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What is this talk about?

● GUTs are an attractive BSM scenario
● Spectra are usually determined from 

perturbation theory
● Lattice results disagree qualitatively
● Explained by manifest gauge invariance 

qualitatively and by the Fröhlich-
Morchio-Strocchi mechanism 
quantitatively

Review: 1712.04721
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Grand-unified theories

● Hypercharges are quantized in the standard 
model

● Anomaly freedom requires careful balance of 
all three gauge interactions

● Running coupling almost unify at a high scale
● Why?
● Unification of all gauge interactions would 

explain these features
● Does such a theory exist, which has as a low-

energy effective theory the standard model?
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● Requires to have as light degrees of freedom the 
standard model particles

● Concentrate on the gauge boson/Higgs sector
● Usual procedure:

● Choose a gauge group (e.g. SU(5))
● Add suitable Higgs particles to use a Brout-Englert-

Higgs effect to break it to SU(3)xU(1)
● Additional gauge bosons (leptoquarks) and surplus 

Higgs need to be heavy compared to the standard 
model

● Need massless (gluon, photon), massive (W,Z) and 
one Higgs left

● Should be testable on the lattice



A toy model: SU(3)->SU(2)

● Consider an SU(3) with a single fundamental Higgs



● Consider an SU(3) with a single fundamental scalar
● Looks very similar to the standard model Higgs

● Ws

● Coupling g and some numbers f abc

L=−
1
4

W μ ν

a W a
μ ν

W μ ν

a
=∂μ W ν

a
−∂νW μ

a
+gf bc

a W μ

b W ν

c

W μ
a WW

A toy model: SU(3)->SU(2)



● Consider an SU(3) with a single fundamental scalar
● Looks very similar to the standard model Higgs

● Ws
● Higgs

● Coupling g and some numbers f abc and t
a

ij

L=−
1
4

W μ ν

a W a
μ ν

+(Dμ

ij h j
)

+ Dik
μ hk

W μ ν

a
=∂μ W ν

a
−∂νW μ

a
+gf bc

a W μ

b W ν

c

Dμ

ij
=δ

ij
∂μ−igW μ

a ta
ij

W μ
a

hi

W

h

W

A toy model: SU(3)->SU(2)



● Consider an SU(3) with a single fundamental scalar
● Looks very similar to the standard model Higgs

● Ws
● Higgs

● Couplings g, v, λ and some numbers f abc and t
a

ij

L=−
1
4

W μ ν

a W a
μ ν

+(Dμ

ij h j
)

+ Dik
μ hk+λ(ha ha

+
−v2)2

W μ ν

a
=∂μ W ν

a
−∂νW μ

a
+gf bc

a W μ

b W ν

c

Dμ

ij
=δ

ij
∂μ−igW μ

a ta
ij

W μ
a

hi

W

h

W

A toy model: SU(3)->SU(2)



● Consider an SU(3) with a single fundamental scalar
● Looks very similar to the standard model Higgs

● Ws
● Higgs

● Couplings g, v, λ and some numbers f abc and t
a

ij

● There is a global U(1) symmetry for the Higgs only
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Textbook approach

● Choose parameters to get a Brout-
Englert-Higgs effect

● Minimize the classical action
● Choose a suitable gauge and obtain 

‘spontaenous gauge symmetry 
breaking’: SU(3) → SU(2)

● Get masses and degeneracies at tree-
level

● Perform perturbation theory
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● Elementary fields are gauge-dependent
● Change under a gauge transformation
● Gauge transformations are a human choice...
● ...and gauge-symmetry breaking is not there 

[Elitzur’75, Osterwalder & Seiler’77, Fradkin & Shenker’78]

● Just a figure of speech
● Actually just ordinary gauge-fixing

● Physics has to be expressed in terms of manifestly 
gauge-invariant quantities

● And this includes non-perturbative aspects…
● ...even at weak coupling [Gribov’78,Singer’78,Fujikawa’82]

● Especially on the lattice: No gauge-fixing necessary 

[Fröhlich et al.'80,
 Banks et al.'79]

A problem on the lattice
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Physical states

● Need physical, gauge-invariant particles
● Cannot be the elementary particles
● Non-Abelian nature is relevant

● Need more than one particle: Composite particles

● Higgs-Higgs, W-W, Higgs-Higgs-W etc.

Wh W WW WWh
h

h

[Fröhlich et al.'80,
 Banks et al.'79]
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How to make predictions

● JPC and custodial charge only quantum numbers
● Different from perturbation theory

● Operators limited to asymptotic, elementary, 
gauge-dependent states

● Formulate gauge-invariant, composite operators
● Bound state structure

● Depends on theory. Here:
● Integer J, any P, C
● Uncharged or charged under (Higgs) U(1)

[Fröhlich et al.’80,’81,
 Maas & Törek'16,’18,
 Maas, Sondenheimer & Törek'17]



Spectrum
M

a
ss

0

ScalarVector

Gauge-dependent



Gauge-invariant

[Maas & Törek’16,'18
 Maas, Sondenheimer & Törek'17]Spectrum

M
a
ss

0

ScalarVector

Gauge-dependent



Gauge-invariant

[Maas & Törek’16,'18
 Maas, Sondenheimer & Törek'17]

Observed

Spectrum
M

a
ss

0

ScalarVector

Gauge-dependent



● Qualitatively different spectrum

Gauge-invariant

[Maas & Törek’16,'18
 Maas, Sondenheimer & Törek'17]

Observed Upper limits

Spectrum
M

a
ss

0

ScalarVector

Gauge-dependent



● Qualitatively different spectrum
● Gauge-dependent particles can also be calculated

Gauge-invariant

[Maas & Törek’16,'18
 Maas, Sondenheimer & Törek'17]

Observed Upper limits

Spectrum
M

a
ss

0

ScalarVector

Gauge-dependent



● Qualitatively different spectrum
● Gauge-dependent particles can also be calculated

Gauge-invariant

[Maas & Törek’16,'18
 Maas, Sondenheimer & Törek'17]
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1) Formulate gauge-invariant operator

     0+ singlet:

2) Expand Higgs field around fluctuations

3) Standard perturbation theory

4) Compare poles on both sides
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What about the vector?

1) Formulate gauge-invariant operator

     1- singlet:

2) Expand Higgs field around fluctuations

 Charged states need additional assumptions     

    [Maas, Sondenheimer, Törek’17]
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Only one state remains in the spectrum
at mass of gauge boson 8 (heavy singlet)
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● Full spectroscopy will check further FMS predictions
● Results so far show no additional light levels
● U(1) charged: Do not exist in perturbation theory

Scalar
non-singlet

2x
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Physical resonance

Physical scattering
thresholds



Experimental consequences

● Add fundamental fermions
● Bhabha scattering

[Maas & Törek'18
 Maas'17]

Ghost peaks from unphysical particles in perturbation theory



Experimental consequences

● Add fundamental fermions
● Bhabha scattering

[Maas & Törek'18
 Maas'17]

Close to true structures identical!



Beyond the toy model

● Generic problem in GUT scenarios [Sondenheimer’19]

● Many standard scenarios are ruled out
● Too few or too many particles at low mass
● Includes popular scenarios like SU(5), SO(10), Pati-

Salam

[Maas, Sondenheimer & Törek'17,
 Sondenheimer’19]
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Beyond the toy model

● Generic problem in GUT scenarios [Sondenheimer’19]

● Many standard scenarios are ruled out
● Too few or too many particles at low mass
● Includes popular scenarios like SU(5), SO(10), Pati-

Salam
● Group-theoretic arguments

● Traced back to the structure of global symmetry 
and local gauge group

● Standard model has a special structure – protects 
the spectrum [Fröhlich et al.’80,’81]

● Requires to rebuild GUT phenomenology
● Photon as composites possible [Afferrante et al.’20]

[Maas, Sondenheimer & Törek'17,
 Sondenheimer’19]



Summary

● Perturbative methods to determine GUT 
spectra fail qualitatively

● Fröhlich-Morchio-Strocchi mechanism 
yields a suitable, practical alternative

● Phenomenlogy of GUTs needs to be 
redone

Review: 1712.04721@axelmaas
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