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Motivation & Background
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Perturbative approach

▷ Consider an SU(2) gauge-scalar theory with Brout-Englert-Higgs (BEH) effect

ℒ = −1
4

𝑊 𝑎
𝜇𝜈𝑊 𝑎,𝜇𝜈 + 1

2
(𝐷𝜇𝜙)† (𝐷𝜇𝜙) + 𝜆 (𝜙†𝜙 − 𝑣2)2

▷ Classical minimum at 𝜙†𝜙 = 𝑣2

▷ Introduce shift with fluctuations around the minimum

𝜙(𝑥) = ⟨𝜙(𝑥)⟩ + 𝜑(𝑥) = 𝑣𝑁 + 𝜑(𝑥)

▷ Inserting this into ℒ results in a mass term for the gauge bosons with 𝑚𝑊 ∝ 𝑣2

This construction is gauge-dependent

! There are gauges in which ⟨𝜙(𝑥)⟩ = 0 and gauge bosons remain massless

! Elementary fields cannot be treated as physical degrees of freedom
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Gauge-invariant approach

▷ In perturbation theory, elementary fields are treated as asymptotic
states, although they are not gauge-invariant

▷ Asymptotic states must be described by gauge-invariant composite
objects, i.e., bound-state operators†

▷ One needs to construct gauge-invariant objects with the same global
quantum numbers as the elementary fields

⋄ Gauge-invariant scalar: 𝜙(𝑥) → (𝜙†𝜙) (𝑥)

⋄ Gauge-invariant vector boson: 𝑊 𝑎
𝜇 (𝑥) → (𝜏a𝜙†𝐷𝜇𝜙) (𝑥)

⋄ Gauge-invariant left-handed fermion: 𝜓(𝑥) → (𝜙†𝜓) (𝑥)

†Inherently non-perturbative methods are required to obtain physical quantities

𝜙 𝜙

𝑊𝜇

𝜙 𝜙
𝜏 a

𝜙 𝜓
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FMS mechanism

Open questions

- Why does perturbation theory reproduce the physical spectrum of the weak SM?

- Are there any differences between the two approaches?

▷ Answers for both questions lie in a gauge-invariant formulation of quantum field
theories → Fröhlich-Morchio-Strocchi (FMS) mechanism
Fröhlich, Morchio, Strocchi, Phys. Lett. B97 (1980)
Fröhlich, Morchio, Strocchi, Nucl. Phys. B190 (1981)

▷ Example: consider the scalar bound state 𝒪0+(𝑥) = 𝜙†(𝑥)𝜙(𝑥)
⋄ Rewrite the propagator using 𝜙(𝑥) = 𝑣𝑁 + 𝜑(𝑥) and ℎ(𝑥) = Re{𝑁†𝜙(𝑥)}

⟨𝒪0+(𝑥)𝒪†
0+(𝑦)⟩ = const + 4𝑣2⟨ℎ(𝑥)ℎ†(𝑦)⟩tl + ⟨ℎ(𝑥)ℎ†(𝑦)⟩2

tl + 𝒪(𝑔2, …)

⋄ Mass pole of bound state coincides (to first order) with the mass pole of the elementary
correlator ⟨ℎ(𝑥)ℎ†(𝑦)⟩

Maas, Sondenheimer, Phys. Rev. D 102 (2020), 2009.06671
Dudal et al., Eur. Phys. J. C 81 (2020), 2008.07813
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Spectrum of the weak SM

▷ FMS mechanism predicts a one-to-one mapping between gauge-dependent and
gauge-invariant states and explains why perturbation theory is successful

▷ A similar construction for the vector boson shows agreement as well
Dudal et al., Eur. Phys. J. C 81 (2020), 2008.07813

▷ Confirmed by lattice calculations
Maas, Mufti, JHEP 1404 (2014), 1312.4873

0
perturbation theory
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gauge-invariant
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𝑚𝐻 ●
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Spectrum of the weak SM

▷ Left-handed fermions are not gauge-invariant → construct bound state Ψ𝐿 = 𝜙†𝜓𝐿

▷ Employ the FMS mechanism: ⟨Ψ𝐿(𝑥)Ψ̄𝐿(𝑦)⟩ = 𝑣2|𝑁|2⟨𝜓𝐿(𝑥) ̄𝜓𝐿(𝑦)⟩ + 𝒪(𝜑)
Fröhlich, Morchio, Strocchi, Phys. Lett. B97 (1980)
Fröhlich, Morchio, Strocchi, Nucl. Phys. B190 (1981)

▷ Has been confirmed for vectorial leptons on the lattice
Afferrante et al., SciPost Phys. 10 (2021), 2011.02301
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Deviations at higher orders

▷ Differences between perturbation theory and a
gauge-invariant approach have been identified for
vector boson scattering (VBS)
Jenny, Maas, Riederer, Phys. Rev. D 105 (2022), 2204.02756

▷ Experimentally, it is easier to access fermions
⋄ Search for signatures related to the bound state

structure of observables
⋄ Determine phase shifts for, e.g., 𝑒+𝑒− scattering
⋄ Determine the substructure of bound states via

quasi-PDFs and form factors

▷ Are these signatures measurable?
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Why bother?

▷ Deepen understanding of QFT
⋄ Learn more about the fundamental field-theoretical effects related to gauge invariance
⋄ What if the FMS mechanism is not the answer?

▷ Implications for future experiments
⋄ Set baseline for future mesurements
⋄ Avoid false positive regarding new physics

▷ Phenomenological implications
⋄ The weak sector of the SM is special, since SU(2)w → SU(2)c
⋄ Model building should focus on custodial (global) group
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Motivation & Background

Gauge-invariant spectrum from lattice calculations
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SU(2) scalar-fermion-gauge theory

Two generations of leptons

ℒ = −1
4

𝑊 𝑎
𝜇𝜈𝑊 𝑎,𝜇𝜈 + 1

2
tr [(𝐷𝜇𝑋)† (𝐷𝜇𝑋)] − 𝜆

4
(tr [𝑋†𝑋] − 𝑣2)2

+ ∑𝑔
̄𝜓𝐿
𝑔 𝑖 /𝐷𝜓𝐿

𝑔 + ∑𝑓𝜒̄𝑅
𝑓 𝑖/𝜕𝜒𝑅

𝑓 − ∑𝑓∑𝑔𝑦𝑓,𝑔 [( ̄𝜓𝐿𝑋)
𝑓,𝑔

𝜒𝑅
𝑓 + 𝜒̄𝑅

𝑓 (𝑋†𝜓𝐿)
𝑓,𝑔

]

▷ Matrix-valued field 𝑋 which contains the components of the usual scalar doublet 𝜙
▷ Two generations of left-handed Weyl spinors gauged under the weak interaction

𝜓𝐿
𝑔=1 = (𝜈𝐿

𝑒 𝑒𝐿)⊤ 𝜓𝐿
𝑔=2 = (𝜈𝐿

𝜇 𝜇𝐿)⊤

▷ Four flavors of ungauged right-handed Weyl spinors 𝜒𝑅
𝑓 = (𝜈𝑅

𝑒 𝑒𝑅 𝜈𝑅
𝜇 𝜇𝑅)⊤

𝑓

▷ Symmetries for 𝑦𝑓,𝑔 = 0: local SU(2)w & global SU(2)c, SU(2)Lg, SU(4)Rf
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Lattice setup

▷ Chiral nature of the weak gauge theory poses conceptual problems
▷ SM-like proxy that replaces the Weyl fermions by Dirac spinors
▷ Same symmetries with additional possibility to break generation/flavor symmetry explicitly
▷ Does not interfere with FMS predictions

ℒ = −1
4

𝑊 𝑎
𝜇𝜈𝑊 𝑎,𝜇𝜈 + 1

2
tr [(𝐷𝜇𝑋)† (𝐷𝜇𝑋)] − 𝜆

4
(tr [𝑋†𝑋] − 𝑣2)2

+ ∑𝑔
̄𝜓𝑔 (𝑖 /𝐷 − 𝑚𝜓𝑔

) 𝜓𝑔 + ∑𝑓 𝜒̄𝑓 (𝑖/𝜕 − 𝑚𝜒𝑓
) 𝜒𝑓

− ∑𝑓∑𝑔 𝑦𝑓,𝑔 [( ̄𝜓𝐿𝑋)
𝑓,𝑔

𝜒𝑓 + 𝜒̄𝑓 (𝑋†𝜓𝐿)
𝑓,𝑔

]

First calculations

- Yukawa couplings 𝑦𝑓,𝑔 = 0 ⟶ 𝜒𝑓 decouple and symmetries are intact

- Two degenerate generations 𝑚𝜓1
= 𝑚𝜓2
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Bound states
▷ Scalar singlet: 𝒪0+(𝑥) = tr [𝑋†(𝑥)𝑋(𝑥)]

▷ Vector triplet: 𝒪a,𝜇
1− (𝑥) = tr[𝜏a 𝑋†(𝑥)

√det𝑋†(𝑥)
𝑈𝜇(𝑥) 𝑋(𝑥+𝑒𝜇)

√det𝑋(𝑥+𝑒𝜇)
]

Maas, Prog. Part. Nucl. Phys. 106 (2019), 1712.04721

▷ Fermion bound state: Ψ𝐿
𝛼,i(𝑥) = (𝑋†)𝑖

i
(𝑥) 𝜓𝐿

𝛼,𝑖(𝑥)

⋄ i … custodial index, 𝑖 … gauge index, 𝛼 … Dirac index

⋄ Correlator constructed by Wick contraction and a trace in the Dirac structure

𝑀ij(𝑥|𝑦) = (𝑋†)𝑖
i
(𝑥) (𝐷−1)

𝑖𝑗
(𝑥|𝑦) (𝑋)𝑗

j (𝑦)
Afferrante et al., SciPost Phys. 10 (2021), 2011.02301

Simulation details

- Hybrid Monte Carlo (HMC) algorithm with dynamical Wilson fermions

- Publicly available HiRep simulation code
Debbio, Patella, Pica, Phys. Rev. D 81 (2010), 0805.2058
Hansen et al., EPJ Web Conf. 175 (2018), 1710.10831
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Exploring the parameter space

▷ 7 parameter sets for small lattice sizes (𝐿 = 8, 10, 12)
⋄ 2 sets with stable Higgs, 1 set with heavy Higgs & 1 set with Higgs resonance

Jenny, Maas, Riederer, Phys. Rev. D 105 (2022), 2204.02756
⋄ 1 SM-like set

Wurtz, Lewis, Phys. Rev. D 88 (2013), 1307.1492
⋄ 1 set to compare with quenched results

Afferrante et al., SciPost Phys. 10 (2021), 2011.02301
⋄ 1 set in QCD-like domain

Maas, Mufti, JHEP 1404 (2014), 1312.4873

▷ Basic idea: start with given parameter sets and increase the fermion hopping parameter 𝜅

Disclaimer: preliminary results!
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Exploring the parameter space
Set #2 with stable Higgs

0.10 0.11 0.12 0.13 0.14 0.150.00
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𝜅

𝑎𝑚
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Set #4 with Higgs resonance

0.10 0.11 0.12 0.13 0.14 0.15

0.0
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1.5

2.0

𝜅

𝑎𝑚
∞
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vector 𝑚𝑍
fermion 𝑚Ψ

First conclusions

! Gauge-invariant bound states are accessible with decent statistics

! We are able to controll the system via the fermion mass without changing the overall
dynamics of the gauge-scalar subsystem
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Phase transition

Set #4 with Higgs resonance
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Simulation points for scattering analysis

▷ Five points of interest to simulate
various scenarios

⋄ 𝑚𝜓 ≈ 1.25𝑚𝐻
⋄ 2𝑚𝜓 ≈ 1.25𝑚𝐻
⋄ 2𝑚𝜓 ≈ 0.9𝑚𝐻
⋄ 2𝑚𝜓 ≈ (𝑚𝐻 + 𝑚𝑍)/2
⋄ 2𝑚𝜓 ≈ 0.9𝑚𝑍

Set #7 in QCD-like domain

0.10 0.11 0.12 0.13 0.14 0.150.0

0.5

1.0

1.5

𝜅

𝑎𝑚
∞

scalar 𝑚𝐻
vector 𝑚𝑍
fermion 𝑚Ψ

First conclusions

! We are able to access all points of interest due to the dynamics of 𝑚𝐻 and 𝑚𝑍

! Unphysical phase transition can (most likely) be avoided
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Summary

▷ Simulation of a proxy theory to the weak sector of the SM in a fully gauge-invariant setup
⋄ Gauge-invariant equivalent to the Higgs, Z boson & weakly charged leptons

▷ Dynamics of the system are consistent for various parameter sets
⋄ The gauge-scalar dynamics persist with the introduction of fermions and the system

can be fully controlled by varying the fermion mass
⋄ We have found a good proxy theory to describe the weak SM via lattice calculations

▷ First steps towards testing the FMS mechanism via lepton scattering
⋄ Suitable simulation points are found and accessible with decent statistics
⋄ Issues with an unphysical phase transition can (most likely) be avoided

Next steps

- Continue simulations with larger lattices and confirm points of interest

- Start data production for subsequent scattering analysis
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Backup slides
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BSM theories

▷ Weak sector of the SM special, since SU(2)w → SU(2)c

▷ GUT theories: gauge group can be larger than custodial group

▷ For example, SU(𝑛) with 𝑛 > 2 with one fundamental scalar

▷ Contradiction in vector channel
⋄ Perturbation theory: 2(𝑛 − 1) + 1 massive and 𝑛(𝑛 − 2) massless gauge bosons

⋄ FMS: only one massive state
Maas, Sondenheimer, Törek, Ann. Phys. 402 (2019), 1709.07477

▷ For SU(3), lattice supports FMS predictions
Maas, Törek, Phys. Rev. D 95 (2017), 1607.05860
Maas, Törek, Ann. Phys. 397 (2018), 1804.04453
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Complete picture
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Hybrid Monte Carlo (HMC) algorithm

▷ Molecular dynamics algorithm with Gaussian distributed
conjugate momenta and a Metropolis accept step

▷ Dirac operator enters quadratically by rewriting det{𝐷𝐷†}
as an integral over pseudo-fermion fields

▷ Can only simulate an even number of fermions (no sign
problem) → two degenerate generations of fermions

▷ Rational HMC: assuming det{𝐷} is positive definite, the
HMC algorithm can be generalized to an arbitrary number
of fermion species
Gattringer, Lang, Quantum chromodynamics on the lattice (2010)

●𝑆𝑡

●
𝑆𝑡+1

𝛿𝜏
HMC

●
𝑆𝑡+1

MMC

▷ Publicly available HiRep simulation code
Debbio, Patella, Pica, Phys. Rev. D 81 (2010), 0805.2058
Hansen et al., EPJ Web Conf. 175 (2018), 1710.10831
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APE smearing

Numerical challenges

- Inversion of Dirac operator is expensive

- Strong statistical fluctuations in the bosonic channels
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Gauge-scalar theory

▷ Does HMC work for gauge-scalar theories in the Higgs-like domain?
▷ Comparison to Maas, Mufti, JHEP 1404 (2014), 1312.4873
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Fermion bound state

▷ 𝑀ij has to be proportional to SU(2) group
element

(𝑀ji)
† 𝑀jk ∝ 𝛿ik

▷ Mass matrix can be written as

𝑀ij = 𝑐 𝛿ij + 𝑖𝑀̃ij 𝑐 ∈ ℝ

▷ 𝑀̃ij has direction in custodial space, but
no direction is preferred

⇨ ⟨𝑀̃ij⟩ has to vanish

⇨ ⟨𝑀ij⟩ has to be real

0.0 2.5 5.0 7.5 10.0

10−1

100

𝑡/𝑎

𝑅𝑒{𝑀11(𝑡)}

0.0 2.5 5.0 7.5 10.0

0

𝑡/𝑎

𝑅𝑒{𝑀12(𝑡)}

0.0 2.5 5.0 7.5 10.0

0

𝑡/𝑎

𝑅𝑒{𝑀21(𝑡)}
0.0 2.5 5.0 7.5 10.0

10−1

100

𝑡/𝑎

𝑅𝑒{𝑀22(𝑡)}
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Fermion bound state
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