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ABSTRACT

In the search for new physics or physics beyond the Standard Model, a fundamental
objective is to make predictions from a theory under test. A general quantity one would
like to obtain are the masses of the particles, which are included in the theory. In the
case of Quantum Field Theory one of the used methods is Lattice Field Theory, which
assumes a space-time lattice to make predictions. In this context correlation two-point
functions can be defined, which contain the sought energy spectrum. The aim of this
work is to develop and test a new method to obtain the Ground-State energy from the
correlator. This new method assumes a region in which the correlator is dominated by
a single energy level and can therefore be calculated. The algorithm was tested with
self-generated mock-up data as well as correlators obtained by physical simulations. The
tests yielded promising results, which led us to the conclusion that the new algorithm
provides a sufficient tool to obtain the Ground-State energy of the correlator.
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1. Introduction

In the past several decades, the theory of Quantum Fields has played a major role in the
foundations of physics. So much that besides Einstein’s Theory of General Relativity, all
elementary aspects of physics manifest themselves as a Quantum Field Theory, known
as the Standard Model of particle physics. As for a variety of reasons it is known that
this theory of the elementary particles is incomplete, the search for new physics beyond
the Standard Model is part of ongoing research.
The general aim in this field of study is to obtain predictions from a theory under test.
Probably one of the most interesting question that arises is: “What particles are included
in my theory?”. A common technique to make predictions is the use of Lattice Field
Theory. This is not particularly new and has been used for many years in the low energy
regime of Quantum Chromo Dynamics. Of particular interest in this context are the
two-point correlation or short correlator functions, which contain the particle spectrum.
The aim of this work is to develop and test a new method to obtain the Ground-State
level from the correlator (two-point correlation function).
The remainder of the thesis is organized as follows. In section 2 the theoretical back-
ground is covered by introducing the general concepts of Lattice Field Theory and two-
point correlation functions. In section 3 the problem is again presented in greater detail
with the insights from the chapter before. The new method is introduced in section 4.
Section 5 shows some results which were obtained by using this new method. Finally,
the conclusion and the outlook are reported in section 6.

1



2. Theoretical Background

In this chapter, the necessary theoretical background for this thesis is introduced. Be-
fore starting with the more specific aspects, the general physical framework in which this
thesis takes place is briefly explained. As already mentioned in the Introduction, the
Standard Model of particle physics is the best description of the universe at small scales
we currently have. Although very successful, it still has some shortcomings both in the-
oretical and experimental nature. A famous experimental deviation from the Standard
Model is the Muon g − 2 anomaly [1]. Regarding the theoretical limitation, the absence
of a unified treatment of the forces that is expected in a complete theory is probably
the biggest deficit. A postulated solution is the approach of a Great Unified Theory
(GUT), which, in the most general description, combines the Electroweak Force with
the Strong Nuclear Force. This was done likewise in the unification of the Weak and the
Electromagnetic interaction to the Electroweak interaction. However, so far none of the
candidates for a GUT could be verified. [4]
With the introduction of the general setting, we can now continue with the presentation
of the theoretical quantities and concepts necessary for this thesis.

2.1. Lattice Field Theory

This subsection is based on [5].
As the work of this thesis targets a problem that emerges in the context of Lattice Field
Theory or Lattice Gauge Theory, a short introduction is given. As a full explanation of
the matter would go beyond the scope of this work, only some key features necessary to
understand the form of the correlator are covered. In Quantum Field Theory, problems
are normally solved with perturbation theory. However, in some areas of modern physics
(e.g. the low energy regime of QCD) this approach fails. The introduction of a space-time
lattice now yields the possibility of using non-perturbative techniques. Thus, instead of
a continuous variable x a discretized coordinate x with the lattice spacing a is used.1

x = an n ∈ Z (1)

This means for a quantity, for example a (scalar) field ϕ, that it is only defined on the
lattice points.

ϕ(x), x ∈ lattice (2)

Furthermore, if for practical reasons only a finite volume is considered, boundary condi-
tions for the appearing quantities need to be introduced. In this work, periodic boundary

1In this thesis it is assumed that a = 1
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conditions are assumed, which are a popular choice. Thus, with n = 0, 1, 2, . . . , L − 1
this leads to.

ϕ(x) = ϕ(x + aL) (3)

Although it is only shown for one coordinate, these statements hold for all three space
dimensions as well as the time dimension.

2.2. The Two-Point Correlation Function

In this section, the correlator function is introduced. Since the focus of this work is on
the mathematical evaluation of the correlator, an exact physical derivation is omitted.
The major part of this chapter is dedicated to connecting the form of the correlator in
the Minkowski space to the correlator on the lattice, which is the quantity under study.
The correlator can be defined within Quantum Field Theory and “[. . . ] can be inter-
preted physically as the amplitude for propagation of a particle or excitation between y
and x.”[6] In the context of this work, the two-point correlation function takes the form
of an expectation value between an operator at t: O(t) and an operator at t0: O(t0).

C(t, t0) = ⟨O(t)†|O(t0)⟩ (4)

This expectation value Cmink(t, t0) is given by a sum of phases with the energy states Ek

and the coefficients Ak. For a more detailed derivation of the form of the correlator we
suggest [10]. The subscript "mink" stands for Minkowski space and is used to distinguish
it from the correlator in Euclidean space, which is derived in the following.

Cmink(t, t0) =
∑

k

Ake−iEk(t−t0) (5)

To get the form of the correlator on the lattice, first it is chosen that all times are purely
imaginary t = −iτ . This variable transformation is normally called Wick-Rotation and
transforms the four-dimensional Minkowski space to a four-dimensional Euclidean space,
as seen in the comparison of the metrics. [3]

ds2
mink = −(dt)2 + (dx)2 + (dy)2 + (dz)2 → ds2

eucl = (dτ)2 + (dx)2 + . . . (6)

The correlator transforms therefore too, from the Minkowski correlator to the Euclidean
correlator Cmink(t, t0) → Ceucl(t, t0). Thus, the correlator is now expressed by a sum of
exponential decays, as seen in Equation 7.

Ceucl(t, t0) =
∑

k

Ake−Ek(t−t0) (7)
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Finally, the effects of the lattice can be taken into account. First, the time variable
becomes discretized with a lattice spacing a = 1 and therefore t ∈ N. Furthermore, as
mentioned in subsection 2.1, the periodic boundary conditions need to be considered as
well as the time reversal symmetry, which generally holds in physics. To satisfy this,
the same exponential functions must be added with opposite signs in the exponent.
Considering the definition of the cosh function cosh(x) = ex + e−x, the following form of
the correlator follows.

Clat.(t) =
∑

k

Ak cosh
[
Ek

(
t − tmax

2

)]
(8)

Here, the variable tmax represents the lattice size. Equation 8 shows the final form of
the correlator on the lattice, which is used in this form for the rest of this work. From
here on C(t) refers to the Lattice version of the correlator, unless stated otherwise. For
context Figure 1 displays a correlator function with two cosh terms.

4 8 12 16 20 24 28 32
t

0.010

0.050

0.100

0.500

1

C(t)

Figure 1: Example Correlator C(t) with two cosh terms
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3. Presentation of Problem

As in subsection 2.2 the correlator has been introduced, the goal of this work can now
be presented in greater detail. The correlator on the lattice C(t) can be obtained by
simulation. Furthermore, the correlator contains the wanted lattice spectrum in form
of the Ek-values (see Equation 8). Thus, the problem can be reformulated to finding
the parameters Ak and Ek that fit the correlator points. However, this task yields some
problems.
Before this is explained further, the input data will be specified here first. The lattice
size tmax is a predefined parameter and can take values from 8 to 32. The correlator
values themselves are normalized so that C(0) = 1 and exactly symmetric around tmax

2 .
Furthermore, the correlator data points C(t) have an uncertainty in the same order of
magnitude for all times t. This leads to an exponential increase in the relative uncertainty
towards the value at tmax

2 . This will come up again later.
The obvious solution of trying to fit the correlator function directly has some problems.
The number of cosh terms which should be used in the fit is not obvious, and every
additional term considered also increases the parameters by two. Already in the case of
two terms this leads to three fit parameters.2 The generic problem that arises in such
cases is that the underlying uncertainties of the data points make it hard for the fit
algorithm to optimize the different fit parameters to the individual points. This as a
whole makes the cosh fits quite unreliable.
One of the simplest ways of tackling this problem is the use of effective mass curves with
the definition of the effective mass as follows. This definition will lead to a constant
value if the correlator is described by a single exponential term.

meff

(
t + 1

2

)
= log

[
Clat.(t)

Clat.(t + 1)

]
(9)

It is now argued that in some region between t = 0 and tmax

2 this approximation holds
and in this region meff (t) ≈ E0, with E0 being the Ground-State energy. Thus, if this
region is known, at least one of the Ek’s can be calculated. For the correlator displayed
in Figure 1, the effective mass curve takes the following form.

2With the normalization C(0) = 1 one parameter can be eliminated
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t

-1.0
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0.5

1.0

meff(t)

Figure 2: Example effective mass curve meff (t)

The issue that appears here is that this region can be very tight in time and therefore
only include individual points. This work tries to solve this problem by taking a similar
approach, but instead of utilizing the region that can approximately be described by a
single exponential term, a region that can be described by a single cosh term is used.
Since the correlator follows a sum of cosh curves, we argue that this approach will lead
to better results. This adaption will be explained in more detail in the next chapter.
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4. Algorithm

In this chapter, the new method is introduced and explained.

4.1. General

The starting point is again the form of the correlator function on the lattice, as seen in
Equation 8.

C(t) =
∑

k

Ak cosh
[
Ek

(
t − tmax

2

)]

The cosh function can also be written in exponential form with cosh(x) = ex + e−x,
and thus the correlator can also be seen as a sum of exponential decays and growths for
which the following two limits are introduced (with t0 = tmax

2 ).

lim
(t−t0)→∞

∑
k

e−Ek(t−t0) = eE0(t−t0) (i) lim
(t−t0)→−∞

∑
k

eEk(t−t0) = eE0(t−t0) (ii)

It is now assumed that for the considered correlators both of these limits hold in some
symmetric region around tmax

2 . This region is further referred to as the plateau region,
in which the correlator can be described by a single cosh term with the Ground-State
energy E0. This means:

C(t)
∣∣∣∣∣
t∈Plateau

= Ak cosh
[
E0

(
t − tmax

2

)]
(10)

The following formula is now introduced to interrelate the parameters Ak(t), C(t) and
Eeff (t) to each other, whereby Eeff (t) serves a similar purpose as the effective mass
meff (t) explained before.

f(Ak(t), t) =

 C(t)
Ak(t) +

√√√√( C(t)
Ak(t)

)2

− 1


1

t− tmax
2

= e−Eeff (t) (11)

Thus, Eeff (t ∈ Plateu) should lead to a constant value. This can be seen by inserting
Equation 10 for C(t) in Equation 11, which is shown in the following.

f(t) =
cosh

[
E0

(
t − tmax

2

)]
−
√

cosh
[
E0

(
t − tmax

2

)]2
− 1

 1
t− tmax

2
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=
cosh

[
E0

(
t − tmax

2

)]
−
√

sinh
[
E0

(
t − tmax

2

)]2
 1

t− tmax
2

=
[
exp

[
−E0

(
t − tmax

2

)]] 1
t− tmax

2 = exp[−E0]

The result e−E0 can be identified as e−Eeff (t). Furthermore, this leads to f(Ak(t), t) =
const. in the plateau region, which introduces an interesting possibility. By setting

f(Ak(t + 1
2), t) != f(Ak(t + 1

2), t + 1) (12)

a common value of Ak(t + 1
2) between two correlator points can be calculated. Since

the addend 1
2 in Ak(t + 1

2) only serves the notation, it is omitted in the further course.
Although not needed in the further calculation, for each point the uncertainty is calcu-
lated by using the values C(t) ± δC(t) to gain Ak(t) ± δAk(t). This is done to make sure
that all values used for the further analysis have defined error intervals. If Ak(t) is in
the plateau region, this should lead to a constant region for Ak(t).
The remaining task is to find an algorithm which defines the points that are part of the
plateau, or in other words, to find the region in which Ak(t) is constant. This algorithm
is further explained in subsection 4.2. After determining the plateau region, a common
value for Ak(t ∈ Plateau) describing the single cosh term can be calculated. This value,
further referred to as Āk, is computed by taking the mean of the data points that are
part of the plateau. To assign an uncertainty to Āk, the standard deviation was used.

Āk = Mean[Ak(t ∈ Plateau)] δĀk = Std[Ak(t ∈ Plateau)] (13)

To obtain the value of Āk as well as the uncertainty in a sophisticated manner, it
was defined that the plateau must contain at least three independent points. If the
calculation did not lead to that number of points, which fulfil the requirements for being
defined as a plateau, the output was defined to be not valid. This condition resulted
in another restriction. Since the correlator consists of tmax

2 + 1 independent points and
calculating Ak(t) reduces the independent points by one, as well as the Equation 11 is
not defined at t = tmax

2 , this leads to tmax

2 − 1 independent points for Ak(t). Since in the
case of tmax = 8 only three values of Ak(t) can be calculated, tmax ≥ 10 was set as a
lower limit of the algorithm.
The part described above leads to a common value for Ak(t) in the plateau region.
The goal now is to obtain a single energy state for the plateau region. This value is
further referred to as ĒP lat.. As shown in Equation 11, the value of f(Ak(t), t) already
corresponds to Eeff (t), thus by inserting the obtained value of Āk, the values of f(Āk =
const, t) could be calculated.3 In the plateau region similar argumentation as before

3The sign of the exponent in Equation 11 in this calculation is chosen so that the symmetry of f(Āk, t)
around tmax

2 is preserved.
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holds: if the region can be described by a single cosh term, this also means for f(Āk =
const, t ∈ Plateau) that it leads to a constant region. The plateau region (t ∈ Plateau)
was already defined within the context of the Ak(t) values. The calculation of the sought
ĒP lat. value is then given by: 4

f̄ = Mean[f(Āk, t ∈ Plateau)] → ĒPlat. = − log[f̄ ] (14)

The uncertainty interval [f̄−, f̄+] is given by:

f̄± = Mean[f(Āk ± δĀk, t ∈ Plateau)]

It should be noted here that for all error propagations which were not explicitly men-
tioned to be calculated otherwise, the built-in Mathematica functionality of the “Around”
command was used, which uses first-order series approximation, as stated in the official
documentation: “When Around is used in computations, uncertainties are by default
propagated using a first-order series approximation, assuming no correlations.”[7]

4The sign of the exponent in Equation 11 is chosen so that the symmetry of f(Āk, t) around tmax

2 is
preserved.
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4.2. Defining the Plateau Region

As mentioned in subsection 4.1, an algorithm defining the points that are part of the
plateau was needed, and therefore a statistical quantity describing the compatibility
between the data points and a constant fit was sought. In the case of a linear fit, a
simple measure of the goodness of the fit is the coefficient of determination R2, which is
defined as. [2]

R2 = 1 − SSE
SST (15)

With SST standing for “Sum of Squares Total” and SSE for “Sum of Squares Error”.
These quantities arise from the data points yi, the mean of the data ȳ and the points in
the linear regression model µ̂i in the following way.

SST = ∥y − ȳ1∥2 =
n∑

i=1
(yi − ȳ)2 SSE = ∥y − µ̂∥2 =

n∑
i=1

(yi − µ̂i)2 (16)

In the case of a constant fit, which corresponds to calculating the mean of the data points,
this definition of the R2 value leads to R2 = 0 for all cases. This is due to the fact that
µ̂i = ȳ and therefore SST = SSE. So a slightly different definition for the R2 value was
used, which is also implemented in the Mathematica function “NonLinearModelFit” (see
Wolfram Language & System Documentation Center [8]). Any further reference to the
coefficient of determination or R2 is defined by the following formula, in which instead
of SST being related to the mean of the data, the quantity is obtained by taking the
sum over all values.

R2 = 1 −
∑

i (µ̂i − yi)2∑
i y2

i

(17)

The algorithm to define the region of the plateau works as follows. By successively
decreasing the number of points symmetrically around tmax

2 , the coefficient of determi-
nation is increased until it reaches the minimum value of R2

min and does not change its
value in one iteration by more than εR2 . After some initial trials, the parameters used
for the algorithm were set to R2

min = 0.8 and εR2 = 0.01. As the results, especially
in the test-run (see subsection 5.1), did not evoke any reason to change the starting
parameters, they were kept.

10



5. Results

5.1. Test-Run with self-generated Mock-Up Data

To test the algorithm for systematic errors and investigate the influence of uncertainties
of the correlator data points themselves on the results obtained by the program, a test-
run with self-generated mock-up data was done. The evaluation of these data led to many
insights and further to code improvements and restrictions for the input data. Thus,
this chapter continues as follows. First, the generation of the mock-up data is explained,
followed by some results obtained by the algorithm. After that, the insights gained
during this process are introduced and it is explained to which changes or restrictions
this led.
For the correlator data double cosh terms were presumed, thus:

C(t) = A1 cosh[E1(t − tmax/2)] + A2 cosh[E2(t − tmax/2)] (18)

The parameters A1, A2, E1, E2 and tmax were now randomly chosen, with the following
restrictions. For the parameters E1 and E2 random real numbers within the interval of
[0.01; 1] were used, arranged so that E1 < E2. Since only the ratio between A1 and A2
and not the values of the Ai themselves are important, this ratio was randomly selected
out of the following set.

A2

A1
∈
{ 1.

105 ,
5.

106 ,
1.

106 ,
5.

107 ,
1.

107 ,
5.

108 ,
1.

108 ,
5.

109 ,
1.

109

}
Furthermore, tmax was randomly selected from:

tmax ∈ {8, 12, 16, 20, 24, 28, 32}

It should be noted here that even though it was stated before that tmax ≥ 10 was set as
the lower limit of the lattice size, this restriction was only set after this test-run. Thus,
this test-run also covers data sets with tmax = 8. To introduce randomness as well as a
level of uncertainty to the generated data, a normally distributed quantity was added to
each correlator point. The uncertainties of the correlator were then directly derived from
the standard deviation σ, which was used in the generation of the additive shift. In this
test-run, 50 different sets of parameters were generated. Furthermore, for each set 10
different values for σ were used with σi = 2i−1 ·σ0 with i from 1 to 10. With C

(
t = tmax

2

)
being the value of the correlator at tmax before the addition of uncertainties, the value
of σ0 was defined in the following way:

σ0 = 0.01 · C
(

t = tmax

2

)
· tmax

32 (19)
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The last factor tmax

32 was introduced to compensate for the dependence of the correlator
middle point on tmax, as the point tends to have a higher value for lower tmax. The
sets of parameters as well as the σ0 value obtained are shown in Table 1 and Table 2.
The following figure shows the generated correlator for Parameter-Set-1 and σ4 as an
example.

4 8 12 16
t

0.6

0.8

1.0

C(t)

Figure 3: Correlator for Parameter-Set-1 with σ = σ4

Thus, a total of 500 such correlator functions were generated and evaluated. It should
be noted here that these results should be seen as a proof of concept and not exact
numerical values, as the code was further improved after this test-run. However, in the
following the results for ĒPlat. for some sets of parameters in dependence of the value
used for σ are displayed.
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Figure 4: ĒP lat. plotted over σ for different Parameter-Sets (sufficient Examples)

In Figure 4 some examples are shown for which the algorithm fulfils the desired be-
haviour. In these examples, increasing the uncertainties for the correlator points leads
to an increase of the errors in the final result of the ĒP lat. value, whereby the error inter-
vals still include the input value for E1. Also, the non-computable values in Figure 4c
comply with the expectations, as this appears in cases with a high σ. In total, around
35 of the 50 Parameter sets followed this behaviour.
Some cases led to poor results, as seen in Figure 5. In these Parameter-Sets, only a
few results for ĒP lat. comply with the parameter E1 within their uncertainties. These
sets also show the tendency to increase their mean without increasing their uncertainty
for higher values for σ (especially for Parameter-Set-41). All three of these sets have
the problem of giving poor results with small uncertainties, which would mislead false
accuracy. If we look at the results at low sigma for Parameter-Set-5 and Parameter-Set-
28, we see that the values which match the parameter E1 also include the value 0 in
their error interval, which also corresponds to an insufficient result.
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Figure 5: ĒP lat. plotted over σ for different Parameter-Sets (insufficient Examples)

A common property of the Parameter-Sets with insufficient results is the tendency to
have low values for the parameters E1 and tmax. This leads to a flatter course of the
correlator function and hence to larger values for σ, as can be seen in Equation 19.
However, the higher uncertainties should only be reflected by larger error values in the
final result.
The further analysis of these cases showed a source of errors in the algorithm, which is the
numerical calculation of Ak(t) using Equation 12. This part proved to be very demanding
in terms of computing resources and furthermore, for some Ak(t) simply no solutions
could be found. As σ increased, these unsolvable cases became more frequent. It should
also be mentioned here that as the relative uncertainties of the correlator are highest
in the plateau region, the unsolvable cases also appear mostly there. If the number of
non-calculable points becomes too large, it is no longer possible to define a meaningful
plateau and the algorithm returns invalid or wrong results. In some extreme cases only
one of the values for Ak(t) could be calculated. This is the case for Parameter-Set-5 in
which for each sigma only one or two data points could be calculated and therefore, the
plateau contained only one (independent) point.
The gained insights led to general code improvements and some restrictions for the input
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data. As mentioned below:

1. The use of a more sophisticated calculation method for Ak(t).
2. The plateau for Ak(t ∈ Plateau) must contain at least three independent points.
3. Due to (2.) the minimal lattice size was set as tmax ≥ 10.

The improved calculation method was mainly reflected by multiple numerical solving
with different starting parameters and the enhanced checking of the individual interme-
diate results.
For the last two restrictions, another justification occurred. During the process of this
work, the calculation for the error for Āk was changed to using the standard deriva-
tion, which in this context was set to only be statistically significant for at least three
independent points. This is already covered in section 4.
With these restrictions in place, most of the poor results could not meet the set conditions
and were thus avoided. This is especially true for Parameter-Set-5 and Parameter-Set-
28, as they both have a lattice size of tmax = 8. Likewise, only isolated valid results
could be found for large values of σ (approx. from σ5). This is seen in the following plot,
which compares the results of the used algorithm for the test-run to the final version
of the algorithm for Parameter-Set-45. The obtained values for σ7, σ8 and σ9 no longer
meet the specifications and the poor results from the test-run are avoided.
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Figure 6: ĒP lat. over σ for Parameter-Set-45

In the following, a short overview of the results obtained with the final version of the al-
gorithm is given. Of the 500 correlators, 60 fell outside the specification of the algorithm
(as they have a lattice size of tmax = 8). Furthermore, out of these 440 correlators, 147
could not be calculated because no meaningful plateau could be defined. This leaves
a total number of 293 results for which 253 included the parameter E1 in their error
interval. This corresponds to 86%.
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5.2. Evaluation of Physical Correlator Functions

Besides the self-generated data, two other sets of correlator data were evaluated. The
source of these is the work of Bernd Riederer, especially in the context of his Master
Thesis [9]. These correlators were calculated in the Weak-Higgs-Sector of the Standard
Model using Variational Analysis.
These two datasets are further referred to as Dataset-1 (shown in Table 3 and Table 4)
and Dataset-2 (shown in Table 5 and Table 6). They include respectively 14 correlator
functions. These 14 correlators are composed of two physical correlators (Ground-State
& Excited-State) for seven different lattice sizes.
For both of these datasets, the individual calculation steps are shown using two examples.
Afterwards, an overview of all results is given. The selected examples each include one
case that led to a result and one case that could not be calculated successfully.

Dataset-1

The first example is the correlator of the Excited-State for Dataset-1 with a lattice size
tmax = 16. In Figure 7 the correlator function for this case is shown.
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0.50

1

C(t)

Figure 7: Excited-State correlator C(t) with tmax = 16 (Dataset-1)

With the correlator points, the values of Ak(t) are calculated. In the next step, the
plateau is identified, and the common value Āk is computed. The values for Ak(t), the
identified plateau region and Āk are shown in Figure 8.

16



4 8 12 16
t

0.004

0.006

0.008

0.010

0.012

Ak(t)

 Ak(t)

 Ak(t) ∈ Plateu

Ak

1σ-Interval for Ak

Figure 8: Ak(t)-Plot for Excited-State with tmax = 16 (Dataset-1)

Inserting the value of Āk into Equation 11 leads to the values of f(Āk, t) for which
the common value f̄ in the plateau region can also be computed. This is displayed in
Figure 9.
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Figure 9: f(Āk, t)-Plot for Excited-State with tmax = 16 (Dataset-1)

Finally, Equation 14 is used to obtain the final result:

ĒPlat. = 0.618+0.016
−0.018

Not all correlators of Dataset-1 returned a result. This is demonstrated in the following
using the example of the correlator of the Excited-State with tmax = 32. The plot of
this correlator is shown in Figure 10.
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Figure 10: Excited-State correlator C(t) with tmax = 32 (Dataset-1)

The Ak(t)’s were calculated In the same way as in the previous example. However, as
seen in Figure 11, there are some values missing which could not be computed. The
algorithm for the plateau then outputs only two independent points (four total). This
is outside the minimum requirements and therefore no valid Āk & ĒP lat. is returned.
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Figure 11: Ak(t)-Plot for Excited-State with tmax = 32 (Dataset-1)

The other results for Dataset-1 over the inverse lattice size 1
tmax

are shown in the following
graph. The two correlators with tmax = 8 were not evaluated, as they lie outside the
specification of the algorithm. For the Excited-State, the evaluation with tmax = 32 and
tmax = 28 led to no result.
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Figure 12: Results for ĒP lat. over inverse lattice size 1/tmax for Dataset-1

As seen in Figure 12, the obtained values are nearly constant over the lattice size, except
for the value of the Ground-State correlator with tmax = 32. It is also possible to see that
they correspond to distinguishable values for ĒPlat.. Furthermore, the relative errors of
the values do not exceed 20%.

Dataset-2

For Dataset-2 the evaluation for the Ground-State correlator with tmax = 24 is shown.
Like in the previous examples, the plots for C(t), Ak(t) and f(Āk, t) are displayed in
Figure 13. As can be seen in Figure 13b, the algorithm defined the plateau region to be
between t = 7 and t = 17. In this region, four independent points for Ak(t) are included.
With these, the common value Āk for the plateau could be calculated. The calculated
values for f(Āk, t) are displayed in Figure 13c, along with the obtained value for f̄ .
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(a) Correlator C(t)
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(b) Ak(t)-Plot
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(c) f(Āk, t)-Plot

Figure 13: Evaluation Ground-State Correlator with lattice size tmax = 24 (Dataset-2)

With the value for f̄ , the result for ĒPlat. could again be calculated using Equation 14.
This led to:

ĒPlat. = 0.44+0.04
−0.04
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As the last example, the evaluation of the Ground-State with tmax = 32 is shown.
Figure 14 shows the plot of the correlator and the plot for Ak(t).
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(a) Correlator C(t)
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(b) Ak(t)-Plot

Figure 14: Evaluation Ground-State Correlator with lattice size tmax = 32 (Dataset-2)

In this case, the C(t) points around tmax

2 fluctuate a lot. This leads to a similar behaviour
for the Ak(t) values. It is not possible to define a plateau for such distributed values.
Therefore, for this correlator no result could be obtained.
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Figure 15: Results for ĒP lat. over inverse lattice size 1/tmax for Dataset-2

Figure 15 shows again the results for ĒP lat. for Dataset-2. As before, the correlators with
tmax = 8 were not evaluated. For this set of correlators, the Ground-State as well as the
Excited-State for tmax = 32 lead to no result. In contrast to the results of Dataset-1, the
obtained values for the Ground-State and the Excited-State are on top of each other.
However, in good approximation they show a constant value over the different lattice
sizes. Furthermore, the relative errors of the values do not exceed 20%.
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6. Conclusion & Outlook

6.1. Conclusion

In this thesis, a new algorithm for obtaining the Ground-State energy from the two-point
correlator function was developed and tested. The method is built on the assumption
that the correlator can in some region be described by a single cosh term with the energy
level ĒP lat..
As described in subsection 4.2, an algorithm for defining the plateau region was developed
using the coefficient of determination. Although the method proved to be effective,
it has some underlying shortcomings. Firstly, as used in this thesis, the coefficient of
determination is of limited value as a statistical measure. Furthermore, the uncertainties
of the data points themselves do not influence the definition of the plateau. So, while
this part is sufficient for this work, it might need further improvements if the settings
change (e.g. bigger lattice size).
The algorithm was then tested by using self-generated mock-up data, which were gener-
ated by assuming double cosh terms. For a large part of the cases considered, the results
showed sufficient behaviour in which declining statistics for the data points led to an
increase in the uncertainty of the result with similar mean. This is seen in Figure 4.
However, some cases did not match this behaviour, as seen in Figure 5. The analysis
of these cases helped to gain further insights and improve the algorithm, which avoided
most of the poor results.
With the reviewed algorithm, two sets of correlators derived from physical simulations
were evaluated. These results are shown in Figure 12 and Figure 15. In total, the
algorithm returned a result for 20 of the 24 correlators5. The relative errors of the
obtained values for ĒP lat. were smaller than 20%. The results suggest that the algorithm
works best until tmax = 24, as for larger lattice sizes only two out of four results could
be obtained. However, given the small number of evaluated correlators, this statement
needs further verification.
In conclusion, the new algorithm provides a sufficient tool in obtaining the Ground-State
energy level of the correlator on the conditions that the plateau region is well-developed
enough to justify the approximation of a single cosh term, and the statistics of the
correlator allows the calculation of an adequate number of values for Ak(t).

5Excluding the correlators with tmax = 8.
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6.2. Outlook

Since the scope of this work was limited, it was not possible to review and test all options
that arose. Therefore, two starting points for future improvements and extensions are
given here.

Using the C(tmax/2)-Point

The algorithm, as implemented, does not use the correlator point at tmax

2 . This is due to
the fact that f(Ak(t), t) (see Equation 11) is not defined at tmax/2. However, as seen in
Equation 8, the value C(tmax/2) corresponds directly to the value of Ak(tmax/2). This
can simply be used by inserting this value into the calculated Ak(t).

Ak(tmax/2) = C(tmax/2)

This results in an immediate advantage. With the additional value for Ak(t), a plateau
with a meaningful statistics for Āk can also be defined for correlators with tmax = 8.
Figure 16 displays this for the Ground-State correlator from Dataset-1 (with tmax = 8).
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Figure 16: Ak(t)-Plot for Ground-State with tmax = 8 and C(tmax/2)-Point (Dataset-1)

However, it also worsens some results, which is especially true for bigger lattice sizes. A
detailed analysis of whether and when it makes sense to use this point has been omitted.
Nevertheless, it definitely offers the possibility to improve the method and to extend the
range in terms of the lattice size.

Application on more than one Plateau

Another interesting finding that occurred is the formation of further plateaus in the Ak(t)
plots. As the only assumption on which the algorithm is based is that the correlator
can be described by a single cosh term in some region, these plateaus could correspond
to further terms of the correlator. The following figure shows this for the Ground-State
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correlator from Dataset-1 with a lattice size tmax = 32 and a second plateau between
t = 5 and t = 9.
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Figure 17: Ak(t)-Plot for Ground-State with tmax = 32 (Dataset-1)

However, further work needs to be performed to establish whether this hypothesis is
true.
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B. Code

1 ClearAll ["Global ‘*"];
2

3 (* Empty lists for error and warning messages *)
4 warnings = {};
5 errors = {};
6

7 (* Option to use C(tmax /2) as value for Ak(tmax /2*)
8 optionAktmax2 = False;
9

10 (* Input correlator values for t=0 until tmax /2*)
11 Cor = {1.0000000000001232 , 0.4409447180355774 , 0.23132195469510042 ,
12 0.12446643074340222 , 0.06948477112729584 , 0.042736568101142375 ,
13 0.03505537623756215};
14 (* Uncertainties for corr dCor [[t,pm] pm=1 -> -dCor pm=2 -> +dCor *)
15 dCor = {
16 {4.43045600206915*10^ -12 , 1.667554982986985*10^ -13} ,
17 {0.0005558786149930106 , 0.0005579342793681219} ,
18 {0.0007696064024982074 , 0.0007773783527582068} ,
19 {0.0008165312757394683 , 0.0008453708052333364} ,
20 {0.0007715860858287654 , 0.0008186093711772674} ,
21 {0.0005932584236703412 , 0.0006652480377861494} ,
22 {0.00046365718232631997 , 0.0006715113022606051}};
23

24 nN = ( Length [Cor] - 1) *2;
25

26 (* Definition of f(Ak(t),t)*)
27 func[paramCorr_ , paramAk_ , paramT_ ] :=
28 (( paramCorr / paramAk )+Sqrt [( paramCorr / paramAk )^2 -1]) ^(1/( paramT -nN /2))
29

30 (* Input Corr to Formats which are needed during calculation *)
31 corr = Cor
32 corrMin = corr - Transpose [dCor ][[1]]
33 corrMax = corr + Transpose [dCor ][[2]]
34 corrErr = Table[ Around [corr [[i]],
35 {( Transpose [dCor ][[1]]) [[i]],
36 ( Transpose [dCor ][[2]]) [[i]]}] , {i, Length [corr ]}];
37 corrSymErrT = Transpose [{ Range[nN + 1] - 1,
38 Transpose [Join[ Transpose [ corrErr ],
39 Drop[ Reverse [ Transpose [ corrErr ]], 1]]]}]
40

41 (*
42 Get indices of all correlators which are negative within their errors
43 To avoid calc of f(Ak(t+1/2) ,t)==f(Ak(t+1/2) ,t+1) in this cases
44 *)
45 negIndCorr = Position [corrMin , _? Negative ];
46 delIndFunc = Partition [ DeleteCases [
47 Flatten [Union[negIndCorr , ( negIndCorr - 1)]],
48 x_ /; (x > nN/2 - 1) || (x < 1)], 1];
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49 (*
50 Gen. List of f(Ak(t+1/2) ,t)==f(Ak(t+1/2) ,t+1) for Mean , Max & Min val.
51 *)
52 funcAk = Transpose [
53 {
54 (* Time *)
55 Range[nN/2 - 1] - 0.5,
56 (* Mean *)
57 Table[
58 func[corr [[i]], A, i - 1] ==
59 func[corr [[i + 1]], A, i], {i, nN/2 - 1}],
60 (* Max *)
61 Table[
62 func[ corrMax [[i]], A, i - 1] ==
63 func[ corrMax [[i + 1]], A, i], {i, nN/2 - 1}],
64 (* Min *)
65 Table[
66 func[ corrMin [[i]], A, i - 1] ==
67 func[ corrMin [[i + 1]], A, i], {i, nN/2 - 1}]
68 }
69 ];
70

71 funcAk = Delete [funcAk , delIndFunc ]; (* Delete invalid positions *)
72

73 (* Empty Lists for Solution of A_k(t+1/2) *)
74 Akbyfunc = {};
75 AkbyfuncMin = {};
76 AkbyfuncMax = {};
77

78 (* Calculate A_k(t+1/2) using f(Ak(t+1/2) ,t)==f(Ak(t+1/2) ,t+1) *)
79 (* ------------------------------------------------------------------*)
80 (*
81 For finding values for A_k(t+1/2) FindRoot is applied for which two
82 different approaches are used the second only if the first does not
83 lead to a result ):
84 (1) FindRoot [lhs ==rhs ,{x,x0 ,x1}] searches for a solution using
85 x0 and x1 as the first two values of x, avoiding the use of
86 derivatives .
87 (2) FindRoot [lhs ==rhs ,{x,xstart ,xmin ,xmax }] searches for a solution ,
88 stopping the search if x ever gets outside the range xmin to xmax.
89 *)
90

91 (* Start values for Approach (1) *)
92 (* 50% and 75% of lowest value of Corr CorrMax & CorrMin *)
93 guessA = Min[ Delete [corr , negIndCorr ]]*{0.5 , 0.75};
94 guessAMax = Min[ Delete [corrMax , negIndCorr ]]*{0.5 , 0.75};
95 guessAMin = Min[ Delete [corrMin , negIndCorr ]]*{0.5 , 0.75};
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96 (* Limits for Approach (2) *)
97 (* Lower Bound is Min of CorrMin times 10^ -12 *)
98 lowerLimA =
99 Min[ Delete [corrMin ,

100 negIndCorr ]]*10^( -12) ;
101 (* Upper Bound is corr(t), corrMax (t) & corrMin (t)*)
102 upperLimA =
103 Table[Min [{ corr [[i]], corr [[i + 1]]}] , {i, nN/2 - 1}];
104 upperLimA = Delete [upperLimA , delIndFunc ];
105 upperLimAMax =
106 Table[Min [{ corrMax [[i]], corrMax [[i + 1]]}] , {i, nN/2 - 1}];
107 upperLimAMax = Delete [ upperLimAMax , delIndFunc ];
108 upperLimAMin =
109 Table[Min [{ corrMin [[i]], corrMin [[i + 1]]}] , {i, nN/2 - 1}];
110 upperLimAMin = Delete [ upperLimAMin , delIndFunc ];
111

112 (*
113 Solving for A_k(t+1/2). Check if Approach 1 leads to a result if not
114 try Approach 2.
115 *)
116 For[i = 1, i <= Length [ funcAk ], i++,
117 errCheck =
118 Quiet[
119 Check[
120 (* Approach 1*)
121 Ak = FindRoot [ funcAk [[i, 2]], {A, guessA [[1]] , guessA [[2]]} ,
122 MaxIterations -> 1000];
123 AkMax =
124 FindRoot [ funcAk [[i, 3]], {A, guessAMax [[1]] , guessAMax [[2]]} ,
125 MaxIterations -> 1000];
126 AkMin =
127 FindRoot [ funcAk [[i, 4]], {A, guessAMin [[1]] , guessAMin [[2]]} ,
128 MaxIterations -> 1000];
129 errCheck = False ,
130 True ,
131 (* Errors which are checked directly in calculation (1) *)
132 Power ::infy , FindRoot :: cvmit , FindRoot :: nlnum , FindRoot :: lstol ,
133 Infinity :: indet
134 ],
135 {Power ::infy , FindRoot :: cvmit , FindRoot :: nlnum , FindRoot :: lstol ,
136 Infinity :: indet}
137 ];
138 (* Check for complex solution *)
139 AkSorted = Sort [{(A /. Ak), ( A /. AkMax), (A /. AkMin)}];
140 If[ Length [ Position [AkSorted , z_ /; Im[z] != 0]] != 0,
141 errCheck = True ];
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142 If[errCheck ,
143 errCheck =
144 Quiet[
145 Check[
146 (* Approach 2*)
147 Ak =
148 FindRoot [
149 funcAk [[i, 2]], {A, upperLimA [[i]]*0.5 , lowerLimA ,
150 upperLimA [[i]]}, MaxIterations -> 100000];
151 AkMax =
152 FindRoot [
153 funcAk [[i, 3]], {A, upperLimAMax [[i]]*0.5 , lowerLimA ,
154 upperLimAMax [[i]]}, MaxIterations -> 100000];
155 AkMin =
156 FindRoot [
157 funcAk [[i, 4]], {A, upperLimAMin [[i]]*0.5 , lowerLimA ,
158 upperLimAMin [[i]]}, MaxIterations -> 100000];
159 errCheck = False ,
160 True ,
161 FindRoot :: reged , FindRoot :: lstol , Infinity :: indet (* (1) *)
162 ],
163 { FindRoot :: reged , FindRoot :: lstol , Infinity :: indet}
164 ];
165 (* Check for complex solution *)
166 AkSorted = Sort [{(A /. Ak), ( A /. AkMax), (A /. AkMin)}];
167 If[ Length [ Position [AkSorted , z_ /; Im[z] != 0]] != 0,
168 errCheck = True ];
169 ];
170

171 If[! errCheck ,
172 (*if*)
173 AppendTo [Akbyfunc , { funcAk [[i, 1]], AkSorted [[2]]}];
174 AppendTo [ AkbyfuncMax , { funcAk [[i, 1]], AkSorted [[3]]}];
175 AppendTo [ AkbyfuncMin , { funcAk [[i, 1]], AkSorted [[1]]}] ,
176 (* else *)
177 AppendTo [warnings ,
178 {
179 50, " Warning : Could not calculate Ak(t) for t=", funcAk [[i, 1]]
180 }
181 ]]]
182

183 (* List for Ak(t) and min , max values *)
184 akT = Union[Akbyfunc ,
185 Reverse [Table [{nN - Akbyfunc [[i]][[1]] , Akbyfunc [[i]][[2]]} , {i,
186 Length [ Akbyfunc ]}]]];
187 akTMax = Union[ AkbyfuncMax ,
188 Reverse [Table [{nN - AkbyfuncMax [[i]][[1]] ,
189 AkbyfuncMax [[i]][[2]]} , {i, Length [ AkbyfuncMax ]}]]];
190 akTMin = Union[ AkbyfuncMin ,
191 Reverse [Table [{nN - AkbyfuncMin [[i]][[1]] ,
192 AkbyfuncMin [[i]][[2]]} , {i, Length [ AkbyfuncMin ]}]]];
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193 If[ Length [akT] == 0,
194 AppendTo [errors ,
195 {30,"For none of the times a value for Ak(t) was found."}
196 ]
197 ];
198

199 (* Add value of C(tmax /2) to Ak(t) if optionAktmax2 is true *)
200 If[ optionAktmax2 ,
201 akT = Insert [akT ,{nN/2, Cor [[nN /2+1]]} , Length [akT ]/2+1];
202 akTMax = Insert [akTMax ,{nN/2, corrMax [[nN /2+1]]} , Length [ akTMax ]/2+1];
203 akTMin = Insert [akTMin ,{nN/2, corrMin [[nN /2+1]]} , Length [ akTMin ]/2+1]
204 ]
205

206 (* List of Ak(t) with errors (only used for plotting *)
207 akTEr = Table[
208 {
209 akT [[i]][[1]] ,
210 Around [
211 akT [[i]][[2]] , { akTMin [[i ]][[2]] - akT [[i]][[2]] ,
212 akTMax [[i ]][[2]] - akT [[i ]][[2]]}]
213 },
214 {i, Length [akT ]}
215 ]
216

217 (* Find Plateau *)
218 (* ------------------------------------------------------------------*)
219 (* Parameters for Finding the Plateau *)
220 epsMin = 0.01;
221 rSquaredMin = 0.8;
222 eps = 1;
223 rSquaredOld = 0;
224 indPlateu = 1;
225 akPlateuConsFit = NonlinearModelFit [akT [[ indPlateu ;; -indPlateu ]],
226 consAk , consAk , x];
227 rSquared = akPlateuConsFit [" RSquared "];
228

229 While[
230 (* Condition *)
231 (eps > epsMin || rSquared <= rSquaredMin ) &&
232 indPlateu < Length [akT ]/2,
233 (* Loop *)
234 indPlateu ++;
235 rSquaredOld = rSquared ;
236 akPlateuConsFit = NonlinearModelFit [
237 akT [[ indPlateu ;; -indPlateu ]],
238 consAk , consAk , x];
239 rSquared = akPlateuConsFit [" RSquared "];
240 eps = rSquared - rSquaredOld ;
241 ]
242 If[eps < epsMin , indPlateu --];
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243 If[ Length [ akTPlateauEr ] <= 4,
244 AppendTo [
245 errors , {60,
246 "The plateau consists of less than 3 independent points ."}]];
247

248 (* Value & Uncertainty for Ak for t in Plateau *)
249 aKFitValue = Mean[ Transpose [akT [[ indPlateu ;; -indPlateu ]]][[2]]];
250 akSigma =
251 StandardDeviation [ Transpose [akT [[ indPlateu ;; -indPlateu ]]][[2]]];
252

253 (* Final Result for Ak for t in Plateau *)
254 akFitValueEr = Around [aKFitValue , akSigma ]
255

256 (* Get Time borders of Plateau with integer times *)
257 plateuTimeBorder =
258 { IntegerPart [ Transpose [akT ][[1]][[ indPlateu ]]], nN /2};
259

260 (* Calculate f(A_k = const , t)*)
261 (* ------------------------------------------------------------------*)
262 funcByAkFit = Range[nN /2];
263 funcByAkFitBadInd = {};
264

265 For[i = 1, i <= nN/2, i++,
266 (* Check if term is not 0 otherwise this would lead to division by 0*)
267 If[( corrSymErrT [[i , -1]]/ akFitValueEr +
268 Sqrt [( corrSymErrT [[i , -1]]/ akFitValueEr )^2 - 1])["Value"] != 0.0,
269 (* THEN *)
270 funcByAkFit [[i]] =
271 {
272 corrSymErrT [[i, 1]],
273 func [ corrSymErrT [[i, -1]], akFitValueEr , corrSymErrT [[i, 1]]]
274 },
275 (* ELSE *)
276 AppendTo [ funcByAkFitBadInd , i]
277 ]
278 ]
279

280 (* Delete Bad Values *)
281 funcByAkFitBadInd = Partition [ funcByAkFitBadInd , 1];
282 funcByAkFit = Delete [ funcByAkFit , funcByAkFitBadInd ];
283 funcByAkFit = DeleteCases [ funcByAkFit , x_ /; Im[ x [[2]]] != 0];
284

285 indexFunc = Flatten [ Position [ Transpose [ funcByAkFit ][[1]] ,
286 n_ /; n >= plateuTimeBorder [[1]] &&
287 n <= plateuTimeBorder [[2]]]][[1]];
288

289 funcByAkFitSym = Union[ funcByAkFit ,
290 Reverse [Table [{nN - funcByAkFit [[i]][[1]] , funcByAkFit [[i]][[2]]} ,
291 {i, Length [ funcByAkFit ]}]]];
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292 (* Values of f(Ak ,t in Plateau )*)
293 funcByAkFitPlatEr = funcByAkFitSym [[ indexFunc ;; -indexFunc ]];
294 (* Values of f(Ak ,t in Plateau ) without errors *)
295 funcByAkFitPlat = Transpose [{
296 Transpose [ funcByAkFitSym ][[1]][[ indexFunc ;; -indexFunc ]],
297 Table[m["Value"], {m, Transpose [ funcByAkFitSym ][[2]]}][[
298 indexFunc ;; -indexFunc ]]}];
299

300 (* Calculate mean of f(Ak ,t) for t in Plateau *)
301 consFuncFit = NonlinearModelFit [ funcByAkFitPlat , consF , consF , x];
302 funcFitValue = consF /. consFuncFit [" BestFitParameters "];
303

304 If[ consFuncFit [" RSquared "] < 0.80 ,
305 AppendTo [warnings ,
306 {61,"f(A_k ,t) might not be const. in plateau region (R^2 <0.8)."}]]
307

308 (* Calculate Errors of f(Ak ,t) for t in Plateau *)
309 funcFitValueMax = Mean[Table[Max[m[" Interval "]],
310 {m, Transpose [ funcByAkFitSym ][[2]]}][[ indexFunc ;; -indexFunc ]]];
311 funcFitValueMin = Mean[Table[Min[m[" Interval "]],
312 {m, Transpose [ funcByAkFitSym ][[2]]}][[ indexFunc ;; -indexFunc ]]];
313

314 (* Final Result for f for t in Plateau *)
315 funcFitValueEr = Around [ funcFitValue ,
316 { funcFitValueMin - funcFitValue , funcFitValueMax - funcFitValue }];
317

318 (* Final value for E_Plat . for t in plateau *)
319 Eplat = -Log[ funcFitValueEr ];
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C. Appendix

Table 1: Random parameters for Test-Run (1)

No. ... Number of Parameter-Set
tmax ... Parameter for lattice size
E1, E2,

A2
A1

... Parameters according to Equation 18
σ0 ... Parameter for normally distributed shift (see Equation 19)

No. tmax E1 E2
A2
A1

σ0

1 16 0.177 0.531 5.0E-07 2.3E-03
2 24 0.220 0.282 1.0E-07 1.1E-03
3 28 0.360 0.749 1.0E-08 1.1E-04
4 8 0.351 0.494 1.0E-08 1.2E-03
5 8 0.011 0.884 1.0E-09 2.5E-03
6 16 0.516 0.709 5.0E-08 1.6E-04
7 8 0.652 0.653 1.0E-07 3.7E-04
8 32 0.337 0.884 1.0E-06 9.1E-05
9 20 0.902 0.963 5.0E-06 1.5E-06
10 24 0.100 0.671 1.0E-07 4.1E-03
11 32 0.782 0.830 5.0E-08 7.3E-08
12 24 0.024 0.454 5.0E-09 7.2E-03
13 24 0.109 0.143 1.0E-08 3.8E-03
14 16 0.676 0.974 1.0E-07 4.5E-05
15 28 0.521 0.671 1.0E-06 1.2E-05
16 12 0.688 0.825 5.0E-07 1.2E-04
17 12 0.358 0.393 5.0E-09 8.6E-04
18 16 0.525 0.604 1.0E-08 1.5E-04
19 8 0.044 0.541 5.0E-08 2.5E-03
20 24 0.038 0.050 5.0E-06 6.8E-03
21 12 0.158 0.596 1.0E-06 2.5E-03
22 16 0.685 0.696 1.0E-09 4.2E-05
23 20 0.087 0.122 1.0E-09 4.5E-03
24 24 0.253 0.898 1.0E-06 7.1E-04
25 16 0.915 0.983 5.0E-07 6.6E-06

34



Table 2: Random parameters for Test-Run (2)

No. ... Number of Parameter-Set
tmax ... Parameter for lattice size
E1, E2,

A2
A1

... Parameters according to Equation 18
σ0 ... Parameter for normally distributed shift (see Equation 19)

No. tmax E1 E2
A2
A1

σ0

26 24 0.774 0.872 1.0E-06 1.4E-06
27 24 0.630 0.703 1.0E-06 7.8E-06
28 8 0.030 0.052 1.0E-09 2.5E-03
29 24 0.223 0.852 1.0E-09 1.0E-03
30 24 0.525 0.695 5.0E-08 2.7E-05
31 32 0.014 0.850 5.0E-06 3.3E-03
32 12 0.107 0.898 5.0E-06 3.1E-03
33 32 0.373 0.884 5.0E-06 5.1E-05
34 32 0.384 0.669 5.0E-08 4.3E-05
35 32 0.323 0.596 5.0E-06 1.1E-04
36 32 0.119 0.363 1.0E-07 2.9E-03
37 12 0.420 0.797 1.0E-05 6.0E-04
38 16 0.573 0.947 1.0E-05 1.0E-04
39 12 0.318 0.932 1.0E-09 1.1E-03
40 24 0.281 0.469 5.0E-06 5.1E-04
41 20 0.018 0.279 5.0E-06 6.2E-03
42 20 0.099 0.765 1.0E-05 4.1E-03
43 20 0.262 0.530 1.0E-08 9.1E-04
44 28 0.844 0.927 5.0E-07 1.3E-07
45 20 0.228 0.581 5.0E-06 1.3E-03
46 16 0.457 0.564 1.0E-05 2.6E-04
47 20 0.485 0.989 5.0E-08 9.8E-05
48 8 0.120 0.721 1.0E-08 2.2E-03
49 24 0.061 0.612 1.0E-05 5.8E-03
50 20 0.726 0.796 1.0E-07 8.8E-06
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6. ĒP lat. over σ for Parameter-Set-45 . . . . . . . . . . . . . . . . . . . . . . 15
7. Excited-State correlator C(t) with tmax = 16 (Dataset-1) . . . . . . . . . 16
8. Ak(t)-Plot for Excited-State with tmax = 16 (Dataset-1) . . . . . . . . . . 17
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