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Abstract

Vector Boson Scattering (VBS) andVector Boson Fusion (VBF) are key processes in electroweak
physics that produce complex multi-particle final states. Accurately modeling these events
is essential for distinguishing different production mechanisms and comparing theoretical
predictions with experimental data.

This thesis simulates the kinematics of one potential VBS process involving two Z bosons
and three background processes. The goal is to generate theoretical distributions for key
observables such as invariant mass and angular correlations, providing insight into how
kinematic constraints influence final-state distributions. By constructing kinematically con-
sistent event samples that reflect fundamental physics constraints, such as energy-momentum
conservation and the Breit-Wigner distribution, this simulation establishes a theoretical base-
line for identifying different event topologies in collider experiments. The results contribute
to a deeper understanding of how signal and background processes can be differentiated,
supporting the interpretation of future experimental measurements.
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CHAPTER 1
Introduction

Vector boson fusion (VBF) and vector boson scattering (VBS) are important processes in elec-
troweak physics resulting in multi-particle final states with complex kinematic configurations
[1]. These interactions involve intermediate vector bosons such as W± and Z. A detailed
understanding of these processes requires precise modeling and kinematic reconstruction,
which is essential to distinguish the different underlying interaction mechanisms.

The comparison of theory and experiment is based on comprehensive experimental data anal-
ysis, where measured final-state distributions are reconstructed and fitted against theoretical
expectations. It is crucial to precisely understand these patterns in order to identify deviations
from Standard Model predictions and to refine event selection criteria in collider experiments.
[2, 3]

In this thesis, the kinematics of a potential process involving two Z bosons, along with three
background processes, is simulated to obtain theoretical predictions for key observables such
as invariant mass and angular distributions. The main goal is to construct kinematically con-
sistent event samples that reflect fundamental physics constraints such as energy-momentum
conservation and the Breit-Wigner distribution. This simulation provides a baseline against
which experimental data may be compared, allowing to distinguish between different events,
such as direct production of final-state particles, production of an intermediate off-shell Z
boson, or production of two on-shell Z bosons with subsequent decay into lepton pairs.
Moreover, by analyzing different events, this work provides insight into how final-state
distributions are affected by various kinematic constraints and decay mechanisms.

The remainder of this thesis is organized as follows. Chapter 2 provides a theoretical back-
ground on vector boson scattering (VBS) and vector boson fusion (VBF), along with key
concepts such as Monte Carlo methods, Feynman diagrams, the Breit-Wigner distribution,
and kinematic constraints. Chapter 3 describes the simulation framework, focusing on the
algorithmic approach and event validation. Chapter 4 presents and discusses the results,
emphasizing key observables such as invariant mass distributions and angular correlations.
Finally, Chapter 5 concludes the thesis with a summary of the findings and suggestions for
future research.
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CHAPTER 2
Theoretical Background

2.1 Vector Boson Scattering (VBS) and Vector Boson
Fusion (VBF)

VBS and VBF processes are studied extensively in high-energy physics as they provide insight
into the structure of electroweak interactions, test unitarity constraints, and serve as probes for
physics beyond the StandardModel [4, 5]. These processes play a crucial role in understanding
weak boson self-interactions and are highly relevant for calibration purposes in collider
experiments [6, 7].

These interactions occur in both hadronic and leptonic collisions, involving the exchange of
virtual gauge bosons that mediate the process [8]. Theoretical descriptions of VBS and VBF
rely on perturbative quantum field theory, where the kinematic distributions of final-state
particles depend on the properties of the exchanged bosons, their polarization states, and
potential off-shell effects. By analyzing these distributions, experimental measurements can
validate theoretical predictions and constrain new physics scenarios [9, 10].

A crucial aspect of VBS/VBF studies is understanding the relevant background processes and
decay channels that contribute to similar final-state signatures [11]. In case of electron-
positron collisions, several electroweak processes can lead to comparable multi-lepton final
states [12]. Among the primary processes relevant to this thesis are:

• Drell-Yan process: The production of a virtual Z boson, which subsequently decays
into a lepton pair, represents a background in multi-lepton final states. This process
serves as a benchmark for electroweak measurements and is important for detector
calibration [7, 13].

• Four-fermion production: Electroweak four-fermion interactions contribute to the
same final states as VBS processes. These include channels where an off-shell Z boson
decays into four fermions or where an intermediate gauge bosons produce additional
lepton pairs [6, 11].
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2.1 Vector Boson Scattering (VBS) and Vector Boson Fusion (VBF)

• Di-boson production: Reactions such as e+e− → ZZ or e+e− → WW lead to multi-
lepton final states and serve as irreducible backgrounds to VBS/VBF processes.

Identifying VBS/VBF events in collider experiments requires an understanding of possible
backgrounds and their kinematic properties. Well-defined event selection strategies and
optimized kinematic cuts help separate signal from background, improving the accuracy of
the measurements [3, 12, 14].

2.1.1 Mass-shell
A crucial concept in the study of VBS and VBF is the classification of particles as on-shell or
off-shell. The mass-shell condition describes whether a particle satisfies the relativistic energy-
momentum relation:

E2 −|p|2c2 = m2c4, (2.1)

whereE is the energy, p is the three-momentum, andm is the rest mass of the particle. Particles
that satisfy this equation are considered on-shell, meaning they have their physical, observable
mass. In contrast, off-shell (or virtual) particles do not satisfy this relation and only exist as
intermediate states in Feynman diagrams [15, 16].

2.1.2 Breit-Wigner Distribution
In VBS and VBF, intermediate gauge bosons can be off-shell, affecting their kinematic distribu-
tions and the final-state observables [15]. The propagator of a virtual Z boson describes how
the particle propagates between interaction points in quantum field theory. It is a fundamental
component of Feynman diagrams and influences the probability amplitude of a given process.
The propagator for an off-shell Z boson depends on its four-momentum squared, q2, and is
given by [15, Sec. 16.1]:

D(q2) =
1

q2 −m2
Z + iΓZmZ

, (2.2)

where ΓZ = 2.4955±0.0023 GeV [17] represents the decay width of the Z boson, accounting
for its lifetime. The farther an intermediate particle is from its mass-shell, the more its
contribution to the interaction is suppressed. The propagator enters directly into the squared
matrix element |M |2 [15, Sec. 16.1], and therefore it affects the interaction probability and
event rates in collider experiments.

While a full computation of cross-sections is beyond the scope of this work, it is worth
mentioning that the squared matrix element, |M |2, plays a crucial role in determining scat-
tering probabilities. Through integration over the phase space element dΦ, it influences both
total and differential cross-sections. The presence of off-shell effects modifies the propagator,
impacting these distributions accordingly. Although cross-section calculations are not explic-
itly performed here, understanding their role provides a fuller description of the theoretical
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Chapter 2: Theoretical Background

framework underlying VBS and VBF processes.

The Breit-Wigner distribution [18] arises from the propagator when considering the probabil-
ity of producing an unstable particle like the Z boson:

|D(q2)|2 = D(q2)D∗(q2) =
1

(q2 −m2
Z)

2 +(ΓZmZ)2 . (2.3)

Since the four-momentum squared q2 corresponds to the squared invariant mass m2 of the
produced boson, they are interchangeable, and hence:

P(m) ∝ |D(q2)|2 ∝
1

(m2 −m2
Z)

2 +(ΓZmZ)2 . (2.4)

A commonly used representation of the Breit-Wigner distribution is given by [19]:

P(E) =
Γ

2π

1

(E −M)2 + Γ2

4

. (2.5)

where M is the mass (or central energy) of the unstable state and Γ the decay width.

This function describes how the mass of an unstable particle fluctuates around its nominal
value due to quantum effects, ensuring accurate modeling of resonance behavior in simu-
lations. However, to be a true probability density function, it must be properly normalized
[20, 21].

In practical Monte Carlo simulations, approximations of the Breit-Wigner distribution are
often used for efficient sampling [22]. These approximations are used in event generators
to handle the mass spectrum of unstable particles, ensuring a realistic description of reso-
nance behavior in simulations. Various techniques, including running-width modifications,
alternative parameterizations and inverse transform sampling methods, are implemented to
optimize sampling and maintain physical accuracy [23].

The inverse transform method is particularly useful for generating random numbers ac-
cording to the Breit-Wigner distribution, as it allows direct sampling from the cumulative
distribution function, avoiding unnecessary rejections and improving computational speed.
[21].

2.2 Feynman Diagrams and Their Interpretation
Feynman diagrams provide a systematic and intuitive way to represent particle interactions.
They serve as a visualization for complex mathematical expressions, allowing for a structured
approach to calculating scattering processes, decays, and other fundamental interactions. Each
diagram represents a specific contribution to the total probability amplitude of a process,
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2.2 Feynman Diagrams and Their Interpretation

where more complex interactions, such as loop corrections or additional virtual particles,
correspond to higher-order refinements in the theoretical predictions.

In the context of Vector Boson Scattering (VBS) and Vector Boson Fusion (VBF), Feynman
diagrams illustrate how initial-state particles exchange gauge bosons, leading to specific final-
state configurations. These diagrams contain both the kinematics and dynamics of the process,
making them essential for understanding and cross-section calculations.

2.2.1 Components of a Feynman Diagram
There are different conventions for drawing Feynman diagrams. In this thesis, a coordinate
system where the horizontal axis represents time and the vertical axis represents space is
used. Particles moving from left to right are interpreted as propagating forward in time, while
antiparticles, by convention, can be depicted as moving backward in time.

• External Lines: Represent incoming and outgoing real particles such as quarks, lep-
tons, or gauge bosons. These are typically drawn as straight lines for fermions (e.g.,
electrons, quarks) and wavy lines for photons and electroweak bosons (W , Z).

• Internal Lines: Represent virtual particles that mediate interactions. In VBS and VBF,
these include the exchange of W and Z. In the case of strong interactions, internal lines
can also represent gluons, which are conventionally drawn as curly lines.

• Vertices: Points where lines meet, indicating interactions between particles. For ex-
ample, in electroweak interactions, a vertex could represent a W boson mediating a
charged-current interaction. The nature of these interactions is determined by the
Standard Model Lagrangian [24].

• Loops: Represent higher-order quantum effects, where virtual particles briefly appear
and interact within the diagram. These loops contribute to radiative corrections, affect-
ing cross-sections and decay rates. In electroweak interactions, loop diagrams account
for effects like self-energy corrections to gauge bosons or vertex corrections in scattering
processes.

The interpretation of a Feynman diagram follows from applying the Feynman rules, which
assign mathematical expressions to each diagram component. These rules dictate how propa-
gators, interaction vertices, and phase-space factors combine to form the probability amplitude
of a given process [25].

Understanding these elements is crucial for analyzing the different VBS and VBF scenarios, as
they provide insight into kinematic structure, interference effects, and off-shell contributions.
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Chapter 2: Theoretical Background

2.2.2 Feynman Diagrams for e+e− → µ+µ−τ+τ−

The process e+e− → µ+µ−τ+τ− can proceed through several different mechanisms, which
are best understood through Feynman diagrams. These diagrams provide a visual repre-
sentation of how initial-state electrons and positrons interact, leading to the production of
final-state muons and tau leptons.

In all considered scenarios, the initial electron-positron pair annihilates and produces interme-
diate states that eventually lead to the observed muon and tau pairs. The difference between
these scenarios lies in the intermediate steps: whether the process involves a single or multiple
Z bosons, and whether these bosons decay into muon or tau pairs. Since the focus of this
thesis is on the kinematics of the initial- and final-state particles, the vertex at which e+e−

annihilation occurs is treated effectively, and the details of the intermediate interactions are
not explicitly analyzed.

e+

e−

µ−

µ+

τ−

τ+

e+

e−

µ−

µ+

τ−

τ+

Z

(a) Direct production (b) Z decaying into a muon pair
e+

e−

τ−

τ+

µ−

µ+

Z

e+

e−

µ−

µ+

τ−

τ+

Z

Z

(c) Z decaying into a tau pair (d) Double Z production

Figure 2.1: Feynman diagrams for e+e− → µ+µ−τ+τ− in different scenarios

In the first diagram Fig. 2.1(a), the annihilation of e+e− leads immediately to the production of
two muons and two taus. In contrast, diagrams Fig. 2.1(b) and Fig. 2.1(c) illustrate cases where
an intermediate Z boson is produced and then decays into either a muon or a tau pair. Finally,
diagram Fig. 2.1(d) represents a scenario where two Z bosons are produced, each decaying into
a separate lepton pair.

While these scenarios differ in their intermediate states, their overall final-state remains the
same. However, their relative probabilities depend on factors such as energy scale and off-shell
contributions. The double Z production process, for example, is less probable at lower energies
due to the large invariant mass required to produce two Z bosons.
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2.3 Monte Carlo Simulations in Collider Experiments

2.3 Monte Carlo Simulations in Collider Experiments
Monte Carlo (MC) event generators are essential tools in high-energy physics, enabling the
simulation of scattering processes based on theoretical models and their comparison with
experimental data [26, 27]. These generators implement the principles of quantum field theory
and integrate kinematic constraints to produce physically meaningful events [28].

In the study of Vector Boson Scattering (VBS) and Vector Boson Fusion (VBF), MC simula-
tions are crucial for modeling weak boson interactions, incorporating off-shell effects, and
accounting for background processes [22]. The complexity of these interactions requires
precise handling of phase-space sampling and kinematic restrictions to ensure energy and
momentum conservation in multi-particle final states.

Several widely usedMonte Carlo event generators have been developed, among them: PYTHIA
[29], MadGraph [30], Sherpa [31], HERWIG [32].

2.3.1 Phase Space Sampling and Event Kinematics
To accurately simulate particle collisions, MC event generators must efficiently sample phase
space while ensuring that generated events satisfy fundamental kinematic constraints [33].
These constraints include:

• Energy-momentum conservation: Ensuring that the total energy and momentum
remain consistent throughout the interaction.

• Phase-space validity: Excluding nonphysical configurations through filtering meth-
ods.

• Off-shell effects: Accounting for the virtuality of exchanged bosons, which influences
kinematic distributions and decay probabilities.

• Degrees of freedom inmulti-particle interactions: Determining howmomentum is
shared between initial and final-state particles, particularly in VBS and VBF processes.

By incorporating these constraints, MC simulations can provide reliable predictions for col-
lider experiments, ensuring that theoretical models align with observed data.
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CHAPTER 3
Simulation Implementation

In this chapter, the implementation of the simulation framework is described. The main focus
is on the practical steps, background calculations, and how physical constraints were enforced
using MATLAB.

3.1 Simulation Structure
The simulation consists of several scripts, each handling a different part of the event genera-
tion:

• The main.m sets up the initial parameters, calls different scenario scripts, and collects
and visualizes the output.

• Scenario-specific scripts Scenario1.m, Scenario2a.m, Scenario2b.m, Scenario4.m
implement specific physical cases, focusing on different decay channels of Z boson into
muons and taus.

• Supporting functions perform core computations such as invariant mass sampling,
random direction assignment, data visualization, and additional necessary functions.

Each scenario script generates events by randomly assigning the momenta of final-state
particles within kinematic constraints. Intermediate Z boson masses are sampled from the
Breit-Wigner distribution. Iterative adjustments are performed to enforce strict energy-
momentum conservation, and only events meeting all the fundamental criteria are retained
for further analysis.

Thus, the main steps of the implemented algorithm are:

1. Random assignment of final-state particle momenta.

2. Sampling of intermediate resonance masses.

3. Iterative adjustment to satisfy conservation laws.

8



3.2 Simulation Parameters

4. Storage of physically valid events for subsequent analysis.

5. Data visualization.

3.2 Simulation Parameters
The simulation models electron-positron collisions at a center-of-mass energy of:

√
s = 300 GeV. (3.1)

Particle masses and widths used in the simulation are summarized in Table 3.1:

Table 3.1: Particle parameters used in the simulation.

Particle Mass / GeV Decay width / GeV

Muon (µ) 0.105658 –
Tau (τ) 1.776861 –
Z boson 91.1876 2.4952

Simulation parameters were chosen according to known experimental values to ensure
realistic simulation results.

Numerical tolerances used in event generation are summarized in Table 3.2.

Table 3.2: Numerical tolerances used in the simulation.

Constraint Tolerance

Mass-shell condition 10−3 GeV2

Total spatial momentum
conservation 5×10−2 GeV
Energy conservation 5×10−2 GeV
Iteration tolerance
for mass-shell adjustment 10−4

3.3 Particle Generation
In this section, a detailed approach to the generation of the final-state particle momenta in
each scenario is described, and hence:

9



Chapter 3: Simulation Implementation

1. Initial Momentum Generation: The energy of the first particle, E1, is randomly
assigned between its rest mass m1 and an upper boundary set by half the center-of-mass
energy

√
s/2:

E1 = m1 + r
(√

s
2

−m1

)
, r ∈ [0,1]. (3.2)

The corresponding momentum magnitude is determined by:

|q1|=
√

E2
1 −m2

1. (3.3)

Momentum directions for particles q1, q2, and q3 are randomized uniformly in three-
dimensional space, defined by spherical coordinates:

θ = πr1, φ = 2πr2, r1,r2 ∈ [0,1], (3.4)

with momentum components given by:

qi = |qi|

sinθ cosφ

sinθ sinφ

cosθ

 , (3.5)

After generating each particle’s momentum, the off-shell condition is verified. If it is not
satisfied, the event is discarded and regenerated.

2. SecondParticleMomentumand InvariantMassConstraints: For scenarios involv-
ing particle pairs from Z resonances, the momentum of the second particle is explicitly
calculated to match the target invariant mass mZ :

E2 =
m2

Z −2m2
µ,τ +2E1mµ,τ

2(E1 −q1 ·q2)
, (3.6)

where mµ,τ represents either muon or tau mass.
If this calculation results in non-physical values, the event is discarded.

3. Third Particle: The third particle is generated similarly to the first one, using the
remaining energy as an upper boundary.

4. Fourth Particle: The fourth particle’s momentum is computed explicitly from momen-
tum conservation:

q4 =−(q1 +q2 +q3), (3.7)

and its energy from:
E4 =

√
m2

4 + |q4|2. (3.8)

10



3.3 Particle Generation

5. Iterative Energy Adjustment: Due to numerical precision limitations and random
generation, the fourth particle’s energy, which is computed explicitly from momentum
conservation, does not always satisfy the mass-shell condition exactly. Small numerical
deviations may cause q2

4 = E2
4 −|q4|2 to differ slightly from m2

4. To account for this, an
iterative adjustment is applied:

a) Compute the initial energy of the fourth particle using Eq. 3.8:

E(0)
4 =

√
m2

4 + |q4|2. (3.9)

b) Evaluate the squared mass deviation:

∆m2
4 = E(0)2

4 −|q4|2 −m2
4. (3.10)

c) If |∆m2
4|> ε , iteratively refine E4 using:

E(n+1)
4 =

√
m2

4 + |q4|2. (3.11)

d) Repeat until the mass-shell condition is satisfied within the defined tolerance:∣∣∣E(n)2
4 −|q4|2 −m2

4

∣∣∣< ε. (3.12)

e) If the correction does not converge within a set number of steps, the event is
discarded and regenerated.

This ensures that the final-state particles remain physically valid while allowing for
minor numerical variations.1

6. Event Acceptance and Final Checks:

After generating all four-momenta and applying iterative corrections, the event under-
goes a final validation step. The event is accepted if:

• The total energy matches the center-of-mass energy within a predefined tolerance
∆E :

|Etotal−
√

s|< ∆E. (3.13)

• The total spatial momentum is sufficiently small:

|Ptotal|< ∆P. (3.14)

• Each generated particle satisfies its mass-shell condition within the defined toler-
ance.

Events that do not meet these criteria are discarded and the process restarts. After
generating valid events, the next step is to analyze key kinematic distributions to verify
the expected event characteristics.

1A brief error analysis is provided in Appendix A.1

11



Chapter 3: Simulation Implementation

3.4 Analysis and Visualization
The generated events are analyzed by examining invariant mass and angular distributions to
assess the kinematics of the simulated processes and ensure their consistency with theoretical
expectations.

3.4.1 Histogram and Kernel Density Estimation (KDE)
Two methods were used to visualize the distributions:

• Histograms: Provide a discrete representation of the data, visualizing the frequency of
values within predefined bins.

• KDE: Estimates a continuous probability density function, allowing for a smooth rep-
resentation of the underlying distribution.

Both methods complement each other in visualizing the event distributions. Histograms give
a straightforward view of the data structure, while KDE provides a smooth representation that
can be useful for comparing distributions without dependence on binning.

KDE is defined as:
f̂ (x) =

1
nh

n

∑
i=1

K
(

x− xi

h

)
, (3.15)

where K(x) is the kernel function, and h is the bandwidth parameter that controls the
smoothness of the estimate.

Implementation in MATLAB Initially, KDE was tested manually with different kernel
functions 2, and afterward, the built-in ksdensity() function was used for efficiency.

3.4.2 Key Distributions and Observables
The following distributions were computed and visualized 3:

• Total invariantmass distributionmtotal: Represents the reconstructed invariantmass
of all four final-state particles. This distribution serves as a crucial check to verify
energy-momentum conservation and identify any deviations from expected theoretical
values.

• Pairwise invariant masses mq1q2 , mq3q4 , and mq1q3 : These distributions provide in-
sight into the correlations between the generated particles. Specifically, they help
determine whether particle pairs originate from an intermediate Z boson decay or if
they are uncorrelated background contributions.

2A detailed comparison is provided in Appendix A.3
3Additionally, pseudorapidity distributions were generated. Since they primarily confirm the isotropic nature
of the event generation, they are provided in Appendix A.2
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3.4 Analysis and Visualization

• Angular distributions cosθ12 and cosθ34: These distributions help analyze the rela-
tive directions of particle pairs, providing insight into the event topology.

• Summed distributions: Allow to compare the total event, including both the primary
process and background contributions.

The full MATLAB implementation, including all scripts used for event generation and visual-
ization, is provided in the dedicated Code section.

13



CHAPTER 4
Results and Discussion

The analysis in this chapter follows a realistic experimental approach: starting from the
observable final state e+e− → µ+µ−τ+τ−, the goal is to reconstruct and distinguish the
contributing sub-processes. The discussion begins with the full dataset that includes all simu-
lated scenarios, followed by a separate analysis of each scenario to highlight its characteristic
features and its role within the overall distribution. In each scenario, 25000 events were
generated, of which 20827 satisfied all physical constraints and were used in the analysis.

4.1 Overview of Combined Distributions
A simple but essential starting point is the validation of the energy-momentum conservation.
Figure 4.1 shows the total invariant mass distribution across all simulated scenarios. The sharp
peak at

√
s = 300GeV confirms that no unphysical contributions are present and that the

fundamental constraint was consistently maintained. This serves as a useful sanity check
before proceeding to the analysis of more detailed distributions.

Figure 4.1: Total invariant mass distribution mtotal across all generated scenarios.
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4.1 Overview of Combined Distributions

(a) Muon pair m(q1,q2)

(b) Tau pair m(q3,q4)

(c) Mixed pair m(q1,q3)

Figure 4.2: Pairwise invariant mass distributions aggregated across all scenarios. Peaks near
mZ ≈ 91GeV indicate intermediate resonances.

15



Chapter 4: Results and Discussion

The pairwise invariant mass spectra (Fig. 4.2) show narrow peaks near mZ ≈ 91GeV, charac-
teristic of Z-mediated decays, as well as broad continua from uncorrelated production. This
reflects the mixture of resonant and non-resonant topologies present in the simulated process.

Figure 4.3: Angular distributions cosθ12 and cosθ34, where θi j is the angle between the
momentum vectors of particles qi and q j.

The angular distributions (Fig. 4.3) provide further characterization of the process by revealing
spatial correlations between final-state particles. While all events result in the same observable
final state, differences in angular and mass distributions already hint at distinct underlying
dynamics. The next sections explore each scenario individually and in more detail.

4.2 Scenario 1: Uncorrelated Production
Scenario 1 serves as a baseline case with fully uncorrelated production, where all final-state
particles are generated independently, without intermediate resonances.

The invariant mass distributions in Fig. 4.4 exhibit no sharp peaks, consistent with the
absence of intermediate resonances. Instead, the spectra are broad and continuous, shaped
purely by kinematic phase space. Lower invariant masses are statistically favored, as they
correspond to configurations where the two particles are emitted with small opening angles
or where one carries significantly less momentum than the other — both of which occur more
frequently within the allowed kinematic range. In addition, the event generation procedure
itself enhances this effect (see Sec. 3.3): since the energy of the first particle is sampled
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4.2 Scenario 1: Uncorrelated Production

uniformly up to
√

s/2, soft momenta are more likely, further shifting the spectrum toward
lower invariant mass combinations.

(a) Muon pair m(q1,q2)

(b) Tau pair m(q3,q4)

(c) Mixed pair m(q1,q3)

Figure 4.4: Pairwise invariant mass distributions in Scenario 1. The absence of intermediate
resonances results in broad, smooth spectra.

Notably, the distribution for the mixed pair m(q1,q3) falls off more steeply and does not
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Chapter 4: Results and Discussion

reach the kinematic limit of 300 GeV, unlike the same-flavor pairs. This can be understood
by considering how the momenta are assigned: since the particles in a mixed pair are
generated independently and at different stages of the event construction, they are less likely to
simultaneously have large momenta pointing in similar directions. In contrast, the muon and
tau pairs (q1,q2) and (q3,q4), though still uncorrelated in Scenario 1, are generated in closer
succession and with more evenly distributed energy budgets, increasing the chance of both
particles contributing significantly to the invariantmass. As a result, high-mass configurations
are more accessible for same-flavor pairs, while for mixed pairs, such configurations are
kinematically disfavored.

Figure 4.5: Angular distributions cosθ12 and cosθ34 in Scenario 1, corresponding to the muon
and tau pairs, respectively.

The angular distributions in Fig. 4.5 span the full range from cosθ =−1 to+1, corresponding
to back-to-back and collinear particle emission, respectively. In the absence of any interme-
diate resonances, the resulting shapes are broadly distributed, as expected from unstructured
phase-space production.

Both distributions display a mild preference for back-to-back emission (peak near cosθ ≈−1),
which naturally arises when particles are produced with opposite momenta to balance the
total system. The effect is particularly noticeable for the tau pair, likely due to their larger mass
altering the kinematics slightly. Overall, this distribution acts as a reference, helping to identify
angular asymmetries or directional preferences in the scenarios involving intermediate Z
bosons.
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4.3 Scenario 2a and 2b: Single Resonance

4.3 Scenario 2a and 2b: Single Resonance
Scenarios 2a and 2b are mirrored cases in which one particle pair originates from a Z-boson
decay, while the other remains uncorrelated: in Scenario 2a, the resonance appears in the
muon pair (q1,q2), and in Scenario 2b, in the tau pair (q3,q4). These configurations allow for
a direct comparison between resonant and non-resonant pairings within the same final state.

4.3.1 Scenario 2a: Z → µ+µ−

(a) Muon pair m(q1,q2) — resonant in Scenario 2a

(b) Tau pair m(q3,q4)

(c) Mixed pair m(q1,q3)

Figure 4.6: Pairwise invariant mass distributions in Scenario 2a.
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The peak observed in the muon invariant mass m(q1,q2) confirms the presence of a Z-boson
decay. In contrast, the tau pair m(q3,q4), which is generated independently and does not
originate from a common intermediate resonance, exhibits a nearly uniform and symmetric
distribution across a wide mass range with a drop-off after about 200 GeV. This shape con-
trasts with the distribution in Scenario 1, where the spectrum is skewed toward lower invariant
masses. In Scenario 2a, the tau pair is generated from the remaining 4-momentum after the
Z → µ+µ− decay, which constrains the available phase space. Unlike the fully uncorrelated
production in Scenario 1, this constraint suppresses highly asymmetric configurations and
leads to a more uniform distribution. The result is a nearly flat spectrum, where low and high
invariant masses occur with comparable probability within the constrained kinematic range.

These differences illustrate how a single resonance can indirectly influence the kinematics of
the remaining pair, even in the absence of direct correlations.

4.3.2 Scenario 2b: Z → τ+τ−

(a) Muon pair m(q1,q2)

(b) Tau pair m(q3,q4) — resonant in Scenario 2b

Figure 4.7: Pairwise invariant mass distributions in Scenario 2b.
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4.3 Scenario 2a and 2b: Single Resonance

(c) Mixed pair m(q1,q3)

Figure 4.7: (continued) Pairwise invariant mass distributions in Scenario 2b.

The tau invariant mass distribution m(q3,q4) in Scenario 2b exhibits a sharp peak near mZ ,
confirming the presence of a resonant Z → τ+τ− decay. In contrast, the muon pair m(q1,q2),
which is generated independently, follows a broad, phase-space-like distribution. Compared
to the tau spectrum in Scenario 2a, the muon distribution appears skewed toward higher
invariant masses and drops off steeply, as expected from the limited energy available after
producing a resonant Z-boson. This rightward shift arises from the lower mass of the muons:
for the same available momentum, muons are more easily boosted into configurations where
both particles carry sizable, similarly directed momenta—conditions that yield high invariant
masses.

Themixed pair m(q1,q3) remains uncorrelated in both Scenarios 2a and 2b, and its distribution
closely resembles that of Scenario 1. This confirms that the resonance only affects the
kinematics of directly involved particles, while other pairings retain their phase-space-driven
shape.

4.3.3 Angular Distributions in Scenarios 2a and 2b
Figure 4.8 shows the angular distributions for the muon and tau pairs in Scenarios 2a and 2b.
In both cases, a clear peak near cosθ = −1 indicates back-to-back emission. This angular
structure is characteristic of particle pairs originating from an intermediate Z-boson. Since
Z → ℓ+ℓ− is a two-body decay, the leptons are emitted with opposite momenta in the rest
frame of the Z, and this pattern is mostly preserved after boosting. In the full summed angular
distribution (Fig. 4.3), these peaks contribute significantly to the rise near cosθ =−1. The drop
around cosθ ≈ 0.4 indicates a kinematic limit: more aligned configurations are not accessible
for such decays within the available phase space. 1

Independently produced pairs, on the other hand, show a broader angular spread from −1
to +1, without a strong directional preference. Their shape is dominated by available phase

1The exact limit depends on the chosen kinematic configuration and may vary for other setups.
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space and closely resembles the distributions observed in Scenario 1 (Sec. 4.2).

(a) Muon pair (q1,q2) — resonant in Scenario 2a

(b) Tau pair (q3,q4) — resonant in Scenario 2b

Figure 4.8: Angular distributions of the muon and tau pairs in Scenarios 2a and 2b.
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4.4 Scenario 4: Double Resonance

4.4 Scenario 4: Double Resonance
In Scenario 4, both particle pairs originate from intermediate Z-bosons, leading to a fully
resonant final state. This configuration represents the cleanest signal topology and is expected
to show strong kinematic signatures of two-body decays.

(a) Muon pair m(q1,q2)

(b) Tau pair m(q3,q4)

(c) Mixed pair m(q1,q3)

Figure 4.9: Pairwise invariant mass distributions in Scenario 4. Both same-flavor pairs origi-
nate from intermediate Z-bosons.

Both the muon and tau pairs show sharp peaks around mZ , consistent with the presence of two
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intermediate resonant decays. The shape of the mixed pair distribution m(q1,q3), however,
shifts significantly compared to previous cases. It resembles the broad continuum seen in
Scenario 1 but drops off earlier, without extending beyond 200 GeV. This reflects a reduced
phase space: the combined energy available for the uncorrelated pair is now further limited
due to the presence of two massive Z-bosons in the intermediate state.

Figure 4.10: Angular distributions of the muon and tau pairs in Scenario 4.

The angular distributions in Fig. 4.10 deviate from the expected back-to-back pattern seen
in previous cases. Instead of peaking at cosθ = −1, both pairs show broad structures with a
maximum closer to cosθ ≈ 0.2−0.3. This change arises from the presence of two intermediate
Z-bosons: since both must share the available energy and recoil against each other to conserve
momentum, their decay products are no longer emitted dominantly back-to-back in the lab
frame. Instead, the decay angles are altered by the motion of the parent bosons, leading to
a compression of the opening angle, and thus more central values appear. The muon pair
distribution appears slightly more shifted toward higher cosθ , due to the lower mass of the
muons allowing a stronger boost in the direction of the recoiling Z. This is also visible in the
summed angular distribution (Fig. 4.3) as a secondary peak, providing a hint of events with
two resonant Z-decays.

Altogether, the analysis of individual scenarios reveals how invariant mass and angular
observables indicate the presence or absence of intermediate resonances. These differences,
visible both in isolated plots and the combined distributions, allow for a clear identification of
background sub-processes and help disentangle the underlying event topology.
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CHAPTER 5
Conclusion and Outlook

In this work, a simulation framework was developed to investigate the kinematics of a
vector boson scattering process e+e− → µ+µ−τ+τ− involving two intermediate Z bosons
and to compare it with three background scenarios. Each process was implemented in
MATLAB, and event samples were generated using phase space sampling with the appropriate
physical constraints. The resulting invariant mass and angular distributions allowed a direct
comparison of the kinematic features of the signal process with those of the backgrounds.

Overall, the thesis demonstrates that kinematic observables, especially invariant mass peaks
and angular distributions, carry distinct imprints of the underlying event topology. The signal
scenario exhibits the clearest signature, characterized by the presence of two intermediate
resonances and modified angular patterns. In contrast, the background scenarios either lack
these double-resonant features or display broader, phase-space-driven distributions.

In particular, Scenario 4 shows two sharp invariant mass peaks near mZ (Fig. 4.9), consistent
with the decay of two intermediate Z-bosons. This configuration also leads to modified
angular patterns: rather than a dominant back-to-back emission, both lepton pairs show a
maximum at angles around cosθ ≈ 0.2−0.3, as seen in Fig. 4.10. This feature persists in the
summed angular distribution (Fig. 4.3) as a visible secondary peak, providing an indication of
double-resonant contributions.

Background scenarios show a contrasting behavior. The fully uncorrelated case (Scenario 1)
leads to smooth invariant mass spectra (Fig. 4.4) and a near-flat angular distribution dominated
by phase space (Fig. 4.5). Single-resonant scenarios (2a and 2b) produce hybrid shapes, where
one lepton pair forms a peak around mZ , while the other remains broad. In these cases, the
angular distributions of the resonant pair show a strong back-to-back preference (Fig. 4.8),
while the uncorrelated pair stays almost uniform. This contrast within a single event helps
identify intermediate boson decays even in mixed topologies.

The simulations provide valuable qualitative insights into the expected signatures of VBS-like
processes. The modular design of the code and the ability to control individual aspects of the
event generation (such as which momenta are sampled directly and which are reconstructed)
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proved to be useful for tuning the kinematics and exploring different scenarios.

Outlook
Several directions for future development remain open. Most notably, the computational
efficiency of the current simulation could be significantly improved. The generation of 25,000
to 40,000 valid events can take up to one hour, which becomes limiting when exploring
additional parameter sets or refining the sampling. Possible improvements include optimizing
the momentum generation strategy, implementing better rejection sampling techniques, or
migrating the code to a faster programming language such as C++.

Additionally, the current approach could be extended to include more realistic features such
as matrix element weighting, detector effects, or parton distribution functions. This would
bring the simulation closer to experimental conditions and allow for a better comparison
between different kinematic configurations. Furthermore, more background processes (e.g.
single-resonant or non-resonant Z pair production via gluon fusion) could be added to see
whether the distinguishing features identified here remain visible in a broader range of cases.

Finally, another possible extension could involve adapting the simulation to other center-of-
mass energies or to processes involving different intermediate states, such as W± bosons
or hypothetical new resonances. While not intended as a replacement for full-scale event
generators, the framework developed here could serve as a lightweight testing ground for
examining how specific kinematic features evolve under modified theoretical assumptions.
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Appendix

A.1 Error Propagation and Convergence Rate
The iterative energy correction method updates the energy of the fourth particle as:

E(n+1)
4 =

√
m2

4 + |q4|2. (A.1)

If the estimated energy at iteration n deviates from the exact solution E4, the error is defined
as:

en = E(n)
4 −E4. (A.2)

A.1.1 Error Evolution in the Iteration
The function governing the iteration is:

f (E) =
√

m2
4 + |q4|2. (A.3)

Since E4 is the correct solution, it must satisfy:

E4 = f (E4). (A.4)

Expanding f (E) in a first-order Taylor series around E4:

f (E4 + en)≈ E4 + f ′(E4)en +O(e2
n). (A.5)

Thus, the error at iteration n+1 is:

en+1 = f ′(E4)en +O(e2
n). (A.6)

A.1.2 Convergence Rate
The derivative of f (E) is:

f ′(E) =
1
2

1√
m2

4 + |q4|2
. (A.7)

Substituting E4 =
√

m2
4 + |q4|2:

f ′(E4) =
1

2E4
. (A.8)
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A.2 Pseudorapidity Distributions

Thus, the error update equation becomes:

en+1 =
1

2E4
en. (A.9)

Since the error shrinks geometrically, the convergence rate is:

r =
1

2E4
. (A.10)

Since E4 is large, the method converges quickly.

A.2 Pseudorapidity Distributions
Due to the isotropic nature of the generated events, the pseudorapidity distributions follow
an approximately Gaussian shape. These distributions do not provide additional insight into
event properties but are included here for completeness.
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Figure A.1: Pseudorapidity distributions for different event scenarios.
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Appendix

A.3 Comparison of KDE Kernels
Kernel Density Estimation (KDE) is used in this analysis to provide a smooth probability
density function for the invariant mass distributions. The choice of the kernel function
can influence the shape and accuracy of the estimated distribution. This section presents a
comparison of different kernels applied to invariant mass distributions.

A.3.1 Kernel Functions and Implementation
The following kernels were used:

• Gaussian Kernel:
K(u) =

1√
2π

e−
1
2 u2

, u ∈ (−∞,∞). (A.11)

• Epanechnikov Kernel: The optimal kernel in terms of minimizing mean integrated
squared error (MISE):

K(u) =

{
3
4(1−u2), |u| ≤ 1,
0, |u|> 1.

(A.12)

• Biweight Kernel:

K(u) =

{
15
16(1−u2)2, |u| ≤ 1,
0, |u|> 1.

(A.13)

• Triweight Kernel:

K(u) =

{
35
32(1−u2)3, |u| ≤ 1,
0, |u|> 1.

(A.14)

As an approximation for the bandwidth h Silverman’s rule of thumb chosen:

h = 1.06 ·σ ·n−1/5. (A.15)

A.3.2 MATLAB Implementation
The KDE estimation was implemented in MATLAB for different kernel functions. The process
involves computing density estimates at a predefined grid of points and normalizing the results
for visualization.
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1 %% Manual KDE Implementation with Different Kernels
2 % Generate grid for evaluation
3 x_grid = linspace(0, 300, 1000);
4
5 % Bandwidth estimation (Silverman’s rule)
6 h = 1.06 * std(mq34_nonzero) * numel(mq34_nonzero)^(-1/5);
7
8 % Define kernels
9 kernels = struct(...
10 ’Gaussian’, @(u) (1/sqrt(2*pi)) * exp(-0.5 * u.^2), ...
11 ’Epanechnikov’, @(u) 0.75 * max(0, (1 - u.^2)), ...
12 ’Biweight’, @(u) (15/16) * max(0, (1 - u.^2).^2), ...
13 ’Triweight’, @(u) (35/32) * max(0, (1 - u.^2).^3) ...
14 );
15
16 % Calculate KDE for each kernel
17 kde_results = struct();
18 fields = fieldnames(kernels);
19
20 for k = 1:numel(fields)
21 kernel_name = fields{k};
22 kernel_function = kernels.(kernel_name);
23 kde_values = zeros(size(x_grid));
24
25 for j = 1:length(x_grid)
26 x = x_grid(j);
27 kde_values(j) = sum(kernel_function((x - mq34_nonzero) /

h)) / (numel(mq34_nonzero) * h);
28 end
29
30 kde_results.(kernel_name) = kde_values;
31 end
32

Listing 1: Manual KDE Implementation with Different Kernels

A.3.3 Results and Comparison
To evaluate the effect of different kernels, KDE estimates were plotted alongside histograms
of the invariant mass distributions. Two representative cases are shown:
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Figure A.2: Comparison of different KDE kernels applied to an invariant mass distri-
bution where the particle pair is produced independently of the Z-boson
decay.
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Figure A.3: Comparison of KDE kernels in the invariant mass region around the Z-
boson peak.

For the final implementation, the Epanechnikov kernel was selected.
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Code

This section contains the full MATLAB implementation of the simulation framework. The
scripts include event generation, kinematic calculations, and data visualization.

Main Simulation Script: main.m

1 clc; clear;
2
3 %% Constants
4 mE = 0.000511;
5 mMu = 0.105658;
6 mTau = 1.776861;
7 mZ = 91.1876;
8 gammaZ = 2.4952; % decay width for Z boson
9 eElectron = 150;
10 sqrtS = 2 * eElectron;
11
12 %% Simulation parameters
13 numEvents = 25000;
14 scenarios = {@Scenario1, @Scenario2a, @Scenario2b, @Scenario4};
15 scenarioNames = {’Scenario 1’, ’Scenario 2a’, ’Scenario 2b’, ’Scenario

4’};
16
17 allMTotal = [];
18 allMq12 = [];
19 allMq34 = [];
20 allMq13 = [];
21 allCosTheta12 = [];
22 allCosTheta34 = [];
23
24 %% Main Loop through all Scenarios
25 figure(’Name’, ’5x4 Grid of Invariant Mass Histograms’);
26 tiledlayout(5, 4);
27
28 figure(’Name’, ’5x4 Grid of Invariant Mass Histograms + KDE’);
29 tiledlayout(5, 4);
30
31 figure(’Name’, ’2x2 Grid of Rapidity Distributions’);
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32 tiledlayout(2, 2);
33
34 figure(’Name’, ’2x2 Grid of Cos(theta) Distributions’);
35 tiledlayout(2, 2);
36
37 for scenarioIdx = 1:length(scenarios)
38 scenarioFunction = scenarios{scenarioIdx};
39 scenarioName = scenarioNames{scenarioIdx};
40
41 [mTotal, mq12, mq34, mq13, cosTheta12, cosTheta34,

pseudorapidity_q1, pseudorapidity_q2, pseudorapidity_q3,
pseudorapidity_q4] = ...

42
RunScenario(scenarioFunction, sqrtS, mMu, mTau, mZ, gammaZ,
numEvents);

43
44 % Filter valid data
45 mNon0 = mTotal(mTotal > 0);
46 mq12_nonzero = mq12(mq12 > 0);
47 mq34_nonzero = mq34(mq34 > 0);
48 mq13_nonzero = mq13(mq13 > 0);
49
50 % Remove zeros (empty events)
51 pseudorapidity_q1 = pseudorapidity_q1(pseudorapidity_q1 ~= 0);
52 pseudorapidity_q2 = pseudorapidity_q2(pseudorapidity_q2 ~= 0);
53 pseudorapidity_q3 = pseudorapidity_q3(pseudorapidity_q3 ~= 0);
54 pseudorapidity_q4 = pseudorapidity_q4(pseudorapidity_q4 ~= 0);
55
56 cosTheta12 = cosTheta12(cosTheta12 ~= 0);
57 cosTheta34 = cosTheta34(cosTheta34 ~= 0);
58
59 % Accumulate invariant masses and angular distributions
60 allMTotal = [allMTotal, mNon0];
61 allMq12 = [allMq12, mq12_nonzero];
62 allMq34 = [allMq34, mq34_nonzero];
63 allMq13 = [allMq13, mq13_nonzero];
64
65 allCosTheta12 = [allCosTheta12, cosTheta12];
66 allCosTheta34 = [allCosTheta34, cosTheta34];
67
68 % Plot accumulated invariant masses in the 5x4 grid
69 figure(1);
70 % Column 1: Total invariant mass
71 nexttile;
72 PlotHistogram(mNon0, [’Total Mass: ’, scenarioName], ’Invariant Mass

(GeV)’, [280 320], 100);
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73
74 % Column 2: m(q1, q2)
75 nexttile;
76 PlotHistogram(mq12_nonzero, [’m(q1, q2): ’, scenarioName],

’Invariant Mass (GeV)’, [0 300], 300);
77
78 % Column 3: m(q3, q4)
79 nexttile;
80 PlotHistogram(mq34_nonzero, [’m(q3, q4): ’, scenarioName],

’Invariant Mass (GeV)’, [0 300], 300);
81
82 % Column 4: m(q1, q3)
83 nexttile;
84 PlotHistogram(mq13_nonzero, [’m(q1, q3): ’, scenarioName],

’Invariant Mass (GeV)’, [0 300], 300);
85
86 % Plot KDE-enhanced histograms
87 figure(2);
88 % Total invariant mass KDE
89 nexttile;
90 PlotHistogram(mNon0, ’Total Invariant Mass Distribution’, ’Invariant

Mass (GeV)’, [280 320], 100);
91
92 % m(q1, q2) KDE
93 nexttile;
94 PlotHistogramWithKDE(mq12_nonzero, ’Invariant Mass Distribution of

q1 and q2 (muon pair)’, ’Invariant Mass (GeV)’, [0 300], 300);
95
96 % m(q3, q4) KDE
97 nexttile;
98 PlotHistogramWithKDE(mq34_nonzero, ’Invariant Mass Distribution of

q3 and q4 (tau pair)’, ’Invariant Mass (GeV)’, [0 300], 300);
99
100 % m(q1, q3) KDE
101 nexttile;
102 PlotHistogramWithKDE(mq13_nonzero, ’Invariant Mass Distribution of

q1 and q3’, ’Invariant Mass (GeV)’, [0 300], 300);
103
104 % Pseudorapidity plot for each scenario
105 figure(3); % Pseudorapidity distribution plot
106 nexttile;
107 PlotPseudorapidity(pseudorapidity_q1, pseudorapidity_q2,

pseudorapidity_q3, pseudorapidity_q4, scenarioName);
108
109 % Angular distribution plot for each scenario
110 figure(4);

38



Main Simulation Script: main.m

111 nexttile;
112 PlotCosThetaDistribution(cosTheta12, cosTheta34, scenarioName);
113
114 % Individual invariant mass plots
115 figure(’Name’, [’Invariant Mass Distributions: ’, scenarioName]);
116 tiledlayout(’vertical’);
117 nexttile; PlotHistogramWithKDE(mq12_nonzero, ’m(q1, q2)’, ’Invariant

Mass (GeV)’, [0 300], 300);
118 nexttile; PlotHistogramWithKDE(mq34_nonzero, ’m(q3, q4)’, ’Invariant

Mass (GeV)’, [0 300], 300);
119 nexttile; PlotHistogramWithKDE(mq13_nonzero, ’m(q1, q3)’, ’Invariant

Mass (GeV)’, [0 300], 300);
120 end
121
122 % Plot the summed invariant masses (5th row)
123 figure(1); % Histogram figure
124 % Column 1: Total invariant mass
125 nexttile;
126 PlotHistogram(allMTotal, ’Summed Total Mass’, ’Invariant Mass (GeV)’,

[280 320], 100);
127
128 % Column 2: m(q1, q2)
129 nexttile;
130 PlotHistogram(allMq12, ’Summed m(q1, q2)’, ’Invariant Mass (GeV)’, [0

300], 300);
131
132 % Column 3: m(q3, q4)
133 nexttile;
134 PlotHistogram(allMq34, ’Summed m(q3, q4)’, ’Invariant Mass (GeV)’, [0

300], 300);
135
136 % Column 4: m(q1, q3)
137 nexttile;
138 PlotHistogram(allMq13, ’Summed m(q1, q3)’, ’Invariant Mass (GeV)’, [0

300], 300);
139
140 figure(2); % KDE-enhanced figure
141 % Column 1: Total invariant mass KDE
142 nexttile;
143 PlotHistogram(allMTotal, ’Summed Total Mass’, ’Invariant Mass (GeV)’,

[280 320], 100);
144
145 % Column 2: m(q1, q2) KDE
146 nexttile;
147 PlotHistogramWithKDE(allMq12, ’Summed m(q1, q2)’, ’Invariant Mass

(GeV)’, [0 300], 300);
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148
149 % Column 3: m(q3, q4) KDE
150 nexttile;
151 PlotHistogramWithKDE(allMq34, ’Summed m(q3, q4)’, ’Invariant Mass

(GeV)’, [0 300], 300);
152
153 % Column 4: m(q1, q3) KDE
154 nexttile;
155 PlotHistogramWithKDE(allMq13, ’Summed m(q1, q3)’, ’Invariant Mass

(GeV)’, [0 300], 300);
156
157 figure(’Name’, ’Invariant Mass Distributions: Summed Process’);
158 tiledlayout(’vertical’);
159 nexttile; PlotHistogram(allMTotal, ’Summed Total Invariant Mass’,

’Invariant Mass (GeV)’, [280 320], 100);
160 nexttile; PlotHistogramWithKDE(allMq12, ’Summed m(q1, q2)’, ’Invariant

Mass (GeV)’, [0 300], 300);
161 nexttile; PlotHistogramWithKDE(allMq34, ’Summed m(q3, q4)’, ’Invariant

Mass (GeV)’, [0 300], 300);
162 nexttile; PlotHistogramWithKDE(allMq13, ’Summed m(q1, q3)’, ’Invariant

Mass (GeV)’, [0 300], 300);
163
164 % Summed angular distributions
165 figure(’Name’, ’Cos() Distribution: Summed Process’);
166 PlotCosThetaDistribution(allCosTheta12, allCosTheta34, ’Summed Process’);
167
168 %% Functions
169 function [mTotal, mq12, mq34, mq13, cosTheta12, cosTheta34,

pseudorapidity_q1, pseudorapidity_q2, pseudorapidity_q3,
pseudorapidity_q4] = ...

170
RunScenario(scenarioFunction, sqrtS, mMu, mTau, mZ, gammaZ, numEvents)

171 mTotal = zeros(1, numEvents);
172 mq12 = zeros(1, numEvents);
173 mq34 = zeros(1, numEvents);
174 mq13 = zeros(1, numEvents);
175 cosTheta12 = zeros(1, numEvents);
176 cosTheta34 = zeros(1, numEvents);
177 pseudorapidity_q1 = zeros(1, numEvents);
178 pseudorapidity_q2 = zeros(1, numEvents);
179 pseudorapidity_q3 = zeros(1, numEvents);
180 pseudorapidity_q4 = zeros(1, numEvents);
181
182 %Run scenario simulation
183 % Run multiple events
184 parpool(’local’);
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185 parfor i = 1:numEvents
186 switch nargin(scenarioFunction)
187 case 3 % Scenario1
188 particles = scenarioFunction(sqrtS, mMu, mTau);
189 case 5 % Scenario2a, Scenario2b, Scenario4
190 particles = scenarioFunction(sqrtS, mMu, mTau, mZ,

gammaZ);
191 otherwise
192 error(’Unexpected number of arguments for the scenario

function.’);
193 end
194
195 if isempty(particles)
196 continue;
197 end
198 mTotal(i) = ComputeInvariantMass(particles(’q1’),

particles(’q2’), particles(’q3’), particles(’q4’));
199 mq12(i) = ComputeInvariantMass(particles(’q1’), particles(’q2’));
200 mq34(i) = ComputeInvariantMass(particles(’q3’), particles(’q4’));
201 mq13(i) = ComputeInvariantMass(particles(’q1’), particles(’q3’));
202
203 % Extract momentum vectors
204 q1 = particles(’q1’);
205 q2 = particles(’q2’);
206 q3 = particles(’q3’);
207 q4 = particles(’q4’);
208
209 % Calculate angular distributions for pairs
210 cosTheta12(i) = CalculateCosTheta(q1, q2);
211 cosTheta34(i) = CalculateCosTheta(q3, q4);
212
213 % Calculate pseudorapidity for all particles
214 pseudorapidity_q1(i) = CalculatePseudorapidity(q1);
215 pseudorapidity_q2(i) = CalculatePseudorapidity(q2);
216 pseudorapidity_q3(i) = CalculatePseudorapidity(q3);
217 pseudorapidity_q4(i) = CalculatePseudorapidity(q4);
218 end
219 delete(gcp);
220 end
221
222 function PlotHistogram(data, plotTitle, xLabel, xLimits, numBins)
223 histogram(data, numBins);
224 if exist(’xLimits’, ’var’) && ~isempty(xLimits)
225 xlim(xLimits);
226 end
227 title(plotTitle);
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228 xlabel(xLabel);
229 ylabel(’Frequency’);
230 end
231
232 function PlotHistogramWithKDE(data, plotTitle, xLabel, xLimits, numBins)
233 % Plot histogram
234 edges = linspace(min(data), max(data), numBins + 1); % bin edges
235 [counts, ~] = histcounts(data, edges);
236 binCenters = (edges(1:end-1) + edges(2:end)) / 2;
237 bar(binCenters, counts, ’FaceAlpha’, 0.5, ’EdgeColor’, ’none’);
238 hold on;
239
240 % Calculate KDE
241 [f, xi] = ksdensity(data); % Unrestricted KDE
242 valid_indices = xi >= min(data) & xi <= max(data); % Restrict KDE to

data range
243
244 % Overlay KDE
245 plot(xi(valid_indices), f(valid_indices) * max(counts) / max(f),

’r-’, ’LineWidth’, 1);
246
247 % Labels and title
248 if exist(’xLimits’, ’var’) && ~isempty(xLimits)
249 xlim(xLimits);
250 end
251 title(plotTitle);
252 xlabel(xLabel);
253 ylabel(’Frequency’);
254 legend(’Histogram’, ’KDE’);
255 hold off;
256 end
257
258 %% Additional functions
259 function mass = ComputeInvariantMass(varargin)
260 totalMomentum = sum(cat(1, varargin{:}), 1);
261 massSquared = totalMomentum(1)^2 - sum(totalMomentum(2:4).^2);
262 mass = sqrt(max(massSquared, 0));
263 end
264
265 % Function to calculate pseudorapidity
266 function eta = CalculatePseudorapidity(p)
267 pMag = sqrt(sum(p(2:4).^2));
268 theta = acos(p(4) / pMag);
269 eta = -log(tan(theta / 2));
270 end
271
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272 % Function to calculate cosine of angle between two particles
273 function cosTheta = CalculateCosTheta(p1, p2)
274 cosTheta = dot(p1(2:4), p2(2:4)) / (norm(p1(2:4)) * norm(p2(2:4)));
275 end
276
277 % Function to plot pseudorapidity distributions for all particles
278 function PlotPseudorapidity(pseudorapidity_q1, pseudorapidity_q2,

pseudorapidity_q3, pseudorapidity_q4, scenarioName)
279 histogram(pseudorapidity_q1, 100, ’BinLimits’, [-5, 5], ’FaceAlpha’,

0.5, ’DisplayName’, ’q1’, ’EdgeColor’, ’none’);
280 hold on;
281 histogram(pseudorapidity_q2, 100, ’BinLimits’, [-5, 5], ’FaceAlpha’,

0.5, ’DisplayName’, ’q2’, ’EdgeColor’, ’none’);
282 histogram(pseudorapidity_q3, 100, ’BinLimits’, [-5, 5], ’FaceAlpha’,

0.5, ’DisplayName’, ’q3’, ’EdgeColor’, ’none’);
283 histogram(pseudorapidity_q4, 100, ’BinLimits’, [-5, 5], ’FaceAlpha’,

0.5, ’DisplayName’, ’q4’, ’EdgeColor’, ’none’);
284 title([’Pseudorapidity Distribution: ’, scenarioName]);
285 xlabel(’Pseudorapidity (\eta)’);
286 ylabel(’Frequency’);
287 legend;
288 hold off;
289 end
290
291 % Function to plot angular distribution (cosine) for particle pairs
292 function PlotCosThetaDistribution(cosTheta12, cosTheta34, scenarioName)
293 histogram(cosTheta12, 100, ’Normalization’, ’probability’,

’FaceAlpha’, 0.6, ’DisplayName’, ’q1-q2’);
294 hold on;
295 histogram(cosTheta34, 100, ’Normalization’, ’probability’,

’FaceAlpha’, 0.6, ’DisplayName’, ’q3-q4’);
296 title([’Cos(\theta) Distribution: ’, scenarioName]);
297 xlabel(’cos(\theta)’);
298 ylabel(’Probability’);
299 legend;
300 hold off;
301 end

Scenario1.m: e+e− → µ+µ−τ+τ−

1 function particles = Scenario1(sqrtS, mMu, mTau)
2 deltaE = 5 * 1e-2;
3 maxAttempts = 20000;
4 particles = [];
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5
6 attempt = 0;
7 while isempty(particles) && attempt < maxAttempts
8 attempt = attempt + 1;
9
10 % Generate q1
11 E1 = mMu + (sqrtS/2 - mMu) * rand;
12 pMag1 = sqrt(E1^2 - mMu^2);
13 p1_direction = RandomDirection();
14 q1 = [E1, pMag1 .* p1_direction];
15
16 % Off-shell condition for q1: q1^2 = mMu^2
17 assert(abs(q1(1)^2 - norm(q1(2:4))^2 - mMu^2) < 1e-3, ’Off-shell

condition for q1 not satisfied.’);
18
19 % Generate q2 (muon 2)
20 remainingEnergy1 = sqrtS - q1(1);
21 if remainingEnergy1 <= mMu
22 continue;
23 end
24
25 E2 = mMu + (remainingEnergy1 - mMu) * rand;
26 pMag2 = sqrt(E2^2 - mMu^2);
27 p2_direction = RandomDirection();
28 q2 = [E2, pMag2 .* p2_direction];
29
30 % Off-shell condition for q2: q2^2 = mMu^2
31 if abs(q2(1)^2 - norm(q2(2:4))^2 - mMu^2) > 1e-3
32 continue;
33 end
34
35 % Generate q3 (tau 1)
36 remainingEnergy2 = sqrtS - (q1(1) + q2(1));
37 if remainingEnergy2 <= mTau
38 continue;
39 end
40
41 E3 = mTau + (remainingEnergy2 - mTau) * rand;
42 pMag3 = sqrt(E3^2 - mTau^2);
43 p3_direction = RandomDirection();
44 q3 = [E3, pMag3 .* p3_direction];
45
46 % Off-shell condition for q3
47 if abs(q3(1)^2 - norm(q3(2:4))^2 - mTau^2) > 1e-3
48 continue;
49 end
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50
51 % Step 6: Calculate q4 to match q3 with invariant mass

mq34_target
52 totalMomentum_q1q2q3 = q1 + q2 + q3;
53 required_momentum_q4 = -totalMomentum_q1q2q3(2:4);
54
55 E4 = sqrt(mTau^2 + norm(required_momentum_q4)^2);
56 if E4 < mTau
57 continue;
58 end
59
60 q4 = [E4, required_momentum_q4];
61
62 % Iterative adjustment to satisfy off-shell condition for q4
63 iteration_tolerance = 1e-4;
64 max_q4_adjustments = 1000;
65 for adj_attempt = 1:max_q4_adjustments
66 % Calculate current squared mass of q4
67 q4_mass_squared = q4(1)^2 - norm(q4(2:4))^2;
68 target_mass_squared = mTau^2;
69
70 % Check if close enough
71 if abs(q4_mass_squared - target_mass_squared) <

iteration_tolerance
72 break;
73 end
74
75 % Adjust E4 slightly to bring q4 closer to target mass
76 E4_adjusted = sqrt(target_mass_squared + norm(q4(2:4))^2);
77 if abs(E4_adjusted - q4(1)) < iteration_tolerance
78 break;
79 end
80 q4(1) = E4_adjusted;
81 end
82
83 % Off-shell condition for q4: q4^2 = mTau^2
84 if abs(q4(1)^2 - norm(q4(2:4))^2 - mTau^2) > 1e-3
85 continue;
86 end
87
88 totalMomentum = q1 + q2 + q3 + q4;
89
90 % Check overall energy and momentum conservation
91 if norm(totalMomentum(2:4)) > deltaE || abs(totalMomentum(1) -

sqrtS) > deltaE
92 continue;
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93 end
94
95 % Store successful particles
96 particles = containers.Map({’q1’, ’q2’, ’q3’, ’q4’}, {q1, q2,

q3, q4});
97 end
98 end
99
100 %% Additional functions
101 function direction = RandomDirection()
102 theta = rand * pi;
103 phi = rand * 2 * pi;
104 direction = [sin(theta) * cos(phi), sin(theta) * sin(phi),

cos(theta)];
105 end

Scenario2a.m: e+e− → (Z → µ+µ−)τ+τ−

1 function particles = Scenario2a(sqrtS, mMu, mTau, mZ, gammaZ)
2 deltaE = 5 * 1e-2;
3 maxAttempts = 20000;
4 particles = [];
5
6 attempt = 0;
7 while isempty(particles) && attempt < maxAttempts
8 attempt = attempt + 1;
9
10 % Sample mq12
11 mq12_target = SampleBreitWigner(mZ, gammaZ);
12
13 % Generate q1
14 E1 = mMu + (sqrtS/2 - mMu) * rand;
15 pMag1 = sqrt(E1^2 - mMu^2);
16 p1_direction = RandomDirection();
17 q1 = [E1, pMag1 .* p1_direction];
18
19 % Off-shell condition for q1: q1^2 = mMu^2
20 assert(abs(q1(1)^2 - norm(q1(2:4))^2 - mMu^2) < 1e-3, ’Off-shell

condition for q1 not satisfied.’);
21
22 % Generate q2 to match q1 with invariant mass mq12_target
23 p2_direction = RandomDirection();
24 p2_dot_p1 = dot(p2_direction, q1(2:4));
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25 E2 = (mq12_target^2 - 2*mMu^2 + 2 * q1(1) * mMu) / (2 * (q1(1) -
p2_dot_p1));

26
27 if E2 < mMu
28 continue;
29 end
30
31 pMag2 = sqrt(E2^2 - mMu^2);
32 q2 = [E2, pMag2 .* p2_direction];
33
34 % Off-shell condition for q2: q2^2 = mMu^2
35 if abs(q2(1)^2 - norm(q2(2:4))^2 - mMu^2) > 1e-3
36 continue;
37 end
38
39 if abs(ComputeInvariantMass(q1, q2) - mq12_target) > gammaZ
40 continue;
41 end
42
43 % Remaining energy after q1 and q2
44 remainingEnergy = sqrtS - (q1(1) + q2(1));
45 if remainingEnergy <= (2*mTau)
46 continue;
47 end
48
49 % Generate q3 with a random energy between mTau and remaining

energy
50 E3 = mTau + (remainingEnergy - mTau) * rand;
51 pMag3 = sqrt(E3^2 - mTau^2);
52 p3_direction = RandomDirection();
53 q3 = [E3, pMag3 .* p3_direction];
54
55 % Off-shell condition for q3: q3^2 = mTau^2
56 if abs(q3(1)^2 - norm(q3(2:4))^2 - mTau^2) > 1e-3
57 continue;
58 end
59
60 % Step 6: Calculate q4 to match q3 with invariant mass

mq34_target
61 totalMomentum_q1q2q3 = q1 + q2 + q3;
62 required_momentum_q4 = -totalMomentum_q1q2q3(2:4);
63
64 E4 = sqrt(mTau^2 + norm(required_momentum_q4)^2);
65 if E4 < mTau
66 continue;
67 end
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68
69 q4 = [E4, required_momentum_q4];
70
71 % Iterative adjustment to satisfy off-shell condition for q4
72 iteration_tolerance = 1e-4;
73 max_q4_adjustments = 100;
74 for adj_attempt = 1:max_q4_adjustments
75 % Calculate current squared mass of q4
76 q4_mass_squared = q4(1)^2 - norm(q4(2:4))^2;
77 target_mass_squared = mTau^2;
78
79 % Check if close enough
80 if abs(q4_mass_squared - target_mass_squared) <

iteration_tolerance
81 break;
82 end
83
84 % Adjust E4 slightly to bring q4 closer to target mass
85 E4_adjusted = sqrt(target_mass_squared + norm(q4(2:4))^2);
86 if abs(E4_adjusted - q4(1)) < iteration_tolerance
87 break;
88 end
89 q4(1) = E4_adjusted;
90 end
91
92 % Off-shell condition for q4: q4^2 = mTau^2
93 if abs(q4(1)^2 - norm(q4(2:4))^2 - mTau^2) > 1e-3
94 continue;
95 end
96
97 totalMomentum = q1 + q2 + q3 + q4;
98
99 % Check overall energy and momentum conservation
100 if norm(totalMomentum(2:4)) > deltaE || abs(totalMomentum(1) -

sqrtS) > deltaE
101 continue;
102 end
103
104 % Store successful particles
105 particles = containers.Map({’q1’, ’q2’, ’q3’, ’q4’}, {q1, q2,

q3, q4});
106 end
107 end
108
109 %% Additional functions
110 function direction = RandomDirection()
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111 theta = rand * pi;
112 phi = rand * 2 * pi;
113 direction = [sin(theta) * cos(phi), sin(theta) * sin(phi),

cos(theta)];
114 end
115
116 function m_sample = SampleBreitWigner(m0, gamma)
117 m_sample = m0 + gamma * tan(pi * (rand - 0.5));
118 end
119
120 function mass = ComputeInvariantMass(varargin)
121 totalMomentum = sum(cat(1, varargin{:}), 1);
122 massSquared = totalMomentum(1)^2 - sum(totalMomentum(2:4).^2);
123 mass = sqrt(max(massSquared, 0));
124 end

Scenario2b.m: e+e− → (Z → τ+τ−)µ+µ−

1 function particles = Scenario2b(sqrtS, mMu, mTau, mZ, gammaZ)
2 deltaE = 5 * 1e-2;
3 maxAttempts = 20000;
4 particles = [];
5
6 attempt = 0;
7 while isempty(particles) && attempt < maxAttempts
8 attempt = attempt + 1;
9
10 % Sample mq34
11 mq34_target = SampleBreitWigner(mZ, gammaZ);
12
13 % Generate q3
14 E3 = mTau + (sqrtS/2 - mTau) * rand;
15 pMag3 = sqrt(E3^2 - mTau^2);
16 p3_direction = RandomDirection();
17 q3 = [E3, pMag3 .* p3_direction];
18
19 % Off-shell condition for q3: q3^2 = mTau^2
20 assert(abs(q3(1)^2 - norm(q3(2:4))^2 - mTau^2) < 1e-3,

’Off-shell condition for q3 not satisfied.’);
21
22 % Generate q4 to match q3 with invariant mass mq34_target
23 p4_direction = RandomDirection();
24 p4_dot_p3 = dot(p4_direction, q3(2:4));
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25 E4 = (mq34_target^2 - 2*mTau^2 + 2 * q3(1) * mTau) / (2 * (q3(1)
- p4_dot_p3));

26
27 if E4 < mTau
28 continue;
29 end
30
31 pMag4 = sqrt(E4^2 - mTau^2);
32 q4 = [E4, pMag4 .* p4_direction];
33
34 % Off-shell condition for q4: q4^2 = mTau^2
35 if abs(q4(1)^2 - norm(q4(2:4))^2 - mTau^2) > 1e-3
36 continue;
37 end
38
39 if abs(ComputeInvariantMass(q3, q4) - mq34_target) > gammaZ
40 continue;
41 end
42
43 % Remaining energy after q3 and q4
44 remainingEnergy = sqrtS - (q3(1) + q4(1));
45 if remainingEnergy <= (2*mMu)
46 continue;
47 end
48
49 % Generate q1 with a random energy between mMu and remaining

energy
50 E1 = mMu + (remainingEnergy - mMu) * rand;
51 pMag1 = sqrt(E1^2 - mMu^2);
52 p1_direction = RandomDirection();
53 q1 = [E1, pMag1 .* p1_direction];
54
55 % Off-shell condition for q1: q1^2 = mMu^2
56 if abs(q1(1)^2 - norm(q1(2:4))^2 - mMu^2) > 1e-3
57 continue;
58 end
59
60 % Calculate q2 to match q1 with invariant mass mq12_target
61 totalMomentum_q3q4q1 = q3 + q4 + q1;
62 required_momentum_q2 = -totalMomentum_q3q4q1(2:4);
63
64 E2 = sqrt(mMu^2 + norm(required_momentum_q2)^2);
65 if E2 < mMu
66 continue;
67 end
68
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69 q2 = [E2, required_momentum_q2];
70
71 % Iterative adjustment to satisfy off-shell condition for q2
72 iteration_tolerance = 1e-4;
73 max_q2_adjustments = 100;
74 for adj_attempt = 1:max_q2_adjustments
75 % Calculate current squared mass of q2
76 q2_mass_squared = q2(1)^2 - norm(q2(2:4))^2;
77 target_mass_squared = mMu^2;
78
79 % Check if close enough
80 if abs(q2_mass_squared - target_mass_squared) <

iteration_tolerance
81 break;
82 end
83
84 % Adjust E2 slightly to bring q2 closer to target mass
85 E2_adjusted = sqrt(target_mass_squared + norm(q2(2:4))^2);
86 if abs(E2_adjusted - q2(1)) < iteration_tolerance
87 break;
88 end
89 q2(1) = E2_adjusted;
90 end
91
92 % Off-shell condition for q2: q2^2 = mMu^2
93 if abs(q2(1)^2 - norm(q2(2:4))^2 - mMu^2) > 1e-3
94 continue;
95 end
96
97 totalMomentum = q1 + q2 + q3 + q4;
98
99 % Check overall energy and momentum conservation
100 if norm(totalMomentum(2:4)) > deltaE || abs(totalMomentum(1) -

sqrtS) > deltaE
101 continue;
102 end
103
104 % Store successful particles
105 particles = containers.Map({’q1’, ’q2’, ’q3’, ’q4’}, {q1, q2,

q3, q4});
106 end
107 end
108
109 %% Additional functions
110 function direction = RandomDirection()
111 theta = rand * pi;
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112 phi = rand * 2 * pi;
113 direction = [sin(theta) * cos(phi), sin(theta) * sin(phi),

cos(theta)];
114 end
115
116 function m_sample = SampleBreitWigner(m0, gamma)
117 m_sample = m0 + gamma * tan(pi * (rand - 0.5));
118 end
119
120 function mass = ComputeInvariantMass(varargin)
121 totalMomentum = sum(cat(1, varargin{:}), 1);
122 massSquared = totalMomentum(1)^2 - sum(totalMomentum(2:4).^2);
123 mass = sqrt(max(massSquared, 0));
124 end

Scenario4.m: e+e− → (Z → µ+µ−)(Z → τ+τ−)

1 function particles = Scenario4(sqrtS, mMu, mTau, mZ, gammaZ)
2 deltaE = 5 * 1e-2;
3 maxAttempts = 150000;
4 particles = [];
5
6 attempt = 0;
7 while isempty(particles) && attempt < maxAttempts
8 attempt = attempt + 1;
9
10 % Sample mq12 and mq34 from a Breit-Wigner distribution
11 mq12_target = SampleBreitWigner(mZ, gammaZ);
12 mq34_target = SampleBreitWigner(mZ, gammaZ);
13
14 % Generate q1
15 E1 = mMu + (sqrtS/2 - mMu) * rand;
16 pMag1 = sqrt(E1^2 - mMu^2);
17 p1_direction = RandomDirection();
18 q1 = [E1, pMag1 .* p1_direction];
19
20 % Off-shell condition for q1: q1^2 = mMu^2
21 assert(abs(q1(1)^2 - norm(q1(2:4))^2 - mMu^2) < 1e-3, ’Off-shell

condition for q1 not satisfied.’);
22
23 % Generate q2 to match q1 with invariant mass mq12_target
24 p2_direction = RandomDirection();
25 p2_dot_p1 = dot(p2_direction, q1(2:4));
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26 E2 = (mq12_target^2 - 2*mMu^2 + 2 * q1(1) * mMu) / (2 * (q1(1) -
p2_dot_p1));

27
28 if E2 < mMu
29 continue;
30 end
31
32 pMag2 = sqrt(E2^2 - mMu^2);
33 q2 = [E2, pMag2 .* p2_direction];
34
35 % Off-shell condition for q2: q2^2 = mMu^2
36 if abs(q2(1)^2 - norm(q2(2:4))^2 - mMu^2) > 1e-3
37 continue;
38 end
39
40 if abs(ComputeInvariantMass(q1, q2) - mq12_target) > gammaZ
41 continue;
42 end
43
44 % Step 4: Calculate remaining energy after q1 and q2
45 remainingEnergy = sqrtS - (q1(1) + q2(1));
46 if remainingEnergy <= (2*mTau)
47 continue;
48 end
49
50 % Step 5: Generate q3 with a random energy between mTau and

remaining energy
51 E3 = mTau + ((remainingEnergy - mq34_target) - mTau) * rand;
52 pMag3 = sqrt(E3^2 - mTau^2);
53 p3_direction = RandomDirection();
54 q3 = [E3, pMag3 .* p3_direction];
55
56
57 % Off-shell condition for q3: q3^2 = mTau^2
58 if abs(q3(1)^2 - norm(q3(2:4))^2 - mTau^2) > 1e-3
59 continue;
60 end
61
62 % Step 6: Calculate q4 to match q3 with invariant mass

mq34_target
63 totalMomentum_q1q2q3 = q1 + q2 + q3;
64 required_momentum_q4 = -totalMomentum_q1q2q3(2:4);
65
66 E4 = sqrt(mq34_target^2 + norm(required_momentum_q4)^2 + mTau^2);
67 if E4 < mTau
68 continue;
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69 end
70
71 q4 = [E4, required_momentum_q4];
72
73 % Iterative adjustment to satisfy off-shell condition for q4
74 iteration_tolerance = 1e-4;
75 max_q4_adjustments = 100;
76 for adj_attempt = 1:max_q4_adjustments
77 % Calculate current squared mass of q4
78 q4_mass_squared = q4(1)^2 - norm(q4(2:4))^2;
79 target_mass_squared = mTau^2;
80
81 % Check if close enough
82 if abs(q4_mass_squared - target_mass_squared) <

iteration_tolerance
83 break;
84 end
85
86 % Adjust E4 slightly to bring q4 closer to target mass
87 E4_adjusted = sqrt(target_mass_squared + norm(q4(2:4))^2);
88 if abs(E4_adjusted - q4(1)) < iteration_tolerance
89 break;
90 end
91 q4(1) = E4_adjusted;
92 end
93
94 % Off-shell condition for q4: q4^2 = mTau^2
95 if abs(q4(1)^2 - norm(q4(2:4))^2 - mTau^2) > 1e-3
96 continue;
97 end
98
99 totalMomentum = q1 + q2 + q3 + q4;
100 if abs(ComputeInvariantMass(q3, q4) - mq34_target) > gammaZ
101 continue;
102 end
103
104 % Check overall energy and momentum conservation
105 if norm(totalMomentum(2:4)) > deltaE || abs(totalMomentum(1) -

sqrtS) > deltaE
106 continue;
107 end
108
109 % Store successful particles
110 particles = containers.Map({’q1’, ’q2’, ’q3’, ’q4’}, {q1, q2,

q3, q4});
111 end
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112 end
113
114 %% Additional functions
115 function direction = RandomDirection()
116 theta = rand * pi;
117 phi = rand * 2 * pi;
118 direction = [sin(theta) * cos(phi), sin(theta) * sin(phi),

cos(theta)];
119 end
120
121 function m_sample = SampleBreitWigner(m0, gamma)
122 m_sample = m0 + gamma * tan(pi * (rand - 0.5));
123 end
124
125 function mass = ComputeInvariantMass(varargin)
126 totalMomentum = sum(cat(1, varargin{:}), 1);
127 massSquared = totalMomentum(1)^2 - sum(totalMomentum(2:4).^2);
128 mass = sqrt(max(massSquared, 0));
129 end
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