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Chapter 1

Anomalies

1.1 Introduction

There is one particular important property of the standard model, which is very much

restricting its structure, and which is recurring in extensions of the standard model. That

is the absence of anomalies. An anomaly is that some symmetry, which is present on

the classical level, is not present when considering the quantum theory. The symmetry is

said to be broken by quantum effects. Generically, this occurs if the action of a theory is

invariant under a symmetry, but the measure of the path integral is not. Constructing a

theory which is at the same time anomaly-free and consistent with the standard model is

actually already quite restricting, and therefore anomalies are an important tool to check

the consistency of new proposals for physics beyond the standard model. This will be

therefore discussed here in some detail.

1.2 Global anomalies

Anomalies fall into two classes, global and local anomalies. Global anomalies refer to

the breaking of global symmetries by quantum effects. The most important one of these

global anomalies is the breaking of dilatation symmetry. This symmetry corresponds to

rescaling all dimensionful quantities, e. g., x → λx. Maxwell theory, massless QED,

Yang-Mills theory, and massless QCD are all invariant under such a rescaling, at the

classical level, though not the Higgs sector of the standard model. This is no longer the

case at the quantum level. By a process called dimensional transmutation, surfacing in

the renormalization process, an explicit scale is introduced into the theory, and thereby

the quantum theory is no longer scale-invariant. Such global anomalies have very direct
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consequences. E. g., this dilatation anomaly leads to the fact that the photon is massless

in massless QED. Of course, it is also massless in massive QED, but there the breaking of

the dilatation symmetry is explicit due to the lepton mass.

Another example is the so-called axial anomaly, which occurs due to the breaking of

the global axial symmetry of baryons. A consequence of it is the anomalously large η’

mass. While the dilatation anomaly is quite obvious, the chiral anomaly is much more

subtle, and therefore deserves some more discussion. In addition, it will be very helpful

when generalizing to the local anomalies.

1.2.1 Classical level

To prepare for this, it is worthwhile to consider the situation as it would be without

anomalies, i. e. at the classical level. For this purpose, start with a gauge theory with

fermions ψ being in some representation R of the gauge Lie group G with generators T

and gauge fields in the adjoint representation. The fermionic part of the Lagrangian is

then given by

L = ψ̄(iγµ(∂µ − igT aAa
µ)−m)ψ = ψ̄(iγµD

µ −m)ψ

from which the Dirac equation

(iγµD
µ −m)ψ = 0

follows as the equation of motion, and likewise for the anti-fermion.

The current carrying the charge is then

jaµ = ψ̄γµT
aψ.

Due to the chiral symmetry, there is also a corresponding axial current

j5aµ = ψ̄γ5γµT
aψ.

In addition, there are also the singlet currents

jµ = ψ̄γµψ

j5µ = ψ̄γ5γµψ,

which corresponds to the fermion current and the axial current.

Naively, the divergences of these equations can be calculated using the Dirac equation.

∂µjaµ = −iψ̄(gτ bγµAµ
b −m)τaψ − iψ̄τa(−gτ bγµAµ

b +m)ψ

= igψ̄
[

τa, τ b
]

γµA
µ
bψ = −gfabcAµ

b ψ̄γµτcψ = −gfab
cA

µ
b j

c
µ.
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This implies that the color current is not observed, as long as the current is gauged. For

a non-gauge current, like a flavor current, g vanishes, and the current is conserved.

This is not surprising, as a non-Abelian gauge theory has no gauge-invariant charge.

However, the current is a gauge-vector, and therefore covariantly conserved

Dab
µ j

µ
b = 0. (1.1)

In the same way, it is possible to calculate the situation of the axial color current. Because

of the commutation relation between γ matrices, the result is

Dab
µ j

µ
b = 2imψ̄γ5τ

aψ = 2mipa, (1.2)

Here, p is the pseudo-scalar density, and not a momentum component. Thus, even in a

non-gauge theory this current is only conserved for fermions without a mass term in the

Lagrangian.

The calculations for the singlet current is simpler, and yields

∂µj
µ = 0

∂µj5µ = 2imψ̄γ5ψ = 2imp0.

Hence, the number of fermion is, a expected, a conserved current. The axial current is only

conserved for massless fermions. This is the result that chiral symmetry gets explicitly

broken, already classically, by a mass-term.

In a theory like the standard model, where parity is broken, left-handed and right-

handed fermions

ψL =
1− γ5

2
ψ

ψR =
1 + γ5

2
ψ

do not couple in the same way to the gauge-fields

L = ψ̄LiγµD
µ
LψL + ψ̄RiγµD

µ
RψR,

with DL 6= DR, and no mass term is permitted due to gauge invariance. Thus, the color

currents are recombined into covariantly conserved left-handed and right-handed currents

as

jaLµ =
1

2
(jaµ − j5aµ )

jaRµ =
1

2
(jaµ + j5aµ )

DLj
L
µ = 0

DRj
R
µ = 0,

and a similar recombination for the singlet currents.
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1.2.2 One-loop violation

So far, this was the conservation at the classical level, which already requires the fermions

to be massless. At the quantum level, this result is expressed by Ward-identities. In

particular, take Ward identities for correlation functions of the form

T ijk
µνρ = 〈Tjiµjjνjkρ 〉,

where i, j, and k can take the values V , A, and P , which require to replace the j by ja,

j5a, and pa, respectively, and the Lorenz index is dropped in the last case. Calculating the

corresponding Ward identities for a local chiral transformation

ψ′ = eiβ(x)γ5ψ(x)

ψ̄′ = ψ̄eiβ(x)γ5

yields the expressions

∂µxT
V V A
µνρ (x, y, z) = ∂νyT

V V A
µνρ (x, y, z) = 0 (1.3)

∂ρzT
V V A
µνρ (x, y, z) = 2mT V V P

µν (x, y, z), (1.4)

directly implementing the relations (1.1) and (1.2). This is what should happen, if there

would be no anomalies.

To check this, it is possible to calculate the leading-order perturbative correction. Since

only fermion fields appear in the vacuum expectation value, this is a vacuum triangle graph,

and the coupling is to external currents. In fact, it does not matter at this point whether

the external currents are gauged or non-gauged, since to this order this only alters the

presence or absence of color matrices at the external vertices. The only relevant part of

the external vertices is their Dirac structure.

Evaluating all the Wick contractions yields two Feynman diagrams, which translate to

T V V A
µνρ (p1, p2, p3 = −p1 − p2) = (1.5)

−i3
∫

d4k

(2π)4

(

trγµ(γαk
α −m)−1γν(γ

βkβ − γβp
β
2 −m)−1γργ5(γγk

γ + γγp
γ
1 −m)−1

+ trγν(γαk
α −m)−1γµ(γ

βkβ − γβp
β
1 −m)−1γργ5(γγk

γ + γγp
γ
2 −m)−1

)

.

This expression is linearly divergent. One of the most important points in anomalies, and

in quantum field theories in general, is that the result is independent of the regulator

employed. This will be discussed later how to show this. Here, it permits to use a Pauli-

Villar regulator with a mass M , which is technically more simple than other possibilities.
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Using dimensional regularization makes the result subtle, as it depends on the way the

matrix γ5 is analytically continued. This problem will therefore be avoided here.

To test the vector Ward identity, the expression can be multiplied with pµ1 . To simplify

the so obtained expression it is useful to employ

γµp
µ
1 = −(γµk

µ − γµp
µ
1 −m) + (γµk

µ −m),

yielding

pµ1T
V V A
µνρ (p1, p2, p3 = −p1 − p2) = (1.6)

−i3
∫

d4k

(2π)4

(

tr− (γαk
α −m)−1γν(γ

βkβ − γβp
β
2 −m)−1γργ5

tr(γγk
γ + γγp

γ
1 −m)−1γν(γ

βkβ − γβp
β
2 −m)−1γργ5

+ tr(γγk
γ + γγp

γ
2 −m)−1γν(γαk

α −m)−1γργ5

+ tr− (γγk
γ + γγp

γ
2 −m)−1γν(γ

βkβ − γβp
β
1 −m)−1γργ5 + (m→ M)

)

.

This rather length expression is now a finite integral. It is therefore permissible to reshuffle

the momenta like k → k + p2 in the first term and k → k + p2 − p1 in the second term.

Then, the first and third and second and fourth term cancel each other, and likewise this

happens for the regulator. Thus, the vector Ward identity is fulfilled. The result for the

second identity in (1.3) works in the same way.

The situation changes drastically for the axial Ward identity (1.4). The expression

(1.5) is still divergent, so before doing anything, it will again be regulated using a Pauli-

Villar regulator, to make it well-defined. To evaluate (1.4) requires multiplication with

p3 = −p1 − p2, which can rewritten as

γµp
µ
3γ5 = (γµk

µ − γµp
µ
2 −m)γ5 + γ5(γµk

µ + γµp
µ
1 −m) + 2mγ5

= (γµk
µ − γµp

µ
1 −m)γ5 + γ5(γµk

µ + γµp
µ
2 −m) + 2mγ5.

This yields

pρ3T
V V A
µνρ (p1, p2, p3 = −p1 − p2) = 2i

∫

d4k

(2π)4
(

mtr
(

γµ(kαγ
α −m)−1γν(γβk

β − γβp
β
2 −m)−1γ5(γγk

γ + pγ1γγ −m)−1
)

mtr
(

γµ(kαγ
α −m)−1γν(γβk

β − γβp
β
1 −m)−1γ5(γγk

γ + pγ2γγ −m)−1
)

Mtr
(

γµ(kαγ
α −M)−1γν(γβk

β − γβp
β
2 −M)−1γ5(γγk

γ + pγ1γγ −M)−1
)

Mtr
(

γµ(kαγ
α −M)−1γν(γβk

β − γβp
β
1 −M)−1γ5(γγk

γ + pγ2γγ −M)−1
))
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There are two remarkable facts to be observed. The first is that this expression is finite.

The projection with p3 drops out the divergent terms. This can be seen using the Dirac

matrix identity

trγµγνγργσγ5 = −4iǫµνρσ . (1.7)

Because of the anti-symmetry of the ǫ-symbol, any term containing two or more factors

of k vanishes. Hence, the numerator is reduced by two powers of k, making the integral

finite. This did not work in (1.6) as there one index less was uncontracted. However, the

regulator still had to be present in te first place to make this projection well-defined. The

second is that this expression, except for the regulator, is identical to T V V P up to a factor

of m, which is obtained by replacing γργ5 in (1.5).

The term involving the regulator can then be easily calculated, as when removing the

regulator in the end, the external momenta and masses can always be neglected, and the

integral becomes a simple tadpole integral. The final result is thus

ipρ3T
V V A
µνρ (p1, p2) = 2miT V V P

µν (p1, p2) + lim
M→∞

8iM2ǫµνρσp
1
ρp

2
σ ×

i

16π2

−1

2M2

= 2miT V V P
µν (p1, p2) +

1

2π2
ǫµνρσp1ρp

2
σ (1.8)

Thus, the Ward identity (1.4) is violated. The anomaly is both finite and independent of

the masses of the involved particles. It is also independent of the structure of the external

interaction, except for its Lorentz structure. The only thing changes is the appearance of

corresponding pre-factor aabc of the coupling matrices T a in charge space, which turn out

to be

aabc =
1

2
tr
({

T a, T b
}

T c
)

, (1.9)

a result which will become significant later. This is not the only anomaly, and a similar

result holds for the case of three axial currents.

Without proof, it should be noted here that there is still a certain regulator dependency.

It is possible by symmetries to add a finite term of form Cǫµνρσ(p1 − p2)
σ to the counter-

term in (1.6). Though C can be tuned to absorb the anomaly, this term will also contribute

to the vector identities, and induce there an anomaly for C 6= 0. Thus, it is only possible

to shift the anomaly around, without removing it.

The most well-known consequence of this anomaly is the decay of a neutral pion into

two photons. This is precisely of the type investigate here, where the photons play the

role of the vector currents. The axial current is related to the pion field by a QCD relation

∂µjaµ =
fπ√
2
M2

ππ
a, (1.10)
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where a is an isospin index, counting the three pions, a = 0,±, where only a = 0 is

relevant because of charge conservation. Since there are no massless hadrons, there can

be no pole in the corresponding amplitude T V V A, and thus the product with pρ has to

vanish. As a consequence, the amplitude T V V P , describing the transition, would vanish

as well, because of the Ward identity, and therefore the pion would usually not decay into

two photons, if at rest. However, due to the anomaly, this is not necessary, as the anomaly

can balance the Ward identity. Hence, the pion at rest can decay into two photons, due

to the anomaly, a process indeed observed in experiment.

1.3 Local anomalies

In contrast to the global anomalies, the local anomalies are a more severe problem. A local

anomaly occurs, when a quantum effect breaks a local gauge symmetry. The consequence

of this would be that observable quantities depend on the gauge, and therefore the theory

makes no sense. Thus, such anomalies may not occur. There are two possibilities how such

anomalies can be avoided. One is that no such anomalies occurs, i. e., the path integral

measure must be invariant under the symmetry. The second is by anomaly cancellation,

i. e., some parts of the measure are not invariant under the symmetry, but the sum of

all such anomalous terms cancel. It is the latter mechanism which makes the standard

model anomaly-free. However, the price to pay for this is that the matter content of the

standard model has to follow certain rules. It is thus rather important to understand how

this comes about. Furthermore, any chiral gauge theory beyond the standard model faces

similar, or even more severe, problems.

Already the classical result (1.2) is already indicating that the current is only covariantly

conserved,. The latter equation implies already that only for massless fermions there will

be no gauge anomaly. However, this is not a problem, as only zero-mass fermions are

admitted to the standard model anyway, and all apparent fermion masses are generated

by the Higgs effect. But for the standard model this is still modified. Due to the parity

violation, it is necessary to consider a current for left-handed and right-handed fermions

separately, where the corresponding left-handed and right-handed covariant derivatives for

the left-handed and right-handed currents appear.

In principle, it is possible to do the same one-loop calculation in a gauge theory, and

the final result is quite similar. However, it may still be questioned whether this is an

artifact of perturbation theory. It is not, and to show this it is useful to derive the local

anomaly for gauge theories using a different approach. In a path integral approach, this

becomes particularly clear, as it can be shown that the anomaly stems from the fact
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that the path-integral measure for fermions, DψDψ̄ is not invariant under chiral gauge

transformations, and therefore the anomaly arises. It is, of course, invariant under vectorial

gauge transformations, and thus theories like QCD need not to be considered, as will be

confirmed below. This also shows that the anomaly is a pure quantum phenomenon, as

the measure is part of the quantization process.

1.3.1 Anomalies as a quantum effect

To see that this is a relevant effect, it is important to remember how Ward identities are

obtained in general. Any well-defined symmetry transformation should leave the partition

function unchanged, i. e.

0 = δZ = δ

∫

DφeiS+i
∫
d4xjφ, (1.11)

where φ is for simplicity a non-Grassmann field, which changes under the transformation

as φ → φ + ǫf(φ, x), with f some arbitrary function and ǫ infinitesimal. Performing the

variation yields

0 =

∫

DφeiS+i
∫
d4xjφ

∫

d4x

(

i

(

δS

δφ
+ j

)

f +
δf

δφ

)

, (1.12)

where the first two terms come from the exponent. At the classical level, the source term

vanishes, and the derivative of the action just gives the equations of motion, yielding the

classical Ward identities. The third term is new in the quantum theory, and gives the

contribution of the Jacobian,

det
φ+ ǫf

δφ
= det

(

1 + ǫ
δf

δφ

)

≈ 1 + ǫ
δf

δφ
+O(ǫ2).

This is a genuine quantum contribution. It will be the source of the anomaly. Here it

also becomes evident that the term anomaly is actually a misnomer. There is nothing

anomalous about them. They are just a quantum effect.

To obtain Ward identities from (1.12), it is sufficient to derive with respect to the

source some number of times, and then set the sources to zero at the end, yielding

0 =

〈

TΠlφl

δf

δφ

〉

+ i

〈

TΠlφl

δS

δφ
f

〉

+
∑

k

〈TΠl<kφlfΠm>kφm〉 . (1.13)

In this way an anomaly surfaces in Ward identities in the full quantum theory. This also

shows that an anomaly is not a perturbative effect, since this is an exact result. However, it

is still possible that the Jacobian is actually one, and a deviation from one in the one-loop

calculation is just an artifact of perturbation theory.
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1.3.2 Full expression for the anomaly

To check this, rotate first to Euclidean time, by replacing t → it and correspondingly

in all covariant quantities the time component by i-times the time component and in all

contravariant quantities the time components by −i-times the time components. Then

expand the fermion fields in orthonormal eigenfunctions ψn of the Dirac operator,

ψ(x) =
∑

n

anψn(x)

ψ̄(x) =
∑

n

ψ+
n (x)b̄n,

which satisfy

iγµD
µψn = λnψn (1.14)

−iγµDµψ+
n = λnψ

+
n . (1.15)

This permits to rewrite the path integral as an infinite product of integrations over the

coefficients,

DψDψ̄ = Πmdamdb̄m, (1.16)

keeping in mind that these differentials are Grassmannian.

Now, a local chiral transformation β(x)

ψ → eiβ(x)γ5ψ,

then corresponds to a linear transformation of the coefficients

am → Cmnan = a′n,

which yields the Jacobian

Πmda
′

mdb̄
′

m =
1

(detC)2
Πmdamdb̄m,

or, formally,

Dψ′Dψ̄′ =
1

(detC)2
DψDψ̄.

This determinant can be rewritten as

1

(detC)2
= e−2tr lnC = e−2trδC , (1.17)

where in the last equality it was assumed that β is infinitesimal, and thus C = 1 + δC is

close to one. In this case, δC can be evaluated starting from

a′mψm = (1 + iβγ5)anψn
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which can be reduced using the orthonormality of the eigenstates of the Dirac equation to

a′m =

∫

d4xψ+
m(1 + iβγ5)ψnan = (1 + δcmn)an. (1.18)

Inserting this result into (1.17) yields for the Jacobian of the infinitesimal transformation

J = exp

(

−2i

∫

d4xβψ+
mγ5ψm

)

, (1.19)

where the trace has been evaluated.

Unfortunately, the expression, as it stands, is ill-defined. It is necessary to regularize

it. A useful possibility to make the expression well-defined is by replacing the trace over

the eigenstates as

ψ+
mγ5ψm → lim

τ→0
ψ+
mγ5e

−λ2
mτψm, (1.20)

where the limit has to be performed at the end of the calculation only. Expanding the

Gaussian and using the relations (1.14-1.15), this expression can be rewritten as

lim
τ→0

ψ+
mγ5e

−λ2
mτψm = lim

τ→0
tr
(

γ5e
−τ(γµDµ)+γνD

ν
)

. (1.21)

The exponential can be rewritten as

(γµD
µ)+γνD

ν = −DµD
µ +

i

4
[γµ, γν ]F a

µντa. (1.22)

The limit is still ill-defined. It is necessary to rewrite the expression in a suitable way.

This is achieved by the heat-kernel regularization.

For a differential operator, here given by ∆ = (γµD
µ)+γνD

ν, it is possible to define a

heat-kernel as

(∂τ +∆x)G(x, y, τ) = 0 (1.23)

G(x, y, 0) = δ(x− y). (1.24)

Which is solved by the formal expression

G(x, y, τ) = e−∆xτ =
∑

m

e−τλmψ+
m(y)ψm(x).

This is already the expression (1.21). Without proof, it can now be shown that this heat

kernel can be expanded for small τ as

G(x, y, τ) →τ→0
1

(4πτ)2
exp−

(x−y)2

4τ

∞
∑

j=0

aj(x, y)τ
j.
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Inserting this expansion into (1.19) yields

ln J = −2i lim
τ→0

1

(4πτ)2

∫

d4xβ
∑

j

τ jtrγ5aj .

For τ → 0, the first term does not contribute, as a0 has to be equal to one because of

the condition (1.24). Terms with j > 2 will be irrelevant, because of the powers of τ .

This leaves only j = 1 and j = 2. For these terms follows from the requirement that the

expansion satisfies (1.23) a descent equation

−∆aj−1 = jaj.

Since a0 = 1, a1 can be obtained algebraically from (1.22). Since all resulting terms

have at most two γ matrices, the trace will vanish. Similarly, for a2 only those terms

can contribute to the trace where at least four γ matrices appear, which implies only the

term quadratic in Fµν will contribute. Which is precisely what is necessary to cancel the

pre-factor.

Thus, the remainder is just

J = exp

(

− i

32π2

∫

d4xβǫµνρσF a
µνFaρσ

)

. (1.25)

Hence, the Jacobian is non-trivial, and will contribute in the Ward identities (1.13). How-

ever, this is still a rather complicated expression, which does not yet look like the one-loop

result.

That this coincides with the one-loop anomaly can be obtained by an explicit calcula-

tion. Since this was for the global case, take β to be constant. The integral can then be

rewritten as
∫

d4xtrǫµνρσ∂µ

(

iAa
ν∂ρA

a
σ +

2

3
fabcAa

νA
b
ρA

c
σ

)

. (1.26)

Since the pertruabtive case was the Abelian case, the second term can be dropped. The

first term is then for the global case just two external fields, e. g. playing the roles of the

photon field in the pion decay, and two momenta in Fourier space, which, after relabeling,

yield the desired one-loop expression. Hence, indeed the full and the one-loop anomaly

coincide. In gauge theories there are also anomalies in box and pentagon graphs with an

odd number of axial insertions, which are again one-loop exact.

To obtain the final result including all color factors requires then just an explicit cal-

culation, inserting the Jacobian (1.25) into the Ward identity (1.13). This will yield (1.8)

with (1.9) inserted.



Chapter 1. Anomalies 13

1.3.3 Anomaly cancellation

However, for the standard model it is more interesting to consider the case that left-handed

and right-handed fermions are coupled with different gauge fields. Due to the different sign

of γ5 in the corresponding projector, this will reemerge as a different sign of the anomaly,

yielding

kρT V aV bAc

µνρ (p, q, k) = 2mT V aV bP c

µν (p, q, k) +
tr
{

τaL, τ
b
L

}

τ cL − tr
{

τaR, τ
b
R

}

τ cR
2

1

3π2
ǫµνρσp

ρqσ,

were L and R indicate the representation of the left-handed and right-handed fermions.

As a consequence, the classical gauge symmetry is broken by the anomaly, and results will

depend on the choice of gauge. This can be directly understood form this expression: the

left-hand side should vanish, if there is no massless pseudo-scalar particle in the theory,

which is true for the standard model. On the right-hand side, the first term will indeed

do so, if the fermion mass is zero. This is already required due to parity violation in the

standard model. But for the second term this is not obvious.

There are now two possibilities how to obtain an anomaly-free theory. Either, the

theory is anomaly-free, if each of the remaining terms is individually zero, or they cancel.

Indeed, the expression tr{τa, τ b}τ c, the so-called symmetric structure constant, is zero for

all (semi-)simple Lie groups, except for SU(N ≥ 3) and U(1). Unfortunately, these are

precisely those appearing in the standard model, except for the SU(2) of weak isospin.

For the group SU(3) of QCD, this is actually not a problem, since QCD is vectorial, and

thus1 τL = τR, and the terms cancel for each flavor individually. Thus remains only the

part induced by the hypercharge.

In this case, each generation represents an identical contribution to the total result, as

the generations are just identical copies concerning the generators. It is thus sufficient to

consider one generation. The right-handed contributions are all singlets under the weak

isospin, and thus they only couple vectorially to electromagnetism, and therefore yield

zero. The contributions from the left-handed doublet contain then the generators of the

weak isospin, τa, and the electric charge Q = τ 3 + 1y/2. The possible combinations

contributing are

trta{τ b, τ c} (1.27)

trQ{τa, τ b} (1.28)

trτaQ2 (1.29)

trQ3. (1.30)

1Actually, unitarily equivalent is sufficient.
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The contribution (1.27) vanishes, as this is a pure SU(2) expression. The term (1.30) is

not making a difference between left and right, and is therefore also vanishing. It turns

out that (1.28) and (1.29) lead to the same result, so it is sufficient to investigate (1.29).

Since the isospin group is SU(2), the anti-commutator of two Pauli matrices just gives a

Kronecker-δ times a constant, yielding in total

trQ{τa, τ b} =
1

2
δab

∑

f

Qf ,

where Qf is the electric charge of the member f of the generation in units of the electric

charge. It has to vanish to prevent any gauge anomaly in the standard model, which is

fulfilled:
∑

f

Qf = (0− 1) +Nc

(

2

3
− 1

3

)

= −1 +
Nc

3
= 0.

Therefore, there is no gauge anomaly in the standard model. However, this is only possible,

because the electric charges have certain ratios, and the number of colors Nc is three. This

implies that the different sectors of the standard model, the weak isospin, the strong

interactions, and electromagnetism, very carefully balance each other, to provide a well-

defined theory. Such a perfect combination is one of the reasons to believe that the

standard model is part of a larger theory, which imposes this structure.

1.4 Relation to topology

There is an interesting twist for the quantity making up the Jacobian

1

64π2

∫

d4xǫµνρσF a
µνFaρσ = − i

512π4

∫

d4xtrǫµνρσ∂µ

(

iAa
ν∂ρA

a
σ +

2

3
fabcAa

νA
b
ρA

c
σ

)

Evidently, this is a total derivative, and hence can be cast into a surface integral at infinity.

It is therefore independent of the internal structure of the space-time it is integrated over,

but depends only on the contribution from the boundary. Furthermore, the expression

has the same color structure as the usual Lagrangian, and the Lorentz indices do not

play a role in gauge transformations of the field-strength tensor. Hence, this quantity is

gauge-invariant. Thus, it is an observable quantity. It is the so-called topological charge,

or Chern class of the gauge field configuration. Furthermore, the quantity is evidently

invariant under any continuous distortions of the gauge fields inside the volume. It is

less obvious that this is true for any continuous deformations of the gauge fields on the

boundary, and that all of these possible deformations fall into distinct classes, the so-called
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Chern classes, such that the integral is an integer k, characterizing this class. This fact is

stated here without proof.

Since this quantity was obtained from the chiral transformation properties of the

fermions, it suggest itself that it is connected to properties of the Dirac operator, and

this is indeed the case. This topological charge is equal to the difference of the number

of the left-handed n− and right-handed n+ zero modes of the (necessarily in the present

context massless) Dirac operator Dµ, γµD
µψ = 0, called the index of the Dirac operator.

This is the celebrated index theorem.

To see this, note first that because γ5 anti-commutes with the other γµ it follows that

that for any eigen-mode of the Dirac operator ψm to eigenvalue λm that

iγµD
µγ5ψm = −iγ5γµDµψm = −λmγ5ψm.

Hence, every non-zero eigen-mode is doubly degenerate, and therefore the index is the

same if all eigenmodes are included.

Start with an expression for this difference,

n+ − n− =

∫

d4x
∑

m,λm=0

ψ+
mγ5ψm.

The inserted γ5 will guarantee the correct counting. It is possible to use a very similar

trick as before when regularizing the sums when doing the path integral calculation in

section 1.3.2. The additional eigenvalues can be added as
∫

d4x
∑

m

ψ+
mγ5ψme

−λ2
mτ ,

as the γ5 symmetry ensures that all added terms vanish. But this is precisely expression

(1.20), and thus this will lead to the same result as in section 1.3.2. Thus, the final answer

is

n+ − n− = k =
1

64π2

∫

d4xǫµνρσF a
µνFaρσ

Hence, the anomaly has a certain connection to the topology of the gauge-fields.

This is in as far remarkable as the topology of gauge fields is an intrinsic property

of Yang-Mills theory, and thus existing without any fermions, and hence in anomaly-free

theories. At the same time, anomalies also exist without gauge fields, e. g. in the form of

global anomalies. They are tied to the path-integral measure for gauge theories. It is the

unique property of the covariant derivative in the form of the Dirac operator for fermions

which ties both effects together in the presented way. Other realizations than minimal

coupling will not have this property, or at least in a different way. This connection is

therefore deeply ingrained in the gauge formulation.
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1.5 Witten anomalies

There is actually a further possible anomaly for fermions, the so-called Witten anomaly,

which is also connected to the parity violation in the standard model. It is also a gauge

anomaly, and has therefore to be canceled as well. This occurs in the standard model if the

number of weak fermion states is even. This would not be the case, if, e. g., there would

be a single triplet of fermions charged under the weak isospin. In technicolor theories,

or other theories beyond the standard model, this is a constraint, as in such theories

multiplets with an odd number of fermions may appear, e. g. when the chirally coupled

fermions are additionally charged under different gauge groups or representations, leading

to an odd number of fermions. This has then to be canceled by additional fermions. This

is a problem exclusively applying to the Sp(N) gauge groups, and to SU(2) of the weak

interactions because SU(2)≈Sp(1), as well as O(N < 6) groups, except for SO(2).

The reason can be most easily illustrated by considering the path-integral with the

fermions integrated out. For n Weyl fermions, the expression is

Z =

∫

DAµ(det iγµD
µ)

n
2 eiS, (1.31)

with S the usual gauge-field action. The problem arises, as it can be proven that for each

gauge-field configuration of a gauge theory with an affected gauge group there exists a

gauge-transformed one such that

(det iγµD
µ)

1
2 = −(det iγµD

µ′

)
1
2 ,

where ′ denotes gauge-transformed. The proof is somewhat involved, but essentially boils

down to the fact that the determinant has to be defined in terms of a product of eigenvalues.

For Sp(N) gauge theories as well as the groups O(N < 6) it can then be shown that there

exist gauge-transformations, which are topologically non-trivial, such that one of the non-

zero eigenvalues changes sign. Mathematically, the reason is that the fourth homotopy

group of these groups is non-trivial and actually is Z2 or Z2
2. Hence, the integrand of the

path integral (1.31) exists twice on each gauge orbit, but with opposite signs. Thus, the

partition function vanishes, and all expectation values become ill-defined 0/0 constructs.

Thus, such a theory is ill-defined, as there is no continous deformation of teh aguge group

possible to introduce a suitable definition, similar to L’Hospital’s rule.

In the standard model, the problem does not arise, because the number of Weyl flavors

of the fermions is even since only Dirac fermions appear. One could also hope that, since

the gauge group of the standard model is actually S(U(3)×U(2))≈SU(3)/Z3×SU(2)/Z2×U(1),

this problem would not arise. The reason for this division is that only for this particular
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gauge group the matter field representation becomes single-valued, as is necessary for them

to be meaningful. However, because SU(2)/Z2 ≈SO(3) instead of Sp(2), this does not help,

as the fourth homotopy group of SO(3) is also non-trivial, and the problem persists,

Thus, adding further sectors to the standard model, or embedding it in a grand-unified

theory, must respect this fact, to avoid triggering the Witten anomaly.


