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Abstract

The standard model (SM) stands as a cornerstone in particle physics, providing
remarkable insight into the fundamental interactions of nature. While the
Higgs field therein resolved the electroweak interaction puzzle, the elementary
particles are lacking gauge invariance with respect to the weak interaction.
Therefore, it may seem surprising that the usual treatment of leptonic scattering
in terms of gauge-variant elementary leptons is in strong agreement with
experimental results. This master thesis sheds light on this tension through
the Fröhlich-Morchio-Strocchi (FMS) mechanism. It posits gauge-invariance
of external leptons by introducing bound states of the elementary fields and
the scalar Higgs doublet. This effects can then be analyzed via an augmented
perturbation theory (APT), with its leading contribution corresponding to the
standard perturbative treatment of elementary particles. By taking into account
the scalar bound-state contribution in the scattering process e−L e+L → µ−

L µ+
L

of massless left-handed leptons at NLO, we obtain new and yet unaccounted
matrix elements in addition to the standard contributions. These could be
essential for an accurate theoretical description of (differential) cross sections,
especially for high-energy collisions in future lepton colliders.

iv





Acknowledgement

I would like to express my sincere gratitude to my two supervisors, Axel Maas
and Simon Plätzer, for their unwavering guidance, invaluable insights, and
continuous support throughout the journey of this master thesis. Their expertise
and encouragement have been instrumental in shaping the direction of this
research.

I would also like to extend my thanks to my colleague, Franziska Reiner,
whose thoughtful discussions and proofreading added depth to my work and
enriched the overall experience. Furthermore, my thanks extends to my friend
David Gulda, whose support and fruitful discussions about my path in science
had a strong impact in shaping this thesis.

Lastly, I am deeply thankful to my family for their boundless love,
encouragement, and patience. Their unwavering belief in me has been the
driving force behind my accomplishments.

Each of you has played an integral role in the realization of this work, and I am
truly grateful for all of your contributions.

vi





Contents

1. Introduction 2

2. Physical leptons in the weak sector of the SM 4
2.1. The weak sector of the SM . . . . . . . . . . . . . . . . . . . . . . . 4

2.2. Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3. FMS formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1. Gauge-invariance and physical leptons . . . . . . . . . . . 8

2.3.2. FMS expansion . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4. Scattering Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1. Differential cross section . . . . . . . . . . . . . . . . . . . . 11

2.4.2. Invariant matrix elements . . . . . . . . . . . . . . . . . . . 12

2.4.3. Bound states . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.4. FMS expansion of our leptonic scattering . . . . . . . . . . 16

2.4.5. Matrix elements and cross sections in APT . . . . . . . . . 18

3. Technical tools 20
3.1. Spinor-helicity (SH) formalism . . . . . . . . . . . . . . . . . . . . 20

3.1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.2. Spinor chains . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.3. Simplification rules . . . . . . . . . . . . . . . . . . . . . . . 24

3.2. Integral reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1. Scalar Integrals . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2. Tensor decomposition . . . . . . . . . . . . . . . . . . . . . 29

3.2.3. Reduction Summary . . . . . . . . . . . . . . . . . . . . . . 31

4. Software and packages 32
4.1. QGraf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.2. Input files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2. Our Mathematica tools . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2. Example calculation . . . . . . . . . . . . . . . . . . . . . . 38

5. Results 40
5.1. Tree level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2. Regular loop expressions . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1. Feynman diagrams . . . . . . . . . . . . . . . . . . . . . . . 43

viii



Contents

5.2.2. Reduced algebraic expressions . . . . . . . . . . . . . . . . 47

5.3. FMS loop expressions . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.1. Feynman diagrams . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.2. Reduced algebraic expressions . . . . . . . . . . . . . . . . 57

6. Conclusion and Future Work 62

A. Conventions 68
A.1. Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.2. Minkowski space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.3. Mandelstam variables . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.4. Dirac & Pauli matrices . . . . . . . . . . . . . . . . . . . . . . . . . 70

B. Tree level for the full EW model 72

C. Feynman rules in Weyl representation 76
C.1. Elementary external legs . . . . . . . . . . . . . . . . . . . . . . . . 76

C.2. External bound states . . . . . . . . . . . . . . . . . . . . . . . . . . 77

C.3. Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

C.4. Interaction vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

D. Scalar integrals 80
D.1. Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

D.2. Tadpole integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

D.3. Bubble integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

E. QGraf 84
E.1. Model file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

ix



List of Figures

2.1. Tree-level Feynman diagram for our process of order g2 . . . . . 13

2.2. NLO Feynman diagram with a fermionic loop of order g4 . . . . 13

2.3. Operator insertions of the leptons L = E, M as a Feynman rule,
approximated by an elementary spinor attached to a lepton and
scalar propagator with an integration of the relative momenta of
constituent particles. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4. All types of n-point functions occurring after the FMS expan-
sion. Each insertion of a bound state is marked by a cross and
translates to an integration over the relative momentum of one
of its constituents. One representation for each type of n-point
function was chosen. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5. Two suggestive plots that highlight different behaviour for the
deviation of dσ due to a gauge-invariant treatment, here for fixed
t and SM values vexp, gexp and λexp . . . . . . . . . . . . . . . . . . 19

3.1. Momentum and mass conventions for our choice of master inte-
grals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1. Fermionic self-energy diagram of the process e−L e+L → µ−
L µ+

L . . . 35

4.2. Triangle diagram due to the expanded six-point function from
FMS contributions in the final state . . . . . . . . . . . . . . . . . . 36

4.3. Accurate representation of the bound-state insertion with our
cross-notation from the Feynman rules of figure (2.3) . . . . . . . 36

4.4. Snail-diagram of the process e−L e+L → µ−
L µ+

L . . . . . . . . . . . . . 38

4.5. Tensor expression of our loop diagram in Mathematica . . . . . . 39

4.6. Scalar expression of our loop diagram in Mathematica . . . . . . 39

4.7. Final reduced expression of our loop diagram in Mathematica . . 39

5.1. Differential cross section of the tree-level process in terms of the
CM-energy

√
s and the scattering angle θ . . . . . . . . . . . . . . 42

5.2. Differential cross section of the tree-level process in terms of the
CM-energy

√
s and the pseudorapidity η . . . . . . . . . . . . . . 42

5.3. Differential cross section of the tree-level process in terms of the
CM-energy

√
s for fixed angles . . . . . . . . . . . . . . . . . . . . 43

5.4. Full list of all bubble diagrams . . . . . . . . . . . . . . . . . . . . 44

5.5. Full list of all snail diagrams . . . . . . . . . . . . . . . . . . . . . 45

5.6. Full list of all tadpole diagrams . . . . . . . . . . . . . . . . . . . . 45

x



List of Figures

5.7. Full list of all triangle diagrams . . . . . . . . . . . . . . . . . . . . 46

5.8. Full list of all box diagrams . . . . . . . . . . . . . . . . . . . . . . 46

5.9. Full list of all triangle diagrams arising from six-point functions 55

5.10. Full list of all box diagrams arising from eight-point functions . . 56

5.11. Exemplary FMS contribution . . . . . . . . . . . . . . . . . . . . . 57

6.1. Summary of all types of matrix elements due to the gauge-
invariant description of external leptons. Red lines symbolize all
possible propagator types that are consistent with Feynman rules
of the weak sector, and crosses correspond to operator insertions
of the composite scalar-lepton fields. The terms ϕa ∈ {h, χ, ϕ±}
represent the would-be Goldstone bosons in (6.1) and (6.2). . . . 64

B.1. Tree level diagrams for the scattering process in the full EW sector 72

B.2. Differential cross sections at tree-level for the full EW model
and our SU(2) model in terms of the CM-energy

√
s and the

pseudorapidity η . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B.3. Differential cross section of the tree-level process in terms of the
CM-energy

√
s and fixed angle θ = 0 of the full EW model and

our SU(2) model (above). The comparison dσSU(2)/dσEW shows
strong agreement for energies far above the pole of the vector
boson (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

C.1. Full list of all leptonic external legs . . . . . . . . . . . . . . . . . . 76

C.2. Operator insertion of the bound states . . . . . . . . . . . . . . . . 77

C.3. Full list of all propagators. . . . . . . . . . . . . . . . . . . . . . . . 78

C.4. Full list of all interactions containing four particles. . . . . . . . . 78

C.5. Full list of all interactions containing three particles. . . . . . . . 79

xi







1. Introduction

The fundamental requirement of theories like the standard model is the gauge
invariance of experimental observables [1, 2, 3, 4]. However, a paradox seems to
arise in the electroweak sector, as the elementary particles that appear in the
Lagrangian do not strictly adhere to gauge invariance [1, 2, 3]. Despite this,
when treated within perturbation theory, they remarkably provide a very good
explanation for experimental outcomes [5, 6].

The solution to this seemingly paradox situation comes through the Fröhlich-
Morchio-Strocchi (FMS) mechanism [3, 7]. It introduces gauge-invariant com-
posite states that are a mixture of the standard elementary fields. These bound
states can be compared with the perturbative elementary states through a FMS
expansion, given that we choose a gauge fixing where perturbation theory
can be applied [8]. Empirical support for this concept is given by lattice sim-
ulations for static properties of particles [4, 9, 10]. This can have an effect on
dynamical quantities such as cross sections [11], where the scattering of bound
states primarily derives from the scattering process involving their elementary
constituents [3, 7], akin to the scattering behavior observed in QCD bound
states [5]. Nevertheless, a crucial distinction exists. In the usual treatment of the
electroweak sector, only one constituent from the actual bound-state operators
contributes to all orders of perturbation theory. Incorporating the contribution
from the second component necessitates moving beyond the boundaries of
conventional perturbation theory, augmenting the calculations by including
additional Green’s functions of higher orders than the standard elementary
ones. The effects of this augmented perturbation theory (APT) have been tested
in an isolated study of the full gauge-invariant propagators in the scalar and
weak sector of the standard model [12, 13], and prior studies of collisions in the
flavour sector using parton distribution functons (PDFs) suggest a small devia-
tion from usual calculations in fermionic scattering processes [14]. Furthermore,
this change to external bound states has implications on the Bloch-Nordsieck
theorem [15]. However, no full treatment using APT for fermions at loop-order
has been done yet. This master thesis sets out to fill this gap. To do so, we
analytically calculate the matrix elements of the process

e−L e+L → µ−
L µ+

L (1.1)

with massless left-handed leptons at next-to-leading-order (NLO) by introduc-
ing gauge-invariant bound states of elementary leptons with the Higgs doublet.
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We isolate the weak sector of the standard model to avoid complications such
as infrared divergences due to massless photons.

This thesis is structured as follows: First, we introduce in chapter (2) the theo-
retical basics of our analysis. After shortly reviewing the usual picture of the
renormalized weak sector in (2.1) and (2.2) along with our augmented picture
that incorporates gauge-invariance for leptons (2.3), we highlight the impact on
particle phenomenology and its effect on the calculation of matrix elements and
(differential) cross sections (2.4). Then, we present the main technical tools (3)
that went into our calculations, namely the spinor-helicity formalism in section
(3.1) and the integral reduction of loop expressions in section (3.2). In chapter
(4) we will highlight the main software tools created and used in the process of
our research. The diagram generation via QGraf (4.1) and our implementation
of tools for loop calculations within Mathematica (4.2) are emphasized here.
Finally, we present our results in (5), splitting the resulting matrix elements into
tree level (5.1), regular one-loop (5.2) and new terms (5.3) at NLO. To conclude,
a brief summary and outlook into future research is presented in chapter (6).
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2. Physical leptons in the weak
sector of the SM

We showcase the usual picture of the weak sector of the SM with massless Weyl
fermions in sections (2.1) and (2.2). Imposing gauge invariance on our external
leptons via the FMS formalism then yields bound states of elementary leptons
and Higgs particles in section (2.3). We link these objects to perturbation theory
throught a FMS expansion, where end up with an extended expression for
matrix elements and the differential cross section for perturbative calculations
at NLO in section (2.4).

2.1. The weak sector of the SM

The electroweak theory is the unified theory of two fundamental forces in nature:
electromagnetism and the weak interaction. It was developed in the 1960s by
Sheldon Glashow, Abdus Salam, and Steven Weinberg [16, 17, 18]. It is based
on the principles of gauge theories that describe interactions between particles
using symmetry principles. The symmetry group of the electroweak interaction
is SU(2)W × U(1)Y, where SU(2)W represents the weak isospin symmetry and
U(1)Y represents the weak hypercharge symmetry. For the description of bound
states in our leptonic scattering process, it is sufficient to only consider the weak
interaction with two generations of massless fermions. The Lagrangian density
of the theory then reads

LW =− 1
4

Wa
µνWa,µν +

1
2

tr
{
(DµX)†(DµX)

}
− λ

4

(
tr
{

X†X
}
− v2

)2
+ LFermion (2.1)

where Wa
µν = ∂µWa

ν − ∂νWa
µ + gϵabcWb

µWc
ν (a, b, c = 1, 2, 3) are the field strength

tensors in terms of the three weak gauge fields Wa
µ, the weak coupling g and

the Levi-Civita tensor ϵabc. For practical purposes, we made use of the matrix

4



2.1. The weak sector of the SM

representation of the complex scalar doublet ϕ = (ϕ1, ϕ2)
T

X =

(
ϕ∗

2 ϕ1
−ϕ∗

1 ϕ2

)
(2.2)

The covariant derivative Dµ reads

Dµ = ∂µ1 − ig
σa

2
Wa

µ (2.3)

with the generators σa

2 of the symmetry group SU(2)W . The first two vector
bosons are combined into the charged fields

W±
µ =

1√
2
(W1

µ ∓ iW2
µ) (2.4)

The interactions for two generations of massless Weyl spinors are incorporated
through the fermionic term

LFermion =
2

∑
j=1

[
ψ

j
Li /Dψ

j
L + κ

j
Ri/∂κ

j
R + qj

Li /Dqj
L + aj

Ri/∂aj
R ++b

j
Ri/∂bj

R

]
(2.5)

where we used the following short forms for the gauged left-handed doublets
ψ

j
L/qj

L and the ungauged right-handed singlets κ
j
R, aj

R and bj
R

ψ1
L =

(
νeL
e−L

)
, ψ2

L =

(
νµL
µ−

L

)
κ1

R = e−R , κ2
R = µ−

R

q1
L =

(
uL
dL

)
, q2

L =

(
cL
sL

)
a1

R = uR, a2
R = dR

b1
R = cR, b2

R = sR (2.6)

The dashed expressions in (2.5) represent the corresponding anti-particles.
Expanding the complex Higgs doublet in terms of the would-be Goldstones

ϕ =

(
ϕ+

1√
2
(v + h + iχ)

)
,
(
ϕ+
)†

= ϕ− (2.7)

so that it has a non-vanishing vacuum expectation value (vev) v

⟨ϕ⟩ =
(

0
v√
2

)
, ⟨X⟩ = v√

2
1 (2.8)
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2. Physical leptons in the weak sector of the SM

leads to the ”spontaneous symmetry breaking” of the weak sector. This allows
for the vector bosons to acquire masses and is famously known as the Brout-
Englert-Higgs (BEH) mechanism [19, 20]. Expanding the Lagrangian using (2.3)
and (2.8), we can read off the masses of the neutral vector bosons from their
kinematic terms

g2v2

8
W3

µW3,µ =
m2

2
W3

µW3,µ → m =
gv
2

(2.9)

The same mass appears for the term W+
µ W−,µ of the charged vector bosons.

Similarly, the kinematic part of the real scalar Higgs field h yields its mass in
terms of the self-interaction λ and the vev v

λv2h2 =
m2

h
2

h2 → mh =
√

2λv (2.10)

Quantization and higher-order loop corrections demand a specific gauge choice
[21]. We employ here the renormalizable ’t Hooft gauge with the gauge-fixing
functionals

C± = ∂µW±
µ ∓ imξ ′+ϕ±, CW = ∂µW3

µ − mξ ′Wχ (2.11)

leading to the gauge-fixing Lagrangian

LGauge = − 1
2ξW

(CW)2 − 1
2ξ+

C+C− (2.12)

We can further choose ξ ′W = ξW and ξ ′+ = ξ+ to obtain simple expressions for
the masses of our would-be Goldstone bosons

mϕ± =
√

ξ+m, mχ =
√

ξWm (2.13)

In order to retrieve perturbative gauge-invariance, we need unphysical virtual
states called Faddeev-Popov ghosts [5]. Their Lagrangian is

LGhost = −
∫

d4yur(x)
δCr(x)
δθs(y)

us(y), r, s = W,± (2.14)

with a variation of the gauge-fixing functions Cr in terms of infinitesimal gauge
transformations and the Faddeev-Popov (anti-)ghost fields us, ur. Their masses
are the same for the Goldstone bosons. By adding (2.1), (2.12) and (2.14) we
obtain the full quantized Lagrangian necessary for loop calculations

LFull
W = LW + LGauge + LGhost (2.15)

In a generalized treatment of the massive standard model, the covariant derivate
is expanded to include the hypercharge field Bµ, which leads to three massive
vector fields with two distinct masses and the massless photon field after
rotating them around the Weinberg angle θW . There, the BEH mechanism is
also responsible for the generation of masses for the elementary fermions via
Yukawa interactions. The Weyl fermions then combine into the usual Dirac
fermions [22].
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2.2. Renormalization

2.2. Renormalization

The final part of the Lagrangian arises from the renormalization of our theory.
It cancels all appearing ultraviolet (UV) divergences and can be obtained in
a future work via counterterm diagrams that modify the Feynman rules. The
starting point is to split the bare parameters of the Lagrangian in terms of
renormalized parameters (denoted by the subscript R) and corresponding
counterterms. We briefly list the necessary steps here for an on-shell scheme
[21], where we set the renormalized masses to the poles of the elementary
propagators. Then, our coupling and masses read

m2 = m2
R + δm2

R, m2
h = m2

h,R + δm2
h,R

g = ZggR = g + δg (2.16)

Additionally, we need to introduce renormalization coefficients for the bare
fields. Expanding them at NLO yields

W± = Z1/2
+ W±

R =

(
1 +

1
2

δZ+

)
W±

R , W = Z1/2
W WR =

(
1 +

1
2

δZW

)
WR (2.17)

Inserting these expressions into the full Lagrangian would already cancel all
UV-divergences of the S-matrix elements and the Green’s functions with only
physical external particles [21]. For a full renormalization it is necessary to
further introduce renormalization factors of the unphysical sector related to the
would-be Goldstone bosons and ghost fields

χ = Z1/2
χ χR =

(
1 +

1
2

δZχ

)
χR, ϕ± = Z1/2

ϕ ϕ±
R =

(
1 +

1
2

δZϕ

)
ϕ±

R ,

u± = Z̃±u±
R =

(
1 + δZ̃±

)
u±

R , uW = Z̃WuW
R =

(
1 + Z̃W

)
uW

R ,

uW = uW
R , u± = u±

R (2.18)

At NLO, the gauge-parameters do not need to be renormalized and the would-
be Goldstone bosons decouple from the scalar gauge bosons. Inserting these
transformations into the bare Lagrangian (2.15) allows us to perform the split

LFull
W (Φi, gi) = LFull

W (Φi,R, gi,R) + LCT(Φi,R, gi,R, δZi) (2.19)

into the full Lagrangian in terms of renormalized fields Φi,R, the parameters
gi,R = {gR, m2

R, m2
h,R} and the counterterm Lagrangian LCT containing all terms

proportional to δZi.
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2. Physical leptons in the weak sector of the SM

2.3. FMS formalism

2.3.1. Gauge-invariance and physical leptons

There is a problem with the picture given before: The apparent breaking of the
electroweak gauge symmetry is forbidden due to Elitzur’s theorem [23]. It states
that only operators with non-vanishing expectation values are invariant under
local gauge transformations. However, there are gauge-fixing choices where
the vev v of the Higgs field vanishes, and the usual modification via Wilson
loops (as can be done in QED) is not sufficient to amend gauge invariance
for the weak sector. This is directly linked to the Gribov-Singer ambiguity
of non-abelian gauge groups such as SU(2)W [24]. In reality, the electroweak
symmetry group only distinguishes different gauge charges, similar to color
charges in QCD. A solution has been given by Fröhlich, Morchio and Strocchi
via the FMS formalism, which can be separated into two parts [3, 7]. For the
SM, the modification of leptonic external states is relatively simple. It turns
out that the scalar Higgs sector has a global SU(2)C symmetry for vanishing
Yukawa couplings. It acts on the scalar doublet X in (2.2) as a right-side
multiplication with a matrix d in the fundamental representation of SU(2)C.
This custodial symmetry group is the same as the gauged electroweak symmetry
group SU(2)W . Consequently, we can construct gauge-invariant bound states
by multiplying the left-handed leptonic doublet with the Higgs doublet

ψ1
L, f → Ψ1

L, f = X†ψ1
L, f =

(
ϕ2νeL − ϕ1e−L
ϕ∗

1 νeL + ϕ∗
2 e−L

)
(2.20)

ψ2
L, f → Ψ2

L, f = X†ψ2
L, f =

(
ϕ2νµL − ϕ1µ−

L
ϕ∗

1 νµL + ϕ∗
2 µ−

L

)
(2.21)

These compound leptons can be identified with physical particles. They are
now singlets with respect to the (electro-)weak gauge group, and instead
obtain a global SU(2)C charge from the scalar sector that differentiates the
two components f of Ψ1

L and Ψ2
L. Right-handed leptons are not charged under

SU(2)W , so they can remain unchanged. Furthermore, all other elementary
particles that interact weakly need to be formulated in terms of compound
states. Their construction for the rest of the fermionic sector and the bosonic
sector in the SM follows along similar lines [25]. Importantly, it is a specific
feature of the SM that the global symmetry of the scalar sector aligns with
the non-abelian gauge group of the vector bosons. This correspondence is
potentially lost in beyond the Standard Model theories [26].
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2.3. FMS formalism

2.3.2. FMS expansion

These bound states can be related to perturbation theory via a FMS expansion.
This is the second part of the FMS formalism that requires a gauge fixing where
the scalar field obtains a non-vanishing vev that minimizes the scalar potential
in (2.1). One can then apply the splitting of the scalar field into the vev v and
fluctuation fields η to analyze the resulting objects in terms of elementary ones.
The leading term of this expansion in powers of v is the usual expression we
encounter in perturbation theory. For our model, the expanded scalar doublet
X has the form

X =
v√
2

1 + η =

( 1√
2
(v + h − iχ) ϕ+

−ϕ− 1√
2
(v + h + iχ)

)
(2.22)

with the real scalar Higgs field h and the would-be Goldstone bosons χ and
ϕ± that we already encountered in (2.7). The compound leptons in (2.20) yield
after expansion

Ψ1
L =

(
NeL
E−

L

)
=

1√
2

(
vνeL + (h + iχ)νeL −

√
2ϕ+e−L

ve−L + (h − iχ)e−L +
√

2ϕ−νeL

)
(2.23)

where we introduce capital letters to differentiate the elementary from the
bound-state leptons. The usual elementary electron e−L and electron neutrino
νeL are retained (up to a prefactor) if we neglect the scalar fluctuation fields(

NeL
E−

L

)
=

v√
2

(
νeL
e−L

)
+O

(
v0
)

(2.24)

Notably, the charged would-be Goldstone bosons mix the elementary leptons
within each generation. The situation is the same for the corresponding anti-
particles

Ψ1
L =

(
NeL
E+

L

)T

=
1√
2

(
vνeL + (h − iχ)νeL −

√
2ϕ−e+L

ve+L + (h + iχ)e+L +
√

2ϕ+νeL

)T

(2.25)

and the second generation of leptons. Let us first take the bound-state propa-
gator for the electron as a simple example of this expansion. By inserting the
expanded bound-state leptons of (2.23) and (2.25), its gauge-invariant form in
terms of elementary fields reads

9



2. Physical leptons in the weak sector of the SM

⟨0|Ψ1
L,2(x1)Ψ

1
L,2(x2)|0⟩ ≡ ⟨E−

L E+
L ⟩

=
v2

2
⟨e−L e+L ⟩+

v
2

(√
2⟨e−L [ϕ

+νeL]⟩+
√

2⟨[ϕ−νeL]e+L ⟩+ ⟨[he−L ]e
+
L ⟩

+ ⟨e−L [he+L ]⟩ − i⟨e−L [χe+L ]⟩ − i⟨[χe−L ]e
+
L ⟩
)

+
1
2

(
⟨[he−L ][he+L ]⟩ − i⟨[χe−L ][he+L ]⟩

+ i⟨[he−L ][χe+L ]⟩+ ⟨[χe−L ][χe+L ]⟩
)

+
1√
2

(
⟨[he−L ][ϕ

+νeL]⟩+ ⟨[ϕ−νeL][he+L ]⟩

− i⟨[χe−L ][ϕ
+νeL]⟩+ i⟨[ϕ−νeL][χe+L ]⟩

)
+ ⟨[ϕ−νeL][ϕ

+νeL]⟩ (2.26)

where |0⟩ is the vacuum of the free theory and square brackets denote the com-
pound fields at the same spacetime point. The original elementary propagator
appears as the leading term in v2, with fifteen subleading n-point functions (six
three-point functions with prefactor v and nine four-point functions without v).
Only the full sum of all sixteen terms is gauge-invariant.

In conclusion, expanding the bound-state particles into elementary ones by
splitting the Higgs doublet around the vev v via a FMS expansion leads to
additional terms in n-point functions, the starting point for any perturbative
scattering calculation in quantum field theory. A general study of this expansion
that also sheds light on the group structure and different breaking patterns can
be found in [26].
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2.4. Scattering Theory

2.4. Scattering Theory

2.4.1. Differential cross section

The physical quantity we want to compare to experiment in the future is the
(differential) cross section dσ of our leptonic scattering in the center-of-mass
(CM) frame. Derived from the cross sectional area, its definition in a quantum
theory is

dσ =
1
tF

dP (2.27)

where dP = N
Ni

is the differential probability of scattered particles N over
incident particles Ni, t represent the collision time and F the incoming flux of
particles. In our CM frame, the flux F is just the difference between velocities of
the two incoming particles normalized by the total volume |⃗v1 − v⃗2|/V

dσ =
V
t

1
|⃗v1 − v⃗2|

dP (2.28)

For theoretical calculations, we assume that all interactions happen in a finite
time interval and the asymptotic states at t = ±∞ are free of interactions. We
can then take the limits V → ∞, t → ∞ for the cross section in (2.28). The
probability for our initial state |i⟩ to evolve into a final state | f ⟩ is calculated via
amplitudes. In quantum field theory, they are obtained (up to normalization)
from the scattering or S matrix and the phase-space region of outgoing momenta
dΠ

dP = |⟨ f |S|i⟩|2dΠ (2.29)

For our perturbative calculation, we can split the S-matrix into a free and an
interaction part

S = 1 + iT (2.30)

Subtracting the one, factoring out a factor for momentum conservation and
sandwiching (2.30) between initial and final states, we obtain the invariant
matrix element M f i

⟨ f |S − 1|i⟩ = i(2π)4δ(4)
(

∑
in

pi − ∑
out

pj

)
⟨ f |M|i⟩, ⟨ f |M|i⟩ ≡ M f i (2.31)

for physical momenta. After some algebra, the differential cross section can
be expressed in terms of the solid angle dΩ = sin(θ)dθdϕ and the Heaviside
function H as(

dσ

dΩ

)
CM

=
1

64π2E2
CM

| p⃗ f |
| p⃗i|

|M|2H(ECM − m3 − m4) (2.32)

where we drop the indices of the matrix elements. Our external states are all
massless, so this expression further reduces to

11



2. Physical leptons in the weak sector of the SM

(
dσ

dΩ

)
CM

=
1

64π2E2
CM

|M|2 (2.33)

We use equation (2.33) for the tree-level calculation of our scattering process in
section (5.1).

2.4.2. Invariant matrix elements

The matrix elements ⟨ f |S|i⟩ themselves are related to Green’s functions of
quantum fields via the LSZ formula [27]. These Green’s functions are time-
ordered products of field operators sandwiched between the interacting vacuum
states |Ω⟩. For the leptonic process with ⟨ f | = ⟨M−

L M+
L | and |i⟩ = |E−

L E+
L ⟩ the

LSZ relation reads

⟨M−
L M+

L |S|E
−
L E+

L ⟩ ∼ ⟨Ω|T
(

Ψ2
L,2(x3)Ψ

2
L,2(x4)Ψ1

L,2(x1)Ψ
1
L,2(x2)

)
|Ω⟩ (2.34)

where in the right-hand expression we have the time ordering of fields T(...)
and the ground-state of the interacting theory |Ω⟩. The matrix elements of the
interacting fields are given by

⟨Ω|T
(

Ψ2
L,2(x3)Ψ

2
L,2(x4)Ψ1

L,2(x1)Ψ
1
L,2(x2)

)
|Ω⟩

=
⟨0|T

(
M−

L (x3)M+
L (x4)E−

L (x1)M+
L (x2)ei

∫
d4xLint

)
|0⟩

⟨0|T
(

ei
∫

d4xLint

)
|0⟩

(2.35)

with the interaction part of the Lagrangian Lint = L − L f ree that is free of
kinetic terms. Doing a perturbative expansion in our small coupling parameter
g yields the invariant matrix elements at a desired order in the weak coupling

⟨0|T
(

M−
L (x3)M+

L (x4)E−
L (x1)E+

L (x2)ei
∫

d4xLint
)
|0⟩

= ⟨0|T
(

M−
L (x3)M+

L (x4)E−
L (x1)E+

L (x2)
)
|0⟩

+ ∑
k

ig
∫

d4x⟨0|T
(

M−
L (x3)M+

L (x4)E−
L (x1)E+

L (x2)Φk(x)
)
|0⟩+O

(
g2
)

(2.36)

with Φk(x) representing field operators from our Lagrangian density Lint. The
calculations of our invariant matrix elements M can be represented visually
through Feynman diagrams. These serve as a pictorial representation of the
calculations within (2.36), where each diagram consists of lines and vertices
that correspond to algebraic expressions we can translate via Feynman rules.
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2.4. Scattering Theory

These diagrams are a standard tool for the perturbative calculation of invariant
matrix elements [5]. For example, the tree-level Feynman diagram arising in
the lowest-order of g for the four-point function ⟨e−L e+L µ−

L µ+
L ⟩ is given in figure

(2.1). It features two interactions with an overall power of g2 from the expansion
(2.36).

Figure 2.1.: Tree-level Feynman diagram for our process of order g2

Figure 2.2.: NLO Feynman diagram with a fermionic loop of order g4

Regular loop diagrams arise from higher order terms in the coupling parameter
such as the fermionic bubble diagram in figure (2.2), and their algebraic expres-
sions are the main result in section (5). A list of all relevant Feynman rules of
our theory, including all other interaction vertices, propagators and external
lines, is given in appendix (C).
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2. Physical leptons in the weak sector of the SM

2.4.3. Bound states

The approach via the LSZ formalism to calculate invariant matrix elements M
works for bound states as well, but we need to introduce Bether-Salpeter (BS)
amplitudes ρL [5]. These are the amplitudes of one-particle states composed
of multiple elementary particles. For example, the BS-amplitude for the ele-
mentary electron e−L with momentum p11 and the real scalar Higgs field h with
momentum p12 reads

ρL(p11, p12)δ(p11 + p12 − p1) =

1
(2π)d

∫
ddx1

∫
ddx2⟨0|T

(
h(x1)e−L (x2)

)
|Me, p1⟩ei(p11x1+p12x2) (2.37)

with the bound state carrying the momentum p1 in the end. We approximate the
amplitude by the elementary spinors of the leptons. Why this approximation
is sufficient at NLO is related to the lepton mass of the elementary particles
being equal to the bound state particle (Me = me), and the details will be
explained in a future work by Maas, Plätzer and Sondenheimer. In terms of
Feynman rules, the insertion of external bound-state leptons corresponds to an
integration over the relative momenta with respect to the scalar and fermion
propagators of the elementary constituents. This is similar to a regular loop
integration of internal propagators, minus the dependence of loop momenta
that can arise in interaction vertices as seen in figure (2.3) and appendix (C). The
loop integral is regularized in dimensional regularization (DR) as explained in
section (3.2), and we include the external wavefunction renormalization Ki for
the state with momentum pi to ensure that the final invariant matrix elements
stay dimensionless.
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2.4. Scattering Theory

Figure 2.3.: Operator insertions of the leptons L = E, M as a Feynman rule, approximated by an
elementary spinor attached to a lepton and scalar propagator with an integration of
the relative momenta of constituent particles.
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2. Physical leptons in the weak sector of the SM

2.4.4. FMS expansion of our leptonic scattering

Our calculation focuses on the bound-state lepton collision of a left-handed
electron-positron pair scattering to a left-handed muon-antimuon pair

E−
L E+

L → M−
L M+

L (2.38)

This potentially deviates the most from its elementary counterpart since all
four leptons are now composite states with additional Higgs fields. All other
chiral combinations vanish in our model at NLO due to the neglection of
Yukawa interactions and photons that would allow for a coupling of right-
handed elementary leptons and quarks. As a first step, we apply the FMS
expansion and relate the four-point function of the process (2.38) to n-point
functions in terms of elementary particles. We abbreviate the Green’s functions
by skipping the explicit spacetime dependence and again group particles at
the same spacetime point via square brackets. Inserting the expansion of our
compound leptons in equations (2.23) and (2.25) leads to

⟨Ω|T
(

Ψ1
L,2(x1)Ψ

1
L,2(x2)Ψ2

L,2(y1)Ψ
2
L,2(y2)

)
|Ω⟩

≡ ⟨E−
L E+

L M−
L M+

L ⟩

=
v4

4
⟨e−L e+L µ−

L µ+
L ⟩

+
v3

4

(
⟨[he−L ]e

+
L µ−

L µ+
L ⟩+ ⟨e−L [he+L ]µ

−
L µ+

L ⟩

+ ⟨e−L e+L [hµ−
L ]µ

+
L ⟩+ ⟨e−L e+L µ−

L [hµ+
L ]⟩+ ...

)
+

v2

4

(
⟨[he−L ][he+L ]µ

−
L µ+

L ⟩+ ...
)
+

v
4

(
⟨[he−L ][he+L ][hµ−

L ]µ
+
L ⟩+ ...

)
+ ⟨[he−L ][he+L ][hµ−

L ][hµ+
L ]⟩+ ... (2.39)

The FMS expansion results in 256 different n-point functions, consisting of the
regular four-point function, twelve five-point functions, 54 six-point functions,
108 seven-point functions and 81 eight-point functions. All of these new contri-
butions can in principle contribute to the perturbative treatment of the collision,
and only the sum of all terms generates a gauge-invariant result. An illustration
of the different groups of n-point functions based on the number of scalar fields
is given in figure (2.4)
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2.4. Scattering Theory

Figure 2.4.: All types of n-point functions occurring after the FMS expansion. Each insertion of
a bound state is marked by a cross and translates to an integration over the relative
momentum of one of its constituents. One representation for each type of n-point
function was chosen.

The leading term is the usual four-point function, with higher-order terms
being suppressed by powers of the vev v. This kinematic suppression could
be a simple explanation of why the four-point function has been sufficient for
predictions of scattering experiments so far. Nevertheless, understanding how
the higher order terms affect the differential cross section and how these terms
scale especially at high-energy collisions (where no comparison of theory and
experiment can be done yet) necessitates a calculation of matrix elements for the
scattering process with bound states. The study of these new n-point functions
allows us to either verify the validity of the usual approach, namely the isolated
treatment of the first term in (2.39), or we obtain an experimentally significant
discrepancy for the differential cross section, and future studies of the FMS
formalism could become crucial.
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2. Physical leptons in the weak sector of the SM

2.4.5. Matrix elements and cross sections in APT

We split the invariant matrix elements into tree-level expressions MLO at
order g2, regular NLO expressions MNLO,R at order g4 and new contributions
MNLO,FMS due to the FMS formalism. We factor out the dependence of the
expansion parameter g and obtain for a description at NLO

M = g2MLO + g4MNLO,R + gnMNLO,FMS, n ≤ 4 (2.40)

where the new invariant matrix elements could generally be of a lower order
in g compared to the usual loop diagrams. Let us see how the new term in
(2.40) changes the expression for differential cross sections. If we plug (2.40)
into equation (2.33) and only keep terms up to order g6 we obtain(

dσ

dΩ

)
FMS

≡ dσFMS =
1

64π2s

(
g4|MLO|2 + g2n|MNLO,FMS|2

+ 2g6Re(M∗
LOMNLO,R) + 2g2+nRe(M∗

LOMNLO,FMS)

+ 2g4+nRe(M∗
NLO,RMNLO,FMS)

)
(2.41)

Higher orders in g require the inclusion of NNLO contributions to the matrix
elements since the interference term 2g8Re(M∗

LOMNNLO) would contribute
as well. Now, if we compare this with the differential cross section at NLO in
regular perturbation theory(

dσ

dΩ

)
R
≡ dσR =

1
64π2s

(
g4|MLO|2 + 2g6Re(M∗

LOMNLO,R)
)

(2.42)

we can quantify the deviation of the usual perturbative calculation compared
to our augmented perturbation theory (APT)

ANLO(s, t, g, v, λ) ≡ dσFMS

dσR
(s, t, g, v, λ)

= 1 +
2g2+nRe(M∗

LOMNLO,FMS)

g4|MLO|2 + 2g6Re(M∗
LOMNLO,R)

+
2g4+nRe(M∗

NLO,RMNLO,FMS) + g2n|MFMS|2

g4|MLO|2 + 2g6Re(M∗
LOMNLO,R)

(2.43)
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2.4. Scattering Theory

This quantity can depend on the external momenta via two independent Man-
delstam variables s and t as defined in (A.3), the electroweak coupling g, the
Higgs self-interaction λ and the vev v. One could fix the values for v, λ and g
to the values of the SM and investigate the deviations due to a full treatment
via the FMS formalism in the weak sector. Two exemplary curves of ANLO with
fixed t are shown in figure (2.5).

Figure 2.5.: Two suggestive plots that highlight different behaviour for the deviation of dσ due
to a gauge-invariant treatment, here for fixed t and SM values vexp, gexp and λexp

To sum up, applying perturbation theory in a leptonic scattering with the
requirement of gauge-invariance for our external states yields additional higher-
order Greens’s functions with additional Higgs content that affects invariant
matrix elements and potentially the differential cross section at NLO (2.43).
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While the prior chapter shed light on the improved phenomenology of the weak
sector of the SM, we now take a look at the main technical ingredients in order
to calculate the invariant matrix elements M outlined in (2.43). To start off,
section (3.1) addresses the main aspects of the spinor-helicity (SH) formalism
that introduces chiral Weyl spinors as a basis for our leptons [28]. This section
concludes with a full list of simplification rules that this formalism offers in our
Mathematica package ’spinorhelicity.m’ [29] in (3.1.3). The calculation of loop
contributions requires the reduction of tensor integral and the regularization of
divergences. Section (3.2) addresses these topics, where we highlight the rules
employed by our second Mathematica package ’oneloop.m’ [30].

3.1. Spinor-helicity (SH) formalism

3.1.1. Introduction

Since we are only concerned with massless Weyl spinors, the usage of a chirality
basis is a convenient choice for our calculations. This means we trade the usual
spinors with four components for two-dimensional Weyl spinors

uL(pi) = vR(pi) =

(
|i]
0

)
=

(
λ̃α̇

i
0

)
uL(pi) = vR(pi) = ([i|, 0) = ((λ̃i)α̇, 0)

uR(pi) = vL(pi) =

(
0
|i⟩

)
=

(
0

(λi)α

)
(3.1)

uR(pi) = vL(pi) = (0, ⟨i|) = (0, λα
i ) (3.2)

where uR(pi) =
1
2(1 + γ5)u(pi) is the right-handed Dirac spinor and |i⟩ is the

corresponding Weyl spinor, and uL(pi) = 1
2(1 − γ5)u(pi) is the left-handed

Dirac spinor with the corresponding Weyl spinor |i]. The spinor indices α
and α̇ indicate the two different spinor representations of the Lorentz group.
Throughout the calculations, we implore the ket-notation for Weyl spinors and
drop these indices in the final expressions of our calculations. Notably, for
massless momenta the negative-energy solutions are equal to positive-energy
solutions with flipped chirality. Both Dirac and Weyl spinors naturally fulfill
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3.1. Spinor-helicity (SH) formalism

the massless Dirac equation

/piuR(pi) = pµ
i σµ|i⟩ = 0, /piuL(pi) = pµ

i σµ|i] = 0

uL(pi)/pi = [i|pµ
i σµ = 0, uR(pi)/pi = ⟨i|pµ

i σµ = 0 (3.3)

Lorentz-invariant quantities can be constructed via the contraction of Weyl
spinors with the antisymmetric tensors ϵαβ and ϵα̇β̇

ϵαβ = −ϵαβ = ϵα̇β̇ = −ϵα̇β̇ =

(
0 1
−1 0

)
(3.4)

Similar to the metric tensor gαβ for four-momenta, they act by raising and
lowering spinor indices, with the caveat that the index ordering is important as
ϵαβ is antisymmetric. Spinor products are defined as

⟨ij⟩ ≡ ϵαβ(λi)α(λj)β = uR(pi)uR(pj) (3.5)

[ij] ≡ ϵα̇β̇λ̃α̇
i λ̃

β̇
j = uL(pi)uL(pj) (3.6)

Due to λi and λj being commuting numbers, the products of Weyl spinors are
antisymmetric

⟨ij⟩ = −⟨ji⟩, [ij] = −[ji] (3.7)

and inner products of identical momenta disappear

⟨ii⟩ = [ii] = 0 (3.8)

while products of opposite chirality cancel in general

⟨ij] = [ij⟩ = 0 (3.9)

The Fierz identity allows us to simplify spinor chains reads

(σµ)αα̇(σµ)β̇β = 2δ
β
α δ

β̇
α̇ (3.10)

Slashed momenta decompose into an outer products of Weyl spinors

/pi =

(
0 |i]⟨i|

|i⟩[i| 0

)
(3.11)

as massless momenta can be factorized into an outer product of our Weyl
spinors (λi)

α and (λ̃i)
α̇

pαα̇
i = (λi)

α(λ̃i)
α̇ (3.12)

For complex massless momenta, we have three complex degrees of freedom,
since we have two degrees of freedom per spinor and a scale symmetry under
the transformation

λα → zλα, λ̃α̇ → z−1λ̃α̇ (3.13)
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keeps the product of Weyl spinors unchanged. For real momenta the scaling
turns into a simple phase

λα = (λ̃α̇)† → z = eiϕ, ϕ ∈ R (3.14)

and complex conjugation of spinor products reduces to a chirality flip

[ij] = ⟨ij⟩∗ (3.15)

This comes in handy when we calculate complex conjugates of matrix elements
for the differential cross section as we can simplify spinor products in terms of
Mandelstam variables

2pi · pj =
1
2
(λ̃i)α̇(σ

µ)α̇α(λi)α(λ̃i)β̇(σ
µ)β̇β(λi)β = ⟨ij⟩[ji] (3.16)

The spinor products themselves are roots of the Mandelstam variables

⟨ij⟩ =
√

2pi · pjeiϕij , [ij] =
√

2pi · pje−iϕij (3.17)

where 2pi · pj = s, t, u as seen in (A.3). Energy conservation for the scattering
process with four external legs implies ∑4

j pµ
j = 0 for incoming momenta.

Translated to helicity spinors we have

4

∑
j=1

(λj)α(λ̃j)
α̇ = |1⟩[1|+ |2⟩[2|+ ... + |n⟩[n| = 0 (3.18)

Multiplying this with Weyl spinors from both sides gives us sixteen equations
of the form

4

∑
j=1

⟨ij⟩[jk] = 0 (3.19)

In our two-to-two scattering process, this allows us to rewrite Weyl products in
terms of Mandelstam variables. Expressions such as

⟨13⟩[32]⟨24⟩ (3.19)
= −⟨14⟩[42]⟨24⟩ (3.16)

= −⟨14⟩t (3.20)

often appear in intermediate calculations of loop diagrams, especially when
spinor chains with multiply gamma matrices appear.
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3.1. Spinor-helicity (SH) formalism

3.1.2. Spinor chains

We define spinor n-chains as products of Weyl spinors being embedded into
massless Dirac spinors, with n Dirac matrices in the Weyl basis as follows

[i|Dγα1 ...γα1 |j⟩D = ([i|, 0)
(

0 σα1

σα1 0

)
...
(

0 σαn

σαn 0

)(
0
|j⟩

)
(3.21)

This way, we can use Feynman rules in the usual Dirac picture and apply all
of the simplifications for Weyl spinors presented in the previous section. The
final reduced expressions of our calculations are then written in terms of simple
spinor products, so we drop the index of the initial Dirac spinors to simplify the
notation. In case of our massless loop diagrams, up to three Dirac matrices can
appear between spinors that disappear depending on the helicity and number
of matrices. Concretely, spinor chains of different helicities only survive with
an uneven number of Dirac matrices

[i|γα1 ...γα2n |j⟩ = ⟨i|γα1 ...γα2n |j] = 0 (3.22)

Spinor chains with the same helicity on both ends only remain for an even
number of Dirac matrices

[i|γα1 ...γα2n+1 |j] = ⟨i|γα1 ...γα2n+1 |j⟩ = 0 (3.23)

and all other spinor chains automatically evaluate to zero. Four-momenta can
be reconstructed from spinor chains via

[i|γµ|i⟩ ≡ (λ̃i)α̇(σ
µ)α̇α(λi)α = 2qµ

i (3.24)

and the Fierz identity of the Pauli matrices in (3.10) reads for spinor chains

⟨i|γµ|j]⟨k|γµ|l] = 2⟨ik⟩[l j] (3.25)

Sometimes it is helpful to reduce a n-chain with more than one Dirac matrix
into an expression only containing one-chains before contracting it with an
external momentum or metric tensor. This can be done by inserting a 1 of the
form

1 =
/pi/p j + /p j/pi

2pi pj
(3.26)

between two spinors. If we use (3.8), (3.11) and (3.16), one can reformulate it
solely in terms of Weyl spinors

1 =
(|i]⟨i|+ |i⟩[i|)(|j]⟨j|+ |j⟩[j|)

⟨ij⟩[ji] +
(i ↔ j)
⟨ij⟩[ji]

=
|i][j| − |j][i|

[ji]
+

|i⟩⟨j| − |j⟩⟨i|
⟨ji⟩ (3.27)
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With the help of (3.24), we can break down a two-chain

⟨i|γµγν|j⟩ = ⟨i|γµ

(
|i][j| − |j][i|

[ji]

)
γν|j⟩ = 1

[ji]

(
4pµ

i pν
j − ⟨i|γµ|j]⟨j|γν|i]

)
(3.28)

Similar reductions can be achieved if we insert the 1 of (3.27) between every
product of Dirac matrices in higher n-chains.

3.1.3. Simplification rules

The full list of simplification rules offered by our package ’spinorhelicity.m’ is
listed below

⟨ij⟩ = −⟨ji⟩, [ij] = −[ji], [ii] = ⟨ii⟩ = ⟨ij] = [ij⟩ = 0
[ij]⟨ji⟩ = sij, sij = s, t, u

⟨i|γµ|j]⟨k|γµ|l] = 2⟨ik⟩[l j]
⟨i|γα1 ...γαk ...γαn |j]gαkβ = ⟨i|γα1 ...γβ...γαn |j]
⟨i|γα1 ...γαk ...γαn |j]pi,αk = ⟨i|γα1 .../pi...γ

αn |j]
[i|γα1 ...γα2n+1 |j] = ⟨i|γα1 ...γα2n+1 |j⟩ = 0
[i|γα1 ...γα2n+1 |j] = ⟨i|γα1 ...γα2n+1 |j⟩ = 0

/pi = |i]⟨i|+ |i⟩[i|

1 =
|i][j| − |j][i|

[ji]
+

|i⟩⟨j| − |j⟩⟨i|
⟨ji⟩ (3.29)

with the addition of contraction rules for Dirac matrices as seen in appendix
(A.4). The contraction of momenta and metric tensors in (3.29) extends to all
other chirality configurations, only one example is shown. Strictly speaking,
the Fierz identity is only guaranteed to hold for momenta in four dimensions,
and an extension to the d-dimensional case is not fully clear yet [31]. For
simplicity, we claim that it holds equally in the case of loop calculations, and
future studies will hopefully bring clarity. Furthermore, calculations within the
SH formalism can be extended to massive spinors [32], so an investigation for
massive fixed-spin collisions can be studied in a similar fashion.
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3.2. Integral reduction

3.2. Integral reduction

Here we give a short overview of the tensor reduction of our loop integrals
at NLO. First, we treat the regularization and evaluation of scalar integrals
in section (3.2.1). How these are extracted from the tensor structures of the
matrix elements at loop-level is then covered in section (3.2.2). Finally, the main
reduction formulas are listed in section (3.2.3).

3.2.1. Scalar Integrals

Dimensional regularization (DR) is employed for the treatment of UV- and
IR-divergences that will appear in our scattering process. All divergent integrals
are therefore evaluated in d = 4 − 2ϵ dimensions, and the divergences appear
then as poles in terms of ϵ−1 (UV divergences) and ϵ−2 (IR divergences). The
general expression of the appearing scalar integrals is

Sd
(ν1,ν2,...,νn)

(0, q2
1, q2

2, ...q2
n−1|m2

1, m2
2, ...m2

n)

= h(ϵ)
∫ ddk

iπd/2
1

[k2 − m2
1]

ν1 [(k + q1)2 − m2
1]

ν2 · · · [(k + qn−1)2 − m2
n]

νn

(3.30)

where we suppress an imaginary part +iδ within each propagator for brevity.
The prefactor h(ϵ) contains the rest of the π-factors that result from the loop
integration and a dimensional factor of µ4−d that ensures the right mass dimen-
sion for final expressions. In addition, an overall factor rΓ is removed

h(ϵ) ≡ µ4−d

(4π)d/2rΓ
=

µ2ϵ

(4π)2−ϵrΓ
(3.31)

rΓ ≡ Γ2(1 − ϵ)Γ(1 + ϵ)

Γ(1 − 2ϵ)
= 1 − ϵγE + ϵ2

(
γ2

E
2

− π2

12

)
+O

(
ϵ3
)

(3.32)

which matches the convention of numerical software for future use in section
(4). The terms qi are linear combinations of the external momenta, and need
to be chosen such that there is momentum conservation at each interaction
vertex. We can shift away any external momentum possibly appearing in the
first propagator, so one only needs n − 1 momentum variables. Furthermore,
one can swap any two propagators within the integral

Sd(..., q2
i−1, ..., q2

j−1, ...|..., m2
i , ..., m2

j , ...) = Sd(..., q2
j−1, ..., q2

i−1, ...|..., m2
j , ..., m2

i , ...)
(3.33)
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where i, j = 1, ..., n. Depending on the number of propagators these integrals
have special names for unit propagators that serve as a basis that we can reduce
every loop expression to. Our choice of a sufficient basis of master integrals is

Tadpole integral Sd(0|m2) :

h(ϵ)
∫ ddk

iπd/2
1

[k2 − m2]
(3.34)

Bubble integral Sd(0, q2|m2
1, m2

2) :

h(ϵ)
∫ ddk

iπd/2
1

[k2 − m2
1][(k + q)2 − m2

2]
(3.35)

Triangle integral Sd(0, q2
1, q2

2|m2
1, m2

2, m2
3) :

h(ϵ)
∫ ddk

iπd/2
1

[k2 − m2
1][(k + q1)2 − m2

2][(k + q2)2 − m2
3]

(3.36)

Box integral Sd(0, q2
1, q2

2, q2
3|m2

1, m2
2, m2

3, m2
4) :

h(ϵ)
∫ ddk

iπd/2
1

[k2 − m2
1][(k + q1)2 − m2

2][(k + q2)2 − m2
3][(k + q3)2 − m2

4]
(3.37)

To improve readability, we omit the subscripts in (3.30) whenever we encounter
unit propagators. Graphically these integrals are depicted in (3.1). Due to power
counting we can already infer that both tadpole and bubble integrals are UV-
divergent, contrary to triangle and box integrals being UV-finite if all internal
masses are non-zero. If the master integral is both UV- and IR-convergent we
can set ϵ = 0 and evaluate the integrals in four dimensions. We further omit the
ϵ-dependence in the superscript and write S4(...) as we always expand around
d = 4 − 2ϵ within the reduced matrix elements in terms of the scalar master
integrals.
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3.2. Integral reduction

Figure 3.1.: Momentum and mass conventions for our choice of master integrals.

IR-divergences can be distinguished into soft- and collinear divergences
[33]. They can be determined by from the Caley-matrix Y of an integral

Yij = (qi − qj)
2 − m2

i − m2
j (3.38)

and they appear when there is an arrangement of momenta and masses such
that the zero-entries in the Caley-matrix form a cross or a box

YSo f t =


... 0 ... ...
0 0 0 ...
... 0 ... ...
... ... ... ...

 (3.39)

YCollinear =


... ... ... ...
... 0 0 ...
... 0 0 ...
... ... ... ...

 (3.40)
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All master integrals of our reduced loop expressions are IR-convergent in the
’t Hooft gauge, so we can drop all ϵ2-terms that appear in the d-dimensional
contractions of our spinor chains with metric tensors and momenta. Most
of these integrals can be expressed in terms of logarithms and dilogarithms.
The analytical expressions of all tadpole and bubble integrals are presented
in appendix (D), for the analytical expressions of UV-divergent triangle and
box integrals see [33]. In case of box integrals with complex masses (which
are necessary for the treatment of unstable particles), no general algebraic
expression exists. As a result, one would need to evaluate the scalar integrals
numerically for a full reduction of matrix elements and the cross section, see
section (4.2). For now, we turn our focus to the extraction of said scalar integrals
from the tensor expressions within the one-loop matrix elements.
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3.2. Integral reduction

3.2.2. Tensor decomposition

In order to fully decompose matrix elements down to scalar kinematical factors
and scalar integrals, we need to treat the tensor structure of the integration
momentum that arises at loop-level. It is caused by the propagators of fermions,
vector bosons and derivative couplings that contain the loop momentum. One
very prominent method for the reduction is the Veltman-Passarino scheme [34],
which uses the Lorentz-covariance of the loop integrals to rewrite them in terms
of external momenta and metric tensors. We choose a similar approach called
the Davydychev decomposition [35]. It allows us to decompose general tensor
integrals of the form

Sd,µ1µ2···µm
(ν1,ν2,...,νn)

(0, q2
1, q2

2, ...q2
n−1|m2

1, m2
2, ...m2

n)

= h(ϵ)
∫ ddk

iπd/2
kµ1kµ2 · · · kµm

[k2 − m2
1]

ν1 [(k + q1)2 − m2
2]

ν2 · · · [(k + qn)2 − m2
n]

νn
(3.41)

by extracting the Lorentz structure and raising the dimensionality and powers
of propagators within the loop integrals. This way, we can separate finite and
divergent contributions at the level of scalar integrals, allowing us to study the
divergence behaviour of the matrix elements at the level of unevaluated scalar
integrals. The reduction reads

Sd,µ1µ2···µm
(ν1,ν2,...,νn)

(0, q1, q2, ...qn|m1, m2, ...mn) =

∑
λ,x1,x2,...,xn

δ(2λ+∑i xi−m)

(
−1

2

)λ

x1!x2! · · · xN !

×
{

gλqx1
1 qx2

2 · · · qxn
n

}µ1µ2···µm
Sd+2(m−λ)
(...,νi+xi,...)

(0, q1, q2, ...qn|m1, m2, ...mn) (3.42)

with distinct vector-metric combinations
{

gλqx1
1 qx2

2 · · · qxN
N
}µ1µ2···µm , where λ is

the number of metric tensors gαβ and xi the number of momentum variables qi.
Some examples are
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{
q1q2

}µ1
= qµ1

1 + qµ2
2 ,
{

q1q2

}µ1µ2
= qµ1

1 qµ2
2 + qµ2

1 qµ1
2{

q1q2q3

}µ1µ2µ3
= qµ1

1 qµ2
2 qµ3

3 + qµ1
1 qµ3

2 qµ2
3 + qµ2

1 qµ1
2 qµ3

3

+ qµ2
1 qµ3

2 qµ1
3 + qµ3

1 qµ1
2 qµ2

3 + qµ3
1 qµ2

2 qµ1
3{

gq2
1

}µ1µ2µ3µ4
= gµ1µ2qµ3

1 qµ4
1 + gµ1µ3qµ2

1 qµ4
1 + gµ1µ4qµ2

1 qµ3
1

+ gµ2µ3qµ1
1 qµ4

1 + gµ2µ4qµ1
1 qµ3

1 + gµ3µ4qµ1
1 qµ2

1 (3.43)

All higher-dimensional scalar integrals that appear in the Davydychev decom-
position can be calculated via recursion relations that depend on the kinematics
of the integrals involved. First, we use the symmetric Caley matrix as defined
in (3.38) to further declare the inverse Caley row bi and Caley sum B

bi = ∑
j

Y−1
ij , B = ∑

i
bi = ∑

ij
Y−1

ij (3.44)

if the inverse of Yij exists. Finally, we define the Gram matrix

Gij = 2qiqj (3.45)

and the sum of propagator powers

σ =
n

∑
i=1

νi (3.46)

Then, via integration-by-parts, one can calculate a basic recursion relation valid
for n ≤ 5 and non-vanishing determinants of Y and G. Using the short forms
of σ and B in (3.44) and (3.46) we obtain the following formula

(d − 1 − σ)BSd
({νl}) = Sd−2

({νl})
−

n

∑
i=1

Sd−2
({νl−δli})

(3.47)

This tells us that we can reduce a scalar integral of dimension d into a scalar
integral with the dimension reduced by two and a sum of scalar integrals with
reduced dimensionality and reduced propagator powers. A derivation of the
recursive relation can be found in [36].
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3.2.3. Reduction Summary

The two main algorithms that were implemented in our package ’oneloop.m’
are the tensor reduction by Davydychev (3.42) and the simplification of scalar
integrals with higher propagator powers (3.47) for all special cases of Y, G and
number of external legs

Sd,µ1µ2···µm
(ν1,ν2,...,νn)

(0, q1, q2, ...qn|m1, m2, ...mn) =

∑
λ,x1,x2,...,xn

δ(2λ+∑i xi−m)

(
−1

2

)λ

x1!x2! · · · xN !

×
{

gλqx1
1 qx2

2 · · · qxn
n

}µ1µ2···µm
Sd+2(m−λ)
(...,νi+xi,...)

(0, q1, q2, ...qn|m1, m2, ...mn)

(d − 1 − σ)BSd
({νl}) = Sd−2

({νl})
−

n

∑
i=1

Sd−2
({νl−δli})

(3.48)

Additionally, one can access the Caley-matrix Y, the Gram-matrix G and all
derived quantities (3.44) to check for IR-divergences as described in (3.39)

Yij = (qi − qj)
2 − m2

i − m2
j , Gij = 2qiqj

bi = ∑
j

Y−1
ij , B = ∑

i
bi = ∑

ij
Y−1

ij (3.49)
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The focus of this chapter is the software toolkit that was implemented in
our calculations. We provide a workflow that generates Feynman diagrams
automatically at NLO, along with their algebraic expressions. QGraf was used
for all standard and new diagrams. Its implementation through the bash file
’fms run.sh’ is shown in (4.1) for both classes of standard and new diagrams. The
algebraic expressions are then derived via our already-mentioned Mathematica
packages ’spinorhelicity.m’ and ’oneloop.m’, along with additional replacement
rules to transform Feynman rules into tensor integrals. Cross-checks by hand
and through the usage of FeynCalc [37, 38, 39] helped to verify the validity of
our routines. The main functions of our packages are presented in (4.2).

4.1. QGraf

4.1.1. Introduction

We make use of the flexibility of the Fortran program QGraf in order to generate
connected diagrams for our weak model [40]. It creates Feynman diagrams
based on a set of interaction rules, providing the sign of the anti-commutation
relations and the symmetry factors of every diagram. The program requires two
ingredients: A model file that specifies all kinds of interactions of the theory,
and an instruction file with the specifics of the interaction process containing
the order of expansion in our couplings. Both aspects are integrated into a
workflow through a bash file with options directly linked to the QGraf program.
In the following subsections, we first present our implementation of the weak
sector of the SM in terms of helicity spinors, emphasizing the rules to create
our new types of diagrams. Afterwards, we give two examples of output and
comment on how to interpret it in section (4.1.2).

4.1.2. Input files

All types of particle propagators and interaction vertices are defined in a
model file, where we split our description of fermions into left-handed and
right-handed contributions. For example, the propagators for left-handed and
right-handed leptons have the form
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4.1. QGraf

[ fi, fi_bar, - ], fi=eL,nueL,eR,mL,numL,mR

that account for both propagators of particles and antiparticles. The naming of
particles within QGraf is irrelevant (up to the restricoftion of symbolic compat-
ibility), and only the final sign is relevant as it assigns the anti-commutation
properties of fermionic fields. The bosonic propagators are accounted for via

[ z, z, + ]

[ w_plus, w_minus, + ]

[ eta, eta, + ]

where the positive sign indicates the bosonic nature. The construction is the
same for quarks, the would-be Goldstone bosons and ghosts. The external
bound states enter via the declaration

[ P, P\_bar,-,external]

P=UL,DL,CL,SL,EL,Nue,ML,NumL

for quarks and leptons of both generations. The keyword ”external” ensures
that the effects only occur in the external states of left-handed fermions. In-
teraction vertices are classified by the particles entering the vertex, the weak
coupling g and the vev v. We have either g = 1, 2 for three-point and four-point
interactions, and v = 0, 1 for standard vertices and insertions of the scalar
component for the bound state. For example, two such declarations are

[ w, eta, chi; gpow = ’1’, vpow = ’0’]

[ EL\_bar, eL, eta; gpow = ’0’, vpow = ’1’]

The parameters g and v are given by gpow and vpow, respectively. The first
line represents the neutral vector-scalar-scalar interaction Wηχ, and the second
one represents an insertion of the elementary left-handed electron and the real
Higgs field of the full bound state electron. The latter is treated as an interaction
vertex within QGraf, but the rule should be understood in terms of operator
insertions as explained in (2.4.3). The specifications for our scattering process
are given in the input file. If one wants to generate the regular diagrams for the
process e−L e+L → µ−

L µ+
L at NLO, then its content reads
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output = ’diagrams_dot.dat’ ;

style = ’Styles/dot.sty’ ;

model = ’Models/ewsm_reduced.model’;

in = eL, eL_bar;

out = mL, mL_bar;

loops = 1;

loop_momentum = ;

options = onshell;

true = vsum[gpow, 4, 4] ;

true = vsum[vpow, 0, 0] ;

where the output is stored in ’diagrams dot.dat’, using the file dot.sty to immedi-
ately yield diagrams with Graphviz [41]. The model file ’ewsm reduced.model’
contains all Feynman rules, with the full file being presented in appendix E.
The two lines containing vsum guarantee that only the first term in the FMS
expansion at order g4 appears. New diagrams are created by varying the pa-
rameters gpow and vpow. To test this efficiently, we created a bash file called
’fms run.sh’ with different flags for an automatic evaluation of the Feynman
diagrams. Its options are

• -l: Number of loops implemented, with a warning for l ≥ 2 as the number
of diagrams grows immensely (more than 30000 regular loop diagrams
for our process at l = 2)

• -g: Power in the coupling g
• -v: Number of operator insertions corresponding to loops containing the

leptonic and scalar lines of the compound states
• -i: Specific operation insertions such as Eemm, EEmm for an insertion of

scalar would-be Goldstones at the location of leptons with capital letters.
• -c: Different chirality configurations of the process (LLLL, LLRR, ...).

Two exemplary cases are shown in the next section.
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Diagram output

Let us first consider a regular NLO diagram. With the command

bash fms_run.sh -l 1 -g 4 -v 0 -c LLLL -i eemm

we extract all regular NLO diagrams in terms of purely left-handed spinors
without any additional Higgs insertion. One such diagram, a leptonic bubble
diagram that contributes to the self-energy of the neutral vector boson, reads

Figure 4.1.: Fermionic self-energy diagram of the process e−L e+L → µ−
L µ+

L

The label d5x-1 attached to the botton of the diagram indicates the number in
the generation process (here the fifth diagram), the negative sign from anti-
commutation relations and the symmetry factor one. External particles are
directed along their physical momenta, while internal momenta do not follow
a specific direction and can vary based on the specific topology and process. A
new diagram that arises due to the higher six-point function

⟨[e−L e+L [hµ−
L ][χµ+

L ]⟩ (4.1)

is represented in QGraf via figure (4.2). The loop arises since both bound-state
operators share the fermionic line µ±

L , while the integration, normally linked to
the loop, arises from the integral over the relative momentum k1 of the scalar
contributions h and χ. One diagram of the Green’s function in (4.1) is obtained
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from the following command and yields the diagram in figure (4.2)

bash fms_run.sh -l 1 -g 2 -v 2 -c LLLL -i eeMM

Figure 4.2.: Triangle diagram due to the expanded six-point function from FMS contributions
in the final state

The capital labels correspond to the insertions of elementary particles (here η, χ
and µ−

L ) and should not be confused with the full gauge-invariant bound state
defined in (2.23). A more accurate representation consistent with our rules for
bound states is given in figure (4.3).

Figure 4.3.: Accurate representation of the bound-state insertion with our cross-notation from
the Feynman rules of figure (2.3)

To increase clarity, we manually translate all diagrams of QGraf via Mathcha
and present them in (5.2) and (5.3).
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4.2. Our Mathematica tools

4.2.1. Overview

In order to calculate the algebraic expressions of matrix elements we created
our own set of routines in Mathematica. We briefly list here the main functions
used in the calculation of the reduced algebraic expressions in section (5). All
functions and replacement rules were tested in Mathematica version (12.3).

• SpinorString[...]: Defines all the non-commutative rules of spinor chains,
alongside all reduction rules such as the Fierz identity (3.25), the connec-
tion between Mandelstam variables and spinor products (3.16) and the
sum rule (3.19). The main framework was created by Simon Plätzer in his
package ’spinorhelicity.m’ [29], with my extension to the d-dimensional
case.

• TensorReduce[...]: The first main algorithm of the package ’oneloop.m’
[30]. Its creation is a collaborative work between Simon Plätzer and me that
implements the reduction of all tensor integrals with arbitrary propagator
powers and tensor expressions.

• ReduceScalarIntegral[...]: The second main algorithm of ’oneloop.m’. It
is again a joint development of Simon Plätzer and me that reduces the
generalized scalar integrals. Special solutions based on the determinant of
the Caley matrix (3.38), the Gram matrix (3.45) and the number of external
legs within the loop integrals are contained as well.

• LoopReduction[...]: My own toolkit of replacement rules that allows for
the translation of Feynman rules into general tensor integrals. These can
then be reduced with the functions mentioned above.

In order to showcase the functionality of our Mathematica toolkit, we will give
a detailed example calculation that contains all of the relevant functions listed
above.
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4.2.2. Example calculation

We analyse the snail diagram with a four-vector interaction within the W-boson
propagator. The corresponding output of our bash file for QGraf is

Figure 4.4.: Snail-diagram of the process e−L e+L → µ−
L µ+

L

The algebraic expression in Mathematica can be obtained by first writing down
the Feynman rules as follows

• SpinorString[MinusBarSpinor[p1], VerWFFbar[g, µ], PlusSpinor[p2]]:
The initial spinor chain [1|γµ|2⟩ containing the external spinors and the
interaction vertex for We−L e+L .

• VProp[p1 + p2, m, µ, α, xiW] and VProp[p3 + p4, m, µ, α, xiW]: The
neutral vector propagators with momenta pointing in the positive time-
direction and gauge-parameter ξW .

• SpinorString[MinusBarSpinor[p4], VerWFFbar[g, µ], PlusSpinor[p3]]:
The almost identical final-state spinor string [4|γµ|3⟩, where we do not
need to differentiate between upper and lower indices.

• LoopReduction[VerWpWmWW[ g, σ, ρ, α, β] VProp[k, m, σ, ρ, xiP]]: The
term containing the loop contribution, where LoopReduction needs to be
wrapped around all terms that involve the loop momentum k.
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First we load the two packages ’spinorhelicity.m’ and ’oneloop.m’ into our Math-
ematica notebook. Inserting the prior set of rules thus yields after expansion
(4.5).

Figure 4.5.: Tensor expression of our loop diagram in Mathematica

Next, by applying TensorReduce[...] to the former expression, we obtain the
matrix element in terms of scalar integrals (4.6).

Figure 4.6.: Scalar expression of our loop diagram in Mathematica

The final reduction is obtained by further applying ReduceScalarIntegral[...]
and expressing the matrix element as a series expansion in ϵ. It reads

Figure 4.7.: Final reduced expression of our loop diagram in Mathematica

This reduced expression is the one we present in section (5.2.2), except that we
flip ⟨23⟩ = −⟨32⟩ and add the factor h(ϵ) in (3.31) that we skip in Mathematica.
The procedure is straightforward for all other diagrams, and the final expres-
sions in terms of our scalar master integrals are presented in the following
chapter.
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Here we provide the reduced invariant matrix elements and differential cross
section at tree-level for the process e−L e+L → µ−

L µ+
L . The latter is presented in

section (5.1). While the FMS expansion does not contribute at tree-level, the
result already highlights many of the simplification rules of section (3.1). We
continue with the regular matrix elements at NLO in section (5.2) and present
the new loop contributions in section (5.3). Both sections are separated into
the Feynman diagrams and the reduced algebraic expressions in the ’t Hooft
gauge. For the regular loop diagrams and the FMS loop diagrams we provide
one example each where we carry out the calculation explicitly. Other results
are given as an expansion in ϵ and the master integrals of section (3.2).

5.1. Tree level

At tree-level, there exists only one diagram with an intermediate neutral W-
boson. It reads

iMTree = ⟨2|
(
− ig

2
γµ

)
|1]
(

−i
q2 − m2

(
gµν − qµqν

q2

)
− qµqν

q2
ξW

q2 − ξWm2

)
× ⟨3|

(
− ig

2
γν

)
|4] (5.1)

where the internal momentum is qα = (p1 + p2)
α = −(p3 + p4)

α. First we notice
that all terms depending on qµqν disappear since

⟨2|γµ|1](p1 + p2)
µ = ⟨2|/p1|1] + ⟨2|/p2|1]

= ⟨21]⟨11] + ⟨21⟩[11] + ⟨22]⟨21] + ⟨22⟩[21] = 0 (5.2)

where we used (3.8) and (3.9), which holds similarly for the final state spinors.
The momentum can be expressed via the Mandelstam variable q2 = s, and the
simplified expression reads

MTree =
g2

4
1

s − m2 ⟨2|γµ|1]⟨3|γµ|4]

=
g2

2
1

s − m2 [14]⟨32⟩ (5.3)
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5.1. Tree level

by making use of the Fierz identity (3.10) in the final line. The higher n-point
functions do not generate any diagrams at tree-level as we cannot construct any
other connected diagrams without loops. All other chirality configurations are
zero as the right-handed leptons do not couple to the weak vector boson W.
The differential cross section yields(

dσ

dΩ

)
CM

=
1

64π2s
(M∗

TreeMTree) =
g4

256π2s
1

(s − m2)2 ⟨41⟩[14][23]⟨32⟩

=
g4

256π2s
u2

(s − m2)2 =
g4

256π2s
(s + t)2

(s − m2)2 (5.4)

Formulating t in terms of s and the scattering angle θ leads to(
dσ

dΩ

)
CM

=
g4

1024π2
s(1 + cos(θ))2

(s − m2)2 (5.5)

The differential cross section is shown in turns of the SM parameters g ≈
0.64 and v ≈ 247GeV and the kinematical variables

√
s and θ in figure (5.1).

Alternatively, we can express dσ in terms of s and the pseudorapidity η, defined
as

η ≡ − ln
(

tan
(

θ
2

))
(5.6)

Figure (5.2) shows the differential cross section for the range η ∈ {−5, 5}.
Furthermore, the differential cross section is plotted for fixed angles θ ∈
{0, π

2 , 4π
5 , π} in (5.3) to highlight the strong angle dependence.
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5. Results

Figure 5.1.: Differential cross section of the tree-level process in terms of the CM-energy
√

s
and the scattering angle θ

Figure 5.2.: Differential cross section of the tree-level process in terms of the CM-energy
√

s
and the pseudorapidity η
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1 10 100 1000 104
s [GeV]

10-9

10-5

0.1

1000.0

dσ[pb] dσ(θ=0)

dσ(θ=π /2)

dσ(θ=4π /5)

dσ(θ=π )

Figure 5.3.: Differential cross section of the tree-level process in terms of the CM-energy
√

s for
fixed angles

The peak of dσ appears at the location of the mass pole at m = 79.04GeV,
slightly shifted from the Z-boson pole due to the disappearance of the photon.
The asymmetry in forward and backward scattering is clearly visible in figures
(5.1) and (5.3). The high-energy behaviour is very similar to the cross section
obtained from the full massless EW sector containing the photon, see appendix
(B).

5.2. Regular loop expressions

5.2.1. Feynman diagrams

At NLO, there exist 37 distinct Feynman diagrams that arise from the regular
four-point function ⟨e−L e+L µ−

L µ+
L ⟩. They are grouped based on their topology

into bubble, snail, tadpole, triangle and box diagrams. All Feynman diagrams
in terms of physical outgoing momenta are given in figures (5.4) to (5.8),
where we used MType

k to refer to the kth matrix element of topology Type ∈
{Bubble, Snail, Tadpole, Triangle, Box}. The corresponding algebraic expressions
are given in the following section (5.2.2).
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5. Results

Figure 5.4.: Full list of all bubble diagrams
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5.2. Regular loop expressions

Figure 5.5.: Full list of all snail diagrams

Figure 5.6.: Full list of all tadpole diagrams
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5. Results

Figure 5.7.: Full list of all triangle diagrams

Figure 5.8.: Full list of all box diagrams
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5.2. Regular loop expressions

5.2.2. Reduced algebraic expressions

Bubble diagrams

The bubble diagrams for all eight leptonic loop diagrams have the same alge-
braic expression

MBubble
1−8 =

1
16

g4

(s − m2)2 ⟨2|γµ|1]⟨3|γν|4]

× h(ϵ)
1

iπd/2

∫
d4k

Tr
[
/kγµ(/k − /p1 − /p2)γ

ν
]

k2(k − p1 − p2)2 (5.7)

since the weak isospin of each lepton is ±1
2 with a sign that cancels since it

appears exactly twice in each loop. Evaluating the trace in (5.7) gives

1
4

Tr
[
/kγµ(/k − /p1 − /p2)γ

ν
]
= 2kνkµ − k2gµν − kν(p1 + p2)

µ − kµ(p1 + p2)
ν

+ k(p1 + p2)gµν (5.8)

The third and fourth term cancel, and the remaining expression in terms of
tensor integrals reads

MBubble
1−8 =

g4

4(s − m2)2 ⟨2|γµ|1]⟨3|γν|4]h(ϵ)
(

2Sd,µν(0,−p1 − p2|0, 0)

− gµν
(
S4
(1)(−p1 − p2|0)− (p1 + p2)αSd,α(0,−p1 − p2|0, 0)

))
(5.9)

Only tensor decompositions without external momenta will survive the full
reduction in the massless case, and the final result reads

MBubble
1−8 =

4g4s[14]⟨32⟩
9(s − m2)2 (3 − ϵ)S4

(1,1)(0,−p1 − p2|0, 0) (5.10)

We do not need to consider the term in ϵ2 here and in all further expressions
since the scalar integrals are all IR-convergent. The reduced bosonic bubble
diagram MBubble

9 is still rather lengthy in a full ’t Hooft gauge, so we present
here only the tensor expression and the reduced scalar form in the Feynman
gauge where ξW = ξ+ = 1. With the shorthand q = −p1 − p2 the tensor
expression reads

MBubble
9 (ξW = ξ+ = 1) =

g4

4(s − m2)2 ⟨2|γµ|1]⟨3|γν|4]h(ϵ)[
(−10 + 8ϵ)Sd,µν + (5 − 8ϵ)

(
qµSd,ν + qνSd,µ)+ (2 − 2ϵ)qµqνS4

(1,1)

+ gµν
(
− 2gαβSd,αβ + 2qαSα − 5q2S4

(1,1)

)]
(5.11)
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5. Results

where all integrals have the dependence S = S(0, q|m2, m2).
The full decomposition up to order O(ϵ) is

MBubble
9 (ξW = ξ+ = 1) = − g4[14]⟨32⟩

36(s − m2)2 h(ϵ)
[
(66 − 4ϵ)S4

(1)(0|m
2)

+
(
96m2 − 93s + (8m2 − 2s)ϵ

)
S4
(1,1)(0,−p1 − p2|m2, m2)

]
(5.12)

We continue with the bubble diagrams containing a scalar loop

MBubble
10 = − g4[14]⟨32⟩

72s(s − m2)2 (3 + 2ϵ)h(ϵ)
[
(m2

h + s − ξWm2)S4
(1)(0|m

2
h)

− (m2
h − s − ξWm2)S4

(1)(0|ξWm2)

− (m4
h + (s − ξWm2)2 − 2m2

h(s + ξWm2))S4
(1,1)(0,−p1 − p2|m2

h, ξWm2)
]

(5.13)

MBubble
11 = − g4[14]⟨32⟩

72s(s − m2)2 (3 + 2ϵ)h(ϵ)

×
[
2S4

(1)(0|ξ+m2)− (s − 4ξ+m2)S4
(1,1)(0,−p1 − p2|ξWm2, ξWm2)

]
(5.14)

The bubble diagram with a scalar and vector boson simplifies to

MBubble
12 =

g4[14]⟨32⟩
72s(s − m2)2 (3 + 2ϵ)h(ϵ)[

(m2 − m2
h + s)S4

(1)(0|m
2) + m2(ξW − 1)S4

(1)(0|m
2
h)

+ (m2
h − s − ξWm2)S4

(1)(0|ξWm2)

+ (m4
h + (s − ξWm2)2 − 2m2

h(s + ξWm2))S4
(1,1)(0,−p1 − p2|m2

h, ξWm2)

−
(

m4 + (m2
h − s)2 − 2m2

(
m2

h +
−15 + 2ϵ

3 + 2ϵ
s
))

S4
(1,1)(0, p1 + p2|m2, m2

h)
]

(5.15)

Finally, the reduced bubble diagrams containing ghosts read

MBubble
13 =

g4[14]⟨32⟩
72(s − m2)2 (3 + 2ϵ)h(ϵ)

[
2S4

(1)(0|ξ+m2)

− (s − 4ξ+m2)S4
(1,1)(0,−p1 − p2|ξ+m2, ξ+m2)

]
(5.16)

MBubble
14 = MBubble

13 (5.17)
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5.2. Regular loop expressions

Snail diagrams

The four distinct snail diagrams are

MSnail
1 =

g4[14]⟨32⟩
8(s − m2)2 h(ϵ)

[
(18 − 15ϵ)S4

(1)(0|m
2) + (6 − ϵ)S4

(1)(0|ξ+m2))
]

(5.18)

MSnail
2 =

g4[14]⟨32⟩
4(s − m2)2 h(ϵ)S4

(1)(0|m
2
h) (5.19)

MSnail
3 =

g4[14]⟨32⟩
4(s − m2)2 h(ϵ)S4

(1)(0|ξWm2) (5.20)

MSnail
4 =

g4[14]⟨32⟩
4(s − m2)2 h(ϵ)S4

(1)(0|ξ+m2) (5.21)

Tadpole diagrams

The algebraic expressions for the tadpole diagrams read

MTadpole
1 =

g4m2[14]⟨32⟩
2m2

h(s − m2)2
h(ϵ)

[
(3 − 2ϵ)S4

(1)(0|m
2) + ξWS4

(1)(0|ξWm2)
]

(5.22)

MTadpole
2 =

g4m2[14]⟨32⟩
2m2

h(s − m2)2
h(ϵ)

[
(3 − 2ϵ)S4

(1)(0|m
2) + ξ+S4

(1)(0|ξ+m2)
]

(5.23)

MTadpole
3 =

3g4

4(s − m2)2 [14]⟨32⟩h(ϵ)S4
(1)(0|m

2
h) (5.24)

MTadpole
4 =

g4

4(s − m2)2 [14]⟨32⟩h(ϵ)S4
(1)(0|ξWm2) (5.25)

MTadpole
5 =

g4

4(s − m2)2 [14]⟨32⟩h(ϵ)S4
(1)(0|ξ+m2) (5.26)

and the corresponding three ghost diagrams are

MTadpole
6 =

g4ξWm2

4m2
h(s − m2)2

[14]⟨32⟩h(ϵ)S4
(1)(0|ξWm2) (5.27)

MTadpole
7 =

g4ξ+m2

4m2
h(s − m2)2

[14]⟨32⟩h(ϵ)S4
(1)(0|ξ+m2) (5.28)

MTadpole
8 = MTadpole

7 (5.29)
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Triangle diagrams

The triangle diagrams MTriangle
1 and MTriangle

4 containing the three-vector inter-
action WW+W− are lengthy and only presented in the Feynman gauge

MTriangle
1 (ξW = ξ+ = 1) = − g4

8m2s(s − m2)
[14]⟨32⟩h(ϵ)[

3sS4
(1)(0|m

2) + m2(m2 + 6s)S4
(1,1)(0, p3|0, m2)

+ m2(7m2 + 8s)S4
(1,1)(0,−p4|0, m2)

− (m2s + 3s2)S4
(1,1)(0, p3 + p4|m2, 0)

− (8m4 + 4m2s − 3s2)S4
(1,1)(0, p3 + p4|m2, m2)

+ 8m4(m2 + 2s)S4
(1,1,1)(0,−p4, p3|0, m2, m2)

]
(5.30)

MTriangle
4 (ξW = ξ+ = 1) = − g4

8m2s(s − m2)
[14]⟨32⟩h(ϵ)[

3sS4
(1)(0|m

2) + m2(m2 + 6s)S4
(1,1)(0, p2|0, m2)

+ m2(7m2 + 8s)S4
(1,1)(0,−p1|0, m2)

− (m2s + 3s2)S4
(1,1)(0, p1 + p2|m2, 0)

− (8m4 + 4m2s − 3s2)S4
(1,1)(0, p1 + p2|m2, m2)

+ 8m4(m2 + 2s)S4
(1,1,1)(0,−p1, p2|0, m2, m2)

]
(5.31)
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5.2. Regular loop expressions

The full expressions for the other four triangle diagrams are simpler in nature,
and their full reduction reads

MTriangle
2 =

g4

96s(s − m2)
[14]⟨32⟩h(ϵ)

×
[
(18s + 12sϵ)S4

(1)(0|m
2)− ξ+(18s + 12sϵ)S4

(1)(0|ξ+m2)

+ (18m4 + 78m2s + (21m4 − 3m2s − 48s2)ϵ)S4
(1,1)(0, p3|m2, 0)

+ (18m4 + 30m2s + (21m4 + 45m2s − 48s2)ϵ)S4
(1,1)(0,−p4|m2, 0)

− ξ2
+(30m2s + 18m4ξ+ + 21m2(s + ξ+m2)ϵ)

×
(
S4
(1,1)(0, p3|ξ+m2, 0) + S4

(1,1)(0,−p4|ξ+m2, 0)
)

+ (−36m3 − 126m2s + 24s2ξ+ + 78m2sξ2
+ + 36m4ξ3

+

+ (−42m4 − 63m2s + 32s2 + 16s2ξ+ + 63m2sξ2
+ + 42m4ξ3

+)ϵ)

× S4
(1,1)(0, p3 + p4|0, 0)

+ (−36m6 + 144m4s + 60m2s2)S4
(1,1,1)(0,−p4, p3|m2, 0, 0)

+ ξ2
+(60m2s2 + 96m4s + 36m6)S4

(1,1,1)(0,−p4, p3|ξ+m2, 0, 0)
]

(5.32)

MTriangle
3 = 2MTriangle

2 (5.33)

MTriangle
5 =

g4

8s2m2(s − m2)
[14]⟨32⟩h(ϵ)[

2s(m2 + 2s)S4
(1)(0|m

2)− 2s(m2ξW + 2s)S4
(1)(0|ξWm2)

+ (m6 + m4 − 4m2s2 − 2m4sϵ)S4
(1,1)(0,−p1|m2, 0)

− m4ξ2
W(s + m2ξW)S4

(1,1)(0,−p1|ξWm2, 0)

− m2(m4 + 7m2s + 6s2 − m2sϵ)S4
(1,1)(0, p2|m2, 0)

+ m2ξW(2s2 + 3m2sξW + m4ξ2
W)S4

(1,1)(0, p2|ξWm2, 0)

+ 2m2s(2m2 + 3s + 2sϵ)S4
(1,1)(0, p1 + p2|0, 0)

+ 4m2s(m2 + s)2S4
(1,1,1)(0,−p1, p2|m2, 0, 0)

]
MTriangle

6 = 2MTriangle
5 (5.34)

51



5. Results

Box Diagrams

The full tensor expression of the first box diagram in the ’t Hooft gauge is

MBox
1 =

g4

16
⟨2|γργαγµ|1]⟨3|γνγβγη|4]h(ϵ)

(
6

∑
1=1

T1
i

)ραµνβη

(5.35)

where the tensor contributions T1,ραµνβη
i correspond to Lorentz invariants mul-

tiplied by tensor integrals. Using the short forms of the following integrals

Sd,α...
4 ≡ Sd,α...(0,−p1, p2, p2 − p4|0, m2, m2, 0)

Sd,α...
5 ≡ Sd,α...(0, 0,−p1, p2, p2 − p4|0, 0, m2, m2, 0)

Sd,α...
5(1) ≡ Sd,α...(0,−p1,−p1, p2, p2 − p4|0, 0, ξWm2, m2, 0)

Sd,α...
5(2) ≡ Sd,α...(0, p2,−p1, p2, p2 − p4|0, 0, m2, ξWm2, 0)

Sd,α...
6 ≡ Sd,α...(0,−p1, p2,−p1, p2, p2 − p4|0, 0, 0, m2, m2, 0)

Sd,α...
6(1) ≡ Sd,α...(0,−p1, p2,−p1, p2, p2 − p4|0, 0, 0, ξWm2, m2, 0)

Sd,α...
6(2) ≡ Sd,α...(0,−p1, p2,−p1, p2, p2 − p4|0, 0, 0, m2, ξWm2, 0)

Sd,α...
6(12) ≡ Sd,α...(0,−p1, p2,−p1, p2, p2 − p4|0, 0, 0, ξWm2, ξWm2, 0) (5.36)

allows us to express the kinematical factors in a relatively compact way

T1,ραµνβη
1 =(p2 − p4)

βgµνgρηSd,α
4 (5.37)

T1,ραµνβη
2 =gµνgρηSd,αβ

4

+ (p2 − p4)
β
[

pν
1gρη

(
Sd,αµ

5 − ξWSd,αµ

5(1)

)
− pη

2 gµν
(

Sd,αµ
5 − ξWSd,αµ

5(2)

)]
(5.38)

T1,ραµνβη
3 =(p2 − p4)

β
[

gµν
(

Sd,αρη
5 − ξZSd,αρη

5(1)

)
+ gρη

(
Sd,αµν

5 − ξWSd,αµν

5(1)

)
+ pν

1 pη
2

(
− Sd,αµρ

6 + ξW

(
Sd,αµρ

6(1) + Sd,αµρ

6(2)

)
− ξ2

WSd,αµρ

6(12)

)]
(5.39)

T1,ραµνβη
4 =gµν

(
− Sd,αβρη

5 + ξWSd,αβρη

5(1)

)
+ gρη

(
− Sd,αβµν

5 + ξWSd,αβµν

5(2)

)
+ pν

1 pη
2
(
− Sd,αβµρ

6 + ξZ
(
Sd,αβµρ

6(1) + Sαβµρ

6(2)

)
− ξ2

WSd,αβµρ

6(12)

)
+ (p2 − p4)

β
[

pν
1
(
− Sd,αµρη

6 + ξW
(
Sd,αµρη

6(1) + Sd,αµρη

6(2)

)
− ξ2

WSd,αµρη

6(12)

)
+ pη

2
(
Sd,αµρν

6 − ξW
(
Sd,αµρν

6(1) + Sd,αµρν

6(2)

)
+ ξ2

WSd,αµρν

6(12)

)]
(5.40)

T1,ραµνβη
5 =pν

1
(
− Sd,αβµρη

6 + ξW
(
Sαβµρη

6(1) + Sd,αβµρη

6(2)

)
− ξ2

WSd,αβµρη

6(12)

)
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5.2. Regular loop expressions

+ pη
2
(
− Sd,αβµνρ

6 + ξW
(
Sαβµνρ

6(1) + Sd,αβµνρ

6(2)

)
− ξ2

WSd,αβµνρ

6(12)

)
+ (p2 − p4)

β
(
Sd,αµνρη

6 − ξW
(
Sαµνρη

6(1) + Sd,αµνρη

6(2)

)
+ ξ2

WSd,αµνρη

6(12)

)
T1,ραµνβη

6 =Sd,αβµνρη
6 − ξW

(
Sd,αβµνρη

6(1) + Sd,αβµνρη

6(2)

)
+ ξ2

WSd,αβµνρη

6(12) (5.41)

The second box diagram only differs by a factor of four due to the similar vertex
rules in appendix (C.4)

MBox
2 = 4MBox

1 (5.42)

The final box diagram with twisted external legs MBox
3 can be obtained from

MBox
1 by exchanging p4 with p3 and flipping the second tensor chain

MBox
3 =

g4

16
⟨2|γργαγµ|1]⟨3|γηγβγν|4]h(ϵ)

(
6

∑
1=1

T1
i (p4 → p3)

)ραµνβη

(5.43)

The evaluation of all tensor contractions and scalar reductions would be ex-
tremely tiresome by hand, so especially for these kinds integrals our package
becomes almost indispensable.
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For clarity, the final reduction is again only given in the Feynman gauge

MBox
1 (ξW = ξ+ = 1) = − g4

8(s + t)2 [14]⟨32⟩h(ϵ)

×
[
− 2(s + t)

(
S4
(1,1)(0, p1 + p2|m2, m2)− S4

(1,1)(0, p2 − p4|0, 0)
)

+ (2m2s + st − (s + t)(s + 2t) + (2m2s − s2)ϵ)S4
(1,1,1)(0,−p1, p2|0, m2, m2)

+ (t(2m2 + s + 2t)− s(2m2 + t)ϵ)

×
(
S4
(1,1,1)(0,−p1, p2 − p4|0, m2, 0) + S4

(1,1,1)(0, p2, p2 − p4|0, m2, 0)
)

+ (2m2s − s2 − 2t(s + t) + (2m2s + s2)ϵ)S4
(1,1,1)(−p1, p2, p2 − p4|m2, m2, 0)

+ (m4(t − s) + s2t + 4m2t2 + 2t2(s + t) + (s2t − 4m2s(m2 + t))ϵ)

× S4
(1,1,1,1)(0,−p1, p2, p2 − p4|0, m2, m2, 0)

]
(5.44)

MBox
2 = 4MBox

1 (5.45)

MBox
3 (ξW = ξ+ = 1) = −g4

8t
[14]⟨32⟩h(ϵ)

×
[
2(−t + (s − 2m2)ϵ)S4

(1,1,1)(0,−p1, p2|0, m2, m2)

+ 2(2m2 − s − t)

×
(
S4
(1,1,1)(0,−p1, p2 − p3|0, m2, 0) + S4

(1,1,1)(0, p2, p2 − p3|0, m2, 0)
)

− 2(t + (2m2 − s)ϵ)S4
(1,1,1)(−p1, p2, p2 − p3|m2, m2, 0)

− 2(t(s + t)− (5m4 − 4m2(s + t) + s(s + t))ϵ)

× S4
(1,1,1,1)(0,−p1, p2, p2 − p3|0, m2, m2, 0)

]
(5.46)
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5.3. FMS loop expressions

5.3. FMS loop expressions

5.3.1. Feynman diagrams

The full bound-state treatment at NLO yields twelve matrix elements from the
six-point functions and nine matrix elements from the eight-point functions.
The twelve six-point functions, scaled by v2, read

1
4⟨e

−
L e−L [hµ−

L ][hµ−
L ]⟩,

1
4⟨e

−
L e−L [χµ−

L ][χµ−
L ]⟩,

i
4⟨e

−
L e−L [hµ−

L ][χµ−
L ]⟩, − i

4⟨e
−
L e−L [χµ−

L ][hµ−
L ]⟩,

1
2⟨e

−
L e−L [ϕ

−νµL][ϕ
+νµL]⟩,

1
4⟨[he−L ][he−L ]µ

−
L µ−

L ⟩,
1
4⟨[χe−L ][χe−L ]µ

−
L µ−

L ⟩,
i
4⟨[he−L ][χe−L ]µ

−
L µ−

L ⟩, − i
4⟨[χe−L ][he−L ]µ

−
L µ−

L ⟩,
1
2⟨[ϕ

−νeL][ϕ
+νeL]µ

−
L µ−

L ⟩ (5.47)

Each of the contributions containing h and χ generates exactly one triangle
diagram, whereas the terms involving ϕ± yield two triangle diagrams, as seen
in figure (5.9).

Figure 5.9.: Full list of all triangle diagrams arising from six-point functions
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Furthermore, the nine different eight-point functions

1
4⟨[he−L ][he−L ][hµ−

L ][hµ−
L ]⟩, −1

4⟨[he−L ][χe−L ][hµ−
L ][χµ−

L ]⟩,
− 1

4⟨[χe−L ][he−L ][χµ−
L ][hµ−

L ]⟩,
1
4⟨[χe−L ][χe−L ][χµ−

L ][χµ−
L ]⟩,

⟨[ϕ−νeL][ϕ
+νeL][ϕ

−νµL][ϕ
+νµL]⟩ (5.48)

yield the box diagrams presented in (5.10).

Figure 5.10.: Full list of all box diagrams arising from eight-point functions

No other diagram at NLO appears for our process. The same holds for all other
chirality combinations of external states. Overall, this means that there are a
total of 21 new matrix elements in addition to the 37 regular matrix elements.
How do their algebraic expressions look like?
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5.3.2. Reduced algebraic expressions

Triangle diagrams

We start off with a step-by-step decomposition of the triangle diagram seen in
figure (5.11), corresponding to the six-point function − i

4v2 ⟨e−L e−L [χµ−
L ][hµ−

L ]⟩.

Figure 5.11.: Exemplary FMS contribution

Applying all Feynman rules and extracting all Dirac chains results in

iMTriangle
1,FMS =

K3K4

4v2 ⟨2|
(
− ig

2
γµ

)
|1]
(
−igµα

s − m2

)
⟨3|γβ|4]

× (µ)4−d

(2π)d

∫
ddkgkα

kβ

k2
i

(k − p3)2 − ξWm2
i

(k + p4)2 − m2
h

(5.49)

where we introduced the external wavefunction renormalizations K3 and K4
for the compound final states. They carry mass dimension one and ensure that
the whole diagram stays dimensionless. We can compactify this expression by
contracting the metric tensor and by using the notation from equation (3.41) to
write

MTriangle
1,FMS =

g2K3K4

8v2
1

s − m2 ⟨2|γα|1]⟨3|γβ|4]h(ϵ)S
αβ

(1,1,1)(0,−p3, p4|0, ξWm2, m2
h)

(5.50)
The explicit tensor decomposition of Sαβ

(1,1,1) is derived from equation (3.42) and
yields

Sαβ

(1,1,1)(0,−p3, p4|0, ξWm2, m2
h) = −1

2
gαβS6

(1,1,1) + 2pα
3 pβ

3 S8
(1,3,1) + 2pα

4 pβ
4 S8

(1,1,3)

− (pα
3 pβ

4 + pα
4 pβ

3 )S
8
(1,2,2) (5.51)

The terms containing four-momenta vanish again for our massless Weyl spinors,
and the remaining expression reads

MTriangle
1,FMS = −g2K3K4[14]⟨32⟩

8v2(s − m2)
h(ϵ)S6

(1,1,1)(0,−p3, p4|0, ξWm2, m2
h) (5.52)
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Finally, we apply the recursion relation (3.47) to the scalar integral in order to
express it in terms of our master integrals

MTriangle
1,FMS =

g2K3K4[14]⟨32⟩
16sv2(s − m2)

h(ϵ) (1 + ϵ)

×
[
ξWm2S4

(1,1)(0,−p3|0, ξWm2) + m2
hS4

(1,1)(0, p4|0, m2
h)

+ (s − m2
h − ξWm2)S4

(1,1)(0, p3 + p4|ξWm2, m2
h)

+ 2ξWm2m2
hS4

(1,1,1)(0,−p3, p4|0, ξWm2, m2
h)
]

(5.53)

Similarly, we obtain for i
4v2 ⟨e−L e−L [hµ−

L ][χµ−
L ]⟩ and 1

2v2 ⟨e−L e−L [ϕ
−νµL][ϕ

+νµL]⟩

MTriangle
2,FMS = MTriangle

1,FMS (m2
h → ξWm2) (5.54)

MTriangle
3,FMS = 2MTriangle

1,FMS (m2
h → ξ+m2) (5.55)

The three triangle diagrams with one scalar line, corresponding to
1

4v2 ⟨e−L e−L [hµ−
L ][hµ−

L ]⟩,
1

4v2 ⟨e−L e−L [χµ−
L ][χµ−

L ]⟩ and again 1
2v2 ⟨e−L e−L [ϕ

−νµL][ϕ
+νµL]⟩,

result in the expressions

MTriangle
4,FMS =

g2K3K4[14]⟨32⟩
8s(s − m2)v2 h(ϵ)

×
[
− m2

hϵS4
(1,1)(0,−p4|m2

h, 0)− (2m2
h + m2

hϵ)S4
(1,1)(0, p3|m2

h, 0)

+ (2ξWm2 − s + (s + 2ξWm2)ϵ)S4
(1,1)(0, p3 + p4|0, 0)

+ 2ξ2
Wm4S4

(1,1,1)(0,−p4, p3|m2
h, 0, 0)

]
(5.56)

MTriangle
5,FMS = MTriangle

4,FMS (m2
h → ξWm2) (5.57)

MTriangle
6,FMS = −2MTriangle

5,FMS (m2
h → ξ+m2) (5.58)

The same line of reasoning follows for the other six triangle diagrams with
bound-state contributions to the initial states. We only need to exchange p3 →
p1, p4 → p2 and K3,4 → K1,2.

MTriangle
7,FMS = MTriangle

1,FMS (p3 → p1, p4 → p2, K3,4 → K1,2) (5.59)

MTriangle
8,FMS = MTriangle

7,FMS (m2
h → ξWm2) (5.60)

MTriangle
9,FMS = 2MTriangle

7,FMS (m2
h → ξ+m2) (5.61)

MTriangle
10,FMS = MTriangle

4,FMS (p1 → p3, p2 → p4) (5.62)

MTriangle
11,FMS = MTriangle

10,FMS (m
2
h → ξWm2) (5.63)

MTriangle
12,FMS = −2MTriangle

10,FMS (m
2
h → ξ+m2) (5.64)
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Box diagrams

The box diagrams arising from the full FMS treatment contain two scalar and
two fermionic lines that are integrated over. Their full reductions are listed
below, and contain again wave-function renormalization factors Ki. The first
five diagrams (upper two diagrams in 5.10) can be derived in terms of diagram
MBox

2,FMS by replacing the masses accordingly. They simplify to

MBox
2,FMS = − K1K2K3K4

8(s + t)2v4 [14]⟨32⟩h(ϵ)

×
[
− 2(s + t)S4

(1,1)(0,−p1 + p3|0, 0) + 2(s + t)S4
(1,1)(0, p1 + p2|ξWm2, m2

h)

+ t(s − m2
h − ξWm2)

×
(
S4
(1,1,1)(0,−p1,−p1 + p3|0, ξWm2, 0) + S4

(1,1,1)(0, p2,−p1 + p3|0, m2
h, 0)

)
+ s(s − m2

H − ξWm2)

×
(
S4
(1,1,1)(0,−p1, p2|0, ξWm2, m2

h) + S4
(1,1,1)(0,−p3, p4|0, ξWm2, m2

h)
)

− (m2
ht + t(s − ξWm2)2 − 2m2s(t + ξWm2))

× S4
(1,1,1,1)(0,−p1, p2,−p1 + p3|0, ξWm2, m2

h, 0)
]

(5.65)

MBox
1,FMS = −MBox

2,FMS(ξWm2 → m2
h) (5.66)

MBox
3,FMS = MBox

2,FMS(ξWm2 → m2
h, m2

h → ξWm2) (5.67)

MBox
4,FMS = −MBox

2,FMS(m
2
h → ξWm2) (5.68)

MBox
5,FMS = −4MBox

2,FMS(ξWm2 → ξ+m2, m2
h → ξ+m2) (5.69)

The different prefactors originate from the expansion of the elementary con-
stituents within the FMS expansion of the compound leptons in equation (2.23)
and (2.25).
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The other four box diagrams with a flipped fermion line in the final states can
most easily be expressed in terms of MBox

7,FMS

MBox
7,FMS = − 1

8t(s + t)v4 [14]⟨32⟩h(ϵ)

×
[
6tS4

(1,1)(0,−p1 + p4|0, 0)− 2tS4
(1,1)(0, p1 + p2|m2

h, ξWm2)

− 2tS4
(1,1)(0, p1 + p2|ξWm2, m2

h)− 2tS4
(1,1)(0, p1 + p2|ξWm2, ξWm2)

+ st
(
S4
(1,1,1)(0,−p1, p2|0, m2

h, ξWm2) + S4
(1,1,1)(0,−p1, p2|0, ξWm2, ξWm2)

)
+ s(m2

h − s + ξWm2)S4
(1,1,1)(0,−p1, p2|0, ξWm2, m2

h)

+ t(2m2
h − s − t)S4

(1,1,1)(0,−p1,−p1 + p4|0, ξWm2, 0)

+ t(s + 2t)
(
S4
(1,1,1)(−p1, p2,−p1 + p4|m2

h, ξWm2, 0)

+ S4
(1,1,1)(−p1, p2,−p1 + p4|ξWm2, ξWm2, 0)

)
+ s(m2

h − s + ξWm2)S4
(1,1,1)(−p1, p2,−p1 + p4|ξWm2, m2

h, 0)

+ (t(s + t)(s − ξWm2)− m2
ht(s + t − 2ξWm2))

× S4
(1,1,1,1)(0,−p1, p2,−p1 + p4|0, m2

h, ξWm2, 0)

+ 2ξWm2m2
htS4

(1,1,1,1)(0,−p1, p2,−p1 + p4|0, ξWm2, m2
h, 0)

+ t(s2 + s(t − 2ξWm2) + 2ξWm2(ξWm2 − t))

× S4
(1,1,1,1)(0,−p1, p2,−p1 + p4|0, ξWm2, ξWm2, 0)

]
(5.70)

MBox
6,FMS = −MBox

7,FMS(ξWm2 → m2
h) (5.71)

MBox
8,FMS = MBox

7,FMS(ξWm2 → m2
h, m2

h → ξWm2) (5.72)

MBox
9,FMS = −MBox

7,FMS(m
2
h → ξWm2) (5.73)

The signs originate again from the prefactors of the FMS expansion.
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6. Conclusion and Future Work

We have showcased a novel approach to perturbative calculations of leptonic
scattering processes by using an augmented gauge-invariant description for the
weak sector of the SM. After summarizing the usual picture of the weak interac-
tion in sections (2.1) and (2.2), we show how this so-called FMS formalism leads
to a change in particle phenomenology (2.3) with bound-state external leptons
composed of scalar Higgs particles and the usual leptons. These composite-state
objects were linked to higher n-point functions in terms of elementary particles
via a FMS expansion through splitting the Higgs doublet into the vev v and its
fluctuation fields. The leading term of this expansion is the usual elementary
four-point function, with higher Green’s functions yielding new invariant ma-
trix elements that can potentially effect the perturbative description of scattering
process at NLO (2.4). We investigated a bound-state formulation of the leptonic
scattering process e−L e+L → µ−

L µ+
L at NLO via an augmented perturbation theory

(APT) by employing the SH formalism (3.1) and the Davydychev reduction
(3.2) to express matrix elements in terms of spinor products and scalar master
integrals. We developed a toolkit to automatically create Feynman diagrams
via QGraf (4.1) and calculate the corresponding matrix elements using Mathe-
matica (4.2). We presented the tree-level differential cross section (5.1) and loop
corrections in (5.2) and (5.3). New invariant matrix elements MFMS occur due
to higher n-point functions, with twelve non-vanishing triangle diagrams that
arise from the six-point functions

⟨e−L e−L [hµ−
L ][hµ−

L ]⟩, ⟨e−L e−L [χµ−
L ][χµ−

L ]⟩,
⟨e−L e−L [hµ−

L ][χµ−
L ]⟩, ⟨e−L e−L [χµ−

L ][hµ−
L ]⟩, ⟨e−L e−L [ϕ

−νµL][ϕ
+νµL]⟩,

⟨[he−L ][he−L ]µ
−
L µ−

L ⟩, ⟨[χe−L ][χe−L ]µ
−
L µ−

L ⟩,
⟨[he−L ][χe−L ]µ

−
L µ−

L ⟩, ⟨[χe−L ][he−L ]µ
−
L µ−

L ⟩, ⟨[ϕ−νeL][ϕ
+νeL]µ

−
L µ−

L ⟩ (6.1)

and nine box diagrams that arise from the eight-point functions
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⟨[he−L ][he−L ][hµ−
L ][hµ−

L ]⟩, ⟨[he−L ][χe−L ][hµ−
L ][χµ−

L ]⟩,
⟨[χe−L ][he−L ][χµ−

L ][hµ−
L ]⟩, ⟨[χe−L ][χe−L ][χµ−

L ][χµ−
L ]⟩,

⟨[ϕ−νeL][ϕ
+νeL][ϕ

−νµL][ϕ
+νµL]⟩ (6.2)

These contributions can be treated the same way as the standard one-loop
diagrams, with a modified wave functional renormalization appearing for each
bound-state insertion. A visual summary of the higher n-point functions with
non-vanishing Feynman diagrams is given in figure (6.1). All diagrams in our
model are IR-convergent, and the reduced forms of the diagrams in section
(5.3.2) yield the same types of scalar integrals that appear for the standard ma-
trix elements. We successfully expanded on the effects of the Higgs constituents
in a perturbative setting [14], where no discrepancy between our results and
the formulation of leptonic bound states in terms of PDFs appears.
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Figure 6.1.: Summary of all types of matrix elements due to the gauge-invariant description
of external leptons. Red lines symbolize all possible propagator types that are
consistent with Feynman rules of the weak sector, and crosses correspond to
operator insertions of the composite scalar-lepton fields. The terms ϕa ∈ {h, χ, ϕ±}
represent the would-be Goldstone bosons in (6.1) and (6.2).

Future studies will involve the clarification of the exact kinematical dependence
of the external factors Ki, allowing us to obtain a first glimpse into the damping
prefactors of the higher n-point functions. The final evaluation of all scalar
integrals in our matrix elements and counterterms will be done via LoopTools
[42, 43], with its code extension allowing for a full calculation of all scalar
integrals with complex masses, as long as one external particle is massless [44].
Additionally, an extension to the massive weak (or electroweak) sector is obvi-
ous, where we could compare different non-vanishing helicity configurations
for collision experiments in future lepton colliders.
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Appendix A.

Conventions

A.1. Units

We make use of natural units throughout this paper, setting c = h̄ = 1. This
allows for all quantities to be defined on a simple mass scale. We introduced
the unit barn (b) to express the cross sectional area. It is related to GeV−2 via

1GeV−2 = 0.389379 × 109pb (A.1)

A.2. Minkowski space

We use the following convention for the metric tensor

gµν = gµν = diag(1,−1,−1,−1) (A.2)

The spacetime vectors are then given by

xµ = (x0, x) = (t, x, y, z), xµ = (x0,−x) = (t,−x,−y,−z) (A.3)

and the usual summation convention over repeated (Greek) Lorentz indices is
used

ab = aµbµ = aµbµ = ηµνaµbν = a0b0 − ab (A.4)

72



A.3. Mandelstam variables

A.3. Mandelstam variables

We frequently make use of Mandelstam variables to simplify kinematics of our
scattering process. For initial momenta p1 and p2 and final momenta p3 and p4
all pointing inward, they are

s = (p1 + p2)
2 = (p3 + p4)

2

t = (p1 + p3)
2 = (p2 + p4)

2

u = (p1 + p4)
2 = (p2 + p3)

2 (A.5)

The corresponding diagrams are often coined channels corresponding to tree-
level interactions with one exchange particle. As they are the only Lorentz-
invariant quantities one can create from external momenta, every cross section
can be expressed in terms of s, t and u. They are not linearly independent since

s + t + u =
4

∑
i=1

m2
i (A.6)

If all masses are zero, we can simply express the scalar products of external
momenta in terms of Mandelstam variables

p1 · p2 = p3 · p4 =
s
2

p1 · p3 = p2 · p4 =
t
2

p1 · p4 = p2 · p3 =
u
2

The variables t and u can also be represented by s and the scattering angle θ

t = − s
2
(1 − cos θ)

u = − s
2
(1 + cos θ)
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A.4. Dirac & Pauli matrices

Dirac matrices γµ are generators of matrix representation of the Clifford algebra
Cl1,3(R), acting on the space of Dirac spinors. They are given in the Weyl
representation as

γµ =

(
0 σµ

σµ 0

)
, γ5 =

(
−1 0
0 1

)
(A.7)

and are expressed by the hermitian Pauli matrices

σµ = (σ0, σ⃗) = (σ0, σ1, σ2, σ3)

=

((
1 0
0 1

)
,
(

0 1
1 0

)
,
(

0 −i
i 0

)
,
(

1 0
0 −1

))
(A.8)

σµ = (σ0, −⃗σ) (A.9)

that fulfill (σµ)2 = 12x2 for all µ. In four spacetime dimensions, relevant con-
traction identities for Dirac matrices are

γαγα = 414 (A.10)

γαγβγα = −2γβ (A.11)

γαγβγδγα = 4gβδ (A.12)

γαγβγδγϵγα = −2γϵγδγβ (A.13)

and trace identities in four dimensions are

Tr (1) = 4 (A.14)
Tr (γα) = 0 (A.15)

Tr
(
γαγβ

)
= 4gαβ (A.16)

Tr
(
γαγβγδγω

)
= 4(gαβgδω − gαδgβω + gαωgβδ) (A.17)

Tr (odd # γα) = 0 (A.18)

In case of dimensional regularization they need to be extended to d = 4 − 2ϵ

γαγα = (4 − 2ϵ)1 (A.19)

γαγβγα = −(2 − 2ϵ)γβ (A.20)

γαγβγδγα = 4gβδ − 2ϵγβγδ (A.21)

γαγβγδγϵγα = −2γϵγδγβ + 2ϵγβγδγϵ (A.22)

These identities are incorporated in the simplification of our tensor integrals,
where careful cancellation of ϵ-parameters arising from loop reductions is
necessary in order to ensure a consistent series expansion up to order O(ϵ).
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Appendix B.

Tree level for the full EW model

The calculations of the differential cross section of e−L e+L → µ−
L µ+

L for the
massless electroweak sector are summarized here. This time, there are two
matrix elements that contribute to the tree-level interaction due to an interaction
with the neutral Z-boson and the photon γ

Figure B.1.: Tree level diagrams for the scattering process in the full EW sector

Converting these into algebraic expressions using Feynman rules of the EW
standard model [5] yields

MZ = g2s2
WC2

L
1

s − m2
Z
[14]⟨32⟩ (B.1)

Mγ = g2s2
W

1
s
[14]⟨32⟩ (B.2)

where sW and cW are the sine and cosine of the weak mixing angle θW that
rotates the vector field Bµ of the UY(1) group and our vector field W3

µ from
SUW(2) in the broken electroweak sector. The term

CL =
s2

W − 1
2

sWcW
(B.3)

originates from the interaction of the Z-boson with an left-handed fermion-
antifermion pair and can be derived by expanding the electroweak Lagrangian
in terms of the rotated vector fields. The Z-boson mass

mZ =
gv

2cW
(B.4)
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differs by a factor of cW from the mass of our neutral vector boson W. Squar-
ing the sum of matrix elements and adding the prefactor 1

64π2s leads to the
differential cross section(

dσ

dΩ

)EW

CM
=

g4s
1024π2

(
s2

W
s

+
(s2

W − 1
2)

c2
W(s − m2

Z)

)2(
1 + cos(θ)

)2

(B.5)

The plots (B.2) and (B.3) show the behaviour of the EW sector compared to
our SU(2) model for the measured values s2

W ≈ 0.223 and c2
W ≈ 0.777. The

difference is only noticable at energies around and lower than the mass pole of
the Z-boson.

Figure B.2.: Differential cross sections at tree-level for the full EW model and our SU(2) model
in terms of the CM-energy

√
s and the pseudorapidity η
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Appendix B. Tree level for the full EW model

dσSU2

dσEW

1 10 100 1000 104
s [GeV]
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0.001
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dσSU2 /dσEW
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1

104

Figure B.3.: Differential cross section of the tree-level process in terms of the CM-energy
√

s
and fixed angle θ = 0 of the full EW model and our SU(2) model (above). The
comparison dσSU(2)/dσEW shows strong agreement for energies far above the pole
of the vector boson (below).
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Appendix C.

Feynman rules in Weyl
representation

We give a full list of all the leptonic external legs, all propagators and all relevant
interaction vertices for our process in an arbitrary ’t Hooft gauge.

C.1. Elementary external legs

The elementary external leptons l = e, µ are given in terms of Dirac and Weyl
spinors.

Figure C.1.: Full list of all leptonic external legs
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C.2. External bound states

C.2. External bound states

The bound-state insertions for our compound leptons L = E, M are denoted by
a cross that corresponds to an elementary spinor with two internal propagators
and an integration over the constituent momentum. The BS-amplitude is taken
to be an elementary spinor in our NLO description, and a renormalization of
the wave function Ki in terms of momentum pi with mass dimension one is
added.

Figure C.2.: Operator insertion of the bound states
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Appendix C. Feynman rules in Weyl representation

C.3. Propagators

Figure C.3.: Full list of all propagators.

C.4. Interaction vertices

Figure C.4.: Full list of all interactions containing four particles.
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C.4. Interaction vertices

Figure C.5.: Full list of all interactions containing three particles.
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Appendix D.

Scalar integrals

D.1. Convention

The logarithm has a cut along the negative real axis, and the products of
logarithms are

ln(ab) = ln(a) + ln(b) + η(a, b) (D.1)

η(a, b) =2πi

(
θ(− Im(a))θ(− Im(b))θ(Im(ab))

− θ(Im(a))θ(Im(b))θ(− Im(ab))

)
(D.2)

For a, b ∈ C and c, d ∈ R this simplifies to

ln(ab) = ln(a) + ln(b) (D.3)

ln
( a

b

)
= ln(a)− ln(b) (D.4)

ln(cd − iδ) = ln(a − iδ2) + ln
(

B − i
δ

A

)
(D.5)

for infinitesimal δ and δ2. The dilogarithm appears for reduced algebraic ex-
pression of triangle and box integrals

Sp(x) = −
∫ 1

0
dt

ln(1 − xt)
t

(D.6)

which has a cut along the positive real axis starting at x = 1. We can expand it
around ln(1 − x) and obtain an infinite sum in terms of Bernouilly numbers Bn

Sp(x) =
∞

∑
n=0

Bn
zn+1

(n + 1)!
, z = − ln(1 − x) (D.7)
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D.2. Tadpole integral

D.2. Tadpole integral

The tadpole integral contains an UV-divergence and needs to be regulated. It is
independent of external momenta and reads

S4
(1)(0|m

2) = −µ2ϵΓ(−1 + ϵ)(m2 − iδ)1−ϵ

= m2

(
µ2

m2 − iδ

)ϵ(
1
ϵ
− γE + 1

)
+O(ϵ)

= m2

(
1
ϵ
− γE + 1 − ln

(
m2

µ2

))
+O(ϵ) (D.8)

D.3. Bubble integrals

The most general massive bubble integral reads

S4
(1,1)(0, q2|m2

1, m2
2) =(

µ2

q2 − iδ

)ϵ(
1
ϵ
− γE + 2 + ∑

k=±

(
γk log

(
γk − 1

γk

)
− ln(γk − 1)

))
+O(ϵ)

(D.9)

with γ± being the solutions of the quadratic equation

− γ2q2 + γ
(

q2 + m2
2 − m2

1

)
+ m2

1 − iδ = 0 (D.10)

γ± =
q2 − m2

2 + m2
1 ±

√
(q2 − m2

2 + m2
1)

2 − 4q2(m2
1 − iδ)

2q2 (D.11)

that appears in the final integration step of bubble diagrams.
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Appendix D. Scalar integrals

There are two different special cases for non-vanishing q2 and for one or two
massless particles

S4−2ϵ
(1,1) (0, q2|0, m2) =(
µ2

m2

)ϵ(
1
ϵ
− γE + 2 +

m2 − q2

q2 ln
(

m2 − q2 − iδ
m2

))
+O(ϵ)

=
1
ϵ
− γE + 2 +

m2 − q2

q2 ln
(

m2 − q2 − iδ
m2

)
+ ln

(
µ2

m2

)
+O(ϵ) (D.12)

S4−2ϵ
(1,1) (0, q2|0, 0) =

(
µ2

−q2 − iδ

)ϵ(
1
ϵ
− γE + 2

)
+O(ϵ)

=
1
ϵ
− γE + 2 + ln

(
−µ2

q2 + iδ

)
+O(ϵ) (D.13)

If the momentum dependence vanishes, as is the case for pinched bubble
integrals that appear in our integral reduction, the solution simplifies to

S4−2ϵ
(1,1) (0, 0|m2

1, m2
2) =(

µ2

m2
2 − m2

1 − iδ

)ϵ(
1
ϵ
− γE + 2 +

(
γ0 log

(
γ0 − 1

γ0

)
− ln(γ0 − 1)

))
+O(ϵ)

(D.14)

with γ0 being the solution of the linear equation

γ0(m2
2 − m2

1) + m2
1 − iδ = 0, γ0 =

m2
1 − iδ

m2
1 − m2

2
(D.15)

In case both masses are equal, there remains a very simple solution

S4−2ϵ
(1,1) (0, 0|m2, m2) =

(
µ2

m2 − iδ

)ϵ(
1
ϵ
− γE + 2

)
(D.16)

Both masses being zero would lead to an IR-divergence [45], but this case does
not appear in our calculations.
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Appendix E.

QGraf

E.1. Model file

%␣authors:␣Simon␣Plätzer␣<simon.plaetzer@uni-graz.at>

%␣␣␣␣␣␣␣␣␣␣Fabian␣Veider␣<fabian.veider@edu.uni-graz.at>

%␣weak␣standard␣model␣including␣FMS␣contributions

%␣no␣QCD␣yet

%␣only␣includes␣two␣fermion␣generations

%␣no␣Yukawa␣coupling,␣no␣photon␣interaction

%␣tested␣with␣qgraf␣3.5.1

%␣leptons␣--␣mind:␣fermion␣--␣antifermion

[␣eL,␣eL_bar,␣-␣]

[␣nueL,␣nueL_bar,␣-␣]

[␣eR,␣eR_bar,␣-␣]

[␣mL,␣mL_bar,␣-␣]

[␣numL,␣numL_bar,␣-␣]

[␣mR,␣mR_bar,␣-␣]

%␣quarks␣--␣mind:␣fermion␣--␣antifermion

[␣uL,␣uL_bar,␣-␣]

[␣dL,␣dL_bar,␣-␣]

[␣uR,␣uR_bar,␣-␣]

[␣dR,␣dR_bar,␣-␣]

[␣cL,␣cL_bar,␣-␣]

[␣sL,␣sL_bar,␣-␣]

[␣cR,␣cR_bar,␣-␣]

[␣sR,␣sR_bar,␣-␣]

%␣quark␣mass␣terms␣--␣mind:␣fermion␣--␣antifermion

%␣physical␣bosons
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E.1. Model file

[␣w,␣w,␣+␣]

[␣w_plus,␣w_minus,␣+␣]

[␣h,␣h,␣+␣]

%␣goldstones

[␣chi,␣chi,␣+␣]

[␣phi_plus,␣phi_minus,␣+␣]

%␣ghosts

[␣vw,␣vw_bar,␣-␣]

[␣v_plus,␣v_plus_bar,␣-␣]

[␣v_minus,␣v_minus_bar,␣-␣]

%␣gauge␣invariant␣perturbation␣theory:␣bound␣states

[␣UL,␣UL_bar,␣-,␣external]

[␣DL,␣DL_bar,␣-,␣external]

[␣CL,␣CL_bar,␣-,␣external]

[␣SL,␣SL_bar,␣-,␣external]

[␣EL,␣EL_bar,␣-,␣external]

[␣NueL,␣NueL_bar,␣-,␣external]

[␣ML,␣ML_bar,␣-,␣external]

[␣NumL,␣NumL_bar,␣-,␣external]

[␣H,␣H,␣+,␣external]

[␣W,␣W,␣+,␣external]

[␣W_plus,␣W_minus,␣+,␣external]

%␣vector␣vertices

[␣w,␣w_plus,␣w_minus;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣w,␣w,␣w_plus,␣w_minus;␣gpow␣=␣’2’,␣vpow␣=␣’0’]

[␣w_plus,␣w_minus,␣w_plus,␣w_minus;␣gpow␣=␣’2’,␣vpow␣=␣’0’]

%␣scalar␣vertices

[␣h,␣h,␣h;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣h,␣chi,␣chi;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣h,␣phi_plus,␣phi_minus;␣gpow␣=␣’1’,␣vpow␣=␣’0’]
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Appendix E. QGraf

[␣h,␣h,␣h,␣h;␣gpow␣=␣’2’,␣vpow␣=␣’0’]

[␣chi,␣chi,␣chi,␣chi;␣gpow␣=␣’2’,␣vpow␣=␣’0’]

[␣h,␣h,␣chi,␣chi;␣gpow␣=␣’2’,␣vpow␣=␣’0’]

[␣h,␣h,␣phi_plus,␣phi_minus;␣gpow␣=␣’2’,␣vpow␣=␣’0’]

[␣chi,␣chi,␣phi_plus,␣phi_minus;␣gpow␣=␣’2’,␣vpow␣=␣’0’]

[␣phi_plus,␣phi_minus,␣phi_plus,␣phi_minus;␣gpow␣=␣’2’,␣vpow␣=␣’0’]

%␣vector/scalar␣vertices

[␣w,␣h,␣chi;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣w,␣phi_plus,␣phi_minus;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣w_plus,␣phi_minus,␣h;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣w_minus,␣phi_plus,␣h;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣w_plus,␣phi_minus,␣chi;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣w_minus,␣phi_plus,␣chi;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣w,␣w,␣h,␣h;␣gpow␣=␣’2’,␣vpow␣=␣’0’]

[␣w,␣w,␣chi,␣chi;␣gpow␣=␣’2’,␣vpow␣=␣’0’]

[␣w_plus,␣w_minus,␣h,␣h;␣gpow␣=␣’2’,␣vpow␣=␣’0’]

[␣w_plus,␣w_minus,␣chi,␣chi;␣gpow␣=␣’2’,␣vpow␣=␣’0’]

[␣w_plus,␣w_minus,␣phi_plus,␣phi_minus;␣gpow␣=␣’2’,␣vpow␣=␣’0’]

[␣w,␣w,␣phi_plus,␣phi_minus;␣gpow␣=␣’2’,␣vpow␣=␣’0’]

[␣w_plus,␣w,␣phi_minus,␣h;␣gpow␣=␣’2’,␣vpow␣=␣’0’]

[␣w_plus,␣w,␣phi_minus,␣chi;␣gpow␣=␣’2’,␣vpow␣=␣’0’]

[␣w_minus,␣w,␣phi_plus,␣h;␣gpow␣=␣’2’,␣vpow␣=␣’0’]

[␣w_minus,␣w,␣phi_plus,␣chi;␣gpow␣=␣’2’,␣vpow␣=␣’0’]

[␣h,␣w,␣w;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣h,␣w_plus,␣w_minus;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣phi_plus,␣w_minus,␣w;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣phi_minus,␣w_plus,␣w;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

%␣fermion␣vertices␣--␣mind:␣antifermion␣-␣fermion␣-␣boson

[␣eL_bar,␣eL,␣w;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣eR_bar,␣eR,␣w;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣mL_bar,␣mL,␣w;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣mR_bar,␣mR,␣w;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣uL_bar,␣uL,␣w;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣uR_bar,␣uR,␣w;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣dL_bar,␣dL,␣w;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣dR_bar,␣dR,␣w;␣gpow␣=␣’1’,␣vpow␣=␣’0’]
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[␣cL_bar,␣cL,␣w;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣cR_bar,␣cR,␣w;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣sL_bar,␣sL,␣w;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣sR_bar,␣sR,␣w;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣nueL_bar,␣nueL,␣w;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣numL_bar,␣numL,␣w;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣uL_bar,␣dL,␣w_plus;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣dL_bar,␣uL,␣w_minus;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣cL_bar,␣sL,␣w_plus;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣sL_bar,␣cL,␣w_minus;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣nueL_bar,␣eL,␣w_plus;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣eL_bar,␣nueL,␣w_minus;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣numL_bar,␣mL,␣w_plus;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣mL_bar,␣numL,␣w_minus;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

%␣fermion␣mass␣term␣vertices␣(1)␣--␣mind:␣antifermion␣-␣fermion␣-␣boson

%␣fermion␣mass␣term␣vertices␣(2)␣--␣mind:␣antifermion␣-␣fermion␣-␣boson

%␣ghost␣vertices␣--␣mind:␣antighost␣-␣ghost␣-␣boson

[␣v_plus_bar,␣v_plus,␣w;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣v_minus_bar,␣v_minus,␣w;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣vw_bar,␣v_minus,␣w_plus;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣vw_bar,␣v_plus,␣w_minus;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣v_plus_bar,␣vw,␣w_plus;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣v_minus_bar,␣vw,␣w_minus;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣vw_bar,␣vw,␣h;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣v_plus_bar,␣v_plus,␣h;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣v_minus_bar,␣v_minus,␣h;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣v_plus_bar,␣v_plus,␣chi;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣v_minus_bar,␣v_minus,␣chi;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣v_plus_bar,␣vw,␣phi_plus;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣v_minus_bar,␣vw,␣phi_minus;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣vw_bar,␣v_plus,␣phi_minus;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

[␣vw_bar,␣v_minus,␣phi_plus;␣gpow␣=␣’1’,␣vpow␣=␣’0’]

%␣gauge␣invariant␣perturbation␣theory:␣bound␣state␣constituents
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[␣UL_bar,␣uL,␣h;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣UL_bar,␣uL,␣chi;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣UL_bar,␣dL,␣phi_plus;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣uL_bar,␣UL,␣h;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣uL_bar,␣UL,␣chi;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣dL_bar,␣UL,␣phi_minus;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣DL_bar,␣dL,␣h;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣DL_bar,␣dL,␣chi;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣DL_bar,␣uL,␣phi_minus;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣dL_bar,␣DL,␣h;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣dL_bar,␣DL,␣chi;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣uL_bar,␣DL,␣phi_plus;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣CL_bar,␣cL,␣h;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣CL_bar,␣cL,␣chi;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣CL_bar,␣sL,␣phi_minus;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣cL_bar,␣CL,␣h;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣cL_bar,␣CL,␣chi;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣sL_bar,␣SL,␣phi_plus;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣SL_bar,␣sL,␣h;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣SL_bar,␣sL,␣chi;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣SL_bar,␣cL,␣phi_minus;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣sL_bar,␣SL,␣h;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣sL_bar,␣SL,␣chi;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣cL_bar,␣CL,␣phi_plus;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣NueL_bar,␣nueL,␣h;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣NueL_bar,␣nueL,␣chi;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣NueL_bar,␣eL,␣phi_plus;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣NumL_bar,␣numL,␣h;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣NumL_bar,␣numL,␣chi;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣NumL_bar,␣mL,␣phi_plus;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣nueL_bar,␣NueL,␣h;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣nueL_bar,␣NueL,␣chi;␣gpow␣=␣’0’,␣vpow␣=␣’1’]
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E.1. Model file

[␣eL_bar,␣NueL,␣phi_minus;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣numL_bar,␣NumL,␣h;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣numL_bar,␣NumL,␣chi;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣mL_bar,␣NumL,␣phi_minus;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣EL_bar,␣eL,␣h;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣EL_bar,␣eL,␣chi;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣EL_bar,␣nueL,␣phi_minus;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣ML_bar,␣mL,␣h;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣ML_bar,␣mL,␣chi;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣ML_bar,␣numL,␣phi_minus;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣eL_bar,␣EL,␣h;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣eL_bar,␣EL,␣chi;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣nueL_bar,␣EL,␣phi_plus;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣mL_bar,␣ML,␣h;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣mL_bar,␣ML,␣chi;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣numL_bar,␣ML,␣phi_plus;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣H,␣h,␣h;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣H,␣chi,␣chi;␣gpow␣=␣’0’,␣vpow␣=␣’1’]

[␣H,␣phi_plus,␣phi_minus;␣gpow␣=␣’0’,␣vpow␣=␣’1’]
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