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I. Motivation & Background
¢ Gauge-invariant formulation of Higgs theories

¢ The Frohlich-Morchio-Strocchi mechanism

¢ Spectrum of the weak SM

[I. Gauge-invariant spectrum from lattice calculations
© SU(2) scalar-fermion-gauge system as a proxy to the weak sector of the SM

¢ Gauge-invariant bound states on the lattice

¢ First preliminary results and conclusions
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Motivation & Background
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Perturbative approach

> Consider an SU(2) gauge-scalar theory with Brout-Englert-Higgs (BEH) effect

£ = %Wﬂ Wy 4 % (D,6)" (D) + A (61 —02)?

%

> Classical minimum at ¢f¢ = v?

> Introduce shift with fluctuations around the minimum

¢(x) = (9(2)) + ¢(x) = vN + p(z)

> Inserting this into £ results in a mass term for the gauge bosons with my;, o< v?

This construction is gauge-dependent

! There are gauges in which (¢(z)) = 0 and gauge bosons remain massless

! Elementary fields cannot be treated as physical degrees of freedom
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Gauge-invariant approach

/, N
> In perturbation theory, elementary fields are treated as asymptotic J K
1
states, although they are not gauge-invariant | @ @ !
> Asymptotic states must be described by gauge-invariant composite \\ o

objects, i.e., bound-state operators

> One needs to construct gauge-invariant objects with the same global
quantum numbers as the elementary fields

o Gauge-invariant scalar: ¢(z) — (¢7¢) (z)
o Gauge-invariant vector boson: W (z) — (Ta(bTDuqﬁ) ()

o Gauge-invariant left-handed fermion: ¢ (x) — (¢¢) (z)

Inherently non-perturbative methods are required to obtain physical quantities
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FMS mechanism

Open questions

- Why does perturbation theory reproduce the physical spectrum of the weak SM?

- Are there any differences between the two approaches?

> Answers for both questions lie in a gauge-invariant formulation of quantum field
theories — Frohlich-Morchio-Strocchi (FMS) mechanism

> Example: consider the scalar bound state O (z) = ¢'(z)¢(z)
o Rewrite the propagator using ¢(z) = vN + ¢(z) and h(x) = Re{NT¢(x)}
(O ()0}, () = const + 402 (h(@)hT (1) + ()T ()3 + O, )

© Mass pole of bound state coincides (to first order) with the mass pole of the elementary
correlator (h(z)h'(y))
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https://arxiv.org/abs/2009.06671
https://arxiv.org/abs/2008.07813

Spectrum of the weak SM
> FMS mechanism predicts a one-to-one mapping between gauge-dependent and
gauge-invariant states and explains why perturbation theory is successful

> A similar construction for the vector boson shows agreement as well

> Confirmed by lattice calculations

A custodial singlets singlet triplet doublet
My o O]
My < o000 o000
my 4 Y O
0T scalar h vector W fermion 1)L scalar Q- vector 4 fermion Wl
perturbation theory gauge-invariant
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https://arxiv.org/abs/1312.4873

Spectrum of the weak SM

> Left-handed fermions are not gauge-invariant — construct bound state W' = ¢f”

> Employ the FMS mechanism: (U (2) U (y)) = v?|N |2 (% (2)0 " (y)) + O(p)

> Has been confirmed for vectorial leptons on the lattice

A custodial singlets singlet triplet doublet
My [ O]
My < 00 o000
my 4 Y O
0T scalar h vector W fermion 1)L scalar O vector O, fermion Wl
perturbation theory gauge-invariant
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https://arxiv.org/abs/2011.02301

Deviations at higher orders

> Differences between perturbation theory and a
gauge-invariant approach have been identified for
vector boson scattering (VBS)

> Experimentally, it is easier to access fermions

¢ Search for signatures related to the bound state
structure of observables

o Determine phase shifts for, e.g., e"e™ scattering

¢ Determine the substructure of bound states via
quasi-PDFs and form factors

> Are these signatures measurable?
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https://arxiv.org/abs/2204.02756

Why bother?

> Deepen understanding of QFT
¢ Learn more about the fundamental field-theoretical effects related to gauge invariance

¢ What if the FMS mechanism is not the answer?

> Implications for future experiments
¢ Set baseline for future mesurements

¢ Avoid false positive regarding new physics

> Phenomenological implications
¢ The weak sector of the SM is special, since SU(2),, — SU(2).
¢ Model building should focus on custodial (global) group
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SU(2) scalar-fermion-gauge theory

Two generations of leptons
1 1
L= = Wi, W 4 tr [(DMX)T (DMX)} - % (tr [X1X] — v?)?

4 K
+ X, BEBUE + 5 RN — X5 wre [(BEX), xF+RF (X, ]

> Matrix-valued field X which contains the components of the usual scalar doublet ¢

> Two generations of left-handed Weyl spinors gauged under the weak interaction

T T
oo = (v eb) o2 = (Vi )

> Four flavors of ungauged right-handed Weyl spinors le% = (1/5 et it MR)T

> Symmetries for y; . = 0: local SU(2),, & global SU(2)., SU(2),,, SU(4)g¢
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Lattice setup

> Chiral nature of the weak gauge theory poses conceptual problems
> SM-like proxy that replaces the Weyl fermions by Dirac spinors
> Same symmetries with additional possibility to break generation/flavor symmetry explicitly
> Does not interfere with FMS predictions
o= twewew Lo l(p x)" (Drx
=y M —|—§tr( W X)) ( )| —
+ Zgiﬂg (LIZ) — m,%> q/)g + Z‘f >_<f (La — My,

First calculations

- Yukawa couplings y; , =0 — x decouple and symmetries are intact

- Two degenerate generations My, = My,
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Bound states
> Scalar singlet: O (z) = tr [XT(2) X ()]
> Vector triplet: 07" (x) = tr o X Ut (x) eten)

det X () det X (z+e,,)

> Fermion bound state: W/, ;(z) = (XT): (z) ¥h ()

¢ i...custodial index, 7 ... gauge index, « ... Dirac index

¢ Correlator constructed by Wick contraction and a trace in the Dirac structure

My(xly) = (X1); (@) (D7), (aly) (X)! ()

Simulation details

- Hybrid Monte Carlo (HMC) algorithm with dynamical Wilson fermions
- Publicly available HiRep simulation code
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https://arxiv.org/abs/1712.04721
https://arxiv.org/abs/2011.02301
https://github.com/claudiopica/HiRep
https://arxiv.org/abs/0805.2058
https://arxiv.org/abs/1710.10831

Exploring the parameter space

> 7 parameter sets for small lattice sizes (L = 8, 10, 12)
¢ 2 sets with stable Higgs, 1 set with heavy Higgs & 1 set with Higgs resonance

¢ 1 SM-like set
© 1 set to compare with quenched results

¢ 1set in QCD-like domain

> Basic idea: start with given parameter sets and increase the fermion hopping parameter

Disclaimer: preliminary results!
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Exploring the parameter space
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First conclusions

! Gauge-invariant bound states are accessible with decent statistics

! We are able to controll the system via the fermion mass without changing the overall
dynamics of the gauge-scalar subsystem
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Phase transition

Physical phase (rk < £
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Simulation points for scattering analysis

T T

> Five points of interest to simulate Loy ~o-scalarmy; |
K R -e-vector my
various scenarios —+fermion my,
o my ~ 1.25my Lof 1

© 2my, ~ 1.25my

am.,

© 2my, ~ 0.9my
©2my, ~ (my +my)/2
© 2my, ~ 0.9my,

0.0
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First conclusions

! We are able to access all points of interest due to the dynamics of m g and m

! Unphysical phase transition can (most likely) be avoided
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Simulation points for scattering analysis
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Summary

> Simulation of a proxy theory to the weak sector of the SM in a fully gauge-invariant setup
¢ Gauge-invariant equivalent to the Higgs, Z boson & weakly charged leptons

> Dynamics of the system are consistent for various parameter sets

¢ The gauge-scalar dynamics persist with the introduction of fermions and the system
can be fully controlled by varying the fermion mass

¢ We have found a good proxy theory to describe the weak SM via lattice calculations

> First steps towards testing the FMS mechanism via lepton scattering
¢ Suitable simulation points are found and accessible with decent statistics

¢ Issues with an unphysical phase transition can (most likely) be avoided

Next steps

- Continue simulations with larger lattices and confirm points of interest

- Start data production for subsequent scattering analysis
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Backup slides
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BSM theories

> Weak sector of the SM special, since SU(2),, — SU(2),
> GUT theories: gauge group can be larger than custodial group
> For example, SU(n) with n > 2 with one fundamental scalar

> Contradiction in vector channel

o Perturbation theory: 2(n — 1) + 1 massive and n(n — 2) massless gauge bosons

¢ FMS: only one massive state

> For SU(3), lattice supports FMS predictions
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Complete picture

A custodial singlets singlet  triplet  doublet  singlet
myg T { J O
My ( X X J 000
My, ® O
my, +
0t =& w Yy, O O Yy
perturbation theory gauge-invariant
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Hybrid Monte Carlo (HMC) algorithm

> Molecular dynamics algorithm with Gaussian distributed
conjugate momenta and a Metropolis accept step

> Dirac operator enters quadratically by rewriting det{ DD} T S S,

as an integral over pseudo-fermion fields
0T
> Can only simulate an even number of fermions (no sign S, HMC

problem) — two degenerate generations of fermions MMC —T

I> Rational HMC: assuming det{D} is positive definite, the
HMC algorithm can be generalized to an arbitrary number
of fermion species

n_

t+1

> Publicly available HiRep simulation code
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APE smearing

Numerical challenges

- Inversion of Dirac operator is expensive

- Strong statistical fluctuations in the bosonic channels
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Gauge-scalar theory

> Does HMC work for gauge-scalar theories in the Higgs-like domain?

> Comparison to
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Fermion bound state

> Mj; has to be proportional to SU(2) group

element ;
(M) My ox 6 o o Re(M;, ()} ] SRe(M;(1))
.. 1 OC O
" Jk ik 10717.. ‘, I;;‘I III
. . . o T bR S|
> Mass matrix can be written as *
. 0.‘0 2.‘5 5.0 715 16.0 0.0 215 510 715 16.0
My = coy +iMy; ceR t/a t/a
100 @
- o Re{ My, (1)} |
> Mij has direction in custodial space, but 0 swonif 1] :
o ;e i I °,
no direction is preferred 358 8L
= (Mij> has to vanish L [OReAMy ()} o leee?
0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0
= (Mj) has to be real t/a t/a
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Fermion bound state

> Mj; has to be proportional to SU(2) group
element

1l
(]V[Jl) JV[jk o< Oy
> Mass matrix can be written as
My =cd;+iM; ceR

> J\Zfij has direction in custodial space, but
no direction is preferred

= (Mij> has to vanish
= (Mj) has to be real
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