Gauge invariance and Observables

 in Particle PhysicsAxel Maas
$15^{\text {th }}$ of February 2024 BNL USA

NAWI Graz
Natural Sciences
Österreichischer Wissenschaftsfonds

What is this talk about?

-Why an invariant formulation?

- Path integral formulation and symmetries

What is this talk about?

-Why an invariant formulation?

- Path integral formulation and symmetries
- Brout-Englert-Higgs Physics

What is this talk about?

-Why an invariant formulation?

- Path integral formulation and symmetries
- Brout-Englert-Higgs Physics
- Fröhlich-Morchio-Strocchi mechanism

What is this talk about?

-Why an invariant formulation?

- Path integral formulation and symmetries
- Brout-Englert-Higgs Physics
- Fröhlich-Morchio-Strocchi mechanism
- Standard Model
- Experimental signatures

What is this talk about?

-Why an invariant formulation?

- Path integral formulation and symmetries
- Brout-Englert-Higgs Physics
- Fröhlich-Morchio-Strocchi mechanism
- Standard Model
- Experimental signatures
- Beyond the Standard Model
- Qualitative changes

Review: 1712.04721 Update: 2305.01960

What is this talk about?

-Why an invariant formulation?

- Path integral formulation and symmetries
- Brout-Englert-Higgs Physics
- Fröhlich-Morchio-Strocchi mechanism
- Standard Model
- Experimental signatures
- Beyond the Standard Model
- Qualitative changes
- Quantum (super)gravity

What's the deal?
 Gauge symmetry

Path integral

$$
Z=\int_{\Omega} D \phi e^{i S[\phi]}
$$

Path integral

Integral over all space-time histories of the universe

$$
z=\int_{\Omega} \dot{D}^{\circ} \phi e^{s i[|\varphi|}
$$

Path integral

Integral over all space-time histories of the universe

$$
Z=\int_{\Omega} D^{4} \phi e^{i S[\phi]}
$$

Admissible histories

Path integral

Integral over all space-time histories of the universe

$$
Z=\int_{\Omega} D^{\prime} \phi e^{i S[\phi]}
$$

Admissible histories (Usually all)

Path integral

Integral over all space-time histories of the universe

$$
Z=\int_{\Omega} D^{\top} \phi e^{i S[\phi]}
$$

Classical action as weight factor

Admissible histories (Usually all)

Path integral

Integral over all space-time histories of the universe

$$
Z=\int_{\Omega} D^{\top} \phi e^{i S[\phi]}
$$

Classical action as weight factor (yields classical limit when dominating)
Admissible histories (Usually all)

Path integral

$$
\langle\phi(x) \ldots \phi(z)\rangle=\int_{\Omega} D \phi \phi(x) \ldots \phi(z) e^{i S[\phi]}
$$

Expectation values are weighted averages over space-time histories

Path integral

Dependencies on special events is only due to external choices

$\left\langle\phi(x) \ldots \phi\left(\begin{array}{l}\mathbf{Z}\end{array}\right)\right\rangle=\int_{\Omega} D \phi \phi(x) \ldots \phi\binom{\mathbf{Z}}{\mathbf{Z}} e^{i S[\phi]}$

Expectation values are weighted averages over space-time histories

Path integral and global symmetries

[Review: Maas'17]

$$
Z=\int_{\Omega} D \phi^{a} e^{i S[\phi]}
$$

Path integral and global symmetries

[Review: Maas'17]

Field - transforms linearly under a group $\phi^{a} \rightarrow G^{a b} \phi^{b}$

$$
Z=\int_{\Omega} D \stackrel{\stackrel{V}{\phi^{a}}}{ } e^{i S[\phi]}
$$

Path integral and global symmetries

Measure is invariant

- no anomalies

$$
Z=\int_{\Omega} D \phi^{q} e^{i S[\phi]}
$$

Action is invariant

$$
S[\phi]=S[G \phi]
$$

Path integral and global symmetries

$$
Z=\int_{\Omega} D \phi^{a} e^{i S[\phi]}
$$

Integration range

- contains all orbits $G \phi$

Path integral and global symmetries

$$
\left\langle\phi^{b}(x)\right\rangle=\int_{\Omega} D \phi^{a} e^{i S[\phi]} \phi^{b}(x)
$$

Path integral and global symmetries

$$
\left\langle\phi^{b}(x)\right\rangle=\int_{\Omega} D \phi^{a} e^{i S[\phi]} \phi^{b}(x)
$$

- There is no preferred point on the group orbit
- There is no absolute orientation/frame in the internal space
- Does not change when averaging over position
- There is no absolute charge

Path integral and global symmetries

$$
\left\langle\phi^{b}(x)\right\rangle=\int_{\Omega} D \phi^{a} e^{i S[\phi]} \phi^{b}(x)=0
$$

- There is no preferred point on the group orbit
- There is no absolute orientation/frame in the internal space
- Does not change when averaging over position
- There is no absolute charge

Path integral and global symmetries

$\left\langle\phi^{b}(x) \phi^{c}(y)\right\rangle=\int_{\Omega} D \phi^{a} e^{i S[\phi]} \phi^{b}(x) \phi^{c}(y)$

- Relative charge measurement averaged over all possible starting points

Path integral and global symmetries

$\left\langle\phi^{b}(x) \phi^{c}(y)\right\rangle=\int_{\Omega} D \phi^{a} e^{i S[\phi]} \phi^{b}(x) \phi^{c}(y)=0$

- Relative charge measurement averaged over all possible starting point
- Vanishes because no preferred absolute starting point

Path integral and global symmetries

$$
\begin{gathered}
\left\langle\delta_{b c} \phi^{b}(x) \phi^{c}(y)\right\rangle \\
=\int_{\Omega} D \phi^{a} e^{i S[\phi]} \delta_{b c} \phi^{b}(x) \phi^{c}(y)
\end{gathered}
$$

- Group-invariant quantity
- Measures relative orientation
- Created from an invariant tensor $\delta_{a b}$

Path integral and global symmetries

$$
\begin{gathered}
\left\langle\delta_{b c} \phi^{b}(x) \phi^{c}(y)\right\rangle \\
=\int_{\Omega} D \phi^{a} e^{i S[\phi]} \delta_{b c} \phi^{b}(x) \phi^{c}(y) \neq 0
\end{gathered}
$$

- Group-invariant quantity
- Measures relative orientation
- Created from an invariant tensor $\delta_{a b}$

Path integral and local symmetries

$$
Z=\int_{\Omega} D \phi^{a} e^{i S[\phi]}
$$

Path integral and local symmetries

Field - transforms locally under a group $\phi^{a}(x) \rightarrow G^{a b}(x) \phi^{b}(x)$

$$
Z=\int_{\Omega} D \stackrel{\stackrel{\prime}{\phi^{q}}}{ } e^{i S[\phi]}
$$

Path integral and local symmetries

Measure is invariant

- no anomalies

$$
Z=\int_{\Omega} D \phi^{q} e^{i S[\phi]}
$$

Action is invariant

$$
S[\phi]=S[G \phi]
$$

Path integral and local symmetries

$$
Z=\int_{\Omega} D \phi^{a} e^{i S[\phi]}
$$

Integration range

- contains all orbits $G \phi$

Path integral and local symmetries

$$
\begin{gathered}
\left\langle\delta_{b c} \phi^{b}(x) \phi^{c}(y)\right\rangle \\
=\int_{\Omega} D \phi^{a} e^{i S[\phi]} \delta_{b c} \phi^{b}(x) \phi^{c}(y)
\end{gathered}
$$

Path integral and local symmetries

$$
\begin{gathered}
\left\langle\delta_{b c} \phi^{b}(x) \phi^{c}(y)\right\rangle \\
=\int_{\Omega} D \phi^{a} e^{i S[\phi]} \delta_{b c} \phi^{b}(x) \phi^{c}(y)=0
\end{gathered}
$$

- No longer invariant under gauge transformations
- Vanishes just as any other non-invariant quantity

Path integral and local symmetries

Transporter

$$
\begin{gathered}
\left\langle\phi^{b}\left(x \backslash U^{b c}(x, y)\right) \phi^{c}(y)\right\rangle \\
=\int_{\Omega} D \phi^{a} D U e^{i S[\phi, U]} \phi^{b}(x) U^{b c}(x, y) \phi^{c}(y)
\end{gathered}
$$

-Transporter compensates gauge transformations

Path integral and local symmetries

Gauge fields

$$
\begin{gathered}
\left\langle\phi^{b}(x) U^{b c}(x, y) \phi^{c}(y)\right\rangle \\
=\int_{\Omega^{\phi, U}} D \phi^{a} D \dot{U} e^{i S[\phi) U]} \phi^{b}(x) U^{b c}(x, y) \phi^{c}(y)
\end{gathered}
$$

-Transporter compensates gauge transformations

- Implemented by gauge fields

Path integral and local symmetries

$$
\begin{gathered}
\left\langle\phi^{b}(x) U^{b c}(x, y) \phi^{c}(y)\right\rangle \\
=\int_{\Omega^{\phi, U}} D \phi^{a} D U e^{i S[\phi, U]} \phi^{b}(x) U^{b c}(x, y) \phi^{c}(y) \\
\neq 0
\end{gathered}
$$

-Transporter compensates gauge transformations

- Implemented by gauge fields

Path integral and local symmetries

Reduced integration range

$$
\left.=\int_{\dot{\Omega}^{*}{ }^{j}} D \phi^{a} D U \phi^{b}(x) \phi^{c}(y)\right\rangle
$$

- Gauge-fixing to have non-zero results without transporters
- Reduction of integration region by gauge fixing
- Arbitrary choice of coordinates

Path integral and local symmetries

$\left\langle\phi^{b}(x) \phi^{c}(y)\right\rangle$
 $=\int_{\Omega_{e}^{q}, U} D \phi^{a} D U W(U, \phi) e^{i S[\phi, U]} \phi^{b}(x) \phi^{c}(y) \neq 0$
 Weight factor

E.g. Faddeev-Popov determinant

- Gauge-fixing to have non-zero results without transporters
- Reduction of integration region by gauge fixing
- Arbitrary choice of coordinates
- Weight factor to keep gauge-invariant quantities the same

Lessons

- Only invariant quantities are non-zero
- All observables need to be invariant
- Elementary fields are not invariant
- True for local symmetries and global symmetries
- Gauge fixing introduces preferred frames
- Empirically not motivated

Lessons

- Only invariant quantities are non-zero
- All observables need to be invariant
- Elementary fields are not invariant
- True for local symmetries and global symmetries
- Gauge fixing introduces preferred frames
- Empirically not motivated
- Are there consequences?

Brout-Englert-Higgs Physics
 The Standard Model

A toy model

A toy model: Higgs sector of the SM

A toy model: Higgs sector of the SM

- Consider an $\operatorname{SU}(2)$ with a fundamental scalar

A toy model: Higgs sector of the SM

- Consider an $\operatorname{SU}(2)$ with a fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c}
\end{gathered}
$$

- Ws $W_{\mu}^{a} \mathbb{W}$
- Coupling g and some numbers $f^{a b c}$

A toy model: Higgs sector of the SM

- Consider an $\operatorname{SU}(2)$ with a fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Ws $W_{\mu}^{a} \mathbb{W}$
- Higgs h_{i} h
- Coupling g and some numbers $f^{a b c}$ and $t_{a}^{i j}$

A toy model: Higgs sector of the SM

- Consider an $\operatorname{SU}(2)$ with a fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Higgs h_{i} h
- Couplings g, v, λ and some numbers $f^{a b c}$ and $t_{a}^{i j}$

A toy model: Higgs sector of the SM

- Consider an $\operatorname{SU}(2)$ with a fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Higgs h_{i} h
- Couplings g, v, λ and some numbers $f^{a b c}$ and $t_{a}^{i j}$
- Parameters selected for a BEH effect

A toy model: Symmetries

- Consider an $\operatorname{SU}(2)$ with a fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{v} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

A toy model: Symmetries

- Consider an $\operatorname{SU}(2)$ with a fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Local $\operatorname{SU}(2)$ gauge symmetry $W_{\mu}^{a} \rightarrow W_{\mu}^{a}+\left(\delta_{b}^{a} \partial_{\mu}-g f_{b c}^{a} W_{\mu}^{c}\right) \phi^{b}$ $h_{i} \rightarrow h_{i}+g t_{a}^{i j} \phi^{a} h_{j}$

A toy model: Symmetries

- Consider an $\operatorname{SU}(2)$ with a fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Local SU(2) gauge symmetry
$W_{\mu}^{a} \rightarrow W_{\mu}^{a}+\left(\delta_{b}^{a} \partial_{\mu}-g f_{b c}^{a} W_{\mu}^{c}\right) \phi^{b}$ $h_{i} \rightarrow h_{i}+g t_{a}^{i j} \phi^{a} h_{j}$
- Global SU(2) custodial (flavor) symmetry
- Acts as (right-)transformation on the scalar field only $W_{\mu}^{a} \rightarrow W_{\mu}^{a}$ $h \rightarrow h \Omega$

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action
- Choose a suitable gauge and obtain 'spontaneous gauge symmetry breaking': SU(2) $\rightarrow 1$

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action
- Choose a suitable gauge and obtain 'spontaneous gauge symmetry breaking': SU(2) $\rightarrow 1$
- Get masses and degeneracies at treelevel

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action
- Choose a suitable gauge and obtain 'spontaneous gauge symmetry breaking': SU(2) $\rightarrow 1$
- Get masses and degeneracies at treelevel
- Perform perturbation theory

Physical spectrum

Perturbation theory
$0 \quad$ Mass

Physical spectrum

Perturbation theory
Scalar
$\backsim \Delta$ fixed charge

Custodial singlet

Physical spectrum

Perturbation theory

Scalar Vector

$\backsim \wedge$ fixed charge gauge triplet

- Both custodial singlets

The origin of the problem

- Elementary fields are gauge-dependent

The origin of the problem

- Elementary fields are gauge-dependent
- Change under a gauge transformation

The origin of the problem

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice

The origin of the problem

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice...
- ...and gauge-symmetry breaking is not there

The origin of the problem

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice...
- ...and gauge-symmetry breaking is not there
- Just a figure of speech
- Actually just ordinary gauge-fixing

The origin of the problem

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice...
- ...and gauge-symmetry breaking is not there
- Just a figure of speech
- Actually just ordinary gauge-fixing
- Physics has to be expressed in terms of manifestly gauge-invariant quantities

The origin of the problem

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice...
- ...and gauge-symmetry breaking is not there
- Just a figure of speech
- Actually just ordinary gauge-fixing
- Physics has to be expressed in terms of manifestly gauge-invariant quantities
- And this includes non-perturbative aspects

The origin of the problem

- Elementary fields are gauge-dependent
- Change under a gauge transformation
- Gauge transformations are a human choice...
- ...and gauge-symmetry breaking is not there
- Just a figure of speech
- Actually just ordinary gauge-fixing
- Physics has to be expressed in terms of manifestly gauge-invariant quantities
- And this includes non-perturbative aspects...
- ...even at weak coupling [Gribov'7, Singeri7, fujikawa'82]

Physical states

- Need physical, gauge-invariant particles

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs, W-W
(W) W

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Has nothing to do with weak coupling

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Has nothing to do with weak coupling
- Think QED (hydrogen atom!)

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Has nothing to do with weak coupling
- Think QED (hydrogen atom!)
- Can this matter?

Physical spectrum

Perturbation theory

Scalar Vector

\backsim 』 fixed charge gauge triplet

Both custodial singlets

Remember: Experiment tells that somehow the left is correct!

Physical spectrum
Perturbation theory
Composite (bound) states
n ${ }^{\wedge}$ fixed charge gauge triplet

Experiment tells that somehow the left is correct Theory say the right is correct

Physical spectrum
Perturbation theory
Composite (bound) states
$\backsim \wedge$ fixed charge gauge triplet

Scalar	Vector
$\sim \Delta$ fixed charge	gauge triplet

Experiment tells that somehow the left is correct Theory say the right is correct There must exist a relation that both are correct

Physical particles

- JPC and custodial charge only quantum numbers

Physical particles

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states

Physical particles

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators

Physical particles

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure

Physical particles

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure - non-perturbative methods!

Physical particles

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure - non-perturbative methods! - Lattice

Physical particles

- J JC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure - non-perturbative methods! - Lattice
- Standard lattice spectroscopy problem
- Standard methods
- Smearing, variational analysis, systematic error analysis etc.
- Very large statistics ($>10^{5}$ configurations)

Physical spectrum

Perturbation theory
Scalar Vector
n ${ }^{\wedge}$ fixed charge gauge triplet
Mass

- Both custodial singlets

$$
h(x)^{+} h(x) \quad \text { h }
$$

Physical spectrum

Perturbation theory
Scalar Vector
n ${ }^{\wedge}$ fixed charge gauge triplet

Gauge-invariant

 Scalar singlet- Both custodial singlets Custodial singlet

$$
h(x)^{+} h(x) \text { h }
$$

Physical spectrum

Perturbation theory
Scalar Vector
n $\sqrt{\text { dixed charge gauge triplet }}$

Gauge-invariant
Scalar singlet

- Both custodial singlets Custodial singlet

Physical spectrum

Both custodial singlets Custodial singlet

Physical spectrum

Perturbation theory
Scalar Vector
n ${ }^{\wedge}$ fixed charge gauge triplet

Gauge-invariant

 Scalar singletVector
singlet

- Both custodial singlets Custodial singlet

$$
\operatorname{trt}^{a} \frac{h^{+}}{\sqrt{h^{+} h}} D_{\mu} \frac{h}{\sqrt{h^{+} h}}
$$

Physical spectrum

Perturbation theory
Scalar Vector
n ${ }^{\wedge}$ fixed charge gauge triplet

Gauge-invariant

 Scalar singletVector
singlet

- Both custodial singlets Custodial singlet Triplet

$$
\operatorname{tr} @ \frac{h^{+}}{\sqrt{h^{+} h}} D_{\mu} \frac{h}{\sqrt{h^{+} h}}
$$

Physical spectrum

Perturbation theory
Scalar Vector
n $\sqrt{\text { d }}$ fixed charge gauge triplet

Gauge-invariant
Scalar singlet

Equal!

Custodial singlet Triplet
Vector
singlet

Both custodial singlets

Physical spectrum

Perturbation theory
Scalar Vector
n
\sum^{n}
^ fixed charge gauge triplet

- Equal!

Equal!

- Both custodial singlets Custodial singlet Triplet

Why?

A microscopic origin

 -Fröhlich-Morchio-Strocchi mechanism

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure - non-perturbative methods?

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure - non-perturbative methods?
- But coupling is still weak and there is a BEH

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure - non-perturbative methods?
- But coupling is still weak and there is a BEH
- Perform double expansion ${ }_{\text {FFroblich etal: } 80, \text { Mas }{ }^{122]}}$
- Vacuum expectation value (FMS mechanism)
- Standard expansion in couplings
- Together: Augmented perturbation theory

Augmented perturbation theory

1) Formulate gauge-invariant operator

Augmented perturbation theory

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$

Higgs field

Augmented perturbation theory

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

(h) n

Augmented perturbation theory

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

Augmented perturbation theory

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

Augmented perturbation theory

[Fröhlich et al.'80,'81
Maas'12,'17]

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle \\
+\left\langle\boldsymbol{\eta}^{+}(x) \boldsymbol{\eta}(y)\right\rangle\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle+O(g, \lambda)
\end{gathered}
$$

Augmented perturbation theory

[Fröhlich et al.'80,'81
Maas'12,'17]

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle+O(g, \lambda)
\end{gathered}
$$

4) Compare poles on both sides

Augmented perturbation theory

[Fröhlich et al.'80,'81
Maas'12,'17]

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

Bound state

$$
\begin{aligned}
& \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
& +\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)
\end{aligned}
$$

4) Compare poles on both sides

Augmented perturbation theory

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory Bound state mass

$$
\frac{\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle}{\left.\frac{\gamma \eta}{}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)}
$$

Trivial two-particle state
4) Compare poles on both sides

Augmented perturbation theory

[Fröhlich et al.'80,'81
Maas'12,'17]

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

Bound
state mass

$$
\begin{aligned}
& \frac{\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle}{+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)} v^{2} \eta^{+}(x) \eta(y)
\end{aligned}
$$

Higgs mass
4) Compare poles on both sides

Augmented perturbation theory

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{aligned}
& \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
& \quad+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle \quad \text { Standard }
\end{aligned}
$$

Perturbation Theory
3) Standard perturbation theory Bound state mass

$$
\frac{\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle}{+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)}
$$

4) Compare poles on both sides

Augmented perturbation theory

Mrohlich et al.'80,'81
Maas \& Sond

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{aligned}
& \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
& +v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{aligned}
$$

What about this?
3) Standard perturbation theory

$$
\begin{aligned}
& \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
& +\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)
\end{aligned}
$$

4) Compare poles on both sides

Consequences: The Higgs

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

Consequences: The Higgs

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

Consequences: The Higgs

$$
\begin{aligned}
&\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
&+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{aligned}
$$

Consequences: The Higgs

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

Consequences: The Higgs

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

Consequences: The Higgs

Consequences: The Higgs

Physical thresholds

Consequences: The Higgs

Consequences: The Higgs

Consequences: The Higgs

Consequences: The Higgs

Gauge-dependrent

Consequences: The Higgs

Same structure repeats itself For decays and scattering processes

What about the vector?

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$

What about the vector?

1) Formulate gauge-invariant operator

$$
1^{-} \text {triplet: }\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\left\langle\left(\tau^{i} h^{+} D_{\sharp} h\right)(x)\left(\tau^{j} h^{+} D_{\sharp} h\right)(y)\right\rangle=v^{2} c_{i j}^{a b}\left\langle W_{\sharp}^{a}(x) W^{b}(y)^{u}\right\rangle+\ldots
$$

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle=v^{2} c_{i j}^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y)^{u}\right\rangle+\ldots
$$

Matrix from group structure

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle=v^{2} c_{i j}^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y)^{u}\right\rangle+\ldots \\
=v^{2}\left\langle W_{\mu}^{i} W_{u}^{j}\right\rangle+\ldots
\end{gathered}
$$

Matrix from group structure

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle=v^{2} c_{i j}^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y)^{\mu}\right\rangle+\ldots \\
=v^{2}\left\langle W_{\mu}^{i} W_{\mu}^{j}\right\rangle+\ldots
\end{gathered}
$$

Matrix from group structure
c projects custodial states to gauge states

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle=v^{2} c_{i j}^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y)^{\mu}\right\rangle+\ldots
$$

c projects custodial states to gauge states

Exactly one gauge boson for every physical state

Phenomenological Implications

Can we measure this?

Bound states as extended objects

- Two possibilities to measure extension

Bound states as extended objects

- Two possibilities to measure extension
- Form factor
- Difficult
- Higgs and Z need to be both produced in the same process

Bound states as extended objects

- Two possibilities to measure extension
- Form factor
- Difficult
- Higgs and Z need to be both produced in the same process
- Elastic scattering
- Standard vector boson scattering process at low energies
- Use this one

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

$$
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|M|^{2}
$$

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

Cross section

$$
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|M|^{2}
$$

Matrix element

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

Matrix element $\quad d \Omega=\frac{1}{64 \pi^{2} s}$

$$
-M(s, \Omega)=16 \pi \sum_{J}(2 J+1) f_{J}(s) P_{J}(\cos \theta)
$$

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

Matrix element

$$
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|M|^{2}, \begin{aligned}
& \text { Partial wave } \\
& \text { amplitude }
\end{aligned}
$$

$$
-M(s, \Omega)=16 \pi \sum_{J}(2 J+1) f_{J}(s) P_{J}(\cos \theta)
$$

Legendre polynom

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

$$
\begin{gathered}
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|M|^{2} \\
M(s, \Omega)=16 \pi \sum_{J}(2 J+1) f_{J}(s) P_{J}(\cos \theta)
\end{gathered}
$$

Partial wave

$$
-f_{J}(s)=e^{i \delta_{J}(s)} \sin \left(\delta_{J}(s)\right)
$$

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

$$
\begin{gathered}
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|M|^{2} \\
M(s, \Omega)=16 \pi \sum_{J}(2 J+1) f_{J}(s) P_{J}(\cos \theta)
\end{gathered}
$$

Partial wave

$$
-f_{J}(s)=e^{i \delta_{J}(s)} \sin \left(\delta_{J}(s)\right)
$$

Phase shift

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

$$
\begin{gathered}
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|M|^{2} \\
M(s, \Omega)=16 \pi \sum_{J}(2 J+1) f_{J}(s) P_{J}(\cos \theta) \\
f_{J}(s)=e^{i \delta_{J}(s)} \sin \left(\delta_{J}(s)\right) \\
a_{0} \stackrel{4 m_{W}^{2}}{=} \tan \left(\delta_{J}\right) / \sqrt{s-4 m_{W}^{2}}
\end{gathered}
$$

Phase shift

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

$$
\begin{gathered}
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|M|^{2} \\
M(s, \Omega)=16 \pi \sum_{J}(2 J+1) f_{J}(s) P_{J}(\cos \theta) \\
f_{J}(s)=e^{i \delta \delta_{J}(s)} \sin \left(\delta_{J}(s)\right) \\
s \rightarrow 4 m_{w}^{2} \\
a_{0} \stackrel{\operatorname{lan}}{ }=\tan \left(\delta_{J}\right)!\sqrt{s-4 m_{W}^{2}}
\end{gathered}
$$

Scattering length~"size"
Phase shift

Radius from elastic scattering in VBS

- Elastic region: $160 / 180 \mathrm{GeV} \leqslant \sqrt{s} \leqslant 250 \mathrm{GeV}$
- s is the CMS energy in the initial/final ZZ/WW system
- Requires a partial wave analysis

$$
\begin{gathered}
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s}|M|^{2} \\
M(s, \Omega)=16 \pi \sum_{J}(2 J+1) f_{J}(s) P_{J}(\cos \theta) \\
f_{J}(s)=e^{i \delta_{J}(s)} \sin \left(\delta_{J}(s)\right) \\
s \rightarrow 4 m_{W}^{2} \\
=a_{0} \stackrel{\operatorname{lan}\left(\delta_{J}\right) / \sqrt{s-4 m_{W}^{2}}}{ }
\end{gathered}
$$

Scattering length~"size"
Phase shift
\rightarrow Lattice Lüscher analysis

Impact of a finite size of the Higgs

Consider the Higgs: $J=0$

Impact of a finite size of the Higgs

Impact of a finite size of the Higgs

Impact on the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
- Parameters slightly different
- Higgs 145 GeV and weak coupling larger

Impact on the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
- Parameters slightly different
- Higgs 145 GeV and weak coupling larger
- Standard lattice Lüscher analysis

Impact on the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
- Parameters slightly different
- Higgs 145 GeV and weak coupling larger
- Standard lattice Lüscher analysis
- Qualitatively but not quantitatively

Impact on the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
- Parameters slightly different
- Higgs 145 GeV and weak coupling larger
- Standard lattice Lüscher analysis
- Qualitatively but not quantitatively

Impact on the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
- Parameters slightly different
- Higgs 145 GeV and weak coupling larger
- Standard lattice Lüscher analysis
- Qualitatively but not quantitatively

Impact on the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
- Parameters slightly different
- Higgs 145 GeV and weak coupling larger
- Standard lattice Lüscher analysis
- Qualitatively but not quantitatively

Impact on the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
- Parameters slightly different
- Higgs 145 GeV and weak coupling larger
- Standard lattice Lüscher analysis
- Qualitatively but not quantitatively

Impact on the radius of the Higgs

- Reduced SM: Only W/Z and the Higgs
- Parameters slightly different
- Higgs 145 GeV and weak coupling larger
- Standard lattice Lüscher analysis
- Qualitatively but not quantitatively

Impact on the radius of the Higgs

sorening [Gev) Estimated Exclusion limits

- Reduced SM: Only W/Z and the Higgs
- Parameters slightly different
- Higgs 145 GeV and weak coupling larger
- Standard lattice Lüscher analysis
- Qualitatively but not quantitatively

Impact on the radius of the Higgs

soneming (Gev) Estimated Exclusion limits

- Reduced SM: Only W/Z and the Higgs
- Parameters slightly different
- Higgs 145 GeV and weak coupling larger
- Standard lattice Lüscher analysis
- Qualitatively but not quantitatively

Impact on the radius of the Higgs

soneming [Gev) Estimated Exclusion limits

- Reduced SM: Only W/Z and the Higgs
- Parameters slightly different
- Higgs 145 GeV and weak coupling larger
- Standard lattice Lüscher analysis
- Qualitatively but not quantitatively

Generic behavior

Has been done for several observables

Generic behavior: DIS-like

Has been done for several observables

Generic behavior: DIS-like

Has been done for several observables

Generic behavior: DIS-like

Has been done for several observables

Generic behavior: DIS-like

Has been done for several observables

Generic behavior: DIS-like

Has been done for several observables

Generic behavior: DIS-like

Has been done for several observables

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Has nothing to do with weak coupling
- Think QED (hydrogen atom!)
- Can this matter?

Physical states

- Need physical, gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Has nothing to do with weak coupling
- Think QED (hydrogen atom!)
- Can this matter?
- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable

Flavor

- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state
$\left(\left.\begin{array}{cc}h_{2} & -h_{1} \\ h_{1}^{*} & h_{2}^{*}\end{array} \right\rvert\, \begin{array}{l}v_{L} \\ l_{L}\end{array} \|_{i}(x)\right.$

Flavor

- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state
$\left.\left(\left.\begin{array}{cc}n_{2}-h_{1} \\ h_{1}^{*} & h_{2}^{*}\end{array} \right\rvert\, \begin{array}{l}v_{L} \\ l_{L}\end{array}\right)_{i}\right)_{i}$
- Gauge-invariant state
- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state
$\left(\left.\begin{array}{cc}h_{2} & -h_{1} \\ h_{1}^{*} & h_{2}^{*}\end{array} \right\rvert\, \begin{array}{c}v_{L} \\ l_{L}\end{array}\right)\left(\begin{array}{l}0 \\ 0\end{array}\right.$
- Gauge-invariant state, but custodial doublet

Flavor

- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state
$\|\left(\begin{array}{cc}h_{2} & -h_{1} \\ h_{1}^{*} & h_{2}^{*}\end{array} \left\lvert\, \begin{array}{c}v_{L} \\ l_{L}\end{array}\left\|_{i}(x)^{+}\right\|\left(\begin{array}{cc}h_{2} & -h_{1} \\ h_{1}^{*} & h_{2}^{*}\end{array}\left|\begin{array}{c}v_{L} \\ l_{L}\end{array}\left\|_{j} \mid\right\|_{j}(y)\right.\right.\right.\right.$
- Gauge-invariant state, but custodial doublet

Flavor

- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state - FMS applicable

$$
\left(\left|\begin{array}{cc}
h_{2} & -h_{1} \\
h_{1}^{*} & h_{2}^{*}
\end{array}\right| \begin{array}{l}
v_{L} \\
l_{L}
\end{array} \|_{i}(x)+\left\{\left(\begin{array}{cc}
h_{2} & -h_{1} \\
h_{1}^{*} & h_{2}^{*}
\end{array}| | \begin{array}{l}
v_{L} \\
l_{L}
\end{array} \|\left._{j}\right|_{j}(y) \underset{v^{2}}{\approx}\left(\left.\begin{array}{l}
h=v+\eta \\
l_{L} \\
l_{L}
\end{array}\right|_{i}(x)+\left(\left.\begin{array}{l}
v_{L} \\
l_{L}
\end{array}\right|_{j}(y)+O(\eta)\right.\right.\right.\right.\right.
$$

- Gauge-invariant state, but custodial doublet
- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state - FMS applicable

$$
\|\left(\begin{array} { c c }
{ h _ { 2 } } & { - h _ { 1 } } \\
{ h _ { 1 } ^ { * } } & { h _ { 2 } ^ { * } }
\end{array} | | \begin{array} { l }
{ v _ { L } } \\
{ l _ { L } }
\end{array} \| _ { i } (x) + \| \left(\begin{array}{cc}
h_{2} & -h_{1} \\
h_{1}^{*} & h_{2}^{*}
\end{array}\left|\begin{array}{c}
v_{L} \\
l_{L}
\end{array}\left\|_{j}\right\|_{j}(y)\right| \begin{array}{c}
h=v+\eta \\
\approx \\
v^{2}
\end{array}\left|\begin{array}{l}
v_{L} \\
l_{L}
\end{array}\right|_{i}(x)^{+}+\left(\left.\begin{array}{l}
v_{L} \\
l_{L}
\end{array}\right|_{j}(y)+O(\eta)\right.\right.\right.
$$

- Gauge-invariant state, but custodial doublet
- Yukawa terms break custodial symmetry
- Different masses for doublet members
- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state - FMS applicable

$$
\|\left(\begin{array} { c c }
{ h _ { 2 } } & { - h _ { 1 } } \\
{ h _ { 1 } ^ { * } } & { h _ { 2 } ^ { * } }
\end{array} | | \begin{array} { l }
{ v _ { L } } \\
{ l _ { L } }
\end{array} \| _ { i } (x) + \| \left(\begin{array}{cc}
h_{2} & -h_{1} \\
h_{1}^{*} & h_{2}^{*}
\end{array}\left|\begin{array}{c}
v_{L} \\
l_{L}
\end{array}\left\|_{j}\right\|_{j}(y)\right| \begin{array}{c}
h=v+\eta \\
\approx \\
v^{2}
\end{array}\left|\begin{array}{l}
v_{L} \\
l_{L}
\end{array}\right|_{i}(x)^{+}+\left(\left.\begin{array}{l}
v_{L} \\
l_{L}
\end{array}\right|_{j}(y)+O(\eta)\right.\right.\right.
$$

- Gauge-invariant state, but custodial doublet
- Yukawa terms break custodial symmetry
- Different masses for doublet members
- Extends non-trivially to hadrons

Flavor on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched

Flavor on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched
- Same qualitative outcome
- FMS construction
- Mass defect
- Flavor and custodial symmetry patterns

Flavor on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched
- Same qualitative outcome
- FMS construction
- Mass defect
- Flavor and custodial symmetry patterns

Spectrum: Lattice and predictions

Flavor on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched
- Same qualitative outcome
- FMS construction
- Mass defect
- Flavor and custodial symmetry patterns

Spectrum: Lattice and predictions

Flavor on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched
- Same qualitative outcome
- FMS construction
- Mass defect
- Flavor and custodial symmetry patterns

Spectrum: Lattice and predictions

Flavor on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched
- Same qualitative outcome
- FMS construction
- Mass defect
- Flavor and custodial symmetry patterns

Spectrum: Lattice and predictions

- Supports FMS prediction

Flavor on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched
- Same qualitative outcome
- FMS construction
- Mass defect
- Flavor and custodial symmetry patterns

Spectrum: Lattice and predictions

- Supports FMS prediction - grant for unquenching '24-'28

New physics

Qualitative changes

Beyond the standard model

- Standard model is special

Beyond the standard model

- Standard model is special
- Mapping of custodial symmetry to gauge symmetry
- Fits perfectly degrees of freedom

Beyond the standard model

- Standard model is special
- Mapping of custodial symmetry to gauge symmetry
- Fits perfectly degrees of freedom
- Is this generally true?

Beyond the standard model

- Standard model is special
- Mapping of custodial symmetry to gauge symmetry
- Fits perfectly degrees of freedom
- Is this generally true?
- No: Depends on gauge group, representations, and custodial groups

Beyond the standard model

- Standard model is special
- Mapping of custodial symmetry to gauge symmetry
- Fits perfectly degrees of freedom
- Is this generally true?
- No: Depends on gauge group, representations, and custodial groups
- Can work sometimes (2HDM,MSSM) [Maas,Pedro'16, Maas,Schreiner'23]

Beyond the standard model

[Maas'15
Maas, Sondenheimer, Törek'17
Sondenheimer '19]

- Standard model is special
- Mapping of custodial symmetry to gauge symmetry
- Fits perfectly degrees of freedom
- Is this generally true?
- No: Depends on gauge group, representations, and custodial groups
- Can work sometimes (2HDM,MSSM) [Maas,Pedro'16, Maas,Schreiner'23]
- Generally qualitative differences

A toy model for unification

- Consider an SU(3) with a single fundamental scalar

A toy model for unification

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Coupling g and some numbers $f^{a b c}$

A toy model for unification

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Higgs h_{i} h
- Coupling g and some numbers $f^{a b c}$ and $t_{a}^{i j}$

A toy model for unification

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Higgs h_{i} h
- Couplings g, v, λ and some numbers $f^{a b c}$ and $t_{a}^{i j}$

A toy model for unification

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Higgs h_{i} h
- Couplings g, v, λ and some numbers $f^{a b c}$ and $t_{a}^{i j}$
- Parameters selected for a BEH effect

A toy model for unification

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{v} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

A toy model for unification

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Local SU(3) gauge symmetry $W_{\mu}^{a} \rightarrow W_{\mu}^{a}+\left(\delta_{b}^{a} \partial_{\mu}-g f_{b c}^{a} W_{\mu}^{c}\right) \phi^{b}$ $h_{i} \rightarrow h_{i}+g t_{a}^{i j} \phi^{a} h_{j}$

A toy model for unification

- Consider an SU(3) with a single fundamental scalar
- Looks very similar to the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Local SU(3) gauge symmetry
$W_{\mu}^{a} \rightarrow W_{\mu}^{a}+\left(\delta_{b}^{a} \partial_{\mu}-g f_{b c}^{a} W_{\mu}^{c}\right) \phi^{b}$
- Global U(1) custodial (flavor) symmetry
- Acts as (right-)transformation on the scalar field only $W_{\mu}^{a} \rightarrow W_{\mu}^{a}$ $h \rightarrow \exp (i a) h$

Spectrum

Gauge-dependent
Vector

‘SU(3) \rightarrow SU(2)'

Spectrum

Gauge-dependent
Vector Scalar

Spectrum

Gauge-dependent
Vector Scalar

Confirmed in gauge-fixed lattice calculations [Maas etal:16]

Gauge-dependent
Vector Scalar $\begin{aligned} & \text { Scalar } \\ & \text { singlet }\end{aligned}$

Gauge-dependent
Vector Scalar $\begin{aligned} & \text { Scalar } \\ & \text { singlet }\end{aligned}$

Gauge-invariant
Vector singlet

What about the vector?

What about the vector?

1) Formulate gauge-invariant operator 1 singlet

What about the vector?

1) Formulate gauge-invariant operator 1- singlet: $\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle$

What about the vector?

1) Formulate gauge-invariant operator 1- singlet: $\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

What about the vector?

1) Formulate gauge-invariant operator 1- singlet: $\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\left\langle\left(h^{+} D_{u} h\right)(x)\left(h^{+} D_{u} h\right)(y)\right\rangle=v^{2} c^{a b}\left\langle W_{u}^{a}(x) W^{b}(y)^{u}\right\rangle+\ldots
$$

What about the vector?

1) Formulate gauge-invariant operator 1- singlet: $\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle=v^{2} c^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y)^{u}\right\rangle+\ldots
$$

Matrix from group structure

What about the vector?

1) Formulate gauge-invariant operator

1- singlet: $\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{aligned}
\left\langle(h ^ { + } D _ { \mu } h) (x) \left(h^{+}\right.\right. & \left.\left.D_{\mu} h\right)(y)\right\rangle=v^{2} c^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y){ }^{u}\right\rangle+\ldots \\
& =v^{2}\left\langle W_{\mu}^{8} W_{\mu}^{8}\right\rangle+\ldots
\end{aligned}
$$

Matrix from group structure
$c^{a b}$ projects out only one field

What about the vector?

1) Formulate gauge-invariant operator

1- singlet: $\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{aligned}
&\left\langle\left(h^{+} D_{\mu} h\right)(x)\left(h^{+} D_{\mu} h\right)(y)\right\rangle=v^{2} c^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y)^{\mu}\right\rangle+\ldots \\
&=v^{2}\left\langle W_{\mu}^{8} W_{\mu}^{8}\right\rangle+\ldots \begin{array}{l}
\text { Matrix from } \\
\text { group structure }
\end{array}
\end{aligned}
$$

$c^{a b}$ projects out only one field

Only one state remains in the spectrum at mass of gauge boson 8 (heavy singlet)

A different kind of states

- Group theory forced same gauge multiplets and custodial multiples for SU(2)
- Because Higgs is bifundamental
- Remainder is bound state/resonance or not

A different kind of states

- Group theory forced same gauge multiplets and custodial multiples for SU(2)
- Because Higgs is bifundamental
- Remainder is bound state/resonance or not
- Now: Elementary states without analouge
- No global symmetry to provide multiplet structure

A different kind of states

- Group theory forced same gauge multiplets and custodial multiples for SU(2)
- Because Higgs is bifundamental
- Remainder is bound state/resonance or not
- Now: Elementary states without analouge
- No global symmetry to provide multiplet structure
- Now: States without elementary analouge
- Gauge-invariant states from 3 Higgs fields
- Baryon analogue - U(1) acts as baryon number
- Lightest must exist and be absolutely stable

Possible new states

- Quantum numbers are J ${ }_{\text {Custodial }}$

Possible new states

- Quantum numbers are J ${ }^{\mathrm{PC}}$ Custodial
- Simpelst non-trivial state operator: $0^{++}{ }_{1}$ $\epsilon_{a b c} \phi^{a} D_{\mu} \phi^{b} D_{v} D^{\nu} D^{\mu} \phi^{c}$

Possible new states

- Quantum numbers are J ${ }^{\mathrm{PC}}$ Custodial
- Simpelst non-trivial state operator: $0^{++}{ }_{1}$ $\epsilon_{a b c} \phi^{a} D_{\mu} \phi^{b} D_{v} D^{v} D^{\mu} \phi^{c}$
- What is the lightest state?
- Prediction with constituent model

Gauge-dependent
Vector Scalar

Gauge-invariant
Scalar Scalar Vector singlet non-singlet singlet

Gauge-dependent Vector Scalar

Gauge-invariant
Scalar Scalar Vector Vector singlet non-singlet singlet non-singlet

$2 x$

Gauge-dependent Vector Scalar

Gauge-invariant Scalar Scalar Vector Vector singlet non-singlet singlet non-singlet

- Qualitatively different spectrum
- No mass gap!

Possible states

- Quantum numbers are ${ }^{\mathrm{PC}}{ }_{\text {Custodial }}$
- Simpelst non-trivial state operator: $0^{++}{ }_{1}$
- $\epsilon_{a b c} \phi^{a} D_{\mu} \phi^{b} D_{v} D^{v} D^{\mu} \phi^{c}$
- What is the lightest state?
- Prediction with constituent model
- Lattice calulations

Possible states

- Quantum numbers are ${ }^{\mathrm{PC}}{ }_{\text {Custodial }}$
- Simpelst non-trivial state operator: $0^{++}{ }_{1}$
- $\epsilon_{a b c} \phi^{a} D_{\mu} \phi^{b} D_{v} D^{v} D^{\mu} \phi^{c}$
- What is the lightest state?
- Prediction with constituent model
- Lattice calulations
- All channels: J<3
- Aim: Ground state for each channel
- Characterization through scattering states

Typical spectrum

Typical spectrum

Typical spectrum

Typical spectrum

Typical spectrum

Typical spectrum

Typical spectrum

Typical spectrum

PRELIMINARY

[Dobson et al.'22

Typical spectrum

PRELIMINARY

[Dobson et al.'22

Typical spectrum

PRELIMINARY

Typical spectrum

Typical spectrum

PRELIMINARY

[Dobson et al.'22

Experimental consequences

Experimental consequences

- Add fundamental fermions

Experimental consequences

- Add fundamental fermions
- Bhabha scattering

Experimental consequences

- Add fundamental fermions
- Bhabha scattering
- Physical
- Perturbative

Experimental consequences

- Physical
- Perturbative

Physical scattering thresholds

Physical resonance

- Add fundamental fermions
- Bhabha scattering

Experimental consequences

Ghost peaks from unphysical particles in perturbation theory

- Add fundamental fermions
- Bhabha scattering
- Physical
- Perturbative

Experimental consequences

Close to true structures identical!

- Add fundamental fermions
- Bhabha scattering
- Physical
- Perturbative

Bottom line for GUTs

Bottom line for GUTs

- Toy models representative for mechanisms

Bottom line for GUTs

- Toy models representative for mechanisms
- All results so far inconsistent with perturbation theory

Bottom line for GUTs

- Toy models representative for mechanisms
- All results so far inconsistent with perturbation theory
- Consistent with FMS construction

Bottom line for GUTs

- Toy models representative for mechanisms
- All results so far inconsistent with perturbation theory
- Consistent with FMS construction
- Different spectrum: Different phenomenology

Bottom line for GUTs

- Toy models representative for mechanisms
- All results so far inconsistent with perturbation theory
- Consistent with FMS construction
- Different spectrum: Different phenomenology
- Application of FMS to GUT candidates

Bottom line for GUTs

- Toy models representative for mechanisms
- All results so far inconsistent with perturbation theory
- Consistent with FMS construction
- Different spectrum: Different phenomenology
- Application of FMS to GUT candidates:

- SU(5), SO(10), Pati-Salam,...

Bottom line for GUTs

- Toy models representative for mechanisms
- All results so far inconsistent with perturbation theory
- Consistent with FMS construction
- Different spectrum: Different phenomenology
- Application of FMS to GUT candidates:

All checked failed [Mas etal:17, Sondenheimer'19]

- SU(5), SO(10), Pati-Salam,...
- None found so far that works

Bottom line for GUTs

- Toy models representative for mechanisms
- All results so far inconsistent with perturbation theory
- Consistent with FMS construction
- Different spectrum: Different phenomenology
- Application of FMS to GUT candidates: All checked failed [Maas et al.'17,Sondenheimer'19]
- SU(5), SO(10), Pati-Salam,...
- None found so far that works
- Depends on Higgs sector

Bottom line for GUTs

- Toy models representative for mechanisms
- All results so far inconsistent with perturbation theory
- Consistent with FMS construction
- Different spectrum: Different phenomenology
- Application of FMS to GUT candidates: All checked failed [Maas et al.'17,Sondenheimer'19]
- SU(5), SO(10), Pati-Salam,...
- None found so far that works
- Depends on Higgs sector
- May still be possible

Bottom line for GUTs

- Toy models representative for mechanisms
- All results so far inconsistent with perturbation theory
- Consistent with FMS construction
- Different spectrum: Different phenomenology
- Application of FMS to GUT candidates: All checked failed [Maas et al.'17,Sondenheimer'19]
- SU(5), SO(10), Pati-Salam,...
- None found so far that works
- Depends on Higgs sector
- May still be possible (hopefully?)

Quantum gravity

- Quantum gravity is a gauge theory
- Quantum gravity is a gauge theory
- Empirically dominated by a field configuration
- De Sitter/FLRW metric
- Quantum gravity is a gauge theory
- Empirically dominated by a field configuration
- De Sitter/FLRW metric
- Observables need to be fully invariant
- Diffeomorphism and local Lorentz
- Quantum gravity is a gauge theory
- Empirically dominated by a field configuration
- De Sitter/FLRW metric
- Observables need to be fully invariant
- Diffeomorphism and local Lorentz
- FMS mechanism applicable
- A ‘BEH effect’ for gravity
- Technically much more involved
- First predictions agree with lattice EDT [oderear2]
- More to come from lattice CDT

Supergravity

- Gravity and supersymmetry imply supergravity
- Supersymmetry becomes a local gauge symmetry

Supergravity

- Gravity and supersymmetry imply supergravity
- Supersymmetry becomes a local gauge symmetry
- Same reasoning: Observables need to be gauge invariant

Supergravity

- Gravity and supersymmetry imply supergravity
- Supersymmetry becomes a local gauge symmetry
- Same reasoning: Observables need to be gauge invariant
\rightarrow Observables cannot show supersymmetry

Supergravity

- Gravity and supersymmetry imply supergravity
- Supersymmetry becomes a local gauge symmetry
- Same reasoning: Observables need to be gauge invariant
\rightarrow Observables cannot show supersymmetry
\rightarrow Could explain absence of supersymmetry in experiment

Supergravity

- Gravity and supersymmetry imply supergravity
- Supersymmetry becomes a local gauge symmetry
- Same reasoning: Observables need to be gauge invariant
\rightarrow Observables cannot show supersymmetry
\rightarrow Could explain absence of supersymmetry in experiment
- FMS mechanism as applicable as to quantum gravity

Summary

- Full invariance necessary for physical observables in path integrals

Review: 1712.04721 Update: 2305.01960

Summary

- Full invariance necessary for physical observables in path integrals
- FMS mechanism allows estimates of quantum effects in a systematic expansion

Summary

- Full invariance necessary for physical observables in path integrals
- FMS mechanism allows estimates of quantum effects in a systematic expansion
- Gives a new perspective on particle physics and quantum gravity

Philosophy of physics perspective: 2110.00616 Review: 1712.04721 Update: 2305.01960

Come to Graz!

Running jobs advertisement:
Full professorship in particle physics in January'24

Upcoming workshops:
Parton Shower and Resummation in July '24
Philosophical Reflections on Gauge Symmetries in July'24

