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Chapter 1

Introduction

This lecture covers a number of mathematical aspects, which are important in modern
theoretical physics. The largest, and most central, part is group theory, or more precisely
the theory of groups and algebras, as it plays a quite important and prominent role in
modern physics. The reason is that nature exhibits symmetries, and these are consequences
of the symmetry groups in their basic structure. These symmetries can appear in many
disguises. The simplest one is that the symmetry can be identified by the naked eye, e. g.
in snow flakes or in the form of crystals. Then they manifest themselves in conservation
laws, which e. g. forces the orbit of a planet to be planar. And finally, they surface as
degeneracies, like the fact that without magnetic field the magnetic levels of the hydrogen
atom have all the same energies.

The second part deals with functions of complex variables, and their analytical struc-
ture. That is of central importance for many aspects of theoretical physics, but especially
features of spectra and scattering processes. An example in quantum mechanics is the fact
that poles of propagators determine the energy spectra.

Finally, some basic elements of manifolds will be needed, which is necessary for spaces
with curvatures, but are also a common foundation for the other subjects. The most
notable application in physics is, of course, general relativity, but also various internal
spaces throughout theoretical physics are manifolds.

It will be seen that many aspects of group theory reemerge in both manifolds and
function theory. That is not surprising as in both cases groups enter in the foundation of
them. This again justifies the central part played by groups in the following.

The aim of this lecture is not to provide an explanation of any of the physical phe-
nomena. The aim is to provide the mathematical tools to do so. E. g. one of the tools
are group and algebra theory. Implementing these tools such as the observed symmetry,
conservation, and degeneracy patterns observed in experiment are correctly reproduced by
the theoretical description is the role of the corresponding physics lectures. Nonetheless,
many examples will be drawn from physics. Also, the group of rotations and especially
of spin will play very central roles, so that many mathematical concepts will have an
immediate physical analog.
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Chapter 2

Manifolds

In physics one usually encounters an underlying space(-time), like Euclidean space-time
and Minkowski space-time. However, these are relatively rigid structures. Many phe-
nomena, like general relativity or more involved internal spaces associated with gauge
symmetries, require a more general concept. This concept is provided by manifolds.

2.1 Manifolds as maps

Manifolds as a structure are defined foremost operationally by a map: A manifold is a
set M of elements m ∈ M, of which overlapping subsets can be mapped to overlapping
subsets of Rn, f(m)→ x. This implies that manifolds are locally Rn. Hence, every element
of the set can be uniquely labeled by a vector in Rn, and there is a minimum n for which
this uniqueness can be guaranteed. This is called the dimension of the manifold.

The probably best known example are the n − 1-spheres Sn−1. They are commonly
defined by a map from Rn such that1 x2i = 1. This shows especially how the manifold is
only defined via a subset of the Rn. The dimension of the manifold is given by the minimal
number of dimensions of the underlying Rn subset. In the case of the n − 1-sphere, the
dimensionality is n − 1, as the condition on the sum renders one parameter dependent.
However, attempting to use this to reduce the underlying Rn to Rn−1 yields a non-trivial,
but solvable, problem.

It is possible to label elements of the set by introducing coordinates by an injective
map φ(x) from the Rn to the manifold, φ(x)→ X(m) with m ∈ M and φ−1(X(m)) = x.
If every element of the manifold can be given coordinates using in this way by a single
map φ(x) it is called a simple manifold. An example of a simple manifold is the one-
dimensional unit circle S1, which is obtained from a finite interval in R by, e. g., the
map φ(x) = exp(ix). This already shows that the map is necessarily not unique. E. g.
φ(x) = 1 + exp(ix) would work as well. Also, while in this case the set S1 is represented
by points in the complex plane, this is not the only possibility, and in general the map
can be as abstract as a table.

1Throughout this lecture the Einstein convention is used. Thus exactly doubly appearing indices are
always summed over their index range, as long as not stated explicitly otherwise.

2



Chapter 2. Manifolds 3

If the manifold is not simple, then the overlapping feature allows for the construction
of an atlas, which is the set of all coordinate systems needed to describe the complete
manifold. E. g., given two subsets with two coordinate maps φ1 and φ2, the injectivity
allows to construct uniquely coordinates X(m) for any element m in the manifold in the
overlap region by transition functions φ2(φ

−1
1 (X1(m))) and φ1(φ

−1
2 (X2(m))), as they need

to satisfy φ−11 (X1(m)) = x = φ−21 (X2(m)). Using such transition functions, it is possible
to move from any element in the manifold to another. The atlas is then the collection
A = {φi}. Thus, a manifold with coordinates is defined by the set {M,A}.

Where this subtlety comes into play can be seen by the two-sphere S2, which is as a
two-dimensional manifold. It is not simple, as the plane R2 is insufficient to describe the
whole sphere, because either the north pole or the south pole is ill-defined. Introducing as
coordinate maps spherical coordinates, but once counting the azimuth angle from 0 and
once from π gives two coordinate maps, which overlap everywhere except at the poles, and
the transition function is θ−π. The atlas contains then two coordinate systems. Of course,
there could be additional coordinate systems. Thus, the atlas is usually defined to be the
minimal set of necessary coordinate systems2. On the other hand, by having a higher-
dimensional underlying Rn, the atlas has again only one coordinate system, at the price
of a redundancy. This is the trade-off often encountered. This is called an embedding. It
is worthwhile to note that it is not guaranteed that such an embedding exists.

If there exists as set of maps and transition functions which cover the whole manifold
and Φij(x) = φ−1i (φj(x)) ∈ Rn for overlapping patches i and j are differentiable in the
usual sense as functions of x ∈ Rn, the manifold is called differentiable. If the underlying
real space is even-dimensional, and can be mapped to a complex vector space such that
all necessary maps and transition functions are so-called holomorphic, the manifold is
holomorphic. The definition of holomorphic will be given in section 3.3.2.

2.2 Topology

Just like vector spaces, which are not normed, manifolds have so far no concept of distance.
By introducing a topology, i. e. a map d(m,n) from two elements m and n of the manifold
M into R, such a distance measure is introduced. Usually, and essentially in the whole
lecture, it will be required that d(m,n) ≥ 0 with equality if and only if m = n, i. e.
d(m,m) = 0. This condition can be relaxed, but then various statements no longer hold.
A manifold equipped with a topology, {M,A, d}, is called a topological manifold.

With this, it is possible to introduce the usual concept of closeness. Especially, this
allows to define the neighborhood of an element m by including all points n which satisfy
d(m,n) < δ, with δ some number. Usually, this is called a ball. Isolated points are
elements for which a value of δ exist, for which no elements other than m itself remains
inside the ball. Conversely, an accumulation (or limit) point is whenever for any δ there
are always at least one other element within the ball. It should be noted that the closeness
of m and n in the manifold do not imply (necessarily) the closeness of the corresponding

2Sometimes the atlas is considered to be any set of complete coordinate systems, and one with the
minimal number of needed ones is called minimal.



4 2.3. Paths and tangent spaces

point x and y in the Euclidean sense of the underlying Rn. However, in practice this
happens often at least within a common coordinate patch.

A (sub)set of a topological manifold is bounded, if the distance between any two
elements is finite. Closed and open (sub)sets are defined using Cauchy sequences3 of
elements. A closed set then requires that the limit of every Cauchy sequence converging
within the set is also within the set. Otherwise the set is called open. If it is both bounded
and closed, it is called compact. For any finite-dimensional manifold it can be shown that
all closed subsets are also bounded. Compactness can also be established by the Heine-
Borel overlapping criterion that a set is compact if any union of open sets containing the
set contains a finite number of sets which also contains the original set. Note that in a
topological manifold this implies that therefore an atlas exists such that points close in the
manifold are also close in the Euclidean norm in the underlying Rn. This gives a specific
case of the situation mentioned above.

Conversely, the Heinel-Borel overlapping criterion allows to consider cases in which the
topology can also take values zero for distinct points, or may even become negative. In
that case, points can be considered close, if the are within the same coordinate patch, and
the Euclidean distance in the underlying Rn is smaller than some number.

Given a topology and an atlas, it may be possible to introduce a metric. If there
exists coordinates X(x) and y(Y ) for points in the manifold, and a (semi-)scalar product
(X − Y )†g(X − Y ) can be defined for X(m) and Y (n) such that it equals d(X, Y ) =
d(X(m), Y (n)), then this defines a metric g on the manifold. Of course, the metric will
depend on the choice of coordinate system, as usual. It will also in general depend on X
and Y , g(X, Y ). A metric is said to be compatible, if g(X, Y ) = g(X) = g(Y ), if d(X, Y )
is infinitesimal. Note that while both the coordinates and the metric will depend on the
choice of coordinate system, the definition requires that the distance d(X, Y ) does not.
Thus, changes of the metric need to compensate changes in the coordinates. This provides
rules for the how the metric changes under a coordinate transformation, and allows to
define covariant (transforms like a coordinate) and contravariant (transforms opposite to
a coordinate) tensors in the tangential space, at least inside a coordinate patch. The
metric will then necessarily be able to transforms covariant object into a contravariant
one. Likewise, an inverse metric, in the sense of being the inverse of the metric but
transforming covariantly, will do the opposite.

If the metric has everywhere only positive eigenvalues, the manifold is called a Rie-
mannian manifold, if not a pseudo-Riemannian manifold.

2.3 Paths and tangent spaces

Once a manifold with a topology is given, it is possible to define curves X(t), where t is a
real parameter, perhaps restricted to an interval, as a set of elements m(t) labeled by the
values of t and with assigned coordinates X(t). Note that the curve may move through
different patches, requiring to use transfer functions.

3A Cauchy sequence of elements mn ∈ M is a sequence for which for any ε ∈ R there exists an index
nε such that for any k > nε and l > nε d(mk,ml) < ε holds.



Chapter 2. Manifolds 5

A continous curve requires that for any ε there exists for any point X(t) a point X(t+ε)
such that d(X(t), X(t + ε)) < δ for any arbitrarily small δ. As t is a real parameter, this
likewise allows to introduce the concepts of differentiable curves as the rate of change of the
coordinates at a point t. A curve is closed, if there exists a T such that X(t) = X(t+ T )
for any t. If no such T exists, it is open. If the condition is fulfilled only for some, but not
all t, the curve crosses itself.

The existence of differentiable curves allows to attach at every element of the manifold
a vector space. To this end, there will be as many independent derivatives as there are
dimensions. These derivatives can then be used to define base vectors. By defining their
sum to be in the corresponding direction, this provides vector addition, and supplementing
with a (usually real) body, this creates a vector space, the tangent space of the manifold
at this point.

Curve are invariant under redefinitions of t, as the set of points does not change. A
linear change is called an affine transformation. Thus, it is especially possible to map the
parameter to the unit circle4. Note that the curve does not need to be closed for this.

2.4 Homotopy

Curves on manifolds can be classified. This classification has important consequences, as
will be seen, e. g., in chapter 3. It plays an important roles in many cases and fields.

To construct the classification, consider two curves, Ci, with their parameters ti taking
values on the unit circle. It is now possible to have both circles of parameters being located
on the surface of a cylinder. Then the height h on the cylinder can be used to smoothly
deform the parameter of both curves into each other. If the curves can in this process be
themselves smoothly, i. e. remaining continous at every step of the deformation, deformed
into each other, the two curves are said to be (freely) homotopic to each other. This can
be stated by using the deformation parameter h, which is taken to be between zero and
one. Then X(h, t) is a continous function of both h and t, with X(0, t) being C1(t) and
X(1, t) being C2(t). Note that the curves do not need to have the same length for this
procedure, no matter how length is defined in this context.

All curves, which can be deformed into each other in this way are collected in a ho-
motopy class. If the curves can be deformed to a point, i. e. the point as well as non-zero
length curves are included in the class, the class is called the trivial class. If in a given
space all curves belong to the trivial class, the space is called simply connected. This
definition applies especially to manifolds. E. g., in a two-dimensional space with a point
excluded, given a closed curve around such a puncture of the space, the curve cannot be
deformed to a point. Its class is therefore non-trivial.

It may now happen that curves are such that it is not directly possible to just map
the parameters in a one-to-one way on each other. Consider e. g. such non-contractible
curves on the punctured space. Curves winding once and twice around the puncture
cannot be deformed into each other. That can be visualized by having the parameter

4If t is not from a finite interval, this is still possible, as discussed in section 4.12.



6 2.4. Homotopy

wind around the cylinder n times, if the puncture is encircled n times. Likewise, curves
which circle in opposite directions can also not be mapped into each other. Thus, for
a such singly punctured space, the possible homotopy classes are given by the integers.
Since combining multiple curves by following them one into another changes the integer,
this can be considered the group of integers, Z. Thus, Z is called the homotopy group of
this space. The genus is then defined to be the number of such holes, i. e. non-identical
possibilities to have non-contractible paths. E. g., the sphere has genus zero and the donut
or the punctured plane genus one, .

In general, it is possible to define hypersurfaces in manifolds with topology. The
original parameters can then be mapped to the n-dimensional sphere, rather than the
1-dimensional circle. If the space in which the curve resides is the space M , then the
homotopy group πn(M) is defined to be the group of the homotopy class.

E. g. in a simply-connected space, say C, all curves belong to the same class, and
thus there is only the trivial homotopy group, denoted π1(C) = 0. However, consider the
two-dimensional torus. Curves which wrap n-times around the ring and m-times around
the inner hole cannot be deformed continuously into each other, when they have n′ 6= n
and/or m′ = m. Thus, there are two integers labelling the homotopy classes and thus the
group is π1(T ) = Z2.

The group structure is imposed by defining group composition to be composition of
curves from different classes. Spaces with different homotopy group(s) are globally dif-
ferent, and thus there cannot exists homorphisms between them. The homotopy groups
therefore capture the global structure of manifolds. It can be shown that all homotopy
groups πn>1(M) are Abelian, but it does not hold true that if M is ’bigger’ than Sn it is
always trivial. E. g. π3(S

2) 6= 0, which is stated here without proof.
Determining homotopy groups is generally relatively difficult, but they are known for

many cases, and for certain classes of spaces there exist constructive approaches to obtain
them.



Chapter 3

Complex functions

Complex-valued functions of complex variables are a common sight in physics, especially
in quantum physics. At the same time, singularity structures play an important role in
quantum physics as well, e. g. in the resolvent. These two issues seem to be unrelated
at first. There is, however, a deep connection between them, and its formalization is the
basis of function theory. Interpreting Cn as a manifold with topology allows to sees these
as implementations of homotopy classes.

3.1 Patches and curves

Unsurprisingly, the arena of function theory are complex vector spaces Cn. These are
isomorphic to real vector spaces R2n. Of course, the multiplication of two complex numbers
is not a simple structure on the real space. Most of the following can be straightforwardly
continued to n > 1, and thus the primary arena will be the complex plane C. These
are just the ordinary complex numbers, endowed with the known structures and simple
operations.

Most of the usual statements and definitions of analysis can be carried over. Only that
complex numbers cannot be ordered requires occasionally to resort to the absolute value
of a complex number. Especially, convergence of a series zn is given by a convergence of
|zn|. In turn, by virtue of the triangle inequality, this is implied by convergence of both
|<zn| and |=zn|. Boundedness is also imposed in terms of the absolute value, and is in
turn implied by the boundedness of both real part and imaginary part. Using the absolute
value, it is possible to translate criteria of convergence to complex, infinite series from real
numbers.

For infinite sums convergence can be obtained as well from the usual concept of real
numbers. Especially important in the following is the Cauchy criterion, i. e. there exists
some indices n and m such that ∣∣∣∣∣

n∑
k=m+1

zk

∣∣∣∣∣ ≤ ε

for any arbitrary small ε and all indices larger than n and m. An infinite sum is absolutely
convergent if the sum of |zn| converges. The usual criteria for absolute convergence can

7
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be carried over from real numbers when using again the absolute value.
Definitions of subsets, open sets, closed sets, etc. are carried over from manifolds by

using the absolute value of differences of complex numbers as a topology. Especially useful
will be the definition that a set is bounded if the limit of any convergent series inside the
set also belongs to the set. Also useful is the concept of a limit or (ac)cumulation point
z of a set, which here takes the form that for any arbitrarily small ε there exist a second
point zε in the same set such that

|z − zε| < ε.

Including all limit points into a set generates the bounded hull of the set. Moreover, if all
subsequences converging to the same limit as the full sequence are contained in a set, this
set is compact.

Together with the condition that a set is bounded if all elements of the set are bounded
the important statement is valid that any closed and bounded set is compact. These
concepts play an important role for the viability of statements on complex functions, as it
will be important on which kind of sets they have which properties.

Also necessary will be the implementation of (continous, oriented) curves or paths
C = z(t) in Cn, which map some (continous, oriented) real interval [t1, t2] into the com-
plex numbers. It will be important to differentiate between curves which do not cross
themselves, and those which do. The length of a curve is defined as

lC =

t2∫
t1

dt

∣∣∣∣dz(t)

dt

∣∣∣∣ ,
and thus by the usual integration. If this integral exists in the Riemannian sense and is
finite, the curve is called rectifiable. If z(t1) = z(t2) the curve is called closed. In the
following any oriented, closed path will be taken to be traversed in the mathematically
positive sense by convention. The interior of a closed curve are all points left to the closed
curve when traversing it in this sense. It should be noted that this is an implementation
of the paths in 2.4. At the moment, all curves are belonging to the trivial homotopy class,
and the complex plane is simple.

This concept is used to define two important features. A (sub)set G of C is also called
a patch. It is called connected if any two points in it can be connected by a curve, which
is entirely within G. It is called simply connected if the interior of any curve in G is also
contained in G. Note that a patch can be open, and thus not include its boundary. As
a consequence, any path in an open patch G cannot approach the boundary of G (which
does not belong to the open patch itself) arbitrarily close.

3.2 Holomorphic functions

A complex function can be considered to be decomposed as

f(z = x+ iy) = u(x, y) + iv(x, y), (3.1)
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and thus two functions of two variables. This will be a very useful decomposition for
many topics. This allows to define many properties of complex functions in terms of
real functions of two variables. E. g. (steady) continuity of the complex function is then
equivalent to both real functions being (steadily) continous in both arguments.

One interesting question is on differentiation of complex functions. Because complex
numbers do not have the usual concept of ordering, the usual definition of differentiation
does not work. Rather, the derivative of a complex function df/dz with respect to its
variable z at a fixed value of this variable Z is defined to be the unique quantity, which
obeys ∣∣∣∣f(z)− f(Z)

z − Z
− df

dz

∣∣∣∣
z=Z

∣∣∣∣ ≤ ε (3.2)

and taking the limit of ε to zero while taking |z − Z| to zero. If this is possible for some
range of values Z, the function is said to be differentiable on this range. If this is true for
the whole domain of definition of the function, the function is called differentiable.

This definition has the advantage to reduce to the usual definition for real functions
of real variables, if f(z) = u(x). Furthermore, the derivative of most complex functions
can be obtained by taking the results for real functions of real variables, and replace all
quantities by complex ones. This is more involved if the function depends on both z and
z∗. In this case, things become more subtle, and looking at the formulation (3.2) is often
necessary.

Investigating along these lines leads to the very important statement that if a func-
tion f(z) is continuously differentiable, this requires that for the form (3.1) the so-called
Cauchy-Riemann partial differential equations

∂xu(x, y) = ∂yv(x, y) (3.3)

∂yu(x, y) = −∂xv(x, y) (3.4)

are obeyed, where the derivatives need to be continous. Conversely, if the Cauchy-Riemann
partial differential equations are not fulfilled, the function will not be differentiable. This
will play an important role in the following. The proof follows from explicitly evaluating
(3.2) for the form (3.1).

This now yields the interesting result that the function f(z) = (z + z∗)/2 = <(z) is
actually not differentiable, as this explicitly violates (3.3-3.4). Conversely, this implies
that the condition (3.2) cannot be satisfied for any z. This can be seen by the fact that
the imaginary part in the denominator can be varied independently from the nominator,
leading to the contradiction. While this may seem at first surprising, as one often is used
to do calculations with complex numbers just as with ordinary numbers, there is a reason
for that. Effectively, differentiation of a complex function as if it would be a function of
a single variable implies that the approach to the point where the derivative should be
evaluated should be independent from the direction on how to approach it. That is a
relatively powerful constraint, and hence this is much harder to satisfy as if there is only
one direction, as is the case for real functions of real variables1.

1It is also not a coincidence that (3.3-3.4) are reminiscent of rotation or Hamilton’s equations. In these
cases lines within a higher-dimensional setting play a significant role as well.
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Because of the conditions (3.3-3.4), it is now possible to determine the derivative of
arbitrary complex functions obeying the Cauchy-Riemann differential equations in terms
of the derivatives of real functions of real variables as

dzf(z) = ∂xu+ i∂xv = −i(∂yu+ i∂yv).

Also, any function not obeying the Cauchy-Riemann differential equations cannot be dif-
ferentiated, and especially not in this way. Because these are special additional conditions,
being a differentiable complex function of a complex variable earned a special name, they
are called holomorphic2 . As will be seen being holomorphic entails a large number of con-
sequences. The downside is that being holomorphic is much more restrictive than being
differentiable for a real function of a real variable. Hence, much less functions fall into
this category. In physics, holomorphic functions appear quite often, but likewise being not
holomorphic can be a hallmark of non-trivial physics.

An important feature of holomorphic functions is that they cannot depend simultane-
ously on z and z∗, because this would violate immediately the Cauchy-Riemann differential
equations (3.3-3.4). This has far-reaching consequences.

If the component functions are twice continuously differentiable it follows from (3.3-3.4)
that

∂2xu+ ∂2yu = 0 (3.5)

∂2xv + ∂2yv = 0, (3.6)

i. e. the real and imaginary components of the function fulfill the so-called partial dif-
ferential equations of Laplace. Essentially, for every holomorphic function, u and v need
to fulfill Euclidean wave equations. Thus, holomorphic functions can only differ by har-
monic functions, i. e. functions fulfilling (3.5-3.6) which vanish at the boundaries, and by
the boundary conditions themselves. This again shows how highly restricted holomorphic
functions are.

Furthermore, any combination of holomorphic functions in a holomorphic way, i. e. by
differentiable operations, yields again holomorphic functions. This includes composition
and inversion. As a consequence, any polynomial and any rational function of a single
complex variable are holomorphic. Especially, this includes (convergent) polynomials of
the form

f(z) =
∑

ak(z − z0)k, (3.7)

with some fixed z0, i. e. polynomials of the same structure as obtained in Taylor expansions.
An important definition in this context is the radius of convergence ρ, which is the largest
value of |z − z0| for which (3.7) is convergent. If convergence is only obtained for z = z0,
which is guaranteed, the radius of convergence is zero. If the series converges for any value
of z, the radius of convergence is infinite. The radius of convergence plays an important
role in physics e. g. in the context of (thermodynamic) phases. It can be shown that the

2Note that the word ’analytic’ is also used, and is synonymous in the present context for holomorphic.
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radius of convergence can be obtained from the (complex) coefficients of (3.7), and is given
by

1

ρ
= lim

k→∞
sup|ak|

1
k ,

with the usual caveats for ρ being zero and infinite. It can be shown that the polynomial is
then a continous function within its radius of convergence. Furthermore, it follows that the
radius of convergence of derivatives of a polynomial is the same as the radius of convergence
of the original polynomial, or larger. Hence, they are infinitely often differentiable, and
their derivatives are obtained by deriving every term individually.

A special example is the complex exponential. Due to the Euler formula

ez = e<z (cos=z + i sin=z) ,

the complex exponential takes all its possible value within a finite strip of the imaginary
part of z, and is then periodically continued. It is useful for the following to define the
fundamental strip to be the strip satisfying −π < =z ≤ π. In this fundamental strip
the exponential function can be unambiguously inverted for z 6= 0, and takes actually all
values in C, except zero. This is a rather surprising insight: A proper subdomain of C is
mapped to (almost) the entirety of C by the exponential function. While it is not the only
function with this property, this neatly exemplifies the concept of infinities.

On the other hand, the inversion of the exponential is the logarithm, but it now becomes
a multivalued function, due to the periodicity of the exponential,

ln ez = z + 2kπi, (3.8)

for any integer number k. By definition, the principal value of the logarithm is given
by the case k = 0, i. e. where the result is in the fundamental strip. However, it is not
possible to obtain a value for <z ≤ 0. Thus, the principal value of the logarithm yields
the fundamental strip without the negative real axis (and zero).

It is useful to note that for |z| < 1 there is a series representation of the logarithm as

ln(1 + z) =
∑
i=1

(−1)k+1 z
k

k
.

The radius of convergence is thus arbitrarily close to one, but excluding one.

3.3 Cauchy’s integration formula

3.3.1 Integrals along curves

Defining an integral of a function of a complex variable is not entirely obvious, as, like for
differentials, it is not directly obvious what are the relevant quantities.
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One way is to define such integrals using the concept of curves. Given some function
f(z) and a curve z(t), say on an interval [0, 1], the integral can be defined as

z(1)∫
z(0)

f(z)dz = lim
n→∞

n∑
k

(z(tk)− z(tk−1))f(z(tκ)),

with tκ ∈ [tk, tk+1] arbitrary and the tk are a discretization of the parameter range, such
that in the limit the difference between any two consecutive values becomes arbitrarily
small. This is the most direct generalization of the usual Riemann integral. It can then
be proven, essentially as for ordinary Riemann integrals, that the resulting integral is
independent of the parametrization of the curve as well as on how the interval is split.

Furthermore, this allows to use substitution to rewrite the curve integral into an ordi-
nary integral as

z(t)∫
z(0)

f(z)dz =

1∫
0

f(z(t))
dz(t)

dz
dt, (3.9)

which can be turned into separate integrals for the real part and imaginary part of the
integrand. Note that this implies that the value changes sign if the curve is traversed in
opposite direction. Furthermore, the integral can be decomposed in a sum of integrals
over parts of the curve, provided the total curve is regained, without doubling, from the
individual curves of each term. Finally, if the function |f(z)| is bounded by a constant c,
then the integral is bounded by clC

The result will depend, in general, on the chosen curve. Consider e. g. the function
f(z) = z∗ and the two paths (1 + i)t and t2 + it. Both paths coincide for the initial and
final values z(0) and z(t). The results are∫ 1

0
(1− i)t× (1 + i)dt = 2

∫ 1

0
tdt = 1∫ 1

0
(t2 − it)× (2t+ i)dt =

∫ 1

0
(2t3 + 3it2 − t) = i,

which are indeed different.
Interestingly, there also exists functions, for which the result is indeed independent of

the curve. Consider f(z) = z. Then

z(1)∫
z(0)

z
dz

dt
dt =

z(1)∫
z(0)

1

2

dz2

dz

dz

dt
dt =

1

2

z(1)∫
z(0)

dz2 =
1

2

(
z(1)2 − z(0)2

)
,

in which it was used that the derivative was known. Thus, it appears to be an interesting
question, under which conditions such a curve integral becomes independent of the path.

It becomes even more interesting when considering the case f(z) = (z − z0)m with m
integer. Take as a path a circle around z0, C(t) = z0 + r exp(it). This yields∫

C

(z − z0)mdt =

2π∫
0

rmeimt(ireit) = irm+1

2π∫
0

ei(m+1)tdt =

{
2πi for m = −1

0 otherwise
. (3.10)
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Thus, the integral vanishes except if the function behaves like 1/z at z0. This is in so far
as surprising as for m < −1 it again vanishes, even though the function becomes more
singular. Compared to the case of a real function 1/x, this is odd. Also, the result is
independent of both z0 and r, and thus the same for any such curves. This is also odd,
and hints to the fact that global structures of the curves are more important than its
details. This is reminiscent of the homotopy classes, and will indeed be related to it.

3.3.2 Closed curves and holomorphic functions

It turns out that (3.10) is actually not an oddity, but is a particular example of a generic
statement about integration of complex functions with singularities along closed curves.
This is the celebrated theorem of Cauchy.

The first step is that for a holomorphic function f(z) it follows that∫
C1

f(z)dz =

∫
C2

f(z)dz, (3.11)

provided the two curves have the same starting point and end point. This implies for the
integral of a holomorphic function inside a patch along any closed curve bounding this
patch ∫

Cclosed

f(z)dz = 0. (3.12)

As the former version follows from cutting the curve in the second version, it suffices to
prove this one.

As any patch, which is enclosed by the curve, can be approximated arbitrarily well due
to triangulation by triangles, it is sufficient to discuss the situation if the curve encloses
a triangle. Then any other case can be build up from there by triangulation3. Given any
triangle, it can be decomposed into more triangles. For the following, it is convenient to
decompose it into four triangles enclosed by curves Ci. Selecting the inner boundaries such
that they are traversed in each direction twice with opposite orientation, the union of the
four curves Ci is then C, and the total integral, due to the composition rules, obeys∫

C

f(z)dz =
∑
i

∫
Ci

f(z)dz.

This implies ∣∣∣∣∣∣
∫
C

f(z)dz

∣∣∣∣∣∣ ≤ 4 max
i

∣∣∣∣∣∣
∫
Ci

f(z)dz

∣∣∣∣∣∣ (3.13)

as an upper bound to the integral. In particular, the triangles can always be chosen such
that they have equal curve length, and thus lCi = lC/2.

3Fractal boundaries make things cumbersome, but can be done.
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This procedure can be repeated, by deconstructing always the triangle identified by the
maximization in (3.13) again into four more. In this procedure, there will always remain
at least one point in the patch, call it z0. Because f(z) is holomorphic, it is necessarily
differentiable in z0, and thus in some patch including z0 follows that there exists some
arbitrarily small ε such that

|f(z)− f(z0)− (z − z0)dzf(z0)| ≤ ε|z − z0|

is true for all z in the remaining triangle. If it is not yet true, sufficient further subdivisions
of the triangle will make it so. Especially, this implies that there is some bounded function
|η| ≤ ε such that

f(z) = f(z0) + (z − z0)dzf(z0) + η(z − z0),

which is not coincidentally similar to a Taylor series.
By continuing the partitioning of the triangles sufficiently often to a level k, this implies

that for the selected triangle bounded by the curve Ck∫
Ck

f(z)dz = f(z0)

∫
Ck

dz + dzf(z0)

∫
Ck

(z − z0)dz +

∫
Ck

η(z − z0)dz

follows. The first three terms can be calculated explicitly, and all yield zero, according to
(3.10). Hence, ∣∣∣∣∣∣

∫
Ck

f(z)dz

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Ck

η(z − z0)dz

∣∣∣∣∣∣ ≤ ε
lCk
2

= ε
lC

2× 4k

But this implies ∣∣∣∣∣∣
∫
C

f(z)dz

∣∣∣∣∣∣ ≤ 4k

∣∣∣∣∣∣
∫
Ck

f(z)dz

∣∣∣∣∣∣ ≤ ε

2
lC

Since lC is fixed, and ε can be made arbitrarily small, this implies that the absolute value of
the integral is bounded from above with an arbitrarily small number, and thus the integral
indeed vanishes, as claimed. Note that (3.10) is not in contradiction to this. 1/(z − z0)
is not holomorphic in z0, and thus the proof does not apply. Conversely, (z − z0)

m<−1

may also be not holomorphic in z0, but the statement does not exclude the contrary, that
integrals may vanish along a closed curve even if the function to be integrated is not
holomorphic.

An interesting consequence is the following. Consider now a patch, which is not
bounded by a single curve, but two disjoint curves C1 and C2, where one is fully con-
tained in the other, and traversed in the opposite direction. E. g. a ring-like patch with
a whole in the middle is of this type. It is then possible to create two new curves C ′ and
C ′′, by inserting two connecting pieces between both curves Ca and Cb in the points a and
b at the outer curves joining the inner curve at points c and d, which are traversed in
opposite directions. Because of (3.11), this can be used to separate the original patch into
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two patches, each bounded by a single curve, yielding

0 =

∫
C′

f(z)dz =

 ∫
C1:a→b

+

∫
Ca:b→c

+

∫
C2:c→d

+

∫
Cb:d→a

 f(z)dz (3.14)

0 =

∫
C′′

f(z)dz =

 ∫
C1:b→a

−
∫

Ca:b→c

+

∫
C2:c→d

−
∫

Cb:d→a

 f(z)dz (3.15)

where the integral again vanishes by virtue of (3.12), since the function is holomorphic on
all involved patches. This is a first example of how deformations of curves maintain the
integration result for holomorphic functions. Even more, this implies, by adding (3.14)
and (3.15), ∫

C1

f(z)dz =

∫
C2

f(z)dz

and thus it does not matter which of the two curves are used to calculate the result. This
implies the interesting result that the two curve integrals, which are traversing their curves
in opposite order, are actually not very sensitive to what lies in between or inside of both.
Note that it was not necessary that f(z) is holomorphic inside C2.

This statement can be extended to the situation that there are several closed curves
Ci, which are not intersecting, and are all contained within one curve C, but not within
each other. In analogy it can then be shown that∫

C

f(z)dz =
∑
i

∫
Ci

f(z)dz.

Again, it is sufficient that f(z) is holomorphic only in the patch defined by all curves,
and on the curves themselves. Cases, in which there are curves within curves can then be
reduced recursively in this way.

3.3.3 Integration and differentiation

In similarity to the main theorem of integration and differentiation of real functions, a
similar statement holds for functions of complex variables. However, the curve-dependence
yields both a constraint and an additional consequence.

Given a continous function f(z) in some (singly-connected) patch, for which any curve
integral connecting two points inside the patch does not depend on the curve, there is a
holomorphic primitive F (z) satisfying

F (z) =

∫
Cz0→z

f(z′)dz′ (3.16)

f(z) =
dF

dz
. (3.17)
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If the integral would be curve-dependent, the resulting primitive would not be unique in
satisfying the derivative condition. A dependence on z0 is giving, as usual, only an additive
constant for the primitive, which does not alter its derivative.

This can be seen as follow. The definition for derivatives of holomorphic functions (3.2)
implies

lim
z→z′

∣∣∣∣F (z)− F (z′)

z − z′
− f(z)

∣∣∣∣ = 0,

where the claim (3.17) has already been inserted. Because of the required curve-independence,
the curve Cz0→z can be decomposed into two consecutive curves Cz0→z′ and Cz′→z. Because
of the arbitrariness of the path, the second one can be chosen to be a straight line4, with
lCz→z′ = |z − z′|. Then

lim
z→z′

∣∣∣∣∣
∫
Cz0→z′

f(z′′)dz′′ −
∫
Cz′→z

f(z′′)dz′′

z − z′
− f(z)

∣∣∣∣∣
= lim

z→z′

∣∣∣∣∣
∫
Cz′→z

f(z′′)dz′′

z − z′
− f(z)

∣∣∣∣∣ = lim
z→z′

∣∣∣∣∣f(z)
∫
Cz′→z

dz′′

z − z′
− f(z)

∣∣∣∣∣
= lim

z→z′

∣∣∣∣f(z)(z − z′)
z − z′

− f(z)

∣∣∣∣ = 0.

In step two it was used that the function is bounded, but because of the limit can be
bounded by the value at coincidence. In the third step the absolute value for the length
of the curve can be dropped, as the orientation of the curve ensures that it has the same
sign as the numerator. This proofs the claimed definition of the primitive.

3.3.4 Cauchy’s theorem

The situation with m = −1 in (3.10) is, as indicated, actually only a special case of a much
more general statement, Cauchy’s theorem. It states that for any closed curve C and a
point z in the interior of the curve inside a patch in which a function f(z) is holomorphic

f(z) =
1

2πi

∫
C

f(z′)

z′ − z
dz′ (3.18)

holds. This statement is often cast in the form that the value of the integral of the
integrand f(z′)/(z′ − z) takes the value of the so-called residuum f(z) at the position of
the pole z, when integrated around a curve containing the pole. Note that if the pole z
is not in the interior of the curve, the complete integrand is holomorphic, and thus the
integral then vanishes.

To proof this statement, note that because of (3.10)

1

2πi

∫
C

f(z′)

z′ − z
dz′ =

1

2πi

∫
C

f(z)

z′ − z
dz′ +

1

2πi

∫
C

f(z′)− f(z)

z′ − z
dz′ (3.19)

4If the patch has a wedge here, this requires more steps, but works analogously.
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holds with

f(z) =
1

2πi

∫
C

f(z)

z′ − z
dz′ (3.20)

being a very involved way of writing unity. Because it was shown in section 3.3.2 that the
integration path can be deformed arbitrarily as long as it does not cross the singularity
in z, it is possible to find a circular curve Cρ of radius ρ, which lies entirely in C, and is
centered around z,

1

2πi

∫
C

f(z′)− f(z)

z′ − z
dz′ =

1

2πi

∫
Cρ

f(z′)− f(z)

z′ − z
dz′.

Because f(z) is holomorphic and thus bounded, this radius can be chosen such that |f(z)−
f(z′)| becomes smaller than any desired ε. Thus∣∣∣∣∣∣∣

1

2πi

∫
Cρ

f(z′)− f(z)

z′ − z
dz′

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣

1

2πi

∫
Cρ

ε

ρ
dz′

∣∣∣∣∣∣∣ ≤
1

2π

ε2πρ

ρ
≤ ε, (3.21)

and thus this integral vanishes. Inserting this into (3.19) and using (3.20) proofs Cauchy’s
theorem (3.18).

From this theorem a number of further useful statements can be derived. First, any
continous function φ(z) can be used to create a holomorphic function f(z) by an integration
over an arbitrary closed curve C around some point z as

f(z) =
1

2πi

∫
C

φ(z′)

z′ − z
dz′. (3.22)

The existence of this functions follows from the definition of the curve integration. To
show that it is holomorphic it is useful to construct its derivative explicitly

df

dz
=

1

2πi

∫
C

φ(z′)

(z′ − z)2
dz′,

which follows if differentiation and integration can be exchanged. The proof follows essen-
tially the same steps as before, and will be here omitted. As a consequence, also

dpf

dzp
=

p!

2πi

∫
C

φ(z′)

(z′ − z)p+1
dz′, (3.23)

which follows by complete induction.
Combining this statement and (3.18) implies that for any holomorphic function its pth

derivative is given by
dpf

dzp
=

p!

2πi

∫
C

f(z′)

(z′ − z)p+1
dz′, (3.24)
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if the point z is contained in the interior of the curve C, which needs to be entirely within
the patch in which f(z) is holomorphic. This therefore implies that a continous function
φ in (3.22) will reproduce itself, as well as generate all its derivatives by (3.23).

Finally, the so-called theorem of Morera states that holomorphy of f(z) is equivalent
to the statement that ∫

C

f(z)dz = 0

for any arbitrary closed curve inside the patch where f(z) is holomorphic. This follows
as the curve can then be split arbitrarily into two, defining a continous primitive F (z) of
f(z). Because the result is path-independent, F (z) is holomorphic, and thus infinitely often
differentiable by (3.24). But then, so is its first derivative, and thus f(z) is holomorphic
as well.
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Singularities

It has been visible that holomorphic functions are highly constrained, not only concerning
their curve integrals, but also by the fact that they need to be infinitely often differentiable,
and their derivatives are linked by Cauchy’s theorem and its consequences very tightly to
its original form. These information is enough to make very strong statements on series
representations of holomorphic functions. In turn, this allows to make powerful statements
about the singularity structure of complex functions.

4.1 Series in complex variables

It has already been shown in section 3.3.2 that any series within its radius of convergence
defines a holomorphic function, which after section 3.3.4 then has derivatives of arbitrary
high order.

As a consequence, any convergent polynomial is a holomorphic function, and its integral
over all closed curves in its radius of convergence vanishes. Note that because all uniformly
convergent series define a continous function such series can also be used by (3.22) to
define a holomorphic function. Furthermore, there are important statements about such
polynomials when it comes to the exchange of the (infinite) summation and integration
and differentiation.

The first is that for any uniformly convergent series of some holomorphic functions fk,
not necessarily polynomials, ∫

C

∑
k

fkdz =
∑
k

∫
C

fkdz (4.1)

holds, i. e. integration and summation can be freely exchanged. This does not hold gen-
erally for series of functions, as counter examples show. (4.1) follows from the fact that
any subseries of convergent series can be bounded from a above by an arbitrarily small
constant from a large enough index onward, due to the boundedness. As a consequence,
for any polynomial ∫

C

∑
k

ak(z − z0)kdz =
∑
k

ak

∫
C

(z − z0)kdz.
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Furthermore
df

dz
=
∑
k

dfk
dz
.

To show that, use (3.24) for p = 1. Using then (4.1) and once more using (3.24) to again
exchange the order is sufficient. This is, of course, only true if the derivative of the sum is
still holomorphic. This can be shown by the theorem of Morera in section 3.3.4 and once
more (4.1). Thus, for any polynomial (or series of holomorphic functions) integration and
differentiation can be exchanged with the summation.

This implies now the very far-reaching statement that any holomorphic function can
be expanded in a Taylor series. To be precise, if the function f is holomorphic in the patch
G, then for any z0 ∈ G there exists a Taylor series such that

f(z) =
∑
k

az0k (z − z0)k

az0k =
1

k!

dkf

dzk

∣∣∣∣
z=z0

,

and the radius of convergence ρ(z0) obeys ρ(z0) > 0. In particular, this implies that the
series expansion is unique for every z0, and the whole patch G can be covered by discs
of finite radii such that the function can be expanded everywhere. Note that this may
require for different values of z0 different Taylor expansions may be needed.

To proof this, take as the curves Cρ(z0) a circle on the edge of the corresponding discs.
Then, by (3.23),

∑
k

1

n!

df

dz

∣∣∣∣
z=z0

(z − z0)k =
∑
k

1

2πi

 ∫
Cρ(z0)

f(z′)

(z′ − z0)k+1
dz′

 (z − z0)k

=
1

2πi

∫
Cρ(z0)

f(z′)

(z′ − z0)
dz′ = f(z)

where it has been used that

1

z′ − z
=
∑
k

1

(z′ − z0)n+1
(z − z0)n (4.2)

is a suitable Taylor series on the curve, as the disc has a finite radius, and thus z0 is safely
inside the interior of the curve, and z 6= z′.

4.2 Properties of series and analytic continuation

A practically very interesting statement is that to make sure two series expansion around
the same point with the same radius of convergence are identical not only if they have the
same coefficients, but it is already sufficient that they agree on an infinite number of points.
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Thus, this implies then that they agree on all points within the radius of convergence. As
a consequence, if they agree on an infinite number of points it follows that their coefficients
have to agree. This can be proven by induction, which allows to establish agreement power
by power.

This has a further consequence, the double-series theorem of Weierstraß, which plays
an important role when doing expansions in physics. It is possible to define a double series
starting with convergent sums

fn(z) =
∑
k

ank(z − z0)k.

All of these are holomorphic. If

f(z) =
∑
n

fn(z)

is uniformly convergent, it agrees with

f(z) =
∑
k

(∑
n

ank

)
(z − z0)k,

with the same radius of convergence. Thus, this statement is equivalent to saying that
both infinite summations can be exchanged. It is this feature which is relevant in physics,
as it allows to chose the way how to expand arbitrarily. This can again be proven by
induction.

Taking these statements together with the result of section 4.1 that every holomorphic
function can be written as a series, this has a very far reaching consequence, the identity
theorem: If two holomorphic function agree on a infinite number of points near a culmina-
tion point z0, then they are identical on the whole patch in which they are holomorphic,
and thus the patch is necessarily also identical.

This trivially follows for the radius of convergence of the, necessarily existing, series
expansion of both functions around z0. The non-trivial part is now to extend it to the
whole patch, and thus possibly beyond the radius of convergence of the series at z0.

The proof proceeds as follows. For any point z inside the patch, define a curve Cz0→z.
Then choose a point along this curve ζ which is still inside the radius of convergence for
the expansion at z0. For the function to be holomorphic in the patch requires that the
radius of convergence is non-vanishing if expanding the function at the point ζ, if the
original expansion is not valid up to the boundary of the disc. In the latter case nothing
would have to be done. Thus, there are now two overlapping discs. An expansion at
ζ is now possible. But this expansion will have an infinite number of points on which
the expansion in z0 and ζ agree for both functions, due to identical series expansion at
z0, as there are an infinite number of points within the radius of convergence around ζ
overlapping with the first disc. Thus, they need to agree again in the new disc. Repeating
this procedure, the whole curve, and ultimately all points in the patch can be covered
by overlapping discs, thus establishing the identity of both functions. Building such a
chain of discs is also known as analytic continuation. It is particularly useful to extract
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information about a function which is originally known only in some patch, but could be
evaluated in a different (series) representation elsewhere more easily.

Consider as an example

f(z) =
∑

zn,

with a radius of a convergence |z| < 1. The sum can be explicitly evaluated within the
radius of convergence to give

f(z) =
1

1− z
. (4.3)

To find an analytic continuation beyond |z| < 1, a function is required, which, at least for
some small patch for |z| < 1 yields (4.3). Since

fc(z) =
1

1− z
=

3

5

1

1− 3
5

(
z + 2

3

)
holds for |z+2/3| < 5/3, this function has the required property. This is also immediately
seen from its series expansion

fc(z) =
3

5

∑(
3

5

(
z +

2

3

))n
=
∑(

3

5

)n+1(
z +

2

3

)n
.

Thus, fc and f have some range, where they coincide, but extend each other beyond.
Thus, fc analytically continues f beyond |z| = 1. In fact, the function (4.3) can in this
way be analytically continued to the whole complex plane, except, of course, at the pole.
It should be noted that, in a sense, analytic continuation is an implementation of the
transition functions of section 2.1.

From this follows immediately that any function, which takes the same value on an
infinite set of points around a cumulation point is necessarily the constant function of this
value. The reverse is then necessarily also true that any non-constant function must take
at least two different values on an infinite number of points around any cumulation point.

Moreover, by the way how derivatives are constructed, this implies that any functions,
which agree for the function value as well as for all derivatives in a single point are nec-
essarily identical. This implies local information imply global information. This is one of
the reasons why holomorphism is on the one hand a powerful tool, but on the other hand
also highly constraining.

It can also be used to guarantee the existence of a series expansion of some functions
with a singularity. If a function g(z) can be written as

g(z) =
f(z)− a
(z − z0)κ

(4.4)

where f(z) is a suitable holomorphic function satisfying f(z0) = a, but not constant, and
κ is a positive integer. Then g(z) can be expanded in a power series around z0 with a
non-zero radius of convergence as

g(z) =
∑

ak(z − z0)k.
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The suitable holomorphic function will need to have a series expansion

f(z) = a+
∑
k≥κ

ak(z − z0)k,

and inserting this into (4.4) proofs the claim.
Another unexpected feature of holomorphic functions is that for a non-constant holo-

morphic function f the function |f(z)| cannot have a (local) maximum. The proof follows
essentially from

|f(z)| =
∣∣a0 + aκ(z − z0)κ +O

(
(z − z0)κ+1

)∣∣ ,
which will be true for z sufficiently close to z0. Rewriting this as∣∣|a0|earg a0 + |aκ||(z − z0)|κearg aκ+κ arg(z−z0) +O

(
(z − z0)κ+1

)∣∣
it follows that there is some z for which

arg(aκ) + κ arg(z − z0) = arg a0,

holds, irrespective of the value of |z − z0|. Because of the convergence of the series, there
is some z for which the remainder can be bounded by |aκ||z − z0|κ/2. Thus at worst the
last term can be negative, and thus

|f(z)| ≥
∣∣∣∣earg a0 (|a0|+ |aκ||z − z0|κ2

)∣∣∣∣ ≥ |a0| = |f(z0)|,

completing the proof. Thus, for any holomorphic function there is at any point always
a direction in which its absolute value grows. It was decisive here that the series only
depends on z, as this allowed to find such a direction. If it would have depended on z and
z∗, this would not have been possible.

4.3 Laurent series

Most of the statements so far required the functions to be holomorphic throughout some
patch. However, in many cases in physics functions are only holomorphic on patches, which
have holes. The simplest example for such a case are two concentric discs of different radii
at some point z0, with a function f(z) being only holomorphic outside their union and
inside the larger disc, i. e. on a ring between their radii r1 > r2. This relatively special
geometry can be relaxed for the larger circle, which can be some patch, which encloses the
inner circle at least for a radius of size r1, and may extend to infinity.

In such a case the preconditions for having a Taylor series no longer holds. It is,
however, possible then to expand the holomorphic function into a Laurent series

f(z) =
∞∑

k=−∞

ak(z − z0)k. (4.5)
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To show this, create two concentric ring paths C1 and C2 in the ring with opposite directions,
connecting them at two points by bridges and let z lie in one of the half rings. This yields
two paths enclosing half rings, one of them containing z, Cz, and the other, C, does not.
Because of section 3.3.4 follows

1

2πi

∫
Cz

f(z′)

z′ − z
dz′ = f(z)

and
1

2πi

∫
C

f(z′)

z′ − z
dz′ = 0.

Adding both yields

f(z) =
1

2πi

∫
C1

−
∫
C2

 f(z′)

z − z′
dz′

where for definiteness C2 is the inner ring. Using twice (4.2), once for z and once for z′,
yields

f(z) =
1

2πi

∑
k>0

∫
C1

f(z′)(z − z0)k

(z′ − z0)k+1
dz′ −

∫
C2

f(z′)(z′ − z0)k

(z − z0)k+1
dz′

 .

Defining

ak≥0 =
1

2πi

∫
C1

f(z′)

(z′ − z0)k+1
dz′

ak<0 = − 1

2πi

∫
C2

f(z′)(z′ − z0)kdz′ (4.6)

identifies the Laurent series and even provides a constructive way of obtaining the coeffi-
cients. Note that, because f(z) is holomorphic inside the ring, the result will necessarily
not depend on the details of the path.

Obviously, the subseries with non-negative exponents form a usual holomorphic func-
tion, which can be written as

g(z) =
1

2πi

∫
C1

f(z′)

z′ − z
dz′,

very much in the same way as in section 3.3.4 already discussed. It is, however, quite
useful to notice that also the series with negative exponents can be rewritten. For this,
perform the substitution

ζ =
1

z − z0
.
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This substitution is a first example of a conformal map, to be discussed in more detail in
section 4.12. This creates a power series in ζ. It is, by construction, convergent in the
ring. Because

φ(ζ) = f(z) = f

(
z0 +

1

ζ

)
φ is then necessarily holomorphic on the ring. Especially,∑

k>0

a−kζ
k =

1

2πi

∫
C′

φ(ζ ′)

ζ ′ − ζ
dζ

defines a holomorphic function, where the curve is defined by |ζ ′| = |1/(ζ − z0)| = 1/r2
where r2 was the radius of the curve C2. If that one was not circular, it is necessary to
modify the condition correspondingly. Because of the possibility to rewrite both parts
of the series as holomorphic functions it follows that the Laurent series of a function is
unique.

As an example, consider the function

f(z) =
1

(z − 1)(z − 2)
,

which is holomorphic for 1 < |z| < 2. Using z0 = 0 and the, by now, standard approach
of rewriting

1

1− z
=

1

z

1

1− 1
z

=
1

z

∑
k>0

z−k

yields immediately the Laurent series

f(z) = −1

2
−
∑
k>0

(
zk

2k+1
+

1

zk

)
.

This says nothing about the expansion of f(z) inside or outside the ring. Inside, it is
a normal holomorphic function, needing only a Taylor series, while outside it is on the
outside area again a holomorphic function, as discussed in section 3.3.4 for functions with
a hole in their patch of holomorphy.

Note, however, that the Laurent series changes when a different point z0 is used for the
expansion, though it of course agrees in its final value at every point. Take, e. g. z0 = i
for the same function. This yields as Laurent series in the same ring

f(z) = − 1

2− i
−
∑
k>0

(
(z − i)k

(2− i)k+1
+

(1− i)k−1

(z − i)k

)
.

Though some resemblance is visible, it is by far not obvious that this will yield the same
results. Note, however, that here the condition is

√
2 < |z − i| <

√
5 to stay inside the

ring.
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4.4 Isolated poles

If a function f(z) is holomorphic within a certain patch except at some point z0, then z0 is
called an isolated singularity. If not, that is the function f(z) is holomorphic everywhere,
it is called an entire function.

Because the holomorphic function can be expanded in a Laurent series everywhere else
in the patch this necessarily implies that at least one ak for k < 0 needs to be non-zero.
Isolated singularities are called a pole of order k if there is some k > 0 such that a−i = 0
for all i > k, i. e. the Laurent series does not extend to negative infinity but only until
−k. If there are an infinite number of ak<0 6= 0 it is called an essential singularity. Note
that no order can be assigned to an essential singularity because otherwise only a finite
number of the ak<0 would not vanish.

That this is close to the concept of singularities for real functions follows from the fact
that |f(z)| will become arbitrarily large when approaching z0. More specifically, for any γ
there is some z with |z−z0| < δ such that |f(z)| > γ, and δ is the radius of a disc centered
at z0 in which f(z) is holomorphic. Note that this does not necessarily imply that |f(z)|
is monotonically increasing from all directions towards z0. This can be proven using the
Laurent series, as some of its terms will necessarily diverge faster than all terms of lower
order and the absolute value will bound the function by it.

Consider as an example of these concepts a rational function

f(z) =
pm(z)

qn(z)
,

where pm and qn are polynomials of order m and n, respectively. This function has
potentially isolated poles at the zeros of qn. Such a function, a function with a finite
number of isolated poles, is called a meromorphic function. The name is also given to any
function which is holomorphic except at isolated poles.

If z0 is a pole of order k0 ≤ n, then

qn(z) = (z − z0)k0rn−k0(z)

where rn−k0 is a polynomial without zero in z0 of order n−k0. Then pm/rn−k0 is holomor-
phic in a patch around z0 in which no further zeros of qn are located, which by assumption
exists, and can thus be rewritten as a Taylor series with some new coefficients ck, and thus

f(z) =
∑
k=−k0

ck+k0(z − z0)k,

making the existence of a pole of order k0 explicitly in this form.
Essential singularities are a quite different story. Probably the most (in)famous essen-

tial singularity in physics is that of the function e1/z at z0 = 0, which has the Laurent
series

e
1
z =

∑
k≤0

1

k!zk
,

which therefore has no terms with positive coefficients, but is holomorphic otherwise.
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A surprising, but technically involved to prove, consequence for essential singularities
is the theorem of Casorati and Weierstraß. It states that if a function has an essential
singularity at z0, the function f(z) approaches every possible number c arbitrarily close
within a disc around z0. Thus, for any c there is a z with |z−z0| < δ such that |f(z)−c| < ε
arbitrarily small.

The fact that holomorphic functions with isolated poles can be expanded in Taylor
series times a singular prefactor has far-reaching consequences in physics. Especially, a
perturbative series will converge if, up to isolated poles, the object to be expanded is a
holomorphic function. If not, any perturbative expansion may at most be a quantitative
good approximation, but will fail qualitatively to reproduce the original object, which
thus requires non-perturbative methods. Due to the appearance of essential singularities
in many quantities in physics, this implies that perturbative series are often at best an
approximation, and can be completely misleading. Analyzing the holomorphy of a quantity
in question, especially if statements using the Cauchy-Riemann differential equation (3.3-
3.4) can be made, is therefore often an important step.

4.5 Residua

Given a function f(z) with an isolated singularity of order 1 at z0, the definition (4.6)
implies for a closed curve C within a suitable patch of holomorphy of the function enclosing
the isolated singularity

rf (z0) = a−1 =
1

2πi

∫
C

f(z)dz = (z − z0)f(z)|z=z0 .

In this context, a−1 is called the residuum rf (z0) of f(z) at z0.
This can be generalized. Consider some patch in which a function is holomorphic

except at a set zi of isolated poles of order one. Given a closed curve C enclosing all poles
it follows that

1

2πi

∫
C

f(z)dz =
1

2πi

∑
i

∫
Ci

f(z)dz =
∑
i

rf (zi), (4.7)

where the curves Ci enclose only one of the poles. This follows directly from combining
(4.6) and section 3.3.4. Note that the details of the paths do not matter. However, to
determine the residua f(zi) it is necessary to obtain either the Laurent series for each of
the poles, or at least compute (4.6).

There is a particular useful case if f(z) is holomorphic in the whole complex plane,
except for isolated poles, and decays ’quickly’ enough when |z| → ∞ such that for a curve
C∞ running around the complex plane ’at infinity’∫

C∞

f(z)dz = 0

holds. This implies that the sum of residua is necessarily zero. This allows to determine
one of the residua by the other ones. The path independence also allows another trick,
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often useful in physics. If a function is holomorphic on the whole complex plane any
integral over a closed curve vanishes. If there are isolated poles, the integral over closed
curves can still be deformed arbitrarily, as long as an isolated pole does not pass through
it, and it is fully determined by (4.7). This often allows to solve an integral by deforming
its path such that it becomes ’simple’ enough to be done explicitly.

Consider as an example again

f(z) =
1

(z − 1)(z − 2)

which is holomorphic except for the isolated poles at z = 1 and z = 2. Its Laurent series
at both poles can be obtained by rewriting,

f(z) =
1

z − 1

−1

1− (z − 1)
= −

∑
k=−1

(z − 1)k

f(z) =
1

z − 2

1

1 + (z − 2)
=
∑
k=−1

(−1)k+1(z − 2)k.

Thus, the residua are rf (1) = −1 and rf (2) = 1. Any curve enclosing both poles thus
vanish, as rf (1) + rf (2) = 0. This could have conversely be predicting by noticing that for
|z| → ∞ f(z) ∼ 1/z2, and thus the integral over C∞ necessarily vanishes.

4.6 Zeros of polynomials

While the statement (4.7) is useful to perform integrals, it can also be used to derive other
helpful results. Especially, it is useful to make statements about the zeros of functions.

Given any holomorphic function f(z). If it has zeros zi of order ki within its patch of
holomorphy then for a curve C enclosing them all follows

1

2πi

∫
C

df(z)
dz

f(z)
dz =

∑
i

ki. (4.8)

To see this, note that around any of the zi the function f(z) can be written as

f(z) = (z − zi)kiqi(z)

where the qi are polynomials which are non-vanishing at the zi. Then the integral kernel
in the vicinity of the zi can be rewritten as

df(z)
dz

f(z)
=

ki
z − zi

+
dqi(z)
dz

qi(z)
(4.9)

which therefore has an isolated pole of order one at zi by construction. Thus, the integrand
has exactly the form suitable for (4.7) with residua ki. Thus (4.8) follows.
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The same argument can be done to show that if the function has in addition poles of
order κi within the enclosing curve then

1

2πi

∫
C

df(z)
dz

f(z)
dz =

∑
i

ki −
∑
i

κi.

Especially, in the absence of zeros, this counts the sum of the order of the poles.
This approach also allows to proof that any polynomial f(z) of a complex variable has

as many zeros as its order is, counting multiplicities. Any polynomial of finite order is
necessarily holomorphic in the whole complex plane. For any zero with |zi| > 1, it follows
that

zi = −
n−1∑
k=0

ak

anz
n−1−k
i

by solving the condition of being a zero. This implies

|zi| ≤
n−1∑
k=0

∣∣∣∣ ak

anz
n−1−k
i

∣∣∣∣ ≤ n−1∑
k=0

∣∣∣∣akan
∣∣∣∣

and thus all zeros can be enclosed by a curve of sufficiently large radius, which can be set
to one if all satisfy |zi| < 1. Since it is a finite polynomial, it is holomorphic in the whole
complex plane. Thus, it can be expanded for every zero around the same point1 z0 = 0.
Then use

f(z) = znq(z)

df

dz
= nzn−1q(z) + zn

dq(z)

dz
df(z)
dz

f(z)
=

nzn−1q(z) + zn dq(z)
dz

znq(z)
=
n

z
+

dq(z)
dz

q(z)

where q(z) is some polynomial. The second term has no poles close to zero, and can
thus be expanded in a Taylor series around zero. But then the curve can be deformed
sufficiently to use (4.8), yielding the claim.

This also implies that the number of zeros of a real polynomial is bounded by its order.
After all, it can always be extended to the complex plane, and then will have at most
as many zeros by the proof beforehand. However, no such simple statements exist to
find the number of real zeros, unfortunately. Real polynomials are harder than complex
polynomials.

4.7 Cuts and Riemann sheets

A particular specialty arises in cases where singularities are not isolated. To discuss them,
it is useful to introduce the concept of Riemann sheets. At first sight, Riemann sheets are

1If z0 = 0 should be a zero this can always be remedied by a shift of z.
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just copies of the complex plane. In fact, they are a bookkeeping device. It is first useful
to address how they serve for multivalued function.

Consider the nth root of a complex number z of unit magnitude |z| = 1,

z
1
n = e

i arg z
n = e

i(arg z+2kπ)
n

where k is an integer number between 0 and n − 1. Thus, there are n possible solutions.
The idea of Riemann sheets is now that k labels the Riemann sheet, and thus the root has a
unique solution on each Riemann sheet. Considering this now as a function of arg z+2kπ,
this can be viewed as a function which performs a full circle on a given Riemann sheet,
then jumps to the next Riemann sheet and so on until after the nth revolution the original
Riemann sheet is reached again. This creates a new space, on which the nth root has
actually a unique solution. This space can be considered to either have two continous and
one discrete direction and is flat, or just a continous space but not flat. In the later case,
the total set of Riemann sheets is the Riemann surface. Only on the Riemann surface the
nth root becomes a single-valued, and thus invertible, function.

The actual geometric structure of the Riemann surface leads to the idea of a cut.
Consider for simplicity the 2nd root of a general complex number z. The result can be
parametrized as √

z = +
√
|z| (cos(2t) + i sin(2t)) .

This is hence a different parametrization than the usual real part and imaginary part or
absolute value and argument. It is implicitly defined that at t = π the solution changes
the Riemann sheet. Thus, the Riemann surface is parametrized by a radius and an angle
t, ranging from 0 to 2π, but each sheet is covered by only one of the half-intervals. The
Riemann surface can thus be considered a manifold, but with a highly non-trivial geometric
structure.

In fact, as this happens for all lengths |z|, this looks like the first Riemann sheet is cut
along the negative real axis, and the second Riemann sheet is cut as well, and glued to it
such that

√
z continuously moves on to the second sheet. It then moves again a full circle

on the second Riemann sheet. The other edges of the Riemann sheet are also glued, such
that the function can then move ’down’ again to the first Riemann sheet when t reaches
3π/2 and complete the path again to the real axis of the first sheet at t = 2π. While this
cannot be visualized in three dimensions without the intersection of the Riemann sheets,
no such intersection actually exists. On this Riemann surface the function is single-valued,
as desired. Note that the Riemann surface depends on the function. In contrast to the
complex plane it is not an entity existing in the same way for all functions. Rather,
this should be understood as that for any multi-valued function of a complex variable a
manifold exists, in which it is single-valued.

The edges where the Riemann sheets are glued together to form the Riemann surface
is called the cut of the function. A cut has necessarily a starting point and an endpoint,
in the present case at z = 0 and at z =∞. Functions can have multiple cuts. The points
where a cut starts or ends are also called branching points. It should be noted that while
the Riemann surface is unique, its disassembling in terms of sheets and cuts is not. The
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cut can be put everywhere, provided the function is multi-valued along it to allow for
switching Riemann sheets.

To see how this works, consider the function f(z) = 1 + ε exp(i arg(z)) with ε infinites-
imally small. It then follows that

|f | ≈ 1 + ε cos arg z

arg f ≈ ε sin arg z.

Making this now a multivalued function by taking the root yields∣∣∣√f
∣∣∣ =

√
|f |

arg
√
f =

1

2
arg f ≈ ε

2
sin arg z.

It is visible how the argument of
√
f goes twice around when the argument of z is going

around once. The branching point is indeed at z = 0 and at z =∞.
For practical purposes, it is useful to catalog the properties of a couple of standard

functions. Arguably most important is

f(z) = (z − z0)
m
n .

This function has n Riemann sheets with branching points starting at z = z0 to z = ∞.
If the exponent would be irrational, the number of Riemann sheets becomes infinite. As
an example where the second branching point is not at infinity, consider

f(z) =
√
z2 − 1 =

√
(z + 1)(z − 1)

In this case the cut is between the points z = ±1. If |z| > 1 the function is single-valued
again, as the sign always factors out. Note that the cuts are really arbitrary positioned,
as this is only used to introduce a tool to organize the multivaluedness. Thus, while it is
often standard that the cut runs from z = −1 to z = 1 along the real line, nothing prevents
one to have it run along a curve from z = −1 to i∞ and then back to z = 1. Choosing
a convenient cut is often key for making calculations accessible. Note that quite often
it is said colloquial that the path is deformed, like in the case of the curve-independent
integration in chapter 3, but something different happens here.

A particularly annoying case of a cut is the one of the logarithm (3.8). It has a cut
starting at zero, running to negative infinity, with a countable infinite number of sheets.
Here the additional complication arises that one of the branching points is simultaneously
also a singularity. Thus, forming curves following along the Riemann surface possibly
encompass this singularity multiple times, and this has to be taken into account. Trigono-
metric functions behave similarly. This can be seen explicitly by considering their inverse
functions, e. g.

sin−1 z = −i ln
(
iz ±

√
1− z2

)
= arg

(
iz ±

√
1− z2

)
+ 2kπ − i ln

∣∣∣iz ±√1− z2
∣∣∣ .

The same multivaluedness with integer k as for the logarithm is visible. Thus, there are
two cuts, starting from z = ±1 and running to ±∞.
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4.8 Cuts and integrals

It is in physics often useful to determine what happens when integrating a function with
a cut. Consider a holomorphic function f(z), except for a cut between two points z1 and
z2. Given any curve C, which not encloses the cut, it follows that∫

C

dzf(z) = 0.

Deform now this curve such that there are two curves. One, C1 encloses the cut at some
distance, and the second one C2 runs along the cut zc with an extension ε. Both curves
are connected by a line. This joining is traversed once in each direction, and thus will not
contribute to the integral. Thus∫

C

dzf(z) =

∫
C1

dzf(z) +

z2∫
z1

dzf(z + iε) +

z1∫
z2

dzf(z − iε) +O(ε)

and the remainder term are the pieces needed for connecting the two lines along the cut.
Taking the limit ε→ 0 yields∫

C1

dzf(z) = − lim
ε→0

 z2∫
z1

dzf(z + iε) +

z1∫
z2

dzf(z − iε)

 . (4.10)

Without cut, the right-hand side would be zero, because the values above and below the
cut would be arbitrarily close, due to continuity. Because of the cut, this is no longer
true, as these values can be arbitrarily different. Hence, the integral along a curve of a
holomorphic function enclosing a cut depends only on the discontinuity across the cut.
This quantity is therefore often formally denoted as discf ,∫

C1

dzf(z) = − lim
ε→0

z2∫
z1

dz (f(z + iε)− f(z − iε)) = −
z2∫
z1

dz (discf(z)) ,

where one should be wary in the last step, as it may be necessary to first perform the
integral and then take the limit.

Combining the results on residua from section 4.5 and the present insights implies that
any closed integral of a holomorphic function is either zero or entirely given by the residua
and the discontinuities enclosed by the curve. Conversely, this implies any closed curve
can be deformed arbitrarily, as long as the deformation does not pass through singularities
or cuts. Quite useful, this implies that it can also be deformed to infinity, which simplifies
many actual calculations in practice.

As the determination of cuts and discontinuities is not simple, and to emphasize the
use, consider the following example. The integral

∞∫
a

(x− a)c

x2 + b2
dx,
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is typical for many cases in physics, with x being a real variable, and with 0 < c < 1. The
following will show how the use of cuts and poles allows to calculate it. It has poles at
z = ±ib and a cut starting at a. This cut extend to a branch point at negative infinity,
and the cut will be put for the moment along the negative axis. Thus, the cut starts to
the left of the integration contour. The discontinuity can be obtained by considering

lim
ε→0

(x+ iε− a)c = |x− a|c

lim
ε→0

(x− iε− a)c = |x− a|ce2cπi

(4.11)

where the Riemann sheets have been arranged in a particular way by choice.
To determine the integral, a curve C is introduced, which makes the curve closed and

contains the poles, and closes at infinity. There, the function falls off quickly enough. This
then does not include the cut but only the poles, and thus by the theorem of residua yields∫

C

dx
(x− a)c

x2 + b2
=
π

b
((ib− a)c − (−ib− a)c). (4.12)

At infinity, the function drops to zero. Thus, it needs to be also true by direct evaluation
is possible by using (4.10) that∫

C

dx
(x− a)c

x2 + b2
=

∞∫
a

dx

(
|x− a|c

x2 + b2
− |x− a|

ce2cπi

x2 + b2

)
=
(
1− e2cπi

) ∞∫
a

dx
|x− a|c

x2 + b2
. (4.13)

By comparison of (4.12) and (4.13) this finally yields

a∫
x

(x− a)c

x2 + b2
=

π

b (1− e2cπi)
((ib− a)c − (−ib− a)c).

Thus, here a number of intricate steps was necessary to perform the total integral. How-
ever, it was possible without finding the primitive. Since the latter is often a major
problem, this emphasises how useful such investigations are, if the function in question
is of a suitable type. As especially in perturbative expansions integrals are very often
holomorphic with cuts and poles, this is surprisingly frequent in physics.

4.9 Dispersion relations

A special subclass of functions appearing in physics are so called real holomorphic func-
tions, which satisfy

f(z) = f(z∗)∗, (4.14)

and it is required that at least for some interval on the real axis the function is real.
Examples are especially scattering amplitudes.
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Indeed, because of (4.14), it follows

f(x+ iε)− f(x− iε) = f(x+ iε)− f(x+ iε)∗ = 2i=f(x+ iε).

Thus, a real holomorphic function is either real for real argument or has a cut with a
discontinuity of 2i=f(x+ iε) = 2i=f(x− iε)∗. Note that by taking the limit of ε→ 0 this
implies that the discontinuity at the cut is really just the imaginary part.

This leads to an interesting relation for ’typical’ scattering amplitudes in quantum
physics. These are often real holomorphic, but do not have further singularities, and
decay quickly towards infinity. They have a single cut on the real axis from a to b, either
being possibly infinity. Using the same setup as for deriving (4.10), i. e. two curves moving
in counterclockwise direction around the cut, yields first that

f(w) =
1

2πi

∫
C1

dz +

∫
C2

dz

 f(z)

z − w
.

If w is not on the cut, this yields using (4.10)

f(w) =
1

2πi

b∫
a

dx

(
f(x+ iε

x+ iε− w
− f(x− iε
x− iε− w

)
=

1

π

b∫
a

dx lim
ε→0

=f(x+ iε)

x− w
.

This is especially true even if =w = 0, and thus establishes a relation on the real axis
outside the cut between the real part and the imaginary part of f on the real axis. Such
a relation is called dispersion relation or Kramers-Kronig relation. It is a decisive step in
deriving the optical theorem.

4.10 Principal part integration

In a similar manner also a relation can be established for poles on the real axis. Consider
an otherwise holomorphic function f(z) with a single isolated pole on the real axis, e. g.
1/z. Considering the integral

∞∫
−∞

dzf(z)

the question arises, what is its value, even though formally it does not exist. In the case
of 1/z the answer seems to be just zero, as the same negative value appears to arise for
any positive value. This can be formalized using the so-called principal part integral. The
principal part integral is defined as

P

∞∫
−∞

dzf(z) =
1

2
lim
ε→0

 ∞+iε∫
−∞+iε

+

∞−iε∫
−∞−iε

 dzf(z),
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i. e. it averages between the integrals taken over the curves infinitesimally displaced above
and below the real axis. Because of the infinitesimal displacement the integral will be as
convergent towards infinity as the original one.

Because of the theorems of residua this yields for a single enclosed pole at z0

lim
ε→0

 ∞+iε∫
∞+iε

−
∞−iε∫
∞−iε

 dzf(z) = 2πires(f(z0)),

i. e. proportional to the residuum of f at z0. This implies for the principal part integral

P

∞∫
∞

dzf(z) = lim
ε→0

∞±iε∫
∞±iε

dzf(z)± iπres(f(z0)).

which gives rise to the definition

1

z − z0 ± iε
= P

1

z − z0
± iδ(z − z0),

which, like the Dirac δ-function only makes sense as statement when performing an inte-
gral, applied to a (holomorphic) function.

This can be generalized for situations with multiple poles.

4.11 Γ function

As a general example of the concepts developed, and of particular use in physics, in the
following the (generalized) Γ function will be discussed.

The Γ function is the generalization of the factorial n! of an integer number. To define
it, note that

∂nα

∞∫
0

e−αtdt = ∂nα
1

α
=

(−1)nn!

αn+1
=

∞∫
0

(−1)ntne−αtdt.

Thus, at α = 1 this is an integral representation of n!. This is used to extend the definition
of the faculty operation to arbitrary complex numbers as the Γ function by

Γ(z) =

∞∫
0

tz−1e−tdt (4.15)

for <(z) > 0. For integer numbers or zero this definition reverts automatically to the
normal faculty,

Γ(n+ 1) = n!

though it does not work for <(z) ≤ 0. This definition implies by partial integration

Γ(z + 1) = zΓ(z) (4.16)
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as a generalization of n! = n× (n− 1)!.
The so defined function is actually a holomorphic function. This can be seen by

differentiating (4.16) yielding

dΓ(z + 1)

dz
= Γ(z) + z

dΓ(z)

z

Because the function can be bounded using its integral form, that is guaranteed. Hence,
the derivative at least exists. The absence of singularities can be seen in the following way.
It is possible to rewrite Γ(z) as

Γ(z) =
Γ(z + n)

z(z + 1)...(z + n− 1)
, (4.17)

and by the integral definition the numerator is an ordinary finite function if <(z+n) > 0.
Hence, the only singularities, which exists, are single poles at z being zero or negative
integers. It is thus the decisive possibility (4.16) to continue the Γ function always to a
real argument which allows to determine the pole structure. This is an example of an
analytic continuation. The definition of the Γ function is only valid at <z > 0. But (4.17)
is now a form valid, and unique, in the whole complex plane. Note that as a consequence
Γ(z + 1)−1 is an entire function, as it has no poles, but zeros at negative integer values of
its arguments. It is moreover useful to note that

d ln Γ(z)

dz
= −1

z
− dΓ(z)

Γ(z)dz

∣∣∣∣
z=1

+
∞∑
k=1

(
1

k
− 1

z + k

)
.

The second term equals γ, the Euler constant, which therefore can be defined in this way.
Thus, the logarithmic derivative of the Γ function is not meromorphic, as it has an infinite
number of isolated poles at negative integers and zero.

4.12 Conformal maps

A conformal map is, in brief, a mapping of a variable such that the whole space is mapped
into the whole space, but maintaining some structures invariant. Such conformal maps play
a role in physics in the context of conformal symmetries, which are extremely constraining
and therefore allow often exact results. For complex functions, conformal maps map the
complex plane into the complex plane. An example has already been encountered in
section 4.3. These maps are often useful in simplifying problems, especially in boundary-
value problems.

Because the complex numbers are a plane, differentials dz are not numbers, but do
have a direction. Consider a holomorphic map w = f(z), i. e. f(z) is holomorphic every-
where. At a given point z, differentials can be formed of the same magnitude but differing
directions, say dz1 = ε exp(iα1) and dz2 = ε exp(iα2). Then it follows for the differentials
of the map

dz1
dz2

=
df(z)
dz
dz1

df(z)
dz
dz2

=
dw1

dw2

,
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where it was used that for a holomorphic function the derivative does not depend on the
direction. Thus, the relative angel does not change by a holomorphic map, the map is
angle-preserving. Note that it is possible to have also just mapping a patch into a patch.

Primitive maps, which do have the property to map the complex plane on itself are
usually build from chaining a number of elementary transformations. The most relevant
elementary ones are translations and rescalings, also called affine transformations,

w = az + b,

rotations
w = zeiα

with α real, inversion

w =
1

z
, (4.18)

compression and extension
w = (z − a)α

with a real α, noting that this may require to cut the complex plane, and the Möbius
transformation

w =
az + b

cz + d
,

with ad 6= bc. The latter is actually already a combination of translation and inversion,
which maps lines and circles into lines and circles.

To see that such a map may be highly non-trivial, consider the special Möbius trans-
formation

w =
a+ z

a− z
which maps the imaginary axis on the unit circle. It is actually invertible by

z = a
w − 1

w + 1

which may have not been anticipated by its action. However, this is an important feature
of a map. In fact, for the inverse function to be differentiable it follows

df−1(w)

dw
=

1
df(z)
dz

,

which implies that the derivative of the map may not have zeros to ensure the existence
of the derivative.

In such maps the point zero and the circle at infinity often play an important role, e.
g. in the inversion (4.18). It is often useful to define that zero is mapped to infinity, and
because of the ill-defined nature of the direction of zero to the whole circle at infinity, and
vice versa. The same is true for other singular points.

An interesting observation for the usefulness of maps is the Riemann mapping theorem.
It states that for any simply-connected open patch, which is not the whole complex plane,
there exists a holomorphic map f(z) with dzf(z) 6= 0 such that the patch is mapped to
the unit disc, i. e. |f(z)| < 1. While the proof is somewhat involved, this insight is again
technically very relevant.
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4.13 Functions of multiple complex variables

In principle, a lot stays the same when moving to multiple variables. However, one im-
portant point is that directions of approach played already a central role. Generalizing
the definition of what holomorphy is requires to translate the concept of direction in-
dependence to a higher-dimensional space. In particular, curves then no longer enclose
patches. Since the lowest-dimensional system is already real four-dimensional the example
of Klein’s bottle already shows that then also orientability also becomes non-trivial.

Putting a precise definition on what a patch is and what the necessary discs are in
the various steps are the most challenging parts of the enlargement of dimensions. It is
relatively straightforward to construct conditions, which are sufficient to allow for the use
of results on holomorphic functions, e. g. the generalization of Cauchy’s theorem. The
latter then, e. g., covers the possibility to have poles in different variables. However,
phrasing minimal conditions for them to apply is difficult.

These subtleties arise rarely in physics, and thus in most cases it is sufficient to get
away with requiring the patches to be replaced by convex volumes. Thus, these subtleties
will not be treated here.
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Abstract groups

Groups are quite generic structures. A group is essentially any structure which fulfills a
numbers of properties, and can be far away from anything one usually imagines under
the name of group, e. g. the rotation group encountered in mechanics. It is therefore
worthwhile to start out with a suitable abstract definition of what groups are, and what
are generic traits of groups.

5.1 Groups

A group G is a structure on a set G of elements gi. This set can be finite or infinite, leading
to a finite or infinite group. The number of (distinct) elements is called the order of the
group . Part of the structure must also be some map ◦ to combine two elements of the set.
This structure is a group if it has has the following properties. Or, any structure fulfilling
the following properties is a group, though it may also fulfill many more properties as well.
These properties are called group axioms:

• The combination of any two elements is within the set of elements, g1 ◦ g2 = g3 with
gi ∈ G (Closure)

• The combination is associative, (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3)

• There exists a (unique) element e with e ◦ g = g ◦ e = g, i. e. an identity element or
unit element

• For every g there exists an element g−1 with g ◦ g−1 = g−1 ◦ g = e, i. e. an inverse
element or just inverse

Note that the combination does not need to be commutative, i. e. g1 ◦ g2 may or may
not be the same as g2 ◦ g1. If it is the same for all possible combinations of elements,
the combination is commutative, and the group is called Abelian. If not, it is called
non-Abelian.

39
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5.2 Creating a standard example

Many of the concepts of group theory are quite abstract. It is therefore useful to create
standard examples, which can be used to illustrate in a fixed setting all the concepts in a
very explicit way. Of course, other examples will be used to highlight additional aspects.

The standard example to be used during the first part will be the rotations in two
and three dimensions, R2 and R3, respectively. The elements are then just rotations.
These will be characterized by rotation angles, one in two dimensions and three in three
dimensions, where for now it does not matter what the precise rotation axes are. The
combination of elements is to perform two rotations after each other.

These two sets and combinations are groups. Geometrically, a sequence of rotations
remains a rotations, and therefore the set is closed under the combination. Rotations
are also associative, as the combination of two rotations is again a uniquely defined rota-
tion. The unit element is just no rotation at all, and the inverse element is the rotation
backwards, which compensates a rotation.

From geometry, it follows that two rotations in two dimensions commute, and the
group is Abelian. In three dimensions, however, rotations do not commute, and the group
is non-Abelian.

Both groups have an infinite number of elements. To obtain a discrete rotation group,
the simplest version is to use a set of rotation about a fixed angle (or angles in three
dimensions), Rα

n, and its multiples, with the angle α being a rational factor of 2π. For the
following, it is convenient to chose this angle to be π/2, providing the groups of discrete
rotations in two and three dimensions. Due to the factor requirement, any combination of
these group elements is again an element of the group, and the remainder of the group ax-
ioms are fulfilled in the same way. In this case, the group elements for the two-dimensional
case can be labeled by a single integer n, g(n), which counts the rotation angle α, nα, and
n runs from 0, the identity, to 2π/α− 1, the maximum rotation. In the three-dimensional
case, this requires three indices.

Note that in contrast to what is usually done in linear algebra at no point any kind of
matrix was written down, as such a realization - latter to be called a representation - is
not necessary to describe the group nature of rotations.

5.3 Subgroups

If in a group G there exists a subset of the elements Gs ⊂ G such that with the same
combination this subset also forms a group, this is called a subgroup. A group can have
multiple subgroups. As long as the map ◦ is not restricted in any way, the identity element
and the corresponding inverse elements of the subset need to remain the same, and thus
are necessarily part of the subgroups. If the map is restricted in any wa´y, this may
change1, though such cases have little relevance for physics. There are always the trivial
subgroups of just the identity element and the whole group itself.

1E. g. for a two-dimensional matrix group a sub-group with a different identity element is obtained if
simultaneously a restriction to a one-dimensional subspace is implemented.
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A particularly interesting case occurs if a subgroup of a non-Abelian group exists, for
which all elements commute with all elements under the combination, i. e.

gs ∈ Gs and g ∈ G =⇒ gs ◦ g = g ◦ gs.

Then the subgroup is called the center of the group. The center is necessarily an Abelian
group. There is always the trivial center consisting only of the identity element.

In the standard example, two types of subgroups appear. One is that the rotation
group in two dimensions is a sub-group of the rotations in three dimension. These are the
rotations in a fixed plane, and hence R2 ⊂ R3, even when no particular plane is specified.
The set of discrete rotations is also a sub-group of the corresponding rotations, as every
element is also a group element of the full rotations, but the sub-group is closed, Rα

n ⊂ Rn.
In the non-Abelian R3 the center is trivial. However, if parity would be added, the

identity and parity together would form a non-trivial center.

5.4 Cosets

If there is a subgroup H of a group G, it is possible to define a right/left coset w. r. t. to
an element g of a group as the set of all elements hg/gh with h ∈ H. This is in brief also
written as Hg/gH. The set of all cosets is denoted as G/H, the coset space. Note that
for g /∈ H, it can be shown that every group element can appear at most in one coset.
This implies that for finite groups the dimension of H and the cosets are together the total
dimension of the group.

More importantly, if the left and right coset are identical, i. e. for every gh1 there is
some h2 such that gh1 = h2g, or in brief

gH = Hg, (5.1)

the subgroup H is called a normal subgroup or invariant subgroup. Both trivial subgroups
are invariant subgroups.

It becomes more interesting if the subgroup is non-trivial. If this is the case, the set
of cosets also forms a group. To see this, define the combination of two cosets as

(Hg1) ◦ (Hg2) = (Hg1Hg
−1
1 )(g1g2) = (Hg1)(Hg2).

This combination is the combination of two cosets as the coset on the combination of the
two group elements in the described way. But if the subgroup is invariant, then

Hg1Hg
−1
1 = Hg1g

−1
1 H = H,

where in the last step it was used that H is a subgroup, and the combination of two
arbitrary elements of H is again in H. This implies that the combination of two cosets
is again a coset. Since He = H, there is also a unit element, and thus also the inverse is
included, since this is just Hg1Hg

−1
1 = He = H. Thus, the coset space G/H forms itself

a group, the so-called factor group of G by H or G/H.
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Take for example the group consisting out of the fourth roots of unity, called Z4 with
map the multiplication. The set containing only the square-root is a subgroup, the group
Z2. Since the group is Abelian, the subgroup is an invariant subgroup, with the coset
group Z2, and thus Z4/Z2 = Z2 is the factor group.

In the example of Rα
2 , if 2α is still a factor of 2π, then R2α

2 is a coset. E. g. for α = π/2,
these are the rotations under π. The two possible cosets then differ by the offset of π/2.
These cosets are invariant cosets, because the combination of two rotations of π and π/2
can always be equally well represented by a combination of one or three rotations by π/2.
This is also true, because the group is Abelian. Both together give therefore the factor
group of Rπ/2

2 .
Since cosets do not have many of the useful properties of groups, the existence of an

invariant subgroup, and thus coset group, makes a fundamental difference in physics.

5.5 Conjugacy classes and automorphisms

The requirement for an invariant subgroup (5.1) can also be written as

gHg−1 = H,

for any element of the group g, i. e. the subgroup is invariant under a transformation
with an element not part of the subgroup. It is useful to generalize this concept to so-
called conjugacy classes. A conjugacy class S is a set of group elements, not necessarily a
subgroup, which satisfies

gSg−1 = S

for every g ∈ G. Though not immediately obvious, this concept will be useful later on.
These conjugacy classes can also be formulated in a different context. If there exists a

map M : G→ G which is 1-to-12 and M(g1) ◦M(g2) = M(g1 ◦ g2), i. e. the map preserves
the group combination, the map M is called an automorphism of the group.

A special case of an automorphism is

Mg(G) = gGg−1,

with g fixed. This special map is called an inner automorphism. Thus, a conjugacy class
S is a set of group elements invariant under all inner automorphisms of the group,

MG/H(H) = H,

where the subscript indicates the set of elements from which to construct the inner auto-
morphisms.

In the case of Rα
2 , every combination of elements form conjugacy classes, since the

group is Abelian. For Rα
3 , this is not the case. The only conjugacy class is the identity

transformation, as there is no invariant subset of rotations under arbitrary rotations.

2Note that so far ’onto’ is not a requirement, which can make a difference for infinite groups.
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Representations

6.1 Definition of representation

So far, groups have been completely abstract, and could be whatever entities they would
be, even just the abstract objects, and everything there exists is a (finite of infinite) table
declaring the results of any possible combination. Such an abstract group can then be
realized by mapping the set of group elements on a set of linear operators S acting on a
vector space V where also a combination of linear operators, usually chaining, is defined
for which a unit element exists. A particularly important case of linear operators are
matrices with matrix multiplication.

Thus, this requires a map D : G → S with S being linear invertible endomorphisms
S : V → V . This mapping D is called a representation if it maintains the group structure.
This is the case if it fulfills the conditions

• D(e) = 1, where 1 ∈ S is the identity linear operator, 1S = S1 = S, e. g. the unit
matrix

• D(g1)D(g2) = D(g1 ◦ g2), and thus there is a one-to-one relation between the com-
bination in G and in S

Especially, this fulfills the existence of an inverse element for all group elements, as
D(g)D(g−1) = D(g ◦ g−1) = D(e) = 1. Hence, the set S must necessarily contain only
invertible linear operators fulfilling D(g−1) = D(g)−1. This therefore implies that the
D(g) ∈ S form a group with the same structure as the original group G.

For a representation it is not necessary to map every element g to a different element in
S. The trivial representation D(g) = 1 certainly fulfills both conditions, and the resulting
set also implements trivially a group structure in S. If every element is different in S, then
it is called a faithful representation. Note that a faithful representation is not guaranteed
to exist for any given pair of group and space. E. g. the set {~0} is certainly a suitable
zero-dimensional vector space, but except for the trivial group a faithful representation is
impossible.

The dimension of the space is then also called the dimension of the representation. A
representation is called unitary, if an adjoining operator † is defined on the linear operators,

43
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and D†(g) = D−1(g) = D(g−1).
Of course, there are vectors |v〉 in the vector space V , and corresponding covectors 〈v|,

on which the representation D(g) can act as |v′〉 = D(g)|v〉. For any basis |ei〉 in the linear
space there exist then (basis-dependent) matrix elements

D(g)ij = 〈ei|D(g)|ej〉

which provide an explicit realization of the representation.
For the standard example, a possible representation are the well-known matrix repre-

sentations. E. g. for the finite group Rα
2 a two-dimensional faithful representation is

D(g(n)) =

(
cosnα sinnα
− sinnα cosnα

)
. (6.1)

A possibility for Rα
3 would be parametrizations using the Euler angles in three dimensions,

or just by the rotation along the three axes. This gives the faithful three-dimensional
representation

D(g(n1, n2, n3)) =

 cosn1α sinn1α 0
− sinn1α cosn1α 0

0 0 1

 cosn2α 0 sinn2α
0 1 0

− sinn2α 0 cosn2α

×
×

1 0 0
0 cosn3α sinn3α
0 − sinn3α cosn3α

 . (6.2)

A trivial representation on R1 is D(g) = 1, the one-dimensional unit matrix. All of these
representation fulfills D(e) being the unit matrix.

In case of Rα
2 , (6.1) implements the group combination just as D(g(n))D(g(m)) =

D(g(n+m)), as two rotations in two dimensions is a rotation by the sum of the angles. In
three dimensions, this is less obvious, and the group composition in terms of the indices
is less trivial due to the non-Abelian nature, but can be implemented as well. Since
these matrices are orthogonal, they are automatically also unitary, and therefore all three
representation are unitary.

6.2 Relations between representations

Because the group is mapped on linear operators in a vector space, it is always possible to
modify the representation by a linear transformation, i. e. a basis change, without altering
the composition rule. Thus, two representations are called equivalent if it is possible to
change from one to the other by applying to all group elements D(g), the same (invertible)
transformation S,

D(g)
′
= S−1D(g)S,

since

D(g1)
′
D(g2)

′
= S−1D(g1)SS

−1D(g2)S = S−1D(g1 ◦ g2)S = D(g1 ◦ g2)
′
,
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as required. Of course, the unit element may differ in the new basis, but it is also related
to the original one by the same similarity transformation.

In case of the standard example, this translates to the fact that similarity transforma-
tions can be applied, without changing the character of being a rotation.

6.3 Reducible and irreducible representations

A representation does not necessarily affect every element of the vector space V . If there is
a subspace, constructed using some projector P , which remains invariant under the group
action

PD(g)P = D(g)P 2 = D(g)P (6.3)

for every group element g, the representation is said to be reducible. However, it should
be noted that this can also be regarded as the fact that the group acts trivially on this
subspace, i. e. PD(g)P |P = 1. In a sense, the reducible representation is actually a
direct sum D(g)1−P ⊕ 1P , i. e. the group acts on the whole space, but with two different
representations. In the subspace created by P this is then the trivial representation.

A generalization of this concept is given when the group acts with n, possibly different,
representations in n subspaces of the whole space, such that the sum of the dimensions of
the representations is the total dimensionality of the vector space. Especially, if the basis
is such that this representation becomes block-diagonal for every group element g, this is
called a completely reducible representation. In this case, the representation of any group
element g forms a direct sum D1(g) ⊕ ... ⊕Dn(g) in the vector space, with the Di being
the representations in the various subspaces.

That not every reducible representation is a completely reducible representation can
be shown using a counter-example. This requires an infinite group. For finite groups,
any reducible representation is also completely reducible1. To get a counter-example for
infinite groups, consider the (Abelian) group of integers under addition, which form an
example of a group. A (non-unitary) 2-dimensional representation is given by

D(x) =

(
1 x
0 1

)
, (6.4)

since the unit element is the unit matrix and

D(x)D(y) =

(
1 x
0 1

)(
1 y
0 1

)
=

(
1 x+ y
0 1

)
= D(x+ y).

However, there is an invariant subspace, obtained with the projector

P =

(
1 0
0 0

)
. (6.5)

1This is stated here without proof. Proving it essentially involves first showing that all representations
of finite groups are unitary.
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Thus, this representation is reducible. It is, however, not completely reducible, as the
complement subspace, constructed by 1−P , is not an invariant subspace. Hence, a block-
diagonal decomposition is not possible in this case.

If there is no invariant subspace, and the representation is not block-diagonal for every
group element, the representation is called irreducible. The requirement that a completely
reducible representation is block-diagonal implies that the blocks must be irreducible repre-
sentations within the corresponding subspaces. It is said that the reducible representation
has been decomposed into its irreducible representations. This also implies that there can
be irreducible representations of different dimensionality.

Especially, an irreducible and faithful representation of a non-Abelian group cannot ex-
ist in R1 and C1, as the non-Abelian nature of the group composition cannot be reproduced
with numbers. This is also true for finite groups.

A trivial example of a completely reducible representation of the standard examples is
given by

DR(g) =

(
DI(g) 0

0 1

)
.

In this way the irreducible representation in the upper left corner is extended by a triv-
ial representation. From this completely reducible representation reducible ones can be
obtained by an arbitrary similarity transformation.

It should be noted that rewriting the two-dimensional representation of R2, which
will be shown later to be irreducible, to the one-dimensional phase rotation is actually
not a possibility to decompose a two-dimensional representation into a one-dimensional
representation, and thus making it reducible, as this changes the vector space from a real
one to a complex one. However, the two-dimensional representation in a complex vector
space would be reducible to the one-dimensional one.

6.4 Regular representation

An important possibility of a (matrix) representation is the so-called regular represen-
tation or adjoint representation. It is the most straightforward possibility to generate a
representation. It is defined by the action of each linear independent2 element on the
basis vectors of a vector space. Thus, for finite groups the dimensionality of the regular
representation needs necessarily to coincide with the size of the group. The elements of
the representation are then given by

Dij(g) = 〈ei|D(g)|ej〉, (6.6)

where g labels the group elements. In particular, in the adjoint representation there is
always a choice of basis for finite groups such that Dadj(g)ij = Dadj(g)δij. By insertion of
a unity it can be shown directly that this maps the composition law of the group on the
matrix multiplication in this space

D(g ◦ h)ij = (D(g)D(h))ij = 〈ei|D(g)D(h)|ej〉 = 〈ei|D(g)|ek〉〈ek|D(h)|ej〉.
2What independent is for an infinite group will be defined in a more rigorous way in section 8.1.
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Similarly, the other requirements for a representation can be shown.

It should be noted that the adjoint representation is not necessarily irreducible, but can
be. For the standard-example of the rotations, the given two-dimensional representation
and three-dimensional representation are the adjoint representations.

6.5 Some finite groups

In the following, some groups of a finite order will be discussed. These have simpler
properties than those of infinite order, and are therefore useful to demonstrate many of
the abstract properties. They are also of high physical relevance. E. g. there are groups for
crystals which can be used to classify the crystals according to the discrete rotation groups
they belong to. In particle physics, e. g. the discrete parity group plays an important role.

6.5.1 Cyclic group

6.5.1.1 Definition

A particular example of finite groups are the so-called cyclic groups or center groups ZN
of order N . These groups have the property that all group elements are created from one
base element g 6= e, such that gN = e. E. g. with three elements {e, g, g2}. Here, g2 is a
shorthand for g ◦ g, and likewise higher powers. This group is necessarily Abelian. These
properties define the group, they cannot be derived.

This group can be represented by a complex phase with D(e) = 1, D(a) = exp(i2π/3),
and D(b) = exp(i4π/3), which implements the group structure. The dimension of the
(complex) space is thus 1. This representation is also faithful, and irreducible.

6.5.1.2 Parity

A physical example of a cyclic group is the parity transformation in quantum mechanics,
which is the group Z2 = {e, g1}. For any Hilbert space, there are only two representations.
One is the trivial one D(g ∈ Z2) = 1. The other is D(e) = 1 and D(g1) = −1. Thus, in the
completely reducible basis, any one-dimensional subspace can be associated with either
of the two representations. Since any element always commutes with the Hamiltonian,
as they are always proportional to the unit element, there is a basis where every state
has a definite parity. Those in sub-spaces with the trivial representation are said to have
even parity, while those in which the other representation acts have odd parity. Thus, the
parity of the states are in one-to-one correspondence to the (irreducible) representation of
the parity group in their respective subspaces.

Note that this does not specify in any way which states are associated with which
representation. This is a dynamical question, for which a Hamilton operator must be
specified. In particular, eigenspaces of the Hamilton operator may not align with the
parity subspaces. In this case, parity is broken. In that case, the Hamilton operator does
not have the symmetry.
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6.5.2 Permutation group

A permutation group Sn is the (finite) group of all possible sets of arrangements of n
elements.

The permutation group S2, e. g. contains the elements e = (1, 1), g1 = (2, 1), i. e.
two elements. g1 is the possible interchange. A composition is defined by the repeated
application. There is only one composition not involving the unit element, g1g1 = e, and
thus g1 = g−11 . This result appears evident, as exchanging 1 and 2 and then 2 and 1 leaves
things unchanged.

Things become a bit more interesting for the permutation group S3. Here, there are
six (3!) elements besides the unit element. There is the unit element e = (1, 2, 3), the
three transpositions g1 = (2, 1, 3), g2 = (1, 3, 2), and g3 = (3, 2, 1) and the two possible
reorderings g4 = (3, 1, 2) and g5 = (2, 3, 1). These are compositions of the transpositions,
e. g., g1g2 = g4, g4g3 = g1, and so on. However, the group is non-Abelian, as, e. g.,
g1g2 = g4 6= g5 = g2g1. It is one of the smallest non-Abelian groups.

While the generalization to larger n is straight-forward, the group S3 can serve as
an example for the necessity of matrix representations. A non-trivial one-dimensional
representation over the space of complex numbers is not possible, as then the non-Abelian
nature cannot be maintained - g1g2 6= g2g1 and g1g3 6= g3g1 and g2g3 6= g3g2 cannot be
realized with numbers except if gi = 1. However, there exists a two-dimensional, then
necessarily irreducible, faithful representation of the group,

D(g1) =

(
−1 0
0 1

)
D(g2) = 1

2

(
1
√

3√
3 −1

)
D(g3) =

1

2

(
−1 −

√
3

−
√

3 1

)
D(g4) = 1

2

(
−1 −

√
3

1 −
√

3

)
D(g5) =

1

2

(
−1

√
3

−
√

3 −1

)
and the trivial e = 1. The mapping can be proven, e. g., by direct computation. Also,
not all of these six matrices can be simultaneously diagonalized, and this is a irreducible
representation.

6.6 Characters

A useful tool to characterize representations of groups are characters. They are defined as

χD(g) = trD(g) = D(g)ii,

where the last equality only holds for matrix representations. Assuming for the moment
that V = Cn, they are complex numbers, depending on the representation and the group
element. For finite-dimensional representations3, these are numbers, which are invari-
ant under similarity transformations. Thus, all equivalent representations have the same
characters. This allows to identify an equivalence class of representations. Note that
χD(g−1) = (χD(g))∗ for a unitary representation.

3To be more precise: representations in trace-classes.
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They are also orthonormal in the following sense,∑
g

χDa(g
−1)χDb(g) = Nδab, (6.7)

where N is the size of the group. For infinite groups, this number will be a suitable
measure of the size of the group to be defined later. The sum is over all group elements,
while a and b refer to different representations. Hence, in this sense, representations are
orthogonal.

This can be seen as follows. Consider the operator

Aab;ij =
∑
g

Da(g
−1)|a, j〉〈b, i|Db(g).

Note that this operator in general will be a map A : Vb → Va between the spaces of
different representations. This operator commutes with any Da(h), since (no summation
implied)

Da(h)Aab;ij =
∑
g

Da(hg
−1)|a, j〉〈b, i|Db(g) =

∑
g

Da(hg
−1)|a, j〉〈b, i|Db(gh

−1)Db(h)

= Aab;ijDb(h).

According to Schur’s lemma4, A is therefore proportional to δabλ
a
ij1, where the 1 acts in

the space of the irreducible representation, as the operator does so, and λaij is the constant
of proportionality. The still present δab restricts the 1 to be active only in the subspace of
the operators. The indices merely label the operator. Taking further the matrix elements
yields ∑

g

na
N

(Da(g)−1)kjDb(g)im = δabδijδkm, (6.8)

where nA is the size of the representation defined by the trace of unity in the space. This
is a very important statement about representations. It states that the representation
matrices are orthogonal in the space with coordinates the group elements.

An example is given by the ZN groups. Its irreducible representations are given by

DN
n (j) = e2πi

nj
N . (6.9)

It can be proven that for Abelian groups there are only one-dimensional irreducible rep-
resentations. Then the only possibilities are these, which differ by the number of times
the unit circle is swept over when traversing the full group. However, this cannot be done
arbitrarily often. At one point, all sweeps reduce again back to the original one, if the
number n becomes again an integer multiple N . For N = 2, e. g., this is possible twice,
since n can either be zero (trivial representation) or 1. If it would be two, this returns
the trivial representation. For N = 3, the possibilities are n = 0, n = 1 (advance by

4Which essentially states that only matrices proportional to the unit matrix commute with any other
matrix.
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2π/3), and n = 2 (advance by 4π/3) sweeps. n = 3 gives again back the trivial one, etc..
Thus, there are N − 1 independent non-trivial irreducible representations. In this case,
the characters necessarily coincide with the corresponding representations, i. e. (6.9).

The relation (6.8) then takes the form

1

N

N−1∑
j=0

e2πi
nj
N e2πi

n′j
N = δn′n

which is nothing but the statement that a Fourier decomposition of the Nth-root of unity is
orthogonal when summed over with any possible number of sweeps of the unit circle. Note
that the indices at the Ds are otherwise trivial, since it is a one-dimensional representation.

The pre-factor in the sum (6.8) combines the size of the irreducible representations na
with a normalization factor N , which is the size for a finite group. Thus∑

n2
a = N, (6.10)

where na is the size of the representation and which can be seen after taking a trace over
the indices, which will first combine both Ds to a unit matrix, which is then traced to
yield a factor na. This can be seen as follows. Taking the trace of A, not with respect to
the indices defining it, but to the outer Hilbert space, yields the following. Just taking the
trace requires trA to be proportional to the size of non-vanishing elements of the block-
diagonal, and thus yields δabλ

a
ijna, where na is the size of the representation in question.

On the other hand, taking the trace over this full space is equivalent to taking

trAab;ij =
∑
k

〈
k

∣∣∣∣∣∑
g

Da(g
−1)

∣∣∣∣∣ a, j
〉
〈b, i|Db(g)|k〉

=
∑
kg

〈b, i|D(g)|k〉〈k|D(g−1)|a, j〉 =
∑
g

〈b, i|a, j〉 = Nδabδij,

where N is some measure of the size of the group, and for finite groups the actual size.
This identifies λaij = na/N , and therefore yields (6.8). The previous example implemented
this already, since 1 + 1 = 2 and 1 + 1 + 1 = 3 etc..

This result shows again (6.7),

1

N

∑
g

χDa(g
−1)χDb(g) =

1

N

∑
g

Daii(g
−1Dbjj(g) =

∑
g

1

na
δabδijδji = δab

and thus the characters of two different representations are necessarily different, since
otherwise this is a sum of squares, and can therefore not be zero except when all characters
would vanish.

Because of the trace nature, the characters are invariant under conjugation,

trD(h−1gh) = trD(h−1)D(g)D(h) = trD(G), (6.11)

and thus constant on conjugacy classes.
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For finite groups, there is an important consequence. Take a function f(g) of the group
elements, which is constant on a conjugacy class. Any function of the group elements must
be of the form

f(g) = cajkDa(g)jk = trcaDa = trcD.

This is nothing but the statement that a map in the group must be representable. The
limitation to finite groups comes from the desire to express this as a sum over irreducible
representations, which is only possible if the reducible representations are always com-
pletely reducible, which is only true for finite groups.

If the function is constant on conjugacy classes, f(h−1gh) = f(g) then

f(h−1gh) = trcD(h−1gh) = trcD(h−1)D(g)D(h) = trcD(g) = f(g)

For this to be true, it must hold for any h. Thus, it must hold also for a sum over all h,
appropriately normalized

f(g) =
1

N

∑
h

f(h−1gh) =
1

N
caijDa(h

−1)jkDa(h)liDa(g)kl =
∑
a

1

na
trcaχa(g),

where the orthogonality relation (6.8) has been used in the last step. This implies that
such constant functions are only characterized by the traces of the matrices c, rather than
by the full matrices.

The important insight to be gained from this follows from the fact that the sum is over
the number of irreducible representations. All functions which are constant over conjugacy
classes can be expressed like this, and since the characters are orthogonal, in general all
irreducible representations are necessary. At the same time it would be possible to define
functions, which are non-zero only on one conjugacy class, and zero elsewhere. This gives
a complete basis of these functions. Since both ways of representing this class of functions
must be equal, this implies the dimensionality of both bases must be equal, and hence the
number of conjugacy classes must be the same as that of irreducible representations. This
insight will play a crucial role later.

This has a further important consequence. Define the matrix

Vai =

√
ki
N
χDa(gi),

where ki is inserted for later convenience. Then (6.11) implies V †V = 1. But since the
matrix is square, this also implies V V † = 1, and thus the characters are also orthogonal
over group elements

χDa(g
−1
i )χDa(gj) =

N

ki
δij (6.12)

Which is again quite useful.
As an example for the usefulness of these manipulations, consider the regular represen-

tation. Due to the definition (6.6), the character χR(1) = N , since the regular representa-
tion for a finite group is N -dimensional. At the same time, all of the other representation
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matrices are necessarily traceless, since otherwise a group element would map some group
elements into themselves, which is only possible for the unit element. Hence, the other
characters are zero. Now, (6.11) implies that for a general reducible representation r

1

N

∑
g

χDa(g
−1)χDr(g) =

1

N

∑
g

χDa(g
−1)
∑
a∈R

χDa(g) =
∑
a∈R

mr
a,

since the trace of a block-diagonal matrix is just the sum of the traces of the blocks.
Hence, mr

a is the number of times an irreducible representation a appears in the reducible
representation r. For the regular representation, it is also true that

1

N

∑
g

χDa(g
−1)χR(g) = χDa(e) = na,

since e−1 = e and χDA(e) = trDA(e) = na, as it is just (unitarily equivalent to) the
representation of the unit matrix in the representation a. Thus, mr

a = na. Hence, every
irreducible representation a appears in the regular representation exactly as often as its
dimension.

For the standard example, the characters in the adjoint representations are given in
two dimensions by 2 cosα, with α the rotation angle. For the subgroup with four rotations.
Hence, they are 2, 0, −2 (because the group is actually a product group Z2×Z2, and thus
there are two non-zero traces) and 0. Due to the cyclicity of the trace, these are invariant
under any further rotations, which act as similarity transformations.

6.7 Abelian groups

Abelian groups have a number of further simplifying properties. First note that h−1gh =
h−1hg = g, due to the Abelian nature. Hence, each element of an Abelian group is
a conjugacy class itself. This implies that for finite groups the number of irreducible
representation must be the same as the group order, due to (6.10). Hence, all irreducible
representations of Abelian groups are one-dimensional. This statement is actually only
true if the considered vector space is complex. For a real vector space, this is no longer
necessarily true, as the standard example of rotations in two dimensions shows.

Especially, this implies that all irreducible representations of finite, Abelian groups
are automatically diagonal. This has important consequences for a quantum system. If
H has some finite, Abelian symmetry, e. g. parity and thus a Z2 symmetry group, then
all the appearing irreducible representations can be simultaneously diagonalized with H.
Thus, since they are hermitian, the associated quantum numbers become observable. Note
that this is a stronger statement than to have a symmetry. A symmetry can always have
a unitary representation, but not every unitary representation is diagonal, and therefore
not all eigenvalues are observables. E. g., in the case of spin only the total spin and one
component can be measured, but not all components individually, since not all components
are simultaneously diagonal. Thus, the diagonalizability of representations is important
for the question of possible observables in quantum physics.
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6.8 Tensor products

So far, most effort was invested into steering towards smaller, i. e., irreducible representa-
tions. Building tensor products is quite the opposite. Assume some representation D1 on
a vector space such that there are n base vectors |i〉, and a second representation D2 on a
second vector space having m base vectors |j〉.

It is possible to construct a combined vector space |i, j〉 just by combining both bases.
This space has n×m base vectors. Since both representations act on individual sub-spaces,
a tensor product D = D1 ⊗ D2 of both representations can be formally defined as being
just a representation acting on the two representations individually. Especially, its matrix
elements are

Dklij = 〈k, l|D|i, j〉 = 〈k|D1|i〉〈l|D2|j〉, (6.13)

which are by construction (m + n) × (n + m) elements. Of course, even if the original
representations D1 and D2, which are n × n and m × m matrices in their originally
subspaces, are irreducible, the tensor product representation D needs no longer be so. In
fact, one of the most important tasks in many cases is to deconstruct a given representation
in the relevant irreducible representations.

An important consequence of (6.13) is that characters of a tensor product are products
of the characters of the individual characters,

χD = trD = Dkiki = D1kkD2ii = χD1χD2

and thus the characters can be used to identify which representation is obtained from the
tensor representation, as the characters uniquely characterize a representation.

For rotations, the tensorization is known from, e. g., the coupling of two particles with
angular momentum. Different bases are then obtained from the Clebsh-Gordon procedure.

This general construction will be discussed in much greater detail in chapter 10.

6.9 Symmetry group of the (2n + 1)gon

An example for the concepts so far is the symmetry group of the (2n + 1)gons, i. e. the
regular, closed polygons with 2n+1 nodes. These objects are transformed into themselves,
and therefore symmetric, under rotation by ±2πj/(2n + 1) for j = 1...n. The symmetry
group furthermore contains, trivially, the identity, but in addition all 2n + 1 reflections
by planes through one vertex and one edge. Thus, the size of the group is finite and
1 + (2n) + (2n+ 1) = 2(2n+ 1).

This group has furthermore n+ 2 conjugacy classes. One is just given by the identity.
Another one is the set of reflections, as any reflection can be transferred into any reflection
by rotations. Thus, a reflection conjugate by a rotation will again yield a (in general
different) reflection, and thus the set of all reflections is closed under rotations, and of
course, the identity, and hence a conjugacy class. The final set are rotations at fixed j. A
rotation by j will become under reflection a rotation by −j, and therefore both elements
are necessarily in the same conjugacy class. The definition of conjugation requires g−1sg
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for any element s. Since the rotations in the plane are Abelian, this implies that such a
prescription is: rotate by g, then by s, and then back by g, and thus only by s. Hence,
any rotation, together with its mirrored companion, is a conjugacy class of its own, adding
another n. Of course, since the vertices are identical, any rotation conjugacy class is
equivalent.

This symmetry group has the identical representation. There is a second one-dimensio-
nal representation, which maps all rotations again to the identity and all reflections to the
negative identity, and which is thus inequivalent. Thus, the character only for reflections
are not 1 but -1. Both representations are not faithful. Since the number of conjugacy
classes has to be the number of irreducible representations, there are n more necessary.
These are given by two-dimensional matrices. There are three base matrices, when the
’odd’ point is on the x-axis

D(e) = 1

D(P ) =

(
1 0
0 −1

)
D(R) =

(
cos 2πm

2n+1
sin 2πm

2n+1

− sin 2πm
2n+1

cos 2πm
2n+1

)
These are the unit matrix, a reflection through the x-axis, changing the sign of all y
components, and the smallest possible rotation if the the maximal rotation should cover
2π m times. The latter creates n inequivalent representations, as they perform n different
numbers of full rotations. Other elements are obtained by rotated reflection matrices and
by replacing the angle by 2jπm/2n + 1. The characters are thus 2 for the unit matrix, 0
for all reflections, and twice the cosine of the angle for all rotations.



Chapter 7

Group actions and structure

This brief chapter will analyze some implications of groups and group structures when an-
alyzing the cases of applying group elements to something, usually the vectors of the vector
space in which a representation acts. This will be used here synonymous, but it should be
noted that this can also be more abstract constructions, since the only requirement is to
have some way to define the action of group elements.

7.1 Orbits

The basic concept is that of an orbit. Take a single vector v of the vector space in question.
Then an orbit, sometimes also called group-orbit, O = {D(g)v} is defined as the set of
all vectors obtained under application of all group elements from this single vector. An
example are the hyperspheres which are obtained under the application of the rotation
groups on a single vector pointing to the surface of the hypersphere, e. g. in R2 the orbit
of (1, 0)T would be (cosα, sinα)T under the two-dimensional rotation group.

This structure has a number of consequences. First, the group is itself an orbit, as group
elements can be applied to group elements by the group composition, always starting from
the unit element, and thus the whole group is a single group orbit. Second, any set on
which a group acts can be decomposed into orbits, though the number of orbits does not
need to be countable. The orbits are also called classes, and membership of an element of
the set in an orbit is thus a class relation.

If an object is invariant with respect to the action of the group, it is called a group
invariant. Thus, group invariants are trivial, i. e. one element, orbits. Fourth, cosets of a
subgroup H of a group G, i. e. elements of type gh or hg, are orbits as well. Note that
in general, except for invariant subgroups, left and right cosets are not identical, and thus
the orbits of left cosets and right cosets are not identical.

From the point of physics, it is useful that orbits can also be classified by invariant
tensors, which will be discussed in more detail in chapter 10. At the moment, it is sufficient
that they are tensors in the vector space of representations. Consider in the simplest case
of SO(n) and the representation in the n-dimensional real space. The only invariant
tensor is proportional to the unit matrix. Therefore, the length of the vector, which
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is invariant under rotation, characterizes the orbit. Since other representations can have
more invariants, orbits may have more than one invariant to characterize them. Then, two
orbits do only agree if they agree in all the quantities characterized by invariant tensors.
E. g. for the representation of the group SU(3) on the vector space of three-dimensional,
symmetric matrices, there are two invariant tensors. Therefore, there are two quantities
for any orbit which are invariant under the action of the group. One is again the length.
The other is a more complicated quantity, which follows from the fact that every matrix
of this representation satisfies dcabTab = 0, where dcab is a special, totally symmetric rank
three tensors, and is hence a traceless, symmetric tensor.

7.2 (Non-)linear representations

Though most of the previous has dealt with linear representations, i. e. representations
where group elements g have been mapped to matrix representations D(g) such that they
act as

D(g)abxb

on the elements x of the representation (vector) space, this is not necessary.

The only requirement for a representation is actually that it maintains the group com-
position law. Thus, it is possible to formulate a non-linear representation

y = fa(x, g),

provided

y = (f(x, g), h) = f(x, g ◦ h)

y = f(x, e) = x,

where the group composition is maintained. Then, this map is a non-linear representation.

Though non-linear representation of groups are not too common, they are sometimes
encountered in physics. An example is the Galileo group of rotations and translations.
Under two consecutive Galileo transformations a vector transforms as

x→ Λx+ a→ ΞΛx+ Λa+ b

and thus the linear operator behaves as

S(g = (Λ, a) ◦ h = (Ξ, b)) = S(ΛΞ,Ξa+ b) 6= S(ΛΞ, a+ b) = S(Λ, a)S(Ξ, b) = S(g)S(h).

Thus, the representation of translations is non-linear. But the group structure is still
maintained, i. e. there is a unique map between composite group elements and composite
operators.
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7.3 The little group

Given some vector v, it is possible that there is a subgroup H of the original group G for
which every subgroup element h satisfies

D(h)v = v

and thus this particular vector is invariant under a subgroup, and this identifies a suborbit.
The subgroup H is then referred to as the little group, sometimes also stability group or
isotropy group, of the vector v. Note that a little group of a continuous group can be both
discrete and continuous. Orbits with the same subgroup are collected, and called stratum.

A straightforward example is the rotation group SO(3) in its three-dimensional repre-
sentation. The vector v = ez has then as little group SO(2), all the rotations in the x-y
plane. Note that the little groups are representation-dependent. E. g. in the trivial repre-
sentation, all orbits have the full group as little group. For SU(2) in the two-dimensional
representation, there is only one non-trivial stratum, with the little group being just the
trivial group containing only the unit element. The reason is that for every vector in this
representation, there is an SU(2) transformation which transforms it into a unit vector in
one direction, and thus all of them are not invariant. In the three-dimensional representa-
tion, there is again only a single non-trivial stratum, but with little group U(1), as there
is a phase free.

In physics, this becomes especially important if there is a physical reason, like an
external magnetic field in a spin system, which is fixed. Then a spin system, which had
previously some higher symmetry group, will have a lower symmetry group, which is the
little group defined by the direction of the magnetic field. The little group is called in this
context also the residual symmetry group.

In general, there is an infinite number of orbits, but only a finite number of subgroups.
As an example, for the group SO(n) and representations as matrices on vector spaces there
is a trivial stratum given by the orbit v = 0, which has as little group the original group.
All vectors of non-zero length have only SO(n − 1) as little group, the rotations around
them. Thus all vectors of non-zero, but fixed, length belong to the same stratum. For
representations on a vector space of symmetric rank two tensors, the little groups of SO(n)
are different, and the strata can be classified by the number of degenerate eigenvalues, as
the spectrum is invariant under rotations, but the ordering is not. Similar, but more
complicated, considerations apply to both more complex representations and other groups
like SU(n).

Note that the orbits in a stratum for the little group H are in one-to-one correspondence
to the coset G/H, as the remaining group elements will transform them into each other.

A general classification of strata and/or little groups is very complicated in general,
especially for reducible representations.

The little groups can also be characterized by the invariants of an orbit. Given any
orbit φ, then an invariant is defined by

I(D(g)φ) = I(φ),
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where g is any group element. Thus, the action of an invariant on an orbit is invariant
under any group transformation. E. g., once more the length of a vector for SO(n) is such
an invariant. As noted, there can be multiple invariants, which can be labeled by an index.

It is possible to ask what are the extrema of the invariants with respect to the orbits,

∂I(φ)

∂φ
= 0,

that is which orbits maximize the invariant. The solution to this question is known as
Morse theory. E. g., for the length of a vector, I(φ) = φ†φ, the only extremum is the
trivial vector φ = 0.

Since in physics potentials in the Lagrangian (or Hamiltonian) formulation are in-
variants of the symmetry groups, often but not always the second-order invariant, Morse
theory is actually equivalent to looking for extrema, and thus (metastable) equilibrium
of potentials. Since potentials often also break some larger group to a smaller group, the
question thus turns into the question of finding the little groups, and strata, given some
higher-order invariant.

7.4 Topological groups

To discuss more generally continuous groups, it is useful to introduce topological groups.
A topological group is a group on which a topology is defined, see section 2.2, which gives
the notation of closeness a realization. Especially, a topology should imply that if g and
h are ’close’ to g′ and h′, then so are gh and g′h′, as well as g−1 and g

′−1. Particular the
last statement is non-trivial, as it requires to maintain the concept of closeness even for
the inversion.

Besides introducing some kind of distance function between two group elements d(g, h),
not much is required for a topology. Alternatively, what is required is that for any group
element it is possible to define a map which is locally isomorphic to Euclidean space. This
will be used in chapter 8.

An important subclassification is that of compactness. Topologically compactness oc-
curs if anything can be covered with a finite number of coverings. Local compactness
occurs if this is true for a neighborhood. Lie groups in chapter 8 will be seen to be lo-
cally compact, as they can be expanded locally around unity, but they are not necessarily
globally compact.

Once the group has been equipped with a topology, it is possible to define a path in
the group. Since a distance between group elements can be measured, the question can be
stated if a group element can be reached from some other group elements by moving along
a continuous path, i. e., whether there is a path such that all group elements along the
path are always close. If this is true, the group is connected. If not, then it decomposes
into disconnected pieces. E. g. the group O(n) is not connected, as it is not possible to
find a smooth path in the group between group elements with determinant 1 and -1. Thus,
these groups decompose into two (or more) disconnected pieces.
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Groups, which are not connected, have the property that the piece containing the
identity is an invariant subgroup. This follows because any two group elements which are
continuously connected to the unit element, are also connected via following the path with
the unit element as an intermediate stop. On the other hand, for any element g connected
to the unit element, all kgk−1 are connected to the unit element, since the element g can
be reduced to the identity in a continuous path, but then k−1k = 1. As a consequence,
it may be possible that a not connected group is a (semi-direct) product group. E. g.
O(n)=Z2×SO(n) for n odd.

The remaining piece disconnected from the invariant subgroup containing the unit
element are cosets of the original group, since any two elements g and h from the same
disconnected piece fulfill necessarily the requirement that g−1h is in the piece connected
to the unit element. As a consequence, the components form a discrete quotient group,
and the semi-direct product mentioned above is in many, though not all, cases, the semi-
direct product of this quotient group and the invariant subgroup, as was the case for the
O(2n+ 1) groups.

Groups which have just one component are called simply connected.

7.5 Group measures

One useful consequence of topological groups is that it is possible to construct a measure
µ(g) of a group, which is essentially given by the mapping to Euclidean space1. In general,
this measure will then be locally some curvilinear coordinates. The important point is
that such a measure requires a generalization of the concept of translationally invariance
of it, in the sense of ∫

dµ(g)f(gh) =

∫
dµ(g)f(g),

i. e. it is invariant under any group transformation. However, since the group needs not be
commutative, so neither must be dµf(gh), and thus in general dµ(g)f(gh) 6= dµ(g)f(hg).
This defines left measures and right measures, respectively. In general the measure can
be determined from a representation as

dµ(g) =
1

detM
Πdmij. (7.1)

where the M(g) are the representation matrices, and it is necessary to transfer the (con-
tinous) enumeration of matrices into the differentials.

An example where the so-defined left measure and right measure are different is the one
defined by the three-dimensional real vectors in a two-dimensional matrix representation
as

L =

(
ea x
0 eb

)
,

1Essentially, it is some function which assigns to any set of group elements a number which describes
the size of this subset.



60 7.5. Group measures

with a, b, and x real numbers. The measures are obtained from (7.1) as the left measure

dµ(g)L = e−adadbdx

and the right measure
dµ(g)R = e−bdadbdx.

The existence of such an invariant measure is not guaranteed, but can be shown to always
exist for locally compact groups. In this case it is called a Haar measure. Furthermore, it
is true for any compact groups that ∫

dµ(g) <∞,

i. e. the so-defined group volume is finite.
A quite useful further example is the group SU(2). For the lowest-dimensional repre-

sentation, its elements are given by

g(θ, η, φ) =

(
cos θ

2
+ i sin θ

2
cos η ie−iφ sin θ

2
sin η

ieiφ sin θ
2

sin η cos θ
2
− i sin θ

2
cos η

)
.

The resulting Haar measure using (7.1) is

1

4π2
sin2 θ

2
sin ηdθdηdφ

which was normalized such that the integral of the unit is one. Without this normalization,
the result would be 16π2.



Chapter 8

Lie groups

Though discrete groups play an important role in many aspects of physics, an even more
important role play continuous groups, as most discrete groups are in the end just restricted
continuous groups. Therefore, the next step is to discuss continuous groups in more detail,
and return to discrete groups when they appear as restriction of continuous groups, see
section 9.9. Continuous groups, as their name indicates, are groups with a denumerable
infinite number of group elements. A simple example are the real numbers with group
combination the addition. Any sum of two real numbers is again a real number, the
addition is associative, the zero is the unit element, and the negative of the real number is
the inverse. Likewise, the real numbers without zero and infinity (or both included when
defining 1/0 = ∞) under multiplication satisfy the group axioms with the unit element
now 1. The same is true for complex numbers. Thus, continuous groups are central. Note,
however, that the integer numbers are a discrete group under addition, as there is just a
denumerable infinite number of them. All of these are Abelian groups.

When it comes to continuous groups, the paradigmatic example, and probably the
most important one for physics besides the real and complex numbers, is the class of Lie
groups. These are a special class of continuous groups. They will be the central topic of
this chapter.

Compared to the numbers, Lie groups have a number of differing properties. In fact,
they are more rigid, as they fulfill additional constraints, and more flexible, as they also
permit non-commutative structures.

The structure of continuous groups which will be central is that group elements g
are no longer counted by an index, but by one or more parameters α, where α is a single,
real-valued number or a vector of real-valued numbers, g(α). This relation needs to be one-
to-one. Furthermore, any composition of group elements will yield a new group element
chosen as a function f of the two parameters

g(α) ◦ g(β) = g(f(α, β))

where the choice of the parameter space, which can be some patch or union of patches of
the real-valued Rn, together with the composition function f , determines the group.

Particular cases will be continuous groups where it is possible to define a notion of
closeness of two group elements g(α) and g(β), which is based on the closeness of α and
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β. In this case, the group is a smooth topological group. However, this will not preclude
the possibility that there are disjoint patches of group elements.

It is in principle possible to generalize the concept by not using real numbers to param-
eterize the group, to more abstract objects, in particular another group. We will return
to this, if need be.

The standard example of rotations are continuous groups, and especially Lie groups.
In two dimensions, the function f in the group composition is just the addition of the
two angles. In three dimensions, the three angels form a three-dimensional vector. In
general, the combination of two group elements will not be just by the addition of the
angles, as this is not reflecting the non-Abelian nature of rotations in three dimensions.
The composition function is therefore more complicated, and can be taken, e. g., from the
theory of the Euler representation.

8.1 Generators

For the discrete numbers, the assignment of group element to index was arbitrary. Which
element is number 1 and which number 2 did not matter. Essentially, this assignment is
only an irrelevant choice of coordinate system. Likewise, the parameters α are vectors in
an n-dimensional vector space. Thus, there is a freedom of choice in their basis. However,
a useful convention is to define

g(0) = e,

i. e. the group element for all parameters vanishing is the unit element. Given its important
role in the group axioms of section 5.1 this appears appropriate, and will indeed simplify
many calculations considerably.

Any representation of a group will now also depend on the parameters. In fact,
since there must exist a one-to-one map from the parameters to group elements, this
can also be regarded as the representations being a function directly of the parameters,
D(g(α)) = D(α). However, since the representation needs not to be one-to-one, neither
needs the relation of the representation elements to the parameters to be one-to-one. It
is furthermore useful to transport the convention on the unit element from the group to
representations of the group,

D(g(0)) = D(0) = 1,

where 1 is again the unit element.

A representation is now smooth in a patch of the parameter space, if inside this patch
the representation is determined by an analytic function of its parameters, i. e. it can
be written as a Taylor series. Especially, if the parameter vector δ is only infinitesimally
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different from zero, it must be possible to just use the leading term1

D(δ) = 1 + iδaX
a +O(δ2), (8.1)

where the elements2 Xa are also linear operators acting in the vector space of the repre-
sentation, i. e. they are usually matrices as well, and depend on the representation. If the
parameters are N -dimensional vectors, there are N elements Xa. This number is unrelated
from the actual dimension d of the vector space in which the representation is defined,
which can be larger, smaller, or equal to N . The Xa are called the generators of the group.
The i appears by convention, and will yield useful hermiticity and unitary properties of
various appearing matrices throughout. Moreover,

Xa = −i ∂
∂δa

D(δ)|δ=0 = −i∂aD(0),

when considering the representation matrices as functions of the parameters. Finally, if
the representation is such as that two different sets of linearly independent parameters
yield two different representation elements, then the generators are necessarily linearly
independent. Otherwise, there would exist a basis such that D(δ) would be independent
of some δa (so-called not parsimonious), and then the element D(δa) would be linearly
dependent on other group elements, and therefore the corresponding generator would be.

Continous groups are manifolds, as the parameters come from patches of Rn and the
group composition ensures suitable overlaps. The required expansion (8.1) allows to iden-
tify the parameters as the coordinates in the group. Thus, groups are manifolds with
additional structures, just like vector spaces are.

For unitary representations, because of

1 = D(δ)D−1(δ) = D(δ)D†(δ) = (1+iδaX
a)(1−iδaXa†)+O(δ2) = 1+iδa(X

a−Xa†)+O(δ2)

it follows that the generators are Hermitian.
Note that, due to the defining requirement of being able to map continous group to

some vector space, the topology for a given representation is automatically induced by the
topology of the vector space where this representation is defined.

8.2 Algebras

Actually, the generators are more fundamental quantities than the group elements. Es-
pecially, it is possible to formally exponentiate the resulting series (8.1) describing a non-
infinitesimal group element to obtain

D(δ) = lim
N→∞

(
1 +

iδa
N
Xa

)N
= exp(iδaX

a). (8.2)

1In general it may be that a Taylor series has as first term a non-trivial term, and it may also be that
the second term is not the linear one. It can be shown that there exists always a parameter redefinition
which yields a linear behavior to leading order. This is possible, as there are one-parameter subgroups
based on a single generator, under which the composition rule becomes the ordinary addition. These
coordinates are called normal.

2In most cases the position of the indices do not matter.
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Formally, thus, a given group element is reached by performing an infinite number of
infinitesimal steps. This is not a unique definition, as the definition (8.1) is compatible
with any function which has a linear term in the Taylor series. However, it is the convenient
one. Other definitions do not change anything on a qualitative level. Note, however, that
it may still be necessary to chose for different group elements different points for the
expansion. In particular, not simply connected groups will require for every disconnected
part their own expansion point.

Hence, it would be possible to describe all of group theory on an abstract level only
using the generators, and never mentioning the group elements or even their representation.
The so-obtained structure is called the algebra, the set of all elements

X = δaX
a

As a consequence, this algebra must be closed under addition, there must be a zero element
and an inverse, and a multiplication by (real) numbers3. As these are also the criteria for a
vector space, the generators do form a vector space, the generator space or algebra space.
The generators can be considered to form a basis of this vector space, and the dimension
is that of the number of generators.

That is different from the group or its representations. Especially multiplication by
scalars in some representation is usually not mapping a group element into a group element.
Thus, the relation (8.2) actually describes the map of a vector space to a group. As will
be shown later, it is possible to characterize the algebra by just specifying an abstract
relation

[Xa, Xb] = ifabc X
c, (8.3)

with f cab = −f cba the structure constants. Algebras fulfilling the relation (8.3) are called Lie
algebras, and the groups constructed from them are called Lie groups. Not every continous
group is a Lie group, as it was required that the group is a smooth topological manifold.
Note that since an algebra is a vector space of which the generators form a basis, they are
not unique. Just with any other basis, they can be redefined into any other set of linearly
independent basis vectors.

As can be shown that, for given structure constants fabc , (8.3) is a unique characteri-
zation4, this relation is also called itself algebra. Actually, not the values of the structure
constants themselves are unique, as when rescaling both the generators and the structure
constants the algebra remains invariant, but the relations between the structure constants.

A fact sometimes relevant in physics, to be discussed later in more detail, is that (8.2)
is not a unique map from the algebra to the group. Due to the periodicity, it is possible
to obtain different groups, depending on how the δa are defined. These groups can differ
at most by elements which commute with all other elements, and thus only with respect

3It is also possible to enlarge this to complex numbers, but this does not yield anything relevant to
physics.

4Note that sometimes the pre-factor in the algebra is different from i. Sometimes the i is taken as
part of the structure constants, or additional factors like 2 or 1/2 appear, and thus the precise form of
the algebra is subject to conventions.
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to the center of the group. Until discussed, it will also be specified explicitly which group
is relevant. Thus, the generators and the algebra are, in a sense, more fundamental.

Given this setup, there is an one-parameter family of group elements characterized by
a fixed generator X

D(λ) = eiλX ,

in which the group composition is given by

D(λ1)D(λ2) = ei(λ1+λ2)X = D(λ1 + λ2) = D(λ2)D(λ1)

and thus by addition of the parameters λi. This sub-group, as it also includes always with
λ = 0 the unit element and is closed under the group composition, is hence an Abelian
subgroup of the group.

When considering now the composition of two different group elements

eiαaX
a

eiβaX
a

= D(α)D(β) = D(γ) = eiγ
aXa (8.4)

the particular relevance of the algebra becomes manifest. Because the generators may not
commute, γ will in general not just be the sum of α and β. For this the Baker-Campbell-
Hausdorff formula

eXeY = exp

(
X + Y +

1

2
[X, Y ] +

1

12
([X, [X, Y ]]− [Y, [X, Y ]])− 1

24
[Y, [X, [X, Y ]]] + ...

)
becomes relevant. It shows that for the group composition rule (8.4) to be valid, the
commutator of two generators must again be a generator, since otherwise products of
generators would remain in contradiction to (8.4). Only an algebra like (8.3) ensures that
this is the case. Put it differently, the necessity to implement the group composition forces
the algebra to obey (8.3). Except for the antisymmetry of the first two indices, this does
not yet constrain the structure constants other than to obey the group composition.

Of course, since this is an infinite series, it is not always trivial to calculate γ as a
function of α and β. Furthermore, the anti-commutativity also implies that derivatives do
act non-trivial on the αa,

∂αbe
iαaXa

= i

1∫
0

dseisαaX
a

Xbe
(1−s)αcXc

which can be obtained similarly from the series expansion. Of course, in the infinitesimal
case, this reduces to iXb.

It should be noted that (8.3) does not take notice of the actual representation of the
group, and especially not, whether it is reducible or irreducible, as long as there is at least
one distinct element for every group element. But the values of the fabc are nonetheless
fixed by the group composition, as can be seen by evaluating (8.4) to second order,

eiαaX
a

eiβaX
a

= exp

(
i(αa + βa)X

a +
αaβb

2
[Xa, Xb]

)
= exp

(
i

(
αc + βc + ifabc

αaβb
2

)
Xc

)
,
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since the parameters determine uniquely the group element, which in turn is uniquely
determined by the group composition, and which therefore determines the structure con-
stants. Since in this calculation at no point the properties of the representation entered,
the structure constants have, up to normalization, a unique value for all representations,
and hence are a structural property of the algebra, and thus group. This is not true for
the generators, which change depending on the representation.

There is one more statement, which can be made about the structure constants. If there
exists at last one unitary representation, then because of the hermiticity of the generators,

−if bac Xc = −[Xb, Xa] = −[Xb†, Xa†] = −[Xa, Xb]† = −i∗fab∗c X†c = ifab∗c Xc

and thus the Lie algebra relation

[Xa, Xb] = ifabc X
c, (8.5)

can only be true for fabc = fab∗c . Thus, when using this form of the algebra with the factor
of i explicit, then the structure constants are necessarily purely real for any group which
has a unitary representation. Since essentially all continuous groups in physics are of this
type, this will be assumed henceforth, except when otherwise noted.

Another identity, which follows directly from the algebra (8.3), is the Jacobi identity

[Xa, [Xb, Xc]] + [Xb, [Xc, Xa]] + [Xc, [Xa, Xb]]

= if bcd [Xa, Xd] + if cad [Xb, Xd] + ifabd [Xc, Xd]

= i(f bcd f
ad
e + f cad f

bd
e + fabd f

cd
e )Xe = 0. (8.6)

The last step is a consequence of the the antisymmetry of the structure constants in their
first two indices, as can be shown by explicit computation, at least for the cases relevant in
this lecture5. Using that the generators are independent, the last equation implies actually
that already the sum of products of structure constants in the parentheses has to vanish.
It is a very useful relation both in the form of the generators and the structure constants.

For the standard example of rotations, the situation is comparatively simple for rota-
tions in two dimensions. Since there rotations commute, all structure constants vanish. For
the rotations in three dimensions, this is no longer the case, as they are non-commutative.

A possible realization of the abstract generators of two-dimensional rotations is the
single generator

R2
1 =

(
0 i
−i 0

)
,

which after exponentiation yields precisely the representation of group elements (6.1). An
alternative is the one-dimensional generator 1, if the complex one-dimensional representa-
tion of two-dimensional rotations is used.

5For infinite-dimensional, or worse, cases, it is not entirely trivial.
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A possible representation of the three-dimensional rotations to yield after exponentia-
tion the group representation (6.2) is obtained by

R3
1 =

 0 i 0
−i 0 0
0 0 0

 (8.7)

R3
2 =

 0 0 i
0 0 0
−i 0 0

 (8.8)

R3
3 =

0 0 0
0 0 i
0 −i 0

 (8.9)

which therefore is a direct extension of the two-dimensional case. From these, it is straight-
forward to calculate the structure constants, which turn out to be the anti-symmetric ε
tensor, up to some constant. As will be seen later, it is no coincidence that these matrices
and structure constants look reminiscent of the Pauli matrices, and that there is a deep
relation, due to group theory, between the two groups describing spin 1/2 and spin 1
particles.

Note that there is an alternative way to derive the algebra: If a local representation
of the group should exist which maintains the group composition, this implies certain
analyticity constraints for the continuous representations. It can be shown that they can
only be met with an algebra of this structure, where the structure constants satisfy the
Jacobi identity.

8.3 Adjoint representation

As the next step it is useful to discuss a very special representation for any Lie algebra: The
Jacobi identity can be used to construct the generalization of the adjoint representation
of section 6.4 to Lie algebras. Define matrices

(ta)bc = ifabc . (8.10)

Then the Jacobi identity can be rewritten, by judiciously replacing some of the structure
constants, but not all, as

(tb)cd(t
a)de − (ta)cd(t

b)de − ifabd (td)ce = 0,

but this is just the Lie algebra (8.3), and thus the ta are a representation of the genera-
tors. For an n-dimensional6 Lie algebra, these are therefore n× n matrices, and this is a
representation on an n-dimensional, real vector space. Real, as the matrices are all purely

6As a vector space, the dimension of a Lie algebra is given by the number of linearly independent
generators.
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imaginary, since the structure constants are real. By exponentiation, which after multipli-
cation with i are purely real matrices, this yields also an n×n-dimensional representation
of the group, thus also called the adjoint. Note that the so-obtained adjoint representation
is not necessarily irreducible or faithful.

Since the generators form a vector space, it is possible to perform a linear transforma-
tion on them without changing the algebra relation,

Xa′ = LabX
b.

However, such a change induces a change of the structure constants to maintain the form
of the algebra

LadLbe[X
d, Xb] = [Xa′ , Xb′ ] = if

′ab
c Xc′ = if

′ab
c LcfX

f

implying
f
′ab
c = LadLbe(L

−1)cff
de
f .

Since any linear transformation must be invertible, the new structure constants exist. Note
any rescalings, even by complex numbers, are acceptable linear transformations, implying
that different prefactors can, and do in different conventions, appear in the structure
constants.

It is an interesting fact that one of the indices does transform differently. This is not
coincidental that this is reminiscent of covariant and contravariant vectors, as it is possible
in general to extend the concept of Lie algebras to vector spaces with non-trivial metrics,
where there are then indeed covariant and contravariant generators, and the structure
constants are tensors of third rank, similar to the Christoffel symbols of general relativity.
However, in almost all of physics such more general algebras, and resulting groups, do
not play a role, and not at all in this lecture. Therefore, in the following mostly a flat,
Euclidean metric in the vector space of generators will be assumed, except when noted
otherwise. Note that this is a restriction on the possible group manifolds. Then, the
position of indices does not matter, and will only be used to enhance readability.

As noted, the representations of the generators span a vector space. A useful scalar
product for the adjoint, and later also for other, representation is defined by

trtatb = dab, (8.11)

which is symmetric. Due to the imaginarity of the ta it yields a real number. In fact, dab

is, by construction, a real and symmetric matrix.
For an arbitrary linear transformation, this changes to

LacL
b
dtrt

ctd = LacL
b
dd
cd,

Since arbitrary linear transformations are possible, and d is a real and symmetric matrix,
it is possible to diagonalize d, d = diagk1, ..., kn, where the ki are the eigenvalues of d.
By choosing for the L a scale factor, it is possible to further transform the ki always to
either 1, 0 or −1. However, since the transformation occurs with the square of L, it is not
possible to change the signs, or transform any away from zero.
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The values of these eigenvalues actually classify the Lie algebras. The ones most
relevant in most of physics are the so-called compact Lie algebras, with ki = 1, i. e. all
eigenvalues are positive. These will be the primary concern for now. Another one of
particular interest to physics are those with one ki negative, or equivalently, all but one ki
negative. These non-compact groups contain, e. g., the Lorentz group and the Poincaré
group. Groups with any eigenvalue zero are special. Non-compact groups have their name
as there exists no non-trivial finite-dimensional unitary representations, while such do
always exist for compact groups. This will be seen later.

Returning to compact groups, it is possible to rescale all eigenvalues to some convenient
number λ, and thus

trtatb = λδab.

This basis is particular useful, as the structure constants take by (8.10) the values

fabc =
1

iλ
tr([ta, tb]tc) =

fabd
λ

tr(tdtc),

as obtained from rearranging the algebra. Because the trace is cyclic, the structure con-
stants in this basis are now antisymmetric in all three indices, rather than only in the first
two. Since this follows from the compactness of the algebra, this underlines once more
the specialness of the last index of the structure constant in general. However, in the
compact case, the scalar product (8.11) is positive definite, and thus the vector space has
an Euclidean structure. Thus, contravariant vectors and covariant vectors are coinciding,
and thus the last index does then no longer need a special treatment, and the position
does not convey information. Thus, until turning away from compact group, all indices
will be treated equally.

Note that because the generators are not only imaginary but also antisymmetric, this
implies they are hermitian. Hence, the adjoint group representation obtained by expo-
nentiation becomes unitary. Compact groups therefore have always at least one finite-
dimensional, unitary representation. At least, if the number of generators is finite.

The standard example of the two-dimensional rotations has the trivial representation,
i. e. ta = 0 and thus all group elements being 1, as the adjoint representation, as it is
an Abelian group. This implies that two-dimensional rotations are not compact, as the
only eigenvalue vanishes. This is generic for Abelian algebras. However, in contrast to
algebras of non-compact groups with one or more eigenvalues negative there still exist
unitary representations.

For the rotations in three dimensions, the adjoint representation is three-dimensional,
and coincides with (8.7-8.9).

8.4 Simple algebras and groups

The construction of subgroups from section 5.3 can now be extended to the algebra of Lie
groups. This introduces the concept of subalgebras.
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An invariant subalgebra, containing the generators {Y a}, is defined by the fact that
for any Xa in the whole algebra

[Xa, Y b] ∈ {Y a}, (8.12)

and thus the invariant subalgebra is closed.
The invariant subalgebra also creates an invariant subgroup, i. e. for any X in the

algebra there is a Z ∈ {Y a} such that

eiXeiY = eiZeiX .

or, equivalently,
eiXeiY (eiX)−1 = eiZ

This can be seen by expanding both sides to leading non-trivial order in X and Y , yielding

(1+ iX)(1+ iY )(1− iX) = 1+ iY −XY +Y X+O(X2, Y 2) = 1+ iY − [X, Y ]+O(X2, Y 2),

If the subalgebra is invariant, then the commutator is again an element of the algebra, and
thus the sum of iY and the commutator is again an element of the subalgebra. Therefore,
this is again a group element obtained from the invariant subalgebra, and therefore this is
indeed an invariant subgroup.

By definition, both the trivial algebra containing only 0 and the full algebra are invari-
ant subalgebras. These are called trivial subalgebras. If there are no non-trivial invariant
subalgebras, the algebra, and group, are called simple. As it will turn out, most things
about compact Lie groups and Lie algebras can be obtained from the study of simple Lie
groups and simple Lie algebras.

Of course, even if there is no invariant subalgebra, there can still be non-trivial subal-
gebras, i. e. a set of generators {W a} satisfying

[W a,W b] ∈ {W a}

but not (8.12). The existence of one or more non-invariant subalgebras is actually the
normal case.

Selecting a convenient basis such that there are generators Y a belonging to an invariant
subalgebra and Xa which do not belong, then

[Xa, Y b] = ifabcY c,

by construction. This implies that the fabc have to vanish whenever the indices a and c
are both from the algebra, but b is from an invariant subalgebra. Furthermore,

[Xa, Xb] /∈ {Y c}

by definition: (8.12) requires that any Xb which yields with Xa an element of the invariant
subalgebra is itself part of the the invariant subalgebra. Thus, any structure constants
where the indices mix the invariant subalgebra and the remainder of the algebra have to
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vanish. It should be noted conversely that thus the remainder of the algebra necessarily
also constitutes at least one other invariant subalgebra.

This result has implications for the reducibility of the adjoint representation. If the
algebra would be non-simple, then this implies that generators have non-vanishing sub-
matrices if the index a of the generator ta belongs to a different subalgebra than the
indices ij of the sub-matrices taij of ta. After exponentiation, this implies a unit matrix in
this submatrix. Thus, there would be invariant subspaces in this representation, and thus
the representation would be reducible. However, if there is no invariant sub-space, such
sub-matrices do not exist, and therefore the adjoint representation of a simple Lie algebra
is irreducible. This can also be seen by the fact that invariant sub-algebras form distinct,
invariant sub-spaces, and thus the algebra would not be simple.

An important case is where the is a an invariant sub-group, which consists only out
of a single generator. This subalgebra is therefore necessarily Abelian. For an Abelian
invariant subgroup the corresponding structure constants vanish. This implies that the
generator of the Abelian subalgebra anticommutes with all other generators, and thus

trtatb = −trtbta = trtatb

which can only be true if the corresponding ka vanishes. Thus, the existence of an invari-
ant Abelian subalgebra implies that the algebra is not compact. Thus, compact algebras
cannot have invariant Abelian subalgebras. Algebras without such invariant Abelian sub-
groups are called semisimple. Note that a semisimple group is not necessarily simple, as it
can have non-Abelian subgroups. Also, a compact group can have non-Abelian invariant
subgroups, and may therefore be not simple. It is semisimple groups which are highly
constrained by group theory. These are the elementary objects, and out of them others
can be constructed. Thus, unless otherwise noted, in the following only compact, simple
groups and algebras will be considered. Note that as a consequence the representations of
the algebra will be usually (anti-)Hermitian, and of the group unitary.

The standard examples are quite different with respect to this. The two-dimensional
rotation group is itself Abelian, and appears not compact. However, it has, strictly speak-
ing, no non-trivial invariant subgroup, and therefore is both simple and semisimple. The
three-dimensional rotations have no Abelian or non-Abelian invariant subgroups, though
they have non-invariant subgroups. Thus, they are compact, simple, and semisimple.

8.5 The simplest case: su(2)

To start out, it is useful to consider the simplest possible compact simple and non-Abelian
Lie algebra. This will not only illustrate many powerful concepts to be generalized later,
but this algebra will also reappear many times over as a building block.

Since this requires to have a non-vanishing three-index antisymmetric tensor, this im-
plies that at least three elements are necessary. Since in this case all other elements are
fixed by the single element f123, it is always possible to normalize this element to 1, and
thus fabc = εabc, the 3-dimensional Levi-Civita tensor. The resulting algebra

[Ja, J b] = iεabcJ c
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is not guaranteed to exist. But it does. It is well known in physics, giving the explicit
proof that it exists: This is the algebra realized by the Pauli matrices, and the algebra is
the su(2) algebra7, which after exponentiation yields the SU(2) group, well-known from
the physics of spin 1/2 particles.

The first step is to construct representations of the group and the algebra. Of course,
these are well known in physics, but for the sake of systematics it is useful to follow here
the particular route suitable for generalization in group theory.

To this end, the aim is therefore an explicit matrix realization. Since the representation
should be either reducible or irreducible, the aim is to find a block-diagonal representation
with the least possible elements of blocks. Since only finite-dimensional unitary repre-
sentations, and thus Hermitiean generators, will be considered, it is always possible to
diagonalize at least one generator. In fact, the number of diagonal generators is given by
the number of generators which commute with each other. For su(2), this is at most one,
given the values of the structures constants, which can be seen by explicit calculation. Let
this be J3.

As it can be chosen Hermitiean, the spectral theorem applies, and it has for an n-
dimensional representation space n eigenvectors forming an orthonormal basis with eigen-
values j3. These may or may not be degenerate, so they may be characterized by a second
quantity αj3 , lifting the degeneracy. Because of the hermiticity, the space spanned by the
degenerate eigenvalues can be chosen such as that the vectors for the same j3 and differ-
ent αj3 are orthogonal. Necessarily, as the representation is Hermitiean, and therefore all
eigenvalues finite, there is a largest value of j3 = j.

To proceed, raising and lowering operators J±

J± =
1√
2

(J1 ± iJ2)

are introduced, just as in spin physics. This may now seem very specific, but it will be
seen that this concept can be readily generalized later.

Explicit calculation yields

[J3, J±] = ±J± (8.13)

[J+, J−] = J3 (8.14)

as the form of the algebra in this new basis. In fact, this is a special case of the general
base transformation discussed in section 8.3. This implies

J3J±|j3, αj3〉 = (J±J3 ± J±)|j3, αj3〉 = (j3 ± 1)J±|j3, αj3〉, (8.15)

and thus J± changes an eigenvector of J3 into one of an eigenvalue differing by ±1. So far
this is the same as in spin physics.

However, now these operators will be used to construct the irreducible representations
and to provide a constructive approach to completely reduce reducible ones, thus putting
their action into the perspective of group theory.

7Note that lower case names will always signify the name of an algebra, while uppercase will signify
the associated group.
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Start with the irreducible, finite-dimensional representations. Since all steps made so
far are true for both reducible and irreducible representations, nothing has to be adapted.

Since the representation is finite-dimensional, there is a lowest value, which can be
achieved by applying J−. After that, the only possibility is to generate the zero vector, as
otherwise (8.15) would be violated, but since it follows directly from the algebra, it must
be inviolable. Can therefore all eigenvectors be reached by applying J− often enough to
|j3, αj3〉? Assume that there would be an eigenstate of J3, for which this is not the case

j3|j3, αj3〉 = J3|j3, αj3〉 6= J3
∑
ni

Jni− |j, αj〉,

but which is maximal, in the sense that acting with J+ on it would yield zero. But such
a vector would then also be linearly independent of all possible eigenvectors created from
the other highest state. Since both sub-spaces remain disconnected, these two towers of
states would form invariant subspaces, a contradiction to the assumption that this is an
irreducible representation. Thus, this case can be disregarded.

Since the states |j3, αj3〉 therefore form a complete basis, which is traversable by J±,
it is sufficient to determine all matrix elements of the generators in this basis to obtain
the explicit version of the representation. Already the requirement of the irreducibility
implies that there cannot be any degeneracy, as no operator changes αj3 , as can be seen
from (8.15). Thus, the eigenstates cannot be degenerate, as otherwise there would be copies
of the subspaces, and therefore the representation would not be irreducible. Therefore,
there is no degeneracy, and αj3 can be dropped as well.

It thus remains to determine the explicit representations. To start, note that due to
(8.15)

J−|j3〉 = Nj3 |j3 − 1〉

where Nj3 is some j3-dependent number. Now set j3 = j. Then

|Nj|2〈j − 1|j − 1〉 = 〈j|J+J−|j〉 = 〈j|[J+, J−]|j〉 = 〈j|J3|j〉 = j〈j|j〉

where in the second step it was used that J+ applied to the highest state yields zero.
Since the eigenvectors of J3 can be assumed to be normalized, this provides the value of
Nj up to a phase. But since a rescaling by a phase is always possible without changing
the normalization, it is admissible to set it by convention to one and thus

Nj =
√
j.

Thus, the action of J− on the highest state is fully specified.
Conversely, this implies

J+|j − 1〉 =
1

Nj

J+J−|j〉 =
1

Nj

[J+, J−]|j〉 =
1

Nj

J3|j〉 = Nj|j〉,

using the same trick. Since the only involved relation used in these calculation was the
algebra, this would have remained identical, even if αj3 would have been kept, showing
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that no operator can move a state outside of the subspace created by the ladder starting
from the highest state. This confirms the irreducibility argument above.

The same procedure can be used to create a recursion relation for the Nj3 ,

N2
j−k = 〈j − k|J+J − |j − k〉 = 〈j − k|[J+, J−] + J−J+|j − k〉

= 〈j − k|J3 + J−Nj−k+1|j − k + 1〉 = j − k +N2
j−k+1,

where the freedom in the phase was already used to have real Nj3 . This recursion relation
can be solved, e. g. using induction, to yield

Nj3 =
1√
2

√
(j + j3)(j − j3 + 1)

and thus the Nj3 depend both on j3 as well as the highest possible value j.

Nj3 vanishes for j3 = j − 1. Since J− only lowers j by one, this j3 is an integer. Since
the only action of J− is to replace a state by another state, the required, and assumed,
vanishing of a state for a finite-dimensional representation can only occur if j = l/2, with
l some positive integer or zero. In this case a solution is possible which is consistent with
the assumptions. Of course, for l = 0, there is only a single state, and the representation
is the one-dimensional trivial one. Note that this does not constitute a proof that there
may not be more exotic other finite-dimensional representations than the one constructed
here, though it may look obvious at the physical level. However, it can be proven, which
will be skipped here. This will follow from the general constructions later.

The non-zero different values of l always give an irreducible representation. Since there
are (2j+1) states possibly in this way, these are the irreducible representations in (2j+1)
dimensions. Hence, the lowest-dimensional, non-trivial representation is two-dimensional.

The explicit matrix elements for these representations, called the spin representation,
can now be constructed as

(Ja)
j
kl = 〈j, j + 1− k|Ja|j, j + 1− l〉

〈j, j3|J3|j, j′3〉 = j3δj3j′3

〈j, j3|J+|j, j′3〉 =

√
(j + j3 + 1)(j − j3)

2
δj′3,j3+1

〈j, j3|J−|j, j′3〉 =

√
(j + j3)(j − j3 + 1)

2
δj′3,j3−1

(8.16)

where the j are now made explicit to identify the dimensionality of the representations.
Of course, in physics it just labels the spin of the particle described by this representation,
hence also the name of spin representation.

Notoriously well known in physics is the lowest-dimensional representation with j =
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1/2,

J
1
2
1 = 1

2

(
0 1
1 0

)
=

1

2
σ1

J
1
2
2 = 1

2

(
0 −i
i 0

)
=

1

2
σ2

J
1
2
3 = 1

2

(
1 0
0 1

)
=

1

2
σ3,

where the special matrices σi are known as the Pauli matrices. They fulfill the useful
relation

σaσb = δab + iεabcσc.

Exponentiating yields the group elements

e
iαaσa

2 = cos |~α|+ i
αaσa
|~α|

sin |~α| (8.17)

where for this particular case the exponentiation is explicitly possible. This also shows
that the fundamental representation is faithful, as different ~α are mapped to different
matrices.

Since the resulting two-dimensional matrices are unitary, as it is a unitary represen-
tation, and of determinant one, this is also called8 the two-dimensional special unitary
group, or SU(2), obtained from the algebra su(2).

Since this is the lowest-dimensional non-trivial representation, since the dimensionality
is 2j + 1, this is also called the defining or fundamental representation of SU(2).

Irreducible representations of higher dimensionality can be constructed in the same
way. E. g. for j = 1

J1
1 =

1√
2

0 1 0
1 0 1
0 1 0

 J1
2 =

1√
2

0 −i 0
i 0 −i
0 i 0

 J1
3 =

1 0 0
0 0 0
0 0 −1

 .

Note that while in the two-dimensional case the resulting group is the basis for all two-
dimensional special unitary matrices, this is no true in three dimensions. There, eight
matrices would be necessary. This is only a subset of these. They will be constructed later
from a different group.

It is also no coincidence that in three dimensions there are three matrices, reminiscent of
the three Euler angles. There is a deep relation between the group SU(2) and the rotation
group SO(3) in three dimensions. Essentially, SO(3) is part of SU(2) in a particular way,
and actually their algebras su(2) and so(3) coincide. This will be returned to later, and
has to do with discrete subgroups of continuous groups.

While the representation is irreducible with respect to the group itself, it is possible
that the interesting Hilbert space in physics contains further degrees of freedom, and

8Note that the Pauli matrices are also encountered in the context of the so-called quaternions, which
are a generalization of the complex numbers.
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therefore every state can be further characterized by other observables simultaneously
diagonalizable. In this case, any state is characterized by a state vector |j, j3, ~β〉, where
~β contains all other quantum numbers. These states can always be chosen normalized in
some norm. This has the interesting consequence

〈j′, j′3, ~β′|Ja|j, j3, ~β〉 = (J j
′

a )j′3j
′′
3
δjj′〈j′, j

′′

3 ,
~β|j, j3~β〉

which can be proven by inserting a complete set of states on either side of Ja and then using
the orthogonality relation. The orthogonality relations then permit to explicitly evaluate
the matrix elements. Since the matrix elements of J are fixed by the group structure, the
group structure alone permits to evaluate all expectation values for states for which the
expansion are known. This lies at the heart of the Wigner-Eckart theorem to be returned
to later.

Since the construction principle for this irreducible representation can be generalized
to any compact Lie algebra, it is worthwhile to summarize it:

1. Diagonalize one of the generators, here J3

2. Find the state with the largest eigenvalue

3. Use the lowering operators to construct the other states from this state

4. If there are remaining orthogonal subspaces, repeat from 2.

The fact that several seemingly unique properties of su(2) have been used, like lowering
operators, foreshadows the fact that similar structures will be found for other groups.

In this context, the values possible for j3 are also called weights, and therefore the
weights of su(2) in its fundamental representation are ±1/2. Since the construction starts
with the maximal value for j3, the highest weight, this is also called the highest weight
construction. It can be proven that this procedure gives all representations, and that they
are all finite-dimensional for compact Lie groups.

8.6 Weights and the Cartan subalgebra

Discussing more general groups will be essentially an extension of the previous discussion.

The starting point is to first identify a special subset of the generators of a group:
Those which all commute with each others, i. e. those which in a suitable basis in a given
representation will be diagonal. This set of commuting generators is called the Cartan
subalgebra, or a subalgebra of the Cartan subalgebra if a non-maximal set is chosen.
However, the maximal set will be shown to be unique, up to trivial redefinitions, and is
therefore usually meant when speaking of a Cartan subalgebra. In the case of su(2), this
was J3.
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For su(3), these are J3 and J8 in the usual Gell-Mann representation of the generators

2J1 =

0 1 0
1 0 0
0 0 0

 2J2 =

0 −i 0
i 0 0
0 0 0

 2J3 =

1 0 0
0 −1 0
0 0 0


2J4 =

0 0 1
0 0 0
1 0 0

 2J5 =

0 0 −i
0 0 0
i 0 0

 2J6 =

0 0 0
0 0 1
0 1 0


2J7 =

0 0 0
0 0 −i
0 i 0

 2J8 =
1√
3

1 0 0
0 1 0
0 0 −2

 , (8.18)

which will be used in the following as a second example. The number of such generators
is called the rank of the algebra.

Chose a representation with hermitian generators. Then the elements Hi = H†i of the
Cartan subalgebra satisfy

[Hi, Hj] = 0.

This is again a vector space, as any linear combinations of the subalgebra is again in the
subalgebra.

It is possible to chose a basis in this vector space satisfying

trHiHj = kDδij.

Therefore the generators are again orthogonal in the sense of this scalar product.
Since by construction the Cartan subalgebra is the maximal set of commuting gen-

erators, it is always possible to find for a given representation a basis in which they are
diagonal. As a consequence, any eigenvector of some Hi is also an eigenvector to any
other Hj as well, tough for a possibly different eigenvalue. Thus, given any eigenstate, it
is characterized by the eigenvalues for all the Cartan elements collected by a vector µj,
where j runs over the dimensionality n of the Cartan subspace in which the representation
is

Hi|µj, β〉 = µji |µ, β〉 (8.19)

and β collects all other quantities needed to specify the vector uniquely, e. g. if the rep-
resentation in question is reducible. The eigenvalues can also be collected in n vectors of
a dimensionality equal to the rank. The collection of µji are called the weights or weight
vectors µi. Since the generators can always be chosen Hermitian, they can always be made
real.

For su(2) with rank 1 in the two-dimensional representation, there are two one-dimensional
weight vectors, (1) and (−1), or one two-dimensional vector (1,−1).

For su(3) with rank 2 in the three-dimensional Gell-Mann representation the three
eigenvectors are(1, 0, 0), (0, 1, 0), and (0, 0, 1). There are three two-dimensional weight
vectors, (1/2,

√
3), (−1/2,

√
3/6), and (0,−1/

√
3). They can also be collected in two

three-dimensional vectors, (1/2,−1/2, 0) and (
√

3,
√

3/6,−1/
√

3).
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It is often useful to construct a vector-of-vector notation, especially

αµ = αiµi

to define a sum over a product of the weight vectors with another set of vectors αi of
dimensionality rank. The expression αiµi is then the ordinary scalar product in Rrank.

8.7 Roots

For the adjoint representation the values of the weights are special. It will be seen that
they can be used to uniquely specify the basis of the representation, which will be useful
later on.

To calculate them, note that the adjoint representation has the same dimensionality d
as the algebra itself. It is therefore possible to select for every generator Xa a unique base
vector |a〉. Thus, in this basis a linear combination of two states correspond to a linear
combination of the corresponding generators, αXa + βXβ ∼ α|a〉+ β|b〉.

The action of a generator in this basis is therefore given by

Xa|b〉 = |c〉〈c|Xa|b〉 = −ifacb|c〉 ≡ |[a, b]〉 (8.20)

In the second step it was used that the adjoint representation has the structure constants
as matrix elements. In the third step it was then defined that this particular linear
combination of base vectors is denoted by the base vector of the commutator. This is
convenient, but just a notation. By construction, (8.20) implies that the vectors |[a, b]〉
are zero vectors if both a and b are elements of the Cartan subalgebra. Hence, rank m of
these vectors are zero vectors.

To give a particular example, choose once more su(2). A suitable basis is the Cartesian
basis and associating Xa ∼ ea. The resulting matrix representation of the three generators
becomes

X1 =

0 0 0
0 0 −i
0 i 0

 X2 =

 0 0 i
0 0 0
−i 0 0

 X3 =

0 −i 0
i 0 0
0 0 0


which are surely hermitian and traceless, but none of them is diagonal in this basis. Note
that the action of the generators in this basis on their corresponding state is to annihilate
this state vector, Xa|a〉 = 0. Note that the Cartan element is not diagonal in this basis.

Since the representation of the generators are by construction Hermitian, their eigen-
vectors form a complete basis. Thus, there exists a suitable basis |α〉, in which every base
vector is an eigenvector to every Cartan element,

Hi|α〉 = αi|α〉.

By construction, the α are then the weight vectors in the adjoint representation. Here
and hereafter the index j identifying the individual basis vectors |αj〉 is suppressed, if not
needed explicitly.
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For the su(2) case, there is only one Cartan element, which has eigenvalues 1, 0, and
−1. Diagonalizing the Cartan element by a basis change, this becomes

H =

1 0 0
0 −1 0
0 0 0

 .

The base vectors |α〉 in this new basis are again the conventional Cartesian unit vectors.
However, they are no longer directly associated with the original generators. However,
there are now three rank(=1)-dimensional weight vectors (1), (0), and (−1) or a rank(=1)
three-dimensional weight vector (1, 0,−1). This emphasizes that the number of weights
depends on the representation.

Of course, this can be done fo any algebra. It is then possible to find linear combinations
Eα of the non-Cartan generators such that

[Hi, Eα] = αiEα (8.21)

is satisfied, where the α are the weight vectors. Thus the other generators can be written
such that they are characterized by the d − m m-dimensional non-zero weight vectors,
which specify their commutation relations with the Cartan subalgebra. Since the Cartan
elements commute with each other, the remaining m weight vectors are necessarily zero
vectors in this basis. To keep the association with the base vectors, this implies also a
change of basis.

This permits still to chose a new normalization of the generators. It is convenient to
select

trH†iHj = trHiHj = λδij

trE†αEβ = λΠδαiβi , (8.22)

where λ is some overall normalization constant.
As an example consider su(2). Given the diagonal form

H =

1 0 0
0 −1 0
0 0 0

 ,

the corresponding new basis then yields for the Eα

Eα=(−1) =

0 0 0
0 0 1
1 0 0

 Eα=(1) =

0 0 1
0 0 0
0 1 0

 . (8.23)

If V is the matrix to diagonalize, say, X3, then for su(2)

E(±1) = Λ(iV X1V −1 ± V X2V −1),
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where Λ = diag(−1,−1, 1/2) is a normalization of the type discussed in section 8.3, en-
suring (8.22). This implies, e. g.,

[H,E(−1)] = −1E(−1),

making the appearance of the weight factors and the naming explicit.
Note that all matrices remain Hermitian and traceless, though they are no longer

imaginary. Furthermore, they act now differently on the base vectors,

Eα|α〉 = 0 (8.24)

Eα|0〉 = |α〉 (8.25)

Eα| − α〉 = |0〉, (8.26)

Thus the Eα move the base vectors around. Note that |0〉 is not the null-vector, 0, but
indicates here the zero weight vector in the direction of the Cartan algebra. In the su(2)
cases, these are the base vectors |1〉, |0〉 and | − 1〉, and the Eα act like the conventional
ladder operators.

It is not an accident that in the example Eα = E†−α holds. This applies generally. To
see this, take the hermitian conjugate of (8.21),

−[Hi, Eα]† = [Hi, E
†
α] = −αiE†α.

Here, it has been used that the weight vectors are real as eigenvalues of the Hermitian
matrices of the Cartan subalgebra. This implies that

E†α = E−α

Thus, as long as α 6= 0, this implies that there is in this basis always a negative weight
corresponding to a Hermitian generator. The form (8.23) shows this explicitly, but the
proof did not make reference anywhere to su(2), and is therefore generally valid. This
also implies that in this basis not all generators are Hermitian. This is not a problem,
as the explicit example of su(2) with the basis J3 and J± shows, where the J± also are
not Hermitian, but satisfy J†± = J∓. More importantly, this implies that the number of
non-Cartan generators is necessarily even for a Lie algebra, and that all non-zero weight
vectors in the adjoint representation always come in pairs of opposite sign.

The weights in this basis are called roots, and their vectors hence root vectors. There
are two interesting features of this particular way of choosing the representation.

One is that the operators E±α raise and lower the weights µ of any given state by ±α,
where γ are any other involved quantum numbers,

HiE±α|µ, γ〉 = ([Hi, E±α] +E±αHi)|µ, γ〉 = (±αiE±α +E±αHi)|µ, γ〉 = (µi±αi)E±α|µ, γ〉.
(8.27)

This has already been seen in (8.24-8.26) for the particular case of the state with weights
the roots. Especially, this implies that acting with E±α on the respective other state |∓α〉,
these states are annihilated, as (±α∓ α) = 0.
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Due to (8.20), this has implications for the commutator of Eα and E−α. This can also
be seen in a more explicit way. First, note that by explicit calculation using (8.21)

[Hi, [Eα, E−α]] = 0

Hence, the commutator must be proportional some linear combination βiHi of the Cartan
generators. As usual, the coefficients can be obtained by tracing,

λβi = trHiβjHj = trHi[Eα, E−α] = tr[Hi, Eα]E−α = αitrE
†
αEα = λαi

and thus

[Eα, E−α] = αiHi. (8.28)

Again, this directly visible from the explicit su(2) case,

E(1)E(−1) − E(−1)E(1) = (1)1H1 = diag(1,−1, 0)

E(−1)E(1) − E(1)E(−1) = (−1)1H1 = diag(−1, 1, 0).

Note, how the choice of exchanging the two Eα does exchange the αi on the right-hand
side.

Though not explicitly written here, these results are encoding a lot more. In general,
there are n generators of which m form the Cartan subalgebra. In the d(= n in the
adjoint representation)-dimensional representation, there are thus d weight vectors of di-
mensionality m. In the adjoint representation, these are either zero or come pairwise with
opposite signs. Thus in statements like (8.28) actually α is also a counting index counting
the weight vectors, and in a more explicit notation, α would receive an index j running
from 1 to d−n/2, where the division of 2 comes from the ±-degeneracy, with components
αji .

This is once more explicit in the su(2) case. In the 2-dimensional representation, there
is one Cartan element, and thus there are two weight vectors which are one-dimensional. In
the 3-dimensional adjoint representation, there are three one-dimensional weight vectors,
one being zero, and the other two being the negative of each other. For su(3), with a two-
dimensional Cartan algebra, the lowest-dimensional representation is three-dimensional.
Thus, there are three two-dimensional weight vectors. The adjoint representation is eight-
dimensional, and there are thus eight two-dimensional weight vectors. Of these two are
zero, as they correspond to the two Cartan-elements. The other decompose into three
pairs, each pair related by a sign.

The number of non-trivial weights is actually the same. In the two-dimensional su(2)
case it is two and so it is in the adjoint representation. In the su(3) case, it is in the
three-dimensional representation 3 × 2 = 6. In the adjoint representation, there are only
three independent, non-zero weight vectors, and there are therefore again six independent
weights. That does not seem to be a coincidence, and the weights indeed will play an
important role in the following.
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8.8 The su(2) substructure of arbitrary algebras

Now it turns out that any non-zero root vector actually selects an su(2) subalgebra of
every algebra. To see this, define generators9

J± =
1

|α|
E±α (8.29)

J3 =
αiHi

|α|2
. (8.30)

Thus while the so-defined J± generators are simple generators and depend implicitly on
the choice of α, J3 is an object involving potentially the whole Cartan subalgebra, but still
remains an element of the Cartan subalgebra. Note that in principle there are several such
sets of generators, which should be distinguished by having an index α identifying them.
If it is not necessary to distinguish two different sub-algebras, this will be suppressed.

In the su(2) case itself, there is only a single root vector, α = (1). Thus the sum for
J3 collapses, and J3 = H, as α2 = (1)2 = 1. Trivially then J± = E±α.

In general,

[J3, J±] = ±αiαiE±α
|α|3 = ±E±α

|α| = ±J± (8.31)

[J+, J−] = [Eα,E−α]
|α|2 = αiHi

|α|2 = J3, (8.32)

which, by comparison to (8.13-8.14), is an su(2) algebra. This identifies therefore an su(2)
subalgebra in any Lie algebra. Moreover, because every generator has been associated
with a root vector, this implies that every group has su(2) subalgebras of this form. This
implies again that the number of non-Cartan generators of every group is even, as all
non-zero root vectors appear pairwise. Especially, this also implies that every irreducible
representation of any algebra can therefore be decomposed into irreducible representations
of su(2). This will be a decisive insight in the following.

One question still arising is about the uniqueness of root vectors, i. e. can there be
degenerate root vectors, which correspond to different Eα. Assume that there is a second
generator E ′α to the same α. If it is not proportional to the original Eα, its corresponding
base vector can always be decomposed into a part proportional and orthogonal to the one
of Eα. But, by construction, the base vectors are eigenvectors of the Cartan, which form
a full base, labeled by α. Thus, the orthogonal part is either an element of the Cartan, or
belong to a different α, and therefore the operator cannot be different.

Furthermore, two different root vectors cannot be proportional to each other, except
for sign reversal. Any such proportionality would rescale J3 by its inverse. But since
the representation is three-dimensional, since it is the adjoint representation of an su(2)
subalgebra, the eigenvalues of J3 must necessarily be ±1 or zero. Thus, a constant of
proportionality would yield the wrong behavior. Alternatively, because of (8.27), any α
different would require further states than the three included in the adjoint representation.

9Note that the operators J3 represent charge operators in physics.
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Note that this construction also implies an important statement about generators. The
point of the whole construction is that every generator can be rewritten as a sum of gen-
erators of su(2). These are traceless, since the raising/lowering operators are traceless to
connect different states. The Cartans are also traceless, as any su(2) representation is
symmetric, and therefore all Cartan elements have the same positive and negative eigen-
values, and are thus traceless as well. Hence, generators are always traceless. Note that
the deconstruction has only be performed for compact Lie groups, so this statement also
only applies to compact Lie groups.

8.9 Geometry of weights

The fact that it is possible to decompose the set of generators of every algebra according
to (8.29-8.30) into sets of su(2) generators has very important consequences. Especially,
since the algebra is a linear space, these combinations can also be used to define a new
base of generators, which still satisfy the su(2) algebra (8.13-8.14), even when applied in
a different representation.

Select some representation D and some state of the corresponding vector space having
weight µ and some other quantum numbers γ. Then select one of the su(2) subalgebras,
characterized by the root vector α, and apply its J3 to the vector. This yields

J3|µ, γ〉D =
αiHi

|α|2
|µ, γ〉D =

αiµi
|α|2
|µ, γ〉D. (8.33)

Thus the eigenvalue of an arbitrary state of any representation of any J3 is given by the
projection of the weight vector on the root vector. Because J3 is part of an su(2) algebra,
it is necessary that its eigenvalues must be integer or half-integer, since this follows entirely
from the algebra as shown in section 8.5.

Since the space is some representation space of the group, the vector is some linear
combination of the basis vectors of the contained representation. Consider the case where
the highest su(2) representation is j. Now, there is then some p ≥ 0 such that

(J+)p|µ, γ〉D 6= 0

(J+)p+1|µ, γ〉D = 0.

Applying J3 yields

J3(J+)p|µ, γ〉D =
α(µ+ pα)

α2
|µ, γ〉D

However, this must be an eigenstate of J3, since all other contributions have been filtered
out using the raising generator, and therefore the pre-factor

α(µ+ pα)

α2
= j (8.34)

must be proportional to j, and thus integer or half-integer, as otherwise another raising
operator would not annihilate it.
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In the same way the application of lowering operators yields

(J−)q|µ, γ〉D 6= 0

(J−)q+1|µ, γ〉D = 0,

for some integer q, but which must then be an eigenvector of J3 to eigenvector −j. Setting
both results equal yields

2
αµ

α2
+ p− q = 0→ αµ

α2
= −1

2
(p− q), (8.35)

which is a central statement in the following, as it will be the key for classifying Lie
algebras. Note that j does no longer appear, and therefore the particular representation
does not matter.

Now consider the case that µ is actually also a root vector, say β. This yields

αβ

α2
= −1

2
(p− q).

But the vector |µ, γ〉D was general. Selecting instead the subalgebra characterized by the
root vector β and using µ = α instead yields

βα

β2
= −1

2
(p′ − q′), (8.36)

where p′ and q′ are again some other integers.
The true power of this result is found by multiplying both equations yielding

(p− q)(p′ − q′)
4

=
(αβ)2

α2β2
= cos2 θαβ (8.37)

This implies that the angle between the root vectors cannot be arbitrary, since the expres-
sion on the left-hand-side involves only integers. In fact, θαβ can only have the non-trivial
values π/2, 3π/2, π/4 or 5π/6 - zero or π only occur if α = ±β, and thus correspond
to the same su(2) subalgebra. Hence, the root vectors can only appear in very specific
geometrical combinations.

8.10 The space of weights for su(2) and su(3)

To make the two previous, rather abstract, constructions more tangible, it is useful to
consider examples. For the su(2) case itself, with only one root vector (1,−1, 0), there
can only be two angles in (8.37), 0 or π. In the one-dimensional space of weight, they are
symmetric around zero, being in the lowest-dimensional representation (1) and (−1) and
in the three-dimensional adjoint representation (1), (0), and (−1). Thus, one of the two
angles only describes the case of the negative root vector. For the su(3) case it is more
interesting.
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For su(3) the Cartan subalgebra is given by J3 = H1 and J8 = H2. In the lowest(= 3)-
dimensional representation these have the eigenvalues {1/2,−1/2, 0} and
{
√

3/6,
√

3/6,−
√

3/3}, as can be read off from (8.18). Thus there are three weight vectors,
combining two components each. If plotted in a plane of eigenvalues of H1 and H2, the
weight plane, they form an equilateral triangle, at the corresponding coordinates.

From the remaining 6 generators it is then possible to construct three su(2) subalgebra
pairs of raising and lowering operators. They can be enumerated by the root vectors. These
root vectors must be the differences of weights, since the raising and lowering operators
must move from one root vector to another by virtue of (8.27), and thus shift the eigenvalue
by one. Using (8.18), it can be shown that the combinations

J±(±1,0) =
1√
2

(J1 ± iJ2) (8.38)

J±
(±1/2,±

√
3/2)

=
1√
2

(J4 ± iJ5) (8.39)

J±
(∓1/2,±

√
3/2)

=
1√
2

(J6 ± iJ7). (8.40)

fulfill these requirements. Note that the three J3 generators belonging to the three algebras
are given by

J3
±1,0 = J3

J3
±1/2,±

√
3/2

=
1

2
J3 +

√
3

2
J8

J3
∓1/2,±

√
3/2

= −1

2
J3 +

√
3

2
J8.

Thus, only for the first root vector they are given by one of the original Cartan generator
like in the su(2) case, and are otherwise linear combinations. But these three are not
linearly independent, and are just different linear combinations of the Cartan elements.

The adjoint representation of su(3) is eight-dimensional, as there are eight generators.
Each element of the Cartan has therefore eight eigenvalues, and thus there are eight two-
dimensional root vectors, which can be drawn in the same weight plane as the triangle.
Two of them are necessarily zero vectors, leaving six non-trivial ones. These are given
explicitly by the structure (8.38-8.40) due to (8.33). In the end, the non-zero root vectors
are found to form a regular hexagon, with π/6 angels. Note that these eight vectors are
not linearly independent, as the space is still the two-dimensional weight space of the two-
dimensional Cartan subalgebra. This ambiguity shows that somehow weights and roots
contain still superfluous information. This can be changed by requiring ordering, as will
be discussed next.

8.11 Simple roots

Somehow, weight vectors in general, and root vectors in particular, contain too much
dependent information. While eventually it is arbitrary how to deal with this, there is
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one approach which turns out to be particularly suitable, which proceeds by introducing
an ordering principle in the weight vectors. The thing which is needed to be implemented
is thus some mechanism that a statement that a given weight is positive makes sense, so
that raising and lowering operators due to (8.27) actually do raise or lower. Especially,
this will require to define what is meant by highest weight.

In general, there is no ordering relation for vectors. However, in any fixed basis,
it is possible to order by components. Introducing a fixed basis may seem suspect at
first, as basis invariance is one of the greatest achievements of mathematics. But this
will be rectified later, and the results will actually be basis invariant. For the practical
calculations, however, it is as often useful to work in a fixed basis.

Once agreed, and given the weights in some basis, the convention will be the following:
If the first non-zero component, counting from the top, is positive, then a weight or root is
called positive. If it is negative, it is called negative. This also pertains to combinations.
E. g. µ − ν for two weight vectors µ and ν is positive if the first non-zero component of
the result is positive.

In case of the two one-dimensional weight vectors in the lowest-dimensional represen-
tation of su(2), (1) and (−1), the first is thus positive and the second negative. For su(3),
the weight (1/2,

√
3/6) is positive and the weights (−1/2,

√
3/6) and (0,−

√
3/3) are neg-

ative. Of the root vectors, three are positive and three are negative, as can be read from
(8.38-8.40). The two zero roots are, of course, neither positive nor negative. Hence, for
an arbitrary representation the number of positive and negative weights do not need to
match, as is visible for su(3) in the lowest-dimensional representation. But because of the
relation that for every positive root α there is the reversed root −α, there is always the
same number of positive as negative roots in the adjoint representation. Finally, a change
of basis may change the relative number of positive and negative weights, but not of roots.

As is visible from these examples, not all roots (or weights) are independent, as soon as
the representation has a higher dimension than the Cartan subalgebra. This is automat-
ically the case for the the adjoint representation of any non-Abelian algebra. In fact, at
most as many weights can be linearly independent as is the dimensionality of the Cartan.
Thus, there must be a minimal set of roots from which all others can be constructed. Since
the roots can be used to construct the group, it would be good to identify this minimal set
in terms of roots. So the question is, which of them are the independent ones. Well, any
set which is linearly independent. But this leaves the problem of identifying a useful one.
It turns out that a particular useful statement is that all roots can be created from a set of
basic roots, the so-called simple roots. These are defined as all positive roots which cannot
be written as sums of other roots. That this is sufficient for any Lie algebra requires a
proof, whose construction will also provide further interesting insights. This is necessarily
a stronger requirement than just linear independence, as the case of su(3) shows explicitly.

It is best to do so step by step.
First note that the difference α − β of two simple roots α and β cannot be a simple

root. If β > α, then β − α is positive. But then is −β a sum of two positive roots,
α− (β − α), and can therefore be not simple. In the reverse case so is α, and also β 6= α.
If the first non-zero components match, the ordering can always be done according to the
second components, and so on, since not all components can be identical. Visually, this
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can be directly seen in the case of su(2) and su(3).
Because α−β is not a simple root, the corresponding base vectors have to vanish under

the action of the corresponding raising and lowering operators,

J−α |β〉 = 0 = J−β |α〉

as they act in the subspace of different su(2) subgroups. In terms of the adjoint repre-
sentation of su(3), which is eight-dimensional, there are two dimensions being the Cartan,
and three pairs which combine with some combination of the Cartans to form three su(2)
subspaces of three dimensions each. The lowering and raising operators only act on states
in these subspaces.

Using (8.35), this implies for two integer p and p′

cos θαβ = −
√
pp′

2
β2

α2
=

p

p′
,

and thus yield an even stronger constraint for simple roots. This implies that

π

2
≤ θαβ < π, (8.41)

where the upper bound stems from the fact that both roots must be positive.
This helps in establishing that simple roots are linearly independent. Consider an

arbitrary linear combination γ of simple roots

γ = µ− ν =
∑

xαα−
∑

yββ,

where xα and yβ are all positive. Since both sums run over all roots, it is always possible
to split the sum into those with positive coefficients and negative coefficients and isolate
the sign as a prefactor as done here. If the simple roots would be linearly dependent,
then there would be a non-trivial possibility to choose all prefactors such that γ vanishes.
However, the norm satisfies

(µ− ν)2 = µ2 + ν2 − 2(µν) > 0

due to (8.41) - the cosine of the angle in this range is always negative or zero, and thus the
last term is never negative. Since not both µ and ν can have zero norm at the same time,
the norm of γ is always non-zero, and hence the simple roots are linearly independent.

On the other hand, by definition, all other positive roots can be obtained by sums
of the simple roots with positive, integer coefficient, since negative coefficients are not
permitted as this would yield a difference and hence not a positive root.

This leads to the conclusion that the number of simple roots is actually the dimen-
sionality of the root space, 1 for su(2) and 2 for su(3), and thus there are as many simple
roots as the dimensionality of the Cartan. If this would not be the case, there would
be some root δ which cannot be determined by the linearly independent roots. But the
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corresponding Cartan element δH would then commute with all E±α due to (8.21). Thus,
it would belong to a different disconnected subalgebra then those present, but this is only
possible if the group is not simple, in contradiction to the starting point.

hence, the simple roots span the space of roots. Therefore, there should be a construc-
tive way to obtain the remaining roots. The negative roots are trivially obtained by a
multiplication from the positive ones, and the zero roots are also known. It thus requires
only to obtain the remaining non-simple positive roots. These are sums of the simple
roots, but which?

Due to (8.27), it is sufficient to act with the Eα on the simple roots, until evaluation
of (8.35) yields a contradiction. The only question to answer is, if this procedure could
miss some positive root γ. This does not happen, since this would imply that acting on
any such state with E−α must annihilate it. However, it is still a linear combination of the
simple roots, thus

γγ =
(∑

kαα
)
γ

But because of (8.33), this is just the eigenvalue of the state γ, and this needs to be
negative. At the same time, this is the norm of the state, which must be positive, leading
to a contradiction. Hence, the described procedure generates all positive, and thus all,
roots.

Still, this has not yet identified the simple roots. For su(2), this is just (1). For su(3),
these are the two roots (1/(2

√
3),±1/2), since (1/

√
3, 0) can be written as their sum, and

is therefore by definition not simple. Since there must also be two simple roots, and these
are the only remaining positive roots, these two are the simple roots.

Note that (8.35) also implies that the lengths of different roots cannot be arbitrary. In
fact, simple roots can have at most two different lengths. As a consequence, the ones with
the smaller length are called short root, and the other long roots. If all simple roots have
the same length the algebra is called simply laced.

8.12 (Re)constructing the algebra

Since the simple roots contain all information about the other roots, it must be possible
to reconstruct the entire algebra from it. This is indeed possible. To see how this works,
follow the example of the su(3) case, where there are two simple roots.

First, the number of simple roots gives the dimensionality of the Cartan algebra, n.
For su(3), this is n = 2.

Then, every simple root encodes one su(2) subgroup, satisfying the corresponding
algebras (8.31-8.32). So there are at least n, implying at least 3n generators. For su(3)
3n = 6. In addition, every positive root obtained from the simple roots satisfying (8.35)
adds another two generators, in total 2(#simple roots−dim Cartan). For su(3), there is
only one more such root, yielding in total 6 + 2 = 8. The remaining algebra relations can
be obtained from (8.27), as well as from the relations leading up to (8.35).
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To see how to proceed, note

HEα|β〉 = H|[α, β]〉 =
√

2
α(α + β)

α2
|α + β〉

⇒ [Eα, Eβ] =

√
2α(α + β)

α2
Eα+β,

up to a phase, chosen by convention. The second equality comes from (8.27), and the
first equality from the definition of the adjoint representation. Thus the vector with the
sum of roots must be the same as the vector of the commutator, uniquely giving the
commutator. The factor

√
2 appears as tr[Eα, Eβ]2 = 2trE2

γ , and is thus required to keep
a consistent normalization. Thus, for α and β simple roots, this creates the remaining
relations. Especially for su(3), this implies

[Eα1 , Eα2 ] =
√

2

(
1− 1

2

)
Eα1+α2 =

1√
2
Eα1+α2 .

Since these are the only non-trivial commutators, every other commutator can then be
obtained by expanding and using the base commutators (8.31-8.32).

8.13 A non-trivial example: g2

To exemplify the concepts, another non-trivial example is useful. This will be the Lie
algebra g2, which is important for many reasons. For now, it just pops up out of nowhere,
but it will become evident how it comes about later.

This algebra is also a rank 2 algebra, and has thus two simple roots α1 = (0, 1) and
α2 = (

√
3/2,−3/2). The angle between both simple roots is 5π/6, since

α1α2 = −3

2
.

Also, the second simple root has now a length of 3, rather than 1 as before.
Because

2α1α2

(α1)2
= −3 (8.42)

2α2α1

(α2)2
= −1, (8.43)

the lowest states are at magnetic quantum numbers −3/2 and −1/2. Thus, because of
(8.36), the corresponding states can be increased up to 3 and 1, yielding 7 and 3 individual
states. It is possible to act with Eα1 three times as a raising operator before hitting
eventually zero weight, and thus a Cartan (and afterwards negative roots), while this is
possible only once with Eα2 . Thus, p1 can be at most 3 and p2 can be at most 1. Hence, in
the adjoint representation, the system contains a spin-3/2 and a spin-1/2 representation of
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two su(2). If the adjoint representation would be completely reducible, this would imply
21 generators. But it is irreducible, thus reducing the number of generators.

This can be seen as follows. All other roots are given by linear combinations of the
simple roots in the general form

q1α1 + q2α2

for some positive integers q1 and q2 6= q1 (because no multiple of a root is a root), but by
virtue of (8.36)

2αi(q1α1 + q2α2)

(αi)2

must be integer. Inserting (8.42-8.43), this yields that there are only four combinations

α1 + α2 2α1 + α2 3α1 + α2 3α1 + 2α2

which satisfy the equation, and are thus roots. Note that either qi = 0 will not move
into different su(2) subalgebra, and therefore is also not an option. This is a corollary
to the fact that (non-trivial) multiple of roots are not roots. Thus, there are in total 2
(Cartan)+4 (simple roots)+8 (other roots)=14 generators in g2, with a thus not so empty
root diagram.

8.14 The Cartan matrix

As the example of g2 showed, the actual relevant information are encoded in the number
of times simple roots pi and other roots qi appear. Thus in any representation for every
weight vector the Cartan for a given simple root applied to its state yields twice its J3
eigenvalue due to (8.35),

2J3|µ〉 =
2Hαi

(αi)2
|µ〉 =

2µαi

(αi)2
|µ〉 = (qi − pi)|µ〉

If in the adjoint representation µ is a positive root it can be written as a linear combination
of simple roots µ = kiα

i,

qi − pi =
2µαi

(αi)2
= kj

2αjαi

(αi)2
= kjAji (8.44)

holds. Thus the information on the eigenvalue is contained in the entries of the matrix

Aij =
2αiαj

(αi)2

called the Cartan matrix. The vector k describes the composition of the root in terms of
simple roots. Due to the factor two and (8.36) all entries of A are necessarily integers. By
construction the diagonal entries are all 2, and thus the non-trivial information resides in
the off-diagonal entries. Due to (8.35), the only possible values of pi− qi for positive roots
are 0, −1, −2, and −3, and thus only these values can appear in the off-diagonal elements.
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This information, as it is a product between different roots, implies how simple roots fit
into the subalgebras described by the other simple roots. Of course, since these are just
projections of the simple roots, which are linearly independent, A is invertible.

For the cases so far, the Cartan matrix of su(2) is one-dimensional, and therefore can
have only the element 2. The others are

Asu(3) =

(
2 −1
−1 2

)
Ag2 =

(
2 −1
−3 2

)
,

confirming once more that the two su(2) subgroups of su(3) are equivalent, but for g2 they
are not: It is the number of times the lowering/raising operators can be applied to the
other subalgebras without hitting zero. Thus, in the su(3) case, both simple-root su(2)s are
in the spin 1/2 of the other one, while in the g2 case, they are in different representations.

The Cartan matrix can then be used to simplify calculating the other roots, rather than
using every time a geometric check by (8.35). Applying a simple root raising operator Jαi
to a root will raise it by one element in this simple root direction, i. e. ki → ki + 1. This
implies the eigenvalue, according to (8.44) is changed to

qj − pj + Aij, (8.45)

as the corresponding term is increased.

Now, for the simple roots, there is always only one ki which is different from zero,
and has value 1. This is called the k = 1 layer. Applying the corresponding lowering
operator will reduce this by one, and thus all ki are zero, which is thus a zero root, and
hence belongs to the Cartan. It is therefore more interesting what happens when a raising
operators is applied. Then, there is only one possibility, i. e. one other ki is increased by
one, since otherwise a non-trivial multiple of a root is obtained, which is not a root. Thus,
now two ki values are non-zero.

Now, consider the following. Every simple root corresponds to a line of the Cartan
matrix. The diagonal element is just normalization, and therefore does not matter. The
other one represents the lowest value the spin of the su(2) algebra can have in the corre-
sponding representation of the other su(2) subalgebras. Since the simplest root are at the
same time constructed to give, according to the derivation of (8.35), the lowest possible
values for the corresponding representations, this implies that no other root can exceed
these values. Thus, using (8.45), this permits to construct all other roots.

For su(2), this is trivial, since there are no other roots.

For su(3), start with the two simple roots. They have (2,−1) and (−1, 2) as the
corresponding matrix rows. Now, no multiple of roots are roots, so the only possibility is
to add the roots, yielding α1 + α2. This implies, according to (8.45), the lines, yielding
(1, 1). Since the two −1 indicate that the possible range is {−1, 0, 1}, this is acceptable,
and therefore another root. Forming α1 + 2α2 yields (0, 3) and 2α2 + α1 yields (3, 0).
In both cases, one of the components exceeds the allowed range, and thus neither is a
root. Since there is no other possibility to proceed, as every step corresponds to applying
another raising operator, this is finished, and all positive roots for su(3) are constructed,
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and the negative ones are obtained by inflection. This gave three positive roots, three
negative roots, and two zero roots, obtaining the eight generators again.

For g2, this is more complicated. The matrix rows are (2,−1) and (−3, 2), implying
the allowed ranges to be different, [−3, 3] for the first element and [−1, 1] for the second.
The first is to add both simple roots, yielding (−1, 1), which is valid, and thus another
root has been gained. Adding α2 yields (−4, 3), and therefore this is not a root, as it is
outside the allowed interval. (1, 0) from 2α1 + α2 is. Going on yields only one possibility,
as 2α1 + 2α2 is a non-trivial multiple of a root, and thus not a root. Hence, only 3α1 +α2

with (3,−1) is obtained, and is valid. Then, 4α1 +α2 is (5,−2) is again invalid. 3α1 + 2α2

has (0, 1) and is valid. Since the only remaining options 4α1 + 2α2 and 3α1 + 3α2 are
again non-trivial multiples, this terminates, and therefore, this created all the positive
roots previously found.

Of course, this can be extended to negative roots by subtracting rather than adding,
or just by inflection.

8.15 The fundamental representations

So far, most of this applied to the adjoint representation. But the (simple) roots can also
be used to make statements about any other (irreducible) representation.

Choose a representation D. Then there are states of highest-weight µ such that

Eαi |µ〉 = 0

for any simple root αi, and thus for any positive roots, which are only linear combinations
of simple roots. In fact, the whole representation will be later constructible from applying
combinations of E−αi to these states.

In (8.35), which was derived for states in arbitrary representation, this implies to set
p = 0, and thus

2αiµ

(αi)2
= li, (8.46)

where the li are, because of (8.35), (non-negative) integers. Since the αi form a complete
basis, the µ are uniquely determined by these scalar products. Conversely, every set of
li defines the representation for which the µ are highest weight states. Since there are
rank simple roots, every representation of a simple Lie algebra can be labeled entirely by
a set of rank non-negative integers. These integers are called Dynkin coefficients. For
the adjoint representation, these are given by the projection of the simple roots onto
each other. Therefore, the Cartan matrix contains the Dynkin coefficients of the adjoint
representation.

There are weight vectors satisfying

2αiµj

(αi)2
= δij,

from which all other weight vectors can be reconstructed by

µ = ljµj
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They therefore represent, in an abstract way, the base of the weight space. Note that
though the µi are highest weights of an irreducible representations, the so constructed
weights may not necessarily be irreducible, as they have contributions from different ir-
reducible representations. But they will always contain some irreducible representations,
which can be identified using the methods to be discussed in chapter 10.

Since there are rank different such sets of base weight vectors, they correspond to rank
different irreducible representations. These are called the fundamental representations
of the group. These representations need not be of the same dimensionality, nor need
they to be different from other representations. As will be seen, the two fundamental
representations of su(3) have both the same dimensionality, and are the lowest ones. For
g2, however, they have different dimensionalities, and one is actually identical with the
adjoint representation, while the other has the lowest-possible dimension.

For su(3), the fundamental weights are created from the two vectors (ai, bi). Inserting
them into (8.46) yields

αjµi = (ai ∓
√

3bi)/2

for both simple roots. Appropriately normalized to obtain the fundamental weights yields

µ1 = (1/2,
√

3/6)

µ2 = (1/2,−
√

3/6).

To obtain the other weights in the corresponding representation it is sufficient to use
the simple roots. Since, by construction, this is a highest weight state, in this case it is
necessary to subtract, rather than add them.

These fundamental weights are by construction highest weights, and therefore they
correspond in terms of the Cartan matrix to the vectors (1, 0) and (0, 1). To obtain the
other weights, it is sufficient to apply thus the lowering operators to them. The only
linearly-independent ones are the simple roots, by construction, and thus only they can
be used to obtain new weights. Any such created weight is then unique, and therefore the
number of these states gives the dimensionality of the representations.

Thus, for µ1, subtracting α1 yields (−1, 1), which is an admissible state in su(3), since
the components are within the [−1, 1] range. Subtracting α2 yields (2,−2), which is not.
Subtracting µ−α1−α2 yields (0,−1), which is again admissible. Any further subtraction
does not work, and therefore the system of weights in this representation is complete. It is
hence three-dimensional. Likewise, for the other highest weight, the sequence is µ2, µ2−α2

and µ2 − α2 − α1, again of dimension three, which due to the symmetries of the simple
roots was to be expected. Note that if the application with the other single root would
have given an admissible state, the representations would have been four-dimensional. At
this point, this would be the maximum possible, since any further application of simple
roots would necessarily at most create a known state, if admissible at all, since everything
else is obtained by some linear combination of the simple root lowering operators.

Note that once these weights are all known, the remainder to construct the representa-
tion explicitly can be done following the outlined procedure for the adjoint representation.
This is in general tedious, but unique.
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Interestingly, the pattern of weight vectors created from µ1 go into the weight vectors
created by µ2 under sign reversal. It is said they are conjugated to each other. The reason
is that if the generators T a fulfill the algebra, so do −T ∗a ,

ifabc(−Tc)∗ = (ifabcTc)
∗ = ([Ta, Tb])

∗ = −[−T ∗a ,−T ∗b ],

because the structure constants are real. Given that T a are in the representation D, then
the representation created by the −T ∗a is called the complex conjugate representations, and
often denoted by D. These have the same dimensionality. Since the Cartan generators are
Hermitian, this only reverses the signs of its real eigenvalues, and therefore, due to (8.19),
the weight vectors reverse the sign.

If there is no similarity transformation which relates the T a and−T ∗a , the representation
is called complex, and otherwise real. The representations are then not equivalent, and
hence genuinely distinct. The fundamental representation of su(3) is complex. Thus, both
fundamental representations are distinct.

For real representations, there is a further distinction. The condition for real represen-
tation is that there is some S such that

Ta = −ST ∗aS−1.

But S can have either the property S−1 = −ST or S−1 = ST , since in either case the
generators are transformed, up to a minus sign, in the same way, and an additional minus
sign, which also reverses the sign of the structure constants, does not spoil the algebra.
If S−1 = −ST , the representation is called pseudo-real instead of real. The actual dif-
ference is that in case of a real representation, the generators are unitarily equivalent to
antisymmetric, purely imaginary matrices. Such generators transform under conjugation
into itself, since T a and −T a∗ coincide. In the pseudo-real case, this is no longer the case,
but there is still a similarity transformation relating T a and −T a∗.

The fundamental representation of su(2) is pseudo-real, since the Pauli matrices are not
equivalent to purely imaginary, antisymmetric matrices, but σa = −σ2σaσ2 holds, and thus
there exists at least a similarity transformation. For g2, the fundamental representation
is real, which is stated here without proof.

Because in the adjoint representation for every root also its negative is present, the
adjoint representation is always real. This can be generalized. A representation which has
the same set of Dynkin coefficients contains all elements twice, and is therefore always
real.

Sometimes the notation is used that a representation is denoted by its dimensionality
and therefore the complex conjugate by its dimensions overbarred, e. g. 3 and 3 for su(3).
For higher representations, where different representations can have the same dimension-
ality, this is not always possible. E. g., for su(4), the fundamental representations are 4,
4, but the third one is 6, which is not a complex representation. For su(5), these are again
four falling into two pairs of complex conjugated ones, 5, 5, 10, and 10.

Since the conjugation corresponds to a mapping of group elements into itself, it is an
automorphism as discussed in section 5.5. If the representation is not-real, this cannot be
undone by a similarity transformation, and therefore is an outer automorphism, while in
the real case it is an inner automorphism.
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8.16 Weyl group

A seemingly surprising feature of the weight space has been that they show a high amount
of symmetries under reflections. This is actually not a coincidence, but originates from
the fact that su(2) algebras and groups have a build-in reflection symmetry. Since the
eigenvalue spectrum is symmetric under reflection at 0 - (−1, 0, 1) goes over into (1, 0,−1)
- every su(2) subalgebra yields a reflection symmetry. This, of course, is inherited by the
weight space. The set of all reflections under which the weight space is invariant is called
the Weyl group.

For su(2), this is just a single reflection. But for su(3) in the adjoint representation,
there are several reflections, as there are for g2. Note that if there are different reflection
planes, reflections can be combined to generate a discrete rotation group with reflections.
E. g., the adjoint weights of su(3) are invariant under rotations by 2π/3.

These reflections also show whether a complex conjugate representation is present.
This is the case if two representations are identical under reflection.

8.17 Constructing other representations

To construct other representations, the starting point are always the Dynkin coefficients
(n1, n2, ...). The values ni are then chosen to give the highest weights in the correspond-
ing su(2) subalgebras. The other weights are then constructed by applying the lowering
operators, i. e. subtracting the simple roots.

E. g., for su(3) the case (1, 1) is actually the adjoint representation, as has already
been seen before. For g2, it would be (3, 1).

To give examples of other representations, consider again the example of su(3). Start
with some arbitrary positive integers, e. g. (2, 0). Note that now one of the coefficients is
actually larger than the largest one in the fundamental or adjoint representation. Inserting
this into (8.46) yields

2µ1 =

(
1,

1√
3

)
In the Cartan basis 2µ1 is (2, 0). Given that the αi read from the Cartan matrix are (2,−1)
and (−1, 2) The possible sequence of weights is then 2µ1−α1 = (0, 1), 2µ1−2α1 = (−2, 2),
2µ1−α1−α2 = (1,−1), as well as two more, which are the corresponding ones obtained by
adding simple roots. Thus, there are 6 weights, and the representation is 6-dimensional.
The shape in the weight-plane is a pyramid, and there is hence one non-trivial reflection,
implying the presence of the conjugate representation (0, 2).

Since it is also very important in physics, another representation should be mentioned,
the ten-dimensional (3, 0), as well as its complex-conjugate (0, 3). This representation also
shows another interesting feature. There are two weights, (2,−1) and (−1, 2), which are
reached as 3µ1 − α1 − α2 and 3µ1 − 2α1, which yields under further application a weight
with (0, 0), (3µ1 − 2α1) − α2 and (3µ1 − α1 − α2) − α1. Since, despite appearance, this
is not just adding vectors, but just a shorthand for applying non-commuting operators,
the question arises, whether the so-reached weight appears actually twice or just once.
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To answer the question, it is is necessary to explicitly calculate the difference, which is
essentially given by the necessary terms introduced to bring one sequence into the other
form, while acting on the highest-weight state. In this particular case, both sequences
turn out to be identical, since any additional terms turn out to be either identical zero, or
vanish when applied to the highest-weight state. There is no general principle to see this,
and thus if weights can be reached by different ways, it is necessary to check in every case,
whether the so-created weights are linearly dependent or not.

8.18 Dynkin diagrams

As is seen, simple roots are enough to reconstruct any compact Lie algebra. To simplify
notation, it is therefore useful to develop a graphical language to encode simple roots.
These are the so-called Dynkin diagrams.

Denote a simple root by a dot. Then the angle between two roots is denoted by the
connection between them. No connection implies π/2 = 90°, 2π/3 = 120° a single line,
3π/4 = 135° a double line, and for 5π/6 = 150° a triple line.

The Dynkin diagram for su(2) is then just a single dot, as there is only one root. For
su(3), there are two dots, with an angle of 2π/3, and thus a single line. G2 would then be
two dots with three lines.



Chapter 9

Classification of Lie groups

Probably the most important result in Lie groups is that there is only a denumerable
infinite number of them, which can be completely classified by their Dynkin diagrams.
The reason is that (8.35) is a very restrictive statement.

9.1 General construction

To show this, it is best to separate the proof into many smaller steps.
The first step is to introduce the concept of decomposability. A root system (or algebra)

is called decomposable, if it separates into two (or more) orthogonal subsets, i. e. into
elements which mutually commute with every element of a different subset. This is just the
case of semisimple Lie algebras. As a consequence, this implies that the Dynkin diagram
of a simple Lie algebra must be simply connected, and any root cannot be orthogonal to
every other root. An algebra, which cannot be decomposed, is called indecomposable.

As a consequence, every simple Lie algebra is already known to satisfy three constraints

i) The simple roots are linearly independent, as discussed in section 8.11

ii) Because of (8.35), if α and β are two distinct simple roots, 2αβ/α2 is a non-positive
integer

iii) The simple root system is indecomposable, as otherwise the Lie algebra would not
be simple

Any system of vectors satisfying these three constraints is also called a Π-system. From
these three constraints the complete classification follows. This will be constructive, and
thus start with the least number of simple roots, and thus dots in the Dynkin diagram.

One node is su(2). Since one dimension has only one possibility for a linear independent
vector, this exhausts all possibilities. Thus, su(2) is the smallest possible Lie algebra.
hence, the decomposition in su(2) algebras of any algebra in section 8.8 is then in a sense
a decomposition into the most simple building blocks.

Two can have one, two, or three lines connecting the two dots in their Dynkin diagram.
A single connected line is su(3), and that with a triply connected line g2. Remains the

97
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one with two lines. This turns out to be the Lie algebra so(3) of the rotation group SO(3).
This could be obtained from reconstructing the Lie algebra from the simple roots, as done
in section 8.12, and then the group. This will be skipped here.

The next step is to notice that if there are only three vectors, there are only two
admissible Π systems, corresponding to Dynkin diagrams being chains with at most one
double connection. The geometric reason is that the angles enclosed by three vectors need
to be less than 2π, because otherwise they are coplanar. Since (8.35) only admits a certain
number of discrete angles, there are only two possibilities with three vectors satisfying this
condition:

π

2
+ 2

2π

3
=

11π

6
< 2π

π

2
+

2π

3
+

3π

4
=

23π

12
< 2π.

The other three structure of Dynkin diagrams, which can be created, all have an angular
sum of 2π or more, and thus are linear dependent systems, and thus are not Π-systems.
That has very far-reaching consequences, as any indecomposable subdiagram of a Dynkin
diagram is again an indecomposable Dynkin diagram, and therefore a subalgebra. There-
fore, only Dynkin diagrams will correspond to simple Lie algebras which have no other
structure then the above will be found to be possible. In particular, the same geometric
argument implies that only in the two-dimensional case, where coplanarity is acceptable
for all independent roots, an angle of 5π/6 = 150° is possible. Hence, g2 is actually the
only simple Lie algebra with triply connected nodes, making it rather special, just like
su(2). Furthermore, this implies there is no triangle possible, as this will also create an
angle in excess of 2π.

The next step returns to the construction of smaller Dynkin diagrams from larger ones,
which are required to be Π-systems. Take a Dynkin diagram with a singly connected line.
Replacing the two nodes attached to the line and the line with a single node, inheriting
the previous connections of the two nodes, creates also a Π-system.

Having only a single line between the two simple roots α and β has the following
implications. A single line implies an angle of 2π/3. Since furthermore all simple roots
are linear independent, then any other simple root γ connected by a line to either α or β
has to have a vanishing scalar product with either α or β, but not with both. But then
either γ(α+ β) = γα or γ(α+ β) = γβ. Likewise, any simple root not connected to either
α or β has to have a vanishing scalar product with both, and thus also with their sum.
Thus, replacing α and β by α + β, and thus removing a node, creates a new set of root
vectors with one root vector less, which again satisfies all constraints, and keeps all the
angles as before. It is thus again a Π-system. This implies that by removing single lines,
it is possible to shrink the system further and further, until having eliminated all single
lines eventually. However, any subset of three vectors will become linearly dependent if it
includes more than one double line or a cycle, according to the previous step. Hence, any
Dynkin diagram representing a Π-system can have at most one double line (if it consists
out of more than two nodes), and can have no cycles, as otherwise it would be created
from a non-Π system in the beginning by reversing the process of deleting lines.
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The next step is gaining insight into what kind of possible ends can be attached to
a Π-system. The previous argument ensures the possibility that a single node can be
attached, by reversing the process. Furthermore, since it is not possible to append a triple
line, the only two other options are a branching into two lines and the addition of a double
line.

Consider now the option to append a branch at the last node. Call the two added
nodes α and β. Since they are not connected by a line, they are orthogonal and αβ = 0.
They are also connected by a single line to their anchor point, called γ. Thus

2αγ

α2
=

2αγ

γ2
=

2βγ

β2
=

2βγ

γ2
= −1.

These relations can be used to show that

2γ(α + β)

γ2
= −2

2γ(α + β)

(α + β)2
= −1.

Thus, replacing the branch by a double line with node α+β provides again correct values
satisfying (8.35). Thus, if a Dynkin diagram ending in a branch is a Π-system then so is
the Dynkin diagram with the branch joined to a double line a Π-system.

This also implies that there is no possibility to have branches with more than three
twigs. If there would be, they could be contracted to two double lines, which does not
form a Π-system. For the same reason can a branch not occur at a node connected by a
double line. Furthermore, even if the two branches are starting from different nodes, the
Dynkin diagram can be shrunk until an offending diagram is reached. Thus, only Dynkin
diagrams with at most one branching can represent Π-systems.

The next step requires to eliminate some special cases, which are not covered by the
previous steps. In fact, only four cases have to be treated separately. These four cases are

• A diagram with a central node with three branches of length two nodes each

• A seven-node chain with a branching at the center node with a twig of one node

• An eight-node chain with a single branching at the third-last (or first) node with a
twig of length one node

• A five node chain with a double line between nodes 3 and 4 (or 2 and 3)

All of these special cases cannot be shrunk to a contradiction using the previous rules.
However, it turns out that the angles prescribed between the simple roots in these

configurations can only occur if the simple roots would be linear dependent, which is a
contradiction to the requirement of being simple roots. Thus, these Dynkin diagrams
cannot be Π-systems. This can be shown by explicit calculation, which is skipped here.

These results are sufficient to construct now all possible Π systems, and therefore all
simple Lie algebras. The best route of action is to construct all possible Dynkin diagrams,
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starting from a single node, and then adding lines in allowed ways. Here, these diagrams
will be constructed, and then afterwards discussed in separate sections in more detail.

The simplest possibility is to just create a chain of single nodes. This is the simply laced
algebra of special unitary matrices. Since there is an infinite number of such diagrams,
this is an infinite family of these. They will be discussed in section 9.2.

The next possibility is to have a chain of singly-connected lines, but with a single
double connected line at the end. There are now two possibilities, depending on whether
the single doubly-connected node at the end is shorter or the others are. If the single one
is shorter, this will be the algebra of the special orthogonal rotations in odd dimensions.
They will be discussed in section 9.4. If the opposite is the case, these are the so-called
symplectic group to be discussed in section 9.5.

Since any double line can be turned into a branch, there is always a corresponding
diagram with a branch, which turns out to be the group of special orthogonal rotations
in even dimensions. However, this group is then also simply laced. It will be discussed
in section 9.3. The fact that even dimensions and odd dimensions of spatial rotations are
described by different Lie algebras falls in line with other knowledge from physics that
both cases are qualitative different.

All of these are again infinite families, since the singly-connected chain can be extended
arbitrarily. These are the diagrams possible of this type.

Finally, there are five diagrams, which are possible but do not belong to any of the four
infinite families. One is the already known group g2 with two nodes of differing length
and a triple connection. Then there is a four-node chain with a double connection in the
middle, with the two nodes on either side of the double connection have a different length
then on the other side. This algebra is called f4. Then there are three more simply laced
algebras, called e6, e7, and e8, consisting out of a chain with a single branch to a twig of
a single node at the third-last node. These so-called exceptional groups will be discussed
in section 9.6.

All of these group appear in or the other way in physics, though with vastly different
rates of occurrences.

9.2 Special unitary groups

Probably the most important algebras in quantum physics are the special unitary algebras
su(N) of rank N − 1, which have as fundamental representations the N ×N -dimensional
special unitary matrices. Their Dynkin diagram is just a singly-connected straight line of
dots.

Using the same normalization of

trT aT b =
1

2
δab

as before for su(2) and su(3), they can be formulated as a straight-forward generalization.
Especially, the N − 1 Cartan generators as generalization from the Gell-Mann form (8.18)
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are given by N ×N matrices

Hm
ij =

1√
2m(m+ 1)

(
m∑
δikδjk −mδi,m+1δj,m+1

)
.

The remaining generators are as before also Hermitian traceless matrices, and altogether
there are N2 − 1 generators. As a consequence, the defining representation is N dimen-
sional.

To construct the remainder requires the N N − 1-dimensional weight vectors, i. e.
vectors of the N eigenvalues of the N − 1 Cartan generators, given by

µjm = Hm
jj =

1√
2m(m+ 1)

(
m∑
k=1

δjk −mδj,m+1

)
,

with no summation implied. Each has norm (N − 1)/(2N) and relative scalar product
µiµj = µikµ

j
k = −1/2N . Thus, they exhibit the same regularity as expected from the

Dynkin diagram, forming a regular shape, the so-called N − 1-simplex, in the N − 1-
dimensional weight space. Since in this counting the nth weight has n − 1 leading zero
entries, it is often useful to chose an inverted ordering where the last positive component
is used.

The regularity implies that the N−1 roots are obtained as differences between weights,

αi = µi − µi+1,

which then are all of unit lengths and satisfy

αiαj = δij −
1

2
δi,j±1,

as implied by the Dynkin diagram. The fundamental weights are then given by

φj =

j∑
k=1

µk.

Especially in this form is µ1 the highest weight of the fundamental representation.
This group is sometimes also called An in mathematics.
Except for SU(2), whose fundamental representation is pseudo-real, all other groups

have complex fundamental representations.

9.3 Special orthogonal groups of even dimension

This set of algebras so(2n) and groups SO(2N) are connected to the rotations in 2n-
dimensional real spaces, well-known in physics. They have a Dynkin diagram very similar
to the ones of su(N), just that they fork at the end into two elements, rather than just
being a chain. In mathematics, they are sometimes called Dn.
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The generators in the adjoint representation are traceless, purely imaginary antisym-
metric 2n × 2n matrices, like the example of so(2) in section 8.2 showed. The Cartan
generators are given by

(Hm)jk = −i(δj,2m−1δk,2m − δk,2m−1δj,2m),

which is a 2×2 matrix in the form of the second Pauli matrix embedded. Thus, eigenvectors
and eigenvalues are just the embedding of those of this Pauli-matrix, i. e. the eigenvalue
pairs ±1, together with the corresponding eigenvectors

±ekj = δj,2k−1 ± iδj,2k.

From this it is possible to read off the corresponding weight vectors ekm = δkm, as usual.
This creates the root vectors ±ej ± ek for j 6= k, the positive roots ej ± ek for j < k

and the n simple roots ej − ej+1 for j = 1...n− 1 and the cyclic one en−1 + en.
Interestingly, the Dynkin diagram of so(2n) cannot be reduced arbitrarily. The algebra

so(8) is the last one which has a genuine distinct Dynkin diagram. Removing a further
node yields three simply-connected nodes, which is the same as su(4). Thus, the algebras
of so(6) and su(4) coincide. Furthermore, an attempt to remove the node in the middle
breaks up the diagram into two single nodes. hence, so(4) is not simple, but has the same
algebra as su(2)×su(2), which is of fundamental importance in relativity.

9.4 Special orthogonal groups of odd dimension

9.4.1 Generalities

It is at first a little bit surprising that the special orthogonal groups of odd dimension
should be different than those in even dimension, but as will be seen later even and odd
dimensions often induce quite different structures. As a consequence, this group is called
in mathematics sometimes Bn.

In the case of Lie groups, this becomes obvious in the form of the Dynkin diagrams,
as this group corresponds to a Dynkin diagram with a double connection between the last
two elements of the chain, rather than two connections as is the case for even dimension.

It also becomes more clear when considering the structure of the Cartan generators.
Before, they decomposed into 2 × 2 blocks, which is not possible in odd dimensions. In
fact, the last one has eigenvalue zero, and is a zero on the diagonal. This was already
visible in the case of SO(3) in section 8.2, even though in this case all generators had zeros
on the diagonal, since this was not a Cartan basis. As a consequence, for the first 2n
dimensions, the same structure arises as previously. The difference is for the additional
odd one. This yields a surplus weight vector ±ex, another positive root ex and another
simple root en. Note that the root en−1 + en is therefore not simple, and hence the size of
the Cartan is the same as in the corresponding so(2n) case. This was also seen already for
so(2) and so(3) in section 8.2, as also there in both cases only two generators appeared.

Note that the Dynkin diagram of so(3) is the same as that of su(2), and thus is the
same algebra.
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9.4.2 Spinor representation

The true difference for odd-dimensional rotation groups is seen in the spinor representation,
which will also illustrate more on the relation between su(2) and so(3).

The, in a sense, natural representation of these algebras are in a 2n + 1-dimensional
real vector space. However, there also exists a representation in a 2n-dimensional vector
space, and this is actually one of the fundamental representations. The reason comes from
the one special simple root. There are in total n different fundamental representations,
with fundamental weights

µj =

j∑
k=1

ek

µn =
1

2

n∑
k=1

ek

where the first n − 1 cases are generated from j = 1...n − 1. The last one is different
due to the normalization. Using Weyl symmetry, the weights of the last fundamental
representation can be constructed

1

2

(
±e1 ± e2 ± ...± en

)
.

These weights are, by construction, transformed into each other by mirroring, and therefore
the spinor representation coincides with its complex conjugate.

Of the weights there are therefore 2n, and thus the space is 2n dimensional (e. g. 2-
dimensional for so(3) and 4-dimensional for so(5)). Such a space can be characterize as a
tensor product of n two-dimensional vector spaces. Then any hermitian generator can be
created from a tensor product of Pauli matrices. The Cartan generators are then

Hj =
1

2
σj3,

where j indicates the two-dimensional space in which the Pauli matrix acts. In a similar
way all other generators can be constructed from the Pauli matrices.

These representations now have a few specialties. Since they are self-conjugate, they
need to be real. However, there are still two different kinds of real representations, real
and pseudo-real. Due to the structure in terms of Pauli-matrices, it depends on the actual
number of involved spaces whether the representation are real or pseudo-real. Explicit
calculation shows that the spinor representation of so(8n+ 1) and so(8n+ 7) are real, and
of so(8n + 3) and so(8n + 5) are pseudo real. Especially, so(3) has a pseudo-real spinor
representation, just like su(2).

It is possible to construct spinor representations also for even n. However, they do then
not form a fundamental representation. In a very similar calculation, it can be shown that
the spinor representations of so(8n) are real and for so(8n + 4) pseudo-real, while the
other ones so(8n+ 2) and so(8n+ 6) are complex. The latter can already been seen from
the isomorphism between so(6) and su(4), with su(4) having complex representations. As
a consequence of the existence of spinor representations, representations of the SO(n)
groups, depending on n, can be real, pseudo-real, or complex.
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9.4.3 Connection to Clifford algebras

The fact that there is something called a spinor representation already indicates that there
is a relation to spins, and thus also to the Clifford algebra.

A Clifford algebra is an algebra with n generators γi satisfying

{γi, γj} = 2δij (9.1)

which should not be confused with the case of the usual Clifford algebra where the
Minkowski metric appears on the right-hand side. This version will be discussed later,
as it is not connected to a compact Lie algebra.

Given an implementation of the Clifford algebra with n elements, define the operators

Mij =
1

4
[γi, γj]

and with
γ = (i)nγ1...γ2l (9.2)

define

Mi =
1

4
[γi, γ] .

It can then be shown that these operators can be used to create spinor representations
of the Lie algebras, especially for so(2l + 1) with Mi and Mij and for so(2l) the two
inequivalent spinor representations

1

2
(1± γ)Mij

Thus, there is an intrinsic relation to the (Euclidean) Clifford algebra.
An explicit example is given by the spinor representation of so(3), which, since l = 1,

is two-dimensional. This requires three generators, M1, M2, and M12. Thus, the necessary
Clifford algebra needs two generators. They are obtained from the two Pauli matrices σ1
and σ3, as they satisfy (9.1). Then γ = −iσ2, and

M1 = −1

2
σ3 (9.3)

M2 =
1

2
σ1

M12 =
i

2
σ2. (9.4)

This shows that again so(3) is isomorphic to su(2), and the spinor representation of so(3)
is the fundamental representation (8.17) of su(2).

However, this still leads to a difference in terms of the group. The one marked difference
between (8.17) and (9.3-9.4) the decisive difference is that the parameters of so(3) are then
mapped to half the one of su(2), and thus to every element of so(3) there corresponds two
representation matrices, differing by a sign, showing that this (and actually all) spinor
representation of so(3) are double-valued. This will be taken up again in section 11.3.
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9.4.4 Crystallographic subgroups

One of the probably most important applications of special orthogonal groups of odd di-
mensions are the crystallographic groups, especially of so(3). These are discrete subgroups,
which are obtained from so(3) by requiring that only certain rotations are still possible.

Some cases are provided by the previous standard example of discrete rotations. E. g.
choosing the only permitted rotation angles to be π/2 and its direct multiple leads to the
crystallographic group of the cube, choosing 2π/3 to the one of the hexagon. There are
only very few such subgroups in 3 dimensions, which are closed. This yield the platonic
bodies, the tetrad, the cube, as well as the bodies with eight (octagon), twelve (ikosaeder),
and 20 (dodecahedra) surfaces.

This is not not the only possibility to create subgroups. Another possibility is to permit
different rotation angles in different directions. This yields eventually the so-called point
groups of possible crystal structures.

The same is, of course, possible in lower or higher dimensions, and not restricted to
odd dimensions. E. g., in numerical calculations in particle physics the discrete subgroups,
and their faithful and reduced representations, of so(4) play an important role, especially
for fixed angles of π/2, the so-called hypercubic groups.

9.5 The symplectic group

The symplectic algebras appear at first sight somewhat strange, but is actually not un-
known in physics, merely well hidden. In fact, it is closely related to the phase space
of Hamiltonian mechanics. There, it was seen that of the 2n dimensions of the phase
space n had in the Hamiltonian equations a different sign than the other n. This implied
certain transformation properties for rotations in the phase space, which are encoded in
the so-called symplectic groups sp(2n) of even dimensions. The Dynkin diagram is the
same as for so(2n + 1), but the length of the simple roots are different. This group is
in mathematics sometimes called Cn. In fact, it is possible to consider this group as the
norm-preserving rotations in a space of quaternions1, rather than the spaces of real or
complex numbers where the SO(N) and SU(N) groups act.

As a consequence of this structure, every sp(2n) has as a subalgebra su(n). These are
embedded in the 2n-dimensional representation space as(

T a 0
0 −T ∗a

)
,

where the T a are the n − 1 Cartan generators of su(n). Then, only one more Cartan
generator exists, which can be written as

Hn =
1√
n
σ3 ⊗ 1

1These are ’numbers’ of the type a1+~b~σ, where 1 is the 2×2 unit matrices and the σi are proportional
to the Pauli matrices. This fact is actually the reason why su(2) is so special, as the quaternions are
connected to the group SU(2).
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and therefore generates a block-diagonal string of the third Pauli matrix σ3. This Cartan
generator necessarily commutes with all the su(n) Cartan generators. Thus, the Cartan
is n dimensional.

An alternative characterization of the symplectic group is that it covers all 2n-dimensional
matrices M such that

MTJM = J

where J is a block-diagonal matrix made from 2× 2 blocks j being the matrix

j =

(
0 1
−1 0

)
.

Another way of regarding the symplectic group is to characterize them as unitary matrices
with quaternionic instead of complex entries.

The fundamental representations of symplectic groups are pseudo-real. All other rep-
resentations are either real or pseudo real. Note that sp(2) has the same Dynkin diagram
as su(2), a single node, and therefore both algebras agree, and thus also to the one of so(3).
That all three algebras agree, but not the groups has to do with the possibility to have
with the same algebra groups with different discrete subgroups, which will be discussed in
section 11.3.

9.6 Exceptional groups

There are also the five exceptional groups, of which g2 has already been encountered in
section 8.13. Like the previous cases, the exceptional groups can be related to certain
norm-preserving rotations on certain spaces. These spaces are formed by so-called octo-
nions, a generalization of the quaternions, and actually the last extension possible. The
reason is that the requirement for fields in which also a division operation and a length
can be defined, so-called division algebras, is very restrictive, and there is only a certain
limited number of cases possible, which are the real numbers, the complex numbers, the
quaternions, and the octonions. Note that the multiplication for octonions, in contrast to
the previous cases, is actually not associative.

This gives another perspective of why there is only a limited set of compact Lie al-
gebras: There is only a limited set of division algebras and therefore a limited set of
norm-preserving rotations in vector spaces with division algebras as scalars, and compact
Lie groups are just the groups implementing these rotations.

To understand better the properties of exceptional algebras, it is useful to discuss the
octonions in some detail. Like complex numbers and quaternions, octonions are generated
by additional elements,

a+ bαiα

where a and the bi with i = 1...7 are real numbers, and the seven iα generalize the imaginary
units, or the Pauli matrices in case of the quaternions. Similarly to the quaternions, they
fulfill the multiplication table

iαiβ = −δαβ + gαβγiγ,
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where the tensor g is totally antisymmetric with

g123 = g247 = g451 = g562 = g634 = g375 = g716 = 1

in a suitable basis, and all other elements related by index permutations or otherwise are
zero. Note that this rule is not associative, since it implies, e. g.,

(i1i2)i7 = i5 6= −i5 = i1(i2i7)

and thus the octonions are not a group.
The fact that it is a division algebra is signaled by the fact that for the norm

|a+ bαiα| =
√
a2 + b2α

|AB| = |A||B| follows for any two octonions A and B, just like for real and complex
numbers and quaternions.

However, they are related to the exceptional Lie groups in a non-trivial way. It starts
with the fact that gαβγ is actually an invariant tensor of g2, and, as noted above, the other
exceptional groups can be linked to rotations in spaces of octonions. However, this will
not be detailed further.

An interesting feature of e8 is that it is the only simple, compact Lie algebra for which
the adjoint representation is also the lowest-dimensional representation, and thus again
one of the fundamental representations. Note that in g2 also one of the fundamental
representation coincides with the adjoint, but this is not the lowest-dimensional one.

Except for e6, which has one complex fundamental representation, the fundamental
representations of all exceptional groups are real. This has the consequence that e6 plays
a special role in many physics contexts, where complex representations are often required.

9.7 Subalgebras and Dynkin diagrams

The Dynkin diagrams also offer a straightforward procedure to identify subalgebras. In
this context, it is useful to define regular subalgebras as subalgebras where the Cartan
generators are a subset of (linear combinations of) the original Cartan algebra. A regular
subalgebra is called maximal, if it contains the full Cartan algebra of the original algebra.

Subalgebras can be created from Dynkin diagrams in various ways. The simplest is
using any of the the reduction rules found in section 9.1. Since this guarantees another
simple Lie group, this yields a regular subalgebra. However, since the number of nodes is
smaller, this cannot be a maximal one. Furthermore, removing a node connected to more
than one node will create also a Lie algebra, but since this splits the Dynkin diagram into
two, this is no longer a single simple algebra, but a combination of two. Furthermore,
since a node is missing, there is besides the Cartan algebra of the two new subalgebras a
single Cartan generator, and therefore another u(1) algebra. E. g. the Dynkin diagram
of su(N +M) can be cut into two by removing the Nth node. This yields a subalgebra of
type su(N)×su(M)×u(1). The u(1) comes from the removed node, and the total rank is
N − 1 +M − 1 + 1 = N +M − 1, as it should be.
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The construction of maximal regular subalgebras is a little bit more involved. This
is obtained in the following way. Since the Dynkin diagrams can be grown from a single
seed, the lowest root, it is possible to construct a unique extended Dynkin diagram by
adding to each simple root this lowest simple root. This is no longer a Π-system, since
this system has now a linear dependence, as there is one more simple root. However, the
removal of any simple root creates a new Π system. In terms of the Dynkin diagrams,
it can be shown that this corresponds to creating a cycle for An, adding a branch to the
singly-connected end node of Bn, adding another doubly-connected node at the other end
of Cn, adding a branch at the other end of Dn, symmetrizing e6 and elongating all other
exceptional groups. Now maximal subalgebras can be generated from removing nodes
from these extended diagrams. This, e. g., shows that so(2N+1) has a so(2N) subgroup,
as expected from physics.

9.8 General Lie groups

The consequence of the previous sections is that since there is only a countable infinite
number of compact, simple Lie groups, and thus there is only a countable infinite number
of compact Lie groups.

These are direct product groups involving any of the simple Lie groups, additional
Abelian U(1) factors (which generate generators with zero length according to the scalar
product of section 8.3), and possibly discrete factor groups in form of center groups. The
algebras are combinations of simple groups and the Abelian algebra.

In physics, all gauge theories of Yang-Mills type are of this kind. The only other gauge
group encountered in physics are from non-compact groups in form of general relativity.
This requires a theory of non-compact groups to be discussed in chapter 11.

9.9 Consequences for discrete groups

As indicated in section 9.4.4, at least some Lie algebras/groups do have also discrete sub-
algebras/groups, which can necessarily be enumerated. This can be actually generalized.
It can be shown that for compact, simple, discrete groups there are only two possibilites.
Either they are a discrete subalgebra of a continous Lie algebra, or they belong to a very
small, and finite, number of special cases. For those which are discrete subalgebras of the
continous ones, similar consequences arise as in section 9.4.4. This yields little new in
terms of group theory, and will thus not be pursued here, although these are in practice
often very important.

The remaining are 26 so-called sporadic finite groups. They are not subgroups of
continous Lie groups. Out of these, twenty are subgroups of a single group, the so-
called Monster group. The other six, know as pariahs, are different. The monster group
is the largest one, with about 1054 elements. This group has actually a connection to
function theory, and a very special function, the so-called j function. This is known as the
monstrous moonshine. This function is also connected to so-called conformal field theory,
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which therefore establishes a connection to physics. There are indications that also the
other five pariahs may be connected similarly to function theory.

The non-pariah sporadic groups are separated in three generations. The first gener-
ation, the Mathieu groups, are connected to the permutation groups of n points, and
consists out of 5 groups. The second generation, called the Conway groups, contains 7
groups and is connected to the automorphisms of a special lattice, the so-called Leech lat-
tice, in 24 dimensions. The third generation contains the other 7 groups and the monster
itself, and are characterized by their relation to the monster.



Chapter 10

Tensor products

It is a rare situation in physics to have only a single symmetry with a single representation
characterizing a system. If multiple symmetries start to play a role, this leads to the
concepts of tensorizing representations, frequently of different groups. This is not limited
to compact Lie groups, but it is possible for any groups, no matter whether continuous or
discrete.

10.1 Tensorizing states

One particular important situation in physics is that some state is characterized by differ-
ent representations of two different groups or even the same group. An example is given by
atoms with electrons with spin. Then the electrons carry two representations, one of SU(2)
and one of SO(3), together with corresponding quantum numbers. The SU(2) quantum
number is related to the spin of the electron, and the SO(3) quantum number is related
to its orbital angular momentum. However, in fact both originate with the Lorentz group,
and eventually the problem is that the electron needs to be characterized by two different
representations of the same group.

In a more general language, a state which belongs to two different representations,
possibly of two different groups, can be considered as a product state

|j, k〉 = |j〉|k〉,

where j and k may also be sets of quantum numbers of some group D1 and D2. This is
called a tensor product of the states. If the representation of D1 is n-dimensional and of
D2 is m-dimensional, the total dimensionality is nm. This can be thought of as that k
runs over all possible values for any fixed value of j and vice versa.

The matrix representation of the groups act then in a tensor representation,

D1⊗2|j, k〉 = (D1⊗2)iljk|j, k〉 = (D1)ij|j〉(D2)lk|k〉. (10.1)

Thus, this is the statement that each state transforms in its own representation.
Expanding for continuous groups close to the identity this yields

(11⊗2 + iαaX1⊗2
a ) = (11 + iαaX1

a)(12 + iαaX2
a) = 11⊗2 + iαa(X1

a12 + 11X
2
a),

110
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where the index at the 1-operator indicates in which space the unit operators act. Leaving
the unit operators implicit, this amounts to X1⊗2

a = X1
a + X2

a , and thus the generators
add in a tensor product. Especially, if the states are eigenstates to the generators, this
implies that the eigenvalues add. It should be noted that this notation is very compact,
as a has to run over the total number of generators N1

g + N2
g of both groups. Formally,

the generators of the tensorized group are enumerated such that, e. g. for N1
g = N2

g = 2
this should be read as

X = (X1
112, X

1
212, 11X

2
1 , 11X

2
2 ),

and thus the explicit scalar product yields

αa(X1
a12 + 11X

2
a) = α1X

1
112 + α2X

1
212 + α311X

2
1 + α411X

2
2 ,

such that the parameter vector is also N1
g + N2

g dimensional. Alternatively, this can be
regarded as

eiαaX
1
a ⊗ eiβbX2

b ≈ 11⊗2 + iαaX
1
a12 + i11βbX

2
b ,

for α and β both infinitesimal, to make the relation better manifest. This generalizes to
tensor products of more than two representations in a straightforward way.

10.2 Clebsch-Gordon construction

While if the generators stem from different groups, little further can be done. This changes,
if the tensor product is created from two representations of the same group. Then a
tensor product will create a, usually completely reducible, representation constructed from
the representations of the lower-dimensional spaces. This not only appear similar to the
reconstruction of the representation from the Cartan matrix. Indeed, taking this approach
yields a complete highest-weight construction for higher-dimensional representations. This
is called the Clebsch-Gordon construction. In fact, this starts again from tensor products
of su(2).

For this note first that

J1⊗2
3 |jj3, j′j′3〉 = (j3 + j′3)|jj3, j′j′3〉. (10.2)

Thus tensorization can give at most a representation with j1⊗2 = j1 + j2. Representations
with even higher j can then be obtained by successive tensorization.

As an example, consider to get j = 3/2. Consequently, it should be possible to obtain
it from tensorizing a j = 1 representation and a j = 1/2 representation. The j = 1 repre-
sentation can itself be obtained by tensorizing two j = 1/2 representation, but since the
j = 1 representations are known from orbital angular momentum in quantum mechanics
this step will be skipped.

In the spirit of the highest-weight construction, the state with j3 = 3/2 is, by virtue of
(10.2), necessarily given by

|3/2, 3/2〉 = |1, 1〉|1/2, 1/2〉 = |1, 1/2; 1, 1/2〉,



112 10.2. Clebsch-Gordon construction

where the second notation |jj′; j3j′3〉 will be used for brevity.
To obtain the other states, it will be just proceeded as in the highest-weight construc-

tion by applying the tensorized lowering operators, creating

|3/2, 1/2〉 =
1

N1/2

J1⊗2
− |3/2, 3/2〉 =

1√
3
|1, 1/2; 1,−1/2〉+

√
2

3
|1, 1/2; 0, 1/2〉

|3/2,−1/2〉 =
1

N−1/2
J1⊗2
− |3/2, 1/2〉 =

√
2

3
|1, 1/2; 0,−1/2〉+

√
1

3
|1, 1/2;−1, 1/2〉

|3/2,−3/2〉 = =
1

N−3/2
J1⊗2
− |3/2, 1/2〉 = |1, 1/2;−1,−1/2〉,

where the Ni are the normalizations from the tensorized operators. This represents a
four-dimensional sub-space of the six-dimensional space obtained by tensorizing the two
representations. As this is a complete irreducible representation this shows that indeed
the tensor product lead to a reducible representation. But this also implies that there is
another subspace.

The basis for the other two directions is given by orthogonalization to these, e. g. using
the Gram-Schmidt procedure. A possible set of base vectors are

|1/2, 1/2〉 =

√
2

3
|1, 1/2; 1,−1/2〉 −

√
1

3
|1, 1/2; 0, 1/2〉

|1/2,−1/2〉 =

√
1

3
|1, 1/2; 0,−1/2〉 −

√
2

3
|1, 1/2;−1, 1/2〉,

where the naming is motivated by the fact that they can be obtained from each other by
applying J1⊗2

± , and form a representation to j = 1/2. Thus, the tensor space carries a
completely reducible representation, and furnishes a J1 = 3/2 and a J2 = 1/2 irreducible
representation. That the total representation is reducible was expected, as it is just the
tensor product of two irreducible representations. However, this permitted nonetheless to
construct a new irreducible representation of higher dimension, spin 3/2.

This situation is often denoted in short as

J1⊗2 = J1 ⊗ J2 = j ⊕ j′

or in the particular case above

1⊗ 1/2 = 3/2⊕ 1/2

to denote which kind of representations can be derived from tensorizing two representa-
tions.

Note that by taking the norm on both sides of the expressions, and using the fact that
all states are normalized, their overlaps are given by

〈J1J1
3 |j, j′; j3, j′3〉 = cJ1jj′J1

3 j3j
′
3

(10.3)
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are obtained. These are called Clebsch-Gordan coefficients. They can be found tabulated
for low-dimensional case as well as implemented in computer algebra systems, as they
can be determined algorithmically. E. g. c3/211/21/21−1/2 =

√
1/3. Thus, these coefficients

are encoding purely the group-theoretical structure of tensor products, and can therefore
be algorithmically calculated. In particular, this is the situation to calculate the total
spin of an atom with a spin 1 nucleus and an electron in s-wave, but did not require any
knowledge of the electromagnetic interaction. But from this can be deduced that there
are two possible states the atom can have, one in which the spins are aligned, and one,
in which this is not the case. This will dictate its reaction, e. g. to an external magnetic
field. Generalizing this insight will be done in section 10.4.

It is an interesting situation to consider the case of tensorizing twice the same repre-
sentation, e. g. twice s = 1/2. Then

|1, 1〉 = |1/2, 1/2; 1/2, 1/2〉.

This state is necessarily symmetric when the two representations making it up are ex-
changed. This is a generic feature. Since at the highest weight this is a combination
of twice the same state, this is necessarily a symmetric combination. The raising and
lowering operator commute with the exchange operator P12 for the two representations

P12J
a⊗a
± = P12(J

a
± ⊗ 1 + 1⊗ Ja±) = (1⊗ Ja± + Ja± ⊗ 1) = (Ja± ⊗ 1 + 1⊗ Ja±)P12 = Ja⊗a± P12,

and therefore the symmetry of the state created by the descent operation preserves the
symmetry. Hence, all the states remain symmetric.

This is no longer true once the orthogonal other representation is constructed. E. g.
for J1 = 1 the orthogonal states form a J2 = 0 representation,

|0, 0〉 =
1√
2

(|1/2, 1/2; 1/2,−1/2〉 − |1/2, 1/2;−1/2, 1/2〉)

which changes sign under the exchange of the first and the second representation. Which
symmetry it has is a less generic statement, as there may be several lower representations
involved. However, they all keep the symmetry of their respective highest-weight state.

Note that the fact that this is a tensor product was important for this argument. If
a j = 1 state is not made up as a tensor product, but has intrinsically this value of
j, its symmetry properties may be different. In physics, this translates to the fact that
composite states made from other particles inherit properties, but elementary particles of
the same spin may not need to have the same intrinsic features.

It is quite instructive to understand how this procedure can be used to reconstruct
representations of algebras other than su(2) from the fact that they are made from su(2)
subalgebras. To this end, consider su(3), which has three su(2) subalgebras. But only two
of them are complete, as there are only two Cartan generators. The remaining generators
are thus necessarily mixing the two subalgebras. As was noted in section 8.14, the root
system is created symmetrically from both su(2) subalgebras.

What happens is the following. In the fundamental representation, there is an su(2)
representation in the first two dimensions made from the generators J1, J2, and J3, with
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J3 has the corresponding eigenvalues. At the same time, J3 is also the Cartan generator of
su(2) in the adjoint representation. The other ladder operators will move always between
two adjacent dimensions. Likewise, the last Cartan distinguishes the latter two dimen-
sions. Thus, what has happened is that this is reducible, but not completely irreducible,
representation of the tensor product of two j = 1/2 representations of su(2).

The concepts of the Clebsh-Gordan coefficients generalize. However, they become
more involved. For each Cartan element a highest weight exists, with a separate counting
variable each. Thus, a state of, say, su(3), will be identified as |jj3kk3〉. The j and k
represent the highest weight for each of the Cartan elements. The three set of ladder
operators will move the corresponding eigenvalues around.
The lowest dimensional representation is three dimensional, but have j = 1/2 and k = 1/2.
Using the Gell-Mann matrices to define H1 = J3, H2 = J3−J8/

√
24 and the the other three

pairs to create ladder operators, it follows that the three Cartesian vectors correspond to
the states

e1 =

∣∣∣∣120

〉
e2 =

∣∣∣∣−1

2
− 1

2

〉
e3 =

∣∣∣∣01

2

〉
where the explicit reference to j and k have been dropped. Note that this implies that
there are two subspaces of two dimensions, in which the Hi act as a 1/2 representation,
and in the orthogonal subspace they act trivially, indicated by the 0. Two of the ladder
pairs act in these subspace, while the third pair connects both, mapping e1 to e3, and vice
versa. They therefore exchange the highest weight states.

Constructing a tensor product now works as before, but has the additional complication
that the actual tensorization is happening in the three-dimensional space, which in this
case does not coincide with a single irreducible representation. Thus, consider the case of a
tensor product of the two fundamental representations. It will be nine-dimensional. This
can be decomposed, in the same way as before for the su(2) case, into an eight-dimensional
adjoint representation and a one-dimensional trivial representation. The trivial ones has
j = k = 0. The adjoint one has j = k = 1. Again, one of the states, needs to be shared,
e. g. j3 = k3 = −1

|1− 11− 1〉 = |1/2− 1/21/2− 1/2〉|1/2− 1/21/2− 1/2〉.

Thus, as before, starting from this shared state, all others can be constructed by application
of the tensorized operators, J i⊗j± = ji±⊗j

j′

± , yielding the states, and likewise eventually the
Clebsh-Gordan coefficients by taking scalar products. Note that out of these operators not
all will act linearly independently on the vectors, due to the mixing of the su(2), such that
in the end again only six will appear. Of course, as this the adjoint representation, the
operators could also be directly reconstructed from the structure constants. Furthermore,
the one connecting the two su(2) will now also create a connection not only for the highest
weight states. However, the whole process becomes quickly very tedious.
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10.3 Tensor operators

Of particular importance for physics are sets l = 1...n of operators Os
l which satisfy the

algebra
[Ja, O

s
l ] = Os

m(Jsa)ml, (10.4)

with no summation over s. This notation should be read as that the commutator of the
group generator Ja with Os

l yields a linear combination of the operators Os
l weighted by

the matrix elements of Ja in the representation s. That appears a first sight to be rather
special. But these kind of operators are quite common in physics. Operators satisfying this
are called tensor operators. Besides their importance for physics, they will be very useful
in constructing further properties of groups. It is therefore worthwhile to investigate them
a little closer. Note that the Ja can, e. g. be the linear operators acting in the whole vector
space, which may carry multiple representations. More details of it requires specialization.

To give an explicit realization consider one-particle quantum mechanics. Angular mo-
mentum is then given by the j = 1 representation Ja = εabcrbpc of so(3), and take the
position operator ri. This yields

[Ja, rb] = εacd[rbpd, rb] = −iεacbrc = rc(J
1
a)cb

where in the last step the adjoint representation was identified for the matrix elements
(Jsa)ml. Thus, the vector r is forcing the j = 1 representation for the coefficients, and thus
carries s = 1, O1

i = ri.
It should be noted that the resulting matrices Jsa are not necessarily the ones obtained

using the highest-weight representation. For technical reasons, however, it is usually better
to have the Js in the explicit highest-weight representation. To achieve this, it is best to
find some linear combination Os

0 of the Os such that

[J3, O
s
0] ∼ Os

0,

since then
[J3, O

s
0] = Os

l (J
s
3)lj,

and this collapses to a δ-function multiplied with a constant, since J3 is diagonal. For the
position operator, this is J3 with [J3, r3] = 0, and thus r3 ∼ r0. The remaining operators
can then be constructed using multiple applications of the commutation relations, e. g.

[J±, r0] = ∓ 1√
2

(r1 ± ir2).

and thus the explicit form.
A word of caution here when indeed it turns out that the representation for J is

found to be reducible. It is then possible to decompose the operators Ol also into sets of
operators such that each correspond to an irreducible representation of J . However, there
is no general construction principle how to do so, since for operators there is no notion of
orthogonality. Thus, the best approach is to first find the linear combinations of operators
which commute with J3, to identify the present j. This is the complicated step, as there



116 10.4. Wigner-Eckart theorem

is no construction principle available. Then the other operators can be obtained using the
raising and lowering operators once more.

Finally, if the operator O is a tensorized operator itself, i. e. a product of two tensor
operators in two representations, then it will create an algebra with the tensorized J . So,
for Os

m and Or
i

[Ja, O
s
mO

r
i ] = [Ja, O

s
m]Oi

n +Os
m[Ja, O

i
n] = ((Jsa)mn ⊗ 1ij + 1mn ⊗ (Jra)ij)O

s
nO

r
i ,

with the special case

[J3, O
s
mO

r
i ] = (m+ i)Os

mO
r
i .

10.4 Wigner-Eckart theorem

This can now be used to construct the generalized Wigner-Eckart theorem, a central
theorem for the separation of group structure and dynamics. It assumes that the tensor
operator in the relevant basis is known. Then it states

〈j′, j′3, α|Os
l |j, j3, β〉 = δj′3,l+j3〈j, l + j3|s, j, l, j3〉〈j′, α|Os|j, β〉. (10.5)

where α and β are all other quantum numbers. Visible is the appearance of the Clebsch-
Gordan coefficients (10.3). This states that the dependence of the matrix element on j3,
j′3, and l is trivial and determined solely by the group structure. All the dynamics is
completely encoded in the so-called reduced matrix elements 〈j′, α|Os|j, β〉, which does
not depend on j3, j

′
3, and l. Of course, this may not be too useful in practice for actually

calculating the reduced matrix element, but separates conceptually kinematical effects
from dynamical effects. Especially, it implies that if O is a tensor operator, its expectation
values are 2s + 1-times degenerate, as there are 2s + 1 different matrix elements on the
left-hand side, but only one on the right-hand side, up to cases where Clebsch-Gordan
coefficients vanish.

To prove this theorem, notice that in the relation for tensor-operators (10.4) on the
right-hand side only the operator itself appears, but the actually value of the J are matrix
elements, and thus just numbers. Especially

J3O
s
l |j, j3, α〉 = [J3, O

s
l ]|j, j3, α〉+Os

l J3|j, j3, α〉
= Os

j3j′3
(Js3)j3j′3|j, j3, α〉+Os

l (J
j
3)j3j′3|j, j3, α〉 = (l + j3)O

s
l |j, j3, α〉

Acting on this expression now from the left with the corresponding state, J3 can be
applied to it. However, since the representation of J3 is not explicitly given, this still
requires to transform it into an abstract basis. This is done by inserting a unity in the
representation s. Then these are the expectation values of J3 between the two, but they
can be translated into each other using the Clebsch-Gordan coefficients, which then finally
creates the Wigner-Eckart theorem (10.5).
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10.5 Invariant tensors

It is possible to combine the structure of Lie groups based on weights with the tensor
notation.

Since a representation has as many dimensions as its has rank-dimensional weight
vectors, it is possible to find a basis in which the base vectors correspond to a weight vector.
These are the eigenvectors to the Cartan generators, which agree since Cartan generators
are simultaneously diagonalizable. The weight vectors are, after all, the eigenvalues of the
Cartans for these eigenvectors. Thus, there is a one-to-one correspondence

µ = eµ,

where the eµ = e are the usual Cartesian unit vectors, where the index enumerating the
associated weight vector will be suppressed.

An arbitrary generator T a in this basis will have a matrix representation (T a)ij. The
position of the indices will become clear soon, but is not coincidentally reminding of the
situation in relativity. It should be noted that the range of indices is that of the weights
of the corresponding representation. E. g., if this is su(3) and the representation is the
fundamental one, the indices run from 1 to 3, while in the adjoint one it would run from 1
to 8. For su(2), it would be 1 to 2 and 1 to 3, respectively. That is important, as this, e. g.
limits the number of elements in anti-symmetric quantities in the indices. For su(2) in the
fundamental representation, there can be no totally antisymmetric object with three or
more indices, as with two different values for the indices there is no possibility to have all
three indices different. Furthermore, indices belong to a fixed irreducible representation,
and it is not possible to, say, contract indices of different irreducible representations, as
they act in different subspaces. Acting now with T a on a base vector yields

Tae = (T a)jiej,

implying a contraction over two indices.
Take now the complex conjugated representation. It lives in the same space, and it

will have again a suitable basis of vectors corresponding to the weight vectors. These are
in general different from the e. Denote these base vectors by ē with components ej to
distinguish them from the e and their components ei. In general, there is a base in which
these are again the usual Cartesian unit vectors, but not in the one where these correspond
to the original representation, except when both representations are identical. Then

Taē = (−T a)†ē = −(T a)ije
j

and they therefore transform with a minus sign and a contraction over the other index.
Such states can be tensorized, yielding tensors tijk...abc... = AiBj...TaSb.... Acting on them

with a generator implies, just as in (10.1), an action on every index, by definition

Tzt
ijk...
abc... =

∑
l

(
(Tz)

m
nl
tijk...ab...nl−1mnl+1...

− (Tz)
nl
mt

ijk...nl−1mnl+1...
abc...

)



118 10.5. Invariant tensors

and thus the generators act on all indices simultaneously. An object acting on only one
index requires in this convention an explicit definition. The number of indices is the rank of
the tensor, as usual. The tensor of highest weight for any rank is the one constructed from
tensorizing the single states of highest weight. Such a state is necessarily symmetric in
exchange of upper and lower indices within each other, as the combination is symmetric.
It also vanishes for any contraction of a upper and lower index, because the necessary
Kronecker-δ δji has the property δij = −δji , since its is also constructed from the (traceless)
generators. The features are conserved under application of the raising and lowering
operators, and are therefore shared by all states, which are created from this highest-
weight state.

Note that it is possible to define tensors, on which the generators act to the left, in
principle the usual bra-states. Since they are transformed with the inverse, this implies
that they will have the position of indices reversed.

This construction can now be used to characterize the concept of invariant tensors t,
i. e. tensors which are invariant under the action of the group/algebra,

Tat = 0

Because of the tracelessness of the generators, all algebras have the unit tensor δji in
common,

(Taδ)
i
j = (Ta)

i
kδ
k
j − (Ta)

k
j δ
i
k = (Ta)

i
j − (Ta)

i
j = 0

Another always present invariant tensor, again due to the tracelessness, is the Levi-Civita
tensor

(Taε)
ijk = (Ta)

i
lε
ljk + (Ta)

j
l ε
ilk + (Ta)

l
kε
ijl = (T a)llε

ijk.

This follows, as always all three indices have to be different, and thus whenever there are
two different indices, this yields the trace component, yielding thus zero in total. The
same is true for ε with all indices down, for the same reason. Note that the contraction
with an invariant tensor can be used to raise and lower indices, or to map a tensor of a
certain rank to another rank.

There may also be more invariant tensors of different rank. If they cannot be decom-
posed in these invariant tensors, they are usually a characteristic property of the group.
The first example is the Casimir operator defined as

T 2 = T aT a

a concept known from spins: This is the total spin. This operator commutes with all
generators, [

T 2, T a
]

= T b
[
T b, T a

]
+
[
T b, T a

]
T b = ifabc

{
T b, T c

}
= 0 (10.6)

and is therefore an invariant tensor. Because it commutes with all the generators, it has
to be proportional to the identity, and the coefficient is called the Casimir (operator). In
a fixed representation j the Casimir operators is given

Cj = gabσ
aσb

gbc = trfbfc
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where the σi are the generators in the representation j, and f are the generators in the
fundamental representation, and the value therefore depends on the convention for the
normalization of the scalar product of two generators in (8.11). An often useful normal-
ization is CF = 1. This normalization fixes the other Casimirs, but also often different
values are assigned to the fundamental Casimirs for different fundamental representations.

An interesting quantity, which can be derived from the Casimirs, is called the index of
a representation j, and defined as

I2(j) =
d(j)Cj
d(F )CF

where d(j) gives the dimension of the representation j. Except for the spinor representation
of the special orthogonal groups of dimension 6 or less, the index is always an integer. This
particular combinations appears in many practical calculations.

One further example is the totally antisymmetric tensor dabc defined as

dabc = trT a{T b, T c} (10.7)

which is an invariant tensor of su(3). However, this expression actually vanishes for both
su(2) and g2, and therefore this tensor does not exist in these two cases. It can be shown
that it is, in fact, only non-zero for su(N > 2).

This can be generalized to arbitrary rank by

di1...in =
1

n!

∑
permutations P

trT P (i1)...T P (in)

where the sum is over all permutations. This can also be regarded as the case of a
generalization of the Casimir concept, by denoting

Ck
j = ga1...akσa1 ...σak

ga1...ak =
1

k!

∑
permutations P

trT P (ia1 )...T P (iak )

and thus the total symmetric tensor (10.7) leads to a third-order Casimir.
The invariant tensors play an important role in physics. If a quantity of a certain tensor

rank should be constructed which is invariant under the action of the algebra or group, it
must be necessarily a linear combination of the invariant tensors of the same rank. Thus,
in su(3) any invariant tensor of rank 2 is proportional to the unit matrix, while for rank 3
it is a linear combination of εabc and dabc. This is actually true also beyond compact Lie
groups, and is the origins of the tensor decomposition. Together with the statement that
the number of invariant tensors for a finite rank is finite, this is known as the primitiveness
hypothesis. There is, to the knowledge of the lecturer, no full general proof of it, but it
appears to apply to any case relevant in physics.

Moreover, this primitiveness hypothesis implies that when a tensor of higher rank
should be constructed, it consists out of tensors constructed from lower rank, e. g. at rank
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4 from δijδ
k
l and δilδ

j
l as well as of potentially new invariant tensors. E. g. for su(3) there

is also a new invariant totally symmetric tensor at rank 4. It is essentially the statement
that any representation of a given dimensionality can be decomposed into reducible and
irreducible parts, and so can any vector in this dimensionality.

It is worthwhile to have a few examples of this statement. Take two tensors u and v
of rank 1 in the 3-representation of su(3), i. e. their indices run from 1 to 3. Then it is
possible to rewrite their tensor product u⊗ v as

uivj =
1

2
(uivj + ujvi) +

1

2
εijkεklmu

lvm

This rewriting is at first not obvious. The logic behind is that the left-hand-side is a
dimension 9 object. The first term on the right-hand side is a totally symmetric tensor, and
has thus 6 different independent elements, and hence being a 6-dimensional representation.
The second part is an anti-symmetric tensor, multiplying the proper antisymmetric tensor
εklmv

lvm. It has a single lower component, and thus belongs to a conjugate representation.
As there are only three elements, this must be a 3 representation. Thus,

(1, 0)⊗ (1, 0) = 3⊗ 3 = 6⊕ 3 = (2, 0)⊕ (0, 1),

and a tensor product of two 3-representation can be decomposed into the two irreducible
representations 6 and 3. This decomposition is actually unique. The important step
was to note that the only possibilities of decomposing something into other objects was by
invoking a decomposition using the invariant tensors. This is not obvious for the first term,
but this could be written using the δ-tensor as well. Any attempt to use the symmetric
tensor would only result again in the same construction, as this can only create a totally
antisymmetric tensor.

Two more examples may be useful,

(1, 0)⊗ (0, 1) = 3⊗ 3 = 8⊕ 1 = (1, 1)⊕ (0, 0)

uivj =

(
uivj −

1

3
δiju

kvk

)
+

1

3
δiju

kvk. (10.8)

Here, the first term has 8 independent possibilities, again constructed using two different
contractions of δ-tensors. The second term has only a single independent object, ukvk, as
the remainder is just an invariant tensor. Thus, this is a decomposition into the adjoint
representation and into the trivial representation.

Finally,

(1, 0)⊗ (1, 1) = 3⊗ 8 = 15⊕ 6⊕ 3 = (2, 1)⊕ (0, 2)⊕ (1, 0)

uivjk =
1

2

(
uivjk + ujvik −

1

4
ulvjl δ

i − k − 1

4
δjku

lvil

)
+

1

4
εijl (εlmnu

mvnk + εkmnu
mvnl ) +

1

8

(
3δiku

lvjl − δ
j
ku

lvil
)
(10.9)

where again the counting of the symmetric and antisymmetric tensors shows the correct
dimensionalities.
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The language of tensors now provides also a new possibility to generalize the Wigner-
Eckart theorem. Consider

〈v|W |u〉,

where the v and u are now arbitrary tensors. This corresponds to matrix elements

〈vij...mn...|W kl...
ab... |urs...xy...〉 = Γmn...kl...rs...ij...ab...xy... .

But any such object must be decomposable into invariant tensors. Thus, depending on
the number of uncontracted indices, this is a sum

〈v|W |u〉 =
∑
i

λiti, (10.10)

where the ti are the invariant tensors of the corresponding rank. Hence, such matrix
elements can be decomposed into a finite sum with a finite number of numbers λi which
are not determined by the group structure, and invariant tensors of the group. The
undetermined numbers λi are those which in physics are determined from the dynamics of
the system, e. g. the energy levels of hydrogen. This is just a generalization of the Wigner-
Eckart theorem, expressed using the primitiveness assumption above. The evaluation of
these matrix elements for W = 1 is yielding the Clebsch-Gordan coefficients.

10.6 Young tableaux

There exists a convenient graphical approach to constructing tensor products of repre-
sentations, which also helps in finding the type of tensors in terms of invariant tensor
deconstruction. These are called Young tableaux. It is based on the fact that the de-
composition in terms of invariant tensors (10.10), e. g. (10.8) and (10.9), always occur in
terms of either symmetric or antisymmetric invariant tensors. The dimensionalities then
follow necessarily from the number of independent components of such tensors. The ten-
sors themselves are then necessarily related to tensor products of the permutation group.
And it is here where Young tableaux come into play.

A Young tableaux is build from (square) boxes. An elementary object is a single box.
A tensor product is obtained from building out of the Young tableaux of the individual
representations a new tableaux. There are two rules for this. For this, a box can be
appended to the right of below an existing box. However, the resulting tableaux must
be left-justified and the length of a row cannot exceed the length of a row above. The
arrangement now makes statements about symmetrization and antisymmetrization. The
indices are symmetrized along rows and antisymmetrized along columns.

Thus, tensorizing vector representations imply staking two single boxes. They can
be formed in a row, yielding a symmetric rank two tensor or a column, yielding an an-
tisymmetric rank two tensors. If the vector has three components, these are 9 in total.
A symmetric combinations has six components, the antisymmetric one has three compo-
nents. These representations do not interact, but can still be completely reducible. E.
g., starting from for the spin 1 vector representation of so(3), 6 components can be given
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in terms of a spin 2 and a spin 0 component, while 3 components form again a spin 1
representation, but now of antisymmetric matrices, rather than a vector.

Adding in a third, it is necessary to decide whether to add to the row or to the
column. Adding to the row yields two possibilities, a row of three boxes, and a hook.
The row is a symmetric rank 3 tensor, having 10 independent components, which can be
written as a completely reducible combination of a spin 7 and a spin 3 representation, the
latter needs to be symmetric. The hook is also rank three, but symmetric on two indices
and antisymmetric on another pair, with one index shared. This gives eight independent
components. There appear two possibilities, namely spin 7 and spin 0 or spin 5 and spin
3. But the former has just been found to be completely symmetric for rank three, but the
other two are not yet fixed, so it is spin 5 and spin 3. In the same vain attaching it to
the other two possibilites yields a completely antisymmetric rank three tensor, which has
only one component, and thus spin zero, and another hook.

With the same logic, it is possible to create further tensor products and tensor decom-
positions. However, once complex representations are added, it is necessary to keep in
mind that the indices in complex representations and complex conjugate representations
are not equivalent, and thus need to be also to be treated independently. E. g. for the
case of su(3), the row can only be a singlet, if the two boxes are from the different repre-
sentations, while the column is then taking the other 8 elements, as a ll possibilities are
different.

10.7 Bird tracks

It is furthermore possible to represent involved tensor products graphically. While it does
not replace the necessity to calculate, e. g., Clebsch-Gordan coefficients explicitly, it is
advantegous for keeping track as well as using graph theoretical tools to construct all
possible tensor products. This procedure is called bird tracks.

It starts by using for a given tensor of some rank for each index an external line.
Usually, it carries a multi-index, based on representation and magnetic quantum number.
Open and closed boxes will symmetrized and antisymmetrized lines, which enter from one
side, and leave from another side. Triangles (or 3-point vertices) fuse two lines into a single
line, by replacing two representations by one of the constructed ones, in the sense of the
Clebsch-Gordan coefficients. The possible representations can be constructed using the
Young tableaux of section 10.6. Closed lines therefore correspond to traces over indices.
A bird track with no external lines is therefore a number. E. g., a circle with a bisecting
line will represent a Clebsch-Gordan coefficient. Since the external lines carry a magnetic
quantum number, it is only one. Summing over magnetic lines will require an additional
summation of diagrams, which is occasionally made implicit.
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10.8 Semidirect product

While so far all tensor products have the property that they combine two groups (represen-
tations) G and H to a new group G⊗H such that the new group has elements (g, h) with
the composition law (g1, h1) ◦ (g2, h2) = (g1g2, h1h2), this is by far not the only possibility,
nor the only one relevant for physics.

An alternative are semidirect products, which rather satisfy

(g1, h1) ◦ (g2, h2) = (g1 ◦ g2, h1 ◦ f(g1)h2)

where f(g)h is some automorphism of H, i. e. a structure-preserving mapping of H into
H, but could be both an inner automorphism or an outer automorphism.

A physically relevant example is again the Galileo group including rotations and trans-
lations. It is a semidirect product of rotations and translations, since two rotations are
just as usually composed, but the direction of the second translation has to be rotated by
the first rotation, (rr′, t + rt′), and thus rotations play the role of G and translations the
role of H. The automorphism is then the rotation of the first translation.



Chapter 11

Continuous groups beyond compact
Lie groups

Here, the topic of other groups, especially non-simple Lie groups, non-compact Lie groups
as well as graded Lie groups will be discussed. It will also take up again the question how
the groups can differ if the algebras coincide.

11.1 Pseudo groups

While in sections 9.2-9.4 the conventional special unitary and special orthogonal groups
have been covered, it is useful to also introduce pseudo-versions of them. These groups
are denoted by SU(p, q) and SO(p, q) and can be characterized to be the matrices M such
that

MaGM = G

G =

(
1p 0
0 −1q

)
where a is T for the special orthogonal case and † for the special unitary case. This can
be generalized to the corresponding non-unimodular versions.

The relevance of these groups for physics is evident by noting that for the (special)
orthogonal case and p = 3 and q = 1 (or p = 1 and q = 3) this defines the group of
(proper) Lorentz transformations, as then G is the Minkowski metric.

In general, for any non-compact Lie group it is possible to choose the Cartan metric

gab = fdacf
c
bd

such that it becomes g = diag(1p,−1q). As a consequence, all generators can be written
as the sum of two generators, T = K + M with KT = −K and MT = M , such that the
algebras created by the two sets of generators K and M obey

[K,K] ∼ K

[K,M ] ∼ M

[M,M ] ∼ −M

124
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and thus form two (noninvariant) subalgebras. This can be used to completely classify all
non-compact simple Lie algebras, as the replacement M → iM turns both algebras into
the same form as Lie algebras, and making the Cartan metric positive, and thus that of a
compact Lie algebra. However, the process is still more complicated than for compact Lie
algebras, and is therefore skipped here. However, this will be very useful in characterizing
the Poincare algebra.

11.2 The Lorentz group

Taking up the issue of pseudogroups from section 11.1 again, a natural question is to ask
what the representations are. Especially, given that the Lorentz group is a pseudo-group1.

Considering the cases of SO(1,1) and SO(1,3) first2, finite-dimensional representations
are already known. In two dimensions the representation is given by

Λ =

(
coshα sinhα
sinhα coshα

)
while in four dimensions the group elements can be constructed from six basic elements

J1 =


1 0 0 0
0 cosα sinα 0
0 − sinα cosα 0
0 0 0 1

 ; J2 =


1 0 0 0
0 cos β 0 sin β
0 0 1 0
0 − sin β 0 cos β

 ; J3 =


1 0 0 0
0 1 0 0
0 0 cos γ sin γ
0 0 − sin γ cos γ



K1 =


cosh η sinh η 0 0
sinh η cosh η 0 0

0 0 1 0
0 0 0 1

 ; K2 =


cosh ξ 0 sinh ξ 0

0 1 0 0
sinh ξ 0 cosh ξ 0

0 0 0 1

 ; K3 =


cosh ζ 0 0 sin ζ

0 1 0 0
0 0 1 0

cosh ζ 0 0 sinh ζ

 .

In the first three immediately the group elements of SO(3) are recognized, while the other
three constitute the elements of a second SO(3), but with imaginary angels. In this sense,
the group splits into the two subgroups as discussed in section 11.1.

However, already the two-dimensional case shows that this representation is not uni-
tary, i. e. Λ† 6= Λ−1. The reason can be traced back to the fact that the single generator
of SO(1,1) is given by

λ =

(
0 i
i 0

)
which is not Hermitian. Since furthermore trλ2 < 0 this implies what was already antic-
ipated: The group is not compact. As shown in section 8.3, this implies that it does not
have any finite-dimensional unitary representations.

1The Poincare group is a tensor product of the Abelian translation group and the Lorentz group, and
the latter plays no role in the following.

2These are the proper Lorentz group, while O(1,1) and O(1,3) would also include parity and time
reversal.
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However, there exists infinite-dimensional unitary representations. In this case, a func-
tion space is required. To introduce it, it is useful to have a different view on the Lorentz
group.

The Lorentz group consists out of rotations J and boosts K. In general, commutators
of J and K do not vanish. However, defining a skew version of these operators

A =
1

2
(J + iK)

B =
1

2
(J − iK)

this is the case. The Lorentz algebra becomes then a direct product of two SU(2) algebras

[Ai, Aj] = εijkAk

[Bi, Bj] = εijkBk

[Ai, Bj] = 0. (11.1)

Hence, any representation of the Lorentz group can be assigned two independent quantum
numbers, which are either integer or half-integer. These are connected with physical
objects, depending on how the transform under each of the two SU(2) subalgebras. E. g.
scalars are then just twice the trivial case, (0, 0). Left-handed fermions and right-handed
fermions, however, belong to the (1/2, 0) and (0, 1/2) representations, vectors like the
momentum belong to the (1/2, 1/2) representation, and antisymmetric tensors like the
generators of angular momentum to the (1, 0) + (0, 1) representation.

Each of the subgroups are themselves compact. But their tensor product giving the
Lorentz group is not, as their product is only a semi-direct product. The direct product
delivers the conventional SO(4) ∼ SU(2)⊗ SU(2), the Euclidean rotation group.

Now, finally the unitary representation is given by a functional space, i. e. a space of
functions φi

j̇m
(p) such that p2 = m2 and p is an n-dimensional vector with p2 = p20 − ~p2

living in the n-dimensional non-unitary representation of the Lorentz group. The indices
i and j̇ are multiindices, which describe the representation the functions form of the two
SU(2) subgroups. The action of the Lorentz group is then

Λφi
j̇m

(p) = λikλ
l̇
j̇
φk
l̇m

(λp), (11.2)

where the λ are the corresponding non-unitary representations. In this case, Λ† = Λ−1.
The parameter m classifies the little group of the orbits, where m > 0, m = 0, and

m < 0 are the strata for the little groups SO(3), SO(2), and SO(1,2), where only the
former two appear in physics. Correspondingly, m is the eigenvalue of the (lowest-order)
Casimir of this representation with respect to the orbits, while the spin is the Casimir for
the non-unitary finite-dimensional representations.

It is possible to upgrade the Poincare group further to the so-called conformal group.
This is done by adding two more space-time transformations, corresponding to 5 more
generators in four dimensions, to the group,

xµ → λxµ

xµ → xµ + aµx2

1 + 2xνaν + a2x2
,
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with arbitrary vector aµ. The first is a scale transformation, which is also called dilata-
tion. The second is the special conformal transformation. The scale symmetry is in so far
remarkable in physics, as only scaleless theories can be conformal. Hence, a conformal the-
ory never has any kind of intrinsic mass scale. As a consequence, all infinite-dimensional,
unitary representations of the conformal group, which still need to satisfy all the require-
ments of the representations of the Poincare group as well, can only be those states in
(11.2) which satisfy m2 = 0. Note that the finite-dimensional spin representations of the
rotation group are not affected.

11.3 Covering groups

The probably most important consequence of considering topological groups is the insight
that the seemingly surprising identification of different Lie algebras in chapter 8 is due to
the fact that the corresponding Lie groups are identical in the patch containing the unit
element, and are thus locally isomorphic in this patch. However, the difference is that not
all of the respective groups are simply connected. But it can be shown that for every set
of locally isomorphic Lie groups there is one unique Lie group which is simply connected.
This group is called the covering group.

E. g. for SO(3) and SU(2), the covering group is SU(2), since SO(3) is not simply
connected. The explicit mapping for group elements is given by

rij = tru†σiuσj (11.3)

where u is an arbitrary element of SU(2) and r the corresponding element of SO(3),
and the σi are the corresponding generators of SU(2). This also shows how the simple
connectedness of SU(2) is lost, as the double appearance of the u elements eliminates signs.
Especially, elements proportional to the negative unit element of SU(2) are mapped into an
element proportional to the positive unit of SO(3). This is generic. Since for any covering
the number of continuous parameters needs to be the same, as it would otherwise not be
a homomorphism, the different patches can only differ by a discrete group. Furthermore,
the difference is exactly the center of the group SU(2), which is the discrete group Z2, and
thus in a sense SO(3)∼SU(2)/Z2. If the difference would not be the center of the covering
group, then the different elements would not commute in the vicinity of the identity, and
therefore would correspond to some different group element expanded close to the identity,
but this would be continuous in contradiction to the discreteness. Thus, in general for any
group H, it is homomorphic to its covering group G, up to its center Z, and thus H ∼ G/Z.
In reverse, H/G ∼ Z.

However, the covering group does not need to be a simple Lie group. E. g. for SO(4)
the covering group is SU(2)×SU(2), nor does it need to be a simple product group.

Studying (11.3), it is seen that the left-hand-side is a three-dimensional representation,
and thus the adjoint representation. This immediately shows that all center elements
of a group are mapped to the identity in the adjoint representation, which is therefore
not a faithful representation. This is generally true. The reason is that the adjoint
representation forms automatically a basis in its representation space, and then the only
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element commuting with every other element can be the unit matrix, and therefore the
whole center is mapped to the unit matrix.

Hence, coinciding Lie algebras can yield different Lie groups, which then differ by
connectedness and the center. Conversely, the adjoint representation of the algebra is
faithful, if the center is trivial.

It is for this reason interesting to enumerate for the simple Lie groups centers and
covering groups. In fact, only the SO(n) groups are not simply connected, but have a
covering group which is different only by a Z2 or a Z4 or a Z2 × Z2 factor and called the
spin group Spin(n). Necessarily the spin groups have the same Lie algebra as the SO(n)
group, and thus fall otherwise into the same classification. Furthermore, the centers of
SU(n) are Zn, of E7, SO(2n), and Sp(2n) Z2, of E6 Z3, and in all other cases trivial.

The concept of covering groups now also gives insight into the somewhat mysterious
spinor representations of the SO(n) groups in section 9.4.3. Since the SO(n) are not
simply connected, representations exist, which are not faithful, but double-valued, i. e.
they map one group element into two different representation elements. The SO(n) are
the only such groups, and the result are the double-valued spinor representation. The
corresponding representation of the covering group is, however, unique. This also explains
the example of so(3) in section 9.4.3: In su(2), the elements multiplied by −1 are ordinary
group elements. These are factored out when going to the non-connected so(3). Since
the spinor representation is equivalent to su(2), these elements nonetheless exist, but as a
double-valued ’ghost’ image of the su(2) elements. Similar considerations apply to SO(5),
where the covering group is Sp(4), as in the rank 2 case the lacedness does not play a role.

As can be deduced from this discussion, there are groups for which there exists con-
tinuous, unitary irreducible representations, which are either not faithful (adjoint repre-
sentations for groups with a non-trivial center) or double-valued (spinor representations
of the disconnected groups SO(n)). However, these groups all have the same algebra, i. e.
they are isomorphic at the algebra level. As a consequence, the group which for a given
representation is both faithful and single-valued is called the corresponding true group. E.
g. for the isomorphic algebras so(3)∼su(2), for the adjoint representation the group SO(3)
is the true group, but for the spinor representation it is the SU(2) group.

11.4 True groups

11.4.1 True groups and the center

Th full classification of representations according to the true groups is rather complicated,
especially in the non-simple case. Therefore, only the cases will be considered which are
of direct relevance in physics. Here, it becomes especially important that not actually
simple groups are the most common case in (particle) physics, but rather just compact
Lie groups, with possible Abelian factor groups. The best known example is the standard
model of particle physics.

The actual calculation is somewhat involved, and it is best to proceed in several steps.

Note that due to the discussion in chapter 10, it is possible to construct arbitrary
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representations by tensor products of the fundamental representations.
Start out with the groups without center, i. e. SO(2n + 1), G2, F4, and E8. It is

here important that the groups are considered, and not the algebra. Since these groups
do not have a center, their adjoint representation is faithful. Furthermore, all tensor
representations of them are single-valued.

For the groups with center Z2, i. e. SU(2), SO(2n), Sp(2n), and E7, there are two
possibilities for their tensor representations. Either they are build from an even or odd
number (rank) of fundamental representations. For odd tensors, permutations of the
indices permits to explicitly include the center, while this is not possible for an even rank.
Thus, in the latter cases, the true group is G/Z2 rather than the groups themselves.

The same is also true for the spinor representations of SO(2n+1): If they are build from
an even number of fundamental spinor representations, the true group is SO(2n+ 1)×Z2,
but otherwise the original group.

This shows already how the structure emerges: Since center elements are roots of unity,
it is necessary to be able to associate to every element such a factor under permutations of
the fundamental representations building a given representation. E. g. for E6 with center
Z3, the true group is again E6 if the rank modulo 3 is non-zero, but E6/Z3 otherwise.

This effect can be seen as follows: A group element acting on a tensor will act on every
fundamental representation simultaneously. In case of Z2, there are two elements, and
thus the values can be at most 1 or −1, and thus

t1 → (−1)t1

t1 ⊗ t2 → (−1)(−1)t1 ⊗ t2 = t1 ⊗ t2
t1 ⊗ t2 ⊗ t3 → (−1)(−1)(−1)t1 ⊗ t2 ⊗ t3 = (−1)t1 ⊗ t2 ⊗ t3

and therefore a non-trivial action is only possible for an odd number of representations.
If the center is Z3, the effect is, e. g. for the element exp(i2π/3)

t1 → (exp(i2π/3))t1

t1 ⊗ t2 → (exp(i2π/3))(exp(i2π/3))t1 ⊗ t2 = (exp(i4π/3))t1 ⊗ t2
t1 ⊗ t2 ⊗ t3 → (exp(i2π/3))(exp(i2π/3))(exp(i2π/3))t1 ⊗ t2 ⊗ t3 = (exp(i2π))t1 ⊗ t2 ⊗ t3,

and likewise for the other element. Therefore the effect is trivial for the case of modulo 3
representations.

This still leaves the interesting cases of SO(2n) with center Z2 and SU(n) with center
Zn.

To discuss the SU(n) case, introduce the rank index of a representation

t =
l∑
sµs mod n+ 1

where µs are the corresponding Dynkin weights of the representation, and the sum is over
the involved representations. The weight µs counts the number a given representation
appears, and s is the number the fundamental representation appears. E. g., for SU(2)

t = 2j mod 2 + 1,
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where j is the spin of the representation and for SU(3) it is the triality of the representation:
The rank index characterizes thus the rank of the representation modulo the size of the
center.

This result implies that in a representation identified by rank index t for a group with
center Zn, the application of a center element ω (with ωn = 1) will yield the total effect
ωt. The complexity arises from the fact that there may still be a subgroup of the center,
which is non-trivially realized on this representation. To proceed, note that there is some
number f such that

n = fn0

t = ft0

such that n0 and t0 are relatively prime. It follows

(ωt)n0 = ωft0n0 = (ωn)t = 1 = (ωn)t0 ,

and n0 is the smallest integer for which this is true. Thus, the representation with rank
index t carries a representation of the center group Zn0 =Zn/Zf . The true group is therefore
G/Zf .

Take as an example SU(3). The possible rank indices are 1, 2, and 3. The possible
values for f are therefore 1, 1, and 3. Thus, the true group is SU(3) for t = 1 and t = 2,
but SU(3)/Z3 for t = 3. The latter includes the adjoint representation, which is a totally
antisymmetric tensor product of three fundamental representations. The fundamental
representations and the 6 representation, being a symmetric tensor product of two funda-
mental representations, are of the former type. Note that the other in physics particular
important representations of SU(3), 10, 10, and 27 also all have rank index 3.

This sequence can be more involved. Consider SU(4), with rank indices 1-4. The values
of f are 1, 2, 1, and 4. Thus, the true group can be either SU(4), SU(4)/Z2, or SU(4)/Z4.
For SU(6), the sequence of f is 1, 2, 3, 2, 1 and 6. In general, if n is prime, then f can be
either only 1 or n. For the adjoint representation f is always n, and thus the true group
for the adjoint representation is always SU(n)/Zn.

For the SO(2n) groups, the situation is a little bit more subtle, but it is along similar
lines possible to define a rank index, and then determine the corresponding true groups. It
will not be detailed here, but yields that the true groups for the spinor representations are
always the covering groups, while in all other cases it is the original group, but sometimes
with part, but not all, of the center divided out. Thus, all tensor representations of SO(2n)
contain at least the center Z2.

11.4.2 True groups and Abelian subgroups

While so far only the true groups of simple groups have been considered, physics often
requires to consider the situation with non-simple groups. Generically, this becomes quite
involved. Therefore, the general strategy will be discussed here for the case most relevant
to particle physics of groups SU(p)×U(1) and SU(p)×SU(q)×U(1), which cover e. g. the
gauge group of the standard model. In the context of physics the quest for the true
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groups becomes very important, as quantum mechanics requires wave functions to be
single-valued. Thus, a meaningful quantum theory can only be built with objects in
single-valued representations, and therefore in the true groups.

To start, it is helpful to recall that the continuous unitary irreducible representations
of U(1) are exp(imφ), where the integer m is both the rank and the Dynkin index of the
representation. Note, however, that only m = 1 is faithful, as in all other cases multiple
group elements are mapped to the same value.

The simplest case is SU(p)×U(1) with p prime. Then there exist two possible groups,
SU(p)×U(1) and SU(p)×U(1)/Zp=U(p). The last equality is obtained by identifying the
elements of Zp in SU(p) with the corresponding ones in U(1). E. g., for SU(2)×U(1) this is
achieved by identifying the element diag(−1,−1) from SU(2) with the element (−1) from
U(1). This is generalized by identifying the diagonal matrix element with entries ω (with
ωp = 1) with the number ω′.

Another view is illustrated by the fact that the p-dimensional representation of U(p) is
the direct product of SU(p) and U(1), and then the identification is manifest: This is just
the set of p-dimensional special unitary matrices multiplied by an arbitrary phase, and
then there is no distinction between the factor ω from either parts, as both yield a unit
matrix with the ω on the diagonal. However, SU(p)×U(1) yields more directly a direct
sum of dimension p+1, where then the difference of both center elements is manifest: The
one is a p-dimensional unit matrix times ω appended with a one-dimensional unit matrix,
while the other is a positive p-dimensional unit matrix appended with a one-dimensional
diagonal matrix times ω.

Such an identification of elements is only possible if ωt and ω
′m become one at the

same time, and thus t = m mod p. If this is the case, the two representations of the
center can be identified, and thus the true group is U(p), and otherwise SU(p)×1. The p
and p+ 1 dimensional representations are particular examples of this with m = t = 1, and
representations (1, 1) and (1, 0) + (0, 1) for (t,m).

In the next case is SU(p)×SU(q)×U(1) with p 6= q and both relative prime. The center
elements satisfy ωp = 1 and σq = 1. There are, of course, again elements ω′ and σ′ in the
U(1) which also exponentiate in the same way to one. With the same argumentation, the
possible true groups are then

• SU(p)×SU(q)×U(1)

• U(p)×SU(q)=SU(p)×SU(q)×U(1)/Zp, identifying ω = ω′

• SU(p)×U(q)=SU(p)×SU(q)×U(1)/Zq, identifying σ = σ′

• S(U(p)×U(q))=SU(p)×SU(q)×U(1)/Zp+q, identifying both ω = ω′ and σ = σ′

The last case is actually the one relevant for the standard model of particle physics, as all
particles appear to be in the fundamental representation of the full standard model gauge
group.
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11.4.3 True groups and little groups

It is possible to show that for any continuous unitary and irreducible representation of a
group there are at most a finite number of little groups. Furthermore, there is a smallest,
non-trivial little group, in the sense that this little group is a (conjugated) subgroup of
all little groups. However, there may be more than one maximal little group, i. e. little
groups which are not related as (conjugated) subgroups to other little groups, but still are
little groups of the representation in question.

A number of general statements can be made about the strata of these little groups.
The first is that the stratum of the minimal little group is open and dense in the repre-
sentation. It is thus, in a sense, maximal, and therefore also called the generic stratum.
In the context of Morse theory, only the second-order invariant has a extremum in the
generic stratum, while all other invariants have extrema in other strata, which is stated
without proof.

The opposite are, modulo a norm, discrete strata, i. e. strata with a finite number of
elements. The orbits in such strata are called critical strata. These strata are often, but
not always, associated with maximal subgroups. In fact, it can be shown that the little
group is maximal if there is only a single, modulo norm, orbit in its stratum, which is
therefore a singlet under the action of this little group. An example were the fixed vectors
for SO(n). It is important that, for a fixed representation, not necessarily a subgroup of
the group is also a little group. In fact, it is often not. However, it is usually possible
to construct some representation of which a given subgroup of a group is a little group,
but this may not necessarily be an irreducible representation, nor easy. In the context of
Morse theory, it is possible to show that all invariants, except for the second-order one,
have extrema on critical orbits, which is thus an alternative characterization.

Another feature is that the little group may have the same or lesser rank than the
original group, or, if it is discrete, even have rank zero. Since the rank is associated
with the number of charges, this plays an important role in physics. In this context it is
sometimes useful to define the little space as the space which is left invariant by a little
group. E. g., for SO(3) this is the two-dimensional subspace left invariant by the SO(2)
little group in the vector representation of the group.

11.5 Clifford algebra

A generalization of the Clifford algebra in section 9.4.3 is one where the right-hand side is
a more general metric tensor gµν instead of the Euclidean δµν

{γµ, γν} = γµγν + γνγµ = 2gµν1,

The metric gµν needs to be a non-degenerate, symmetric matrix. The (identical) index
range N of µ and ν defines the algebra, and therefore this is actually a family of algebras.

The probably best known case is the one where there are four-different values for µ
and ν and gµν is the Minkowski metric. Then, the lowest-dimensional representation is
four-dimensional, and given by the so-called Dirac matrices. If the range is three, the
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lowest-dimensional representation is two, and the γµ coincide with the Pauli matrices.
Interestingly, there is no three (and actually no odd) dimensional representation of the
Clifford algebra.

This plays the same role for the pseudo group SO(1,N − 1) as the Euclidean Clifford
algebra did for the compact Lie group SO(N) is section 9.4.3, and is closely related to
fermions in physics. Again, also the Clifford representations are homomorphic to the
representations of SO(1,N − 1). This becomes immediately obvious by decomposing the
representations into their SU(2) content using the Pauli matrices. In fact, the Clifford
group generated from the Clifford algebra is a covering group of these groups, and identical
to the aforementioned spin groups Spin(n).

Note that the concept of Clifford algebras can be further generalized, but this leads
substantially beyond the scope of this lecture, and it is actually rarely encountered in
physics.

11.6 Grassmann algebra

A, at first sight, deceptively similar algebra to the Clifford algebra is the Grassmann
algebra

{ξa, ξb} = 0.

However, its properties are very different. The most remarkable fact is that ξaξa = 0, i.
e., the elements are nilpotent. This implies that there is no one-dimensional representa-
tion. Higher-dimensional representations are given by nilpotent matrices. However, since
nilpotent matrices cannot be inverted, this algebra cannot generate a group under matrix
multiplication, in contrast to the Clifford algebra, or any Lie algebra. However, it still
forms a semigroup, as all other properties of a group, except the existence of an inverse,
and thus neutral element, are satisfied.

However, it is possible to form a group under addition. This can be extended by
including also ordinary numbers to form a vector space. This vector space will be useful
to introduce graded algebras in section 11.7.

Due to the nilpotency, the set S of independent Grassmann numbers with a = 1, ..., N
base numbers are

S = {1, αa, αa1αa2 , ..., αa1 × ...× αaN},
where all ai are different. This set contains therefore only 2N elements. There are no more
elements, as the square of every Grassmann number vanishes, and by anti-commuting
thus any product containing twice the same Grassmann number vanishes. Of course, each
element of S can be multiplied by ordinary complex numbers c, and can be added. This
is very much like the case of ordinary complex numbers. Such combinations z are called
supernumbers, and take the general form

z = c0 + caα
a +

1

2!
cabα

aαb + ...+
1

N !
ca1...aNα

a1 × ...× αaN = c0 + cS. (11.4)

Here, the factorials have been included for later simplicity, and the coefficient matrices
can be taken to be antisymmetric in all indices, as the product of αas are antisymmetric.
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For N = 2 the most general super-number is therefore

z = c0 + c1α
1 + c2α

2 + c12α
1α2,

where the antisymmetry has already been used. Sometimes the term c0 is also called body
and the remaining part soul. It is also common to split the super-number in its odd and
even (fermionic and bosonic) part. Since any product of an even number of Grassmann
numbers commutes with other Grassmann numbers, this association is adequate. For
N = 2, e. g., the odd or fermionic contribution is

c1α
1 + c2α

2,

while the even or bosonic contribution is

c0 + c12α
1α2.

Since the prefactors can be complex, it is possible to complex conjugate a supernumber.
The conjugate of a product of Grassmann-numbers is defined as

(αa...αb)∗ = αb...αa (11.5)

Note that this implies that a product of an even number of Grassmann numbers is imagi-
nary while an odd number is real,

α∗ = α

(αβ)∗ = βα = −αβ,

due to the anti-commutation when bringing the product back to its original order.
An important property of a super number z is its Grassmann parity π(z). It differen-

tiates between numbers which commute or anti-commute, and thus takes the values 0 or
1. Hence, for two super numbers

z1z2 = (−1)π(z1)π(z2)z2z1,

the Grassmann parity can be used to determine the sign of permutations. Note that
only supernumbers with only even or odd numbers of Grassmann numbers have a definite
Grassmann parity. Hence, super numbers with definite Grassmann parity 0 or 1 are
therefore called even or odd.

Finally, a norm can be defined as

|z|2 = |c0|2 +
∞∑
k=1

∑
Permutations

1

k!
|ca1...ak |2,

such that it is possible to give meaning to the statement that a super number is small.
To construct groups or representations of Grassmann algebras it is often useful to refer

to Grassmannian, in the physics context often also called fermionic, dimensions. Ordinary
real coordinates are then referred to as bosonic. This is also called a superspace formalism,
especially in the context of supersymmetry.



Chapter 11. Continuous groups beyond compact Lie groups 135

11.7 Graded algebras

A graded algebra is an algebra which satisfies[
ta, tb

}
= tatb − (−1)ηaηbtatb = ifabctc,

where the ηi are known as gradings of the elements ta, and are 0 for bosonic and 1 for
fermionic generators. Because of the symmetry properties of the left-hand-side, this implies
that fabc is zero except when ηc = ηa + ηb. Still, if the ta are Hermitian it follows that
f ∗abc = −fbac. Also a super-Jacobi identity follows

(−1)ηcηa [[ta, tb} , tc}+ (−1)ηaηb [[tb, tc} , ta}+ (−1)ηbηc [[tc, ta} , tb} = 0.

It has the usual, but graded, implication for the relation of the structure constants. Note
that the grading of a composite operator is in general given by (

∑
ηi) mod 2 with the

gradings of the constituent operators ηi. Furthermore, any transformation based on this
algebra involves necessarily a mixture of ordinary complex numbers and Grassmann num-
bers, and therefore the parameters receive also a grading.

Thus, a graded algebra is just a mixture of conventional algebras and Grassmann alge-
bras. Thus, using superspaces, it is possible to construct a group, and then representations
in the usual way.

While this form is the most common in physics, the concept can be generalized. Gen-
erators with different gradings belong to two different vector spaces. The gradings form a
representation of Z2, and the grading is therefore called a Z2 grading. A Z2-graded algebra
is also known as a superalgebra. Especially, generators vi in the first vector space V and
generators wi from the second vector space W can be chained ◦, and obey then

v1 ◦ v2 ∈ V

v1 ◦ w1 ∈ W

w1 ◦ v1 ∈ W

w1 ◦ w2 ∈ V.

It is likewise possible to generalize this to a ZN grading. In this case, the generators vji
belong to N different vector spaces Vj, and obey

vji ◦ vlk ∈ Vj+k mod N .

Correspondingly a ZN -graded algebra involves a mod N -type change to the gradings,
and so does the Jacobi identity.


