the gauge boson field, and 7 are the generators of
the group, e. g. SU(5) yielding (7.1), in the representation of the matter fields. Here, it
will be assumed that each generation of standard model matter fields fill exactly one (or
more) multiplet(s) of the theory, but no further additional particles are needed to fill up

the multiplets, and no multiplets contain particles from more than one generation.
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The expression (7.2) has to be compared to the covariant derivatives of matter fields

in the standard model, which is given by

Dy = 8, — igoriGe — igir W + igh%Bu.
The strong interaction is parametrized by gs, the strong coupling constant, Gy, are the
gluons, and the 7° are either Gell-Mann matrices for quarks or zero for leptons. For the
electroweak sector, only energies are considered at which the weak symmetry is essentially
manifest. Therefore, it is useful to employ the corresponding notations. Then, the weak
isospin bosons W7 come with the weak isospin coupling g; and the Pauli matrices 7.
The influence of parity violation is neglected here for the sake of the argument?. Finally,
there is the hypercharge gauge boson B, with the corresponding coupling g,. Since the
hypercharge group is the Abelian U(1), instead of representation matrices the hypercharge
quantum numbers y appear, depending on the particle species in question, and have to be
determined from experiment in the standard model.

Choosing a suitable basis with the same normalization of 7% and 7% unification implies
that at the unification scale g; = ¢; = ¢g. It is a bit more tricky for the hypercharges.
One of the generators of the unified gauge group, say 7", must be proportional to the
hypercharges y, c7"|gavor = ¥ for any given element of the matter multiplet. An example
for SU(5) is given in (7.1). Staying with the assumption that each family belongs to one
multiplet of the GUT implies that the corresponding hypercharges of the family members

are essentially the eigenvalues of the generator 7. Taking the squared trace then yields

1 10
Ztr(yy) =3 = Atr(thth) = ATy

where no sum over h is implied but over the multiplet, and T = 2 is the Dynkin index?®.
Thus, ¢ = 1/5/3, and hence g = cg,. As emphasized earlier, the values y are not con-
strained by the standard model to have the prescribed values. Here, however, the values

of y are fixed by the generator 7"

. This automatically requires the electric charges to
have their values of the standard model. GUTs provide the quantization of electric charge
observed in the standard model automatically, implying in particular that the electric
charges of different particles have rational ratios.

The electric charge e is then given by

i D
e = — 21 —g (7.3)

Vi+g V3

2In case of the gauge group SU(5), as discussed in the previous section, the parity violation is actually

manifest in the multiplet structure of the matter particles.
3Here a direct embedding of the SU(2) Pauli matrices for the gauge group of the GUT is used, requiring
this normalization.
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and the Weinberg angle 0y, by
9 3
Vot 8

These relations only hold when the GUT’s gauge symmetry is manifest, i. e. supposedly

(7.4)

sinQ 9W =

at the GUT scale. To check, whether this actually makes sense, it is necessary to let
these values run down to the scale of the standard model and see whether the predictions
agree with the observed values. The Weinberg angle (7.4) is useful here, as it known
experimentally quite well.

Using (7.4), it follows that

3 —1 1109 . A
sin2fy — o — Y& T 29, Acur
8 2m 24 o

To eliminate the unknown scale Agyr another of the evolution equations of section 4.10.3.1

can be used. Particularly convenient is the combination
. 8 67 . Agur
=—1In

yielding
23 o' +a;' 109
:.2 7 h
Ow = —.
O S 3T T A, 201
Using the experimental values a; ' + a,:l = 128 and a3 = 0.12 at the Z-boson mass,
p = My yields Agur = 8 x 10" GeV, a,(Agur) ~ 1/42, and sin® Oy (M) = 0.207. The

latter number is uncomfortably different from the measured value of 0.2312(2), implying

that at least at one-loop order this GUT proposal is not acceptable.

Unfortunately, this problem is not alleviated by higher-order corrections, and turns
out to be quite independent of the particular unification group employed, and many other
details of the GUT. This implies that unification cannot occur with the simple setup
discussed here. Only when other particles, in addition to the minimum number needed
to realize the GUT, are brought into play with masses between the electroweak and the
GUT scale a perfect unification can be obtained. Supersymmetry, e. g., provides such a
unification rather naturally, though also not in the simplest setup. Of course, the fact
that Agur is much closer to Mp than to the electroweak scale could also be taken as a
suggestion that quantum gravity effects may become relevant in the unification process.

These are open questions.

7.4 Baryon number violation

A reason not to easily abandon GUT theories after the disappointment concerning the

running couplings is that they naturally provide baryon number violation, which is so
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necessary to explain the matter-antimatter asymmetry of the universe. That such a pro-
cess is present in GUTs follows immediately from the fact that quarks and leptons couple
both to the same gauge group as one multiplet. Thus, gauge bosons can mediate transfor-
mations between them, just as the weak gauge bosons can change quark or lepton flavor
individually. Whether some quantum numbers are still conserved depends on the details
of the GUT. A GUT with gauge group SU(5), e. g., preserves still the difference of baryon
number B and lepton number L, B — L. For the gauge group SO(10), not even this is
conserved.

The profound consequence of baryon and lepton number violation is the decay of pro-
tons to leptons. It is, in principle, a very well defined experimental problem to measure
this decay rate, though natural background radiation makes it extremely difficult in prac-
tice. To estimate its strength, assume for a moment that the masses of the gauge bosons
mediating this decay are much heavier than the proton, which is in light of the experi-
mental situation rather justified. Then the decay can be approximated by a four-fermion
coupling, very much like a weak decay can be approximated by such a coupling at energies
much smaller than the masses of the mediating W and Z bosons.

The corresponding interaction is then encoded in the Lagrangian

L= 4?%“ (ay"uév,d) (7.5)

for quark fields v and d and the electron field e. This vertex permits that a d quark and a
u quark scatter into a u quark and an electron. The corresponding decay channel of the
proton would then be into a positron and a neutral pion, the lightest one permitted by
electric charge and energy conservation involving charged leptons. The effective coupling
Ggur is then given by

Gour ¢ 7r

V2 8mEur  2miyr(a; (maur) + ot (maur))

in complete analogy to the weak case, and mgur ~ Agur the mass-scale of the leptoquark
gauge bosons. The life-time at tree-level can then be calculated in standard perturbation

theory in leading order to be

19208 myr(a; (maur) + a5 (maur))
Gaurm} my

Tp—setn0 ™~

Plugging in the previous numbers, the formidable result is about 103! years. That appears
quite large, but the current experimental limit in this channel is about 10%* years, clearly
exceeding this value. Thus, at least this very simple approximation would yield that a

GUT is in violation of the experimental observation by about three orders of magnitude.
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However, pre-factors and higher order corrections depend very much on the GUT under
study, and can raise the decay time again above the experimental limit. Finding proton
decay, or increasing further the limit, would provide therefore information on the structure
of permitted GUTs. However, the search becomes experimentally more and more chal-
lenging, so that pushing the boundaries further is an expensive and demanding challenge.
Nonetheless, this is a worthwhile problem: If no proton decay should be observed ere
reaching the standard model decay rate, this would imply that baryon number violation
would proceed in a rather unexpected way. Or would need to be an initial condition of

the big bang.

7.5 Flavor universality violations and leptoquark phe-

nomenology

The explicit examples of GUT's so far used fermion multiplets which do not mix generation.
However, larger representation or larger unification gauge groups would allow to embed
multiple generations into a multiplet. This could also explain the existence of generations.
Such a setup has one additional feature compared to the previous ones. Because the differ-
ent generations reside in the same multiplet, leptoquarks can no mediate intergeneration
decays. As a consequence, a GUT would enhanced such effects compared to those in the
standard model, where they stem from the off-diagonal Higgs interaction, yielding the
CKM/PMNS matrix*.

In the standard model, the only difference between the generations stems from the
masses. The intergeneration mixing in the quark sector due to the CKM matrix creates
well-established effects. However, this also implies that there is quite some background
for any searches. In the lepton sector, however, the smallness of the neutrino masses make
intergeneration transitions neglighly small in the charged lepton sector®. Eliminating mass
effects, leptons should be treated (almost) universally in the same way in the standard
model. Lepton flavor universality violations (LFUV) are thus a very clean signal for
some GUT scenarios. It would also provide a clean access to leptoquark physics, as it is
parametrized by similar couplings as (7.5).

Despite some hints in (semi-)leptonic decays of heavy mesons, however, so far no
unambigous signal of lepton-flavor universlity violations have been found. Still, it remains
an important search channel, due to its small standard model background. This is also

true for oscillations experiments, e. g. e — .

40Of course, rather than to enhance, they could replace them, making such a scenario harder to detect
5Neutrino oscialltions are actually the corresponding effect in the neutrino sector
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7.6 Asymptotic safety

There is one interesting feature of the S-function (2.7). Formally, there can be -functions
such that the running coupling goes to a finite value if the energy scale is send to infinity.
This is a third option compared to asymptotic freedom, in this context also called a
Gaussian fixpoint, where the coupling vanishes, and an infinitely strongly coupled theory.
This third scenario is called asymptotic safety.

Studying the perturbative expressions for the coefficients (5.2-5.4) already suggests
that it should be possible to construct such a solution by a judicious choice of the theory
content even at weak asymptotic coupling. This has indeed been done. It is yet not clear
whether any such constructed theory could resolve any of the problems of the standard
model in a convincing way, but it is certainly an interesting option.

Even more interesting is that theories which are perturbatively ill-defined by the ap-
pearance of a Landau pole could change to an asymptotically safe theory once the non-
perturbative [-function is used. Of course, this requires to know the later to check.
Fortunately, in recent times progress has been made in non-perturbative calculations. In
some cases, this is also possible by adding suitable matter content even at weak coupling.

As a consequence, unified models with many fermions and scalars, and sufficiently large
gauge groups, appear as a viable, ultraviolet stable scenario. It remains to be seen whether
they are also phenomenologically viable. However, so far they do not seem to encounter

more serious problems than other GUT candidates.

7.7 The physical spectrum of GUTSs

The discussion of the BEH effect in the standard model in section 2.1, and those following
on BSM physics, was performed in perturbation theory. This is actually not quite correct,
as will be discussed now. While this has (likely) implications for the selection of which
theories are exactly suitable extensions of the standard model, this does not touch upon
the qualitative properties discussed, for which perturbation theory remains therefore a
suitable guideline.

The problem arises as that in a non-Abelian gauge theory the asymptotic state space
can, in principle, not contain any elementary particles. The reason is that the asymptotic
fields cannot be free fields, since otherwise the state space has changed from a space
of gauge-dependent objects to one of gauge-singlets, and thus a local symmetry would
become a global symmetry. These two spaces are not unitarily equivalent, and therefore

this is strictly speaking not possible beyond perturbation theory where all results are
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by construction smooth in the gauge coupling. A simple example is already QED: In
perturbation theory only electrons, protons, and photons appear, but no hydrogen atom,
despite being a stable state.

This point can be formalized in the context of axiomatic field theory, and is known as
Haag’s theorem: The state spaces of an interacting theory and a non-interacting theory
are not unitarily equivalent, no matter how weak the coupling. Hence, strictly speaking
perturbation theory expands around the wrong vector space. However, this theorem does
not make any statements about the quantitative size of the non-analytic contributions. It is
thus well possible that they are a negligible effect, and thus perturbation theory implicitly
assumes that this is the case, and the dominant contribution comes actually from the
analytic part. In the standard model, this seems to be true, vindicating the discussion of
section 2.1, and indeed perturbation theory describes exceedingly well observations. But
it will be seen that this does not need to be true beyond perturbation theory.

While in the standard model this is found to be a small effect, this is due to the special
structure of it. This does not need to hold beyond, and turns out indeed to be a special
problem for GUTs.

Hence, in the following a correct construction will be provided, and in the end shown
why, and under which conditions, perturbation theory can still give the dominant part of
the answer. To establish the answer, it is useful to start just with the standard model, and
neglect for the moment all non-essential parts. This amounts to the weak gauge fields,
now yielding degenerate masses for the W= and Z because of the absence of QED, or more

precisely the hypercharge, and the Higgs.

7.7.1 The Frohlich-Morchio-Strocchi mechanism

In the previous subsection the problem arose that the Higgs and W /Z fields are actually
not really gauge-invariant, and in fact the whole Brout-Englert-Higgs mechanism is not.
The question thus arises what is actually measured when seeing peaks associated with
electroweak particles in cross sections. It is simpler to first discuss only the case with the
Higgs and the gauge bosons and afterwards continuing to include the remainder of the
standard model, which in this case is actually possible. Finally, it will be discussed how
this gives rise to conflicts in BSM theories.

The first realization necessary is that to describe physical objects requires operators
which are manifestly gauge-invariant. For a non-Abelian gauge theory, like the one under
discussion, this is only possible in case of composite operators, i. e. operators involving
more than a single field, since any single-field operators are gauge-dependent.

Such gauge-invariant operators can then only be classified in terms of global quantum
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numbers, i. e. in the present case spin and parity as well as the custodial structure. Any
open gauge index would yield that the quantity in question would change under a gauge
transformation.

The simplest example of such an operator would be
O+ () = ¢} () i(w),

created from the Higgs field ¢ and being a scalar and a singlet under the custodial sym-
metry, as well as a gauge-singlet. This operator creates a Higgs and an anti-Higgs at the
same space-time point, and therefore corresponds to a bound state of two Higgs particles,
just like a meson in QCD. It is a well-defined physical state, and therefore observable.

So far, this is formally all correct. However, the immediate question appearing is that
the description of the observed Higgs agrees very well with the one obtained in perturbation
theory, and thus the elementary Higgs. However, such a bound state, as is shown in QCD,
can have widely different properties from its constituents. Thus, the two views seem to be
at odds with each other.

However, there is a resolution for this apparent paradox, the so-called Frohlich-Morchio-
Strocchi (FMS) mechanism. The mechanism itself will actually not be the explanation, as
it is actually only a description of how to determine perturbatively the mass of this state.

To do this, consider the propagator of the composite state,

(Op+ ()T O (2)) = (81 ()8 (1)L (2) ().

As usual, the poles of this correlation function will give the mass of the particle. As the
next step, select a gauge, like the 't Hooft gauge, in which the vacuum expectation value
vn; of the Higgs field does not vanish, and rewrite ¢;(z) = vn; + n;(x). Then perform a

formal expansion in the quantum fluctuation field 7, yielding to leading order

Sl =+l + o ((£)).

Neglecting the higher order contributions, the only pole on the right-hand side is the one of
the propagator of the fluctuation field. Thus, to this order, the masses coincide®, and the
bound state has the same mass as the elementary particle, showing why the perturbative
result provides the correct mass for the observable state. Thus, this justifies why it is

correct to use perturbation theory, and the perturbative spectrum, to obtain the mass of

6Beyond leading order in the weak coupling constant the mass of the Higgs becomes scheme-dependent.

It is then necessary to do this comparison in the pole scheme.
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the Higgs".
In the same way, it is possible to construct a non-perturbative partner state for the

gauge bosons,

O (z) = trr*X'D,X (7.6)

X - b1 =P 7
G2 @]

which is a custodial triplet, and a gives the corresponding index. Using that the vacuum

expectation value is constant, this yields
a a 7 n
(O, WO @) ~ v W)W () + 0 (1)

and thus the mass of the W and Z are obtained, as well as the correct number of states,
trading a custodial triplet for a gauge triplet. Note that because the masses of the gauge
bosons are both scheme-invariant and gauge-parameter-invariant in perturbation theory
in 't-Hooft-type gauges, this is actually an even stronger statement than for the Higgs
itself.

It is possible to construct also operators for other quantum numbers, but only these
two channels have a leading non-zero contribution given by one of the elementary fields.
This also implies that in this expansion there are no other bound states than just these
two®.

This shows why the perturbative predictions provide the correct results. In fact, also
scattering processes are dominated by the higher-order perturbative corrections, if the ratio
n/v is sufficiently small. Hence, to a very good approximation a perturbative description
of this theory can be sufficient. Given the good accuracy of the perturbative description of
the most recent experimental results, the non-perturbative corrections for the investigated

processes are at most at the percent level, at least at currently accessible energies.

7.7.2 Adding the rest of the standard model

Adding the remainder of the standard model is possible, but requires a careful distinction
of the various cases. Right-handed neutrinos, if the neutrinos are also Dirac fermions, are

anyhow gauge singlets, and therefore pose no problems.

"The validity of the expansion, and whether for a given set of parameters, the expansion is actually
valid is a dynamical question, and requires to determine both sides non-perturbatively, or the left-hand-
side by experiment. It works for the ones in the standard model, but by far not for all possible parameter

sets of the theory.
8Whether this is true beyond leading order is still an open question. Since no formal proof exists, this

requires to perform actual non-perturbative calculations, which is quite non-trivial.
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For left-handed (or Majorana) neutrinos and leptons a problem arises. These particles
are not confined, and carry a weak charge. However, a similar solution exists as for the
Higgs and the weak gauge bosons. Form the composite operator

O1(z) = X(2)y(x)

2

Y G2 —¢1 |
o1 P

where the field ¥;(x) is a (left-handed) fermion field of any of the above enumerate types.
Because the Higgs is a scalar, this hybrid is still a spin-1/2 fermion. The correlation

function expands then as

(&) () 65@)5(2) ~ v (W) @) + O (1)
and therefore to the elementary fermion propagator, showing in the same way that the
bound state has the same mass as the elementary fermion. Again, beyond leading order,
the elementary mass has to be evaluated in the pole scheme.

Colored particles are forced asymptotically into hadrons due to confinement. Hadrons,
like mesons, which are also with respect to the weak gauge symmetry singlets are therefore
gauge-invariant. However, this is not the case for those states which are intrageneration-
non-flavor-singlets, like nucleons. Since intrageneration flavor is actually the weak gauge
charge - up and down are gauge indices - these are again exchanged for custodial indices
working very much as for the vector bosons and leptons, but on the level of hadrons.

Somewhat trickier is the situation with the U(1) hypercharge, or the electric charge.
Electric charge is an observable quantity, in contrast to the weak (and color) charge. The
reason for this originates from the Abelian nature of this interaction. Given a field ¢(z)

with an Abelian charge, it is possible to construct an operator of type

exp (i [ ds,,) ote)

where A, is an Abelian gauge field, and the path is a closed path? originating at infinity and
ending at x. Such a phase factor is also called a Dirac phase. This object is actually gauge-
invariant, but carries a conserved charge, the electromagnetic charge. This is possible for
an Abelian gauge theory, because the gauge fields are not matrix-valued, and therefore
commute, which is the key in making the phase factor cancel in any gauge transformation.

In a non-Abelian gauge theory, it is no longer possible!® to construct such a canceling

9This is somewhat symbolically, and requires a more precise formulation to avoid a path dependence.
10T here is no full proof yet, but the evidence is overwhelmingly substantial.
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phase factor, and hence there is no gauge-invariant charge. Physically, this corresponds to
an infinite superposition of particles described by the field ¢ and arbitrary many photons,
and thus it is a combination of the particle and a photon cloud, which creates a state
which is both gauge-invariant and charged. But again, this is only possible for Abelian
symmetries!!.

This completes the standard model.

7.7.3 Beyond the standard model

The same considerations apply beyond the standard model. However, the key in the
standard model was the global custodial symmetry could become a proxy for the weak
gauge interaction, because it is the same group. Thus, a problem with multiplicities may
arise, not to mention dynamical effects, if this is no longer the case.

Indeed, in some toy theories, like toy-GUTs with SU(N > 2) with a single Higgs field in
the fundamental representation, this leads to qualitative differences in the physical spectra
and the spectrum of elementary particles, which becomes arbitrarily bad with increasing
N. The reason is that in this case only a U(1) custodial symmetry exists, which creates
no non-trivial degeneracies, and especially not the triplet structure needed for the weak
gauge bosons. This can be seen by considering the generalization of (7.6). Because there

is no non-trivial custodial symmetry, the corresponding operator is
0, = ¢'D,¢.
The correlator then expands to leading order to
a, b ayxsb n
(0,0,) = nnt(Wewt) + 0 (1),

where n is the direction of the vacuum expectation values. Herein n is the direction
of the vacuum expectation value, and thus only the correlator (W7 W) in the direction
of the Higgs vacuum-expectation value contributes. However, following the perturbative
construction of section 7.2, it turns out that this is only the most massive gauge boson
in the spectrum. Hence, especially no massless vector particles, which could play the role
of photons or gluons, appear, and only a single state is present. This is not changed by
higher orders. Thus, a different low-energy spectrum arises. This happens also, e. g., for

the more realisitic GUT of section 7.2.

U There are non-Abelian gauge theories for which a finite number of gauge bosons and matter fields
create gauge-invariant states. These are, however, conventional bound states, and especially do not create
a physical gauge charge.
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In other theories, different results arise, but generically such mismatches appear. But
this does not need to happen. E. g. for the 2HDMSs of section 6.1 no conflict, as in the
standard model, arises. It is not yet generally clear, what is the decisive structural feature
leading to agreement or disagreement between the perturbative and physical spectrum, but
this is likely connected to the combination of gauge group, custodial group, and available
representations.

The bottom line is that the possibility that a purely perturbative determination of
the observable spectrum can fail. This implies that a careful (re)analysis of models are
necessary to ensure that their observable spectrum can coincide with what is already
known, the spectrum of the standard model. This remains to be done for most of the

theories discussed in this lecture.



Chapter 8

Large extra dimensions

As will be seen, the large difference in scale between gravity and the standard model can
be explained by the presence of additional dimensions. Also, string theories, as discussed
in chapter 9.4.1, typically require more than just four dimensions to be well-defined. Such
extra dimensions are not (yet) seen, and therefore their effects must not (yet) be de-
tectable. The simplest possibility to make them undetectable with current methods is by
making them compact, i. e., of finite extent. Upper limits for the extensions of such extra
dimensions depend strongly on the number of them, but for the simplest models with two
extra dimensions sizes of the order of micrometer are still admissible. Such cases with
extensions large compared to the Planck length are called large extra dimensions. They
should be contrasted to the usually small extensions encountered in string theory, which
could be of the order of the Planck length. Here, the observable consequences of such large
extra dimensions will be discussed.

Models of large extra dimensions separate in various different types. One criterion
to distinguish them is how the additional dimensions are made finite, i. e. how they are
compactified. There are simple possibilities, like making them periodic, corresponding to
a toroidal compactification, or much more complicated ones like warped extra dimensions.
The second criterion is whether only gravity can move freely in the additional dimensions,
while the standard model fields are restricted to the uncompactified four-dimensional sub-
manifold, then often referred to as the boundary or a brane, or if all fields can propagate
freely in all dimensions.

Here, a number of these models will be discussed briefly, and one particular simple
example also in a certain depth to introduce central concepts like the Kaluza-Klein tower
of particle states.

One thing about these large extra dimensions is that they can also be checked by tests

of gravity instead of collider experiments. If there are 4 + n dimensions, the gravitational
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force is given by

Gﬁ”mlmg . 1 mqme
n-+2 - n+2 ,n+2
r Mtz p

F(r) ~

where G?\f” is the 44 n-dimensional Newton’s constant and correspondingly M, the 44 n-
dimensional Planck mass. If the additional n dimensions are finite with a typical size L,

then at large distances the perceived force is

1 mims  Gymims
Y pr—
Mrp+2Ln 2 r2 )

£(r)

with the four-dimensional Newton constant G'. Thus, at sufficiently long distances the
effects of extra dimensions is to lower the effective gravitational interactions by a factor
of order L™. On the other hand, by measuring the gravitational law at small distances,
deviations from the 1/r?-form could be detected, if the distance is smaller or comparable
to L. This is experimentally quite difficult, and such tests of gravity have so far only
been possible down to the scale of about two hundred pum. If the scale My, should be of
order TeV, this excludes a single and two extra dimensions, but three are easily possible.
Indeed, string theories suggest n to be six or seven, thus there are plenty of possibilities.
In fact, in this case the string scale becomes the 4 + n-dimensional Planck scale, and is
here therefore denoted by M,. The following will discuss consequences for particle physics

of these extra dimensions.

8.1 Separable gravity-exclusive extra dimensions

8.1.1 General setup

The simplest example of large extra dimensions is given by theories which have n additional
space-like dimensions, i. e., the metric signature is diag(—1,1,...,1). Furthermore, these

additional dimensions are taken to be separable so that the metric separates into a product

g4—|—n — g4 % gn

Furthermore, for the additional dimensions to be gravity exclusive the other fields have
to be restricted to the 4-dimensional brane of uncompactified dimensions. In terms of the

Einstein equation (2.18) this implies that the total energy momentum tensor Ty/n takes

Tw O
Tun=|"" , 8.1
(59 o

the form
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where the indices M and N count all dimensions and g and v only the conventional
four. Furthermore, in such models the extra dimensions are compact, having some fixed
boundary conditions.

The Einstein-Hilbert action is then

1 n n
Sen = =y | A lgTR 82)
N4+n

with again the generalized Newton constant Gy, the metric g and the Ricci scalar R.

The action then factorizes as

M+

1
SEH — _ 32 /d4+n2 /|g4+n|R4+n — —§M]23 d4[L' ’—g4R4.

The actual gravity mass-scale My is related to the perceived 4-dimensional Planck scale
by
Mp = M,(2nRM,)? = M,\/V, M,

with the volume of the additional (compact) dimensions V,,, which have all the same
compactification radius R. For an M, of order 1 TeV, the compactification radius for n = 2
to n = 6 ranges from 1073 to 107! m, being at n = 2 just outside the experimentally
permitted range.

Treating the theory perturbatively permits to expand the metric as
guN =NuN + —z Hun,
M 2

with the usual Minkowski metric nsp = diag(—1,1, ..., 1) and the metric fluctuation field
H,p. The Einstein-Hilbert action is then given by an integral over the Einstein-Hilbert

Lagrangian
1 1 1
Lpi = _§HMN82HMN+§H}§ O*HY —HMN 0y 0n HE+HMN 030 H — o HYN Ty

s

Since the additional dimensions are finite, it is possible to expand hjy,y in the additional
coordinates in a series of suitable functions f,, embodying the structure of the extra

dimensions

Hyn(Tos -, T3, Ty ooy Tan) = Z fn(kfnh,,,,mnm + ---kfnt?,,,mnanrn)HMN(mo, ey T3)

mi,...,Mn

b = (6 (%) ot (7))’

. . 2 . 2 .
The energies k can be related in the usual way to masses, k, = m¥,,, as in quantum

mechanics. These are the Kaluza-Klein masses. The field h;n for a fixed mass can then
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be decomposed into four four-dimensional fields. These are a spin-2 graviton field G,

i =1,.,n—1spin-1 fields" A}, i = 1,...,(n* —n — 2)/2 scalars S’ and a single further

scalar h. These obey equations of motions

1 9,0 Ui
O +mipn)Gr, = — (T L )2 8.3
i o (1 (22 0) B (83)
(0 + i) A7 =

(0% + micie)S, = 0

3(n—1)
2 2 . n+2
(07 + M) = WT[L‘-

Soft modes are the zero-modes of the Fourier-transformed fields, i. e., those with m?% . =
0. The fields A and S do not couple to the standard model via the energy momentum
tensor, and the graviton coupling is suppressed by the Planck mass, in agreement with the
observation that gravity couples weakly. This also applies for the radion h, which couples to
the trace of the energy-momentum tensor, corresponding to volume fluctuations. However,
because of its quantum numbers, it will (weakly) mix with the Higgs.

Finally, since mggy, ~ k, ~ n/R for a mode n, the level splitting of the Kaluza-Klein

modes is associated to the size of the extra dimensions. The splitting is thus given by

1 Mg\ "
OMKK = MKkkn — MKKn-1 ~ — ~ 27 M, = .
KK KK KKn—1~ 1 ( MP)
which is generically of order meV for n = 2 to MeV for n = 6. Thus, to contemporary
experiments with their limited resolution of states the tower of Kaluza-Klein states will

appear as a continuum of states.

8.1.2 An explicit example

The simplest example of the general discussion before has n additional dimensions with

the same size R/(2m) and periodic boundary conditions, i. e., they are torus-like, and the

total space is M* x T™, with M denoting a Minkowski space endowed with a metric g.
First consider only the gravity sector. To exhibit the general properties it is useful to

make a perturbative expansion. In this case, the metric is rewritten as

gun = Nun + 167G " Hyw,

'Originally, Kaluza and Klein in the 1930s aimed at associating this field with the electromagnetic one,
which failed.
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where ¢ is the full 4 + n-dimensional metric, 7 is the 4 + n-dimensional flat Minkowski
metric diag(—1,+1, ..., +1), h denotes the 4 +n-dimensional metric fluctuation field, G
is the 4 + n-dimensional Newton constant, and o and 8 will run? in the following from
1 to 4 + n. Assuming G5 "™h to be only a small correction to 1 permits to expand the

higher-dimensional Lagrangian of general relativity

V| detg|R

(167G
with the Ricci scalar
R = RY
Ryy = OxThy — Onlng + T liiw — Tonliix
kv = % (Ongrm + Omgrn — Ok gun) -

The linearized form is then
1
L= (0" HMNOgHyy — 0N HyfOx HY — 20 H*M 0N Hyyy + 20 H M0y HY)

and higher-order terms have been neglected.

This Lagrangian is invariant under the coordinate transformation
Hyn — Hyn + Ouln + OnCurs (8.4)

for some arbitrary functions (y; satisfying 9*¢y; = 0. For simplicity, this gauge freedom

will be fixed to the de Donder gauge, imposing

oM (HMN - WTNH£> —0, (8.5)

and furthermore H ]\1‘2[ = 0. With this, the equation of motion for H;y becomes
o? <HMN - WTN ) —0. (8.6)

Counting the number of constraint equations yields® that only (3+n)(4+n)/2—1 degrees
of freedom are left unfixed. Simply speaking, there are 4 + n constraints imposed by the
de Donder condition, and further D conditions could be imposed on the { functions due

to the arbitrariness still left. Thus the number of degrees of freedom for the graviton field

2The summation convention for these and other indices will always be over their respective subset only.
3Note that no space-time torsion appears in a perturbative treatment and that then h, g is symmetric.

It must also represent a (classically) massless field.
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in 4 + n dimensions. Hence, in four dimensions there are two, and in five dimensions five,
and so on.
This field Hjsy is then split as

1 h VOu A
Han = ( T ) , (8.7)
MN

Vv Vn Auj 2¢’L]

where i, ... denotes compactified dimensions, and u, ... the ordinary four space-time di-
mensions, and V,, is the volume (27 R)"™ of the compactified dimensions. This yields a
redistribution of the degrees of freedom to one spin-2 field h, n four-dimensional (massive)
spin-1 vector fields, and n(n + 1)/2 scalars. Since the additional dimensions are just 7",

the expansion functions are the Fourier functions. This yields

- 2mwin;
bulen) = Y B e (TR
- 2min;x’
Anl) = 3 At esp (25

- 2min;x’
Gij (T, i) = Z@j(xu)e}(p( R ):

where the vector 77 contains the Fourier mode number in each extra dimension ¢. Defining

the Kaluza-Klein mass of a state as

Ari?

R2

S

m
and inserting the mode-expanded field (8.7) in the equation of motion (8.6) yields

it N 5 pi

(02 +m3) (h, — BhT) = 0
(82+m%)Azi = 0
(82+m%)¢z = 0.

The zero modes with 7 = 0 are massless. They correspond therefore to the graviton,
n(n+1)/2 massless scalars and n massless gauge bosons. In addition, there are an infinite
tower, the so-called Kaluza-Klein tower, of massive spin 2, spin 1, and spin 0 states with
masses myz. Of course, the number of degrees of freedom has not truly become infinite,
but it merely appears that the fifth dimension has been traded for this tower.

The effective coupling of matter to this gravitational field can now be directly discussed

with these four-dimensional fields. In the present case, the matter fields are only permitted



178 8.1. Separable gravity-exclusive extra dimensions

to propagate in the four-dimensional space-time. Their coupling to gravity is therefore

minimally given by

/d”x / d4x\/|det (N + 167GN " (hyw + N ®)) |£

where ¢ = ¢;; and the details of the standard model particles are encoded in £, and none of

them has a dependence on the x;. It is useful to go to Fourier space. In this case the integral
over the n extra dimensions becomes a sum over the Kaluza-Klein modes. In addition, a
volume factor for the extra dimensions appears, V™. This factor can be combined with
the (small scale) GN™ as v, QGleJ“” to yield the large scale G, the ordinary Newton
constant of four-dimensional physics.

Performing then an expansion in 167Gy to leading order yields

> / d*z (1 4+ 87Gyh + 327G N )
0L
(*C + (nyu - 167TGNh;w - 167TGN7],UJ/¢> 5g (g,ul/ = TIW))
ny
~ Z/d% (
oL oL
— Z/d4 (£+nw,5 + 167Gy <(hﬂy+¢n#,,) (muﬁ—25 ))),

(277W — 167G N (hyw + o)) + L (877G by + 327TGN¢77W))

Guv
using
1 v
= 177“ Nuv
h = nuh".
In this the energy-momentum tensor
oL
T = ( N L+ 25 L (G = 77W>) (8.8)

is recognized, yielding the final result
S—87GN Y / d'z (W T, + ¢TV) .

Herein S denotes the action of the fields without gravitational interaction, which is ob-
tained from the first two terms and resuming the expansion. The second term gives the
coupling to the effective graviton, which is only mediated by the graviton and the trace

of the ¢;;, which is called in this context the dilaton, and in general before radion. Thus,
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as discussed generally above, the gauge fields decouple in this approximation completely
from the dynamics, and also all but effectively one of the scalar fields.

Before proceeding, it is worthwhile to take a look at the physical contents of the theory.
The gravitative fields are still depending on the choice of coordinate system inherited from
H,p and given by the transformation (8.4). If aiming at a description in terms of effective
particles, this is rather tedious. In particular, gauge-fixing and the introduction of gauge-
fixing degrees of freedom would be necessary. It is therefore useful to define instead physical
fields, which are invariant under the coordinate transformations.

Without going into details, the field redefinitions for the Fourier modes*

ZTLZR 20 a” iz
W = = o (OuAui + 0, Ay) — (P + 3P) (g eoai %) i
inkR
B = Pg (Auj - Wau(ﬁjk)
1 2+n

¢y = V2 (P},;Fﬁ 1, (1 V3 ) Pi?Ple) 2 (8.9)

T nin;
Pj = &~ &
Ph = g

1

yields fields which are indeed invariant under coordinate transformations. As an example
this will be checked for the scalar field. Since the extra dimensions are now compact, also
the arbitrary functions (; are expanded in Fourier modes, yielding

Calzy, ) = Z le(x“) exp (2%217;1:1:2) |

The scalar fields transform as
Gij — Gij + 0;¢; + 05(;. (8.10)

Since the extra dimensions are finite, the derivatives 0; with respect to extra-dimensional

coordinates can be replaced after Fourier transformation by n;. This yields
i i i i
As a consequence, zero modes do not change since for these n; = 0. For non-zero 77, the

relation )

n;n; n
T il
n P =mn; <6i~ — T) =n;—n;— =0
K 712 J T 72

4Some care has to be taken for the zero modes.
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holds. Thus, inserting the transformed field (8.10) into (8.9), the contribution from n;(;
drop out, confirming that ®;; is invariant under coordinate transformations. The argu-
ments for B, and w,, are similar, though more lengthy. In particular, also the zero modes
of both fields are invariant without redefinition. Hence, a replacement is only necessary

for non-zero modes.

This is simple for the ¢ field, since only its trace appears. Tracing the expression (8.9)
yields

2

7 Pii-
3(n+2)

=3
Py 5 = )
The expression PT contains a Kronecker-6, yielding the trace of ¢. The expressions n; are
just derivatives in the compact dimensions. By partial integration, and using that 7}, is

a conserved quantity, these do not contribute to the integral®. Thus, up to the pre-factor,

¢ can be replaced by ® in the Lagrangian.

For the contribution from A, it should first be noted that the contribution involving
the A, are proportional to n,;, which is effectively a derivative once more and thus can
be dropped. The term involving the ¢ is again either a derivative, which also vanishes,
and terms containing either another d;; or n;. Then, only the trace of J;; thus remains,
multiplied with 7,,. But this just implies a further contribution to the T%¢ term. After
once more replacing the ¢ with the ® and sorting the pre-factors, the final Lagrangian in
terms of the physical fields is

5L . oL
> (z g 87GN ((ww +£7Pn,,) <n#,,£ —2 ))> : (8.11)
ny

0w

—

n

where

& =

2
3(n+2)

{1 for 7=0

else

Thus, the only remaining ingredient is to specify the matter system to which the theory

is coupled to and determine the energy-momentum tensor.

The (symmetrized) energy-momentum tensor for a theory of a gauge-field C,, a scalar

5Here it has been used that the compact dimension is just a torus. For more complicated spaces, pos-

sibly with non-trivial boundary conditions, the vanishing of boundary terms has to be checked explicitly.
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A and a fermion 1) is given by®

T = (=1wn” + 1" Ne + 1" 0,) (D,A) Dy A + 1,,mA ATA
1 a apo Q, a
+Z77“”FPUF P7— FPFy,
- — [ i -
_nuu (7/”’7pr’¢) - mw@W + §ap(77/}’7p¢)) + §¢(7uDy + ’VVDM)¢
i _ _
—Z(a;ﬂb%ﬂﬂ + @ﬂﬂ%ﬂﬂ)
D, = 0,+igCit*
Fi, = 0,A, —0,A] + gf“bcAZAf,
where 7% are the generators of the gauge group. Inserting, e. g., the scalar sector’s energy-

momentum tensor into (8.11) yields the description of the interaction of the scalar with

the gravitational field for a mode 77 as

1 3 | _ 1 .
noo_ be n t v m 2 T
el = - <w,w - 577“,,%9) (D*A)'D*A = ShiFmA ATA

+E0" ((D,A)DFA — 2mAATA)

and similarly for the gauge and fermion sector. With standard methods, it is possible
to obtain Feynman rules and then calculate the influence of the additional particles to
cross-sections. The generic features of such contributions will be discussed next.

For example, at tree-level the decay of a non-zero Kaluza-Klein mode of the graviton”
to two massless gauge bosons is just obtained from the tree-level coupling. The calculations
yield straightforwardly a decay width of

(167G ym™2)

R R T

To obtain numerical values, it is necessary to specify Gy further. Generically, this 4 + n-

dimensional Planck constant is given by the combination

1

I MTL+2RTL7

Gy s

and M, ~ 1/G3™ is the intrinsic scale of the process causing the extra dimensions to be
compactified, e. g., the scale of the string theory. This scale can then be rather low, if the

compactification radius is sufficiently large. Multiplying with the n-dimensional volume

6The derivation, and why it has to be symmetrized, is a rather lengthy discussion, and can be found
in most texts on relativistic field theory, and thus will be skipped here.
"Note that the couplings to the zero-modes is generically suppressed by the gravitational coupling.
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factor is what makes from the small scale M; a large scale Gy perceived in four dimensions.
This also sets limits for the size of extra dimensions if M is fixed. Setting, e. g., M, to
about 1 TeV, the size of R varies between 107* eV (about a mm) for two additional extra
dimensions® to a couple of hundred MeVs at n = 6 or 7, which is the number of additional
dimensions suggested by string theories.

Entering its value of about 2.4 x 10'® GeV gives for the decay into two photons (N, = 1)

100 MeV'\ ?
Ty R 3 X 10° (m—ﬁe) years.

w

a life-time of

N
n

1?2 = 471i? /R? it now depends on the size of the additional dimensions for the

Since (m,
final result. R compatible with precision measurements of small-distance gravity are of the
size of eV to much larger scales, making a life-time of larger than the age of the universe
easily possible, and thus the Kaluza-Klein state essentially stable. This makes it then also
a viable dark-matter candidate.

A corresponding decay to gluons requires a follow-up hadronization, and therefore
corresponds to at least a decay into two pions. Thus, this decay channel only opens up
for masses starting at a few hundred of MeVs of w. If the mass becomes even larger, there
are also alternative couplings for real decays possible. First follow decays to light quarks
and leptons, and then finally to heavy quarks and electroweak gauge bosons and finally to
the Higgs. This permits a decrease of the life-time down to fractions of a year, but, very
generically, the particle is still stable on collider time-scales, if not the compactification
radius becomes very small.

There is an additional interesting possibility. The masses of the Kaluza-Klein tower of
states is evenly spaced. Thus even, if the mass of the lowest state is small, say a couple of
MeV, a highly excited Kaluza-Klein state could decay to it under the emission of a ladder
of particles with energies of the order of the splitting. This could, under certain kinematic
conditions, give a quite interesting signature of a shower of particles and a final missing
energy at the endpoint of the shower in a collider.

The situation for the dilaton ® is somewhat different. Since it couples to the trace
of the energy-momentum tensor, it turns out not to have a tree-level coupling to gauge
bosons. Thus it cannot, as the graviton, decay into two photons, and thus would be
absolutely stable if light enough. If somewhat heavier, it could decay into two light leptons
or quarks, but would have a very long life-time, as this becomes suppressed as 1/ (mfﬂmp)
due to kinematics, with m the fermion mass. Thus, the decay to neutrinos is negligible,

which would be the only real decay channel mandatory open by the maximum size of R

80ne additional extra dimension gives a size significantly larger than a mm, which is excluded by

experiments.
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for any reasonable number of extra dimensions in accordance with experiments. If R is
then sufficiently large, but not large enough to permit decay into two light quarks (and
consecutively to two pions), the dilaton is essentially stable on the time-scale of the age
of the universe, making it another dark matter candidate.

Another interesting effect of the presence of the Kaluza-Klein tower of states is the
appearance of effective four-fermion couplings. For example, if four fermions couple by

the exchange of a state 7 dilaton?, the corresponding tree-level matrix element is given by

n—147rC4

M = _n+2 3 mflmfoQfZ.flfl' (8.12)

The function Cy4 encodes the details of the exchanged dilaton, and reads

167G y)* .
¢y =1 g ) =

(167TGN)2 1
8 ¢ — mi + i€

where ¢? is the exchanged momentum. The problem is now that there is not only one
possible exchange but instead an infinite tower of Kaluza-Klein states can be exchanged.
Hence, the total amplitude is given by a sum over n. This is particularly problematic,
as in most cases the level spacing of Kaluza-Klein states are very narrow, and thus the
corresponding masses are quite similar, given similar contributions to Cy, in particular if
¢* is much larger than 1/R?.

In fact, for the purpose of observing Kaluza-Klein states at a collider like the LHC
the exchanged four-momentum ¢? can be safely taken to be much larger than 1/R?, if the
string scale Mg should be at the TeV scale, and the number of extra dimensions be small,
not more than ten. Then the level spacing is of order of (a couple of) MeV, while ¢ is
deep in the GeV or higher range. It is then a rather good approximation to instead of

performing a sum over all states to do an integration, i. e.,
D) = Y Dla i) > [ dmp(m)D(e?, 1)

with the density of Kaluza-Klein states

an2

i

p(mg) = m7

which is just the level-density for an n-dimensional sphere for states spaced as 72. The
problem is now that the integral will diverge with this level density. Thus it requires

regularization, and in principle renormalization. A common assumption is once more

9In principle, this interferes with the exchange of a graviton and standard model processes. These are
neglected for the sake of simplicity, and do not change generically the result.
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that the compactification is due to an underlying string theory. This can be most easily
modeled by an explicit upper cutoff by the string scale M2, and thus at the level of TeV.
The integral can then be performed, yielding

r—1) +Z§;1 % n even

—1
1 Vz+1 T g2kl :
o In 5 + > 21 St modd

The real part comes from resonant production of real Kaluza-Klein states, while the imag-

inary part stems from the continuum of other states. If My is large compared to ¢?, which
occurs at the LHC if the string scale is several TeV, the expression can be approximated
by

MID p>2

Thus, the effectively induced four-fermion coupling is almost energy-independent, and
looks like a contact interaction. This will give rise to corrections to the standard model
processes. Combining the expression for D(g*) with the original matrix element (8.12)
show that these additional interactions scale as 1/M¢, and thus are strongly suppressed.
However, if the large extra dimensions would not be present, the corresponding corrections
due to gravity would be suppressed by the Planck mass instead, and therefore effectively
irrelevant. The presence of the larger extra dimensions amplifies the effect of gravity in
this case by sixty orders of magnitude. Thus, looking for signatures of this type has been
done at experiments, in particular in two-to-two fermion scattering processes, providing
further constraints on the presence of extra dimensions!®. Similar calculations can be
done for other processes, like the scattering of fermions to weak gauge bosons with their
subsequent decays, and similar corrections arise.

A serious problem arises when the universally coupling Kaluza-Klein modes show up
in processes forbidden, or strongly suppressed, in the standard model, like proton decay.
The standard model limit for proton decay by an effective four fermion vertex is about
10*° GeV, thus much larger than the comparable effect from the larger extra dimensions
if M, should be of order TeV. Thus this leads to a contradiction if not either Mg is again
set very large (or the number of dimensions n), and thus large extra dimensions become
once more undetectable, or additional custodial physics is added to this simple setup. This

usually leads, like in the case of technicolor, to rather complex setups.

100f course, such corrections appear generically in almost all theories, see e. g. technicolor, and thus

measuring them provides immediately constraints on many theories simultaneously.
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8.1.3 Black holes

A rather popular possible signature for large extra dimensions is the production and decay
of black holes. The Schwarzschild radius of a 4 + n-dimensional black hole for n compact

dimensions characterized by the 4 4+ n-dimensional Planck scale M, is given by

1
1 MB n+l
Rr ~
B MS<MS) ’

with the black hole mass Mp. If in a high-energy collisions two particles with center-

of-mass energy s larger than M? come closer than Rp, a black hole of mass Mp ~ s is

formed. The cross-section is thus essentially the geometric one,
1 ([ My
) I\
oot ()
It therefore drops sharply with the scale M,. However, its decay signature is quite unique.
It decays by Hawking radiation, i. e., by the absorption of virtual anti-particles, making
their virtual partner particles real. The expectation value for the number of particles for

the decay of such a black hole is

n+2
/\éZB n+1

N) ~
(V) <Ms) ’

and therefore rises quickly when the energies of the colliding particles, and thus the mass

of the produced black hole, significantly exceeds the scale of the compactified dimensions.

8.2 Universal extra dimensions

The alternative to gravity-exclusive extra dimensions are such which are accessible to all
fields equally. This implies that the theory is fully Poincare-invariant prior to compactifi-
cation in contrast to the previous case. As a consequence, such theories can in general not
resolve the hierarchy problem. However, they provide possibilities how anomalies can be
canceled, e. g. in six dimensions, without need to assign specific charges to particles. In
addition, one of the Kaluza-Klein modes can often serve as a dark matter candidate. On
the other hand, since particle physics has been tested to quite some high energy with no
deviations observed, this imposes severe restrictions on the size of extra dimensions, being
usually of order inverse TeV, and thus sub-fermi range, rather than pm.

When compactifying the additional dimensions in such theories care has to be taken
when imposing the boundary conditions. The reason is that fermions in a box with anti-

periodic boundary conditions will develop an effective mass of order 1/L, where L is the
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compactification scale. This is the same process as occurs at finite temperature, and is
due to the fact that only odd frequencies in a Fourier-expansion of a fermion field have the
right periodicity, (2n+1)L, instead of 2nL as for bosons, as required by the spin 1/2 nature
of fermions. Therefore, chiral boundary conditions are required. The mass-spectrum of all
standard model particles for a compactification along a single extra dimension with open
(chiral) boundary conditions, a so-called orbifold, is then given by
2,52
TR

where my is the mass of the standard model particle, and its Kaluza-Klein excitations

2
+ my,

have mass M;, and j counts the excitation.

The advantage of such universal extra dimensions is that they can provide a natural
way of explaining the (flavor) hierarchies of the standard model by localizing the fermions
on branes inside the bulk instead of the standard model brane. This idea will be repeated
similarly in section 8.3 for warped extra dimensions. Here, it is sufficient to have a look

at the action of a fermion propagating in the bulk described by the action
S = / d*zdyp (iT#9,, + iT°0, + d(y))v

where the ', denote the 4 x 4 five-dimensional version of the Dirac v matrices'!,

0 0o -
I3 = 7Y.3= (_ o...s)
00...3 0
— 0
T —

o = (1,0)
g = (1,-0).
The field ¢(y) denotes the brane, and its interaction with the fermions will localize them

on the brane.

The idea is now to separate the fermion field as

@D(%y) = Z(fL(nay)wL(n’x)+fR(n>y)wR(n>x))

n

sy, = 9
iI'sYyr = —Ygr

Tn an odd number d of dimensions there exist two possible inequivalent representations of the Dirac

algebra, one is d — 1-dimensional, as chosen here, and one is d + 1-dimensional. The latter is not lending

itself easily for the purpose of obtaining the standard model on a brane.
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which implies that ¢, and ©g are left-handed and right-handed fermions with respect to
four dimensions. A simple version of a brane is given by ¢(y) = 2u?y. It is then possible

to get such a decomposition if f7 r are chosen as

friny) = (=0, + o))" fr(0,y)
fr(n.y) = i(ayw(y))fm,y)

y
for(0y) = ;EGXP (?/0 ¢(?Jl)d?/) :
2

To have a normalizable mode, fr r(0,00) must be finite, leaving only the left-handed so-
lutions for now. Right-handed fermions thus require localization on a different brane, e. g.
with ¢ = —¢. The remaining left-handed zero-mode of the fermion is thus exponentially
localized at y = 0 due to this pre-factor function. Entering this expression into the Dirac
equation shows that the zero-mode is furthermore massless. Choosing other functions per-
mits to have fermions localized at different values of y. The non-zero modes have, as usual,
a large mass of order the inverse size of the dimension, and are thus not (yet) observable.

The advantage is then the following. Assume that (only) the Higgs field h(z) is not
propagating into the extra dimension. Furthermore, take the right-handed fermions to
be localized at a different position y = r. This setting is called split fermions. The

standard-model Yukawa coupling then reads with a coupling matrix C’s

/ dhudy(h(z)T (x,y)Crtbr(z, y) + hic)
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= / d*zh(z) (0, 2)0R(0, ) / dyf1(0,9) fr(0,y) = e "2 / d*wh(x)ibr(0,2)¢r (0, ).

Thus the Yukawa coupling is exponentially suppressed if the fields are sufficiently far (but
not exponentially so) separated, and thus give a natural explanation for the large mass
hierarchies observed in the standard model, if the different flavors are located on differ-
ent branes inside the bulk. Also, e. g., graviton-mediated proton decay, which has been
a challenge for non-universal extra dimensions, is reduced exponentially by the reduced
overlap with the standard-model brane. To prevent that the other standard-model inter-
actions suffer a similar fate requires them to propagate also in the bulk, or requires other
amendments.

As has already been encountered when discussing the sum-of-states for the explicit ex-
ample of gravity-exclusive large extra dimensions, the higher-dimensional theories are usu-
ally not renormalizable prior to compactification. Furthermore, because compactification

explicitly breaks the Lorentz invariance of the 4 4+ n-dimensional theory, boundary-terms
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appear which are usually also divergent. Both facts are usually taken to be an indication
for these theories to be also only low-energy effective theories of, e. g., a string theory.
The problem of divergent boundary terms can be reduced by imposing boundary con-
ditions such that this effect is minimized. As a consequence of these terms and their
compensation usually states of different mass can mix. However, in general arbitrary mix-
ing is not possible. In five-dimensional theories of this type the Kaluza-Klein states j
acquire a conserved quantum number (—1)7. Thus, a state with the lowest Kaluza-Klein
mass with 7 = 1 cannot decay in a state with 7 = 0, and thus standard-model particles. As
a consequence, such states provide dark matter candidates. This is especially attractive,
as a compactification radius in such models of about (1 TeV)™! is well possible, giving
such particles a mass of roughly the same size and making them therefore accessible at

accelerator-based experiments.

8.3 Warped extra dimensions

In models with warped extra dimensions, also known as Randall-Sundrum models, the
additional dimensions have an intrinsic curvature £ in such a way that the energy scales
depend exponentially on the separation Ay of two points in the additional dimensions,
exp(—2Ayk). By positioning different effects at different relative positions, large scale
differences can appear naturally, e. g., My ~ exp(—Ayk)Mp. In particular, the different
Yukawa couplings for the standard model fermions can be explained by having different
wave functions for different fermion species in the additional dimension, which then have
different overlap with the Higgs wave function, therefore permitting very different couplings
to the Higgs, even if the difference is of order unity in a flat space. This is very similar to

the concept of split fermions in the case of universal extra dimensions in section 8.2.

8.3.1 Minimal model

In the minimal version of warped extra dimensions there is only one additional dimension.
This one is orbifolded, i. e., it is compactified on a radius 7R with opposite points iden-
tified!?, giving the additional coordinate y the range from 0 to mR. The invariant length
element is then

ds® = gMNdXMdXN = 6_2k|y‘nwdx“dx” — dyQ.

Taking the absolute value of y is necessary, because y can take also negative values to

—m R, which are then identified with the original ones by the absolute value. This con-

2Topologically, this is S*/Zs.
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struction is necessary to permit this metric to be a solution of the Einstein equations of
the five-dimensional space. Indeed, such a space is obtained from an anti-de Sitter space
with a cosmological constant. The details of the construction are not entirely trivial. In
particular, the cosmological constant necessary to warp the extra dimension sufficiently
strongly such that their size is compatible with measurements has to be almost canceled
in the four-dimensional space to obtain one in agreement with experiment.

The fifth dimension is bounded by two end-points, which are four-dimensional. These
two end-points are called branes. Due to the explicit exponential, both are not the same,
but differ by a metric factor of exp(2kmR). One of the branes is identified with the present
four-dimensional world. Its Planck mass is then related to the Planck mass of the bulk
M,, i. e., inside the total volume, by

WE

M2 = 7g (1- e—27rkR) ‘

A natural size for k is about M, itself, and it is also natural to have kR 2 1. Then the
Planck mass and the bulk Planck mass are again of the same magnitude, despite that
otherwise only natural scales appear.

Why there is nonetheless no discrepancy between the electroweak and the Planck scale
is explained thus differently in such models than in the large extra dimensional models
beforehand. Take the brane at y = 7R to be our world. Assume that the Higgs H is
confined to this brane. It is then described by the action

S = /d4x lg(y = 7TR)|(gW(y = 7TR>(DMH>+<DVH> _ /\(HH+ _ V2)2)
= /d4$(nuu<D“H)+(DVH) _ )\(HH+ _ 6—27rk:RV2)2),

where in the second step the Higgs field has been rescaled by H — exp(nkR)H, to
remove the exponential from the four-dimensional induced metric. As a consequence, the
expectation value of the Higgs is (H) = exp(—mkR)V = v, and by this a quantity naturally
of the same scale as the Planck mass is scaled down to the much smaller electroweak scale
by the exponential pre-factor. To have the correct numbers for a V' of the size of the
Planck scale kR =~ 11 is needed. This solves the hierarchy problem, or actually makes it
nonexistent. Such a value of kR can be obtained if a radion field, as part of the graviton
field, acts in the bulk. For the reason that V is scaled down to v, our brane at y = 7R is
usually called the infrared brane, in distinction to the ultraviolet brane at y = 0.

A further interesting distinction to the case of large extra dimensions is in the induced
additional particle content. For large extra dimensions, the Kaluza-Klein states form

almost a continuum. Here, this is not the case. After separating the graviton field, as in
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the case of large extra dimensions, in a four-dimensional graviton, the radion, and further
states which do not couple to the standard model field, these can be Fourier expanded in

the extra dimension as

hyw(z,y) = b (2)gn(y).

However, the base functions this time are not the ordinary Fourier functions exp(ik,r),
but more complex functions due to the warped geometry. The associated masses of the

Kaluza-Klein gravitons are then

n _ Gy —7mkR
My = T, ke ,

G

.. are rather well approximated by the zeros of the Bessel function for n > 0, thus

where x
3.8, 7.0, 10,... going to nm for large n. Depending on the precise size of k and kR, the
lightest excitation has mass of size a few TeV, and thus the level spacing is of similar order.
Due to the warping, also the coupling is modified compared to the large-extra dimension
case (8.3), with an effective Lagrangian
oL o _ Snt.
Mp " P "

n>0

Hence, only the ordinary graviton couples weakly to matter, while the Kaluza-Klein gravi-

tons couple at the TeV scale, and could therefore be much more easily observed.

8.3.2 Extra-dimensional propagation of standard model parti-

cles

So far, all the standard model fields have been restricted to the infrared brane. Permitting
further particles to also propagate in the fifth dimensions requires some subtle changes.
Gauge fields will then have five components, instead of four. Furthermore, it is neces-
sary to specify boundary conditions. Usually on either brane Dirichlet boundary conditions
As = 0 or von Neumann conditions d;A, = 0 on the branes are imposed, even in mixed
form. That these two boundary conditions are the most important ones can be seen by
the example of a scalar field . The associated current along the extra dimension J; is

given as usual by
Js = i®10;P

However, particles should not vanish or be created at the boundaries of the extra dimen-

sion. This is prevented by imposing either of the two boundary conditions, since then
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the current automatically vanishes. Note that imposing the boundary conditions corre-
sponds to require the fields to be either odd (Dirichlet) or even (Neumann) under the
transformation y — —y.

Returning to the gauge field, choosing an appropriate gauge and Dirichlet boundary
conditions make the fifth component vanish altogether. The remaining gauge field can
then be decomposed into Kaluza-Klein modes. As they are spin one instead of spin two

particles, the mass spectrum is slightly different then for the gravitons and given by

My = vike ™R,

with 22 for n > 0 being 2.5, 5.6, 8.0, and moving also towards nr for large values of
n. Physically, the absence of the fifth component of the field can then be interpreted as
that this component provides the necessary longitudinal degree of freedom for the massive
Kaluza-Klein gauge bosons. Unfortunately, as in the graviton case, the Kaluza-Klein
modes couple enhanced by a factor kexp(mkR) to the standard model particles as in case
of the graviton. This can only be avoided at the cost of having the geometry such that
all new physics is moved to rather large energies, reintroducing the hierarchy problem, or
by rather subtle manipulations on the kinetic terms of the gauge bosons on the ultraviolet
brane.

This changes, if also the fermions can propagate into the bulk. However, this is again
complicated by the chiral nature of fermions. As noted, chirality of five-dimensional
fermions is fundamentally different from the one of four-dimensional ones. This can be
remedied by introducing a second set of fermions with opposite chirality of the standard
model ones. To avoid that all of them are visible, it is necessary to give them different
boundary conditions. Only fields with von Neumann boundary conditions on both branes
are found to have (up to the Higgs effect) massless modes, and can therefore represent the
standard model fermions. Fermions with Dirichlet boundary conditions on at least one
boundary immediately acquire a Kaluza-Klein mass. Therefore, they will not be visible
below the TeV scale.

There is another twist to this. On top of the Kaluza-Klein and Higgs mass, there is
usually also a bulk mass of order ck for some constant ¢. This can be counteracted by
choosing the mixed boundary conditions

(8, + cLk)y = 0 (8.13)

on the branes at y = 0 and y = kR, for the desired left-handed fermion for the standard
model. As a consequence, the five-dimensional Fourier mode of the solution of the Dirac

equation still has a zero-energy/zero-mass mode. Furthermore, in the fifth dimension this
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implies a behavior of the fermion field as

w ~ e_(CL_%)kly"
Hence, the field is exponentially localized towards either of the branes, depending on the
precise value of ¢;. A similar calculation for the right-handed fermions in the standard

model yields that ¢, — 1/2 is replaced by cg + 1/2. The masses of the Fourier-expansion,

and thus the Kaluza-Klein modes, is then given by

1 1 —1)"
MY e AT <n +5 ( - 1) — (T)) ke ™R (8.14)

LR+ 5
for n > 0 and zero for n = 0. Since the gauge bosons have no such localization due to

2

their boundary conditions, they will couple to all these fields equally. The exponential
localization outside the standard-model brane then provides that from a four-dimensional
perspective the interaction of fermions and gauge bosons is not appearing enhanced.

Since the Higgs boson is (yet) localized to a brane, the effective overlap of a fermion
field, and thus its interaction strength, is strongly determined by how much it is localized
on the brane. This is exponentially controlled by the parameters ¢;. Thus, even very small
differences in the ¢; can yield huge effects, and thus naturally explain why the different
masses of the fermions generated by the Higgs-Yukawa couplings are so very large without
requiring the couplings to be actually very different.

Still, such scenarios require quite a number of amendments, like extra symmetries or
particles, to make them compatible not only qualitatively but also quantitatively with

experimental precision measurements.

8.3.3 Symmetry breaking by orbifolds

With the orbifolds it is also possible to provide symmetry breaking. Take for example
the SU(5) GUT of section 7.2. In this case it was necessary to introduce numerous addi-
tional Higgs fields to remove the additional gauge bosons, acting as leptoquarks, from the
spectrum to have a decent proton life time. This can also be achieved by orbifolded extra
dimensions. Take for example a single extra dimensions with boundary conditions.

To see this note first that Dirichlet boundary conditions generate an expansion for a

field of type
2 [e.9]
o) =\ 7 2 ol a)sin G

while Neumann boundary conditions lead to

o(z,y) = \/%_RQS(O, ) 44/ % Z ¢(n, ) cos n_fg;
n=1
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Hence, only for Neumann boundary conditions a zero-mode with zero Kaluza-Klein mass
exist, while the lightest excitation in the Dirichlet case has a mass 1/R. Finally in the
case of a mixed boundary condition, i. e., Dirichlet at one end and Neumann at the other,
again a zero-mode is forbidden, and the period is halved. E. g., Dirichlet conditions at

y = 0 and Neumann conditions at y = 7R yields

2 o0
o) =\ 7 D2 o) sin g

and vice verse.

Now take the SU(5) gauge field. It is splitted into the standard model fields of gluons,
W, Z, and the photon. Furthermore the X and Y gauge fields appear. In addition,
universal extra dimensions dictate to have a further fifth component for all gauge fields.
The fifth dimension is different then the ordinary four dimensions by its different structure.
In addition to ordinary parity transformations in four dimensions, there is then also an
exclusive five-dimensional parity transformation y — —y. The fifth component of the
gauge field must then have opposite parity under y — —y. This can be seen from the
fact that d, is necessarily odd under y — —y. The component F)5 = 0,45 — 05 A,, of the
field-strength tensor must have a definite parity under this transformation, or otherwise
the theory would not respect the orbifold structure of the theory. Thus, A, and A5 have
opposite boundary conditions.

Choosing then Neumann boundary conditions for the standard model fields automat-
ically makes their fifth component having Dirichlet boundary conditions, making them
heavy. To also remove the X and Y gauge bosons together with their fifth component
from the low-energy realm requires them to have mixed boundary conditions. By this,
the GUT symmetry appears to be explicitly broken since all additional fields have become

massive. This is the concept of symmetry breaking by orbifolding.

8.4 Deconstructed extra dimensions

An alternative flavor of (large) extra dimensions are obtained from so-called deconstructed
extra dimensions. In this case the extra dimensions are not continuous, but are discrete,
i. e., contain only a finite number of points, like a lattice. This removes the ultraviolet
divergences encountered by having an infinite number of Kaluza-Klein states, making the
theory renormalizable. This can also be viewed by a finite, in case of the extra dimension
being compactified, or infinite set of four-dimensional space-times, which are distinguished

by a discrete quantum number.



194 8.4. Deconstructed extra dimensions

As an example, take only one additional dimension, with N points and radius R.
Then each of the N points is a complete four-dimensional space-time, and is also called a
brane. Take now a gauge-field A,(z,y) with y the (discrete) fifth coordinate. On a given
brane, the fifth coordinate is fixed and denotes the brane. There are then four gauge-field
components depending on the remaining four coordinates x, just as a normal gauge field
would. This can, e. g., give the gluons of QCD. There is another field, the fifth component
of the gauge field, depending on a fixed brane again on the four coordinates. It can be
shown to behave like an adjoint Higgs field.

Expanding the gauge field in a discrete Fourier series shows the presence of further,
heavier Kaluza-Klein modes as copies of these fields. From a low-energy perspective, like
an experiment, these appear in addition to the gauge theory described by the zero modes
as N — 1 copies of these gauge theory, which are broken by the additional N — 1 adjoint
Higgs fields, giving the Kaluza-Klein modes of the gauge fields their mass. The remaining
zero-mode of the As component can be rearranged such that it can take the role of the
standard model Higgs, breaking the electroweak symmetry's.

Similarly, it is possible to introduce fermions having the correct chiral properties by
choosing appropriate boundary conditions, as before'*. As a bonus, tuning the parameters
appropriately, it is possible to make Kaluza-Klein fermions condense, essentially realizing

a topcolor mechanism, and thus providing the mechanism unspecified in topcolor theories.

13Theories exploiting the same mechanism to obtain the standard model Higgs for a continuous extra

dimensions are sometimes called gauge-Higgs unifying theories or also holographic Higgs theories.
141n fact, the domain-wall fermions of lattice gauge theory are a very similar concept to a deconstructed

theory. However, in this case the limit R — 0 is taken, making all Kaluza-Klein modes infinitely heavy in
the end.
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Quantum gravity

9.1 Non-commutative geometry

A possibility to quantize gravity is to postulate the existence of a minimal length, similar to
the postulate of a minimal phase space volume AxAp ~ h in ordinary quantum mechanics.
This is also similar to the idea of a maximum speed in general relativity. As there, the
existence of such a minimal length, which is typically of the order of the Planck length
1072 fm, has profound consequences for the structure of space-time. Especially, coordinate
operators do no longer commute, just like coordinate and momenta do not commute in

quantum mechanics, 1. e. [X;, X;] # 0.

The same effect can be reached by postulating canonical commutation relations for
coordinates, in addition to the ones between coordinates and momenta. Thus, this ansatz is
called non-commutative geometry. Since there is a minimal length, there is also a maximal
energy, and hence all quantities become inherently finite, and renormalization is no longer
necessary. On the downside of this approach, besides an enormous increase in technical
complexity, is that in general relativity neither coordinates nor energies themselves are
any longer physical entities, like in special relativity or in quantum (field) theories. Thus,
the precise physical interpretation of a non-commutative geometry is not entirely clear.
Furthermore, so far it was not possible to establish a non-commutative theory which, in a
satisfactory manner, provides a low-energy limit sufficiently similar to the standard model.
Particularly cumbersome is that it is very hard to separate the ultraviolet regime where
the non-commutativity becomes manifest and the infrared, where the coordinates should

again effectively commute. This problem is known as IR-UV mixing.

195
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9.2 Loop quantum gravity

In contrast to asymptotic safety in section 7.6, loop quantum gravity goes a step further,
and postulates that quantum gravity cannot be canonically quantized. Rather, different
variables need to be used for quantization. Especially, the basic requirement is that the
degrees of freedom in the path integral to be integrated over are diffeomorphism, i. e.
coordinate-transformation, invariant.

This avoids many conceptually tricky problems, which are similar to those arising in
(non-)Abelian gauge theories. In fact, a similar reformulation exists also for ordinary non-
Abelian gauge theories, and thus it appears in principle possible. In the latter case, the
gauge-invariant degrees of freedom are so-called Wilson loops, exponentiated line-integrals
over gauge-fields. In the same way the new variables are loop integrals over the metric, and
thus the name. However, the downside is that the ensuing theory is much more involved,
and contains a substantial, probably infinite, number of degrees of freedom and potential
non-localities. This makes work with this theory, even at the perturbative level, very much
more involved. In particular, it may even be only possible in a genuine non-perturbative

way.

9.3 Supergravity

The second important gauge theory, besides Yang-Mills theory with or without matter,
is gravity. Gravity can be considered as a gauge theory for translations. Therefore,
local supersymmetry will therefore create gravity. Without going into too much details,
especially as many questions on off-shell supergravity have not been solved, here only a

short introduction is made.

9.3.1 The Rarita-Schwinger field

The metric, as a symmetric tensor, describes a spin 2 object. Supersymmetrizing gravity
therefore requires a spin 3/2 field, which is the so-called Rarita-Schwinger field. This field
will be the associated gauge field for the local supersymmetry, just as the metric field is
the gauge field for the local translation symmetry.

In analogy to conventional gauge theories, the Rarita-Schwinger field is required to

transform under a local transformation as
U, =W, +0,€

where € is a spinor-valued function. This follows in essentially the same as for vector fields
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from teh representation theory of the Lorentz group. Thus, a Rarita-Schwinger field ¥
carries both, a vector index and a spinor index. This was to be expected, as this couples
effectively a spin 1 and a spin 1/2 object to create spin 3/2, just as for the metric two
spin 1 indices are coupled to spin 2. As the supercharges are Weyl/Majorana spinors, so
are the Rarita-Schwinger components.

Since the transformation is linear, it is an Abelian gauge theory, and the corresponding
field strength tensor

Q,=0Y,-0,Y9,

is therefore gauge invariant, but carries also a spinor index.
It is still necessary to postulate a Lagrangian for the theory, which is gauge-invariant.

Introducing ¥ = Wiy, a possibility is
L= —0,y0,u,
1% 1 Lo}
"= 5
1
T PN
o] 50"7"]

As for the Maxwell case, there are no gauge-invariant, perturbatively renormalizable
further interaction terms possible. Without interactions, only non-interacting Rarita-

Schwinger fields are possible. The equation of motion is, similar to the Dirac equation,
PO, W, = 0.

It follows that the Rarita-Schwinger field can have (classically) physical modes only for

d > 3, similar like the vector potential only for d > 2. This equation of motion also implies
vy, =0,

which is Rarita-Schwinger form of the Maxwell equations. The equations of motions can
be solved in a similar way as the free Dirac equation, and creates the free-field solutions.

It is possible to add a mass term, yielding
L=—=0,(y"d, —my"*)¥,,

in contrast to the vector gauge fields.

9.3.2 Supergravity

The actual supergravity action is somewhat involved. Here, only the situation will be

considered without additional matter fields, as they would have to be supersymmetrized
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as well. As shown above, the coupling of different matter multiplets leads to intertwining
of those, which leads to a rather involved result. Also, the cosmological constant will be
set to zero in the following.

The coupling between fermions and gravity actually is not a straightforward exercise in
itself'. The approach taken here is based on exchanging the metric in favor of a different

type of dynamical variables, the so-called vierbeins, defined as

_a b
gw/ - eunabey

where 7 is the space-time-constant Minkowski metric, and also the indices a and b run

therefore from 0 to 3. This relation implies

7 v _
€a9uv€p = Tab,

i. e. the vierbein is the matrix field which yields a transformation of some given metric
to the Minkowski metric. This field is therefore sometimes also called a frame field, as it
locally transforms the metric to a Minkowski frame. Both indices of the vierbein can be
raised and lowered using the Minkowski metric.

The Lagrangian of the simplest N’ = 1 supergravity is then

dete -
_ ap by _ Hrp
L = o (e™e™ Rypar — VU, 7" D, W,
c c
R,u,uab = a,uwuab - al/w,uab + WpacWy, p — wuacwu b

1
DI/ — ay"'zlwuab’YGb

Wyah = Zeu[aﬁ[uegﬂ —eu[aeg’]eycf)“eg

where the brackets around the indices indicates that the expression has to be antisym-
metrized with respect to the same-type indices. It is seen that the covariant derivative
couples gravity and the Rarita-Schwinger field. This theory is therefore coupled. The in-
volvement of the vierbein also makes the Einstein-Hilbert part more involved, and modifies
the Riemann tensor, which now involves different types of indices.

The, now local, supersymmetry transformations of the fields are, without proof,

1

oey, = 567“\I/M
0V, = Dye,

with the spinor 1/2 field e(x).

'In fact, there is more than one possibility, and they differ at the quantum level. Without experimental
input, it is at the current time not possible to decide which one is correct. Here, the most prevalent

construction is chosen.
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9.4 String theory

9.4.1 Introduction

The following will discuss the quantization of the simplest possible string system, the
simple, non-interacting, bosonic string. This will still be a formidable task, and will
yield a number of rather generic properties of string theories, like the natural appearance
of gravitons, the need for additional dimensions, and the problems encountered with, e.
g., tachyons. In particular the natural appearance of the graviton makes string theories
rather interesting, given the intrinsic problems of quantum gravity. Further advantages of
more sophisticated string theories are that they have generically few parameters, are not
featuring space-time singularities such as black holes on a quantum level, and often have
no need for renormalization, thus being consistent ultraviolet completions. The price to
be paid is that only rather complicated string theories even have a chance to resemble the
standard model, their quantization beyond perturbation theory is not yet fully solved, and
it is unclear how to identify a string theory which has a vacuum state which is compatible
with standard model physics. Furthermore, in general genuine string signatures usually
only appear at energy levels comparable to the Planck scale, making an experimental
investigation, or even verification of stringy properties of physics, almost impossible with
the current technology.

How comes the idea of string theory about? Generically, as motivates all the searches
beyond the standard model, the understanding has been increased by looking at ever
shorter distances and at ever high energies. The current confirmed state of affairs is then
the standard model. Going back to quantum gravity, a similar insight can be gained.
In the perturbative approach, the ratio of free propagation to a tree-level exchange of a
graviton is essentially given by the interaction strength of gravity times a free graviton
propagator, which is essentially given by the inverse of Gy E?, with E the energy of the

graviton. Thus the corresponding ratio is

Afree o hC5 M 123

A, GyE?  E2

where M2 = hc® /Gy is again the Planck mass, this time in standard units. Since Mp is
once more of the order of 101 GeV, this effect is negligible for typical collider energies
of TeV. However, if the energy becomes much larger than the scale, the ratio of free
propagation to exchange of a graviton becomes much smaller than one, indicating the
breakdown of perturbation theory.

This is not cured by higher order effects. E. g., in case of the two-graviton exchange,
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the corresponding amplitude ratio becomes

Asgg
Afree

E

~ (hGy)? Z / dE'E"® ~ %/dE’E’3 — oo for E—o00  (9.1)
Intermediate states P

This gets even worse with each higher order of perturbation theory. Thus, perturbation

theory completely fails for quantum gravity. Either non-perturbative effects kick in, or

something entirely different. That might be string theory.

The basic idea behind string theory is to try something new. The problem leading
to the divergence of (9.1) is that with ever increasing energy ever shorter distances are
probed, and by this ever more gravitons are found. This occupation with gravitons is then
what ultimately leads to the problem. The ansatz of string theory is then to prevent such
an effect. This is achieved by smearing out the interaction over a space-time volume. For
a conventional quantum field theory such an inherent non-locality usually comes with the
loss of causality. String theories, however, are a possibility to preserve causality and smear
out the interaction in such a way that the problem is not occurring.

However, the approach of string theory actually goes (and, as a matter of fact, has to
go) a step further. Instead of smearing only the interaction, it smears out the particles
themselves. Of course, this occurs already anyway in quantum physics by the uncertainty
principle. But in quantum field theory it is still possible to speak in the classical limit
of a world-line of a particle. In string theory, this world line becomes a world sheet.
In fact, string theories can also harbor world volumes in the form of branes. However,
a dynamical theory of such branes, called M(atrix)-theory, is still not known, despite
many efforts. One of the problems in formulating such a theory is that internal degrees of
freedom of a world volume are also troublesome, and can once more give rise to consistency
problems. String theory seems to be singled out to be theory with just enough smearing to
avoid the problems of quantum field theory and at the same time having enough internal
rigidity as to avoid new problems. The details of this are beyond the scope of this lecture,
which thus only introduces string theory.

One feature of string theory is that there is usually no consistent solution in four space-
time dimensions, but typically more are required. How many more is actually a dynamical
property of the theory: It is necessary to solve it to give an answer. In perturbation theory,
it appears that ten dimensions are required, but beyond perturbation theory indications
have been found that rather elven dimensions are necessary. Anyway, the number is usually
too large. Thus, some of the dimensions have to be hidden, which can be performed
by compactification, as with the setup for large extra dimensions. Indeed, as has been
emphasized, large extra dimensions are rather often interpreted as a low-energy effective

theory of string theory.



Chapter 9. Quantum gravity 201

Since the space-time geometry of string theory is dynamic, as in case of quantum
gravity, the compactification is a dynamical process. It turns out that already classically
there are a huge number of (quasi-)stable solutions having a decent compactification of the
surplus dimensions, but all of them harbor a different low-energy physics, i. e., a different
standard model. To have the string theory choose the right vacuum, thus yielding the
observed standard model, turns out to be complicated, though quantum effects actually
improve the situation. Nonetheless, this problem remains a persistent challenge for string
theories. This is known as the landscape problem.

Here, these problems will be left aside in favor for a very simple string theory. This
theory will exhibit many generic features of string theory, despite requiring 26 (large)
dimensions and, at least perturbatively, will not have a stable vacuum state. The latter
will be signaled by the existence of a tachyon, a particle traveling faster than the speed of
light, which is another generic, though beatable, problem of string theories.

To give a more intuitive picture for the peculiarities and properties of string theory in
the following a point particle and its quantization will be compared step-by-step to the

quantization of the string theory.

9.4.2 Classic string theories

In the following the number of dimensions will be D, and the Minkowski metric will take

the form
—1 0

Nuv =
0 1

It is actually a good question why the signature of the Minkowski metric should be like
this, and also string theory so far failed to provide a convincing answer. But before turning

to string theory, it makes sense to set the stage with a relativistic point particle.

9.4.2.1 Point particle

To become confident with the concepts take a classical particle moving along a world line
in D dimensions. Classically, a trajectory is described by the D — 1 spatial coordinates
x;(t) as a function of time ¢ = x. More useful in the context of string theory is a redundant
description in terms of D functions X, (7) of a variable 7, which strictly monotonously
increases along the world line. A natural candidate for this variable is the eigentime, which

thus parametrizes the world line of the particle.
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The simplest Poincare-invariant action describing a free particle of mass m in terms of

the eigentime is then given by

Spp = —m/dT\/—aTXf@TXH. (9.2)

This thus tells that the minimum action is obtained for the minimum (geodetic) length of

the world line. Variation along the world line
(5Xu =00, X" = 0.0X"

yields the equation of motion as

5y = —m / dr ,/_Xuxu_\/_ (X0 +a%n) (XM+§XN>>
- —m/dT NS3 Xﬂ—\/ Xﬂ+2X”6X)>
= —m/dT VXX — XX <1+2)§(i§(>

Taylor / dr—> 9%n X 5X

\/—X“X

where in the last line use has been made of the infinitesimality of §.X . and the square root

has been Taylor-expanded.
Defining now the D-dimensional normalized speed as
X
= ——— (9.3)
\/ =X XH
yields the equation of motion after imposing the vanishing of the action under the variation

and a partial integration as
mut =0 (9.4)

This is nothing else then the equation of motion for a free relativistic particle, which of
course reduces to the one of Newton in the limit of small speeds. This also justifies the
interpretation of m as the rest mass of the particle.

With 7 the eigentime the action is indeed Poincare-invariant. This can be seen as

follows. A Poincare transformation is given by

X = A% XY 4 ak.
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Inserting this expression for the argument of the square root yields

0, (A% XY +a) 0, (A2 X, + a”)
= (ARAY) 9, X70. X,

Since the expression in parenthesis is just d% because of the (pseudo-)orthogonality of
Lorentz transformations, this makes the expression invariant. Since the eigentime is in-
variant by definition, this shows the invariance of the total action.

Additionally, it is also reparametrization invariant, i. e., it is possible to transform the
eigentime to a different variable without changing the contents of the theory, as it ought
to be: Physics should be independent of the coordinate systems imposed by the observer.
This is what ultimately leads to the diffeomorphism (diff) invariance of general relativity.

To show this invariance also for the action (9.2) take an arbitrary (but invertible)

reparametrization 7/ = f (7). This implies

o dr’
- dr
/

dr = d;,
7—/

yielding the transformation property of the integral measure. For the functions follows
then

., . dr -1
X+ N = XH — = X+
(F) = X¥(r) 55 = X
Hence the scalar product changes as
e 1o,
X Xl“ - EX XP«'

One power of 7/ is removed by the square root, and the remaining one is then compensated
by the integral measure.

Showing this explicitly for the action (9.2) was rather tedious, and it is useful to rewrite
the action. For this purpose it is useful to introduce a metric along the world line. Since the
world line is one-dimensional, this metric is only a single function v,,(7) of the eigentime.

This yields a trivial example of a tetrad n

N |=

(1) = (=77 (7)),

which in general is a set of N (by definition positive) orthogonal vectors on a manifold.
However, the manifold is just one-dimensional for a world line, and thus the tetrad is again

only a scalar. In analogy to the string case, 7., can also be denoted as the world-line metric.
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Taking the tetrad as an independent function a new action is defined as

1 XHX )
S;p:i/(;h'( n“—nm)

Under a reparametrization 7 — 7/(7) it is defined that the functions X and 7 transform

as

X(r) = X(7(7))
T = 0 S =) (95
This makes the expression invariant under diffeomorphisms: The transformation of 1 (9.5)
takes care of the extra factor of 7/, and also makes the second expression invariant.
To show that the new action is indeed equivalent to the old, and that n is thus just
an auxiliary function, can be shown by using the equation of motion for 7. Using the

Euler-Lagrange equation this time yields

_doL oL XX,
_drﬁﬁ on N n?
XrX
2
= 1 =- m2“.

Thus knowledge of X determines 1 completely, since no derivatives of 1 appear. Inserting

this expression into 9.5 leads to

1 X“X | X#X
S;p = é/d’i—

= —m/dr\/—X“XM:Spp.

Thus Szﬁp is indeed equivalent to .S,,. However, one advantage remains to be exploited. By
separation of the mass S}, can also be applied to the case of m = 0 directly, which is only

possible in a limiting process for the original action S,.

9.4.2.2 Strings

For strings, the world line becomes a world sheet. As a consequence, at any fixed eigentime

7 the string has an extension. This extension can be infinite or finite. In the latter case,
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the string can be closed, i. e., its ends are connected, or open. In string theories usually
only finite strings appear, with lengths L of size the Planck length. Furthermore, open
strings have usually to have their ends located on branes. This is not necessary for the
simple case here, which will be investigated both for open and closed strings.

Analogous to the eigentime then an eigenlength o can be introduced. Both parameters
together describe any point on the world-sheet. The functions X, describing the position
of the points of the world-sheet are therefore functions of both parameters, X, = X, (o, 7).
Furthermore, as for the point particle, these functions should be reparametrization invari-

ant
X (o,7) = X" (0" (0,7),7 (0,7)) (9.6)

such that the position of the world sheet is not depending on the parametrization.

Derivatives with respect to the two parameters will be counted by Latin indices a, ...,

aa b,... — 87'7 acr
a(] = aT
81 - 80-

It is then possible to define the induced metric on the world sheet as
hap = 0a X" O0p X,

as a generalization of h,, = X “XM, which as a metric has already been used to define
the action (9.2) in analogy to the Einstein-Hilbert action. +/—det hy,d7rdo is then an
infinitesimally element of the world sheet area.

The simplest possible Poincare-invariant action which can be written down for this

system is the Nambu-Goto action

SNG = / deO’ENG
M

in which M is the world-sheet of the string and Lyg is the Nambu-Goto Lagrangian

1
Lyng = — V—det hyy = — V0r X0, X109y X,0, XP — 0, X,0, X10,XP0, X,

1
2ol 2wl
again the direct generalization of the point-particle action. In particular, the minimum
area of the world sheet minimizes the action.
The constant o' is the so-called Regge slope, having dimension Mass squared. In
principle, it could be set to one in the following for the non-interacting string, but due
to its importance in the general case, it will be left explicit. The Regge slope can be

associated with the string tension T" as T'= 1/(2m/).
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The Nambu-Goto action has two symmetries. One is diffeomorphism invariance. This
can be seen directly, as in the case of the point particle, except that now the Jacobian
appears. The second invariance is Poincare invariance, which leaves the world-sheet pa-

rameters 7 and o invariant. However, the functions X, transform as

X" = ARXY 4
5

—~
DN XVONTX, = NEAT 0,X 0, X, = 0. X"9,X,,.

Thus, the induced metric is Poincare invariant, and hence also the action as well as the
Lagrangian and any other quantity constructed from it is.

It is once more rather cumbersome to use an action involving a square root. To
construct a simpler action, it is useful to introduce a world-sheet metric 74, (7,0). This

metric is taken to have a Lorentz signature for some chosen coordinate system

[+ 0
Yab = 0 — .

Thus, this metric is traceless, and has a determinant smaller zero. With it the new action,

the Brink-Di Vecchia-Howe-Deser-Zumino or Polyakov action,

1 1
Sp = / drdo (—)2 Y he (9.7)
M

Y

is constructed, where v denotes det ~,p.
As in case of the point particle, the world-sheet metric 74, has to have a non-trivial

transformation property under diffeomorphisms,

aw/c aw/d

/ /
O (%Jb Yed (7—

70,) = Yab (7_7 0) 3

where the variables w denote either ¢ and 7, depending on the index. This guarantees
that for all invertible reparametrizations, which are continuous deformations of the identity
transformation, the metric is still traceless and has negative determinant.

To obtain the relation of the Polyakov action to the Nambu-Goto action it is again
necessary to obtain its equation of motion. This is most conveniently obtained using the

variational principle. For this, the general relation for determinants of metrics

67 = Y7 6Yap = —YVap0y*"

is quite useful.
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Abbreviating the Polyakov Lagrangian by Lp and performing a variation with respect

to v yields
1 =
(5SP = _471'0/ /deO' (Lp — (—f)/ - 57)é (,yab + 5/}/(1[)) hab)
1 1
= o [ drdo (Lo = (97 0)E (17 4 59%) )
1 . .
T dna / drdor (Lp = (=7)* (1= 9674)* (7" + 07) has)

Expanding the term with indices cd up to first order in the variation leads to

]_ 1 ]' C a a
6Sp = i /dea (Lp — (=) (1 37 d5’7cd) (”y b oy b) hab)
1 1 ab a1 ca_ab

The second term is again the Polyakov Lagrangian, canceling the zero-order term. Then

only

(ST

1 1
5SP = _M/deo- (_7) (hab - §7ab’)/cdh8d> 67(117

is left.
The condition that this expression should vanish yields the equation of motion for the

world-sheet metric as
1

hab = §’Vab’}/cdh6d (98)

Division of each side by its determinant finally yields

hab 1 Yab (Vcdth)
(=% 2 (det — Irayreahed)
Yab (Vcdth)
((%ﬁ}/cdth) ? det _PYab)
Yab
(=)

In the second line it has been used that .4k is a scalar, permitting it to pull it out of

[N

N | —
—

2

the determinant. The result implies that h and ~ are essentially proportional.

Inserting this result in the Polyakov action yields

(NI

1
Sp=— / drdoy ™y (—h)

1 1
y—, = /dea(—h)2 = Sna

2ma’
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showing that it is indeed equivalent to the Nambu-Goto action, where the fact that the
diffeomorphism invariant quantity 7%y, is two, due to the Lorentz signature of v, has
been used.

The Polyakov action thus retains the Poincare and diffeomorphism invariance of the
Nambu-Goto action. The Poincare invariance follows since v is Poincare invariant, since

it is proportional to the Poincare-invariant induced metric, thus

fYab/ — Afyab — ,yab'
The diffeomorphism invariance follows directly from the transformation properties of the
world-sheet metric, in total analogy with the point-particle case, but considerably more
lengthy since track of both variables has to be kept.

The redundancy introduced with the additional degree of freedom ~ grants a further

symmetry. This is the so-called Weyl symmetry, given by

X" (r,0) = X"(1,0)
o = hap
Voo = €
for arbitrary functions w (7,0). The origin of this symmetry comes from the unfixed

proportionality of induced metric and the world-sheet metric. The expression of v in

terms of the induced metric h is invariant under this transformation,

Yab  _ Vab€™ _ Yab€™  Yab
(=) (=)

[y
N|=

1 -
(—yet)z  (=)?
Also the action is invariant. To see this note that -y, is indeed a metric. Since v4;v* has

to be a constant, as noted before, this implies that

lab —2w, ab

= e ’y
As a consequence, the expression appearing in the action transforms as

ab

N

1 1 3
(—7)2 9% = (—7e™)? e = (—)2 y

Thus, the Weyl invariance is indeed a symmetry.

The Polyakov action can also be viewed with a different interpretation. Promoting
the world-sheet indices to space-time indices and taking the indices p to label internal
degrees of freedom, then the Polyakov action just describes D massless Klein-Gordon

fields X, (with internal symmetry group SO(D —1,1)) in two space-time dimensions with
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a non-trivial metric v, which is dynamically coupled to the fields. This is an example of a
duality of two theories, which plays an important role for more complicated theories. E.
g., dualities between certain string theories on certain background metrics with so-called
supergravity theories, the AdS/CFT correspondence, had an enormous impact recently on

both string theory and quantum field theory.

9.4.3 Quantized theory
9.4.3.1 Light cone gauge

As the Poincare and Weyl symmetry introduce a gauge symmetry, it is easier to perform
the quantization in a fixed gauge. Particularly useful for this purpose in the present context
is the light-cone gauge. Though this gauge is not keeping manifest Poincare covariance, it
is very useful (similar to the case of quantizing electrodynamics in Coulomb rather than
linear covariant gauges). Proving that the theory is still covariant after quantization is
non-trivial, but possible. Hence, this will not be shown here.

To formulate light-cone gauge light-cone coordinates are useful. They are introduced
by the definitions

+

Tt = (xoj:xl)

_§|H

r = x2,i=2,....D—1,

and thus mix the time-coordinate and one, now distinguished, spatial coordinate. Since
the zero-component is the only one involving a non-positive sign in the metric this yields

the following relation between covariant and contravariant light-cone coordinates

1
T+ = ﬁ (-’Eo + 5131)
x. = —zxt
.T+ = —X

This implies the metric
a’b, = atby +a"bo +a'b; = —athT —a b + 'l
which is equivalent to the conventional one

—ath —a bt +d'h = —% (ao + al) (bo - bl) - % (ao - al) (bo + bl) + a'd’

= —a" +a'b' +d'b = atb,.
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Aim of the gauge fixing is to restore the original number of independent degrees of free-
dom. In case of the point particle this amounts to remove the eigentime 7. This is most
conveniently done by the condition

T=21",

thus being the light-cone gauge condition for the point particle. This is more convenient
than the more conventional choice 7 = 2°. With this 2 corresponds to the time and p~
to the energy . Correspondingly, x~ and p' are now longitudinal degrees of freedom while
x* and p’ are transverse ones. This immediately follows from the scalar product

0 _ _
&? (—(l+b +) = -b s

and correspondingly for the derivative with respect to 21 which produces p~.

9.4.3.2 Point particle

To demonstrate the principles, it is once more convenient to first investigate the point
particle. However, one should be warned that the resulting theory is actually flawed due
to the appearance of unphysical (non-normalizable) states. It should therefore be taken
rather as a mathematical than a physical discussion.

Returning to the parametrization of the point particle of section 9.4.2.1, the gauge

condition to fix the diffeomorphism invariance becomes
Xt (r)=r.

The action is given by equation (9.5), thus

! —_
Spp -

- ! / ir (% (25 4+ X°X) _mﬂ).

As usual, the Lagrangian yields the canonical conjugated momenta by the expression

oL
" axn
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yielding
1
P = —
'77
Xi
P=
n

With this the Hamiltonian can be readily constructed as

H = Y PQ-L
= PX +PX'-L

X X 1 ... 1
= - 4 PP+ — — - X'X"+ —nm?
n no 2

2
1 1 PP+ m?
= PP — -nPP+ -nmm? = —————.
1 g Mt gnm 2P+
Where it has been used that
1
Pt=—-pP =—,
n

and it is thus possible to remove n and P_ from the expression.

In this result the variable X is no longer a dynamical variable, and thus the gauge
is fixed. Furthermore it follows that P, = 0, since the Lagrangian does not depend on
7. Hence n is not a dynamical variable. This was expected, since it was already in the

classical case only used to make the Lagrangian more easily tractable

For the quantization then the usual canonical commutation relations are imposed as

[P, X7 = —is/
[P X7] = —i

The relations for P, is provided by the other relations, since P~ is the energy and thus
H=P =-P,. (9.9)

That is essentially the relativistic mass-shell equation, implying once more that P* is not
an independent degree of freedom. The resulting Hamilton operator is the one of a D —
2-dimensional harmonic oscillator, but supplemented with the additional unconstrained
degree of freedom P_. The spectrum of this is known, being a relativistic scalar (with all

its sicknesses) and states |k_, k;).
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9.4.3.3 Open string

Again, the first step is to fix the gauge. For that purpose first the permitted range for the

world-sheet parameters have to be chosen, which will be

|
g
IA
\]
IA
+
g

0 < o< L. (9.10)
Thus, L is the length of the string. Again, it is chosen that
T=X". (9.11)

This deals again with the diffeomorphism degree of freedom. To also take care of the Weyl

freedom a second condition is necessary, which will be chosen to be

I5Vooe = 0 (9.12)
detyy = —1 (9.13)

The conditions (9.11-9.13) fixes these degrees of freedom completely, provided that the
world-sheet is parametrized by the eigenvariables in such a way that one and only one set
of eigentime and eigenlength correspond to a given point on the world sheet. In the case
of the point particle, it can be shown that this condition is actually superfluous, since even
in case of a doublebacking world line this would not contribute to a path integral. For
string theory, this is something not yet really simply understood.

A way to get an intuition for the significance of these gauge condition is by the use of

the invariant length. The choice of 7 = X is of course always possible. Then start by

the definition )
1 3
f_fYUa (—det%b> .

Now perform a reparametrization which leaves 7 invariant. This implies
do
r_ _
f - fdo_/ °

because of the transformation properties of the v,. Hence, the length element dl = fdo
is invariant under this reparametrization. Therefore, it can be considered as an invariant
length-element, since it is not changing under a change of the eigenlength of the string.

In fact, this can be used to define the o coordinate, by setting it equal to [ dl along the

0:/ dl.
0

world sheet,
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As a consequence, f can no longer depend on o, since dl is o-independent. Secondly, it
is then possible to make a Weyl-transformation to rescale det~ such that it becomes -1,
yielding (9.13), and fixing the Weyl invariance. Since f is Weyl-invariant by construction,
this implies that 0,7, trivially vanishes, yielding (9.12). Thus, in this coordinate system
the gauge condition are fulfilled, and therefore are a permitted choice.

Since 7 is by construction symmetric, these gauge condition permit to rewrite it in a

simpler way. It then takes the form

B ,)/’TT ,yTo'
fY o oT go
RARNe
_ ~Yoo (T) Vro (T, 0)
Yro (7—7 U) ’Yo_al <T> (1 - 772'0 (T> 0)) ’
thereby eliminating two of the four variables in ~,;, and also reducing their dependence
on the world sheet parameters.

It is furthermore useful to define the average and variation of the X~ coordinate for

the following as

Z (r) = %/0 do X~ (1,0)

Y~ (r,0) = X (r,0)—Z (7).
This is the starting point to rewrite the action in a more useful form.
Start by rewriting the Lagrangian as
=1

Y AN
Lp = — do (—7)2 ¥*0, X" 0 X,
el SRR

1 g - 730
= ) @ (T&’X 00 X 1200 X0 X, o+ 700 X1 0 X %UaTXMaTXu) |

Now, it is useful to investigate the expressions piece-by-piece. Start with

1—12 1—12 , ,
L= Yoy, xm, x, = L= Trmp, xig, X
PYO'O' P)/O'O'
where it has been used that
0, Xt =0,T=0
follows trivially from the gauge conditions. Next, use furthermore that

= TTCI)O'X7 :760X+
oo (0, X0, Xy 10, X~ ByXo +0,X0,X%) = rg (~0, X~ + 0,X°0,X")



214 9.4. String theory

and
Yoo (0, XT0, Xy + 0, X 0, X_ + 0, X0 X") = =750 (—20. X~ + 0, X'0, X") .

Reinserting everything into the Lagrangian yields

1 L 1— 'YZU i i - i i
Lp = — do (=720, X0, X" — 2975 (~0, X~ + 0,X'0,X")
drad ), Yoo

~Yor (~20, X" +0,X°0,X") ).

Employing now the relations for the average and variation this yields

1 L A v
LP = —— <’70-0-2L87—Z_ + / do (/YO'U (_8TX18TXZ)
Yt 0

2
2900 (0, — 0, X'0,X7) + 179, X9,X") )

Yoo
In the resulting expression there is no 7-derivative of Y~ appearing, which is thus a non-

dynamical field, behaving like a Lagrange factor for ~,,, which therefore is fixed to
OoVro =0, (9.14)

and thus does not depend on o.

Returning to the boundary condition of this open? string yields
(0,X*) (1,0) = (0,X*) (1, L) =0, (9.15)

because otherwise the fields would not be continuously differentiable at the boundaries,
which is imposed like for wave-functions. These are von Neumann conditions in the terms
of the large extra dimensions. This is also obtained by varying the Polyakov action. First,
vary with respect to the fields to obtain

1
2o

/ dr (—7)? 0, X"6 X" |7=E,

Since this has to vanish for arbitrary variations of the fields, this implies the boundary
condition (9.15).

On the other hand, when varying the original action with respect to the fields, this
yields

5Sp = Sp+ 4#0/ / d7doYay0a (X" + 6X") 0y (X, + 6X,,)
/I

1
= Aol /deU/Yab (aaX“ab(;X# + 8Q5X“8qu) .

2No cyclicity of any function on ¢ has been imposed, which would be one possibility to implement a

closed string.



Chapter 9. Quantum gravity 215

Since variation and differentiation are independent, they can be exchanged,
0,0 XM = 60, X" .

Doing a partial integration, keeping an appearing boundary term yields

1
0Sp = o [ drdow (0a0,X"0X, + 0,0, X0 X")
T
1
e / ey (X SX,, + 0 X, 0X") |E (9.16)

Note that in the boundary term as a shorthand notation one of the indices is uncontracted.
This is of course always the o-index for which the total integration has been performed.
However, the last expression must vanish under variation, implying once more the von
Neumann condition (9.15)

Yab (O XH 4+ O, X*) = 0.

Incidentally, this also implies for 4 = + and @ = 7 and b = ¢ that ~,, vanishes on the
boundary.

Since for ;i = — the fields are non-dynamical, this implies that d,X~ = 0 and that
therefore X~ only depends on 7.

To obtain some further useful results, the variation can be repeated after the gauge
has been fixed. This yields

0Sp = Sp+

— / drdo (10 (20, (X~ +0X7) = 0, (X' +6X7) 0, (X' +6X7))
1296 (05 (X~ +6X7) — 0, (X' +6X") 0, (X' +6X"))
1— 772-0

ago

_|_

0 (X' +0X7) 0, (X' +6X7) ).,

Expanding the result and dropping O (6%) terms and annihilating a term of type Sp just

leaves

1 - i i
0Sp = / drdo (Yoo (20:0X ™ = 20,X'0,6X")

. . ) ‘ 1—~2 , ,
+2770 (0,6X~ — 0, X'0,6X" — 0,6X'0,X") + 27—%"&,X ‘0,0X )

which can be rewritten as

—~2 ,
5Sp = 1 / drda((mmaa(sx)+(—2%87)(@'805)("+2ﬂ805X180X)

4o/ Yoo

+ (0 20:0X = 29550, X0,0X") — (3:,0:0X'0,X") ).
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After partial integration of the first term this yields once more that 9,7, still vanishes at
the end of the string.

The second term in parentheses yields after partial integration

; 1—92 i i 1—12, 2 yri
05 (29760-X") + 05 | —20,X" | = —27:50,0, X' + —207X".
Yoo Yoo
Again, this boundary term has to vanish. The second does this, if the derivative of the X*
with respect to o does so at the boundary, again yielding (9.15). Since this is not the case
for the 7-derivative, this again requires 7,, = 0 at the boundary of the string. Hence, this
implies that both the function and its first derivative vanishes on the boundary. Because

of the equation of motion for 7., (9.14), this implies
77'0' = O?

and it can be dropped everywhere.

This eliminates one degree of freedom, leaving only
Z7(1), Voo (1), X' (1,0),

which is a rather short list. Furthermore, this simplifies the Polyakov Lagrangian to

L 1 [F T | o

Lp=——7,00-2" + —/ do | Voe0; X'0; X' — —0,X'0, X" |,
2ma’ A J, Yoo

which will now serve as the starting point for quantization. It should be noted that the

gauge-fixing was the reason for eliminating the degrees of freedom, reducing the set to a

one more manageable for the following.

The first step for quantization is then the calculation of the canonical momenta

OLp L
P = —P+: = - oo 9.17
0(0:27) ora (9.17)
‘ SLp | Pt
I = — = o Or X' = —0,; X".
§ (0, X7) ona L

From this the Hamiltonian is immediately constructed to be

L
H = Po,7 + / doll'0,. X' — L
0

L L | o
= —— [ do(2rdTI'Il" + —0,X'0, X" 9.18
dra/ Pt /0 7 ( i * 2ma ) (9.18)
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This is the Hamiltonian for D — 2 free fields X and the conserved quantity P, as can be

seen form the equations of motion

H H
0,PT = —oym =0
0. X" = %zQW@’cHi (9.19)
oI = —(?;:2;@/83Xi, (9.20)

where a partial integration has been performed in (9.20) and c¢ is defined as

L
Ci=—
2ra) Pt

Inserting (9.19) in (9.20) yields the wave equation for X*
02X' = 202X,

where ¢ takes the role of the wave speed. Thus, the transverse degrees of freedom form
waves along the string.

Since P™ and L are constants of motion, so is ¢. Thus, given the boundary conditions
for the open string, the equations of motions can be solved, yielding

n=oo

T—l—i(QO/)% Z %e’m%cos$ (9.21)
n

A .
7

P+
n=—00,n#0
o, = ait (9.22)

Xi(r,0) = Z'+

The relation (9.22) applies since the X are real functions. For the purpose at hand also

the center-of-mass variables

. 1 e
Z' (1) = z/ do X" (1,0)
0

. L ‘ pt [t ‘
P (1) = /o daH’(T,a):T/O do0. X" (1,0)

have been introduced. Thus, the center-of-mass of the string follows a free, linear trajectory
in space, which overlays the transverse motions of the oscillations transverse to the string.
Herein Z' and P in (9.21) have to be taken at 7 = 0, and will become Schrodinger

operators in the quantization procedure to come now.
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The quantization procedure is started as usually with imposing equal-time canonical

commutation relations

(Z=,P] = —i
(X (0),IV (¢/)] = i676(c — o)

Performing a Fourier expansion this is equivalent to the relations
XL P = iy
[l al] = mdé, _n (9.23)

Here, a non-standard, though useful, normalization of (9.23) has been performed.
The natural consequence is now that every transverse component behaves as a harmonic
oscillator with a non-standard normalization. The corresponding creation and annihilation

operators are then given for m > 0

o = hvma
o, = hy/mal
-1 = [a',d] (9.24)

where m gives the oscillator level for direction i. So far, so standard.
Defining now the momentum vector k& = (k*, k') the state |0, k) of lowest excitation

has the properties

PT0,k) = kT|0,k)
P'|0,k) = K'|0,k)
ol |0,k) = 0form >0 (9.25)

Therefore k is the center-of-mass momentum. Higher excited states are then denoted by

|N, k) and can be constructed as

D-1 oo Nm
N, k) = (HH nNmN >|0Jf>,

=2 n=1

just as ordinary oscillator states. Therefore, N;, are the occupation numbers for each
direction and level. In particular, these can be interpreted as internal degrees of freedom,
while the motion of the center-of-mass corresponds to a particle like behavior of the whole
string. As will be discussed below, from this point of view every state corresponds to a

certain particle with a certain spin.
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The total set of states (9.21) forms the Hilbert space of a single string, H;. In particular,
|0, 0) is not the vacuum, but merely a momentum-zero string with no internal excitations,
except zero-point oscillations: A quantum-mechanical string always quivers. The vacuum
is devoid of a string, its Hilbert-space Hy is denoted by the single state |vac). However,
none of the operators so far can mediate between Hy and Hy, but only act inside H;. Since
there are no interactions, an N-string Hilbert space can be build just as a product space
of His as

hy, = |vac) ® H; & ... ® H,.

where the states are implicitly symmetrized, yielding a Fock space, since the string states
are bosonic, given that there creation and annihilation operators fulfill bosonic canonical
commutation relations, (9.24).

Since the states are just free states, it is straightforward to construct the number-state
version of the Hamiltonian. For this purpose, it is necessary to calculate the explicit form
of the canonical momentum operators I’ first as

p+

P+ pZ Y e . TincT
= T (P* + %C (2a/)é Z a,e L cos WZO') .

n=—o0,n#0

In addition, also 0,X" is required, and is given by

n=+oo

i Zﬂ- / 1 i _ mincT ™o
0, X" = —f(Za)2 Z ane” & sin——.
n=—00,n#0
Putting everything together yields the Hamiltonian
L Ld 2rallTl 4 - 0,X70, X'
e [ yiyes
dra/ Pt [ 2ma’ 7 7
_ L 2ma’ PP + ’ do
- 4ma/ Pt 0
m nIe i ™o mare m™mao
§ — minet i _TmncT
</—+ Z aye” L cos — Z a,. e L cos
do'LP n=—oon#0 L m=—o00,m7#0 L
m nJee i ™o mre i T™mao
g — mwmer i _ mimeT
_—40/LP+ Z a,€ L s _L Z o€ L sin 7 >> s
n=—oon#0 m=—o00,m#0

where in the integration o was replaced by mo /L. Since sine and cosine are orthogonal,

the integrations can be performed explicitly. Those over cos yield 7d,,_,,, while those over
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sin yield —7d,,_,,. This leads to

PP 1 =,
H= S5 T oprg 2 o

and finally by rearranging to

PP 1 = . .
H= 5+ 55 ;aznaHA.
This Hamiltonian is already in normal order, and A is a (divergent) constant which appears
in the process of normal ordering.

The actual value of A can be determined by explicitly verifying the Lorentz covariance
of the result, since the Hamiltonian is just the energy, and thus a zero-component of a
four-vector. However, in light-cone gauge this is far from trivial, and this will therefore be
done here only in a rather sketchy way.

First, consider the zero-point energy. Every oscillator will have a zero-point energy of
w/2 =1/(2P*d’), while the transverse momenta P’ will be 0. In total, at zero excitation,
it should be expected that

(0,0|H|0,0) = A,

due to the normal ordering. Due to the non-standard normalization, each oscillator actu-
ally contributes nw/2 of vacuum energy to this value. These oscillations appear for D — 2
dimensions. Rewriting A as wA this yields?
D -2
A= —— n,
2

n=1

which is, of course, infinite. However, in contrast to normal quantum mechanics or quan-
tum field theory, the vacuum energy is not necessarily irrelevant, but may couple to gravity.
It is therefore necessary to maintain Lorentz invariance when treating it, and it cannot be
absorbed just in a redefinition of the zero-point energy, as in quantum mechanics.

To regularize the result Lorentz-invariantly, it is necessary to include a cut-off function

_ elko]

e VYoo
nm

L )
in the sum, and taking the limit ¢ — 0 only after summation. The factor of \/7,, * is

required to maintain the effects of reparametrization invariance correctly. The reason for

3With standard normalization, n would be replaced by 1, changing nothing qualitatively.
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this is simple. Outside light-cone gauge, the string length is not fixed, but can be changed
by a reparametrization. Therefore, k., which depends on the length of the string, changes
under such transformations. Including the function of ~,, exactly cancels this effect.

Inserting this expression into the sum permits to evaluate it exactly, yielding

D—2SKN skl

A = 25N ne ver
2 n=1
D—2 (2LP*a’ 1
- —— 40
2 ( 2r 127 (5)>’

where the second line of (9.17) has been used. The first term is proportional to L and can

therefore be absorbed in the action by an additional term proportional to
—/da(—v)é =—L.

This is a constant, and therefore is not changing the action. In fact, the value of the
action has to be regularized itself by a similar expression, and also regularized by e ¢.
Thus, by appropriately selecting the pre-factors, both terms cancel. Since also the last
term vanishes in the limit of ¢ — 0, the only thing remaining is

2-D

A==, (9.26)

which is known as the Casimir energy, and can be traced back to the fact that the string
is only of finite length. Thus, the string has indeed a non-zero vacuum energy. In contrast
to the first contribution, this constant, non-divergent term cannot be naturally absorbed
by a counter term in the action without spoiling Lorentz invariance.

Having now obtained the Hamiltonian and the state space, it is about time to determine
the properties of the physical state space. In particular, the question is whether the
string excitations can be interpreted as particle states, the original motivation to study
it. For that purpose the primary object is of course whether the states satisfy the energy-
momentum relation of a point particle, and if yes, what are their masses.

The corresponding operator for the rest mass is just given by the mass-shell equation,
where it is to be used that P~ = H to yield

m? =2PTH — P'P", (9.27)
as a result of the light-cone equation

m?=PtP~ + P Pt — PP,
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Inserting the result (9.26) into (9.27) for the lowest-energy state yields

2Pt 2Pt/

1 2—-D
= —(N+———].
o/( * 24 )

That is quite an important result, as it implies that the mass is only dependent on the

Pip 1 .y
m? = 2P* ( + (N + A)> — PP

state sum N defined as o

N=> > nN

1=2 n=1
and the space-time dimensionality D. Thus, mass becomes an intrinsic property rather
than an external parameter as in the standard model. The importance of the Regge slope

is now also clear, as it links as constant of proportionality the number of a state and its

rest mass.
The lowest state is of course N = 0, hence |0, k), and this yields
2 _ 2—D
240/

Since for any phenomenologically relevant string theory D > 2 the rest mass of the lowest
state is imaginary, m? < 0. Thus it is a tachyon. That is of course unfortunate, since
interpreting this as a particle is very problematic. E. g., constructing a theory of such a
non-interacting scalar tachyon yields a potential energy proportional to m2¢?/2. Hence,
the vacuum state is unstable. Of course, this would be the lowest approximation, and it
could still be that the bosonic string theory is nonetheless stable, but this is unknown so
far. Fortunately, in particular in supersymmetric string theories tachyons usually do not
appear, so they provide a possibility to circumvent this problem without having to deal
with it explicitly.

The first non-tachyonic state is obtained for the state o’ |0, k) with N = 1. Its mass

reads
s 26—D
m° = )

24/
Since there are D — 2 ways to obtain N = 1, this state is D — 2-times degenerate. To be

(9.28)

still Lorentz invariant, these transverse modes must form a representation of SO(D — 2)
for a massless particle and SO(D — 1) for a massive particle. The former follows because
there is no rest-frame for a massless particle, and the minimum momentum is at least
pPH = <E B, 6), thus having less symmetry then the one for a massive particle in the rest
frame being P* = (m, 0).

As a consequence, in D = 4 massive bosonic particles have integer spin j > 0 as repre-

sentations of SO(3) with 2j + 1-fold degeneracies. Massless particles, however, are denoted



Chapter 9. Quantum gravity 223

by their helicity forming a representation of the group SO(2), having only one state with
positive helicity. Because of CPT symmetry the number of states is actually doubled, since
a state with positive helicity can be transformed by CPT into one with negative helicity.
Put it in another view, the lowest non-trivial representation of SO(3) is 3-dimensional,
a spin-1 state with three magnetic quantum numbers. For SO(2), the lowest non-trivial
representation has actually only two possible magnetic quantum numbers, either 1 or -1.
However, CPT guarantees that if one exists, then so does the other.

Going back to D dimensions there are thus D — 1 states for massive bosonic particles,
but only D — 2 for massless ones. Since the degeneracy for the N = 1 states is D — 2, this
implies that their mass must be zero. From this immediately follows that the theory is
only Lorentz-invariant in D = 26 dimensions, since otherwise (9.28) would not yield zero.
This implies also A = —1, due to (9.26).

Hence, this indirect inference yields that the consistency of the string theory with
Lorentz and CPT invariance requires a certain number of dimensions, different to quantum
field theories, which at least in principle can be formulated in any number of space-time
dimensions. Note that this is actually a quantum effect, since only quantization yields the
mass-dimension relation (9.28).

A more formal argument will be given below, when it can be done simultaneously for

both the open and the closed string, which will be analyzed now.

9.4.3.4 Closed string spectrum

A closed string is obtained when instead of open boundaries periodic boundaries are im-

posed. In this case the light-cone gauge conditions become.

X*(r,L) = X*"(7,0)
0. X" (1, L) = 0,X*(7,0)
Yab (7—7 L) = Tab (7_7 0)

Similarly, it is then possible to quantize the closed string as the open string. However,
this provides another ambiguity, since the zero position of ¢ can now be anywhere along

the string. Consequently, a shift of the zero point is another symmetry of the system as
o'=0c+s(1).
To fix it requires another gauge condition, which is conveniently chosen as

Yro (7_7 O) =0



224 9.4. String theory

This implies that lines of constant 7 are orthogonal to lines of constant o at ¢ = 0. This

reduces the problem to translations about one string length as
o'=0+s(r) mod L. (9.29)

Nonetheless, this is sufficient to start.
Up to the formulation of the Hamiltonian then everything is as for the open string
case. Of course, the solutions to the equations of motion are now different, respecting the

new boundary conditions. They read

i i PZ . a/ 2 > O[:L _ 27min(o+cT) 6;’7’ 2mwin(oc—ct)
X' (r,0) =X +P+T+z(3) Z (?e 2 +;e 2 ),

n=—oon#0

N

in analogy to point quantum mechanics of a particle in a periodic box. As a consequence,
there are now two independent sets of Fourier coefficients, o and 3. These corresponds to
oppositely directed waves along the string with o being those running in the left direction
and (3 to the right direction.

Nonetheless, quantization proceeds as usual with the canonical quantization conditions

Z=,P7] = —i
X0 P = i
[, al] = méé, n
181, 8] = mb76y, .

Thus, the system is again that of a set of free oscillators with a superimposed center-of-

mass motion. The eigenstates are thus

IN, R, k) = (glojf[ G M G )Rm>\00k>

nN'L'fLN "r‘ Z?’LR )

Herein N counts the number of left-moving states and R the number of right-moving
states. It is then possible to obtain again the Hamiltonian in number-operator form, and

to obtain the mass-shell equation as
. 2
m?=2P*H - P'P'= = (N+ R+ A+ B),
«
and in the same way as previously also

A:B:—
24

is obtained.
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However, in this case the values of N and R are restricted, since all physical states
have to be invariant under the residual gauge freedom (9.29). To see this, the operator
for translations on the string is useful. To obtain it, the simplest starting point is the

energy-momentum tensor on the world-sheet. It is given by

1 0L
T% = —4g(—~) 2 9.30
(=) 5 (9.30)
47 ) 1 1
()i O (- (a0, )
_7 2 a

1 5(=1)? o o LV g x
C y2 2 12

(_ 1 0y
o/ (=77 \ 2(=7)? O

1 1 1
= (— ( VYV I0X X,y + ()2 DX “&;Xu>
p

V19X X, + (—7)? &lX“&bX#)

N

T
o (—)2 —7)
1 |

1 [ 1 a, C
= - <a XX, — 57 0. X"0 XH) :

To argue that this indeed is an energy-momentum tensor?, it is necessary to show that
it has the necessary properties of an energy-momentum tensor, in particular it has to be
conserved and traceless, and its 77-component must equal the Hamilton operator.

Start with its conservation. The elements of the energy-momentum tensors appear to
be not invariant under diffeomorphisms, since the appearing expressions for v are not,
since it seems there are no compensating factor of det v. However, the expression in terms
of the Lagrangian is, so there must be a hidden invariance. This is in fact only possible if
the energy-momentum tensor is a constant, which would imply its conservation.

Using (9.8), this can be obtained explicitly

0., T* = aiaa (8“)(“8qu — %yabacx#tacx#)

/

1 1
= — (aahab o aa (_rYab’Ythcd)>
o 2

- ! (8ah™ — 9,h™") =0,

Oé/

and thus the energy-momentum tensor is conserved.

4In quantum field theory this is already a non-obvious fact, lest in string theory.
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The next condition is the one of tracelessness. Calculating the trace 7% explicitly yields

L 1
’)/ab(s— = — (%bf)"“X“(‘)qu — 8CX“8CXM)
57ab (—fy 2
1
- C(0°XP0,X, — O°XPD,X,) = 0 (9.31)
(=7)?
Tab
= Yab )

1
(—)?
where it has been used that v%°7,, = 2. Finally, this yields

1
To—=

(=v)?

confirming that the energy-momentum tensor is indeed traceless. Incidentally, this shows

=0,

that the classical energy-momentum tensor vanishes when the equations of motions are
fulfilled, by virtue of (9.31) and the fact that the Lagrange function is not depending on
the 7-derivatives of 7.

Using (9.8), this could also be shown more directly as
a 1 a 1 a C
Ta = J (8 X“&CLX# - é'yaa X'uach>

1 a 1 a C
== J (8 X“@aX“ - 5’}/(1’706[8 X“@dX“)

1 a a
v (0°X"0,X, —0"X"0,X,) =0,
and thus the same result.
Finally, the 77 component should be the Hamiltonian. To show this, it is simpler to

go backwards. By reexpressing the Hamiltonian (9.18) as a function of 9,X* and 0. X* it

L L o
— ITTLTT?
H = W /0 dO' (277'0( H H ‘I‘

becomes

1 ) )
0, X0, X’
2ma/ )
L L ptpt o1 i
- 2ma/ — 0. X0, X" + ——9,X'0,X" ) .
ira/ PV /0 d"( e g O g 0 )

Using now (9.17) changes this to

L Ly xi,x

H = 1 /Ld 2 ’P+axiaxi+
B 0 o\ 2ra/ Pt

4o/

1 27w

1 [F ~ N
= / do (2%&’%87)(”87)(1 +
0

4o T 21! Voo

&,Xiag)(i)

1 L 1
— / do (%U&X“@TXM + —8C,X“8UXN> )
0

/
4oy o
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The expansion of ¢ to p in the last line was permitted because this is only an addition
of zero in the second term and also a zero in the first term by virtue of the boundary
conditions after exchange of integration and differentiation.

To bring the 77 component of the energy-momentum tensor into the same form it can

be expressed as

7 = % (" XHO™X, —~TT0- XHO" X, — 70, X"07X,,)
- é(afxuafxu = % (77 er) 0, X410, X,
—%WWW&X“&,X# - %fwmaoxmxﬂ . %fwﬁg&g)(ﬂagxu)
Because of the gauge condition v7" and —~7? are related, and yielding that the square of
A7 is —1, because otherwise the gauge condition for the determinant would be violated,

given that ~,, vanishes. This yields

1 /1 1
T — (567_)(#87_)(# + 5&,){#6‘,)@)

Oé/

1 o2
= 2—a/ (’7 8TXM87XM + 8JXM80XM)

1 1
= —377 (7770, X190, X,, + — 0,X"0,X,, |,
5o ! (v nt oo u)

which concludes .

1
H —_ dO_,VO'O'TT’T
2w Jo

where the factor 777 is actually part of the measure to make the expression diffeomorphism
invariant, and thus shows the correct relation between the Hamiltonian and the energy-
momentum tensor.

Hence, it is permitted to use this expression for the energy-momentum tensor to obtain
the operator of linear translation. It is given by the o7 component, as in case of classical
mechanics. Since 7,, = 0 this component is given by

1 . .
T°7 = — (07X"0" X)) = 2mcll'0, X",
a
since the + have a vanishing o0 component each. Integrating yields the operator as
L . .
P = —/ doll'0, X"
0

. f< (azna;—ﬁznﬁ;)M_B)
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The residual gauge freedom is essentially giving that the coordinates hop around the string
by an integer times L, permitting to turn left-moving into right-moving modes. This can
be restricted by enforcing

N = R. (9.32)

Thus, the expectation value of translations along the string is zero, and any physical state
has a localized coordinate system on the string. With other words, the number of left and
right moving modes must be the same.

The lowest state is given again by

, 22-D 2-D
m = —2 = y
o 24 60’

and is therefore again a tachyon. The lowest excited state is given by |1, 1, k)

, 26-D
6

m

However, in contrast to the previous case, it is not constructed by a single creation operator

with just one space-time index, but by two as
|17 L, k) = ai—lﬁil |07 0, k> )

and therefore is a tensor state e;;. As in the case of large extra dimensions, this state can

be separated as

(5’76’“”‘) + E

5 (€ij — eji) + ;éﬁj@kk.

g 1 g g
[/—— 1) Jr
e 2(6 +e D3

D—2
The first term is traceless symmetric, the second antisymmetric and the third scalar.
Furthermore, the occupation numbers N;, and R;, can vary freely as long as N = R is
fulfilled. Therefore, the number of states is substantially increased with respect to the
open string spectrum at the same N. Whether it is necessarily massless, and thus again
D = 26, is not a trivial question, but will turn out to be correct. This time, the helicity
of the state will be useful to show this will yield a graviton, an axion, and a dilaton.

To verify the assignment of spin, a little more formal investigation is useful. Note that
it is always possible to obtain a spin algebra from creation and annihilation operators,
when summing over oscillators, called the Schwinger representation. In case of the open

string, the corresponding operators are given by

Si= iy % (af 0l — of ai) (9.33)

n=1
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and the ones for the closed string are completely analogous, just requiring that it is now

necessary to sum over both, left-moving and right-moving modes. The two indices already

indicate that these will be the corresponding n-dimensional generalization of the spin.
That (9.33) are indeed spin operators can be shown by explicitly calculating the cor-

responding algebra. Start by evaluating the commutator as

2 .
[Sij’ Skl} - Z Z . [ai—na% - ainaiw O-/limafn - O-/l_m()é:;]
n=1 m=1 nm
® o 4
- Z Z %( [ 0,0k ol —al, o ]
n=1 m=1
_ aj_n()éib, Oé’imalm al_mafn])
® o 4 '
= =33 —([al,af.abal] — [al,ah.al 0k
n=1m=1
— [ed ol af ol ] + [aal, ol ek ])

It is simpler to evaluate each of the four terms individually. For this the relation
[ab,c] = a[b,c] + [a,c|b

for double commutators is quite useful, as well as the quantization conditions (9.23) are

necessary. In the following the summation is kept implicit. This yields for the first term

i3 k] _ i ikl i Y
[ozfnozn,ocfmozm} = a_, [ozn,ozfmozm] + [ozfn,ozfmozm} o,
_ ik i Al i ji Ak !
- Oé—na—m an’ Oém} + a—n [an7 a—m} Oém
k i ! i i k I g
+a—m a—n’ am] an + [a—n7 a—m] aman
— o&no/fmnéﬂén,_m + ozinozinnéjkén,m
—a* adnsts_, ., —al alnd®5_, .,
_ ik sjl i ik kgl L g sik
= n(a’,0.6" + o', 0,0 —a’ o 6" —a,al7),  (9.34)
for the second term
i3 Al L i Al k i ! k1 j
[a—narn a—mam} - a—n [Oén, Oé—mam} + [a—rm a—mam} an
S A i Ak i J Al k
= a_,a_ ., [an, am} +a’, [an, afm} o,

l i k7 i il ko
+a_,, [a_n, am] ay, + [Oé_n, a_m] Q,, 0,
il ik i ko sl
= oo, nt’", _p, +alapnd? o, m,
—at, ains™*s_, ., —ak

= n(a' a0 4ol afét — ol aldF — o als?),  (9.35)

-n-n -n

i il
alnd" o, m
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for the third term

[oﬂ;na;,a’imafn} = o, [a;,a_mam} + [a;n,a_mam]
[ k

= o, a* né's, 4+l ,al nd*s, .,

ko i sil Ui ik
—a, nd’ o, .y — oy, annd? o,

= n(al k6" + o ol 6% —aF ol 37— ol al6%),  (9.36)

—-_n-rn —-nn

and finally the fourth
j,n [a;, ozl_mafn] + [Ozj,n, Ozl_mam Oé;
!

—m

Lkl = a

[aj,na;, o, o
= ol [al, ol ] +al, [, d" ] o,
+al,, [ol,, ok ] al + [ol,, o, ] a}al,

i ik ik sij
= o',a_ 0" 0, _m+al o 0% 0, m
k

m

= n(od ol 6% + ol 0k —al ol d* — ok aldh).  (9.37)

-_n-n -_nn

i ik i sil
—a 00" 0y, — ag 0o 0y, 4y,

Combining (9.34-9.37) permits to drop the summation over m. In addition, for every ¢

each term appears twice, reducing the total expression to

oo
ki k il I sik ksl l sik
[S7, 8] = -2 E E(of_nanéj +a' ol 0+ ol L ardt + ol
n=1
ok ogsil U gsik kil L i ik
af ol ot —al ol i —af ol 6 —al al o).

—n-n

Reordering, expanding —1 to 2, and combing terms with the same ¢ permits to reconstruct

spin operators. Finally, the result becomes
[Sij, Skl} =2 (6leik + 67k gt 4 §iGIF 4 6““5”) )

Thus, indeed the operators satisfy a spin algebra. If all indices are different then the
commutator vanishes. Since furthermore all diagonal elements of the S¥ vanish only

elements with the same indices remain. For example this leaves
[5127523} — 9513

The commutator hence contains always the two unequal indices in the same order. Since
the spin operator is antisymmetric by definition also the correct exchange property for the

arguments of the commutator is obtained, completing the construction.
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To see how the helicity emerges investigate first the 23 component of the spin operator,
being the one relevant in a four-dimensional sub-space. The helicity of the lowest excitation

of the open string is then given by
(1,k| S®|1,k) = —ZZ (1, k| (o 03 —a® a2) [1,k) = (1, k| |1, k) = i.

Thus the value is 1. For the lowest excitation of the closed string, the value is found
analogously to be two. Thus the lowest excitation of the open string is a vector particle
while the one of the closed string is rather a graviton, in accordance with the previous
considerations.

Comparing all results a number of interesting observations are obtained. Since vector
particles always harbor a gauge symmetry, the open string already furnishes a gauge theory.
Since it is non-interacting, this gauge theory has to be non-interacting as well, leaving
only a U(1) gauge theory. A more detailed calculation would confirm this. Therefore, it
is admissible to call the state |1, k) a photon.

Similarly, a spin 2 particle couples to a conserved tensor current. Since the only
one available is the energy-momentum tensor, the symmetric contribution of the lowest
excitation of the closed string can be interpreted as a graviton. The antisymmetric particle
can be given the meaning of an axion, as it is equivalent to a 2-form gauge boson. Finally,
the scalar particle is then the dilaton, as in the case of large extra dimensions.

Calculating the helicity gives already the correct result for the photon and the graviton.
Indeed, for the axion and the dilaton a value of zero is obtained, as they would have also
in a generic quantum field theory of these particles.

It should be noted that it can be shown that a string theory turns out to be only
consistent if it at least contains the closed string, with the open string being an optional

addition. Thus, the graviton is there in any string theory.

9.4.3.5 Dualities

It could be easily imagined that there are many different string theories, like there are many
different field theories. However, the number of consistently quantizable string theories
is very limited, and only five are known today. Furthermore, it can be shown that these
string theories are dual to each other.

To get an idea of the concept of dualities, note the following. The Polyakov action
(9.7) can also be viewed with a different interpretation: Promoting the world-sheet indices
to space-time indices and taking the indices p to label internal degrees of freedom, then

the Polyakov action just describes D massless scalar fields X, (with internal symmetry



232 9.4. String theory

group SO(D — 1,1)) in two space-time dimensions with a non-trivial metric v, which
is dynamically coupled to the fields. This is an example of a duality of two theories.
This also demonstrates why two-dimensional field theories have played a pivotal role in
understanding string theories. Another such relation is the AdS/CFT correspondence,
which state that certain classical (super)gravity theories on a so-called anti de Sitter space,
a special case of a curved space-time, are dual to (super)conformal field theories.

A more typical example for a string theory is the following. Start with the closed
string, now also periodic in the eigentime. The condition (9.32) implies that any solution

for the open string has the form
XH =X+ X§.

It is convenient to write the left-moving and right-moving solutions for the following as

W L2pt i L K )
Xy = S (T—J)—FZ—Z%e’Zm(T"’)

2 2 2
n#0
xt LPpt 1L B
Xh = 5 + 2p (t+0)+ 5 Z i—"ezm(”"),
n#0

where z# and p* are the position and momentum of the center of mass, and the o and
are the Fourier coefficients of the excited modes.

Now compactify one of the dimensions on a circle of radius R. This will only affect
the zero-modes, so for the following the sum of excited states is dropped. Also, only
the functions in the direction of the compactified dimension, say number 25, are affected.
Assume that the string is warped W times around the compact dimensions. The left-

moving and right-moving solutions for the ground-state take then the form

25
x» - 2 2+ €4 (ap® + WR)(r + o)
25 r® —c 25
Xy = 5 + (ap®™ —WR)(T — 0)
20K
X% = 224 O;z T+ 2W Ro.

where c is an arbitrary constant which just turns the zero-point of the world-sheet coor-
dinates around the compactified dimensions. Also, the center of mass momentum is then

quantized as in the large extra dimension theories, and given by

25 K

R

where K is describing the Kaluza-Klein mode, and is thus enumbered by an integer.
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Now a duality transformation can be performed by mapping W — K and R — «o/R.

Then the zero-mode takes the form

X% =2 £ 2WRT + 2%0.

However, this is exactly the expression which would be obtained if a string would wind
K times around a compact dimension of size a/ R for the Wth Kaluza-Klein mode. Since
these parameters only appear in the zero mode, the remaining part of the solution is
the same. Hence, these two theories have the same solutions under this mapping of the
parameters, they are dual to each other. Such relations are called duality relations. In
general, when the exact solutions are not known like in the present case, it is much harder
to establish the duality of two theories. In particular, a duality in a classical theory could
be broken by quantum effects. Therefore, most dualities so far have only been conjectured
on the basis that no counter-example for them is known.

Since all known, consistent quantum string theories are dual to each other, the idea
that there is a common underlying structure, the mentioned M-theory, is very appealing,

though unproven.

9.4.4 Virasaro algebra
9.4.4.1 The algebra

The property of being consistent only in a certain number of dimensions can be linked to
an algebraic structure, the Virasaro algebra. For this, it is useful to not use a particular
gauge, but rather a more general setting. For the following, this essentially boils down to

use instead of the canonical commutation relations (9.23)
[, ao] = M (9.38)

and thus to permit quantized oscillations in all directions. Of course, this is to be expected:
These oscillations are the same as in light cone gauge, as the remainder coordinate func-
tions are completely determined by the reduced set of spatial directions due to the present
symmetries, and therefore were not needed to be given explicitly.

The starting point for the construction of the algebra is then the Fourier expansion of
the diagonal elements of the world-sheet energy momentum tensor. For this purpose, it is
useful to set the string length to 27, to avoid a proliferation of factors of L. Classically,

for the open string, its is defined as

o0
Too = Z Lye ",

n=—oo
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(no summation over a implied) where the L,, are the expansion modes and the £* are the
momenta along the directions ¢ and 7 on the world-sheet. Because of the two different

movement directions on the closed string, the modes for the 7 and ¢ directions are different,

T, = 4d i L,e &

n=—oo

Tcro = 40/ Z Lneiingd.
These modes can be expressed in terms of the Fourier coefficients « as

1 o imo 1 o —imo 1 - 1%
L,, doe™ T, . doe Tyo = - Z al,_oh
0 0 =0 2

2ma’ 0 2ma’
n=—oo

T=

for the open string and

for the closed string. Note that the energy momentum tensor vanishes by being the
equation of motion (9.30) of a cyclic variable. From the vanishing of the energy momentum
tensor then follows L,, = L,, = 0 for all m, the so-called Virasaro constraints. Since L,, is
not differing between open and closed strings, it will not be differentiated in the following
between both, except for the presence or absence of the second mode L,y,.

When now quantizing the system, there appears an ordering problem for Lg, as a_,, is
not commuting with a,,, see (9.38). Thus, an ambiguity arises, and therefore the quantum

version of Ly and fzg are defined as

2 oo i
o 1 1
Ly = o + B ng_l Q_p,Qp = a + 5 nE_l O_pOlp,

and similarly for Ly. The constant a can be determined when observing that the mass

operator m?, defined to be the Hamiltonian minus P?, is given by

since the same operator ordering problem arises. Since the mass is invariant under the

gauge choice the value of a can be read off (9.26), as then —A =a = 1.
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The Virasaro algebra is now given by the algebra of the operators L,,. For m +n # 0,
it can be straightforwardly, albeit tediously, shown that

[Lma Ln] = (m — n)Lerna

using the canonical commutator relations for the as (9.23). However, it is more compli-
cated if m +n = 0. It is direct to show that for any m

[Lmv 045] = —TLO&'L,;H_n. (939)

holds. The commutator is now given by

-1
[Lm7LTL] = 5 ( Z ((m p) p m+n p+pan+p m— p)
+ Z (pafrfm—pag-&—p + (m p) m+n pa5)>

—1
1
= 5 ( Z (m_p>a;g&lrjz+n p+ Z -n apan-I-m —p

p=—00 p=—00
+Z —n)a n+mpp+zm p)a m+ﬂpp>

Now it remains to bring the terms all in the same order as necessary for the definitions of

the L,,. This is again a somewhat tedious exercise, and ultimately yields

d
[Lma Ln] = (m - n)Lm+n + =

15 (m* — m)dpmin

where the last term is called the central extension of the algebra.

9.4.4.2 Physical states

One of the main advantages of the Virasaro algebra is to permit a simple identification
of physical states, and to check that only physical states of a string theory contribute to
observables. As in quantum mechanics and in quantum field theory, a state p is considered
to be physical if it has a positive norm and positive semi-definite inner product with other

physical states g,
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There may exist other states in a theory. One such class are states with zero inner product

with any physical state p, so-called spurious states,
{plz) =0, (9.40)

These spurious state then do not contribute to any observable. What is not permitted are
states with negative norm or overlaps, so-called ghost states g, as these would spoil any
probability interpretation of the theory.

Physical states can now be shown to behave as

Limsolp) = 0 (9.41)
(Lo—a)lp) = 0 (9.42)

’

while spurious states obey besides the second condition (9.42) also (9.40) for all physical
states. The correctness of this assignment follows from the fact that the conditions (9.41)
and (9.42) can be shown to correspond to the vanishing of the quantized world-sheet energy
momentum tensor, and thus imply the satisfaction of the equations of motion.

Since the adjoint of L,, is L_,,, spurious states can be written as

|2) = Z L_nlxn),

n>0

where the y,, satisfy
(Lo —a+n)|x,) =0.

This implements both conditions for spurious states (9.42) and (9.40) by construction.
Since for m < —2 the L,, can be rewritten, using the Virasaro algebra, in terms of L_;

and L_o, this can be simplified to

|z) = L_1|x1) + L_2|x2).

A state can be both physical and spurious. By construction, it follows that such states
have zero scalar product with any physical states including themselves, i. e., they have
zero inner norm. Such states are called null states.

Such null states n can be constructed using spurious states of the form

) = Lalxa)-

Such a state fulfills all conditions of being physical, except

Li|x1) = LiL_1|x1 >= 2Lo|x1) = 2(a — 1)|x1), (9.43)
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using the Virasaro algebra. Only since a = 1, the state is physical. Given the definition
of L_y, it actually follows that |x) = |0, k), i. e. the state where the string has no internal
excitations. Incidentally, this implies that the tachyon is not a physical state. Furthermore,

this implies that any physical state is actually an equivalence class of states

[p) ~ |p) +In),

as no measurement can differentiate between the original state and the one where an
arbitrary zero norm state has been added. In fact, an infinite number of such null states
can be constructed. These are required to cancel in any physical process contribution from
negative norm states, the ghost states, very similar to the situation in gauge theories. This
is, however, beyond the present scope. In fact, in light-cone gauge such states do not arise,
implying that the theory is well-defined. the reason for their appearance here is that the
covariant formulation is not fully fixing the reparametrization invariance, as it explicitly
contains unphysical degrees of freedom, the additional X*, just like in an ordinary gauge

theory.
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