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Abstract

The aim of this master’s thesis is to restore the Bloch-Nordsieck theorem for the elec-
troweak sector of the Standard model. For this purpose, we recall that due to Elitzer’s
theorem, the electroweak gauge symmetry cannot be broken and thus newly constructed
bound states take the role of the usual elementary ones as asymptotic states of our theory.
We will use augmented perturbation theory (i.e.: perturbation theory augmented by the
FMS mechanism) to show that this eradicates any infrared singularities in electroweak
processes and discuss the effects in the limits of high and low energies. Furthermore, we
will present an approach using a PDF formulation, which will prove to be beneficial in
the case of hadron colliders.
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1. Introduction

“The infinitely many atoms move in the void since eternity and from them arise
countless worlds with their composite individual objects.“

(Demokrit and Leukipp; 4th century BC)

We have come a long way since the first idea of indivisible objects as building blocks of
our known world in ancient Greece. The atomistic worldview disappeared from the image
of nature until in the 17th century similar thoughts were taken up again by Gassendi
and Boyle. But only in the 19th century, the atomism achieved an empirically justified
breakthrough due to Dalton and his law of partial pressures and paved the way for
modern particle physics. Nowadays, the Standard Model (SM) of particle physics is the
theory, that best describes all known phenomena in nature and as a quantum field theory
has its origin in the early decades of the last century.

The inception of quantum field theory is usually attributed to Dirac in 1927 when he
published his famous paper on “The quantum theory of the emission and absorption of
radiation”, in which he could rederive the Bohr-Jordan formula without appeal to ther-
modynamics. Around 1930 arose the awareness of the problem with infinities in quantum
field theories. They are usually distinguished on basis of their range into ultraviolet (UV)
and infrared (IR) divergences. The issue regarding the latter was solved for the case of
QED 1937 by the famous Bloch-Nordsieck (BN) theorem, which was expanded in 1963/64
by Kinoshita and Lee and Nauenberg in form of the KLN theorem named after them.
Regarding the former, it took until 1947-49 to finally resolve the UV problem by the
renormalization theories of Feynman, Schwinger, Tomonaga and Dyson. The 1960s and
1970s were characterized by the increased study of quantum chromodynamics (QCD) and
electroweak (ew) theory induced by the works of Yang and Mills, the Goldstone theorem,
and the Brout-Englert-Higgs effect. The term Standard Model of particle physics was
first introduced in the early 1970s by Weinberg, who outlined the core of what we today
understand under the term.

Bringing into play new aspects of our theory of nature (in form of QCD and ew theory)
engendered the old problem with infinities once more and the majority of physicists in
the 1980s were convinced that the BN theorem was violated for the QCD case, which
shook up the existing understanding of how to deal with IR divergencies. This issue
got resolved by considering the quark confinement and it was shown that the infinities
cancel for colour-averaged cross-sections. The situation for the electroweak sector of the
Standard Model did not seem to work out that beautifully. As a non-abelian theory
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1. Introduction

again IR divergencies were popping up and the argument of colour-averaging could not
be transferred equivalently.

This master’s thesis aims to show the restoration of the BN theorem for the electroweak
sector of the Standard Model by introducing leptonic bound states, justified by the
need for gauge-invariance of our theory. Just as in QCD, where we need to include the
information about colourless hadrons as actual initial and eventual final states, in the
electroweak case we consider gauge-invariant initial states, that force us to sum over the
weak isospin and thus lead to a cancellation of IR-divergent terms. The resulting insights
of this new treatment will not only be of interest to theorists but also to experimentalists
since the validity of the hereafter presented framework can only be put properly to the
test at very high energies (several TeV) reached by future colliders.

In the following, I first will be covering some basic concepts including the Bloch-Nordsieck
theorem, the coherent state approach and the Fröhlich-Morchio-Strocchi (FMS) mecha-
nism. I will then move on to the treatment of the electroweak case by introducing bound
states and as a result, show the non-violation of the BN theorem. Eventually, I am going
to summarize the main results and discuss the impact on our understanding of the Stan-
dard Model and the effects that can be expected to be observed in future high-energy
colliders.
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2. Basic Concepts

Since in quantum field theory we are dealing with infinitely many degrees of freedom, the
appearance of infinities did not long in coming. In contrast to ultraviolet divergences,
infrared divergences arise from the high-energy part of the integration range and appear
due to massless fields in the theory. Based on this fact they are also often called mass
singularities. When it comes to their characterisation one usually distinguishes between
soft and collinear divergences. The former occur if we let the (fictitious) mass of the gauge
field go to zero, while the latter are generated if the massless field couples to another
massless field or itself, and hence not only the gauge field mass but also the mass of
the matter field tends to zero. Although IR divergences are a long-distance phenomenon,
they can play an important role in verifying the correctness of the perturbative treatment
of short-distance effects.

2.1. The Bloch-Nordsieck theorem

The Bloch-Nordsieck theorem was the first attempt to solve the IR problem and was
primarily limited to QED. In their famous paper Felix Bloch and Arnold Nordsieck
presented the idea, that in any real experiment that involves charged particles, it is
impossible to uniquely specify the final state of the system, due to soft virtual photons.
They managed to show that the probability of a finite number of photons escaping
detection is in fact zero. Thus, one needs to sum over all indistinguishable final states,
which leads to a cancellation between virtual and real infrared divergences and hence
one ends up with an IR-finite result. Since then, the principle introduced by Bloch and
Nordsieck was also tried to be applied to other theories, such as QCD and electroweak
theory. It can be written down more generally in the form:

∑
f

|Sif |2 = finite (2.1)

Here S is the S-matrix and i and f indicate the initial and final states.

The BN theorem represents a special case of the so-called Kinoshita-Lee-Nauenberg
(KLN) theorem, which states that all infrared divergences (soft and collinear ones) can-
cel if one sums over all initial and final states degenerate in energy. In mathematical
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2. Basic Concepts

notation this can be written as: ∑
i,f

|Sif |2 = finite, (2.2)

where in contrast to the BN theorem one has an additional sum over the initial states.

To deal with the IR problem -by making use of the above-mentioned theorems- there are
two different approaches available:

1. The inclusive approach, in which one sums over physically indistinguishable degen-
erate states and recognises that the sum is then IR-finite.

2. The coherent state approach, with the main idea to define a representation of the
problematic states other than the Fock representation, without any IR divergences
in the S-matrix.

In the first approach, in the calculation of inclusive cross-sections for physical processes,
the IR divergences are exactly cancelled at all orders by the divergences arising from real
emission.

The second approach is closer to the physical reality due to the introduction of new
states (so-called Neumann states) in the theory, which are degenerate in the number of
soft particles. Because of that, the KLN-theorem is automatically satisfied, and hence
the matrix elements IR-finite.

In the following, I want to describe the coherent state approach in a bit more detail.

2.2. The coherent-state approach

The goal is to obtain an asymptotic Hamiltonian, which describes the long-term evolution
and can be simplified via eikonal (infrared) approximation of the interaction vertices. For
this purpose, the interaction Hamiltonian is first separated into a soft and a hard part.
The former contains vertex frequencies ν < ∆, where ∆ is some upper scale and the
energy transfer ν describes the softness of the vertex (i.e.: The smallness of ν specifies
the degeneracy of the perturbative states.). The hard part of the Hamiltonian consists
of the remainder.

H∆
I (t) = H∆

h (t) +H∆
s (t) (2.3)

Note that there is no interaction between the hard and the soft subsystem. Consequently,
also the Hilbert space needs to be split into a soft and a hard part:

H = Hh ⊗Hs, (2.4)

where Hs creates the IR singularities and Hh screens them.

4



2. Basic Concepts

As a result, the S-matrix can be written in the following form:

S = UF †
αF βF

ShU
I
αIβI′

(2.5)

where U are the coherent state operators and describe the long-term interactions, while
Sh describes the short-time hard interactions.

The coherent state operators are defined as:

U =
(
h

〈
0
∣∣Ω∆

±
∣∣ 0〉

h

)−1 〈
h
∣∣Ω∆

±
∣∣h〉 (2.6)

with |h⟩ hard states and Ω∆
± the soft evolution operators. Note that in this expression

also the hard vacuum fluctuations have been subtracted out. From the definition of the
Us, the origin of their name becomes apparent, since, applied to the soft vacuum, they
yield states which describe the cloud of soft particles surrounding a given set of hard
partons (c.f. coherent states). But only in QED they fulfil all mathematical features of
coherent operators on a specified algebra. In QCD and electroweak theory, this is not
the case due to the lack of a non-trivial classical limit of non-abelian gauge theories.

The coherent state operators possess some essential properties:

1. They are unitary:
∑

s∈∆ U
†|s⟩⟨s|U = 1 (equivalently: UαβU

†
βα′ = U †

αβUβα′ = δαα′)

2. They are operatorially factorised in the hard charges (QED) resp. in the colour
space of the hard partons (QCD).

3. They have simple gauge properties: They are in general changed by a phase factor
and only gauge-invariant if the total charge vanishes.

4. In QCD, the coherent state operators commute at different colours.

Applying the coherent state approach discussed above to the Bloch-Nordsieck theorem,
this means the following:

The basic statement of the BN theorem is thatW∆
f =

∑
f∈∆ |Sfi|2 is IR-finite. Keeping in

mind the unitarity of the coherent state operators one can easily carry out the calculation:∑
f∈∆

|Sfi|2 =
∑
f∈∆

|⟨f0|S|i⟩|2 =
∑
f∈∆

〈
i
∣∣∣S†
∣∣∣ f0〉〈f0∣∣∣S∣∣∣i〉 =

=
∑
f∈∆

〈
i
∣∣∣U I†S†

hU
F
∣∣∣ f0〉〈f0 ∣∣∣UF †ShU

I
∣∣∣ i〉 =

〈
i
∣∣∣U I†S†

h

∣∣∣ f0〉 〈f0 ∣∣ShU I ∣∣ i〉 = 〈i ∣∣∣U I†OhU I ∣∣∣ i〉 ,
where Oh is the so-called IR-finite final state overlap matrix. Note that the last expression
is only finite for abelian theories!
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2. Basic Concepts

2.2.1. The QCD case

QED, as an abelian theory, satisfies both, the KLN and the BN theorem. For QCD on
the other hand we need a little bit more effort to see, that even though it is a non-abelian
theory, it does not violate the BN theorem.

Since the gluons in QCD carry a non-trivial charge and therefore show a self-interacting
behaviour, the asymptotic Hamiltonian, defined as Has = H0+Hs, is not solvable due to
its non-linearity in the soft fields. But we can still simplify the calculation by applying
an eikonal approximation to the trilinear vertices. In the following we will work in the
covariant gauge, which allows us to see the Lorentz-invariance more clearly.

We first write the Hamiltonian in the form:

H = H0 +Hint, (2.7)

with H0 being the quadratic part and Hint the interaction Hamiltonian which consists
of trilinear quark-gluon, three-gluon, quadrilinear four-gluon and ghost-gluon vertices:

Hint =g
(
J i ·Ai − J0 ·ΠB

)
− g∂iAj ·

(
Ai ×Aj

)
− gΠi · (ΠB ×Ai)

+
1

4
g2 (Ai ×Aj) ·

(
Ai ×Aj

)
− g (ΠB × c) ·Πc − ig (Ai × c) · ∂ic,

(2.8)

where
Πi = −F0i; ΠB = −A0; Πc = i ˙̄c; Πc̄ = −iD0c (2.9)

are the conjugate momenta and Dµ = ∂µ + igAµ is the covariant derivative.

The interaction part is then split up according to the coherent state approach into a soft
and a hard part and introducing the (customary) constraint λ < ν < ∆ on the energy
transfer1, we can write the latter in the form:

H∆
s = H∆

f +H∆
g +H∆

ghost +H∆
4 (2.10)

with the fermionic part given by:

H∆
f = g

∑
σ

∫
d[p]

∫ ∆

λ
d[q]ρfa(p)p̂µA

µσ
a (q)e−iσp̂qtΘ(∆− p̂q) (2.11)

1Here ν =
∣∣∑

i σiω (qi)
∣∣ with

∑
i σiqi = 0, where qi are the vertex momenta and σi = +

(−) describe the
energy signs for outgoing (ingoing) partons.
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2. Basic Concepts

the gluon part is given by :

H∆
g = −igs

1

3!
fa1a2a3

∑
σi

∫
d [q1] d [q2] d [q3] (2π)

3δ

(∑
i

σiqi

)
·

Aσ1µ1a1 Aσ2µ2a2 Aσ3µ3a3 Γµ1µ2µ3 (σ1q1, σ2q2, σ3q3) e
−i

∑
i σiωitΘ(∆− |Σσiωi|)

(2.12)

and the ghost part:

H∆
ghost =gfa1a2a3

∑
σi

d [q1] d [q2] d [q3] (2π)
3δ3
(∑

σiqi

)
exp

(
−i
∑

σjωjt
)
·

Θ

∆−

∣∣∣∣∣∣
∑
j

σjωj

∣∣∣∣∣∣
 c̄σ1a1c

σ2
a2σ1q

µ
1A

σ3
µa3 (q3)

(2.13)

where we used:

d[p] =
d3p

2Ep(2π)3
, p̂µ = pµ/Ep, ρfa (p) =

∑
i=q,q̄

b†iα
(
tia
)
αβ
biβ, tqa = ta, tq̄a = −t⊺a

as well as the three-gluon vertex Γµ:

Γµ1µ2µ3 (q1, q2, q3) = (qµ31 − qµ32 ) gµ1µ2 + (qµ12 − qµ13 ) gµ2µ3 + (qµ23 − qµ21 ) gµ3µ1

We omit the 4-gluon contribution, since it does not contribute up to the first sub-leading
level.2

The constraint ν < ∆ does not imply that necessarily all energies occurring at the vertex
need to be soft, i.e.: Hs connects states of Hs and Hs as well as Hs and Hh. As a result
one of the partons may be soft and the other two fast (ω1 ≈ ω2 ≫ ω3) or all three partons
are soft (ω1, ω2, ω3 < ∆). In the strong ordering region:

λ < ω1 ≪ ω2 ≪ · · · ≪ ωn < ∆

the eikonal form of the three-gluon vertex should be used:

Γµ1µ2µ3 (q1, q2, q3) = Γλµν(p,−p+ q,−q) =

= 2pµ3gµ1µ2 − pµ1gµ2µ3 − pµ2gµ3µ1 +O(q) =

= 2pµ3gµ1µ2 + (non-eikonal terms)
(2.14)

and we can rewrite the soft Hamiltonian by distinguishing between ordered and non-
ordered energy regions in (2.10):

2Its exact form can be found in [CC87]
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2. Basic Concepts

Hs = Heik +K +H ′
s (2.15)

Here the simple eikonal term gives rise to the leading IR singularities, since K, which
includes non-eikonal terms due to the scalar gluon and ghost interactions, does not
possesses any IR leading contributions between physical states. The third term in the
above equation is of sub-leading type and involves only soft parton energies of the same
order.

We note that the partons involved in Hh always interact with the ones in Hs via eikonal
vertices and thus we can write down another decomposition of Hs, which in contrast to
(2.15) is valid to all IR orders:

Hs = Heik(Epartons > ∆) +Hs(ωi < ∆)

= H>
eik +H<

s =

= g
∑
i∈h

tiap̂
i
µA

µa (t,νit) +H<
s

(2.16)

In the strong ordering region, using the eikonal form of the three-gluon vertex (2.14), we
can approximate H<

s by:

H<
s ≈

∑
σ

∫ ∆

λ
d[q′]d[q] ρag(q

′) q̂′µ A
µσ
a (q) e−iσq̂

′·qt Θ(ω′ − ω), (2.17)

where qµ is the softest gluon and ρg,a(q′) = ifabcA
b†
µ (q′)A

µ
c (q′).

We can thus calculate the eikonal coherent state operators to be:

U∆,h
eik (Π) = exp

[
ig

∫ ∆

λ
d[q]

h∑
i=1

p̂µi t
a
i

p̂iq
Πωaµ(q)

]
(2.18)

with the gluon fields, dressed up to energy ω, defined as:

Πωaµ(q) = −i
(
Aωµa −Aω†µa

)
(2.19)

Since U∆,h
eik (Π) are functionals of Πωaµ(q) only it can be shown that they commute at

different colors:

[
U∆
αβ(Π), U

∆
α′β′(Π)

]
= 0 (2.20)
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2. Basic Concepts

As a result, if we perform the calculation of the BN theorem and additionally sum over
colours, we end up with an IR-finite result:

∑
colour

∑
f∈∆

|Sfi|2 =
∑

colour

∑
f∈∆

〈
i
∣∣∣U I†∆ S†

hU
F
∆

∣∣∣ f0〉〈f0 ∣∣∣UF †
∆ ShU

I
∆

∣∣∣ i〉 =

=
∑

colour

〈
i
∣∣∣U I†∆ S†

hShU
L
∆

∣∣∣ i〉 =

=
∑

colour

U∆†
αIβ

′
I

(
S†
hSh

)
U∆
βIαI

=

=
∑

colour

(
S†
hSh

)
U∆†
αIβ

′
I
U∆
βIαI

=

= Trcolour

(
S†
hSh

)
(2.21)

Summarising we can say that using the coherent state approach and simplifying the terms
in the interaction Hamiltonian via eikonal approximation we obtain an expression for the
coherent state operators, which commutes at different colours and hence ensures the
validity of the Bloch-Nordsieck theorem for colour-averaged cross-sections in the QCD
case.

2.3. Augmented perturbation theory

Gauge theories are based on the requirement of invariance to local phase transformations
(i.e. gauge invariance) of a field theory and due to the principle of causality a neces-
sity of a quantum field theory. The hereby associated gauge symmetry is local and a
redundant degree of freedom, since the gauge choice must not affect the result of any
physical measurement. Nowadays the electromagnetic, weak and strong interactions can
be formulated as gauge theories, whereas gravitation theory can on the one hand also be
obtained by a gauge symmetry but on the other hand only on a classical level.

In the classical case, it is rather easy to formulate the theory gauge independent since
the Lagrangian itself is gauge-invariant and all physical observables are derived from it.
For quantised gauge theories a different picture emerges which is, in fact, twofold: In
the abelian case a gauge independent formulation can still be achieved without any great
difficulty, but in the non-abelian case the field-strength tensor is not gauge-invariant
anymore and hence the usual treatment cannot be applied. However, just these non-
abelian theories turned out to be impressively successful in describing the real world.

Focussing now on the quantisation of non-abelian gauge theories, in general one has
to differentiate between a perturbative and non-perturbative treatment. Using a path
integrational approach, in perturbation theory the Faddeev-Popov-DeWitt method fixes
the gauge, which hides the underlying (local) gauge theory and thus leads to a problem
proving the renormalizability of a theory. This issue was solved by Becchi, Rouet and
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2. Basic Concepts

Stora (as well as independently by Tyutin) in 1975 by recognising that even after choosing
a gauge the path integral remains invariant under a global symmetry related to gauge
invariance. This so-called BRST symmetry ensures the renormalizability and gauge-
invariance of the theory in question. Non-perturbatively we cannot do the same trick,
due to the Gribov-Singer ambiguity.

For non-abelian gauge theories, the local gauge group imposes additional constraints. In
contrast to the abelian case where the gauge is fixed (essentially) uniquely by the gauge
condition ∂ ·A = 0, in the non-abelian case there exist distinct transverse configurations,
so-called Gribov-copies, A ̸= A′ with ∂ · A = ∂ · A′ = 0 related by a large gauge
transformation A′ = UA, where U represents the local gauge transformation. Since
gauge theories must obey the constraint that A and A′ (i.e. the Gribov copies) can
be identified physically, one has to restrict the physical configuration space to the so-
called fundamental modular region, which is free of Gribov-copies. One can identify the
physical configuration corresponding to one specific configuration A with the gauge orbit
through A, Aphys =

{
A′ : A′ = UA

}
. The physical configuration is thus the equivalence

class including all gauge orbits, P = {Aphys}. P can be written as a quotient space in
the following way:

P = A/U ,

where A = {A} is the space of all configurations and U = {U} is the group of local
gauge transformations. For a gauge to be completely fixed, a parametrisation of this
quotient space by selecting a single representative from each equivalence class is needed.
For a non-abelian gauge theory, it is impossible to choose a unique representative on each
gauge orbit by a linear and continuous gauge condition.

This apparent dead-end can be circumvented considering bound-states and hence restore
the gauge invariance of the non-abelian theory under investigation. Instead of unphysical
single particles, one thus uses products of fields. The actual construction of these for the
electroweak section of the SM is subject of section (3.2).

At first, this might not sound like an all too great relief giving the fact that composite
objects require the use of non-perturbative methods to describe them, but there is a
method, which allows using the composite fields similar to the elementary ones in stan-
dard perturbation theory. This method is called augmented perturbation theory and
was developed by Fröhlich, Morchio and Strocchi. It requires an active Brout-Englert-
Higgs (BEH) effect and allows for a formulation of the correlation functions entirely in
terms of the gauge-invariant composite fields. Those can then be expanded around the
vacuum expectation value (v.e.v.) of the Higgs field and thus lead to a result that is
computable with standard perturbative methods. At the heart of this is the so-called
Fröhlich-Morchio-Strocchi (FMS) mechanism, which will be detailed in the following
subsection.
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2. Basic Concepts

2.3.1. The Fröhlich-Morchio-Strocchi mechanism

The FMS mechanism that together with the structure of the SM only allows the use of
bound-states in the electroweak case without contradicting the experimental results, can
be basically divided into four steps:

1. Write down the gauge-invariant operators (O) and with these form the required
correlation functions (e.g.: propagator 〈O†O〉).

2. Fix the gauge with a non-vanishing vacuum expectation value (e.g.: ‘t Hooft).

3. Split the Higgs field in the operators into the vacuum expectation value and the
fluctuation field! This one calls the FMS mechanism.

4. Expand the resulting correlation functions in their usual perturbative series.

This double expansion is called augmented perturbation theory. Step one is the topic of
section (3.2) and the actual application of the FMS expansion as well as the justification
of the use of composite fermion states mentioned above will be discussed in chapter (3).

2.4. Verification of the FMS mechanism

The attentive reader has certainly already wondered about the validity or verifiability
of augmented perturbation theory and the FMS mechanism explained above. From the
theoretical side, due to the necessity of using non-perturbative methods [Maa19] we will
focus on the mainly used technique in this case, which is lattice simulations. In this
context, it must be taken into account that the entire standard model cannot be used
for simulations at this point, but the FMS mechanism can be tested systematically in
lattice calculations for parts of the full theory (e.g. solemnly the Higgs sector) as well as
non-standard model theories.

Lattice gauge theories are a non-perturbative renormalisation method of quantum field
theories and are widely used in quantum chromodynamics. The space-time continuum is
hereby replaced by a finite lattice with discrete points. Due to the finite distance between
the lattice points, it acts as a regulator of the theory in the ultraviolet by providing the
necessary cut-off. The legitimacy of non-linear formulations on the other hand takes care
of the infrared divergences by making the volume of the gauge transformations finite.
The algebra-valued gauge fields are thus mapped to the gauge group, with the advantage
that the gauge does not need to get fixed to perform calculations since integrals over
compact groups are finite. This does not mean that it is impossible to fix the gauge. It
is still necessary whenever we want to calculate gauge-dependent quantities.

A huge advantage of lattice simulations is that you can get actual results within a rea-
sonable time since the CPU time in the majority of the cases is proportional to a fraction
of the number of lattice points used for the simulation. Also, it is possible to sample
all information including non-perturbative effects, because the numerical evaluation is
exact up to some error sources which can still be improved. Taking into account the
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2. Basic Concepts

limitations of current computer resources (e.g.: finite memory, processing power etc.)
only mass hierarchies of about one order of magnitude can be covered.

In the latest lattice simulations, the validity of the FMS mechanism and gauge-invariant
perturbation theory could be verified for the Higgs sector, whereby there exist only a few
calculations where simultaneously also the gauge-fixed propagators have been obtained.
A major obstacle in the verification of the FMS mechanism for leptons is the chiral
nature of the weak gauge theory since the chiral symmetry is broken explicitly by the
lattice regularisation. It would be theoretically possible assuming the chiral symmetry
is a global symmetry, to find a replacement which restores the original symmetry in the
limit, but up to now, no such replacement has been found. Hence the usual procedure is
to use a toy theory, where the Weyl spinors get replaced by Dirac spinors, mimicking the
gauged Higgs-Yukawa structure of the standard model by imposing for example similar
internal symmetries [AMST21]. It should be noted furthermore that in several lattice
simulations the calculations were simplified by the so-called quenching. In this process,
the determinant of the dynamic fermion matrix is replaced by a constant during the
complex generation of the field configurations, so that only the gauge action remains.
For testing the FMS mechanism this is no problem since the dynamics of the fermions

Figure 2.1.: We can see the spectrum of a toy theory
where the lattice results (black data points)
are depicted in comparison to the FMS pre-
dictions (blue boxes).

will not alter the basic prin-
ciples of the FMS mechanism,
but has to be taken into ac-
count whenever one wants to
compare results.

The remaining sectors of the
standard model can be de-
scribed by augmented pertur-
bation theory, but due to large
CPU times, no tests of these
sectors have been performed
using lattice calculations. It
might be more promising in
these cases to make use of
functional methods to investi-
gate larger parts of the stan-
dard model.

However, the available calcula-
tions strongly suggest the va-
lidity of the FMS mechanism
in the full theory since in all
tested scenarios the FMS re-
sults have been confirmed.
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3. Lepton scattering

In section (2.2.1) we saw how the Bloch-Nordsieck theorem was restored in the case of
quantum chromodynamics by using the coherent state approach and summing over the
colour. This chapter shall be solemnly dedicated to the treatment of the electroweak case
using the example of lepton scattering. To do so we start by looking at the standard
perturbative treatment with elementary states and how this leads to an apparent violation
of the theorem at question. Next we shall construct gauge-invariant bound states and
discuss the so-called custodial symmetry. Finally we use our new states to show the non-
violation of the Bloch-Nordsieck theorem for a sample lepton scattering process with the
Higgs as spectator, which coincides with the low-energy case.

3.1. The standard perturbative treatment

This section is based on the treatment described in the paper of Ciafaloni and Comelli
([CCC00]). For a non-abelian theory the BN theorem is usually violated, due to the
non-cancellation of the initial state interaction:

∑
f∈∆

|Sfi|2 =
〈
i
∣∣∣U I†OhU I ∣∣∣ i〉 = (S†

hSh) + ∆σ,

where ∆σ stands for the non-vanishing IR-singular part. In order to calculate the non-
canceling double logs, we start by looking at ew corrections to the overlap matrix Oh.
The lower order soft ew contributions are ∆σ = σ − σH .

Considering two partons as initial states and assuming the kinematic invariants to be
much larger than the gauge boson masses, the structure of Oh in isospin space is deter-
mined by the SU(2) symmetry. We can distinguish between three cases1:

• RR: Both initial partons are right-handed, they do not carry any non-abelian
charges and thus Oh is simply a scalar.

Oh = A0

• LR,RL: One parton is left- the other right-handed and as a result Oh carries two
(left) isospin indices.

Ohβα = B0δβα
1Note that for cross-sections αi = βi holds.

13



3. Lepton scattering

• LL: Both initial partons are left-handed. In this case Oh carries four isospin indices.

Ohβ1β2,α1α2
= C0δβ1α1δβ2α2 + C14t

a
β2α2

taβ1α1
(part-part)

Ōhβ1β2,α1α2
= C̄0δβ1α1δβ2α2 + C̄14t

a
α2β2t

a
β1α1

(part-antipart)

If we now apply the above to write down a generic hard cross-section for e−L and e+L (in
the following denoted as e and ē), resp. ν and ν̄, where particle and anti-particle share
the same isospin index, we get:

σheē = σhνν̄ ∝ Ōh11,11 = Ōh22,22 = C̄0 + C̄1 (3.1)

σheν̄ = σhνē ∝ Ōh12,12 = Ōh21,21 = C̄0 − C̄1 (3.2)

As a next step we want to dress the hard matrix elements with soft interactions. We
again distinguish between the three cases:

• RR: The weak interactions become purely abelian and hence there does not exist
any BN-violating effect in this case.

Oh
dress−−−→ O = A0

• LR,RL: Also in this case no BN-violating effect is present and the dressed overlap
matrix coincides with the hard one.

Ohαβ
dress−−−→ Oαβ = S

〈
0
∣∣∣U†
αα′O

h
α′β′ ,Uβ′β

∣∣∣ 0〉
S
= S ⟨0|B0δβα|0⟩S = B0δβα

(Here we used the unitarity property of the coherent states operators.)

• LL: The only interesting case remains the one with two left-handed partons in the
initial state:

Ohβ1β2,α1α2

dress−−−→ Oβ1β2,α1α2 = S

〈
0
∣∣∣UI†β1β2,β′

1,β
′
2
(Oh)β′

1β
′
2,α

′
1α

′
2
UIα′

1α
′
2,α1,α2

∣∣∣ 0〉
S

At the leading log level we can factorize U I† into two leg operators:

UIα′
1α

′
2,α1,α2

= U
(1)
α′
1α1

U
(2)
α′
2α2

(part-part)

UIα′
1α

′
2,α1,α2

= U
(1)
α′
1α1

U
(2)†
α2α′

2
(part-antipart)

and write down for the case of one particle and one anti-particle:

Ōβ1β2,α1α2 ≡ C̄0(s)δβ1α1δβ2α2 + C̄1(s)4t
a
β1α1

taα2β2

= C̄0δα1β1δα2β2 + 4C̄1 S

〈
0

∣∣∣∣(U (1)†taU (1)
)
β1α1

(
U (2)†taU (2)

)
α2β2

∣∣∣∣ 0〉
S

,
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3. Lepton scattering

where we can write the expression:

S

〈
0
∣∣∣(U (2)†

A U
(1)
A

)
ab

∣∣∣ 0〉
S
taβ1α1

tbα2β2 = FA(s,M
2) taβ1α1

tbα2β2

with help of the Sudakov form factor in the adjoint representation, which reduces
in the case of the isospin SU(2) symmetry to:

FA(s,M
2) = e−2LW (s) with LW (s) =

g2

8π2
log2

E2

M2

Here LW (s) denotes the eikonal radiation factor for W exchange. As a result for
the dressed overlap matrix we obtain the factors:

C̄0(s) = C̄0 and C̄1(s) = C̄1e
−2LW (s)

We are now able to write down the dressed cross-sections as:

σ11 = σ22 ∝ C̄0 + C̄1e
−2LW (s) =

(σ11 + σ12)
h

2
+

(σ11 − σ12)
h

2
e−2LW (s) (3.3)

σ12 = σ21 ∝ C̄0 − C̄1e
−2LW (s) =

(σ11 + σ12)
h

2
− (σ11 − σ12)

h

2
e−2LW (s) (3.4)

The relative effects in double log approximation are thus:

(
∆σ

σ

)
11

≡ σ11 − σH11
σH11

=

(
σH11 − σH12

σH11

)(
1− e−2LW (s)

2

)
(3.5)

(
∆σ

σ

)
12

≡ σ12 − σH12
σH12

=

(
σH12 − σH11

σH12

)(
1− e−2LW (s)

2

)
(3.6)

We can use the above derived knowledge to calculate the effects in simple processes
that are of phenomenological relevance for collider experiments. In the following we will
restrict ourselves to the case ll̄ → qq̄ (s-channel), which is of main interest for NLCs and
will be discussed in greater detail in the next sections. Here we will simply state the
main results of ([CCC00]):

For the polarized case of eLēL → hadrons we get:(
∆σeē

σHeē

)L
=

(
σHνē − σHeē

σHeē

)L(
1− e−2LW (s)

2

)
≈ 0.8 LW (s) (3.7)

and for unpolarized ones the effect is slightly reduced:

(
∆σ

σ

)EW
eē

≃ 0.58LW (s) = 0.58
αW
4π

log2
s

M2
with αW =

g2

4π
(3.8)

but still the radiative corrections of weak origin exceed at the TeV scale the QCD ones.
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3. Lepton scattering

3.2. Construction of bound states

As was mentioned in section (2.3) the existence of Gribov-copies forces us to use bound-
states as asymptotic states in order to restore gauge-invariance of our non-abelian gauge
theory. To construct our physical fermion states we start by writing down the standard
model Lagrangian:

L = −1

4
W a
µvW

aµv +
1

2
tr
[
(DµX)† (DµX)

]
−λ
4

(
tr
(
X†X

)
− v2

)2
+ ψ̄Li��DψL + χ̄Rf i�∂χ

R
f

−
∑
f

yf

(
χ̄Rf

(
X†ψL

)
f
+
(
ψ̄LX

)
f
χRf

)
,

(3.9)

where we left out all terms, that are irrelevant for us in order to keep it simple. The
Lagrangian is invariant under the full global group G.

W a
µν is the field strength tensor for the weak gauge bosons (W and Z), Dµ is the covariant

derivative and X is hereby a matrix-valued field constructed from the usual Higgs scalar
doublet:

X =

(
ϕ∗2 ϕ1
−ϕ∗1 ϕ2

)
(3.10)

To specify the gauge group G we have 2 possibilities: Either we say G is the full global
group G or we say G is a subgroup of G. Either way we must ensure that G ⊆ G holds,
so that the Lagrangian stays gauge-invariant. For the second possibility it is easy if G is
a product group and hence we can write G = G × C. (Otherwise, the remainder might
be just a coset or the group G even contains additional subgroups.) If C is not just a
coset and thus C ⊆ G \ G holds, we call C the custodial symmetry of the group, which
is a global symmetry group of the theory if the potential in the Lagrangian is invariant
under G and C. (Otherwise, the custodial symmetry is explicitly broken completely or
to a subgroup.) Luckily, the Higgs sector of the standard model, whose full global group
is SO(4) can be written as a product in the following way:

SO(4) ∼ (SU(2)× SU(2)) \ Z2

i.e. more loosely speaking, we can split G of the Standard model into a product of two
SU(2) groups.

This new custodial symmetry is conceptionally nothing different from e.g. the flavour
symmetry. It simply means that the scalar field possesses more degrees of freedom than
would be minimally necessary to write down the theory.

Recall that we usually would have the two elementary fields:

ψL =

(
νL

eL

)
χR =

(
νR

eR

)
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3. Lepton scattering

containing the four physical fermionic states.

Considering an active BEH effect and ‘t Hooft gauge we can group them together into
two chiral doublets in the following way:

ΨL = X†ψL (3.11)

χR =

(
νR

eR

)
(3.12)

If we expand these states according to the FMS mechanism and look at the leading order
(LO) expression we notice that the fields reduce to the elementary ones:

ΨL = X†ψL =

(
v√
2
1+ η

)
ψL =

v√
2

(
νL

eL

)
+O(η)〈

ΨL
1Ψ

L
2

〉
=

〈(
v√
2
ψL1 +O(η)

)(
v√
2
ψL2 +O(η)

)〉
=
v

2

〈
ψL1 ψ

L
2

〉
+O(η)

3.3. The FMS mechanism for scattering processes

In order to show the validity of the Bloch-Nordsieck theorem for the electroweak case,
we need to apply the FMS mechanism to the following type of correlation functions:〈
ΨL
i Ψ

L
j FkFl

〉
, which is the matrix element describing the scattering of two left-handed

particles. With F being an arbitrary final state, e.g.: muon or quark, and the indices
i, j, k, l = 1, 2.

Using equations (3.10) and (3.11) we can formerly write down the left-handed composite
fields as:

ΨL = X†ψL =

(
ϕ2ν

L − ϕ1e
L

ϕ∗1ν
L + ϕ∗2e

L

)
(3.13)

and respectively,

Ψ̄L = ψ̄LX =

(
ϕ∗2ν̄

L − ϕ∗1ē
L

ϕ1ν̄
L + ϕ2ē

L

)
(3.14)

For the following demonstration of the calculation we furthermore choose the final state
to be:

FL = X†fL with fLmuon =

(
νLµ
µL

)
(3.15)
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3. Lepton scattering

We will explicitly apply the procedure of the FMS mechanism for the case
〈
ΨL

1Ψ
L
1F1F1

〉
,

the other custodial combinations can be obtained analogously:

〈
Ψ1Ψ1F1F1

〉
=
〈(
ϕ∗2ν̄

L − ϕ∗1ē
L
) (
ϕ2ν

L − ϕ1e
L
) (
ϕ∗2ν̄

L
µ − ϕ∗1µ̄

L
) (
ϕ2ν

L
µ − ϕ1µ

L
)〉

=

=
〈
(|ϕ2|2νLνL − 2Re(ϕ1ϕ

∗
2ν
LeL) + |ϕ1|2eLeL)

(
|ϕ2|2 ν̄Lµ νLµ − 2Re

(
ϕ1ϕ

∗
2ν̄
L
µµ

L
)

+ |ϕ1|2 µ̄LµL
)〉

=

=
〈
|ϕ2|4 ν̄LνLν̄Lµ νLµ − 2 |ϕ2|2Re

(
ϕ1ϕ

∗
2ν̄
L
µµ

L
)
ν̄LνL + |ϕ1|2 |ϕ2|2 ν̄LνLµ̄LµL

− 2 |ϕ2|2Re
(
ϕ1ϕ

∗
2ν̄
LeL

)
+ 4Re

(
ϕ1ϕ

∗
2ν̄
LeL

)
Re
(
ϕ1ϕ

∗
2ν̄
L
µµ

L
)

− 2 |ϕ1|2Re
(
ϕ1ϕ

∗
2ν̄
LeL

)
µ̄LµL + |ϕ1|2 |ϕ2|2 ēLeLν̄Lµ νLµ

−2 |ϕ1|2Re
(
ϕ1ϕ

∗
2ν̄
L
µµ

L
)
ēLeL + |ϕ1|4 ēLeLµ̄LµL

〉
applying step three of the FMS mechanism using:

X =

(
ϕ∗2 ϕ1
−ϕ∗1 ϕ2

)
=

(
v√
2

0

0 v√
2

)
+ η,

the third and 6th − 9th terms in the last line vanish since ⟨η⟩ = 0. And we are left to
leading order (LO) with the expression:

〈
Ψ1Ψ1F1F1

〉
=
v4

4

〈
ν̄LνLν̄Lµ ν

L
µ

〉
+O(η) (3.16)

It is straight forward to show then that:

〈
Ψ1Ψ1F1F1

〉
=
v4

4

〈
ν̄LνLν̄Lµ ν

L
µ

〉
+O(η)〈

Ψ2Ψ2F2F2

〉
=
v4

4

〈
ēLeLµ̄LµL

〉
+O(η)〈

Ψ1Ψ2F̄1F2

〉
=
v4

4

〈
ν̄LeLν̄Lµµ

L
〉
+O(η)〈

Ψ2Ψ1F2F1

〉
=
v4

4

〈
ēLνLµ̄LνLµ

〉
+O(η)〈

Ψ1Ψ1F2F2

〉
=
v4

4

〈
ν̄LνLµ̄LµL

〉
+O(η)〈

Ψ1Ψ1F1F2

〉
=
v4

4

〈
ν̄LνLν̄Lµµ

L
〉
+O(η)〈

Ψ1Ψ1F̄2F1

〉
=
v4

4

〈
ν̄LνLµ̄LνLµ

〉
+O(η)
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3. Lepton scattering

〈
Ψ2Ψ2F1F1

〉
=
v4

4

〈
eLeLν̄Lµ ν

L
µ

〉
+O(η)〈

Ψ2Ψ2F1F2

〉
=
v4

4

〈
ēLeLν̄Lµµ

L
〉
+O(η)〈

Ψ2Ψ2F2F1

〉
=
v4

4

〈
ēLeLµ̄LνLµ

〉
+O(η)〈

Ψ1Ψ2F1F1

〉
=
v4

4

〈
ν̄LeLν̄Lµ ν

L
µ

〉
+O(η)〈

Ψ1Ψ2F2F2

〉
=
v4

4

〈
ν̄LeLµ̄LµL

〉
+O(η)〈

Ψ2Ψ1F1F1

〉
=
v4

4

〈
ēLνLν̄Lµ ν

L
µ

〉
+O(η)〈

Ψ2Ψ1F2F2

〉
=
v4

4

〈
ēLνLµ̄LµL

〉
+O(η)〈

Ψ2Ψ1F1F2

〉
=
v4

4

〈
ēLνLν̄Lµµ

L
〉
+O(n)
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3. Lepton scattering

3.4. The BN restoration

The primary objective of this section will be the restoration of the Bloch-Nordsieck
theorem for the electroweak case using our newly constructed bound-states. Our main
focus to achieve this purpose will be on an s-channel scattering process of the form:
(e+, H)(e−, H) → (q,H)(q̄, H), depictured in figure (3.1) since this type is most inter-
esting from the experimental side of view.

Depending on the particular energy scale different interactions will eventually be observ-
able. For low energies, the aforesaid process will appear as a standard scattering process
with elementary fermion states and it is not before reaching the high energy region that
the presence of the Higgs becomes apparent.

Figure 3.1.: Bound state scattering process divided into the possible observable cases at
low energy and high energy (The grey lines indicate particles not involved in
the actual scattering process.)

If we want to describe such a bound-state process in accordance with QCD by a parton
model approach, it is necessary to know the Higgs PDF. Its specific form was exploited by
Simon Fernbach in his Master’s thesis [Fer19] and further studied in my Bachelor’s thesis
[Rei19], where I used the event generator HERWIG to simulate the relevant scattering
processes. As a result, we ended up with a possible shape for the Higgs PDF, which can
be seen in figure (3.2).
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3. Lepton scattering

Figure 3.2.: possible forms of the Higgs PDF

By studying the picture of the Higgs PDF and comparing it with quark and gluon PDFs
we notice the extraordinary size difference. While the former is still in the tenths of a
percent range even at its peak, the probability for the latter is substantially larger. It
is thus valid to assume that the Higgs’ proportion is vanishing in the limit and to treat
the Higgs boson as mere spectator. But by treating the Higgs fields as spectators for a
fully exclusive measurement it is crucial in the following to sum the cross-sections of all
possible pairings, i.e.:

σ
Ψ2

LΨ
2
L→X

∼ σl̄LlL→X + σl̄LνL→X + σνLlL→X + σνLνL→X , (3.17)

where in our case l =∧ e− and l̄ =∧ e+.

In appendix A we derived the differential cross-section for the process e+e− → qq̄ with
photon and Z-boson exchange. Including also W-boson exchange we can rewrite our
result in the form used by Ciafaloni and Comelli [CCC00]:

dσij
d cos θ

=
NcNf

128πs

[ (
AR0 + CL0 ± CL1 e

−2LW (s)
)
(1 + cos θ)2+

+
(
AL0 + CR0 ± CR1 e

−2LW (s)
)
(1− cos θ)2

]
,

(3.18)

where Nf is the number of flavours included (for simplicity we set it to 1), Nc is the
number of colours (i.e.: Nc = 3), the ± sign refers to σ11 and σ12 respectively and
A0, C0, C1 are the dressed overlap matrix components, which in this case read:

AR0 = δijg
′4y2R

∑
Y 2
R AL0 = δijg

′4y2R
∑

Y 2
L

CL0 =
3

16
g4 +

1

2
g′4y2L

∑
Y 2
L CL1 = − 1

16
g4 +

1

2
g′4y2L

∑
Y 2
L

CR0 =
1

2
g′4y2L

∑
Y 2
R CR1 =

1

2
g′4y2L

∑
Y 2
R

(3.19)
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The factors 3
16g

4 in CL0 and − 1
16g

4 in CL1 are due to the W exchange and the delta
function in A0 ensures that the g′4 contribution is only present for the case of an initial
particle and its own antiparticle.

Considering the smallness of g′, which is suppressed by a factor tan4 θW = g′4

g4
, we can

take the limit g′ → 0 and are left only with the left-handed components:

lim
g′→0

dσij
d cos θ

=
dσLLij
d cos θ

=
πNcα

2
W

32s

(
1 + cos θ

2

)2 (
3∓ e−2LW (s)

)
(3.20)

with αW = g2

4π .

The total cross-section thus reads:

σLLij =
π2Ncα

2
W

24s

(
3∓ e−2LW (s)

)
(3.21)

and we can see immediately that on average (σeē+σνē) the double logarithms cancel each
other out and the result will be free of any IR divergences stemming from the Sudakov
terms.
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3.4.1. Coherent-state approach for the ew case

Formulating the coherent state approach for the electroweak case, we first need the
according interaction Hamiltonian density:

Hew
int =Hfermion +H3int +H4int +HHiggs +Hghost (3.22)

where:

Hfermion =
∑
i

Ψ̄′L
i

(
−g2IawW a

µ + g1
Yw
2
Bµ

)
Ψ′L
i +

∑
i,σ

ψ̄Ri,σ

(
g1
Yw
2
Bµ

)
ψRi,σ (3.23)

H3int = g2ϵ
abc(∂µW

a
ν )W

b
µW

c
ν (3.24)

H4int =
1

4
g22ϵ

abcϵadeW b
µW

c
νW

d,µW c,ν (3.25)

HHiggs =

(
ig2I

a
wW

a
µ − ig1

Yw
2
Bµ

)[
Φ†∂µΦ− Φ (∂µΦ)

†
]
+

−
[(

−ig2IawW a
µ + ig1

Yw
2
Bµ

)
Φ

]† [(
−ig2IawW aµ + ig1

Yw
2
Bµ

)
Φ

]
+

+
λ

4

(
Φ†Φ

)2
+
∑
i,j

(gijΨ̄
L
i ψ

R
j,−Φ+ g̃ijΨ̄

L
i ψ

R
j,+Φ

c + hc) (3.26)

Hghost = ū1(∂iW 3
µ)u

2 − ū1(∂iW 2
µ)u

3 − ū2(∂iW 3
µ)u

1+

+ ū2(∂iW 1
µ)u

3 + ū3(∂iW 2
µ)u

1 − ū3(∂iW 1
µ)u

2 (3.27)

are the fermion, 3-point interaction, 4-point interaction, Higgs and ghost part accordingly.
In the following, we will omit H4int as well as the 4-Higgs interaction since they are not
relevant at LO.

Next, we want to split the Hamiltonian into a soft and a hard part:

Hint = H∆
s +H∆

h (3.28)

To do so we first quantise (3.28) in the interaction picture around t = 0 and introduce
the customary restriction on the energy transfer: λ < ν = |

∑
i σiωi| < ∆. It is important

to point out that in the ew case the lower energy scale is characterised by the mass of
the W boson. But since we assume here to be at sufficiently high energies we can neglect
this nonetheless and continue our calculation analogously to the QCD case. Thus we
obtain the soft interaction Hamiltonian:
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3. Lepton scattering

H∆
s (t) = Hfermion +H3int +HHiggs +Hghost, (3.29)

with its individual terms:

Hfermion = HR
f +HL

f =

=+ g1
Y R
w

2

∑
σ

∫
d[p1]d[q1]ρf,R p̂µB

µσ(q1)e
−iσp̂1q1tΘ(Ep − ωq)Θ(∆− p̂1q1)+

+ g1
Y L
w

2

∑
σ

∫
d[p2]d[q2]ρf,L p̂µB

µσ(q2)e
−iσp̂2q2tΘ(Ep − ωq)Θ(∆− p̂2q2)+

− g2
∑
a

Iaw
∑
σ

d[p2]d[q3]ρf,L p̂µW
µσ
a (q3)e

−iσp̂2q3tΘ(Ep − ωq)Θ(∆− p̂2q3)

(3.30)

H3int = − ig2
3!
ϵabc

∑
σi

∫
d[q1]d[q2]d[q3](2π)

3δ3
(∑

σiqi

)
e−i

∑
σjωjt·

·Θ

∆− |
∑
j

σjωj |

Γµ1µ2µ3(σiqi)W
µ1σ1
a Wµ2σ2

b Wµ3σ3
c

(3.31)

Hghost = iϵabc
∑
σi

∫
d[q1]d[q2]d[q3](2π)

3δ3
(∑

σiqi

)
e−i

∑
σjωjt Θ

∆− |
∑
j

σjωj |

 ·

· ūσ1a u
σ2
b q

µ
3W

σ3
µ,c

(3.32)
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3. Lepton scattering

HHiggs = ig2ϵabc

3∑
d=1

Idw
∑
σi

∫
d[q1]d[q2]d[q3](2π)

3δ3
(∑

σiqi

)
e−i

∑
σjωjt·

·Θ

∆− |
∑
j

σjωj |

 h̄σ1a h
σ2
b q

µ
1W

σ3,d
µ,c +

+ig1
Yw
2
ϵabc

∑
σi

∫
d[q1]d[q2]d[q3](2π)

3δ3
(∑

σiqi

)
e−i

∑
σjωjt·

·Θ

∆− |
∑
j

σjωj |

 h̄σ1a h
σ2
b q

µ
1B

σ3
µ,c+

+

[
g11
∑
σ

∫
d[p]d[q]ρf p̂µΦ

σ(q)e−iσp̂qtΘ(Ep − ωq)Θ(∆− p̂q)+

+ g̃11
∑
σ

∫
d[p]d[q]ρf p̂µ(Φ

c)σ(q)e−iσp̂qtΘ(Ep − ωq)Θ(∆− p̂q) + h.c.

]

(3.33)

where σ = ± and Γµ1µ2µ3 is the VVV vertex:

Γµ1µ2µ3 (q1, q2, q3) = (qµ31 − qµ32 ) gµ1µ2 + (qµ12 − qµ13 ) gµ2µ3 + (qµ23 − qµ21 ) gµ3µ1 , (3.34)

which can be approximated in the strong ordering region by the eikonal form analogously
to equation (2.14). Furthermore:

p̂µ =
pµ
Ep

; ρf =
∑
f

b†fbf . (3.35)

and notice that we used a short hand notation, where e.g.: b− is the annihilation operator
for particles, b+ the creation operator for anti-particles, (b+)† the annihilation operator
for anti-particles and (b−)† is the creation operator for particles.

As the next step, we want to use the method of eikonal approximation to differentiate
between soft and hard energies occurring at the vertex. Looking at a usual scattering
experiment we have 3 types of first order radiative corrections: real, virtual (electroweak)
and QCD ones. The first includes initial and final state radiations of a photon as well as
interference between those (c.f.: fig. 3.3), the second consists of vertex and propagator
corrections and box diagrams with two massive boson exchanges (c.f.: fig. 3.4), while
the third covers gluon radiation (c.f.: fig. 3.5). Since we study in this section only the
electroweak interaction we can omit the QCD correction in the following. The eikonal
approximation thus enables us to factorize the scattering amplitude squared into the
hard Born amplitude (without any radiation) and a factor containing all radiation and
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3. Lepton scattering

any virtual corrections coincide with the real ones up to a sign. As a result, for the
VVV-interaction vertex one can define in the strongly ordered energy region an emission
current similar to QCD:

jaµ(q) =

(
p̄µ

p̄ · q + iε
tap̄ +

pµ
p · q + iε

tap

)
, (3.36)

with ta = σa/2 the SU(2) generators, which can be used to write down the amplitude
squared.

Figure 3.3.: Feynman diagrams of QED corrections

Figure 3.4.: Feynman diagrams of virtual (electroweak) corrections

Figure 3.5.: Feynman diagrams of QCD corrections

Applying this to our soft Hamiltonian and acting on a set of states |h⟩ = |p1α1, ..., phαh⟩
with it, we obtain the decomposition for the transition hi → hf

2:
2The ghost and VVVV-interaction can be omitted.
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3. Lepton scattering

Hs = Heik(Epartons > ∆) +Hs(ωi < ∆)

= H>
eik +H<

s =

= gi
∑
i∈h

tiap̂
i
µA

µ,a (t,νit) + g11
∑
i∈h

tiap̂
i
µΦ+ g̃11

∑
i∈h

tiap̂
i
µΦ

c +H<
s

(3.37)

where

gi = g1
Y R
w

2
+ g1

Y L
w

2
− g2

∑
a

Iaw

Aµ,a = Bµ +Wµ,b b = 1, 2, 3

and

H<
s ≈

∑
σ

∫ ∆

λ
d[p]d[q] ρa3int(p) p̂µ W

µσ
a (q) e−iσp̂·qt Θ(Ep − ω), (3.38)

with
ρ3int = iϵabcWµσ

b (p)Wµσ
c (p).

Eventually, we can calculate the eikonal coherent state operators:

U∆,h
eik (Π) = exp

[
ig

∫ ∆

λ
d[q]

∑
a

h∑
i=1

p̂µi t
a
i

p̂iq
Πωa,µ(q)

]
(3.39)

with the vector fields, dressed up to energy ω, defined as:

Πωa,µ(q) = −i
(
Aωµ,a −Aω†µ,a

)
(3.40)

Since U∆,h
eik (Π) are functionals of Πωaµ(q) only they commute at different isospin indices:

[
U∆
αβ(Π), U

∆
α′β′(Π)

]
= 0 (3.41)

and thus by summing over the weak isospin in our calculation to prove the BN theorem
we end up with an IR-finite result.3

3Compare with e.q. (2.21) but instead of the sum over different colours we have in this case the sum
over different weak isospins.
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4. Hadron scattering and PDF
formulation

Having discussed the case of lepton scattering in great detail in the previous chapter, we
now turn our focus on the hadron scattering case, with quarks as initial states. These
kind of processes are of special interest for hadron colliders such as the LHC (or future
FCC).

Due to the fact that the initial proton states are not SU(2) gauge singlets, the BN theorem
is violated in the standard approach. The effect of the appearing Sudakov logarithms
gets worse as the center of mass energy increases ([CCC00], [BPW18]). Trying to fix it
analogously to the procedure described previously, we encounter some difficulties arising
from the need of using PDFs to describe the internal structure of the proton. In the
standard approach the cross-section is defined as:

σPP→X =
∑
ij

∫ 1

0
dx

∫ 1

0
dyfi(x)fj(y)σīj→X (xp1, yp2) , (4.1)

where i, j run over all hadron constituents and fi and fj are their according PDFs. For
the moment we leave the final state undetermined and denoted by X.

Restricting us for the moment to strong interactions only, we want to explore how the
violation of the BN theorem is resolved in the QCD case. As we have already explored,
we need to sum over all colours in the hard cross-section to truly include all the infor-
mation of all possible final states. This is represented in the PDF formulation via three
separate PDFs for each quark. However, this way we encounter a seemingly unavoid-
able contradiction, namely the coloured quark states are physical states in the BRST
construction, where we are in the realm of perturbation theory. In contrast to that,
PDFs are non-perturbative quantities, which breaks down the BRST construction. Also,
quarks cannot act as physical initial states. The answer to the resulting question, how
such a factorisation can still work, lies in the one-to-one correspondence between each
quark and its flavour.

4.1. Construction of gauge-invariant quark fields

Switching back to our starting situation including weak interactions and restricting our-
selves to first generation quarks only, the isospin sum rules:
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4. Hadron scattering and PDF formulation

∫
dx (fuL(x)− fūL(x) + fuR(x)− fūR(x)) = 2 (4.2a)∫
dx
(
fdL(x)− fd̄L(x) + fdR(x)− fd̄R(x)

)
= 1 (4.2b)

fiL(x) = fiR(x) (4.2c)

dictate different PDFs for up- and down-type quarks. Having left-handed up- and down-
quarks as members of the multiplets the BN violation appears unavoidable. Especially
since the possibility of loosening the equality of left-handed and right-handed quarks,
which after all becomes necessary at high energies, and completely shifting the isospin
to the right-handed partons seems rather unlikely since the proton is a parity eigenstate.

The way out of this apparent dead end will open up by the nature of eq.(4.1), which
represents only the LO of the FMS expansion, i.e.: we will need to consider higher orders
of the expansion as well. The usual elementary left-handed quark field, qL = (uL, dL)
can be dressed equivalently to the lepton case in eq.(3.11) and thus the physical flavour
of the left-handed quarks equals the global symmetry of the Higgs field. The difference
to the left-handed leptons is consequently entirely determined by the remaining quantum
numbers, such as hyper charge, baryon number and lepton number.

Eventually we can construct our weak gauge-invariant quark fields as Dirac spinors of
the form:

U =

( (
(X)†qL

)
1

uR

)
D =

( (
(X)†qL

)
2

dR

)
.

(4.3)

4.2. The BN theorem restoration for hadrons

Furthermore we can construct a nucleon operator needed for lattice simulations:

N =
1

2
(1 + γ0) ϵ

IJKUI
(
UTJ Cγ5DK

)
=

=
ϵIJK

2

(
uR −

(
(X)†qL

)
1(

(X)†qL
)
1
− uR

)I
×

(((
(X)†qL

)J
1

)T
τ2
(
(X)†qL

)K
2
−
(
uJR
)T
τ2dKR

)
=

=
ϵIJK

2

((
uR − ϕ2uL
ϕ2uL − uR

)I
+ ϕ1

(
dL
−dL

)I)
×

×
(
|ϕ2|2

(
uJL
)T
τ2d

K
L − |ϕ1|2

(
dJL
)T
τ2ujL −

(
uJR
)T
τ2dKR

+ ϕ2ϕ
∗
1

(
uJL
)T
τ2uKL − ϕ1ϕ

∗
2

(
dJL
)T
τ2d

K
L

)
,

(4.4)
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4. Hadron scattering and PDF formulation

where we follow the construction described in ([Maa19], [EMS17], [GL10]). In eq.(4.4) C
is the charge conjugation matrix, τ2 the second Pauli matrix and the capital indices run
over the different colours. The projector in front excludes positive parity as is required
for a proton. This nucleon operator collapses to its usual QCD form [GL10], assuming
LO in the Higgs v.e.v., ϕ1 = 0 and ϕ2 = v.

Taking a closer look at eq.(4.4) we recognise that U solemnly carries all of the spin and
flavour and due the preceding projector mixes left-handed with right-handed components.
It is easily apparent that in a manifestly gauge-invariant description additional valence
Higgs degrees of freedom exist, which carry the proton flavour.

This allows for the interpretation of the would-be quark PDFs in eq.(4.1) as the probabil-
ity to encounter a flavour carrier eq.(4.3) in the proton. At low energies we have the case
that the structure of the flavour carriers is not resolved and thus we have quark-Higgs
bound states as initial states in our hard cross-section, which can be FMS expanded.

Assuming the entire internal weak structure of the proton, eq.(4.4), to be part of the weak
bound state, eq.(4.3), enables us to switch at high energies from LO to the full expression
just like in eq.(3.17) and hence restore the BN theorem by reinterpreting the quark PDFs
as physical flavour PDFs. However, the consideration of multi-parton interactions or in
the case of the impossibility to separate between strong and weak bound states, we rely
on the introduction of explicit valence Higgs PDFs to maintain the isospin sum rules.

This can be done by defining four Higgs PDFs, fhij , where i and j denote the weak and
custodial contributions. Note that the flavour is carried by the custodial symmetry and
therefore does not appear as extra index. To preserve gauge invariance as well as the BN
theorem the following equation must hold for all PDFs:

fh 1
2
j = fh− 1

2
j , (4.5)

where j = u, d for up-type and down-type quark flavour respectively. As a result, we can
now rewrite the sum rules of eq. (4.2a) and (4.2b) as:

∫
dx
(
fuR(x)− fūR(x) + fh 1

2
u + fh− 1

2
u

)
= 2 (4.6a)∫

dx
(
fdR(x)− fd̄R(x) + fh 1

2
d + fh− 1

2
d

)
= 1 (4.6b)

In Rξ gauges this would mean possibly having unphysical initial states, which, however,
can be at high energies due to the Goldstone boson equivalence theorem be seen as
longitudinally polarized vector boson matrix elements. The remaining sum rule of eq.
(4.2c) still contains left-handed quark PDFs, but they relate via:

fuL = fdL . (4.7)
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4. Hadron scattering and PDF formulation

Note that the sum rules for momentum and electromagnetic charge in the new setting
contain all types of PDFs, also the Higgs ones. This new structure preserves the BN
theorem automatically also for hadron collisions. The challenge, however, is the deter-
mination of all the necessary PDFs. Nevertheless, we can view two different scenarios,
where we can use approximations to avoid this tedious work and still get rather satisfying
results.

In the first one, we consider the low energy case, where we can ignore the weak sub-
structure and thus approximate:

∑
uL,dL,hij

∫ 1

0
dx

∫ 1

0
dy fi(x)fj(y)σ

elementary
īj→X

(xp1, yp2) ≈

≈
∑
uL,dL

∫ 1

0
dx

∫ 1

0
dy f̃i(x)f̃j(y)σ

elementary
īj→X

(xp1, yp2) ,

(4.8)

where f̃i are the standard BN theorem violating PDFs and the "elementary" superscripts
imply that they are the usual perturbative cross-sections, i.e.: the ones in LO in the
Higgs v.e.v. of perturbation theory. From the high energy point of view, what in reality
happens is that either a combination of left-handed quarks from a valence bound state,
eq.(4.3), or a radiation of left-handed quarks from the valence Higgs take part in the
hard interaction, and the Higgs becomes off-shell suppressed. Ignoring the Higgs part in
the process will lead to the ususal BN theorem violating terms, whose effect is sufficient
small to be neglected at low energies.

In the second scenario, we treat the weak sub-structure solemnly with augmented per-
turbation theory and use eq.(3.17). This might take care of the weak sub-structure, but
not of the strong one. The consequent sub-processes due to the interaction of the QCD
cores of the physical proton need to be approached via a PDF formulation again. This
harbours the problem of not only having to deal with proton-like states but also QCD-like
objects, whose PDFs are in contrast to the former not as easily available. The problem
might better be approached by other sources, such as lattice calculations.

As we restricted us in the previous discussion on the first generation quarks only, it is
worth noting how the inclusion of the other generations can possibly be treated. The
basic concepts of course remain the same, but get further complicated by the off-diagonal
inter-generation elements of the CKM matrix. These can be recast as inter-generation
Yukawa interactions of the Higgs, which suggests a PDF scheme to be the formulation of
choice here. The exact implementation would however go beyond the scope of this work
and will be left for future researchers.
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5. Conclusion

Let us recall the basic statement of the BN theorem once again: In massless theories, we
are getting confronted with IR singularities because emission and absorption probabilities
for massless particles do not decrease sufficiently fast enough in the limit of large distances
and long times and thus interactions cannot be neglected at remote future or past. The
infinite number of possible indistinguishable final states must be considered by summing
over them and as a result, the virtual and real IR divergences cancel each other.

Reminiscing the initial problem we were confronted with, namely the violation of the
Bloch-Nordsieck theorem for the electroweak sector of the Standard model due to the
existence of a non-Abelian charge, which destroys the necessary gauge-invariance of the
asymptotic states, we were able to restore its validity by introducing compound operators
as physical states in our theory. At low energies and an active BEH effect by using the
FMS expansion and only keeping terms at LO, we obtain the same results as standard
perturbation theory. At energies s >> m2

w the Higgs part of the bound state only acts
as a spectator to the dominant FMS part and since the scattering process is inclusive
with respect to the weak doublet, it is necessary to sum over all possible cross-sections,
which results in an IR safe result.

Encouraged by the direct calculations, it was only natural to attempt a more general
proof in the form of the coherent state approach, where it turned out that the coherent
state operators commute at different weak isospin indices and thus the S-matrix becomes
IR safe by summing over the different isospin indices of the bound-states.

A more sophisticated situation presents itself for situations where the influence of the
Higgs becomes inevitable (at the TeV scale of future lepton colliders) as well as in the case
of non-trivial bound-state contributions. Either way, we will have to switch to a PDF
language, which is more complicated and arises the need for further studies, whether it
be to analyse the Higgs PDF in more detail or to include further lepton generations. The
latter gets complicated due to inter-generational entries of the CKM matrix and might
be a good candidate for the use of lattice methods. Furthermore, at very high energies
we expect fragmentation to happen analogously to QCD.

In the end, the augmented perturbation theory using the FMS mechanism may be an
efficient way to describe the potential impact for predictions of effects happening at future
colliders without too much extra effort. Moreover, the new gauge-invariant description
of weak scattering processes requiring a Higgs proportion in the initial and final states
opens up a variety of new research opportunities in theoretical as well as experimental
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5. Conclusion

particle physics, which allows us to look into the future with joyful anticipation for what
remains to be seen.
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A. S-channel cross-section e−e+ → qq̄

We want to focus in this section on the derivation of the cross-section for the s-channel
process e−e+ → qq̄ at tree- level including photon and Z-boson exchange, as well as mak-
ing a high energy approximation. We start by drawing the relevant Feynman diagrams
and recalling the according Feynman rules.

Figure A.1.: Feynman diagrams

Figure A.2.: Feynman rules for fig.(A.1)
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A. S-channel cross-section e−e+ → qq̄

with gZ = e
sinθwcosθw

, vf = I3f −2Qfsin
2θw, af = I3f , where f = e, q in our case, I3f is the

weak isospin and Qf is the electric charge measured in units of positron charge (e > 0),
i.e.: Qe = −1, Qup = 2/3, Qdown = −1/3. Hence the matrix element reads as follows:

−iM =− i(Mγ +MZ) =

= ie2QeQq [v̄(p2)γ
µu(p1)]

gµν
q2

[ū(p′1)γ
νv(p′2)]+

+i
(gZ

2

)2 [
v̄(p2)γ

µ(ve − aeγ
5)u(p1)

] gµν − pµpν
M2

Z

q2 −M2
Z

[
ū(p′1)γ

ν(vq − aqγ
5)v(p′2)

] (A.1)

To continue with the calculation we first need to specify some pre-arrangements. In the
ultra-relativistic limit we are working in (E ≫ m ⇒ E ≈ p and m ≈ 0) the left- and
right-handed spinors take the form:

uR ≈
√
E
(
c, seiϕ, c, seiϕ

)
uL ≈

√
E
(
−s, ceiϕ, s,−ceiϕ

)
vR ≈

√
E
(
s,−ceiϕ,−s, ceiϕ

)
vL ≈

√
E
(
c, seiϕ, c, seiϕ

)
(A.2)

where we used the abbreviations s = sin θ2 and c = cos θ2 . Furthermore we lay the
coordinate system in such a way, that the incoming leptons lay on the z-axis and thus
with:

e−
θ = 0

e+
θ = π

ϕ = ϕ ϕ = π − ϕ

q
θ = θ

q̄
θ = π − θ

ϕ = 0 ϕ = π

we get:

e−
uR =

√
E (1, 0, 1, 0)

e+
vR =

√
E (1, 0,−1, 0)

uL =
√
E (0, 1, 0,−1) vL =

√
E (0, 1, 0, 1)

q
uR =

√
E (c, s, c, s)

q̄
vR =

√
E (c, s,−c,−s)

uL =
√
E (−s, c, s,−c) vL =

√
E (s,−c, s,−c)

Table A.1.: left-handed and right-handed spinors
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A. S-channel cross-section e−e+ → qq̄

Additionally for two arbitrary spinors ψ and ϕ we have:

ψ̄γ0ϕ = ψ∗
1ϕ1 + ψ∗

2ϕ2 + ψ∗
3ϕ3 + ψ∗

4ϕ4

ψ̄γ1ϕ = ψ∗
1ϕ4 + ψ∗

2ϕ3 + ψ∗
3ϕ2 + ψ∗

4ϕ1

ψ̄γ2ϕ = −i (ψ∗
1ϕ4 − ψ∗

2ϕ3 + ψ∗
3ϕ2 − ψ∗

4ϕ1)

ψ̄γ3ϕ = ψ∗
1ϕ3 − ψ∗

2ϕ4 + ψ∗
3ϕ1 − ψ∗

4ϕ2

(A.3)

and

ψ̄γ0γ5ϕ = ψ∗
1ϕ3 + ψ∗

2ϕ4 + ψ∗
3ϕ1 + ψ∗

4ϕ2

ψ̄γ1γ5ϕ = ψ∗
1ϕ2 + ψ∗

2ϕ1 + ψ∗
3ϕ4 + ψ∗

4ϕ3

ψ̄γ2γ5ϕ = +i (ψ∗
1ϕ2 − ψ∗

2ϕ1 + ψ∗
3ϕ4 − ψ∗

4ϕ3)

ψ̄γ3γ5ϕ = ψ∗
1ϕ1 − ψ∗

2ϕ2 + ψ∗
3ϕ3 − ψ∗

4ϕ4

(A.4)

Having all the necessary ingredients together we will split the matrix element into the
photon and the Z-boson part and calculate them separately, starting with the former.

A.1. Photon part

The photon part of the matrix element eq. (A.1) reads:

−iMγ = ie2QeQq [v̄(p2)γ
µu(p1)]

gµν
q2

[ū(p′1)γ
νv(p′2)]

=ie2QeQq (j
γ
e )
µ gµν
q2

(jγq )
ν

(A.5)

with (jγe )µ the electron current and (jγq )ν the quark current. Using eq. (A.3) we are able
to write down expressions for the electron and quark currents for different combinations
of left-handed and right-handed particles.

electron currents quark currents

e−Re
+
L (jγe )µ = 2E(0,−1,−i, 0) qRq̄L (jγq )ν = 2E(0,−cosθ, i, sinθ)

e−Le
+
R (jγe )µ = 2E(0,−1, i, 0) qLq̄R (jγq )ν = 2E(0,−cosθ,−i, sinθ)

e−Re
+
R (jγe )µ = 0 qRq̄R (jγq )ν = 0

e−Le
+
L (jγe )µ = 0 qLq̄L (jγq )ν = 0

Table A.2.: electron and quark currents in case of a photon as exchange particle
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A. S-channel cross-section e−e+ → qq̄

We are thus left with only four non-zero combinations:

e−Re
+
L → qRq̄L

e−Re
+
L → qLq̄R

e−Le
+
R → qRq̄L

e−Le
+
R → qLq̄R

whose according matrix elements we will in the following denote as MRR, MRL, MLR

and MLL. Their absolute values squared take the forms:

|MRR|2 = |MLL|2 = (4πα)2Q2
f (1 + cos θ)2

= e4Q2
f (1 + cos θ)2

|MRL|2 = |MLR|2 = (4πα)2Q2
f (1− cos θ)2

= e4Q2
f (1− cos θ)2

(A.6)

For the differential cross-section we also need to perform a spin averaging and sum over
the different colors of the final state quarks. Considering this the formula reads:

dσ

dΩ
=

1

64π2s

|p⃗1|
|p⃗1|

3

4
|Mji|2 (A.7)

and we can simply plug in the results from eq.(A.6):

dσ

dΩ
=

1

64π2s

3

4
2 (4πα)2Q2

f

[
(1 + cos θ)2 + (1− cos θ)2

]
=

=
3

4

e4

(4π)2
Q2
f

s
(1 + cos2θ)

(A.8)

where we used q2 = s = 4E2 and e2 = 4πα. Since we are viewing an azimuthally
symmetric scattering process, we can rewrite eq.(A.8) as:

dσ

dcosθ
=

3

4

e4

8πs
Q2
f (1 + cos2θ) (A.9)
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A. S-channel cross-section e−e+ → qq̄

A.2. Z-boson part

We continue now with the Z-boson part of the matrix element eq.(A.1):

−iMZ =+ i
(gZ

2

)2 [
v̄(p2)γ

µ(ve − aeγ
5)u(p1)

]
·

gµν − pµpν
M2

Z

q2 −M2
Z

·
[
ū(p′1)γ

ν(vq − aqγ
5)v(p′2)

] (A.10)

Using the polarisation operators PL = 1
2(1 − γ5) and PR = 1

2(1 + γ5) and rewriting vf
and af with help of a left-handed and a right-handed part: vf = cfL + cfR, af = cfL − cfR,
where cfR = −Qfsin2θW and cfL = I3f −Qfsin

2θW , the matrix element eq.(A.10) reads:

MZ = −g2Z
gµν − pµpν

M2
Z

q2 −M2
Z

[ceLv̄(p2)γ
µPLu(p1) + ceRv̄(p2)γ

µPRu(p1)] ·

·
[
cqLū(p

′
1)γ

νPLv(p
′
2) + cqRū(p

′
1)γ

νPRv(p
′
2)
] (A.11)

Furthermore we know that PLu = uL, PRu = uR, PLv = vR and PRv = vL, which leads
to the expression:

MZ =− PZg
2
Zgµν [c

e
Lv̄R(p2)γ

µuL(p1) + ceRv̄L(p2)γ
µuR(p1)] ·

·
[
cqLūL(p

′
1)γ

νvR(p
′
2) + cqRūR(p

′
1)γ

νvL(p
′
2)
]
=

=− PZg
2
Zgµν [c

e
L(j

Z
e,LR)

µ + ceR(j
Z
e,RL)

µ] · [cqL(j
Z
q,LR)

ν + cqR(j
Z
q,RL)

ν ]

(A.12)

since the currents (jZe,RR)
µ, (jZe,LL)

µ, (jZq,RR)
ν and (jZq,LL)

ν are zero (c.f.: photon part)

and we used the abbreviation PZ =
gµν−

pµpν

M2
Z

q2−M2
Z

=
gµν

q2−MZ2+iMZΓZ
. Hence we are left with:

MRR = −Pzg2zceRc
q
Rgµν [v̄L (p2) γ

µuR (p1)] ·
[
ūR
(
p′1
)
γνvL

(
p′2
)]

MRL = −Pzg2zceRc
q
Lgµν [v̄L (p2) γ

µuR (p1)] ·
[
ũL
(
p′1
)
γνvR

(
p′2
)]

MLR = −Pzg2zceLc
q
Rgµν [v̄R (p2) γ

µuL (p1)] ·
[
ūR
(
p′1
)
γνvL

(
p′2
)]

MLL = −Pzg2zceLc
q
Lgµν [v̄R (p2) γ

µuL (p1)] ·
[
ūL
(
p′1
)
γνvR

(
p′2
)] (A.13)

The according absolute values squared are:

|MRR|2 = |Pz|2 g4z (ceR)
2 (cqR)2 q4(1 + cos θ)2

|MRL|2 = |Pz|2 g4z (ceR)
2 (cqL)2 q4(1− cos θ)2

|MLR|2 = |Pz|2 g4z (ceL)
2 (cqR)2 q4(1− cos θ)2

|MLL|2 = |Pz|2 g4z (ceL)
2 (cqL)2 q4(1 + cos θ)2

(A.14)

38



A. S-channel cross-section e−e+ → qq̄

with |PZ |2 = 1
(s−M2

Z)2+M2
ZΓ2

Z
.

Having all the necessary ingredients together we can finally write down the differential
cross-section for the Z-boson part of the scattering process:

dσ

dΩ
=

1

64π2s

3

4

g4Zs
2

(s−M2
Z)

2 +M2
ZΓ

2
2

{
[
(ceR)

2(cqR)
2 + (ceL)

2(cqL)
2
]
(1 + cosθ)2+

+
[
(ceR)

2(cqL)
2 + (ceL)

2(cqR)
2
]
(1− cosθ)2}

(A.15)

resp.:

dσ

dcosθ
=

3g4z

128πs
(
1− 2M2

Z
s +

M4
Z
s2

+
M2

ZΓ2
Z

s2

) ·
·
{[

(ceR)
2 (cqR)2 + (ceL)

2 (cqL)2] (1 + cos θ)2+

+
[
(ceR)

2 (cqL)2 + (ceL)
2 (cqR)2] (1− cos θ)2

} (A.16)

A.3. Final cross-section

To obtain the complete cross-section that includes photon as well as Z-boson exchange,
we first need to take Mγ +MZ and sum, square and average over all spins.

1

4

∑
spins

|Mγ +MZ |2 =
1

4

∑
spins

[
|Mγ |2 + 2Re(MγM∗

Z) + |MZ |2
]

(A.17)

From sections (A.1) and (A.2) we already know that:

1

4

∑
spins

|Mγ |2 = e4Q2
f

1

2

[
(1 + cos θ)2 + (1− cos θ)2

]
(A.18)

1

4

∑
spins

|MZ |2 =
g4Zs

2

4(s−M2
Z)

2

{[
(ceR)

2 (cqR)2 + (ceL)
2 (cqL)2] (1 + cos θ)2+

+
[
(ceR)

2(cqL)
2 + (ceL)

2(cqR)
2
]
(1− cosθ)2

} (A.19)

and with the equations (A.6) and (A.13) we can also calculate:

1

4

∑
spins

2Re(MγM∗
Z) = −

e2Qfg
2
Zs

2(s−M2
Z)

{[
(ceR)

(
cqR
)
+ (ceL)

(
cqL
)]

(1 + cos θ)2+

+
[
(ceR)(c

q
L) + (ceL)(c

q
R)
]
(1− cosθ)2

} (A.20)
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A. S-channel cross-section e−e+ → qq̄

Eventually, we are able to put everything together:

dσ

dcosθ
=
2π · 3
64π2s

{
e4Q2

f

1

2

[
(1 + cos θ)2 + (1− cos θ)2

]
+

+
e4s2

4(sW cW )4(s−M2
Z)

2

[
β1(1 + cos θ)2 + β2(1− cos θ)2

]
+

+ −
e4Qfs

2(sW cW )2(s−M2
Z)

[
γ1(1 + cos θ)2 + γ2(1− cos θ)2

]}
=

=
3

128πs

{[
2Q2

fe
4 − 8Qfe

4F (s)γ1 + 42e4F 2(s)β1
]
(1 + cos θ)2+

+
[
2Q2

fe
4 − 8Qfe

4F (s)γ2 + 42e4F 2(s)β2
]
(1− cos θ)2

}
(A.21)

where we used the abbreviations:

β1 =
[
(ceR)

2 (cqR)2 + (ceL)
2 (cqL)2] and β2 =

[
(ceR)

2 (cqL)2 + (ceL)
2 (cqR)2]

γ1 =
[
(ceR)

(
cqR
)
+ (ceL)

(
cqL
)]

and γ2 =
[
(ceR)

(
cqL
)
+ (ceL)

(
cqR
)]

F (s) =
s

4(sinθW cosθW )2(s−M2
Z)

and the fact that the neutral weak coupling constant is related to the electromagnetic
coupling constant via:

gZ =
e

sinθW cosθW
(A.22)
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A. S-channel cross-section e−e+ → qq̄

The above cross-section can be re-expressed using the weak hypercharge Yw = 2(Q− I3w)
instead of the isospin. Using:

sw =
g2√
g21 + g22

; cw =
g1√
g21 + g22

; e =
g1g2√
g21 + g22

; y := Ye; Y := Yq (A.23)

we thus obtain for the limit MZ → 0 and inserting the electron’s electric charge Qe = −1:

dσ

dcosθ
=

3

128πs

{
C1(1 + cos θ)2 + C2(1− cos θ)2

}
(A.24)

C1 =
1

16

(
−2g21g

2
2 y (2 + y)(2Qf − Y )Y + g41(2 + y)2(−2Qf + Y )2 + g42(16Q

2
f + y2Y 2)

)

C2 =
1

4
g42
(
Q2
fy

2 + Y 2
)

Summing over the possible final states and inserting the according the electric charges:

Qup = 2/3; Qdown = −1/3 ⇒ Q2
q = Q2

up +Q2
down = 5/9 (A.25)

results in:

C1 =
1

72

(
6g21g

2
2 y (2 + y)Y (−1 + 3Y ) + g41(2 + y)2

(
10− 6Y + 9Y 2

)
+ g42

(
40 + 9y2Y 2

))

C2 =
1

36
g42
(
5y2 + 18Y 2

)
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B. Electroweak interaction Hamiltonian
density

Since for the coherent state approach the interaction part of the electroweak Hamiltonian
is needed, we will derive the electroweak Hamiltonian density from the Lagrangian here.
Let us start by writing down the electroweak Lagrangian in the non-physical fields 1:

Lew = Lgauge + Lfermion + LHiggs + Lgf + Lghost, (B.1)

where the gauge part has the form:

Lgauge = −1

4
Bµν(x)B

µν(x)− 1

4
W a
µν(x)W

a,µν(x) (B.2)

with

Bµν(x) = ∂µBν(x)− ∂νBµ(x)

W a
µν(x) = ∂µW

a
ν (x)− ∂νW

a
µ (x) + g2ε

abcW b
µ(x)W

c
ν (x), a = 1, 2, 3

The fermionic part can be written as:

Lfermion =
∑
i

Ψ̄L
i i ̸ DΨL

i +
∑
i,σ

ψ̄Ri,σi ̸ DψRi,σ (B.3)

using:

Dµ =

(
∂µ − ig2I

a
wW

a
µ + ig1

Yw
2
Bµ

)
ψ2(x) =

1

2
(1− γ5)ψ(x)

ψR(x) =
1

2
(1 + y5)ψ(x)

Ψ̄L
i (x) =

(
ψLi,t, ψ

L
i,−
)

i = 1, 2, 3 . . . lepton doublet σ = ±... member of the doublet

Iaw =
τa

2
with τa... Pauli matrices

1This is sufficient since we are working in the high energy regime.
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B. Electroweak interaction Hamiltonian density

The Higgs part (including the Yukawa part) will be denoted as:

LHiggs =(DµΦ)
†(DµΦ)− V (Φ)

−
∑
i,j

(gij Ψ̄
L
i ψ

R
j,−Φ+ g̃ijΨ̄

L
i ψ

R
j,+Φ

c + h.c.), (B.4)

where
Φ(x) =

(
ϕ+(x), ϕ0(x)

)
( for YΦ = +1)

Φc(x) = iτ2Φ∗ =
(
ϕ0∗(x),−Φ−(x)

)
V (Φ) =

λ

4

(
Φ†Φ

)2
− µ2Φ+Φ

(
µ2, λ > 0

)
.

The gauge conditions for this Lagrangian read as follows:

C0 = ∂µBµ +
1

s2w+c2w
Mzξzx = 0

C1 = ∂µW 1
µ + i 1√

2
Mwξ

′
wϕ

+ + i 1√
2
Mwξ

′
wϕ

− = 0

C2 = ∂µW 2
µ + 1√

2
Mwξ

′
wϕ

− − 1√
2
Mwξ

′
wϕ

+ = 0

C3 = ∂µW 3
µ +

(
1− sw

s2w+c2w

)
1
cw
Mzξzχ = 0,

which can be rewritten using the definition of Φ and Φc, as well as introducing the
matrices:

φ1 :=

 0

− 1√
2
(v + η)


P+ :=

τ0 + τ3

2

P− :=
τ0 − τ3

2

in the form:

C0 = ∂µBµ − i
√
2

1

s2w + c2w
Mzξz

(
P−Φ+ φ1

)
= 0

C1 = ∂µWµ
µ +

i√
2
Mwξ

′
wP

+Φ− 1√
2
Mwξ

′
wP

−Φc = 0

C2 = ∂µW 2
µ − 1√

2
Mwξ

′
wP

−Φc − 1√
2
Mwξ

′
wP

+Φ̄ = 0

C3 = ∂µW 3
µ − i

√
2

(
1− sw

s2w + c2w

)
1

cw
Mzξz

(
P−Φ+ φ1

)
= 0
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B. Electroweak interaction Hamiltonian density

Thus the gauge-fixing part of the Lagrangian can be written as:

Lgf = − 1

2ξ1

(
C1
)2 − 1

2ξ2

(
C2
)2 − 1

2ξ3

(
C3
)2 − 1

2ξ0

(
C0
)2 (B.5)

For the ghost part of the electroweak Lagrangian we introduce the ghost fields u0, u1, u2, u3

and write down the formula for the unphysical fields:

Lghost = −
∫
d4zd4yūa(x)

(
δCa(x)

δV c
ν (z)

δV c
v (z)

δθb(y)
+ δbaδca

δCa(x)

δΦ1(z)

δΦ1(z)

δθb(y)
+

+δbaδca
δCa(x)

δΦ2(z)

δΦ2(z)

δθb(y)

)
ub(y),

where Φ1 = Φ, Φ2 = Φc and a, b, c ∈ {0, 1, 2, 3}.

Using the gauge-fixing conditions above and the transformation laws of the fields:

Bµ(x) → Bµ(x) +
1

g1
∂µδθ

y

W 1
µ(x) →W 1

µ +
1

g2
∂µδθ

1 +W 3
µδθ

3 −W 3
µδθ

2

W 2
µ(x) →W 2

µ +
1

ρ22
∂µδθ

2 +W 3
µδθ

1 −W 1
µδθ

3

W 3
µ(x) →W 3

µ(x) +
1

ρ2
∂µδθ

3 +W 1
µδθ

2 −W 2
µδθ

1

Φ(x) →
[
1− i

1

2
δθy(x) + i

τa

2
δθa(x)

]
Φ(x)

Φc(x) → iτ2
[
1 + i

1

2
δθy(x)− i

τa

2
δθa(x)

]
Φ∗

we can calculate the ghost part of the Lagrangian:

Lghost =

{
−ū0

(
1

g1
∂µ∂µδθ

Y − 1√
2

1

s2w + c2w
MzξzP

−Φ

)
u0

−ū0 1√
2

1

s2w + c2w
Mzξz

(
P−τ1Φu1 + P−τ2Φu2 + P−τ3Φu3

)}
+

+

{
−ū1 1

2
√
2
Mwξ

′
w

(
P+Φu0 − P+τ1Φu1 − P+τ2Φu2 − P+τ3Φu3

+iP−τ2Φ∗u0 − iP−τ2τ1Φ∗u1 − iP−τ2τ2Φ∗u2 − iP−τ2τ3Φu3
)

−ū1
(

1

g2
∂µ∂µ

)
u1 + ū1

(
∂µW 3

µ

)
u2 − ū1

(
∂µW

2
µ

)
u3
}
+

(B.6)
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B. Electroweak interaction Hamiltonian density

+

{
ū2

1

2
√
2
Mwξ

′
w

(
iP+Φu0 − iP+τ1Φu1 − iP+τ2Φu2 − iP+τ3Φu3

+P−τ2Φ∗u0 − P−τ2τ1Φ∗u1 − P−τ2τ2Φ∗u2 − P−τ1τ3Φ∗u3
)

− ūs2(∂µW 2
µ)u

1 − ū2
(

1

g2
∂µ∂µ

)
u2 + ū2(∂µW 1

µ)u
3

}
+

+

{
−ū3 1√

2

(
1− sw

s2w + c2w

)
1

c2w
Mzξz(P

−τ1Φu1 − P−Φu0 + P−τ2Φu2)

+P−τ3Φu3) + ū3(∂µW 2
µ)u

1 − ū3(∂µW 1
µ)u

2 − ū3
(

1

g2
∂µ∂µ

)
u3
}

The next step is to calculate all the conjugate momenta needed for the Hamiltonian
density:

ΠB :=
∂L

∂(∂0Bβ)
= −B0β − 1

ξ0

[
∂µB0 − i

√
2

1

s2w + c2w
Mzξz(P

−Φ− φ1)g
0β

]
(B.7)

ΠW 1 :=
∂L

∂(∂0W 1
β )

=−W 1,0β

− 1

ξ1

[
∂µW 1,0 +

i√
2
Mwξ

′
w

(
P+Φ− P−Φ∗) g0β]

+ ū2g0βū3 − u3g0βu2

(B.8)

ΠW 2 :=
∂L

∂(∂0W 2
β )

=−W 2,0β

− 1

ξ2

[
∂µW 2,0 +

1√
2
Mwξ

′
w

(
P−Φ∗ + P+Φ

)
g0β
]

− ū1g0βu3 − ū2g0βu1 + ū3g0βu1

(B.9)

ΠW 3 :=
∂L

∂(∂0W 3
β )

=−W 3,0β

− 1

ξ3

[
∂µW 2,0 + i

√
2

(
1− sw

s2w + c2w

)
1

c2w
Mzξz

(
P−Φ+ φ1

)
g0β
]

+ ū1g0βu2

(B.10)
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B. Electroweak interaction Hamiltonian density

ΠψL
:=

∂L

∂(∂0ΨL)
=
∑
i

Ψ̄L
i iγ

0 (B.11)

ΠψR
:=

∂L

∂(∂0ψR)
=
∑
i,σ

¯ψRi,σiγ
0 (B.12)

ΠΦ :=
∂L

∂(∂0Φ)
=
(
D0Φ

)† (B.13)

Πu0 :=
∂L

∂(∂0u0)
= − 1

g1
θY ū0∂0 (B.14)

Πua :=
∂L

∂(∂0ua)
= − 1

g2
ūa∂0 for a = 1, 2, 3 (B.15)

We can now write down the electroweak Hamiltonian density:

Hew = ΠB∂0Bβ +ΠW 1∂0W
1
β +ΠW 2∂0W

2
β +ΠW 3∂0W

3
β

+Πψ2∂0Ψ
L +Πψ2∂0ψ

R +ΠΦ∂0Φ+

+Πu0∂0u
0 +Πua∂0u

a − Lew =

=

{
−B0β − 1

ξ0

[
∂µB0 − i

√
2

1

s2w + c2w
Mzξz(P

−Φ− φ1)g
0β

]}
∂0Bβ+

+

{
−W 1,0β − 1

ξ1

[
∂µW 1,0 +

i√
2
Mwξ

′
w

(
P+Φ− P−Φ∗) g0β]+ ū2g0βu3 − ū3g0βu2

}
∂0W

1
β+

+

{
−W 2,0β − 1

ξ2

[
∂µW 2,0 +

1√
2
Mwξ

′
w

(
P−Φ∗ + P+Φ

)
g0β
]
− ū1g0βu3 + ū3g0βu1

}
∂0W

2
β+

+

{
−W 3,0β − 1

ξ3

[
∂µW 2,0 + i

√
2

(
1− sw

s2w + c2w

)
1

c2w
Mzξz

(
P−Φ+ φ1

)
g0β
]

+ū1g0βu2 − ū2g0βu1
}
∂0W

3
β+

+

(∑
i

Ψ̄L
i iγ

0

)
∂0Ψ

L +

∑
i,σ

¯ψRi,σiγ
0

 ∂0ψ
R +

(
D0Φ

)†
∂0Φ+

+

(
− 1

g1
θY ū0∂0

)
∂0u

0 +
∑
a

(
− 1

g2
ūa∂0

)
∂0u

a − Lew

(B.16)
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The Hamiltonian density in (B.16) consists of the quadratic part and the interaction
part. Since we are only interested in the latter, we can dispose the unnecessary terms.
Additionally we can further simplify the expression by taking into account, that in con-
trast to the QCD case discussed in section (2.2.1) the mass scale in the electroweak case
is bounded by the mass of the W and Z bosons (∼ 100 GeV). With this in mind it be-
comes apparent that the extra mass terms in (e.q.: (B.16)) are irrelevant for the further
discussion. Eventually the interaction part of the electroweak Hamiltonian density takes
the form:

Hew
int =

{
+ū2g0βu3 − ū3g0βu2

}
∂0W

1
β +

{
−ū1g0βu3 + ū3g0βu1

}
∂0W

2
β+

+
{
ū1g0βu2 − ū2g0βu1

}
∂0W

3
β + g2ϵ

abc(∂µW
a
ν )W

b
µW

c
ν+

+
1

4
g22ϵ

abcϵadeW b
µW

c
νW

d,µW c,ν+

+
∑
i

Ψ̄′L
i

(
−g2IawW a

µ + g1
Yw
2
Bµ

)
Ψ′L
i +

∑
i,σ

ψ̄Ri,σ

(
g1
Yw
2
Bµ

)
ψ̄Ri,σ+

+

(
ig2I

a
wW

a
µ − ig1

Yw
2
Bµ

)[
Φ†∂µΦ− Φ (∂µΦ)

†
]
+

−
[(

−ig2IawW a
µ + ig1

Yw
2
Bµ

)
Φ

]† [(
−ig2IawW aµ + ig1

Yw
2
Bµ

)
Φ

]
+

+
λ

4

(
Φ†Φ

)2
+
∑
i,j

(gijΨ̄
L
i ψ

R
j,−Φ+ g̃ijΨ̄

L
i ψ

R
j,+Φ

c + hc)+

+
[
−ū1

(
∂µW 3

µ

)
u2 + ū1

(
∂µW 2

µ

)
u3
]
+
[
+ū2

(
∂µW 3

µ

)
u1 − ū2

(
∂µW 1

µ

)
u3
]
+

+
[
−ū3

(
∂µW 2

µ

)
u1 + ū3

(
∂µW 1

µ

)
u2
]
,

(B.17)

whose terms can be rearranged and combined to the form which is used in section (3.4.1):
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B. Electroweak interaction Hamiltonian density

Hew
int =Hfermion +H3int +H4int +HHiggs +Hghost =

=
∑
i

Ψ̄′L
i

(
−g2IawW a

µ + g1
Yw
2
Bµ

)
Ψ′L
i +

∑
i,σ

ψ̄Ri,σ

(
g1
Yw
2
Bµ

)
ψ̄Ri,σ+

+g2ϵ
abc(∂µW

a
ν )W

b
µW

c
ν+

+
1

4
g22ϵ

abcϵadeW b
µW

c
νW

d,µW c,ν+

+

(
ig2I

a
wW

a
µ − ig1

Yw
2
Bµ

)[
Φ†∂µΦ− Φ (∂µΦ)

†
]
+

−
[(

−ig2IawW a
µ + ig1

Yw
2
Bµ

)
Φ

]† [(
−ig2IawW aµ + ig1

Yw
2
Bµ

)
Φ

]
+

+
λ

4

(
Φ†Φ

)2
+
∑
i,j

(gijΨ̄
L
i ψ

R
j,−Φ+ g̃ijΨ̄

L
i ψ

R
j,+Φ

c + hc)+

+ū1
(
∂iW 2

µ

)
u3 − ū1

(
∂iW 3

µ

)
u2 + ū2

(
∂iW 3

µ

)
u1 − ū2

(
∂iW 1

µ

)
u3+

+ū3
(
∂iW 1

µ

)
u2 − ū3

(
∂iW 2

µ

)
u1

(B.18)
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