GAUGE-INVARIANT SPECTRUM IN THE WEAK SECTOR OF THE STANDARD MODEL

Georg Wieland

in collaboration with Axel Maas

Institute of Physics University of Graz

Outline

- I. Motivation & Background
 - Gauge-invariant formulation of Higgs theories
 - The Fröhlich-Morchio-Strocchi mechanism
 - Spectrum of the weak SM
- II. Gauge-invariant spectrum from lattice calculations
 - ♦ SU(2) scalar-fermion-gauge system as a proxy to the weak sector of the SM
 - Gauge-invariant bound states on the lattice
 - First preliminary results and conclusions

Motivation & Background

Perturbative approach

Consider an SU(2) gauge-scalar theory with Brout-Englert-Higgs (BEH) effect

$$\mathcal{L} = -\frac{1}{4}W^a_{\mu\nu}W^{a,\mu\nu} + \frac{1}{2}\left(D_\mu\phi\right)^\dagger\left(D^\mu\phi\right) + \lambda\left(\phi^\dagger\phi - v^2\right)^2$$

- Classical minimum at $\phi^{\dagger}\phi = v^2$
- Introduce shift with fluctuations around the minimum

$$\phi(x) = \langle \phi(x) \rangle + \varphi(x) = vN + \varphi(x)$$

 \triangleright Inserting this into \mathcal{L} results in a mass term for the gauge bosons with $m_W \propto v^2$

This construction is gauge-dependent

- ! There are gauges in which $\langle \phi(x) \rangle = 0$ and gauge bosons remain massless
- ! Elementary fields cannot be treated as physical degrees of freedom

Gauge-invariant approach

- ▶ In perturbation theory, elementary fields are treated as asymptotic states, although they are not gauge-invariant
- ▶ Asymptotic states must be described by gauge-invariant composite objects, i.e., bound-state operators[†]
- One needs to construct gauge-invariant objects with the same global quantum numbers as the elementary fields
 - Gauge-invariant scalar: $\phi(x) \rightarrow \left(\phi^\dagger \phi\right)(x)$
 - Gauge-invariant vector boson: $W_{\mu}^{a}(x)
 ightarrow \left(au^{\mathbf{a}} \phi^{\dagger} D_{\mu} \phi \right)(x)$
 - Gauge-invariant left-handed fermion: $\psi(x) \rightarrow \left(\phi^{\dagger}\psi\right)(x)$

[†]Inherently non-perturbative methods are required to obtain physical quantities

FMS mechanism

Open questions

- Why does perturbation theory reproduce the physical spectrum of the weak SM?
- Are there any differences between the two approaches?
- Answers for both questions lie in a gauge-invariant formulation of quantum field theories → Fröhlich-Morchio-Strocchi (FMS) mechanism

```
Fröhlich, Morchio, Strocchi, Phys. Lett. B97 (1980)
Fröhlich, Morchio, Strocchi, Nucl. Phys. B190 (1981)
```

- Example: consider the scalar bound state $\mathcal{O}_{0^+}(x) = \phi^{\dagger}(x)\phi(x)$
 - Rewrite the propagator using $\phi(x) = vN + \varphi(x)$ and $h(x) = \text{Re}\{N^{\dagger}\phi(x)\}$

$$\langle \mathcal{O}_{0^+}(x)\mathcal{O}_{0^+}^\dagger(y)\rangle = \mathrm{const} + 4v^2\langle h(x)h^\dagger(y)\rangle_{\mathrm{tl}} + \langle h(x)h^\dagger(y)\rangle_{\mathrm{tl}}^2 + \mathcal{O}(g^2,\ldots)$$

Mass pole of bound state coincides (to first order) with the mass pole of the elementary correlator $\langle h(x)h^{\dagger}(y)\rangle$

Maas. Sondenheimer, Phys. Rev. D 102 (2020), 2009.06671 Dudal et al., Eur. Phys. J. C 81 (2020), 2008.07813

Spectrum of the weak SM

- FMS mechanism predicts a **one-to-one mapping** between gauge-dependent and gauge-invariant states and explains why perturbation theory is successful
- A similar construction for the vector boson shows agreement as well Dudal et al., Eur. Phys. J. C 81 (2020), 2008.07813
- Confirmed by lattice calculations Maas, Mufti, IHEP 1404 (2014), 1312,4873

Spectrum of the weak SM

- Left-handed fermions are not gauge-invariant \to construct bound state $\Psi^L = \phi^\dagger \psi^L$
- Employ the FMS mechanism: $\langle \Psi^L(x)\bar{\Psi}^L(y)\rangle = v^2|N|^2\langle \psi^L(x)\bar{\psi}^L(y)\rangle + \mathcal{O}(\varphi)$ Fröhlich, Morchio, Strocchi, Phys. Lett. B97 (1980) Fröhlich, Morchio, Strocchi, Nucl. Phys. B190 (1981)
- Has been confirmed for vectorial leptons on the lattice Afferrante et al., SciPost Phys. 10 (2021), 2011,02301

Deviations at higher orders

Differences between perturbation theory and a gauge-invariant approach have been identified for **vector boson scattering** (VBS)

Jenny, Maas, Riederer, Phys. Rev. D 105 (2022), 2204.02756

- Experimentally, it is easier to access **fermions**
 - Search for signatures related to the bound state structure of observables
 - \diamond Determine phase shifts for, e.g., e^+e^- scattering
 - Determine the substructure of bound states via quasi-PDFs and form factors
- Are these signatures measurable?

Why bother?

- Deepen understanding of QFT
 - Learn more about the fundamental field-theoretical effects related to gauge invariance
 - What if the FMS mechanism is not the answer?
- Implications for future experiments
 - Set baseline for future mesurements
 - Avoid false positive regarding new physics
- Phenomenological implications
 - The weak sector of the SM is special, since $SU(2)_{yy} \rightarrow SU(2)_{c}$
 - Model building should focus on custodial (global) group

Gauge-invariant spectrum from lattice calculations

SU(2) scalar-fermion-gauge theory

Two generations of leptons

$$\begin{split} \mathcal{L} &= -\frac{1}{4}W^a_{\mu\nu}W^{a,\mu\nu} + \frac{1}{2}\mathrm{tr}\left[\left(D_\mu X\right)^\dagger \left(D^\mu X\right)\right] - \frac{\lambda}{4}\left(\mathrm{tr}\left[X^\dagger X\right] - v^2\right)^2 \\ &+ \sum_g \bar{\psi}^L_g i\rlap{/}D\psi^L_g + \sum_f \bar{\chi}^R_f i\rlap{/}\partial\chi^R_f - \sum_f \sum_g y_{f,g} \left[\left(\bar{\psi}^L X\right)_{f,g} \chi^R_f + \bar{\chi}^R_f \left(X^\dagger \psi^L\right)_{f,g}\right] \end{split}$$

- hd Matrix-valued field X which contains the components of the usual scalar doublet ϕ
- ▶ Two generations of left-handed Weyl spinors gauged under the weak interaction

$$\psi_{g=1}^L = \begin{pmatrix} \nu_e^L & e^L \end{pmatrix}^\top \qquad \psi_{g=2}^L = \begin{pmatrix} \nu_\mu^L & \mu^L \end{pmatrix}^\top$$

- riangleright Four flavors of ungauged right-handed Weyl spinors $\chi_f^R = egin{pmatrix}
 u_e^R & e^R &
 u_\mu^R & \mu^R \end{pmatrix}_f^ op$
- \triangleright Symmetries for $y_{f,g}=0$: local SU(2)_w & global SU(2)_c, SU(2)_{Lg}, SU(4)_{Rf}

Lattice setup

- ▶ Chiral nature of the weak gauge theory poses conceptual problems
- ▷ SM-like proxy that replaces the Weyl fermions by Dirac spinors
- ▶ Same symmetries with additional possibility to break generation/flavor symmetry explicitly
- Does not interfere with FMS predictions

$$\begin{split} \mathcal{L} &= -\frac{1}{4} W^a_{\mu\nu} W^{a,\mu\nu} + \frac{1}{2} \mathrm{tr} \left[\left(D_\mu X \right)^\dagger \left(D^\mu X \right) \right] - \frac{\lambda}{4} \left(\mathrm{tr} \left[X^\dagger X \right] - v^2 \right)^2 \\ &+ \sum_g \bar{\psi}_g \left(i \rlap{/}{D} - m_{\psi_g} \right) \psi_g + \sum_f \bar{\chi}_f \left(i \rlap{/}{\partial} - m_{\chi_f} \right) \chi_f \\ &- \sum_f \sum_g y_{f,g} \left[\left(\bar{\psi}_L X \right)_{f,g} \chi_f + \bar{\chi}_f \left(X^\dagger \psi_L \right)_{f,g} \right] \end{split}$$

First calculations

- Yukawa couplings $y_{f,q} = 0 \longrightarrow \chi_f$ decouple and symmetries are intact
- Two degenerate generations $m_{\psi_1}=m_{\psi_2}$

Bound states

- ${\color{red} \triangleright} \ \ {\rm Scalar \ singlet:} \ {\mathcal O}_{0^+}(x) = {\rm tr} \left[X^\dagger(x) X(x) \right]$

Maas, Prog. Part. Nucl. Phys. 106 (2019), 1712.04721

- ${} { \hspace{-.8in} \hspace{-.8$
 - $\ \, \mathbf{i} \ldots \mathsf{custodial} \; \mathsf{index}, \, i \ldots \mathsf{gauge} \; \mathsf{index}, \, \alpha \ldots \mathsf{Dirac} \; \mathsf{index} \\$
 - Correlator constructed by Wick contraction and a trace in the Dirac structure

$$M_{\mathbf{i}\mathbf{j}}(x|y) = \left(X^{\dagger}\right)^{i}_{\mathbf{i}}(x) \, \left(D^{-1}\right)_{ij}(x|y) \, \left(X\right)^{j}_{\mathbf{j}}(y)$$

Afferrante et al., SciPost Phys. 10 (2021), 2011.02301

Simulation details

- Hybrid Monte Carlo (HMC) algorithm with dynamical Wilson fermions
- Publicly available **HiRep** simulation code

Debbio, Patella, Pica, Phys. Rev. D 81 (2010), 0805.2058 Hansen *et al.*, EPJ Web Conf. 175 (2018), 1710.10831

Exploring the parameter space

- \triangleright 7 parameter sets for small lattice sizes (L=8, 10, 12)
 - ♦ 2 sets with stable Higgs, 1 set with heavy Higgs & 1 set with Higgs resonance Jenny, Maas, Riederer, Phys. Rev. D 105 (2022), 2204.02756
 - ♦ 1 SM-like set

Wurtz, Lewis, Phys. Rev. D 88 (2013), 1307.1492

1 set to compare with quenched results

Afferrante et al., SciPost Phys. 10 (2021), 2011.02301

♦ 1 set in OCD-like domain

Maas, Mufti, JHEP 1404 (2014), 1312.4873

Basic idea: start with given parameter sets and increase the fermion hopping parameter κ

Disclaimer: preliminary results!

Exploring the parameter space

First conclusions

- ! Gauge-invariant bound states are accessible with decent statistics
- ! We are able to controll the system via the fermion mass without changing the overall dynamics of the gauge-scalar subsystem

Phase transition

Simulation points for scattering analysis

- ▶ Five points of interest to simulate various scenarios
 - \bullet $m_{\psi} \approx 1.25 m_H$
 - $2m_{\psi} \approx 1.25m_H$
 - \diamond $2m_{\psi} \approx 0.9m_{H}$
 - \diamond $2m_{\psi} \approx (m_H + m_Z)/2$
 - \diamond $2m_{\psi} \approx 0.9m_Z$

First conclusions

- ! We are able to access all points of interest due to the dynamics of m_H and m_Z
- ! Unphysical phase transition can (most likely) be avoided

Simulation points for scattering analysis

- ▶ Five points of interest to simulate various scenarios
 - \bullet $m_{\psi} \approx 1.25 m_H$
 - \diamond $2m_{\psi} \approx 1.25m_{H}$
 - \diamond $2m_{\psi} \approx 0.9m_{H}$
 - \diamond $2m_{\psi} \approx (m_H + m_Z)/2$
 - $2m_{\psi} \approx 0.9m_Z$

First conclusions

- ! We are able to access all points of interest due to the dynamics of m_H and m_Z
- ! Unphysical phase transition can (most likely) be avoided

Summary

- ▷ Simulation of a proxy theory to the weak sector of the SM in a fully gauge-invariant setup
 - ♦ Gauge-invariant equivalent to the Higgs, Z boson & weakly charged leptons
- Dynamics of the system are consistent for various parameter sets
 - The gauge-scalar dynamics persist with the introduction of fermions and the system can be fully controlled by varying the fermion mass
 - We have found a good proxy theory to describe the weak SM via lattice calculations
- ▶ First steps towards testing the FMS mechanism via lepton scattering
 - Suitable simulation points are found and accessible with decent statistics
 - Issues with an unphysical phase transition can (most likely) be avoided

Next steps

- Continue simulations with larger lattices and confirm points of interest
- Start data production for subsequent scattering analysis

Backup slides

BSM theories

- ightharpoonup Weak sector of the SM special, since $SU(2)_w o SU(2)_c$
- \triangleright For example, SU(n) with n > 2 with one fundamental scalar
- Contradiction in vector channel
 - ullet Perturbation theory: 2(n-1)+1 massive and n(n-2) massless gauge bosons
 - FMS: only one massive state

Maas, Sondenheimer, Törek, Ann. Phys. 402 (2019), 1709.07477

▶ For SU(3), lattice supports FMS predictions

Maas, Törek, Phys. Rev. D 95 (2017), 1607.05860 Maas, Törek, Ann. Phys. 397 (2018), 1804.04453

Complete picture

21 of 18

Hybrid Monte Carlo (HMC) algorithm

- Molecular dynamics algorithm with Gaussian distributed conjugate momenta and a Metropolis accept step
- Dirac operator enters quadratically by rewriting $\det\{DD^{\dagger}\}$ as an integral over pseudo-fermion fields
- Can only simulate an even number of fermions (no sign problem) → two degenerate generations of fermions
- ▶ Rational HMC: assuming det{D} is positive definite, the HMC algorithm can be generalized to an arbitrary number of fermion species

Gattringer, Lang, Quantum chromodynamics on the lattice (2010)

Debbio, Patella, Pica, Phys. Rev. D 81 (2010), 0805.2058 Hansen *et al.*, EPJ Web Conf. 175 (2018), 1710.10831

APE smearing

Numerical challenges

- Inversion of Dirac operator is expensive
- Strong statistical fluctuations in the bosonic channels

Gauge-scalar theory

- Does HMC work for gauge-scalar theories in the Higgs-like domain?
- Comparison to Maas, Mufti, JHEP 1404 (2014), 1312.4873

Fermion bound state

 $ho M_{f ij}$ has to be proportional to SU(2) group element

$$\left(M_{\mathbf{j}\mathbf{i}}\right)^{\dagger}M_{\mathbf{j}\mathbf{k}}\propto\delta_{\mathbf{i}\mathbf{k}}$$

Mass matrix can be written as

$$M_{\mathbf{i}\mathbf{j}} = c\,\delta_{\mathbf{i}\mathbf{j}} + i\tilde{M}_{\mathbf{i}\mathbf{j}} \quad c \in \mathbb{R}$$

- $\,\,{}^{\triangleright}\,\,\tilde{M}_{\bf ij}$ has direction in custodial space, but no direction is preferred
 - \Rightarrow $\langle \tilde{M}_{\mathbf{i}\mathbf{j}} \rangle$ has to vanish
 - $\Rightarrow \langle M_{ii} \rangle$ has to be real

Fermion bound state

 $ho M_{f ij}$ has to be proportional to SU(2) group element

$$\left(M_{\mathbf{j}\mathbf{i}}\right)^{\dagger}M_{\mathbf{j}\mathbf{k}}\propto\delta_{\mathbf{i}\mathbf{k}}$$

Mass matrix can be written as

$$M_{\mathbf{i}\mathbf{j}} = c\,\delta_{\mathbf{i}\mathbf{j}} + i\tilde{M}_{\mathbf{i}\mathbf{j}} \quad c \in \mathbb{R}$$

- $\,\,{}^{\triangleright}\,\,\tilde{M}_{\bf ij}$ has direction in custodial space, but no direction is preferred
 - $\Rightarrow \langle \tilde{M}_{\mathbf{i}\mathbf{j}} \rangle$ has to vanish
 - $\Rightarrow \langle M_{ii} \rangle$ has to be real

