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ABSTRACT

In the search for new physics or physics beyond the Standard Model, a fundamental
objective is to make predictions from a theory under test. A general quantity one would
like to obtain are the masses of the particles, which are included in the theory. In the
case of Quantum Field Theory one of the used methods is Lattice Field Theory, which
assumes a space-time lattice to make predictions. In this context correlation two-point
functions can be defined, which contain the sought energy spectrum. The aim of this
work is to develop and test a new method to obtain the Ground-State energy from the
correlator. This new method assumes a region in which the correlator is dominated by
a single energy level and can therefore be calculated. The algorithm was tested with
self-generated mock-up data as well as correlators obtained by physical simulations. The
tests yielded promising results, which led us to the conclusion that the new algorithm
provides a sufficient tool to obtain the Ground-State energy of the correlator.
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1. Introduction

In the past several decades, the theory of Quantum Fields has played a major role in the
foundations of physics. So much that besides Einstein’s Theory of General Relativity, all
elementary aspects of physics manifest themselves as a Quantum Field Theory, known
as the Standard Model of particle physics. As for a variety of reasons it is known that
this theory of the elementary particles is incomplete, the search for new physics beyond
the Standard Model is part of ongoing research.

The general aim in this field of study is to obtain predictions from a theory under test.
Probably one of the most interesting question that arises is: “What particles are included
in my theory?”. A common technique to make predictions is the use of Lattice Field
Theory. This is not particularly new and has been used for many years in the low energy
regime of Quantum Chromo Dynamics. Of particular interest in this context are the
two-point correlation or short correlator functions, which contain the particle spectrum.
The aim of this work is to develop and test a new method to obtain the Ground-State
level from the correlator (two-point correlation function).

The remainder of the thesis is organized as follows. In section 2 the theoretical back-
ground is covered by introducing the general concepts of Lattice Field Theory and two-
point correlation functions. In section 3 the problem is again presented in greater detail
with the insights from the chapter before. The new method is introduced in section 4.
Section 5 shows some results which were obtained by using this new method. Finally,
the conclusion and the outlook are reported in section 6.



2. Theoretical Background

In this chapter, the necessary theoretical background for this thesis is introduced. Be-
fore starting with the more specific aspects, the general physical framework in which this
thesis takes place is briefly explained. As already mentioned in the Introduction, the
Standard Model of particle physics is the best description of the universe at small scales
we currently have. Although very successful, it still has some shortcomings both in the-
oretical and experimental nature. A famous experimental deviation from the Standard
Model is the Muon g — 2 anomaly [1]. Regarding the theoretical limitation, the absence
of a unified treatment of the forces that is expected in a complete theory is probably
the biggest deficit. A postulated solution is the approach of a Great Unified Theory
(GUT), which, in the most general description, combines the Electroweak Force with
the Strong Nuclear Force. This was done likewise in the unification of the Weak and the
Electromagnetic interaction to the Electroweak interaction. However, so far none of the
candidates for a GUT could be verified. [4]

With the introduction of the general setting, we can now continue with the presentation
of the theoretical quantities and concepts necessary for this thesis.

2.1. Lattice Field Theory

This subsection is based on [5].

As the work of this thesis targets a problem that emerges in the context of Lattice Field
Theory or Lattice Gauge Theory, a short introduction is given. As a full explanation of
the matter would go beyond the scope of this work, only some key features necessary to
understand the form of the correlator are covered. In Quantum Field Theory, problems
are normally solved with perturbation theory. However, in some areas of modern physics
(e.g. the low energy regime of QCD) this approach fails. The introduction of a space-time
lattice now yields the possibility of using non-perturbative techniques. Thus, instead of
a continuous variable x a discretized coordinate x with the lattice spacing a is used.!

xr=an nez (1)

This means for a quantity, for example a (scalar) field ¢, that it is only defined on the
lattice points.

o(z), x € lattice (2)

Furthermore, if for practical reasons only a finite volume is considered, boundary condi-
tions for the appearing quantities need to be introduced. In this work, periodic boundary

n this thesis it is assumed that a = 1



conditions are assumed, which are a popular choice. Thus, with n =0,1,2,..., L — 1
this leads to.

¢(z) = ¢(x +al) (3)

Although it is only shown for one coordinate, these statements hold for all three space
dimensions as well as the time dimension.

2.2. The Two-Point Correlation Function

In this section, the correlator function is introduced. Since the focus of this work is on
the mathematical evaluation of the correlator, an exact physical derivation is omitted.
The major part of this chapter is dedicated to connecting the form of the correlator in
the Minkowski space to the correlator on the lattice, which is the quantity under study.

The correlator can be defined within Quantum Field Theory and “[...] can be inter-
preted physically as the amplitude for propagation of a particle or excitation between y
and x.”[6] In the context of this work, the two-point correlation function takes the form
of an expectation value between an operator at t: O(t) and an operator at to: O(ty).

C(t.to) = (0(1)|O(to)) (4)

This expectation value C,ini(t, to) is given by a sum of phases with the energy states Fy
and the coefficients A;. For a more detailed derivation of the form of the correlator we
suggest [10]. The subscript "mink" stands for Minkowski space and is used to distinguish
it from the correlator in Euclidean space, which is derived in the following.

Omink(ta to) = ZAke—iEk(t—to) (5)
k

To get the form of the correlator on the lattice, first it is chosen that all times are purely
imaginary ¢ = —¢7. This variable transformation is normally called Wick-Rotation and
transforms the four-dimensional Minkowski space to a four-dimensional Euclidean space,
as seen in the comparison of the metrics. [3]

s = —(dt)* + (do)® + (dy)* + (d2)*  —  ds?,q = (dr)* + (dv)* + ... (6)
The correlator transforms therefore too, from the Minkowski correlator to the Euclidean
correlator Chink(t, o) = Ceua(t,to). Thus, the correlator is now expressed by a sum of
exponential decays, as seen in Equation 7.

Ceucl(t7t0) = ZAkefEk(tfto) (7)
k



Finally, the effects of the lattice can be taken into account. First, the time variable
becomes discretized with a lattice spacing a = 1 and therefore ¢ € N. Furthermore, as
mentioned in subsection 2.1, the periodic boundary conditions need to be considered as
well as the time reversal symmetry, which generally holds in physics. To satisfy this,
the same exponential functions must be added with opposite signs in the exponent.
Considering the definition of the cosh function cosh(x) = e” 4+ e~*, the following form of
the correlator follows.

Cut) = 3 Agcosh [Ek (t - t“;)} (8)

Here, the variable t,,,, represents the lattice size. Equation 8 shows the final form of
the correlator on the lattice, which is used in this form for the rest of this work. From
here on C(t) refers to the Lattice version of the correlator, unless stated otherwise. For
context Figure 1 displays a correlator function with two cosh terms.
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Figure 1: Example Correlator C(t) with two cosh terms



3. Presentation of Problem

As in subsection 2.2 the correlator has been introduced, the goal of this work can now
be presented in greater detail. The correlator on the lattice C'(t) can be obtained by
simulation. Furthermore, the correlator contains the wanted lattice spectrum in form
of the Ej-values (see Equation 8). Thus, the problem can be reformulated to finding
the parameters A, and Ej, that fit the correlator points. However, this task yields some
problems.

Before this is explained further, the input data will be specified here first. The lattice
size t,.. i1 a predefined parameter and can take values from 8 to 32. The correlator
values themselves are normalized so that C'(0) = 1 and exactly symmetric around zes.
Furthermore, the correlator data points C(¢) have an uncertainty in the same order of
magnitude for all times t. This leads to an exponential increase in the relative uncertainty
towards the value at tm# This will come up again later.

The obvious solution of trying to fit the correlator function directly has some problems.
The number of cosh terms which should be used in the fit is not obvious, and every
additional term considered also increases the parameters by two. Already in the case of
two terms this leads to three fit parameters.? The generic problem that arises in such
cases is that the underlying uncertainties of the data points make it hard for the fit
algorithm to optimize the different fit parameters to the individual points. This as a
whole makes the cosh fits quite unreliable.

One of the simplest ways of tackling this problem is the use of effective mass curves with
the definition of the effective mass as follows. This definition will lead to a constant
value if the correlator is described by a single exponential term.

Mgy (t + ;) = log [C%] (9)

It is now argued that in some region between t = 0 and ‘22z this approximation holds
and in this region mes¢(t) ~ Ep, with Ey being the Ground-State energy. Thus, if this
region is known, at least one of the E}’s can be calculated. For the correlator displayed
in Figure 1, the effective mass curve takes the following form.

2With the normalization C(0) = 1 one parameter can be eliminated
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Figure 2: Example effective mass curve mes(t)

The issue that appears here is that this region can be very tight in time and therefore
only include individual points. This work tries to solve this problem by taking a similar
approach, but instead of utilizing the region that can approximately be described by a
single exponential term, a region that can be described by a single cosh term is used.
Since the correlator follows a sum of cosh curves, we argue that this approach will lead
to better results. This adaption will be explained in more detail in the next chapter.



4. Algorithm

In this chapter, the new method is introduced and explained.

4.1. General

The starting point is again the form of the correlator function on the lattice, as seen in
Equation 8.

C(t) = Zk: Ay, cosh {Ek <t - tn;ax)]

The cosh function can also be written in exponential form with cosh(z) = e* 4 ™%,
and thus the correlator can also be seen as a sum of exponential decays and growths for
which the following two limits are introduced (with ¢y = =)

lim e Erlt=to) — Eoli=to) (4 lim eBrlt=to) — oEo(t—to) (i;
(t—to)—o00 & () (t—t())—)—oog ( )

It is now assumed that for the considered correlators both of these limits hold in some
symmetric region around tm% This region is further referred to as the plateau region,
in which the correlator can be described by a single cosh term with the Ground-State
energy Fy. This means:

o)

= Ay cosh [Eg <t — tn;a‘r)] (10)

tePlateau

The following formula is now introduced to interrelate the parameters A(t), C(t) and
E.;;(t) to each other, whereby E.;;(t) serves a similar purpose as the effective mass
mesf(t) explained before.

_lmazx

Fib0 = g@)*d@@)) S (1)

Thus, E.¢(t € Plateu) should lead to a constant value. This can be seen by inserting
Equation 10 for C(¢) in Equation 11, which is shown in the following,.

1
Umaz tmaz 2 - thaz
cosh [EO (t — )] — 1/ cosh {EO (t — )} —1
2 2

ft) =




1
_ tmax
="

- o[ o )] - o )]
oo s = )]

The result e # can be identified as e Fess(), Furthermore, this leads to f(A(t),t) =
const. in the plateau region, which introduces an interesting possibility. By setting

f(Ak(tJr;),t) éf(Ak(t+;),t+1) (12)

a common value of Ay(t + %) between two correlator points can be calculated. Since
the addend % in Ap(t + %) only serves the notation, it is omitted in the further course.
Although not needed in the further calculation, for each point the uncertainty is calcu-
lated by using the values C'(t) & dC(t) to gain Ag(t) £0Ax(t). This is done to make sure
that all values used for the further analysis have defined error intervals. If A(t) is in
the plateau region, this should lead to a constant region for Ag(t).

= eXp[—Eo]

The remaining task is to find an algorithm which defines the points that are part of the
plateau, or in other words, to find the region in which A(t) is constant. This algorithm
is further explained in subsection 4.2. After determining the plateau region, a common
value for Ay (t € Plateau) describing the single cosh term can be calculated. This value,
further referred to as Ay, is computed by taking the mean of the data points that are
part of the plateau. To assign an uncertainty to Ay, the standard deviation was used.

A}, = Mean[A(t € Plateau)] § Ay, = Std[Ax(t € Plateau)] (13)

To obtain the value of A, as well as the uncertainty in a sophisticated manner, it
was defined that the plateau must contain at least three independent points. If the
calculation did not lead to that number of points, which fulfil the requirements for being
defined as a plateau, the output was defined to be not valid. This condition resulted
in another restriction. Since the correlator consists of t’"% + 1 independent points and
calculating Ay (t) reduces the independent points by one, as well as the Equation 11 is
not defined at t = tm%, this leads to tm% — 1 independent points for Ag(t). Since in the
case of t,,., = 8 only three values of A(t) can be calculated, t,,,, > 10 was set as a
lower limit of the algorithm.

The part described above leads to a common value for Ag(f) in the plateau region.
The goal now is to obtain a single energy state for the plateau region. This value is
further referred to as Epy.. As shown in Equation 11, the value of f(A.(t),t) already
corresponds to E.;f(t), thus by inserting the obtained value of Ay, the values of f(A; =
const, t) could be calculated.? In the plateau region similar argumentation as before

3The sign of the exponent in Equation 11 in this calculation is chosen so that the symmetry of f (/Ik, t)

around tmz‘“‘ is preserved.




holds: if the region can be described by a single cosh term, this also means for f (Ak =
const, t € Plateau) that it leads to a constant region. The plateau region (¢ € Plateau)
was already defined within the context of the Ay (t) values. The calculation of the sought
Epias. value is then given by: 4

f = Mean[f(Ag,t € Plateau)] —  Eppg. = — log|[f] (14)
The uncertainty interval [f_, f,] is given by:

fi = Mean[f (A, &+ 6 Ay, t € Plateau)]

It should be noted here that for all error propagations which were not explicitly men-
tioned to be calculated otherwise, the built-in Mathematica functionality of the “Around”
command was used, which uses first-order series approximation, as stated in the official
documentation: “When Around is used in computations, uncertainties are by default
propagated using a first-order series approximation, assuming no correlations.”[7]

4The sign of the exponent in Equation 11 is chosen so that the symmetry of f (ff;g, t) around tm% is
preserved.



4.2. Defining the Plateau Region

As mentioned in subsection 4.1, an algorithm defining the points that are part of the
plateau was needed, and therefore a statistical quantity describing the compatibility
between the data points and a constant fit was sought. In the case of a linear fit, a
simple measure of the goodness of the fit is the coefficient of determination R?, which is
defined as. [2]

SSE
RP=1-—— 15
SST (15)
With SST standing for “Sum of Squares Total” and SSE for “Sum of Squares Error”.
These quantities arise from the data points y;, the mean of the data y and the points in

the linear regression model /; in the following way.

n n

SST =y —y1l*=> (v —9)°  SSE=|y—al*=> (v — i)’ (16)

=1 i=1

In the case of a constant fit, which corresponds to calculating the mean of the data points,
this definition of the R? value leads to R? = 0 for all cases. This is due to the fact that
f; = i and therefore SST = SSE. So a slightly different definition for the R? value was
used, which is also implemented in the Mathematica function “NonLinearModelFit” (see
Wolfram Language & System Documentation Center [8]). Any further reference to the
coefficient of determination or R? is defined by the following formula, in which instead
of SST being related to the mean of the data, the quantity is obtained by taking the
sum over all values.

> (s — vi)?
D yiz

The algorithm to define the region of the plateau works as follows. By successively
decreasing the number of points symmetrically around t’"%, the coefficient of determi-
nation is increased until it reaches the minimum value of R?, and does not change its
value in one iteration by more than 2. After some initial trials, the parameters used
for the algorithm were set to R2,;,, = 0.8 and egz = 0.01. As the results, especially
in the test-run (see subsection 5.1), did not evoke any reason to change the starting
parameters, they were kept.

R*=1- (17)

10



5. Results

5.1. Test-Run with self-generated Mock-Up Data

To test the algorithm for systematic errors and investigate the influence of uncertainties
of the correlator data points themselves on the results obtained by the program, a test-
run with self-generated mock-up data was done. The evaluation of these data led to many
insights and further to code improvements and restrictions for the input data. Thus,
this chapter continues as follows. First, the generation of the mock-up data is explained,
followed by some results obtained by the algorithm. After that, the insights gained
during this process are introduced and it is explained to which changes or restrictions
this led.

For the correlator data double cosh terms were presumed, thus:

O(t) = Ay cosh[By(t — tas/2)] + As cosh[Es(t — timas/2)] (18)

The parameters Ay, Ay, E1, E5 and t,,,, were now randomly chosen, with the following
restrictions. For the parameters F; and E5 random real numbers within the interval of
[0.01; 1] were used, arranged so that E; < E,. Since only the ratio between A; and A,
and not the values of the A; themselves are important, this ratio was randomly selected
out of the following set.

A {1. 5. 1. 5. 1. 5. 1. 5. 1.}

-— € TN 116 1n6° 1107 1177 117 11k 110 ° 110
Ay 10571087 106" 1077 1077 108" 1087 1097 10°

Furthermore, t,,,, was randomly selected from:

tmas € {8,12,16,20,24, 28, 32}

It should be noted here that even though it was stated before that ¢,,,, > 10 was set as
the lower limit of the lattice size, this restriction was only set after this test-run. Thus,
this test-run also covers data sets with ¢,,,, = 8. To introduce randomness as well as a
level of uncertainty to the generated data, a normally distributed quantity was added to
each correlator point. The uncertainties of the correlator were then directly derived from
the standard deviation o, which was used in the generation of the additive shift. In this
test-run, 50 different sets of parameters were generated. Furthermore, for each set 10
different values for o were used with o; = 210y with 7 from 1 to 10. With C' (t = t’”%)
being the value of the correlator at t,,,, before the addition of uncertainties, the value

of o9 was defined in the following way:

i i
—0.01-C (= ‘mar), mas 19
70 ( 2 ) 32 (19)

11



The last factor ”g# was introduced to compensate for the dependence of the correlator
middle point on t,,,., as the point tends to have a higher value for lower %,,,,. The
sets of parameters as well as the oy value obtained are shown in Table 1 and Table 2.
The following figure shows the generated correlator for Parameter-Set-1 and o4 as an

example.

C(t)
1.0¢ )
(3 3
0.8t
: :
L) L)
0.6f 1 i
(] : : [}
1
Pt
1 L 1 L 1 1 t
4 8 12 16

Figure 3: Correlator for Parameter-Set-1 with o = o4

Thus, a total of 500 such correlator functions were generated and evaluated. It should
be noted here that these results should be seen as a proof of concept and not exact
numerical values, as the code was further improved after this test-run. However, in the
following the results for Epp,. for some sets of parameters in dependence of the value
used for o are displayed.

12
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Figure 4: Epiat. plotted over o for different Parameter-Sets (sufficient Examples)

In Figure 4 some examples are shown for which the algorithm fulfils the desired be-
haviour. In these examples, increasing the uncertainties for the correlator points leads
to an increase of the errors in the final result of the Ep,;. value, whereby the error inter-
vals still include the input value for E;. Also, the non-computable values in Figure 4c
comply with the expectations, as this appears in cases with a high ¢. In total, around
35 of the 50 Parameter sets followed this behaviour.

Some cases led to poor results, as seen in Figure 5. In these Parameter-Sets, only a
few results for Epp comply with the parameter E; within their uncertainties. These
sets also show the tendency to increase their mean without increasing their uncertainty
for higher values for o (especially for Parameter-Set-41). All three of these sets have
the problem of giving poor results with small uncertainties, which would mislead false
accuracy. If we look at the results at low sigma for Parameter-Set-5 and Parameter-Set-
28, we see that the values which match the parameter E; also include the value 0 in
their error interval, which also corresponds to an insufficient result.

13
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Figure 5: Epy. plotted over o for different Parameter-Sets (insufficient Examples)

A common property of the Parameter-Sets with insufficient results is the tendency to
have low values for the parameters F; and t,,,,. This leads to a flatter course of the
correlator function and hence to larger values for o, as can be seen in Equation 19.
However, the higher uncertainties should only be reflected by larger error values in the
final result.

The further analysis of these cases showed a source of errors in the algorithm, which is the
numerical calculation of A (t) using Equation 12. This part proved to be very demanding
in terms of computing resources and furthermore, for some Ag(t) simply no solutions
could be found. As ¢ increased, these unsolvable cases became more frequent. It should
also be mentioned here that as the relative uncertainties of the correlator are highest
in the plateau region, the unsolvable cases also appear mostly there. If the number of
non-calculable points becomes too large, it is no longer possible to define a meaningful
plateau and the algorithm returns invalid or wrong results. In some extreme cases only
one of the values for Ag(t) could be calculated. This is the case for Parameter-Set-5 in
which for each sigma only one or two data points could be calculated and therefore, the
plateau contained only one (independent) point.

The gained insights led to general code improvements and some restrictions for the input

14



data. As mentioned below:

1. The use of a more sophisticated calculation method for Ay ().
2. The plateau for Ax(t € Plateau) must contain at least three independent points.

3. Due to (2.) the minimal lattice size was set as t,,4, > 10.

The improved calculation method was mainly reflected by multiple numerical solving
with different starting parameters and the enhanced checking of the individual interme-
diate results.

For the last two restrictions, another justification occurred. During the process of this
work, the calculation for the error for Aj was changed to using the standard deriva-
tion, which in this context was set to only be statistically significant for at least three
independent points. This is already covered in section 4.

With these restrictions in place, most of the poor results could not meet the set conditions
and were thus avoided. This is especially true for Parameter-Set-5 and Parameter-Set-
28, as they both have a lattice size of t,,,, = 8. Likewise, only isolated valid results
could be found for large values of o (approx. from ;). This is seen in the following plot,
which compares the results of the used algorithm for the test-run to the final version
of the algorithm for Parameter-Set-45. The obtained values for o7, og and o9 no longer
meet the specifications and the poor results from the test-run are avoided.

0.351

20F = }

+ Epiat 0300

x No Result
18- & 0.25F

{ ““““““““““““““““ X-==X=—==X"== X"~
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______ ’---’---I----}---E-----------------X—-- 0-10¢ E;

0.0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.05F

agq gy a3 [/} Js Jp ar Jg Jg J10 agq gz a3 [} Js [ a7 Jg Jg J10
(a) Test-Run Version (b) Final Version

Figure 6: Epia. over o for Parameter-Set-45

In the following, a short overview of the results obtained with the final version of the al-
gorithm is given. Of the 500 correlators, 60 fell outside the specification of the algorithm
(as they have a lattice size of t,,,, = 8). Furthermore, out of these 440 correlators, 147
could not be calculated because no meaningful plateau could be defined. This leaves
a total number of 293 results for which 253 included the parameter F; in their error
interval. This corresponds to 86%.

15



5.2. Evaluation of Physical Correlator Functions

Besides the self-generated data, two other sets of correlator data were evaluated. The
source of these is the work of Bernd Riederer, especially in the context of his Master
Thesis [9]. These correlators were calculated in the Weak-Higgs-Sector of the Standard
Model using Variational Analysis.

These two datasets are further referred to as Dataset-1 (shown in Table 3 and Table 4)
and Dataset-2 (shown in Table 5 and Table 6). They include respectively 14 correlator
functions. These 14 correlators are composed of two physical correlators (Ground-State
& Excited-State) for seven different lattice sizes.

For both of these datasets, the individual calculation steps are shown using two examples.
Afterwards, an overview of all results is given. The selected examples each include one
case that led to a result and one case that could not be calculated successfully.

Dataset-1

The first example is the correlator of the Excited-State for Dataset-1 with a lattice size
tmaz = 16. In Figure 7 the correlator function for this case is shown.

C()

1e -+
050} -
> -

0.10}

L d *
0.05}

* -
* *
- =
E 3
| | | | t
4 8 12 16

Figure 7: Excited-State correlator C(t) with ¢,,,, = 16 (Dataset-1)

With the correlator points, the values of Ai(t) are calculated. In the next step, the

plateau is identified, and the common value Ay, is computed. The values for Ax(t), the
identified plateau region and A are shown in Figure 8.
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Figure 8: A (t)-Plot for Excited-State with ¢,,,, = 16 (Dataset-1)

Inserting the value of A, into Equation 11 leads to the values of f(Ay,t) for which
the common value f in the plateau region can also be computed. This is displayed in
Figure 9.
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o f(ARY)
0.56 o f(At) € Plateu
— 7
0.54 = o= oo | I+ % « = 10-Interval for f
. LANRAES S 4 I + + I T ¥y T ¥
| L J‘ | J‘ ' | & t
4 8 12 16

Figure 9: f(Ay,t)-Plot for Excited-State with t,,, = 16 (Dataset-1)

Finally, Equation 14 is used to obtain the final result:

EPlat. = 0618i88%g
Not all correlators of Dataset-1 returned a result. This is demonstrated in the following

using the example of the correlator of the Excited-State with %,,,, = 32. The plot of
this correlator is shown in Figure 10.
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Figure 10: Excited-State correlator C'(t) with ¢,,,, = 32 (Dataset-1)

The Aj(t)’s were calculated In the same way as in the previous example. However, as
seen in Figure 11, there are some values missing which could not be computed. The
algorithm for the plateau then outputs only two independent points (four total). This
is outside the minimum requirements and therefore no valid Ay, & Epja. is returned.
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Figure 11: A (t)-Plot for Excited-State with t,,,, = 32 (Dataset-1)

The other results for Dataset-1 over the inverse lattice size ﬁ are shown in the following
graph. The two correlators with ¢,,,, = 8 were not evaluated, as they lie outside the
specification of the algorithm. For the Excited-State, the evaluation with ¢,,,, = 32 and
tmaz = 28 led to no result.
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Figure 12: Results for Ep;q. over inverse lattice size 1/t for Dataset-1

As seen in Figure 12, the obtained values are nearly constant over the lattice size, except
for the value of the Ground-State correlator with t¢,,,, = 32. It is also possible to see that
they correspond to distinguishable values for Fplat. - Furthermore, the relative errors of
the values do not exceed 20%.

Dataset-2

For Dataset-2 the evaluation for the Ground-State correlator with ¢,,,, = 24 is shown.
Like in the previous examples, the plots for C(t), Ag(t) and f(A,t) are displayed in
Figure 13. As can be seen in Figure 13b, the algorithm defined the plateau region to be
between t = 7 and t = 17. In this region, four independent points for A(t) are included.
With these, the common value A, for the plateau could be calculated. The calculated
values for f(Ay,t) are displayed in Figure 13c, along with the obtained value for f.
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(c) f(Ay,t)-Plot
Figure 13: Evaluation Ground-State Correlator with lattice size t,,., = 24 (Dataset-2)

With the value for f , the result for Eppat. could again be calculated using Equation 14.
This led to:

Epa. = 0.447004
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As the last example, the evaluation of the Ground-State with ¢,,,, = 32 is shown.
Figure 14 shows the plot of the correlator and the plot for Ag(t).
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0.001¢

Ax(t)

0.0020 -

0.0015F
o Ax(t)

o Ai(t) € Plateu
0.0010} (1)

0.0005 ) )

(b) Ap(t)-Plot
Figure 14: Evaluation Ground-State Correlator with lattice size t,,,, = 32 (Dataset-2)

In this case, the C'(¢) points around 22z fluctuate a lot. This leads to a similar behaviour
for the Ag(t) values. It is not possible to define a plateau for such distributed values.
Therefore, for this correlator no result could be obtained.
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Figure 15: Results for Epat. over inverse lattice size 1 [tmaz for Dataset-2

Figure 15 shows again the results for Epy,. for Dataset-2. As before, the correlators with
tmar = 8 were not evaluated. For this set of correlators, the Ground-State as well as the
Excited-State for t,,,, = 32 lead to no result. In contrast to the results of Dataset-1, the
obtained values for the Ground-State and the Excited-State are on top of each other.
However, in good approximation they show a constant value over the different lattice
sizes. Furthermore, the relative errors of the values do not exceed 20%.
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6. Conclusion & Qutlook

6.1. Conclusion

In this thesis, a new algorithm for obtaining the Ground-State energy from the two-point
correlator function was developed and tested. The method is built on the assumption
that the correlator can in some region be described by a single cosh term with the energy
level Ep; -

As described in subsection 4.2, an algorithm for defining the plateau region was developed
using the coefficient of determination. Although the method proved to be effective,
it has some underlying shortcomings. Firstly, as used in this thesis, the coefficient of
determination is of limited value as a statistical measure. Furthermore, the uncertainties
of the data points themselves do not influence the definition of the plateau. So, while
this part is sufficient for this work, it might need further improvements if the settings
change (e.g. bigger lattice size).

The algorithm was then tested by using self-generated mock-up data, which were gener-
ated by assuming double cosh terms. For a large part of the cases considered, the results
showed sufficient behaviour in which declining statistics for the data points led to an
increase in the uncertainty of the result with similar mean. This is seen in Figure 4.
However, some cases did not match this behaviour, as seen in Figure 5. The analysis
of these cases helped to gain further insights and improve the algorithm, which avoided
most of the poor results.

With the reviewed algorithm, two sets of correlators derived from physical simulations
were evaluated. These results are shown in Figure 12 and Figure 15. In total, the
algorithm returned a result for 20 of the 24 correlators®. The relative errors of the
obtained values for Fpy,; were smaller than 20%. The results suggest that the algorithm
works best until ¢,,,, = 24, as for larger lattice sizes only two out of four results could
be obtained. However, given the small number of evaluated correlators, this statement

needs further verification.

In conclusion, the new algorithm provides a sufficient tool in obtaining the Ground-State
energy level of the correlator on the conditions that the plateau region is well-developed
enough to justify the approximation of a single cosh term, and the statistics of the
correlator allows the calculation of an adequate number of values for Ay(t).

5Excluding the correlators with ,,4, = 8.
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6.2. Outlook

Since the scope of this work was limited, it was not possible to review and test all options
that arose. Therefore, two starting points for future improvements and extensions are
given here.

Using the C(t,,,./2)-Point

The algorithm, as implemented, does not use the correlator point at tm% This is due to
the fact that f(Ag(t),t) (see Equation 11) is not defined at t,,,,/2. However, as seen in
Equation 8, the value C(t,,4./2) corresponds directly to the value of Ag(ta/2). This
can simply be used by inserting this value into the calculated Ay(t).

Ak (tmax/Q) = C(tmaa:/2)

This results in an immediate advantage. With the additional value for Ax(t), a plateau
with a meaningful statistics for Ay can also be defined for correlators with t,,,, = 8.
Figure 16 displays this for the Ground-State correlator from Dataset-1 (with ¢,,., = 8).
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0.26] — A
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0.24+
* | . . P

4 8

Figure 16: Ay (t)-Plot for Ground-State with t,,,, = 8 and C(t,n./2)-Point (Dataset-1)

However, it also worsens some results, which is especially true for bigger lattice sizes. A
detailed analysis of whether and when it makes sense to use this point has been omitted.
Nevertheless, it definitely offers the possibility to improve the method and to extend the
range in terms of the lattice size.

Application on more than one Plateau

Another interesting finding that occurred is the formation of further plateaus in the Ay ()
plots. As the only assumption on which the algorithm is based is that the correlator
can be described by a single cosh term in some region, these plateaus could correspond
to further terms of the correlator. The following figure shows this for the Ground-State
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correlator from Dataset-1 with a lattice size t,,,. = 32 and a second plateau between
t=5andt=09.
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Figure 17: Ax(t)-Plot for Ground-State with ¢,,,, = 32 (Dataset-1)

However, further work needs to be performed to establish whether this hypothesis is
true.
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B. Code

ClearAll["Global “*"];

(*Empty lists for error and warning messagesx*)
warnings = {};
errors = {};

(*0Option to use C(tmax/2) as value for Ak(tmax/2%)
optionAktmax2 = False;

(*Input correlator values for t=0 until tmax/2%)

Cor = {1.0000000000001232, 0.4409447180355774, 0.23132195469510042,
0.12446643074340222, 0.06948477112729584, 0.042736568101142375,
0.035055376237562151};

(¥*Uncertainties for corr dCor [[t,pm] pm=1 -> -dCor pm=2 -> +dCor*)

dCor = {

{4.43045600206915%x10~-12, 1.667554982986985*10"-13},
{0.0005558786149930106, 0.0005579342793681219},
{0.0007696064024982074, 0.0007773783527582068},
{0.0008165312757394683, 0.00084537080523333641},
{0.0007715860858287654, 0.0008186093711772674},
{0.0005932584236703412, 0.0006652480377861494},
{0.00046365718232631997, 0.0006715113022606051}};

nN = (Length[Cor] - 1)*2;

;| (xDefinition of f(Ak(t),t)*)

func [paramCorr_, paramAk_, paramT_] :=

((paramCorr/paramAk)+Sqrt [(paramCorr/paramAk) “2-1]) ~(1/(paramT-nN/2))

(*Input Corr to Formats which are needed during calculationx)
corr = Cor

corrMin = corr - Transpose[dCor][[1]]
;| corrMax = corr + Transpose[dCor][[2]]
corrErr = Table[Around[corr[[i]],

{(Transpose[dCor] [[11]1) [[il],
(Transpose [dCor] [[2]]1) [[i11}], {i, Length[corr]}];
corrSymErrT = Transpose [{Range[nN + 1] - 1,
Transpose [Join[Transpose [corrErr],
Drop [Reverse [Transpose [corrErr]], 11112}]

(*

Get indices of all correlators which are negative within their errors
To avoid calc of f(Ak(t+1/2) ,t)==f(Ak(t+1/2),t+1) in this cases

*)

negIndCorr = Position[corrMin, _7Negativel;

il delIndFunc = Partition[DeleteCases|[

Flatten[Union[negIndCorr, (negIndCorr - 1)1]1],
x_ /; (x> anN/2 - 1) || (x < 1)1, 1]1;
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90
91
92
93
94

95

(*

Gen. List of f(Ak(t+1/2),t)==f(Ak(t+1/2) ,t+1) for Mean, Max & Min val.

*)
funcAk = Transpose[
{
(*xTime*)
Range [nN/2 - 1] - 0.5,
(xMean*)
Table [
func[corr[[i]], A, i - 1] ==
func[corr[[i + 111, A, il], {i, nN/2 - 13}],

(xMax*)
Table [
func[corrMax [[i]], A, i - 1] ==
func[corrMax [[i + 111, A, i]l, {i, aN/2 - 13}],
(xMinx*)
Table [
func[corrMin[[i]], A, i - 1] ==
funcl[corrMin[[i + 111, A, il, {i, nN/2 - 1}]
}
1;

funcAk = Delete[funcAk, delIndFunc]; (*Delete invalid positionsx*)

(*Empty Lists for Solution of A_k(t+1/2) %)
Akbyfunc = {};

AkbyfuncMin = {};

AkbyfuncMax = {};

(*¥Calculate A_k(t+1/2) using f(Ak(t+1/2) ,t)==f(Ak(t+1/2) ,t+1) *)

(*

For finding values for A_k(t+1/2) FindRoot is applied for which two

different approaches are used the second only if the first does not

lead to a result):

(1) FindRoot [lhs==rhs,{x,x0,x1}] searches for a solution using
x0 and x1 as the first two values of x,avoiding the use of
derivatives.

(2) FindRoot[lhs==rhs,{x,xstart ,xmin,xmax}] searches for a solution,
stopping the search if x ever gets outside the range xmin to xmax.

*)

(¥*Start values for Approach (1) *)

(*50% and 75% of lowest value of Corr CorrMax & CorrMin *)
guessA = Min[Delete[corr, negIndCorr]]*{0.5, 0.75};
guessAMax = Min[Delete[corrMax, negIndCorr]]*{0.5, 0.75};
guessAMin = Min[Delete[corrMin, negIndCorr]]*{0.5, 0.75};
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96| (xLimits for Approach (2) x*)

97| (* Lower Bound is Min of CorrMin times 107 -12%)

98| lowerLimA =

99 Min[Delete [corrMin,

100 negIndCorr]]*10~(-12);

101| (¥ Upper Bound is corr(t), corrMax(t) & corrMin(t) *)

02| upperLimA =

103 Table [Min[{corr[[i]l], corr[[i + 1]11}]1, {i, nN/2 - 13}];

01| upperLimA = Delete[upperLimA, delIndFunc];

105 upperLimAMax =

106 Table [Min [{corrMax[[i]], corrMax[[i + 1]11}], {i, nN/2 - 1}];
107l upperLimAMax = Delete[upperLimAMax, delIndFunc];

gl upperLimAMin =

109 Table [Min [{corrMin[[i]], corrMin([[i + 1]1]1}], {i, nN/2 - 1}];
10| upperLimAMin = Delete[upperLimAMin, delIndFunc];

111
12| (*

113 Solving for A_k(t+1/2). Check if Approach 1 leads to a result if not
114 try Approach 2.

15| *)

16|For[i = 1, i <= Length[funcAk], i++,

117 errCheck =

118 Quiet [

119 Check [

120 (x*Approach 1x%)

121 Ak = FindRoot [funcAk [[i, 2]], {A, guessA[[1]], guessA[[2]]},

122 MaxIterations -> 1000];

123 AkMax =

124 FindRoot [funcAk [[i, 3]], {A, guessAMax[[1]], guessAMax[[2]]},
125 MaxIterations -> 1000];

126 AkMin =

127 FindRoot [funcAk [[i, 4]], {A, guessAMin([[1]], guessAMin[[2]]3},
128 MaxIterations -> 1000];

129 errCheck = False,

130 True,

131 (*Errors which are checked directly in calculation (1) %)

132 Power::infy, FindRoot::cvmit, FindRoot::nlnum , FindRoot::1lstol ,
133 Infinity::indet

134 1,

135 {Power::infy, FindRoot::cvmit, FindRoot::nlnum , FindRoot::1lstol ,
136 Infinity::indet}

137 1

138 (*Check for complex solutionx*)

139 AkSorted = Sort[{(A /. Ak), ( A /. AkMax), (A /. AkMin)}];

140 If [Length[Position [AkSorted, z_ /; Im[z] != 0]] != O,

141 errCheck = Truel;
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If [errCheck,
errCheck =
Quiet [
Check [
(*Approach 2x*)
Ak =
FindRoot [
funcAk [[i, 2]], {A, upperLimA[[i]]*0.5, lowerLimA,
upperLimA[[i]]}, MaxIterations -> 100000];
AkMax =
FindRoot [
funcAk [[i, 3]], {A, upperLimAMax[[i]]*0.5, lowerLimA,
upperLimAMax [[i]]}, MaxIterations -> 100000];
AkMin =
FindRoot [
funcAk [[i, 4]], {A, upperLimAMin[[i]]*0.5, lowerLimA,
upperLimAMin [[i]]}, MaxIterations -> 100000];

errCheck = False,

True,

FindRoot::reged, FindRoot::1lstol, Infinity::indet (*(1)*)
1,

{FindRoot::reged, FindRoot::1lstol, Infinity::indet}

1
(*Check for complex solutionx)
AkSorted = Sort[{(A /. Ak), ( A /. AkMax), (A /. AkMin)}];
7| If [Length [Position [AkSorted, z_ /; Im[z] !'= 0]] != O,
errCheck = Truel;

1;

If[! errCheck,

(xif*)

AppendTo [Akbyfunc, {funcAk[[i, 1]], AkSorted[[2]]}];

72| AppendTo [AkbyfuncMax, {funcAk[[i, 1]], AkSorted[[3]]1}];
5| AppendTo [AkbyfuncMin, {funcAk[[i, 1]], AkSorted[[1113}],

76| (*elsex*x)

7| AppendTo [warnings,
{
50, "Warning: Could not calculate Ak(t) for t=", funcAk[[i, 1]]
}
111

(¥ List for Ak(t) and min, max values*)
akT = Union [Akbyfunc,
Reverse [Table [{nN - Akbyfunc[[i]][[1]], Akbyfunc[[i]]1[[2]11}, {i,
Length [Akbyfunc]l}]]];
akTMax = Union[AkbyfuncMax,
Reverse[Table [{nN - AkbyfuncMax[[i]][[1]],
AkbyfuncMax [[i]]1[[2]]}, {i, Length[AkbyfuncMax]}]1];
akTMin = Union [AkbyfuncMin,
Reverse [Table [{nN - AkbyfuncMin[[i]][[1]],
AkbyfuncMin [[i11[[2]1}, {i, Length[AkbyfuncMin]}]]];
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103| If [Length [akT] == O,

194 AppendTo [errors,

195 {30,"For none of the times a value for Ak(t) was found."}
196 ]

197 I

198
199| (¥Add value of C(tmax/2) to Ak(t) if optionAktmax2 is truex*)
200 If [optionAktmax2,

201 akT = Insert[akT,{nN/2,Cor[[nN/2+1]1]1},Length[akT]/2+1];

202 akTMax = Insert[akTMax ,{nN/2,corrMax[[nN/2+1]]},Length[akTMax]/2+1];
203 akTMin = Insert[akTMin ,{nN/2,corrMin[[nN/2+1]]},Length[akTMin]/2+1]
204 ]

206| (*List of Ak(t) with errors (only used for plotting*)
207| akTEr = Tablel

208 {

209 akT[[i11C[1]1],

210 Around [

211 akT[[i]]1[[2]1], {akTMin[[i]][[2]] - akT[[il][[211,
212 akTMax [[i]1]1[[2]] - akT[[i]1C[[2]1]13}]

214 {i, Length[akT]}
215 ]

217| (*Find Plateaux*)

219| (¥*Parameters for Finding the Plateaux)

220 epsMin = 0.01;

221l rSquaredMin = 0.8;

222 eps = 1;

2231 rSquared01ld = O;

224/ indPlateu = 1;

225/ akPlateuConsFit = NonlinearModelFit[akT[[indPlateu ;; -indPlateul],
226 consAk, consAk, x];

227l rSquared = akPlateuConsFit ["RSquared"];

200l While [

230 (*Condition*)

231 (eps > epsMin || rSquared <= rSquaredMin ) &&
232 indPlateu < Length[akT]/2,

233  (*Loopx)

234/ indPlateu++;

235| rSquared0ld = rSquared;

236 akPlateuConsFit = NonlinearModelFit [

237 akT[[indPlateu ;; -indPlateul]],

238 consAk, consAk, x];

230| rSquared = akPlateuConsFit["RSquared"];
240/ eps = rSquared - rSquared01d;

241 ]

212| If [eps < epsMin, indPlateu--];
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243 If [Length[akTPlateauEr] <= 4,

244 AppendTo [

245 errors, {60,

246 "The plateau consists of less than 3 independent points."3}]];

2as| (*Value & Uncertainty for Ak for t in Plateaux)

210l aKFitValue = Mean[Transpose[akT[[indPlateu ;; -indPlateul]]][[2]]1]1;
250 akSigma =

251 StandardDeviation [Transpose[akT [[indPlateu ;; -indPlateul]l]][[2]]1];

253 (*Final Result for Ak for t in Plateau*)
254| akFitValueEr = Around[aKFitValue, akSigma]

256| (*Get Time borders of Plateau with integer times*)
2571 plateuTimeBorder =
258 {IntegerPart [Transpose [akT][[1]1][[indPlateul]l]l, nN/2};

260| (*Calculate f(A_k = const, t)x*)

262| funcByAkFit = Range [nN/2];
263| funcByAkFitBadInd = {};

265| For[i = 1, i <= nN/2, i++,
266 (*Check if term is not O otherwise this would lead to division by 0%)
267 If [(corrSymErrT[[i,-1]]/akFitValueEr +

268 Sqrt [(corrSymErrT [[i,-1]]/akFitValueEr)~2 - 1]) ["Value"] != 0.0,
269 (* THEN *)

270 funcByAkFit [[i]] =

271 {

272 corrSymErrT [[i, 1]1],

73 func [corrSymErrT[[i, -1]1], akFitValueEr, corrSymErrT[[i, 1]]]
274 },

275 (*ELSEx*)

6 AppendTo [funcByAkFitBadInd, il

280| (*Delete Bad Values*)

281 funcByAkFitBadInd = Partition[funcByAkFitBadInd, 1];

2s2| funcByAkFit = Delete [funcByAkFit, funcByAkFitBadInd];

283 funcByAkFit DeleteCases [funcByAkFit, x_ /; Im[ x[[2]]] != 0];

25| indexFunc = Flatten[Position[Transpose[funcByAkFit][[1]],
286 n_ /; n >= plateuTimeBorder [[1]] &&

287 n <= plateuTimeBorder [[2]11]][[1]];

280| funcByAkFitSym = Union[funcByAkFit,
290 Reverse [Table [{nN - funcByAkFit [[i]][[1]], funcByAkFit[[i]][[2]]1},
201 {i, Length[funcByAkFit]}]11];
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(x*Values of f(Ak,t in Plateau) *)

funcByAkFitPlatEr = funcByAkFitSym[[indexFunc ;; -indexFunc]];

(*Values of f(Ak,t in Plateau) without errorsx*)
funcByAkFitPlat = Transpose [{

Transpose [funcByAkFitSym] [[1]] [[indexFunc ;; -indexFunc]],
Table[m["Value"], {m, Transpose[funcByAkFitSym] [[2]]1}][[

indexFunc ;; -indexFuncl]l}];

(¥Calculate mean of f(Ak,t) for t in Plateaux)

consFuncFit = NonlinearModelFit[funcByAkFitPlat, consF, consF, x];
funcFitValue = consF /. consFuncFit["BestFitParameters"];

If [consFuncFit ["RSquared"] < 0.80,
AppendTo [warnings,

{61,"f(A_k,t) might not be const. in plateau region (R72<0.8)."3}]1]

(x*Calculate Errors of f(Ak,t) for t in Plateaux)

funcFitValueMax = Mean[Table[Max[m["Interval"]],
{m, Transpose[funcByAkFitSym][[2]]}][[indexFunc

funcFitValueMin = Mean[Table[Min[m["Interval"]],
{m, Transpose[funcByAkFitSym] [[2]]}][[indexFunc

(*Final Result for f for t in Plateaux*)

5| funcFitValueEr = Around[funcFitValue,

{funcFitValueMin - funcFitValue, funcFitValueMax

(*Final value for E_Plat. for t in plateaux)
Eplat = -Log[funcFitValueEr];

;3 —indexFuncl]l];
;; —indexFunc]l]l];
- funcFitValuel];
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C. Appendix

Table 1: Random parameters for Test-Run (1)

No. ... Number of Parameter-Set

tmaz ... Parameter for lattice size

Ei, Es, ﬁ—f ... Parameters according to Equation 18

o ... Parameter for normally distributed shift (see Equation 19)
No tmaw El E2 %i 0o
1 16 0.177 0.531 5.0E-07 2.3E-03
2 24 0.220 0.282 1.0E-07 1.1E-03
3 28 0.360 0.749 1.0E-08 1.1E-04
4 8 0.351 0.494 1.0E-08 1.2E-03
5 8 0.011 0.884 1.0E-09 2.5E-03
6 16 0516 0.709 5.0E-08 1.6E-04
7 8 0.652 0.653 1.0E-07 3.7E-04
8 32 0.337 0.884 1.0E-06 9.1E-05
9 20 0.902 0.963 5.0E-06 1.5E-06
10 24 0.100 0.671 1.0E-07 4.1E-03
11 32 0.782 0.830 5.0E-08 7.3E-08
12 24 0.024 0454 5.0E-09 7.2E-03
13 24 0.109 0.143 1.0E-08 3.8E-03
14 16 0.676 0.974 1.0E-07 4.5E-05
15 28 0.521 0.671 1.0E-06 1.2E-05
16 12 0.688 0.825 5.0E-07 1.2E-04
17 12 0.358 0.393 5.0E-09 8.6E-04
18 16 0.525 0.604 1.0E-08 1.5E-04
19 8 0.044 0.541 5.0E-08 2.5E-03
20 24 0.038 0.050 5.0E-06 6.8E-03
21 12 0.158 0.596 1.0E-06 2.5E-03
22 16 0.685 0.696 1.0E-09 4.2E-05
23 20  0.087 0.122 1.0E-09 4.5E-03
24 24 0.253 0.898 1.0E-06 T7.1E-04
25 16 0.915 0.983 5.0E-07 6.6E-06
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Table 2: Random parameters for Test-Run (2)

No. ... Number of Parameter-Set

tmax ... Parameter for lattice size

Ey, Es, j—f ... Parameters according to Equation 18

o ... Parameter for normally distributed shift (see Equation 19)
No. | tyee Fr E, 22 0o

Ay
26 24 0.774 0.872 1.0E-06 1.4E-06
27 24 0.630 0.703 1.0E-06 7.8E-06
28 8 0.030 0.052 1.0E-09 2.5E-03
29 24 0.223 0.852 1.0E-09 1.0E-03
30 24 0.525 0.695 5.0E-08 2.7E-05
31 32 0.014 0.850 b5.0E-06 3.3E-03
32 12 0.107 0.898 5.0E-06 3.1E-03
33 32 0.373 0.884 5.0E-06 5.1E-05
34 32 0.384 0.669 5.0E-08 4.3E-05
35 32 0.323 0.596 5.0E-06 1.1E-04
36 32 0.119 0.363 1.0E-07 2.9E-03
37 12 0.420 0.797 1.0E-05 6.0E-04
38 16 0.573 0.947 1.0E-05 1.0E-04
39 12 0.318 0.932 1.0E-09 1.1E-03
40 24 0.281 0.469 5.0E-06 5.1E-04
41 20 0.018 0.279 5.0E-06 6.2E-03
42 20 0.099 0.765 1.0E-05 4.1E-03
43 20 0.262 0.530 1.0E-08 9.1E-04
44 28 0.844 0.927 5.0E-07 1.3E-07
45 20 0.228 0.581 5.0E-06 1.3E-03
46 16 0.457 0.564 1.0E-05 2.6E-04
47 20 0.485 0.989 5.0E-08 9.8E-05
48 8 0.120 0.721 1.0E-08 2.2E-03
49 24 0.061 0.612 1.0E-05 5.8E-03
50 20 0.726 0.796 1.0E-07 8.8E-06
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