
Felix Pressler

Dark Matter from Quantum Gravity:

Curvature Correlators and Geons in
4d Causal Dynamical Triangulations

Master’s Thesis

in partial fulfillment of the requirements for the degree of

Master of Science - MSc

in Physics

submitted to

University of Graz

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Phys. Dr.rer.nat. Axel Maas

Co-Supervisor

Dipl.-Phys. Dr.rer.nat. Simon Plätzer

Institute of Physics

Graz, March 2025

Abstract

The problem of dark matter remains elusive to this day with many possible theoretical
solutions already exhausted. At the same time, quantum gravity, representing another
frontier of fundamental physics, is similarly known for high-level solutions and the no-
torious difficulty to discern between them experimentally. This exploratory thesis aims
at bridging the gap between these topics by exploring a possible dark matter candidate
arising solely from a quantum gravitational treatment. Working in 4d Causal Dynamical
Triangulations (CDT) and building on a recently introduced measure for curvature in
this theoretical framework, curvature correlation functions were built and analyzed for
possible particle-like properties. It was found that the general behavior of these corre-
lators shows signs of universality across different volume regimes as well as for different
curvature operators, hinting at a massive particle possibly representing a Geon. A value
for the screening mass was extracted from the data and, using known scaling relations,
estimated to be on the order of 10�9 kg, placing it at a tenth below the Planck mass.
Finally some tentative remarks were made regarding further properties of these results,
indicating possible directions for further research. While speculative, this thesis does
hint at a justifiable interpretation along the lines of a massive Geon emerging in CDT,
possibly describing a candidate particle for dark matter, strongly motivating further
investigations.

Acknowledgements

I want to thank my main advisor Axel Maas for hours of patient explanations, restless
motivation and his appreciative guidance, without which I would have never been able
to work on such a project. I also thank my co-supervisor Simon Plätzer for his patience
with me and his caring explanations, especially in the first few phases of this work, when
technical details seemed overwhelming.

Furthermore I am indebted to Dániel Németh for providing us with the simulation code
that was used in this work, his kind help at the start of the project and thoughtful
discussions of the same, for which I would also like to express my gratitude to Renate
Loll. For providing me with a starting point on Dijkstra’s algorithm I want to thank
David Kneidinger.

Danke Ute, dass du immer Verständnis hattest, auch ohne alles zu verstehen, sogar
während wir zu Hause unser eigenes kleines Abenteuer begonnen haben.

To my daughter

Contents

1. Introduction and Motivation 1

2. Theoretical Framework 2

2.1. Quantum Gravity and CDT . 2
2.2. Curvature in Triangulated Spacetime . 6

2.2.1. Curvature in GR . 6
2.2.2. Discrete Curvature . 7

2.3. Observables and Correlators in QFT and CDT 9
2.4. Geons and Dark Matter . 11

3. Methodology 13

3.1. Reproducing 4d CDT findings . 13
3.2. Measuring Geodesic Distances and Curvature 14

3.2.1. Regular and Dual Lattice . 14
3.2.2. Dijkstra’s Algorithm . 16

3.3. Building Correlation Functions . 17
3.3.1. Extracting the Ricci scalar . 19
3.3.2. Investigated Correlators . 19

4. Results 21

4.1. Preliminary Observations and Remarks . 21
4.2. Curvature Correlators from d̄/� . 23

4.2.1. 2-point correlators from d̄/� . 23
4.2.2. Directly subtracted 2-point correlators from d̄/� 26

4.3. Curvature Correlators from R . 29
4.3.1. 2-point correlators from R . 29
4.3.2. Directly subtracted 2-point correlators from R 29

5. Discussion and Interpretation 33

6. Conclusion and Outlook 35

A. Basic Algorithms and Code 36

References 59

1 Introduction and Motivation

1. Introduction and Motivation

The origin and nature of dark matter is a nearly century-old problem by now and still
one of the most pressing questions theoretical and fundamental physics strive to an-
swer. This proposed type of matter is hypothesized to have peculiar properties: It can’t
be seen but only felt (gravitationally) while at the same time it should exist in such
abundance that it outnumbers all of the visible matter roughly by a factor of five [1].
Technically speaking, these observational properties demand that dark matter does not
interact electromagnetically but has a mass that significantly contributes to the overall
mass of galaxies, that it can clump, that it is stable and generally behaves in ways that
have been elaborated in great detail.1 As of today, a multitude of theories provide pos-
sible descriptions for such an unseen gravitational component, be it in terms of modern
particle physics or through a modification of gravitation, but due to lack of empirical
observations discerning between those theories, a generally accepted explanation remains
elusive [3].

While the problem of dark matter emerged from probing gravity at very large scales,
another frontier of modern physics deals with the peculiarities of the same fundamental
force acting at the smallest scales known to us, where neither general relativity (GR),
describing gravity, nor the second fundamental theory of physics, quantum field theory
(QFT), can be neglected [1, 4]. While there is currently no generally accepted theory
to describe these conditions, it is strongly believed that one has to exist, since our
current understanding of the universe provides us with examples of situations where
both conditions are met (e.g. in the interior of a black hole or at the big bang) [5]. Thus,
it is of great importance for a candidate theory of quantum gravity to make testable
predictions that are empirically falsifiable. One such theory that has recently drawn
attention to it is called causal dynamical triangulations (CDT).

The main motivation for this present work has been to fuse those two research programs
such that a possible candidate particle for dark matter might be found to arise from
quantum gravity itself. Our approach provides exploratory investigations into how a
particle interpretation might be possible in CDT and how this might link to particles
arising from the curvature of spacetime, so-called Geons. While many technical details
are still open, the following sections provide a comprehensive theoretical overview of
CDT itself, how curvature can be defined in triangulated spacetime, how observables
and correlation functions are then obtained and how those could be interpreted in terms
of particle-like behavior. After reviewing the specific methodology that was used to
obtain them, tentative results are discussed and interpreted. Finally, concluding remarks
are made and a possible picture for future research in this area is drawn.

1
see e.g. [2]

1 / 64

2 Theoretical Framework

2. Theoretical Framework

In this chapter, the theoretical framework underlying the current work is established. It
is in the nature of this topic that these explanations can by no means be complete but will
consist only of the building blocks necessary for our investigations. Regarding quantum
gravity, this will entail a brief overview of the subject with a short introduction into
CDT and the possibilities and challenges it poses to our aims. Subsequently a review
of possible definitions for physical observables in CDT and QFT is given and general
demands for a theory describing Geons and dark matter are addressed.

2.1. Quantum Gravity and CDT

Modern physics rests heavily on two grand theories that have succeeded in explaining
practically all phenomena currently testable. On the one hand, there is quantum field
theory or QFT, which underpins quantum electrodynamics and the weak interactions
as well as quantum chromodynamics, thus leading to theories for electromagnetism, the
strong and the weak nuclear interaction, which are also known as three of the four
fundamental forces. General relativity or GR on the other hand follows a different math-
ematical structure to disclose the workings of the fourth fundamental force, gravitation.
It has been a long-sought goal for physics to find another theory fusing both quantum
mechanics as well as gravity [1, 6]. This striving has produced a multitude of different
approaches on how to tackle this problem and while they are all worthwhile studying,
for the purpose of this work we will focus on a single path that leads to the theory of
causal dynamical triangulations.

A common starting point for most quantum field theories has been the path integral
formalism, in which physical statements are obtained by evaluating the integral over
field configurations for a specific action [7]. The classical theory of general relativity
provides such an object in form of the Einstein-Hilbert action [1]

SEH =
1

16⇡G

Z
d
4
x
p
g(R� 2⇤) ⌘

Z
d
4
x
p
gM

2
pl
(R� 2⇤) (1)

where G is the gravitational constant, g is the determinant of the metric tensor gµ⌫ ,
R is the Ricci scalar, which will be addressed later on, and ⇤ denotes the cosmological
constant. The constant prefactors can be absorbed in the square of the Planck mass
M

2
pl

, as is shown on the right hand side. A naive way to proceed to a quantum theory
of general relativity (and thus gravity) would be to plug this formula into the standard
path integral prescription. With a bit of care, one then obtains the partition function Z

as [8]:

Z =

Z

M

D[gµ⌫]e
iSEH [gµ⌫] (2)

Here it is evident that the metric gµ⌫ itself is interpreted as the field and integration is

2 / 64

2 Theoretical Framework 2.1 Quantum Gravity and CDT

done over the space of all possible metrics for a given manifold M .2 The problem at the
heart of this equation is that this path integral is – within perturbation theory – non-
renormalizable, because a coupling with negative mass dimension �2 appears through G

[9]. Moreover, within such a framework the concept of locality is becoming increasingly
intricate, since simple computations show how coordinates in local observables can be
easily exchanged [1]. Generally speaking, the notion of distance itself must become an
expectation value of some sort [10].

CDT provides a way to approach this prescription and make it amenable to computer
simulations. It does so, roughly speaking, by discretizing the integral such that it becomes
a sum over possible spacetime geometries. To this end (and in the spirit of similar lattice
methods in QFT), a spacetime lattice is introduced where the lattice spacing a acts as a
regulator, providing a UV cutoff.3 The chosen lattice type is a triangulation, for which it
was already shown by Regge that a natural implementation of the Einstein-Hilbert action
exists [8, 11]. Unlike previous attempts to explore quantum gravity using lattice methods,
this approach brings several promising features with it, two of which are exceptionally
different to other methods that might come to mind:

• Through the usage of Regge calculus, distinct continuous geometries are produced
without the need to introduce a coordinate system at any point. This guarantees
inherent diffeomorphism invariance.

• In contrast to perturbative approaches to quantum gravity discretization, which
mostly rely on a fixed background, the lattice itself is the dynamical quantity in
CDT. Thus, the theory is manifestly background independent and non-perturbative.4

Using this methodology, the discretized partition function for a specific lattice constant
a then becomes [8]

Za =
X

T

1

CT

e
�S

Regge
E

[T] (3)

where summation is done over all possible triangulations T . The combinatorial factor
CT is the number of elements in the automorphism group of T and accounts for over-
counting of differently labeled but otherwise identical triangulations. The weight factor
corresponds to the usual Boltzmann weight after Wick rotation of the action, which is
given by an adapted Regge-version of the Einstein-Hilbert action [8, 12]. This quantity
and its dependencies will be discussed in the following, where we will give a concise
overview of how calculations are done using this framework.

2
The square brackets indicate that integration is actually performed over all diffeomorphism equivalence

classes of metrics
3
CDT is not a discrete theory of gravity, since physical quantities are obtained in the continuum limit

a ! 0. In abuse of language, the limit ds2 ! 0 is henceforth denoted as "UV", analogous to

conventional lattice theory.
4
Note that there exist background-independent perturbative approaches, from which CDT differs

greatly, however, through its reliance on the whole quantum geometries to describe the path in-

tegral.

3 / 64

2 Theoretical Framework 2.1 Quantum Gravity and CDT

Figure 1: Illustration of CDT geometries in 1+1 dimensions
Time flows upwards along the vertical direction, the horizontal lines are slices of con-

stant proper time, also called timeslices. On these slices, all links between vertices

are spatial. The temporal links are shown in red and the vertices are denoted as grey

dots. A 2-simplex is then formed by combination of two temporal and one spatial link.

This band structure extends vertically to further timeslices and horizontally to fur-

ther vertices. For a spherical topology, vertical and horizontal ends are glued together

(identified with each other). Note that all red and all blue lines have, in fact, the same

physical length (either timelike or spacelike link length) and the distortion shown in

this figure hints at the nontrivial curvature of the geometry.

Doing CDT

This section follows closely [8, 12–15] as well as the lecture notes [16–18].

In CDT, spacetime is built as an undirected graph using standard building blocks con-
sisting of vertices and links. Together, they form simplices, which are the d-dimensional
generalizations of triangles. Two different edge lengths occur in the graph, each one being
associated with either spatial or temporal edges:

l
2
spacelike = a

2 (4)
l
2
timelike = �↵a

2
, ↵ > 0 (5)

A notion of proper time is induced through a foliation of spacetime, assuring that the
vertices all lie on slices of constant proper time.5 In this way, the resulting simplices are
glued together on a fixed topological manifold, which is often chosen to be either a sphere
or a torus, providing periodic boundary conditions. The simplices are always situated
between two timeslices and can be oriented in different ways, depending on the number of
vertices they share on each timeslice. An illustration of this concept is found in fig. 1 for
the 2d case. If one denotes the number of vertices a simplex shares on slice ⌧ and ⌧+1 as
(n,m), the 4-simplex (which is used in 4d CDT) can be oriented between timeslices in the
following ways: (4, 1), (1, 4), (3, 2) and (2, 3). The aforementioned action then depends

5
Such a slice can be identified as a spatial slice because of this feature. Since it is a slice of constant

time, it will be also called timeslice in the following.

4 / 64

2 Theoretical Framework 2.1 Quantum Gravity and CDT

on the triangulation through the number of simplices sharing an orientation as well as
three other quantities: the bare gravitational coupling, the bare cosmological constant
and the ratio between edge lengths (spatial and temporal) �↵. After deciding on those
constants as input parameters, the last step is to perform a random walk through the
space of possible geometries using Markov Chain Monte Carlo techniques with a fixed
set of possible moves to update the local geometry of the triangulation. The aim behind
this is to generate a sample of an ensemble of triangulations such that the probability to
draw a specific triangulation T from it approaches the distribution [8]

P (T) =
1

Z
e
�SE [T] (6)

The action for the 4d case can be expressed as [8]

SE = �(0 + 6�)N0 + 4(N
(4,1)
4 +N

(3,2)
4) +�(N (4,1)

4 +N
(3,2)
4) (7)

where the i depend on the bare inverse Newton constant  and bare cosmological con-
stant �, � is the asymmetry parameter capturing the geometric impact of different link
lengths, N0 denotes the number of vertices in a configuration and the N4 denote the num-
ber of simplices of different type. Through its dependence on these input parameters,
CDT operates in an intricate three dimensional parameter space. Through fine-tuning
of 4 to its critical value in actual computations, this can be reduced to two dimensions,
where the theory is well described solely by the two parameters 0 and �.

This shows, in essence, how CDT serves as a computational tool to explore quantum
gravity at the Planck scale [8, 12–14].

Here it is worth to note that depending on the point in phase space under investigation,
CDT configurations6 exhibit different behavior. One of the findings so far has been that
there exists a certain phase, where typical configurations seem to emerge in a de Sitter
like shape, with recent research suggesting the validity of a physical interpretation in
terms of de Sitter geometry [8, 12, 19]. This discovery is a major pillar of this current
work, where the first steps have been to recreate some features of those geometries as
consistency checks, as will be shown in section 3.1. Recall that a de Sitter universe is
characterized by a continuous expansion and a constant, positive scalar curvature [6]. It
can also be described as the coset manifold of two Lorentz groups, analogous to the group
theoretic description of a general sphere [20]. Thus, the validity of describing a certain
geometry as de Sitter like depends heavily on its curvature properties. The contents of
section 2.2 will therefore deal with ways to define notions of curvature on discrete spaces
and how this is eventually done in CDT.

CDT in the broader picture of quantum gravity

While the first glimpse may raise questions regarding the validity of assumptions un-
derlying the CDT approach to quantum gravity, predictions made using this framework

6
Is used synonym to triangulations or universes.

5 / 64

2 Theoretical Framework 2.2 Curvature in Triangulated Spacetime

seem to hold up well against other approaches so far. Not only has there been increasing
evidence for the CDT prediction of a "fractal" universe with a dynamical reduction in
dimensionality from four to two for small geodesic distances, but recent research also
made progress in identifying limits of the theory with those evaluated through a differ-
ent approach to QG, relying on functional renormalization group (FRG) techniques [8,
21]. Within this scheme, a so-called effective action is derived for quantum gravity and
assumed to be a function of a certain scale factor k, giving the IR and UV limits of
the theory for k ! 0 and k ! 1 respectively.7 One hope is that such a limit could be
identified with a UV fixed point of the renormalization group, leading to a consistent and
predictive theory of quantum gravity in spite of the perturbative non-renormalizablity,
which is also called the asymptotic safety scenario. There are already strong hints that
such a UV fixed point might exist for quantum gravity, while so far only the IR limit of
CDT could be identified with the result from the FRG approach [21, 23]. In any case,
CDT is expected to at least give an effective description of physics at the scale of a few
Planck lengths, mostly independent of what theory is exactly realized [8].

2.2. Curvature in Triangulated Spacetime

There is a notion of curvature that goes back to Leonhard Euler and is still the most
prevalent concept when discussing the topic: That curvature is – in some way or another
– linked to the second derivative [24]. This idea becomes troubling when one considers
discretized geometries like it is done in this work, where a suitable definition of a second
derivative of some kind might be hard to find. Thus, in this chapter, we will address this
problem and provide a solution to how curvature can still be measured in triangulated
spacetime.

2.2.1. Curvature in GR

The central object in GR, one could say, is the Riemann tensor R
�
⇢µ⌫ . This quantity

solely depends on the metric, but it also relies on the concept of Gaussian curvature,
which is an intrinsic property of a surface embedded in three dimensional space and
given by the product of its two principal curvatures. The principal curvatures are the
maximum and minimum measures of departure of a smooth curved surface from a flat
surface tangent to it at any given point [6]. Using this, the Riemann tensor can then be
thought of as the collection of Gaussian curvatures of all planes containing a given vector.
This is of course just one interpretation with the most common being that R�

⇢µ⌫ , on any
general Riemannian manifold, measures the failure of the second (covariant) derivatives
to commute at any point, hinting again at the connection between curvature and the
second derivative.

If we stay in the previous picture, we can define two more quantities which are used
heavily in GR. The first one is the first contraction of the metric and the Riemann

7
see [22] for further information.

6 / 64

2 Theoretical Framework 2.2 Curvature in Triangulated Spacetime

tensor, also called the Ricci tensor Rµ⌫ = R
�

µ�⌫
. It can be thought of as an average over

this collection of Gaussian curvatures. Contracting it a second time then gives the Ricci
scalar or curvature scalar R = g

µ⌫
Rµ⌫ [25].

2.2.2. Discrete Curvature

This section as well as section 2.3 follow closely [19, 26, 27].

In Regge calculus, GR’s natural discrete continuation, curvature is measured in terms of
deficit angles. Within this concept, curvature is located at the hinges of the triangulation
edges, and is given by the deficit of an angle sum around such a hinge with respect to flat
space. The hinge is the (d� 2)-dimensional subspace of the given manifold. This is, for
example, a vertex (0-dimensional) on a 2d-manifold built from triangles or a triangle on
a 4d-manifold built from simplices. The deficit angle of, say, a vertex on a 2d-manifold
is, pictorially speaking, the angle one would obtain if one where to cut open one of the
neighboring edges, lay the resulting tile on a flat surface and measure the angle between
the open edges (as seen in fig. 2). It is the difference of 2⇡ (what one would expect in
a flat 2d case) and the angle sum around the vertex. One feature of this prescription is
that the sum over all deficit angles �i for a small region on a given manifold is equal to
half the integral over the curvature scalar of the original smooth manifolds region, giving
the relation X

Ai�i =
1

2

Z
R
p
�gd

4
x (8)

for the 4d case, where the Ai are the area contents of the triangles building the region
summed over [6].

Figure 2: Deficit angle curvature
In this example, a 3d object (1) is approximated by a triangulation (2) to produce a

geometry of similar curvature, indicated by the shadow. If one were to cut open the

triangulation at any edge and lay the resulting tile flat on the ground (3), the angle

between the open edges is called the deficit angle � and is a measure of the curvature

at the central vertex.

The problem with deficit angle curvature is that while it works well for the case of
triangulated spacetime, it tends to be highly divergent in the continuum limit for general
manifolds, which is a crucial step in the theory of CDT. This is the case because as
the lattice spacing a approaches zero, the density of curvature defects grows while the

7 / 64

2 Theoretical Framework 2.2 Curvature in Triangulated Spacetime

individual deficit angles do not average out. To remedy this, one needs to work with an
alternative concept of curvature. A method that has produced promising results so far
is built on another interpretation of curved spaces and was only recently introduced in
the literature as Quantum Ricci Curvature [12, 19, 26, 27].

This method is built on the observation that on positively curved manifolds, balls (and
spheres) are closer than their centers are [28].8 This in turn can be used to define a mea-
sure of curvature in the following way: Consider two points on a smooth D-dimensional
Riemannian manifold p and p

0 around which two spheres S✏
p, S

✏

p0 of radius ✏ are built such
that they contain all points that are a geodesic distance ✏ away from their centers. The
centers themselves have a geodesic separation of � � 0. If one maps one sphere onto
another using parallel transport and considers the limit (�, ✏) ! (0, 0), one finds that the
average distance between two points on those spheres becomes [27]

d
�
S
✏

p, S
✏

p0
�
= �

✓
1�

✏
2

2D
Ric(v, v) +O(✏3 + �✏

2)

◆
(9)

where Ric(v, v) denotes the Ricci curvature of a unit tangent vector v at p. To make this
expression practically computable in the framework of CDT, a slight change is made in
that the spheres S

✏
p are now defined as the set of all points that are a distance ✏ apart

from the center p, whether or not they really form a sphere in the topological sense.9
Through this, the average sphere distance for a D-dimensional Riemannian manifold can
be defined as [27]

d̄
�
S
✏

p, S
✏

p0
�
⌘

1

vol(S✏
p)

1

vol(S✏

p0)

Z

S✏
p

d
D�1

q

p

h

Z

S
✏

p0

d
D�1

q
0
p

h0 d(q, q0) (10)

where
vol(S✏

p) =

Z

S✏
p

d
D�1

q

p

h, vol(S✏

p0) =

Z

S
✏

p0

d
D�1

q
0
p

h0 (11)

with the volumes of the spheres vol(S), their metric determinants h and h
0 and the

geodesic distance d(q, q0) between points q and q
0 on the spheres. Here it should be noted

that d̄ is not a proper mathematical distance, since it does not vanish in the case of
p = p

0 unless for ✏ = 0. A straightforward discretized lattice implementation of eq. (10)
is found in [27]

d̄
�
S
✏

p, S
✏

p0
�
=

1

N0(S✏
p)

1

N0(S✏

p0)

X

q2S✏
p

X

q2S✏

p0

d(q, q0) (12)

8
To illustrate this, it might be helpful to imagine the surface of an upright balloon with two circles

drawn on it on a horizontal line. If one now draws two additional vertical straight lines along the

surface of the balloon and through the centers of both circles, one might find that the points on the

circles where the lines intersect are a smaller geodesic distance apart than their centers. This effect

is seen solely through the curvature of the balloon. This principle is also depicted in fig. 3.
9
On typical CDT configurations, in general, they don’t, but they rather form disconnected spaces.

8 / 64

2 Theoretical Framework 2.3 Observables and Correlators in QFT and CDT

where the volume is denoted as the number of vertices contained in a sphere N0(S✏
p) =P

q2S✏
p

1 and summation is done over all points on the spheres. From this, one finally
arrives at the following expression for the average normalized sphere distance [27]:

d̄(S�
p , S

�

p0)

�
= cq(1�Kq(p, p

0)) (13)

Here, the radius of the spheres has been set equal to the geodesic distance between
their centers � = d(p, p0), cq is a positive constant dependent on the geometry of the
metric space and Kq(p, p0), capturing all dependencies on the Ricci curvature, has been
dubbed the Quantum Ricci Curvature (QRC). The associated quantum Ricci scalar can
be obtained by letting p = p

0 for the 2d case, thus setting the two spheres equal to one
another [26, 27]. This version of eq. (12) and eq. (13), where the average normalized
sphere distance then only depends on a single point p is the one that was used in this
work. There is a considerable amount of detail involved in the exact systematics of
how to calculate such a quantity on a computer, which will be further explained in
section 3.

On a general smooth 4d Riemannian manifold and in the limit � ! 0, the average nor-
malized sphere distance can also be computed numerically by usage of Riemann normal
coordinates as was done in [29]. Expressed as truncated power series in � it was found
to be:

d̄

�
= 1.6524 + �

2(�0.0469Ric(v, v)� 0.0067R+O(�)) (14)

where two distinct contributions appear from the Ricci tensor Ric(v, v) as well as its trace,
the Ricci scalar R. This numerical benchmark can act as a first marker to compare our
results against.

2.3. Observables and Correlators in QFT and CDT

To narrow in on the goal of this thesis, it is crucial that a solid foundation for a possible
particle interpretation of our findings is built. To start with this, recall that the main
quantity of interest in QFT is most often the vacuum expectation value of some observable
O. In CDT, the corresponding regularized quantity is obtained as [8]

hOia =
1

Za

X

T

1

CT

e
iS[T]

O[T] (15)

and is assumed to be related to continuum observables via a certain scaling relation
[8]. For our further investigations, however, we will need a concept describing two-
point correlation functions or propagators in a similar fashion. Generally, continuum
expressions for such objects can be defined in non-perturbative quantum gravity in the
following way [26]:

hG[O,O(r)]i =

Z
D[g]eiS[g]

Z

M

d
4
x

p
|g(x)|

Z

M

d
4
y

p
|g(y)|O(x)O(y)�(dg(x, y)�r) (16)

9 / 64

2 Theoretical Framework 2.3 Observables and Correlators in QFT and CDT

Figure 3: Spheres in positive curvature
Two spheres on a positively curved manifold. All grey lines are geodesics, appearing

curved through their projection (curvature is exaggerated). Both spheres have the

same radius " and are separated by a distance �. The two bottom points q and q
0
are

shown to have a smaller separation d(q, q0) than the sphere centers, even though they

are connected to those via a geodesic. This effect illustrates the curved nature of the

manifold.

Here, O is a local scalar quantity (like the curvature scalar we will examine later on) and
r is the geodesic distance between x and y. The integration over both spacetime points
has to be performed in order to obtain a diffeomorphism-invariant quantity, such that
an interpretation as physical object is valid. The connected version of this correlator
can be obtained by substituting an operator in eq. (16) with the deviation from its
average,

O(x) �!
⇣
O(x)� O

��
g

⌘
(17)

where notation already hints at the fact that O
��
g

also depends on the metric. In general
it should be noted that two-point functions in quantum gravity depend on the metric in
a threefold way, namely through the two operator values as well as the geodesic distance
dg(x, y).10

In the discretized lattice setting of CDT, averages over the manifold become averages
over triangulations and the classical propagator becomes the sum

GT [O,O](r) ⌘
X

x,y2T

O(x)O(y)�d(x,y),r (18)

To then extract the expectation values, one averages over fixed-volume ensembles of tri-
angulations (denoted as h·i) before or after normalization. Using the average normalized
10

This of course also implies that nontrivial correlations involving the unit operator should be expected

since even G[1, 1](r) depends on the metric through the geodesic distance r.

10 / 64

2 Theoretical Framework 2.4 Geons and Dark Matter

sphere distance defined above (abbreviated as d̄/�), a possible choice for a normalized
curvature correlator could thus be [26]:

G[d̄/�, d̄/�, r] ⌘
hGT [d̄/�, d̄/�](r)i

hGT [1, 1](r)i
(19)

2.4. Geons and Dark Matter

To close the loop opened up in the introduction, the last step is to integrate the propa-
gators we have defined in the previous section into a suitable particle picture. For this,
we should first look back at what we want to arrive at in the end: a candidate particle
for dark matter.

Dark matter has a long history of eluding detailed physical description. Nevertheless,
piles of observational evidence for it were gathered over the course of nearly a century,
with data from galaxy clusters and the cosmic microwave background strongly narrowing
in on the allowed properties for dark matter. As already mentioned, it needs to satisfy
two criteria first and foremost [3]:

1. If it interacts with ordinary Standard Model matter, it does so very weakly except
for its gravitational interaction, justifying the adjective dark.

2. Nevertheless it has to be abundant in the observable universe with current esti-
mates holding it responsible for about 84% of the total observable mass density.
Furthermore it needs to be stable on cosmological timescales [2].

These allow for a vast variety of dark matter models relying on extensions of the Stan-
dard Model of particle physics, the introduction of new gauge sectors or even modified
gravitational theories, though ongoing discussions are held about the constraints on those
models.11

One interesting candidate, that would in a sense bridge the gap between different view-
points on dark matter is the gravitational Geon, described in [31, 32] and proposed as
a candidate particle among others in [10]. While classical treatments of the Geon have
questioned its stability [33], the possibility of a massive and stable Geon emerging from
a quantum theory of gravity is what makes it an intriguing prospect.

The original idea of a gravitational Geon is that of a bound state of gravitational waves,
acquiring mass from their mutual gravitational interaction inside a spatially bounded
region. For this, one must define a particle propagator via a suitable observable, such
that it is invariant under gauge transformations as well as diffeomorphisms, which can be
regarded as a guiding principle to building physical objects in quantum gravity [10]. A
straightforward observable meeting our requirements is the Ricci scalar R, giving

D(x, y) = hR(x)R(y)i (20)

11
see e.g. [2, 30].

11 / 64

2 Theoretical Framework 2.4 Geons and Dark Matter

for a possible particle propagator definition. Note that x and y, as was the case previously,
denote spacetime events on a manifold, not the coordinates that can be associated with
them. It is our working assumption that within a reasonable range of accuracy, this
quantity should be well described by the correlators built from the average normalized
sphere distance in section 2.3.

One caveat, which also separates this work from previous studies on such correlators, is
that for a valid particle description to apply, timelike and spacelike direction need to be
considered independently. As a result, the correlators we will study in the following show
a spatial or temporal resolution:

C(r) = hR(⌧0, x)R(⌧0, y)i, d(x, y) = r, (21)
C(�⌧) = hR(⌧0 � �⌧, x)R(⌧0 + �⌧, y)i (22)

Especially correlators of the first type (eq. (21)), giving the correlation between two events
on a fixed timeslice ⌧0 and separated by a fixed geodesic distance r will be investigated.
For those, we will aim to extract a so-called screening mass from the asymptotic behavior
of the spatial correlator by fitting it against an exponential function, inspired by usual
methods in lattice QCD [34, 35]:

C(r) �! a+ b · e
�m·r (23)

where m is the screening mass, which is assumed to hold as a proxy for the pole mass
for the purpose of this study.

12 / 64

3 Methodology

3. Methodology

To arrive at the results we promised in the last section, the first step is to create a
sufficient amount of triangulations such that observables can be measured in a statistically
meaningful way. The triangulation samples for our results were obtained through cluster
computing simulations of 4d CDT, using a simulation code written by Andrzej Görlich
and provided by Dániel Németh [36]. Building on this, routines to analyze the resulting
geometries, measure geodesic distance and curvature in different ways and plot the results
were implemented in a code base written in Python and C++, constituting the main part
of this present work. The main analysis code used for computing the raw data is attached
in appendix A.

3.1. Reproducing 4d CDT findings

Working with CDT, one finds quickly that it might feel quite unusual to work without
any type of coordinate system. This circumstance, however, is needed to preserve diffeo-
morphism invariance in the simulations. As a result, data describing the configurations
is stored in a sparse but comprehensive way:12 Vertices and simplices have progressive
integer labels that are stored in two lists, comprising all the necessary information to
reconstruct the respective geometries. While the first list assigns a timeslice to each
vertex in the triangulation, the second list describes the simplices building the geometry
through integer numbers that come in blocks of ten. In each block, all numbers are to be
thought of as labels with the first five denoting the vertices building the simplex and the
last five numbers referencing the simplices neighbouring the current simplex.13

To check that our understanding of the simulations and their corresponding output re-
produce the correct geometry, one of the first findings of this work was the independent
validation of a central result in CDT, which is that there exists a section in parameter
space where typical geometries produced by the simulation exhibit de Sitter like behav-
ior. To assess fully whether this assertion is true, it is of course necessary to include the
curvature properties of the sample universes into our considerations, which will be done
later on. For now, we will reduce our explorations to suitable proxies.14

The mean number of vertices residing on a specific timeslice is assumed to be such a proxy,
since this number can be directly related to the number of spacetime events mapped onto
the triangulation. As such, a plot of these should give a first impression of the volume
change of the geometries with the passing of proper time. Indeed, the characteristic
shape of the de Sitter-style universes produced in the corresponding phase of CDT can
already be inferred from the plot in fig. 4. Here, two regions can be roughly defined: The
12

Further information on data storage and simulation techniques in CDT can be found in [13].
13

In 4d CDT, 4-simplices always consist of five vertices and have five neighbors, resulting in the fitting

synonym 5-cell or pentachoron [37].
14

All of the following exemplary plots are done using a typical single configuration from the de Sitter

phase with parameters (� = 0.6,0 = 2.2), temporal extension ⌧ 2 {1...80} and simplicial volume

N (4,1)
4 = 160000 (160k).

13 / 64

3 Methodology 3.2 Measuring Geodesic Distances and Curvature

so-called stalk of the universe, which consists of the two long strands at the beginning
and the end of the plot where little vertices reside and the bulk region, surrounding the
largest timeslice with respect to vertex number. Note that the corresponding proper
time associated with this largest slice is not constant but changes with each Monte Carlo
snapshot.

Figure 4: Histogram of vertices for sample configuration.

Another possible measure for the spatial extension of the universe can be found if one
considers the geodesic distance between vertices residing on the same timeslice. The
expectation is that with increasing volume, the distance between two random vertices
will, on average, also increase. This has been tested for the sample configuration de-
scribed above by analyzing the shortest path for n = 100 pairs of random vertices on
each timeslice and the resulting histogram, verifying our assumption, is shown in fig. 5.
The shortest paths in this discrete setting are measured as the sum of steps between the
vertices, where for the current assessment, no differentiation between spacelike and time-
like links was made. The method of choice for finding those paths is Dijkstra’s algorithm
which will be further explained in the next section.

As a last hint towards a proper interpretation of de Sitter phase universes, the lightcone
growth for single vertices can be examined. If probed at the bulk of the universe for a
random vertex, its lightcone is expected to grow exponentially at first and finally reach
a plateau in the stalk. Such a behavior reflects the causal structure of the triangulations
and is depicted in fig. 6.

3.2. Measuring Geodesic Distances and Curvature

3.2.1. Regular and Dual Lattice

All of the analyses done in the previous section relied on the regular lattice of vertices and
its conversion into a linked-list representation. While this is not only computationally
expensive given the storage format of the geometries described earlier, working on the
regular lattice also imposes major numerical limits on the extent to which observables can

14 / 64

3 Methodology 3.2 Measuring Geodesic Distances and Curvature

Figure 5: Histogram of shortest paths expressed as sum of steps between n = 100
random vertex pairs on each timeslice.

Figure 6: Lightcone structure for vertices taken from the largest timeslice of the
sample configuration.

15 / 64

3 Methodology 3.2 Measuring Geodesic Distances and Curvature

be computed on contemporarily available triangulations. Building on [19], the following
observables are thus evaluated not on the regular lattice built from vertices (the vertex
lattice), but on its dual, which relies on the simplices as building blocks. On it, nodes are
defined as the centers of simplices and links as the lines connecting them. Working on
the dual lattice instead of the regular lattice is assumed to have no impact on the final
physical interpretation of findings since the physical results should not depend on the
discretization used.15 At the same time, it provides more structure to evaluate on, since
the number of simplices on a typical configuration is at least an order of magnitude larger
than its vertex content. This is highly needed, for example, when calculating curvature
spheres as described below. Since the universes used have a finite spatial extent, those
spheres would wrap around single timeslices of vertices easily when the radius used is big
enough, distorting the measured curvature [19].

A minor shortcoming of working on the dual lattice is that it lacks the predefined times-
lices we use on the vertex lattice, since simplices, per definition, always reside between
timeslices. For our aim of investigating the differences between spatial and temporal
directions in CDT, a suitable definition for dual timeslices is therefore needed. For the
current work, we define a dual timeslice t as the set of all simplices whose vertices lie on
timeslices t = ⌧ and ⌧ + 1.

3.2.2. Dijkstra’s Algorithm

Before we discuss the technicalities of calculating curvature on CDT triangulations, the
measurement of geodesic distances needs to be addressed. Working in quantum gravity
means that distances between two spacetime events x and y become expectation values.
This is accounted for in CDT by design, since there is a priori no meaningful way to
track single vertices across multiple triangulations from the Monte Carlo history and
every physical quantity is extracted by taking averages over these. However, on a single
configuration, vertices are of course labeled and distances can be computed as the sum
of links connecting the points. Since the geometry one works with after Wick rotation
is described by an undirected graph, a straightforward way to compute these geodesics
is found in Dijkstra’s algorithm [38].16 A version of this algorithm is implemented in
appendix A.

Using Dijkstra’s algorithm, the average normalized sphere distance described in eq. (13)
can be computed in a straightforward way, which is also illustrated in fig. 7. For this, a
point p is picked from the triangulation (either from the regular or the dual lattice) and
a sphere of radius � is constructed as a list of points p0 that have a link separation � to p,
corresponding to demanding the geodesic distance in eq. (12) be d(p, p0) = �. Dijkstra’s
15

There is evidence in favor of this assumption as well as persuasive insights into why working on the

dual lattice is more suitable for measuring curvature. Both can be found in [19].
16

Note that after Wick rotation, all links in the graph have a positive length but the final results will still

carry a dependence on ↵ (the ratio between spatial and temporal link length) through the selection

of geometries that has happened [8]. For our investigations, the graph is taken to be an undirected

one with equal link weight.

16 / 64

3 Methodology 3.3 Building Correlation Functions

Figure 7: (a): The concept of "sphere" is stretched when working with trian-
gulations to include any set of points with a given distance to an origin point.
Here this is illustrated for a general undirected graph, where the set of red points
denote the sphere around p with radius r = 2.
(b): Mode of computation for average sphere distance: A point p is picked from
the triangulation and after computing the sphere with radius r around it, a
sphere of radius 2r is computed around each point p

0 on the original sphere.
Thus, the geodesic distance does not need to be computed for every pair of
points but can be accessed easily using the maps produced by Dijkstra’s algo-
rithm.

algorithm computes the link distance for a given origin radially outwards, so after �

iterations, the process can be stopped and a value for each point in the ball around p is
saved, from which the sphere can then be determined. The average normalized sphere
distance is defined as the average distance between all points on the sphere divided by the
common radius around p, so the next step consists of computing the geodesic distance
(link seperation) of all point pairs and summing over them. This can, in principle, be done
by using Dijkstra’s algorithm to obtain a value for each possible pairing at once. However,
this is computationally very expensive. A fast way to obtain the same results in less time
was found to consist of the following process: For each point p

0 on the �-sphere around
p, let Dijkstra’s algorithm run through the graph for 2� steps. This assures, that every
point on the sphere is included in this bigger "Dijkstra-ball", from which the geodesic
distance for each point is readily accessed after completion. The average normalized
sphere distance is then computed as the running average of those distance sums for each
point divided by �. Note that this general procedure is the same whether one chooses
to work on the regular lattice or the dual lattice. The numerical implementation of this
technique is found in the functions avg_sphere_dist and dijkstra in appendix A.

3.3. Building Correlation Functions

Building on the observables we have touched upon so far and the general prescription for
defining correlation functions that was given in section 2.3, it is now time to tend to the
details of how the correlators necessary for our pursued investigations are calculated in

17 / 64

3 Methodology 3.3 Building Correlation Functions

CDT. The common procedure that was followed for practically all observables occurring
in the current work consists of the following steps:

1. Take a sample of configurations from the Monte Carlo history of a simulation run
with fixed parameters.

2. Calculate the operator value for a sample of points (most often the simplex nodes
on the dual lattice) for each configuration.

3. Take the mean over all datapoints from all examined configurations.

The last step gives the final result, where we identified its error as the standard deviation
of measurements divided by the square root of the number of datapoints (i.e. the stan-
dard error). For composite observables, the errors were derived through common error
propagation.

As was stated already, the novelty of this work is mostly given through the fact that spa-
tial and temporal directions are treated independently, leading to some subtle deviations
from the procedure to measure the average normalized sphere distance described in the
previous section. First, the dual timeslices for each configuration have been relabeled,
starting with the biggest dual timeslice in terms of its vertex content and proceeding
cyclically onward in the direction of proper time. This is to ensure comparability be-
tween different universes, since the exact position of the biggest slice changes for different
Monte Carlo snapshots but we expected the topology to be de Sitter-like throughout the
samples.17 The second necessary change has been to constrain the method for calcu-
lating geodesic distances (i.e. Dijkstra’s algorithm) to simplices from the common dual
timeslice in order to obtain space-like distances only. This was done by reducing the
adjacency list describing the original graph – and with it the geometric structure of the
universe – to, for each simplex, include only those neighboring simplices whose constitut-
ing vertices share the same regular timeslices, such that no links exist between simplices
of different dual timeslices. This reduced graph has then been used to calculate the spa-
tial distance between two simplices on a common dual timeslice t. Calculations regarding
the average sphere distance (especially constructing the �-spheres around the simplices)
resorted to the regular, whole graph, in order not to exclude information about the local
curvature.

The starting point for most operators examined was the calculation of the average nor-
malized sphere distance, for which eq. (12) and eq. (13) dictate the following equation
on the dual lattice:

d̄

�
(si) =

1

N0(S�
si
)2

X

sj2S
�
si

X

sk2S
�
si

d(sj , sk)/� (24)

Here, S�
si

describes the sphere of radius � around a simplex si, N0 counts the number of

17
Note that the number of vertices residing on a timeslice is only a proxy for its (geometric) spatial extent

and that there is some uncertainty added to the upcoming procedure by demanding the biggest dual

timeslice tmax to correspond to the biggest regular timeslice ⌧max.

18 / 64

3 Methodology 3.3 Building Correlation Functions

simplices inside this sphere and the geodesic distance d(sj , sk) is evaluated on the reduced
graph described above. Using this observable and the prescription given above, the raw
data for building the correlation functions in section 4 were extracted from the simulation
data in the following way: For a sample of configurations taken from a simulation run,
first all regular timeslices were sorted starting from the largest in terms of vertex content
and ascending cyclically in the direction of proper time. Then, for each dual timeslice,
a sample of simplex pairs was drawn from its population. For each pair, the spatial
distance was determined and the value of eq. (24) was calculated for each simplex and a
range of radii �. The main function to compute and store the acquired data is found as
timesliced_bulk_corr in appendix A.

3.3.1. Extracting the Ricci scalar

Looking back at the definition of the quantum Ricci scalar arising from eq. (13), it is
our working assumption that the average normalized sphere distance d̄/� should provide
a viable proxy for the full quantum Ricci scalar Kq(p, p0), but it is also clear that this
methodology leaves room to improvement. To validate our assumption as well as to
allow for a more precise interpretation of results, one attempt that has been made in
this work is to not only rely on d̄/� to build correlation functions, but to extract the
quantum Ricci scalar itself. To some extent, this can be done by making use of the series
expansion encountered in eq. (9) and eq. (14). A simplified scalar quantity related to the
full quantum Ricci curvature at point x (either on the regular or the dual lattice), which
we will just call R and, in abuse of language, refer to as Ricci scalar in the following,
can then be obtained by fitting the average normalized sphere distance at that point for
different values of � to the quadratic expression:

d̄

�
(si) = c · (1�R · �

2) (25)

This has been done to provide additional correlators based on R which are expected to
more truly reflect the local curvature properties aimed at. The fitted range was set to
� 2 {6, ..., 10} in order to avoid lattice artifact effects described in [26, 27].

3.3.2. Investigated Correlators

Now that the methods used for generating simulation data as well as calculating geodesics,
average normalized sphere distances and Ricci scalars are in place, we can tend towards
defining the correlation functions that will be investigated in the next section.

The object in eq. (19) is one of the starting points for our main results. In our frame-
work, where correlators are evaluated on fixed dual timeslices, it depends on the spatial
distance d between simplices and of course the dual time t. To account for these primary
dependencies, it will be abbreviated as G��(d)|t in the following. Further correlators are
built mostly in the same way, using either d̄/�, R or the identity operator 1 as a basis.

19 / 64

3 Methodology 3.3 Building Correlation Functions

A list of definitions of investigated correlators is given below, where script letters denote
normalized correlators:

G11(d)|t = G[d, t] = hGT [1, 1](d)i|t (26)
G�|t = G[d̄/�, t] = hd̄/�i|t (27)
GR|t = G[R, t] = hRi|t (28)
G��(d)|t = G[d̄/�, d̄/�, d, t] = hGT [d̄/�, d̄/�](d)i|t (29)
GRR(d)|t = G[R,R, d, t] = hGT [R,R](d)i|t (30)

G��(d)|t = G[d̄/�, d̄/�, d, t] =
hGT [d̄/�, d̄/�](d)i

hGT [1, 1](d)i

����
t

(31)

G�2�2(d)|t = G[(d̄/�)2, (d̄/�)2, d, t] =
hGT [(d̄/�)2, (d̄/�)2](d)i

hGT [1, 1](d)i

����
t

(32)

GRR(d)|t = G[R,R, d, t] =
hGT [R,R](d)i

hGT [1, 1](d)i

����
t

(33)

GR2R2(d)|t = G[R2
, R

2
, d, t] =

hGT [R2
, R

2](d)i

hGT [1, 1](d)i

����
t

(34)

G�1(d)|t = G[d̄/�, 1, d, t] =
hGT [d̄/�, 1](d)i

hGT [1, 1](d)i

����
t

(35)

G1�(d)|t = G[1, d̄/�, d, t] =
hGT [1, d̄/�](d)i

hGT [1, 1](d)i

����
t

(36)

GR1(d)|t = G[R, 1, d, t] =
hGT [R, 1](d)i

hGT [1, 1](d)i

����
t

(37)

G1R(d)|t = G[1, R, d, t] =
hGT [1, R](d)i

hGT [1, 1](d)i

����
t

(38)

From these 1-point and 2-point correlation functions, connected correlators can be built
readily. Following [26], one possibility to do so consists of defining the full connected
curvature correlators as:

G
c

��
(d)|t = G

c[d̄/�, d̄/�, d, t] = G��(d)|t � 2 ·G�|t · G�1(d)|t +G
2
�
|t (39)

G
c

RR(d)|t = G
c[R,R, d, t] = GRR(d)|t � 2 ·GR|t · GR1(d)|t +G

2
R|t (40)

In this work, we examined a slightly different object, which acts as a stochastic estimator
for the aforementioned functions. This we called the directly subtracted correlator, it is
based on the fluctuation operator �O = O � Ō and defined as follows:

G
sub
��

(d)|t =
h(G�1(d)|t �G�|t)(G1�(d)|t �G�|t)i

G11(d)|t
(41)

G
sub
RR(d)|t =

h(GR1(d)|t �GR|t)(G1R(d)|t �GR|t)i

G11(d)|t
(42)

Correlators based on the squared operators are defined analogously.

20 / 64

4 Results

4. Results

The following section presents the results obtained from analysis conducted on 4d CDT
geometries with respect to the previously defined observables. The configuration files
were taken from three Monte Carlo runs, each starting with an identical set of parameters
except for the simplicial volume N

(4,1)
4 (also called V in the following). Especially the

asymmetry parameter � and the coupling parameter 0 were kept fixed at (� = 0.6,0 =
2.2) in order to produce geometries from the de Sitter phase of CDT phase space.18 After
a general thermalization stage lasting 50.000 Monte Carlo sweeps for all three simulation
runs, configurations were saved at different intervals as Monte Carlo snapshots for the
three volumes:

V = 80.000 = 80k, ⌧ 2 {1, ..., 60}

V = 160.000 = 160k, ⌧ 2 {1, ..., 80}

V = 320.000 = 320k, ⌧ 2 {1, ..., 80}

Here, the temporal extension is given as the range of regular timeslices ⌧ , while the
spatial topology for the initial starting geometry has been chosen as that of a sphere for
all three parameter sets.

From these data files, samples have been picked to conduct measurements regarding the
average normalized sphere distance described earlier. Since this step has been especially
computationally intensive, two different samples were collected for each volume: A bigger
one with the number of individual triangulations NT = 5000, where measurements at
each simplex were taken only for a single curvature sphere radius � = 6, and a smaller
sample with NT = 500, where the average normalized sphere distance has been measured
at each simplex for a range of radii � 2 {1, ..., 10}. These latter samples were also the
ones used for the extraction of the Ricci scalar. The radius � = 6 has been chosen for
the larger datasets since it was expected to provide stable results in a regime where
lattice artifacts can be neglected, while we expected the arbitrary choice of a specific �

from this regime to have a negligible impact on measured operator values [8, 19, 26].
This assumption has been tested to hold for the purpose of this study. If not stated
otherwise, measurements have been conducted on samples of n = 100 simplex pairs on
each timeslice, except for the volume regime V = 80k, where n = 50 was used.

4.1. Preliminary Observations and Remarks

To get acquainted with the measurement output, some preliminary remarks can be made
based on the plots shown in fig. 8 and fig. 9. Here, fig. 8 shows, for each simplicial
volume sample of 5000 universes, the number of measurement entries per timeslice and
spatial distance. This gives a first impression about the shape and spatial extent of the
geometries: In all volumes, short distances account for the largest part of measurements,

18
Further information on the phase space structure of CDT can be found e.g. in [8].

21 / 64

4 Results 4.1 Preliminary Observations and Remarks

especially in the intermediate dual timeslice region, which corresponds to the stalk of
the universe, where we would not expect different behaviour. It is only in the bulk
region – around the largest and smallest dual timeslice –, where larger spatial separations
between randomly picked simplices become prevalent. This contrast seems to diminish
for the larger volume ensemble with V = 320k, while the general statement still holds
true.

Figure 8: Measurements per spatial distance and dual timeslice for all three
ensembles

In fig. 9, the mean value for the average normalized sphere distance is plotted along-
side the cube root of the mean number of simplices on the respective dual timeslice.
Both quantities again hint at the underlying spherical shape of the geometries under
investigation.

22 / 64

4 Results 4.2 Curvature Correlators from d̄/�

Figure 9: G�|t = hd̄/�i|t (dotted) and 3
p
hN4(t)i (solid) for all three ensembles

4.2. Curvature Correlators from d̄/�

Starting with this section, results are shown for the curvature correlators described in
section 3.3. All correlators are given based on the average normalized sphere distance d̄/�
as well as the Ricci scalar R, for which results are given in the upcoming section.

4.2.1. 2-point correlators from d̄/�

In fig. 10, results are shown for evaluating the 2-point correlation functions G��(d)|t
and G�2�2(d)|t on multiple volume ensembles, each with a sample size of NT = 5000
triangulations, along with the respective unnormalized versions. The spatial distance d

is varied as shown on the horizontal axis, while the evaluation was performed on the fixed
dual timeslice t = 1, corresponding to the largest dual timeslice on each configuration.
The varying behavior of G��(d)|t for different timeslices is depicted in fig. 11.

23 / 64

4 Results 4.2 Curvature Correlators from d̄/�

Figure 10: 2-point correlators based on d̄/�

24 / 64

4 Results 4.2 Curvature Correlators from d̄/�

Figure 11: G��(d)|t for multiple dual timeslices

25 / 64

4 Results 4.2 Curvature Correlators from d̄/�

4.2.2. Directly subtracted 2-point correlators from d̄/�

In fig. 12 and fig. 13, results are given for evaluating the connected 2-point correlation
functions G

sub
��

(d)|t and G
sub
�2�2

(d)|t defined in eq. (41) on multiple volume ensembles and
with the same sample size as above, NT = 5000. The spatial distance d is again found on
the horizontal axis, while evaluation still happened on the fixed dual timeslice t = 1. Each
subplot corresponds to a fixed volume ensemble and was fitted against an exponential
decay function

y = a+ b · e
�m·x (43)

where the fit parameters are given in the legends.

26 / 64

4 Results 4.2 Curvature Correlators from d̄/�

Figure 12: Directly subtracted correlators based on d̄/�, evaluated on t = 1

27 / 64

4 Results 4.2 Curvature Correlators from d̄/�

Figure 13: Directly subtracted correlators based on (d̄/�)2, evaluated on t = 1

28 / 64

4 Results 4.3 Curvature Correlators from R

4.3. Curvature Correlators from R

4.3.1. 2-point correlators from R

As in section 4.2.1, results for evaluating the 2-point correlation functions GRR(d)|t and
GR2R2(d)|t on multiple volume ensembles, this time with a sample size of NT = 500
triangulations each are shown in fig. 14. Evaluation followed the same scheme as for
2-point-correlators based on d̄/�.

4.3.2. Directly subtracted 2-point correlators from R

Likewise, the directly subtracted 2-point correlators based on R can be computed readily
from the definition given in eq. (42). Different to section 4.2.2, however, evaluation
of these correlators was limited to the smaller triangulation sample of size NT = 500,
accounting for higher statistical uncertainties. Results are given in fig. 15 and fig. 16 for
all three volume ensembles, again accompanied by an exponential fit whose parameters
are given in the subplot legends.

29 / 64

4 Results 4.3 Curvature Correlators from R

Figure 14: 2-point correlators based on R

30 / 64

4 Results 4.3 Curvature Correlators from R

Figure 15: Directly subtracted correlators based on R, evaluated on t = 1

31 / 64

4 Results 4.3 Curvature Correlators from R

Figure 16: Directly subtracted correlators based on R
2, evaluated on t = 1

32 / 64

5 Discussion and Interpretation

5. Discussion and Interpretation

The results shown in the previous section allow for a wide range of interpretations. The
first conclusion to which one can arrive is that the amount of simulation data used is
sufficient to make meaningful statements about the investigated correlators, especially
for the larger datasets with NT = 5000. This can be seen not only through the rela-
tion between mean measurement values and errorbars, but also through the consistent
behavior of correlation functions across the different volume ranges.

The unsubtracted, normalized 2-point correlation functions based on d̄/� (depicted in
fig. 10) exhibit a clear structure mostly independent of the volume sample used, where
slight deviations can be easily attributed to differences in the spatial extent of the tri-
angulations under consideration. While we did not perform a full analysis to compare
our results against eq. (14), it is evident that the obtained values lie in the same range
as suggested by the analytic approximation as well as numerical results provided in [19,
26].

The values of G��(d)|t for multiple dual timeslices are shown in fig. 11. Across all volume
domains, it can be seen that the shape of the correlator changes with the timeslice in at
least two ways: On the one hand, statistical fluctuations start to shift towards shorter
spatial separations for higher values of t, which is not surprising since the spatial extent
of those slices tends to decrease rapidly, making it increasingly unlikely for large distance
measurements to appear in our statistical sample. Another interesting property is that
one can see a qualitatively different behavior for timeslices in the intermediate region
between the bulk and the stalk, around t 2 {15...25}. These regions can be associated
with inflationary stages in the timelike evolution of the universes, where the change in
spatial extent is especially large. This has an interesting consequence which will be
adressed briefly in the following section.

The subtracted correlators based on d̄/� and (d̄/�)2 given in fig. 12 and fig. 13 were
found to behave roughly in the same ways, regardless of the volume sample considered,
which can be considered a hint towards a viable interpretation in terms of particle-like
behavior. The correlation functions show a characteristic exponential decay, which ends
in a negative minimum value19 before increasing again and eventually succumbing to
statistical noise towards the maximum spatial extent of the timeslice considered. For
long distances, it seems that the behavior is not explained by an exponential function
but is of rather linear character and it is an open question why that is the case.20

Moving on to the correlation functions built from the "Ricci scalar" R and starting with
the unsubtracted 2-point correlators from fig. 14, it can be clearly seen that statistical
errors are much higher for these results, since the sample size is decreased by a factor
of ten. However, the general remarks made earlier for the d̄/�-correlators regarding
19

Note that this is not prohibited in curved geometries as opposed to flat-space.
20

It was verified that especially the short distance behavior of the directly subtracted correlators matches,

within errors, the one shown by the full connected correlators from eq. (39), while a full analysis

including a direct comparison between the two remained beyond the scope of this work.

33 / 64

5 Discussion and Interpretation

universality still seem to apply here. The subtracted correlators built from R and R
2

still exhibit exponential behavior for small spatial distances, while the quality of the
functional fits is of course heavily restricted by the lower sample size.

The most important observation regarding all subtracted correlators considered is that
the exponential decay is characterized by (within errors) agreeing positive mass values
m, as can be seen from table 1, where the values for all volume ensembles and operators
are summarized. While the consistency with respect to volume is a clear sign of universal
behavior, as was already discussed above, it should not be overlooked that mass values
also remain compatible between different basis operators. Since d̄/� and (d̄/�)2 share the
same quantum numbers (as well as R and R

2 respectively), an invariant scalar in the
asymptotic regime should appear in the same way in the correlation functions GOO(d)|t
and GO2O2(d)|t. Together, these facts indicate that our results are consistent with the
behavior one would expect from a massive particle and thus an interpretation in terms
of a Geon appears justified.

V d̄/� (d̄/�)2 R R
2

80k 0.16(1) 0.14(9) 0.19(16) 0.14(13)
160k 0.18(11) 0.16(10) 0.23(2) 0.22(1.3)
320k 0.15(10) 0.14(10) 0.15(8) 0.14(1)

Table 1: Mass values m for different correlators

Taking this conclusion at face value allows for some far reaching speculations: The Geon
mass, taken from the largest volume ensemble, roughly lies in the range of

m ⇡ 0.15(10) (44)

in natural lattice units, i.e. [m] = [1/a]. Using the scaling relations found in [39, 40],
it can be estimated that the CDT universes under consideration have a lattice spacing
of a ⇡ lpl/0.48 where lpl is the Planck length. From this we can infer that our mass
parameter m corresponds to a physical mass mph on the order of

mph ⇡ 0.15(10) ·
0.48 · ~ · c

lpl
⇡ 9(6)⇥ 1017 GeV ⇠ 10�9 kg (45)

which is about a tenth of the order of the Planck mass. While certainly representing the
heavier side of candidate theories, this lies well within astrophysical boundaries imposed
on dark matter mass ranges [2, 41].

34 / 64

6 Conclusion and Outlook

6. Conclusion and Outlook

The aim of this thesis has been to form a connection between quantum gravity studies
and the problem of dark matter by looking for a candidate particle in 4d Causal Dy-
namical Triangulations. For this, we started by recreating known results from previous
investigations regarding the de Sitter phase of CDT to get acquainted with the intricate
workings of the theory at hand. Having generated enough simulation data to work on, a
specific setup was chosen to measure the curvature properties of the simulated geometries
as expressed through the quantum Ricci scalar, specifically through the operators d̄/�

and R defined in section 2.2.2 and section 3.3.1. To this end, we measured the value
of d̄/� for pairs of simplices on fixed timeslices of the dual lattice with varying spatial
distance and - for the purpose of extracting a proxy Ricci scalar R - varying curvature
sphere radius �.

Building (subtracted) 2-point functions from these data, we found a universal behavior
of those correlators, expressed through an exponential decay for short distances, across
different volume ensembles and for varying basis operators. Fitting these exponential
decays consistently leads to values for the screening mass of m ⇡ 0.15(10), regardless of
operator choice or volume size. This hints towards a justifiable interpretation in terms
of a massive particle, essentially describing a Geon. Speculating on further implications,
these findings might give rise to a viable candidate for dark matter theories with a
physical mass on the order of 10�9 kg.

Since many conceptual and systematic details remain to be discussed, a lot of further
investigations will be needed to clarify our exploratory findings and speculative interpre-
tation. A natural first extension of this work would be to examine correlation functions
with temporal rather than spatial resolution, as mentioned in eq. (22). Since these objects
are qualitatively different from a geometric point of view, they should allow for inter-
esting new features. Another hint for deeper insights comes from the different behavior
expressed by the unsubtracted correlators in the inflationary proper time range adressed
earlier. Tentative results for extracting the subtracted correlator mass in these ranges
show that while its value is stable for timeslices with relatively constant spatial extent,
it consistently spikes upwards in the range corresponding to inflationary episodes. While
these investigations remained beyond the scope of this thesis and are subject to future
publication, pursuing them further might lead to valuable new hypotheses previously
unexplored in the area of quantum cosmology.

In summary, it seems that the curvature correlators we investigated in 4d CDT exhibit
behavior that hints towards a massive particle. Opening up many fundamental questions
and allowing for far-reaching speculations, following this approach should make way for
exciting new possibilities.

35 / 64

A Basic Algorithms and Code

A. Basic Algorithms and Code

1 /*
2 Felix Pressler, 2025
3

4 Code for reading & analyzing CDT config files and calculating average
normalized sphere distance values from them.,!

5 To use methods for a series of config files, call functions from UTILITY
section.,!

6

7 Build with:
8 g++ main.cpp -o main.x -std=c++17 -O3
9

10 Contains following sections:
11 - READING
12 - DATA TYPES
13 - ANALYSIS
14 - CORRELATOR
15 - UTILITY
16 - MAIN
17

18 Routines called from UTILITY need a path to a directory containing conf
files and a file index passed as command line arguments to run.,!

19 If code from ANALYSIS or CORRELATOR is to be tested on single configs, a
Universe needs to be initialized first with,!

20 >>> currentU.initialize("path/to/conf.dat")
21 in the main function.
22 */
23

24 #include <iostream>
25 #include <cmath>
26 #include <fstream>
27 #include <vector>
28 #include <cstdint>
29 #include <iterator>
30 #include <algorithm>
31 #include <utility>
32 #include <queue>
33 #include <unordered_map>
34 #include <unordered_set>
35 #include <optional>
36

37 #include <limits>

36 / 64

A Basic Algorithms and Code

38 #include <stack>
39 #include <chrono>
40 #include <random>
41 #include <string>
42 #include <filesystem>
43 #include <sstream>
44 #include <iomanip>
45 #include <ctime>
46

47 uint32_t fileprecision = 19;
48

49 /*
50 READING SECTION
51 basic functions for reading and processing config files
52 */
53 // Reads in data file
54 std::pair<std::vector<uint32_t>, std::vector<uint32_t>> Read_config(const

std::string& filename) {,!

55 std::vector<std::vector<uint8_t>> data;
56 std::ifstream file(filename.c_str(), std::ios::binary);
57

58 if (!file.is_open()) {
59 std::cerr << "Error opening file!" << std::endl;
60 return {};
61 }
62

63 auto read_bytes = [&](size_t size) -> std::vector<uint8_t> {
64 std::vector<uint8_t> bytes(size);
65 if (file.read(reinterpret_cast<char*>(bytes.data()), size)) {
66 return bytes;
67 }
68 return {};
69 };
70

71 auto bytes_to_int = [](const std::vector<uint8_t>& bytes) -> uint32_t
{,!

72 if (bytes.size() < 4) {
73 std::cerr << "Invalid byte size for conversion to int." <<

std::endl;,!

74 return 0;
75 }
76 return *reinterpret_cast<const uint32_t*>(bytes.data());
77 };

37 / 64

A Basic Algorithms and Code

78

79 auto add_read_bytes = [&](size_t size) {
80 std::vector<uint8_t> bytes = read_bytes(size);
81 if (bytes.empty()) {
82 std::cerr << "Error reading bytes from file." << std::endl;
83 return false;
84 }
85 data.push_back(bytes);
86 return true;
87 };
88

89 if (!add_read_bytes(4)) return {};
90 if (!add_read_bytes(4)) return {};
91 uint32_t num4 = bytes_to_int(data.back());
92

93 if (!add_read_bytes(4)) return {};
94 uint32_t num0 = bytes_to_int(data.back());
95

96 if (!add_read_bytes(4)) return {};
97 uint32_t num50 = bytes_to_int(data.back());
98

99 if (!add_read_bytes(4)) return {};
100 if (!add_read_bytes(4)) return {};
101

102 for (uint32_t i = 0; i < num0; ++i) {
103 if (!add_read_bytes(4)) return {};
104 }
105

106 if (!add_read_bytes(4)) return {};
107 if (!add_read_bytes(4)) return {};
108

109 for (uint32_t i = 0; i < 10 * num4; ++i) {
110 if (!add_read_bytes(4)) return {};
111 }
112

113 if (!add_read_bytes(4)) return {};
114

115 std::vector<uint8_t> byte(1);
116 while (file.read(reinterpret_cast<char*>(byte.data()), 1)) {
117 // data.push_back(byte); // this line in Python code is

commented out,!

118 }
119

38 / 64

A Basic Algorithms and Code

120 std::vector<uint32_t> config_file;
121 for (const auto& item : data) {
122 config_file.push_back(bytes_to_int(item));
123 }
124

125 if (config_file.size() < 10 || config_file.size() < num0 + 6 ||
config_file.size() < 10 * num4 + num0 + 8) {,!

126 std::cerr << "Insufficient data read from file." << std::endl;
127 return {};
128 }
129

130 if (config_file[0] == config_file[4]) {
131 std::cout << "Check: OK" << std::endl;
132 } else {
133 std::cout << "Check: Load-Error_1" << std::endl;
134 }
135

136 if (config_file[5] == config_file[num0 + 5 + 1]) {
137 std::cout << "Check: OK" << std::endl;
138 } else {
139 std::cout << "Check: Load-Error_2" << std::endl;
140 }
141

142 if (config_file[num0 + 5 + 2] == config_file[num0 + 5 + 2 + 1 + 10 *
num4]) {,!

143 std::cout << "Check: OK" << std::endl;
144 } else {
145 std::cout << "Check: Load-Error_3" << std::endl;
146 }
147

148 std::vector<uint32_t> list_p(config_file.begin() + 6,
config_file.begin() + num0 + 6);,!

149 std::vector<uint32_t> list_s(config_file.begin() + num0 + 8,
config_file.begin() + 10 * num4 + num0 + 8);,!

150

151 return std::make_pair(list_p, list_s);
152 }
153 // Creates arrays from Read_config
154 std::pair<std::vector<std::vector<uint32_t>>,

std::vector<std::vector<uint32_t>>> process_config(const
std::pair<std::vector<uint32_t>, std::vector<uint32_t>>& config) {

,!

,!

155 const std::vector<uint32_t>& list_p = config.first;
156 const std::vector<uint32_t>& list_s = config.second;

39 / 64

A Basic Algorithms and Code

157

158 std::vector<std::vector<uint32_t>> vertices;
159 std::vector<std::vector<uint32_t>> simplices;
160

161 std::vector<uint32_t> zero_start = {{0, 0, 0, 0, 0}};
162 vertices.push_back(zero_start);
163 simplices.push_back(zero_start);
164

165 // Ensure list_s size is a multiple of 10
166 if (list_s.size() % 10 != 0) {
167 std::cerr << "Error: list_s size is not a multiple of 10." <<

std::endl;,!

168 return {};
169 }
170

171 for (size_t i = 0; i < list_s.size(); i += 10) {
172 std::vector<uint32_t> vertex_block(list_s.begin() + i,

list_s.begin() + i + 5);,!

173 std::vector<uint32_t> simplex_block(list_s.begin() + i + 5,
list_s.begin() + i + 10);,!

174 vertices.push_back(vertex_block);
175 simplices.push_back(simplex_block);
176 }
177

178 return {vertices, simplices};
179 }
180 // NOT IN USE ATM: Function to convert simplices into an adjacency list

representation,!

181 std::unordered_map<uint32_t, std::vector<uint32_t>> build_graph(const
std::vector<std::vector<uint32_t>>& simplices) {,!

182 std::unordered_map<uint32_t, std::vector<uint32_t>> graph;
183

184 for (uint32_t i = 0; i < simplices.size(); ++i) {
185 graph[i] = simplices[i];
186 }
187

188 return graph;
189 }
190

191

192

193 /*
194 DATA TYPES

40 / 64

A Basic Algorithms and Code

195 defines Ricci struct where dijkstra() and avg_sphere_dist() work on
196 and Universe which holds on to config data and adjacency lists
197 */
198 // Constant
199 const uint32_t INF = std::numeric_limits<uint32_t>::max();
200

201 // Struct to hold data from average sphere distance
202 struct Ricci {
203 std::vector<uint32_t> distances;
204 std::unordered_map<uint32_t, uint32_t> predecessors;
205 //std::multimap<uint32_t, uint32_t> verts_per_cost; // not in use atm
206 std::vector<uint32_t> sphere;
207 uint32_t pathlen;
208

209 // Initializes the struct with the graph
210 void initialize(const std::vector<std::vector<uint32_t>>& graph) {
211 pathlen = 0;
212 distances.resize(graph.size());
213 std::fill(distances.begin(), distances.end(), INF);
214

215 }
216

217 void reset() {
218 pathlen = 0;
219 std::fill(distances.begin(), distances.end(), INF);
220 }
221

222 // Resets the sphere vector
223 void reset_sphere() {
224 sphere.clear();
225 }
226 };
227

228 Ricci temp_ricci;
229 Ricci ricci;
230

231 // Struct to hold config data and adjacency lists
232 struct Universe {
233 std::vector<std::vector<uint32_t>> simplices; // Each simplex

contains 5 vertices,!

234 std::vector<uint32_t> vertex_times; //
Corresponding time for each vertex,!

41 / 64

A Basic Algorithms and Code

235 uint32_t t_max; // Maximal
timeslice,!

236 std::vector<std::vector<uint32_t>> simplex_neighbors; // Neighbors of
each simplex (adjacency list),!

237 std::string name; // Name of
config,!

238 std::vector<std::vector<uint32_t>> simplex_times; // Timeslices
of vertices building a simplex,!

239 std::vector<std::vector<uint32_t>> reduced_simplices; // Reduced
simplex_neighbors for each timeslice,!

240 std::vector<std::vector<uint32_t>> simplex_slices; // Lists of
simplices on each simplex-timeslice,!

241 // (where slice
t contains
simplices
between t
and t+1)

,!

,!

,!

,!

242

243 // Initialize Struct from file and Ricci from struct
244 void initialize(const std::string& filename) {
245 auto config = Read_config(filename);
246 auto result = process_config(config);
247 simplices = result.first;
248 vertex_times = config.first;
249 vertex_times.insert(vertex_times.begin(), 0);
250 simplex_neighbors = result.second;
251 name = std::string_view(filename).substr(0, filename.size()-4);
252

253 t_max = *std::max_element(vertex_times.begin(),
vertex_times.end());,!

254

255 get_simplex_times();
256 reduce_graph();
257 sort_simplex_slice();
258

259 temp_ricci.initialize(simplex_neighbors);
260 ricci.initialize(simplex_neighbors);
261 }
262

263 // Function to get vertex times for each simplex
264 void get_simplex_times() {
265 //std::vector<std::vector<uint32_t>> vert_times(simplices.size(),

std::vector<uint32_t>(5, 0));,!

42 / 64

A Basic Algorithms and Code

266 simplex_times.resize(simplices.size(), std::vector<uint32_t>(5,
0));,!

267

268 // Iterate over each simplex and its vertices to assign times
269 for (size_t i = 0; i < simplices.size(); ++i) {
270 for (size_t j = 0; j < simplices[i].size(); ++j) {
271 uint32_t vertex = simplices[i][j]; // Get vertex index
272 simplex_times[i][j] = vertex_times[vertex]; // Get

corresponding time,!

273 }
274 }
275 }
276

277

278 // Function to sort simplices into timeslices
279 void sort_simplex_slice() {
280 simplex_slices.resize(t_max+1);
281

282 for (uint32_t i = 1; i < simplex_times.size(); ++i) {
283 if (std::find(simplex_times[i].begin(),

simplex_times[i].end(), 1) != simplex_times[i].end()) {,!

284 uint32_t maxt =
*std::max_element(simplex_times[i].begin(),
simplex_times[i].end());

,!

,!

285 if (maxt == 2) {
286 simplex_slices[1].push_back(i);
287 }
288 else {
289 simplex_slices[t_max].push_back(i);
290 }
291 }
292 else {
293 uint32_t t_min =

*std::min_element(simplex_times[i].begin(),
simplex_times[i].end());

,!

,!

294 simplex_slices.at(t_min).push_back(i);
295 }
296 }
297 }
298

299 // Function to reduce adjacency list to simplices on the same
timeslice (spacelike separation),!

300 void reduce_graph() {

43 / 64

A Basic Algorithms and Code

301 //reduced_simplices.resize(simplices.size(),
std::vector<uint32_t>(5, 0));,!

302 reduced_simplices = simplex_neighbors;
303

304 for (uint32_t i=1; i < simplex_neighbors.size(); ++i) {
305 const auto& neighbors = simplex_neighbors[i];
306 for (auto& n : neighbors) {
307 for (const auto& t : simplex_times[n]) {
308 if (std::find(simplex_times[i].begin(),

simplex_times[i].end(), t) ==
simplex_times[i].end()) {

,!

,!

309 reduced_simplices[i].erase(
310 std::remove(reduced_simplices[i].begin(),

reduced_simplices[i].end(), n));,!

311 }
312 }
313 }
314 }
315 }
316

317 };
318

319 Universe currentU;
320

321

322

323 /*
324 ANALYSIS SECTION
325 dijkstra(), avg_sphere_dist() and build_sphere() are the core of the

program,!

326 */
327

328 // Function to implement Dijkstra's algorithm and store results in Ricci
struct,!

329 void dijkstra(Ricci &ricci, const std::vector<std::vector<uint32_t>>&
graph, uint32_t start, std::optional<uint32_t> killdist =
std::nullopt, std::optional<uint32_t> end = std::nullopt) {

,!

,!

330 //std::unordered_set<uint32_t> visited;
331 ricci.distances[start] = 0;
332

333 using P = std::pair<uint32_t, uint32_t>;
334 std::vector<P> container;
335 //container.reserve(10000);

44 / 64

A Basic Algorithms and Code

336 std::priority_queue<P, std::vector<P>, std::greater<P>>
pq;//(std::greater<P>(), std::move(container));,!

337 pq.emplace(0, start);
338

339 while (!pq.empty()) {
340 uint32_t distance = pq.top().first;
341 uint32_t u = pq.top().second;
342 pq.pop();
343

344 //if (visited.find(u) != visited.end()) continue;
345 //visited.insert(u);
346 if (end && u == end) break;
347

348 if (killdist && distance > killdist) break;
349

350 for (const auto& v : graph[u]) {
351 //if (visited.find(v) != visited.end()) continue;
352 uint32_t new_distance = distance + 1;
353

354 if (new_distance < ricci.distances[v]) {
355 ricci.distances[v] = new_distance;
356 ricci.predecessors[v] = u;
357 //ricci.verts_per_cost.emplace(new_distance, v);
358 pq.emplace(new_distance, v);
359 }
360 }
361 }
362

363 // If an end vertex is specified, reconstruct the path
364 // Currently only stores the path length as int
365 if (end && ricci.distances[*end] != INF) {
366 uint32_t at = *end;
367 while (at != start) {
368 //ricci.sphere.push_back(at);
369 //std::cout << at << " ";
370 at = ricci.predecessors[at];
371 ricci.pathlen += 1;
372 }
373 //std::cout << std::endl;
374 //ricci.sphere.push_back(start);
375 //std::reverse(ricci.sphere.begin(), ricci.sphere.end()); //

Reverses to get the correct path order,!

376 }

45 / 64

A Basic Algorithms and Code

377

378 }
379

380 // For building a sphere around a vertex, using costs from Dijkstra's
algorithm stored in Ricci,!

381 void build_sphere(Ricci &ricci, uint32_t radius) {
382 ricci.reset_sphere();
383 for (int i=0; i < ricci.distances.size(); i++) if (ricci.distances[i]

== radius) ricci.sphere.push_back(i);,!

384 }
385

386 // Computing the average normalized sphere distance
387 double avg_sphere_dist(uint32_t v, const

std::vector<std::vector<uint32_t>>& graph, uint32_t r) {,!

388 //ricci.initialize(graph);
389 ricci.reset();
390

391 // Run Dijkstra's algorithm from vertex v
392 dijkstra(ricci, graph, v, r);
393

394 // Build the sphere of radius r
395 build_sphere(ricci, r);
396

397 // uint32_t sphere_size = ricci.sphere.size(); // gives no
improvement,!

398

399 if (ricci.sphere.empty()) return 0.0;
400

401 double prefactor = 1.0 / pow(ricci.sphere.size(),
2);//static_cast<double>(ricci.sphere.size() *
ricci.sphere.size());

,!

,!

402 double total_distance = 0.0;
403

404 // Iterate over all pairs of vertices in the sphere and sum their
distances,!

405 for (size_t i = 0; i < ricci.sphere.size(); ++i) {
406 uint32_t &v1 = ricci.sphere[i];
407

408 //temp_ricci.initialize(graph);
409 temp_ricci.reset();
410

411 dijkstra(temp_ricci, graph, v1, 2*r+1);
412

46 / 64

A Basic Algorithms and Code

413 for (size_t j = i + 1; j < ricci.sphere.size(); ++j) {
414 uint32_t &v2 = ricci.sphere[j];
415

416 total_distance +=
static_cast<double>(temp_ricci.distances[v2]) /
static_cast<double>(r);

,!

,!

417 }
418 }
419

420 return 2 * prefactor * total_distance; // times 2 because
permutations (x,y) -> (y,x) should be counted,!

421

422 }
423

424

425

426 /*
427 CORRELATOR SECTION
428 Helper functions and functions for calculating correlator values across

multiple config universes,!

429 */
430

431 // Helper function to randomly select a simplex
432 uint32_t random_simplex(uint32_t range) {
433 static std::random_device rd;
434 static std::mt19937 gen(rd());
435 std::uniform_int_distribution<uint32_t> dis(1, range);
436 return dis(gen);
437 }
438

439 // Helper function to find the mode of a vector (for finding the bulk of
a universe),!

440 uint32_t find_mode(const std::vector<uint32_t>& vec) {
441 std::unordered_map<uint32_t, uint32_t> frequency_map;
442

443 // Count the frequency of each element in the vector
444 for (uint32_t num : vec) {
445 frequency_map[num]++;
446 }
447

448 // Find the element with the highest frequency
449 uint32_t mode = vec[0];
450 uint32_t max_count = 0;

47 / 64

A Basic Algorithms and Code

451

452 for (const auto& [value, count] : frequency_map) {
453 if (count > max_count) {
454 max_count = count;
455 mode = value;
456 }
457 }
458

459 return mode;
460 }
461

462

463 // Main correlator function for random simplices
464 std::vector<double> correlator(const std::string& filename, const

std::vector<std::vector<uint32_t>>& graph, uint32_t n_points,
uint32_t radius, uint32_t distance) {

,!

,!

465 uint32_t n = 0;
466 std::vector<double> corr;
467

468 // Save file name according to Python-style convention
469 std::string savefile = "correlator_out_" + filename + "_n" +

std::to_string(n_points) +,!

470 "_d" + std::to_string(distance) + "_r" +
std::to_string(radius) + ".txt";,!

471

472 std::ofstream file(savefile);
473 file.precision(fileprecision);
474 if (!file.is_open()) {
475 std::cerr << "Failed to open file for writing!" << std::endl;
476 return corr;
477 }
478

479 // Write header
480 file << "Universe: " << filename << ", number of points: " <<

n_points,!

481 << ", distance between points: " << distance
482 << ", radius of curvature sphere: " << radius << "\n";
483 file << "si sj d/di d/dj d/di*d/dj d/di^2*d/dj^2\n";
484 file.flush();
485

486 // Main loop to compute correlators
487 while (n < n_points) {
488 // Randomly select a simplex s_i

48 / 64

A Basic Algorithms and Code

489 uint32_t s_i = random_simplex(graph.size());
490

491 // Run Dijkstra's algorithm from s_i
492 uint32_t killer = std::max(radius, distance) + 1;
493 dijkstra(ricci, graph, s_i, killer);
494

495 // Find simplices within a sphere around s_i
496 build_sphere(ricci, distance);
497 std::vector<uint32_t> simplex_choices = ricci.sphere;
498 if (simplex_choices.empty()) continue; // If no simplex found,

skip this iteration,!

499

500 // Randomly choose another simplex s_j within the distance sphere
501 uint32_t s_j =

simplex_choices[random_simplex(simplex_choices.size()) - 1];
// Pick a random simplex from the list

,!

,!

502

503 // Compute avg sphere distances for s_i and s_j
504 double R_i = avg_sphere_dist(s_i, graph, radius);
505 double R_j = avg_sphere_dist(s_j, graph, radius);
506

507 // Compute correlators
508 double correlator_value = R_i * R_j;
509 double corr_2 = std::pow(R_i, 2) * std::pow(R_j, 2);
510 corr.push_back(correlator_value);
511

512 // Write results to file
513 file << s_i << " " << s_j << " " << R_i << " " << R_j << " "
514 << correlator_value << " " << corr_2 << "\n";
515 file.flush();
516

517 n++;
518 }
519

520 std::cout << "Univ = " << filename << ", d = " << distance << ", r =
" << radius << ", n = " << n << std::endl;,!

521 return corr;
522 }
523

524 // Calculates the single-operator correlator in the bulk region
525 void bulk_corr(const std::string& filename, Universe& currentU, uint32_t

n_points, uint32_t radius) {,!

526 uint32_t n = 0;

49 / 64

A Basic Algorithms and Code

527 //auto filename = currentU.name;
528 auto graph = currentU.simplex_neighbors;
529

530

531 // Save file name according to Python-style convention
532 std::string savefile = "bulk_correlator_out_" + filename + "_n" +

std::to_string(n_points) +,!

533 "_r" + std::to_string(radius) + ".txt";
534

535 std::ofstream file(savefile);
536 file.precision(fileprecision);
537 if (!file.is_open()) {
538 std::cerr << "Failed to open file for writing!" << std::endl;
539 }
540

541 // New for bulk correlator:
542 uint32_t t_big = find_mode(currentU.vertex_times);
543 uint32_t t_max = *std::max_element(currentU.vertex_times.begin(),

currentU.vertex_times.end());,!

544

545

546 // Write header
547 file << "Universe: " << filename << ", number of points: " <<

n_points,!

548 << ", largest timeslice: " << t_big << ", max timeslice: " <<
t_max,!

549 << ", radius of curvature sphere: " << radius << "\n";
550 file << "d/di (for each slice and a random simplex, starting with

largest)\n";,!

551 file.flush();
552

553 std::vector<std::vector<double>> value_holder(n_points+2,
std::vector<double>(t_max));,!

554 std::cout << "Universe: " << filename << std::endl;
555 std::cout << "t_big: " << t_big << ", t_max: " << t_max << std::endl;
556

557 // Main loop to compute correlators
558 for (size_t t = 0; t < t_max; t++) {
559 uint32_t ind = (t_big + t) % t_max;
560 if (ind == 0) ind = t_max;
561 std::cout << ind << std::endl;
562

563 auto sslice = currentU.simplex_slices[ind];

50 / 64

A Basic Algorithms and Code

564 value_holder[0][t] = ind;
565 value_holder[1][t] = sslice.size();
566

567 if (sslice.empty()) continue;
568

569 n = 0;
570 //std::cout << ind << std::endl;
571 while (n < n_points) {
572 // Randomly select a simplex s_i
573 uint32_t i_i = random_simplex(sslice.size() - 1);
574 uint32_t s_i = sslice[i_i];
575

576 // Compute avg sphere distances for s_i and s_j
577 double R_i = avg_sphere_dist(s_i, graph, radius);
578 value_holder[n+2][t] = R_i;
579

580 n++;
581 }
582 }
583

584 for (const auto& row : value_holder) {
585 for (const auto& entry : row) {
586 file << entry << " ";
587 }
588 file << std::endl;
589 }
590

591 std::cout << "Univ = " << filename << ", t_big = " << t_big << ", r =
" << radius << ", n = " << n << std::endl;,!

592 }
593

594 // Calculates the single-operator correlator for pairs of simplices on
each timeslice, starting with the bulk region,!

595 void timesliced_bulk_corr(const std::string& filename, Universe&
currentU, uint32_t n_pairs, uint32_t radius) {,!

596 uint32_t n = 0;
597 //auto filename = currentU.name;
598 auto& graph = currentU.simplex_neighbors;
599 auto& reduced_graph = currentU.reduced_simplices;
600

601

602 // Save file name according to Python-style convention

51 / 64

A Basic Algorithms and Code

603 std::string savefile = "timesliced_bulk_correlator_out_" + filename +
"_n" + std::to_string(n_pairs) +,!

604 "_r" + std::to_string(radius) + ".txt";
605

606 std::ofstream file(savefile);
607 file.precision(fileprecision);
608 if (!file.is_open()) {
609 std::cerr << "Failed to open file for writing!" << std::endl;
610 }
611

612 // New for bulk correlator:
613 uint32_t t_big = find_mode(currentU.vertex_times);
614

615 // Write header
616 file << "Universe: " << filename << ", number of simplex pairs per

timeslice: " << n_pairs,!

617 << ", largest timeslice: " << t_big << ", max timeslice: " <<
currentU.t_max,!

618 << ", maximal radius of curvature sphere (r_max): " << radius <<
"\n";,!

619 file << "Timeslices with number of associated simplices (simplices
are stored on slice of lowest time): \n";,!

620 std::vector<std::vector<uint32_t>> slice_count;
621 slice_count.resize(2, std::vector<uint32_t>(currentU.t_max, 0));
622 for (uint32_t t = 0; t < currentU.t_max; t++) {
623 uint32_t ind = (t_big + t) % currentU.t_max;
624 if (ind == 0) ind = currentU.t_max;
625

626 slice_count[0][t] = ind;
627 slice_count[1][t] = currentU.simplex_slices[ind].size();
628 }
629 for (const auto& row : slice_count) {
630 for (const auto& entry : row) {
631 file << entry << " ";
632 }
633 file << std::endl;
634 }
635 file.flush();
636

637 std::cout << "Universe: " << filename << std::endl;
638 std::cout << "t_big: " << t_big << ", t_max: " << currentU.t_max <<

std::endl;,!

639

52 / 64

A Basic Algorithms and Code

640 // Main loop to compute correlators
641 for (size_t t = 0; t < currentU.t_max; t++) {
642 uint32_t ind = (t_big + t) % currentU.t_max;
643 if (ind == 0) ind = currentU.t_max;
644 std::cout << ind << std::endl;
645

646 file << "TIMESLICE: " << ind << "\n";
647 file << "s_i s_j distance(s_i, s_j) {d/delta(s_i)

d/delta(s_j) d/d_i*d/d_j d/d_i^2*d/d_j^2} for each
radius 1 <= r <= r_max\n";

,!

,!

648

649 auto& sslice = currentU.simplex_slices[ind];
650

651 if (sslice.empty()) continue;
652

653 n = 0;
654 //std::cout << ind << std::endl;
655 while (n < n_pairs) {
656 uint32_t size = sslice.size();
657 // Randomly select a simplex s_i
658 uint32_t i_i = random_simplex(size - 1);
659 uint32_t i_j = random_simplex(size - 1);
660 uint32_t s_i = sslice[i_i];
661 uint32_t s_j = sslice[i_j];
662

663 // Compute distance between s_i and s_j
664 ricci.initialize(currentU.reduced_simplices);
665 dijkstra(ricci, currentU.reduced_simplices, s_i, size+1,

s_j);,!

666 uint32_t distance = ricci.pathlen;
667

668 // Compute avg sphere distances for s_i and s_j
669 ricci.initialize(currentU.simplex_neighbors);
670 file << s_i << " " << s_j << " " << distance << " ";
671

672 for (uint32_t r = 6; r <= radius; r++) {
673 double d_i = avg_sphere_dist(s_i, graph, r);
674 double d_j = avg_sphere_dist(s_j, graph, r);
675

676 file << d_i << " " << d_j << " " << d_i * d_j << " " <<
std::pow(d_i, 2) * std::pow(d_j, 2) << " ";,!

677 }
678 file << "\n";

53 / 64

A Basic Algorithms and Code

679 file.flush();
680

681 n++;
682 }
683 }
684

685 std::cout << "Univ = " << filename << ", t_big = " << t_big << ", r =
" << radius << ", n = " << n << std::endl;,!

686 }
687

688 // Helper function to get all conf filenames from directory
689 std::vector<std::string> get_conf_files(const std::string& directory) {
690 std::vector<std::string> conf_files;
691

692 // Iterate over all files in the directory
693 for (const auto& entry :

std::filesystem::directory_iterator(directory)) {,!

694 // Get the file name as a string
695 std::string filename = entry.path().filename().string();
696

697 // Check if the file name starts with "conf"
698 if (filename.rfind("conf", 0) == 0) {
699 conf_files.push_back(filename);
700 }
701 }
702

703 std::sort(conf_files.begin(), conf_files.end());
704

705 return conf_files;
706 }
707

708 // Helper function to output current timestamp
709 std::string get_current_time() {
710 // Get the current time from the system clock
711 auto now = std::chrono::system_clock::now();
712

713 // Convert to time_t for formatting
714 std::time_t current_time = std::chrono::system_clock::to_time_t(now);
715

716 // Convert to a tm struct for formatting (local time)
717 std::tm* local_time = std::localtime(¤t_time);
718

719 // Use stringstream to format the output

54 / 64

A Basic Algorithms and Code

720 std::stringstream ss;
721 ss << std::put_time(local_time, "%Y-%m-%d %H:%M:%S");
722

723 return ss.str();
724 }
725

726

727

728 /*
729 UTILITY SECTION
730 These are the functions that should be executed in the main function.
731 Either:
732 - time_it() for timing the code
733 - calculate[...]() for calculating correlator values from multiple conf

files and saving them into txt files.,!

734 */
735

736 // Function for timing the Code using a fixed case. Set timewhat = 0 for
dijkstra(), any other int for avg_sphere_dist(),!

737 void time_it(uint8_t timewhat) {
738 std::string filename = "config.dat";
739 //auto config = Read_config(filename);
740 //auto result = process_config(config);
741

742 //auto p = config.first;
743 //auto simplices = result.second;
744 //auto graph = build_graph(simplices);
745

746 currentU.initialize(filename);
747 auto graph = currentU.simplex_neighbors;
748

749 ricci.initialize(graph);
750 temp_ricci.initialize(graph);
751

752

753 if (timewhat == 0) {
754 auto start = std::chrono::high_resolution_clock::now();
755 dijkstra(ricci, graph, 277, 10000, 77080);
756 auto stop = std::chrono::high_resolution_clock::now();
757 auto duration =

std::chrono::duration_cast<std::chrono::microseconds>(stop -
start);

,!

,!

758 std::cout << "Time taken by dijkstra(): "

55 / 64

A Basic Algorithms and Code

759 << duration.count() << " microseconds" << std::endl;
760 std::cout << ricci.pathlen << std::endl;
761 }
762 else {
763 auto start = std::chrono::high_resolution_clock::now();
764 double test_sph_dst = avg_sphere_dist(277, graph, 2);
765 auto stop = std::chrono::high_resolution_clock::now();
766

767 auto duration =
std::chrono::duration_cast<std::chrono::microseconds>(stop -
start);

,!

,!

768 std::cout << "Time taken by avg_sphere_dist(): "
769 << duration.count() << " microseconds" << std::endl;
770 std::cout << test_sph_dst << std::endl;
771 }
772 }
773

774 // For a single file: Function to calculate average sphere distance
correlators over multiple configurations, radii, and distances,!

775 void calculate_singlef(const std::string& path, int file_ind) {
776 std::vector<std::string> files = get_conf_files(path);
777 std::vector<uint32_t> r_range = {6, 7, 8, 9, 10, 11, 12}; // Radii

range,!

778 std::vector<uint32_t> dist_range(40); // Distance range from 1 to 40
779 std::iota(dist_range.begin(), dist_range.end(), 1); // Fills the

vector with 1, 2, ..., 40,!

780

781 std::string conf = files[file_ind];
782

783 currentU.initialize(path+conf);
784 auto graph = currentU.simplex_neighbors;
785

786 std::cout << "Start: " << get_current_time() << std::endl;
787

788

789 for (uint32_t r : r_range) {
790 for (uint32_t d : dist_range) {
791 correlator(conf, graph, 50, r, d);
792 }
793 }
794

795 std::cout << "Stop: " << get_current_time() << std::endl;
796 }

56 / 64

A Basic Algorithms and Code

797

798 // Function to calculate average sphere distance correlators in the bulk
region (using bulk corr),!

799 void calculate_bulk(const std::string& path, int file_ind) {
800 std::vector<std::string> files = get_conf_files(path);
801 std::string conf = files[file_ind];
802

803 currentU.initialize(path+conf);
804 std::cout << "Start: " << get_current_time() << std::endl;
805

806 bulk_corr(conf, currentU, 50, 6);
807

808 std::cout << "Stop: " << get_current_time() << std::endl;
809 }
810

811 // For multiple files: Function to calculate average sphere distance
correlators over multiple configurations, radii, and distances,!

812 void calculate(const std::string& path) {
813 std::vector<std::string> files = get_conf_files(path);
814 std::vector<uint32_t> r_range = {6, 7, 8, 9, 10, 11, 12}; // Radii

range,!

815 std::vector<uint32_t> dist_range(40); // Distance range from 1 to 40
816 std::iota(dist_range.begin(), dist_range.end(), 1); // Fills the

vector with 1, 2, ..., 40,!

817

818 std::cout << "Start: " << get_current_time() << std::endl;
819

820 for (uint32_t r : r_range) {
821 for (const std::string &conf : files) {
822

823 currentU.initialize(path+conf);
824 auto graph = currentU.simplex_neighbors;
825

826 for (uint32_t d : dist_range) {
827 correlator(conf, graph, 50, r, d);
828 }
829 }
830 }
831

832 std::cout << "Stop: " << get_current_time() << std::endl;
833 }
834

57 / 64

A Basic Algorithms and Code

835 // Function to calculate average sphere distance correlators for pairs on
timeslices, starting with the bulk region (using timesliced corr),!

836 void calculate_timeslicewise(const std::string& path, int file_ind) {
837 std::vector<std::string> files = get_conf_files(path);
838 std::string conf = files[file_ind];
839

840 currentU.initialize(path+conf);
841 std::cout << "Start: " << get_current_time() << std::endl;
842

843 timesliced_bulk_corr(conf, currentU, 100, 6);
844

845 std::cout << "Stop: " << get_current_time() << std::endl;
846 }
847

848 /*
849 MAIN SECTION
850 Decide here which code to execute
851 */
852

853 int main(int argc, char* argv[]) {
854

855 //time_it(0);
856 //time_it(1);
857

858 int file_ind = std::stoi(argv[2]);
859 //std::string path = argv[1];
860 calculate_timeslicewise(argv[1], file_ind);
861

862 return 0;
863 }

58 / 64

References

References

[1] A. Zee, Einstein gravity in a nutshell (In a nutshell). Princeton: Princeton
University Press, 2013, 866 pp., isbn: 978-0-691-14558-7.

[2] S. Navas et al., “Review of particle physics,” Phys. Rev. D, vol. 110, no. 3,
p. 030 001, 2024. doi: 10.1103/PhysRevD.110.030001.

[3] C. Bambi and A. D. Dolgov, Introduction to Particle Cosmology: The Standard
Model of Cosmology and its Open Problems (UNITEXT for Physics). Berlin,
Heidelberg: Springer, 2016, isbn: 978-3-662-48077-9 978-3-662-48078-6. doi:
10.1007/978-3-662-48078-6. [Online]. Available:
https://link.springer.com/10.1007/978-3-662-48078-6 (visited on
12/11/2023).

[4] C. H. Lineweaver and V. M. Patel, “All objects and some questions,” American
Journal of Physics, vol. 91, no. 10, pp. 819–825, Oct. 1, 2023, issn: 0002-9505.
doi: 10.1119/5.0150209. [Online]. Available:
https://doi.org/10.1119/5.0150209 (visited on 11/13/2023).

[5] C. Kiefer, Quantum gravity – an unfinished revolution, Feb. 25, 2023. arXiv:
2302.13047. [Online]. Available: http://arxiv.org/abs/2302.13047 (visited on
11/13/2024).

[6] C. W. Misner, K. S. Thorne, J. A. Wheeler, and D. I. Kaiser, Gravitation, First
Princeton University Press edition. Princeton Oxford: Princeton University Press,
2017, 1279 pp., isbn: 978-0-691-17779-3.

[7] A. Zee, Quantum Field Theory in a Nutshell (In a nutshell), 2nd ed. Princeton,
N.J: Princeton University Press, 2010, 576 pp., OCLC: ocn318585662, isbn:
978-0-691-14034-6.

[8] J. Ambjorn, A. Goerlich, J. Jurkiewicz, and R. Loll, “Nonperturbative quantum
gravity,” Physics Reports, vol. 519, no. 4, pp. 127–210, Oct. 2012, issn: 03701573.
doi: 10.1016/j.physrep.2012.03.007. arXiv:
1203.3591[gr-qc,physics:hep-lat,physics:hep-th]. [Online]. Available:
http://arxiv.org/abs/1203.3591 (visited on 07/31/2023).

[9] M. D. Schwartz. “Quantum field theory and the standard model,” Higher
Education from Cambridge University Press. ISBN: 9781108985031 Publisher:
Cambridge University Press. (Dec. 15, 2013), [Online]. Available:
https://www.cambridge.org/highereducation/books/quantum-field-
theory-and-the-standard-model/A4CD66B998F2C696DCC75B984A7D5799
(visited on 12/10/2024).

[10] A. Maas, “The fröhlich-morchio-strocchi mechanism and quantum gravity,”
SciPost Physics, vol. 8, no. 4, p. 051, Apr. 6, 2020, issn: 2542-4653. doi:
10.21468/SciPostPhys.8.4.051. [Online]. Available:
https://scipost.org/10.21468/SciPostPhys.8.4.051 (visited on 12/11/2023).

59 / 64

https://doi.org/10.1103/PhysRevD.110.030001
https://doi.org/10.1007/978-3-662-48078-6
https://link.springer.com/10.1007/978-3-662-48078-6
https://doi.org/10.1119/5.0150209
https://doi.org/10.1119/5.0150209
https://arxiv.org/abs/2302.13047
http://arxiv.org/abs/2302.13047
https://doi.org/10.1016/j.physrep.2012.03.007
https://arxiv.org/abs/1203.3591%2520%5Bgr-qc,%2520physics:hep-lat,%2520physics:hep-th%5D
http://arxiv.org/abs/1203.3591
https://www.cambridge.org/highereducation/books/quantum-field-theory-and-the-standard-model/A4CD66B998F2C696DCC75B984A7D5799
https://www.cambridge.org/highereducation/books/quantum-field-theory-and-the-standard-model/A4CD66B998F2C696DCC75B984A7D5799
https://doi.org/10.21468/SciPostPhys.8.4.051
https://scipost.org/10.21468/SciPostPhys.8.4.051

References References

[11] T. Regge, “General relativity without coordinates,” Il Nuovo Cimento
(1955-1965), vol. 19, no. 3, pp. 558–571, Feb. 1, 1961, issn: 1827-6121. doi:
10.1007/BF02733251. [Online]. Available:
https://doi.org/10.1007/BF02733251 (visited on 11/16/2024).

[12] R. Loll, “Quantum gravity from causal dynamical triangulations: A review,”
Classical and Quantum Gravity, vol. 37, no. 1, p. 013 002, Jan. 9, 2020, issn:
0264-9381, 1361-6382. doi: 10.1088/1361-6382/ab57c7. arXiv:
1905.08669[gr-qc,physics:hep-lat,physics:hep-th]. [Online]. Available:
http://arxiv.org/abs/1905.08669 (visited on 07/31/2023).

[13] J. Brunekreef, A. Görlich, and R. Loll, Simulating CDT quantum gravity, Oct. 25,
2023. arXiv: 2310.16744[gr-qc,physics:hep-lat,physics:hep-th]. [Online].
Available: http://arxiv.org/abs/2310.16744 (visited on 10/27/2023).

[14] J. Ambjørn and R. Loll, Causal dynamical triangulations: Gateway to
nonperturbative quantum gravity, Jan. 17, 2024. doi:
10.48550/arXiv.2401.09399. arXiv: 2401.09399. [Online]. Available:
http://arxiv.org/abs/2401.09399 (visited on 11/26/2024).

[15] J. Brunekreef, Zooming in on the universe: In search of quantum spacetime,
Nov. 12, 2023. doi: 10.48550/arXiv.2311.06910. arXiv:
2311.06910[gr-qc,physics:hep-lat,physics:hep-th]. [Online]. Available:
http://arxiv.org/abs/2311.06910 (visited on 11/16/2023).

[16] J. Ambjorn, A. Goerlich, J. Jurkiewicz, and R. Loll, CDT—an entropic theory of
quantum gravity, Jul. 15, 2010. arXiv:
1007.2560[gr-qc,physics:hep-lat,physics:hep-th]. [Online]. Available:
http://arxiv.org/abs/1007.2560 (visited on 10/11/2023).

[17] J. Ambjorn, J. Jurkiewicz, and R. Loll, Lorentzian and euclidean quantum gravity
- analytical and numerical results, Jan. 27, 2000. arXiv: hep-th/0001124.
[Online]. Available: http://arxiv.org/abs/hep-th/0001124 (visited on
10/11/2023).

[18] J. Ambjorn, J. Jurkiewicz, and R. Loll, Quantum gravity as sum over spacetimes,
version: 2, Jul. 6, 2009. doi: 10.48550/arXiv.0906.3947. arXiv: 0906.3947.
[Online]. Available: http://arxiv.org/abs/0906.3947 (visited on 12/15/2024).

[19] N. Klitgaard and R. Loll, “How round is the quantum de sitter universe?” The
European Physical Journal C, vol. 80, no. 10, p. 990, Oct. 2020, issn: 1434-6044,
1434-6052. doi: 10.1140/epjc/s10052-020-08569-5. arXiv:
2006.06263[gr-qc,physics:hep-th]. [Online]. Available:
http://arxiv.org/abs/2006.06263 (visited on 09/26/2024).

[20] A. Zee, Group theory in a nutshell for physicists (In a nutshell). Princeton:
Princeton University Press, 2016, 613 pp., isbn: 978-0-691-16269-0.

60 / 64

https://doi.org/10.1007/BF02733251
https://doi.org/10.1007/BF02733251
https://doi.org/10.1088/1361-6382/ab57c7
https://arxiv.org/abs/1905.08669%2520%5Bgr-qc,%2520physics:hep-lat,%2520physics:hep-th%5D
http://arxiv.org/abs/1905.08669
https://arxiv.org/abs/2310.16744%2520%5Bgr-qc,%2520physics:hep-lat,%2520physics:hep-th%5D
http://arxiv.org/abs/2310.16744
https://doi.org/10.48550/arXiv.2401.09399
https://arxiv.org/abs/2401.09399
http://arxiv.org/abs/2401.09399
https://doi.org/10.48550/arXiv.2311.06910
https://arxiv.org/abs/2311.06910%2520%5Bgr-qc,%2520physics:hep-lat,%2520physics:hep-th%5D
http://arxiv.org/abs/2311.06910
https://arxiv.org/abs/1007.2560%2520%5Bgr-qc,%2520physics:hep-lat,%2520physics:hep-th%5D
http://arxiv.org/abs/1007.2560
https://arxiv.org/abs/hep-th/0001124
http://arxiv.org/abs/hep-th/0001124
https://doi.org/10.48550/arXiv.0906.3947
https://arxiv.org/abs/0906.3947
http://arxiv.org/abs/0906.3947
https://doi.org/10.1140/epjc/s10052-020-08569-5
https://arxiv.org/abs/2006.06263%2520%5Bgr-qc,%2520physics:hep-th%5D
http://arxiv.org/abs/2006.06263

References References

[21] J. Ambjorn, J. Gizbert-Studnicki, A. Goerlich, and D. Nemeth, IR and UV limits
of CDT and their relations to FRG, Nov. 4, 2024. doi:
10.48550/arXiv.2411.02330. arXiv: 2411.02330. [Online]. Available:
http://arxiv.org/abs/2411.02330 (visited on 11/23/2024).

[22] J. Berges, N. Tetradis, and C. Wetterich, Non-perturbative renormalization flow
in quantum field theory and statistical physics, May 12, 2000. doi:
10.48550/arXiv.hep-ph/0005122. arXiv: hep-ph/0005122. [Online]. Available:
http://arxiv.org/abs/hep-ph/0005122 (visited on 11/23/2024).

[23] M. Reuter, Nonperturbative evolution equation for quantum gravity, May 6, 1996.
doi: 10.48550/arXiv.hep-th/9605030. arXiv: hep-th/9605030. [Online].
Available: http://arxiv.org/abs/hep-th/9605030 (visited on 11/23/2024).

[24] J. McCleary, Geometry from a Differentiable Viewpoint, 2nd ed. Cambridge:
Cambridge University Press, 2012, isbn: 978-0-521-11607-7. doi:
10.1017/CBO9781139022248. [Online]. Available:
https://www.cambridge.org/core/books/geometry-from-a-differentiable-
viewpoint/BB6F7C972B3FA4990BBD774B8812D42B (visited on 06/04/2024).

[25] L. C. Loveridge, Physical and geometric interpretations of the riemann tensor,
ricci tensor, and scalar curvature, version: 1, Jan. 23, 2004. doi:
10.48550/arXiv.gr-qc/0401099. arXiv: gr-qc/0401099. [Online]. Available:
http://arxiv.org/abs/gr-qc/0401099 (visited on 06/13/2024).

[26] J. van der Duin and R. Loll, Curvature correlators in nonperturbative 2d
lorentzian quantum gravity, Apr. 26, 2024. doi: 10.48550/arXiv.2404.17556.
arXiv: 2404.17556[gr-qc,physics:hep-lat,physics:hep-th]. [Online].
Available: http://arxiv.org/abs/2404.17556 (visited on 06/13/2024).

[27] N. Klitgaard and R. Loll, “Introducing quantum ricci curvature,” Physical Review
D, vol. 97, no. 4, p. 046 008, Feb. 15, 2018, issn: 2470-0010, 2470-0029. doi:
10.1103/PhysRevD.97.046008. arXiv:
1712.08847[gr-qc,physics:hep-lat,physics:hep-th]. [Online]. Available:
http://arxiv.org/abs/1712.08847 (visited on 06/04/2024).

[28] Y. Ollivier, “A visual introduction to riemannian curvatures and some discrete
generalizations,” 2012. [Online]. Available:
http://www.yann-ollivier.org/rech/publs/visualcurvature.pdf.

[29] N. Klitgaard and R. Loll, Quantizing quantum ricci curvature, Feb. 28, 2018. doi:
10.48550/arXiv.1802.10524. arXiv: 1802.10524. [Online]. Available:
http://arxiv.org/abs/1802.10524 (visited on 12/15/2024).

[30] E. Oks, “Brief review of recent advances in understanding dark matter and dark
energy,” New Astronomy Reviews, vol. 93, p. 101 632, Dec. 1, 2021, issn:
1387-6473. doi: 10.1016/j.newar.2021.101632. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1387647321000191
(visited on 11/21/2024).

61 / 64

https://doi.org/10.48550/arXiv.2411.02330
https://arxiv.org/abs/2411.02330
http://arxiv.org/abs/2411.02330
https://doi.org/10.48550/arXiv.hep-ph/0005122
https://arxiv.org/abs/hep-ph/0005122
http://arxiv.org/abs/hep-ph/0005122
https://doi.org/10.48550/arXiv.hep-th/9605030
https://arxiv.org/abs/hep-th/9605030
http://arxiv.org/abs/hep-th/9605030
https://doi.org/10.1017/CBO9781139022248
https://www.cambridge.org/core/books/geometry-from-a-differentiable-viewpoint/BB6F7C972B3FA4990BBD774B8812D42B
https://www.cambridge.org/core/books/geometry-from-a-differentiable-viewpoint/BB6F7C972B3FA4990BBD774B8812D42B
https://doi.org/10.48550/arXiv.gr-qc/0401099
https://arxiv.org/abs/gr-qc/0401099
http://arxiv.org/abs/gr-qc/0401099
https://doi.org/10.48550/arXiv.2404.17556
https://arxiv.org/abs/2404.17556%2520%5Bgr-qc,%2520physics:hep-lat,%2520physics:hep-th%5D
http://arxiv.org/abs/2404.17556
https://doi.org/10.1103/PhysRevD.97.046008
https://arxiv.org/abs/1712.08847%2520%5Bgr-qc,%2520physics:hep-lat,%2520physics:hep-th%5D
http://arxiv.org/abs/1712.08847
http://www.yann-ollivier.org/rech/publs/visualcurvature.pdf
https://doi.org/10.48550/arXiv.1802.10524
https://arxiv.org/abs/1802.10524
http://arxiv.org/abs/1802.10524
https://doi.org/10.1016/j.newar.2021.101632
https://www.sciencedirect.com/science/article/pii/S1387647321000191

References References

[31] D. R. Brill, “Method of the self-consistent field in general relativity and its
application to the gravitational geon,” Physical Review, vol. 135, no. 1,
B271–B278, 1964. doi: 10.1103/PhysRev.135.B271.

[32] P. R. Anderson and D. R. Brill, Gravitational geons revisited, Sep. 3, 1997. arXiv:
gr-qc/9610074. [Online]. Available: http://arxiv.org/abs/gr-qc/9610074
(visited on 11/21/2024).

[33] B. Guiot, A. Borquez, A. Deur, and K. Werner, Graviballs and dark matter,
Sep. 3, 2020. arXiv: 2006.02534. [Online]. Available:
http://arxiv.org/abs/2006.02534 (visited on 11/21/2024).

[34] C. Gattringer and C. B. Lang, Quantum Chromodynamics on the Lattice: An
Introductory Presentation (Lecture Notes in Physics). Berlin, Heidelberg:
Springer, 2010, vol. 788, isbn: 978-3-642-01849-7 978-3-642-01850-3. doi:
10.1007/978-3-642-01850-3. [Online]. Available:
https://link.springer.com/10.1007/978-3-642-01850-3 (visited on
11/21/2024).

[35] I. Montvay and G. Münster, Quantum Fields on a Lattice (Cambridge
Monographs on Mathematical Physics). Cambridge: Cambridge University Press,
1994, isbn: 978-0-521-59917-7. doi: 10.1017/CBO9780511470783. [Online].
Available: https://www.cambridge.org/core/books/quantum-fields-on-a-
lattice/4401A88CD232B0AEF1409BF6B260883A (visited on 11/21/2024).

[36] D. Németh, Private communication, 2023.
[37] 5-cell, in Wikipedia, Page Version ID: 1247473715, Sep. 24, 2024. [Online].

Available:
https://en.wikipedia.org/w/index.php?title=5-cell&oldid=1247473715
(visited on 11/22/2024).

[38] “Shortest paths,” in Algorithms and Data Structures: The Basic Toolbox,
K. Mehlhorn and P. Sanders, Eds., Berlin, Heidelberg: Springer, 2008,
pp. 191–215, isbn: 978-3-540-77978-0. doi: 10.1007/978-3-540-77978-0_10.
[Online]. Available: https://doi.org/10.1007/978-3-540-77978-0_10 (visited
on 11/29/2024).

[39] J. Ambjorn, A. Gorlich, J. Jurkiewicz, and R. Loll, Planckian birth of the
quantum de sitter universe, Jan. 8, 2009. doi: 10.48550/arXiv.0712.2485.
arXiv: 0712.2485. [Online]. Available: http://arxiv.org/abs/0712.2485
(visited on 12/30/2024).

[40] J. Ambjorn, A. Goerlich, J. Jurkiewicz, and R. Loll, The nonperturbative
quantum de sitter universe, Jan. 8, 2009. doi: 10.48550/arXiv.0807.4481.
arXiv: 0807.4481. [Online]. Available: http://arxiv.org/abs/0807.4481
(visited on 12/30/2024).

62 / 64

https://doi.org/10.1103/PhysRev.135.B271
https://arxiv.org/abs/gr-qc/9610074
http://arxiv.org/abs/gr-qc/9610074
https://arxiv.org/abs/2006.02534
http://arxiv.org/abs/2006.02534
https://doi.org/10.1007/978-3-642-01850-3
https://link.springer.com/10.1007/978-3-642-01850-3
https://doi.org/10.1017/CBO9780511470783
https://www.cambridge.org/core/books/quantum-fields-on-a-lattice/4401A88CD232B0AEF1409BF6B260883A
https://www.cambridge.org/core/books/quantum-fields-on-a-lattice/4401A88CD232B0AEF1409BF6B260883A
https://en.wikipedia.org/w/index.php?title=5-cell&oldid=1247473715
https://doi.org/10.1007/978-3-540-77978-0_10
https://doi.org/10.1007/978-3-540-77978-0_10
https://doi.org/10.48550/arXiv.0712.2485
https://arxiv.org/abs/0712.2485
http://arxiv.org/abs/0712.2485
https://doi.org/10.48550/arXiv.0807.4481
https://arxiv.org/abs/0807.4481
http://arxiv.org/abs/0807.4481

References References

[41] P. Adhikari et al., “First direct detection constraints on planck-scale mass dark
matter with multiple-scatter signatures using the DEAP-3600 detector,” Physical
Review Letters, vol. 128, no. 1, p. 011 801, Jan. 5, 2022, issn: 0031-9007,
1079-7114. doi: 10.1103/PhysRevLett.128.011801. arXiv:
2108.09405[astro-ph]. [Online]. Available: http://arxiv.org/abs/2108.09405
(visited on 03/13/2025).

63 / 64

https://doi.org/10.1103/PhysRevLett.128.011801
https://arxiv.org/abs/2108.09405%2520%5Bastro-ph%5D
http://arxiv.org/abs/2108.09405

Lists

List of Figures

1. Illustration of CDT geometries in 1+1 dimensions 4
2. Deficit angle curvature . 7
3. Spheres in positive curvature . 10
4. Histogram of vertices for sample configuration. 14
5. Histogram of shortest paths . 15
6. Lightcone structure . 15
7. Discrete curvature spheres . 17
8. Number of measurements . 22
9. G�|t = hd̄/�i|t (dotted) and 3

p
hN4(t)i (solid) for all three ensembles . . . 23

10. 2-point correlators based on d̄/� . 24
11. G��(d)|t for multiple dual timeslices . 25
12. Directly subtracted correlators based on d̄/�, evaluated on t = 1 27
13. Directly subtracted correlators based on (d̄/�)2, evaluated on t = 1 28
14. 2-point correlators based on R . 30
15. Directly subtracted correlators based on R, evaluated on t = 1 31
16. Directly subtracted correlators based on R

2, evaluated on t = 1 32

List of Tables

1. Mass values m for different correlators . 34

64 / 64

	Introduction and Motivation
	Theoretical Framework
	Quantum Gravity and CDT
	Curvature in Triangulated Spacetime
	Curvature in GR
	Discrete Curvature

	Observables and Correlators in QFT and CDT
	Geons and Dark Matter

	Methodology
	Reproducing 4d CDT findings
	Measuring Geodesic Distances and Curvature
	Regular and Dual Lattice
	Dijkstra's Algorithm

	Building Correlation Functions
	Extracting the Ricci scalar
	Investigated Correlators

	Results
	Preliminary Observations and Remarks
	Curvature Correlators from siunitxunit-deprecatedࡡ爀戀愀爀戀愀爀搀
	2-point correlators from siunitxunit-deprecatedࡡ爀戀愀爀戀愀爀搀
	Directly subtracted 2-point correlators from siunitxunit-deprecatedࡡ爀戀愀爀戀愀爀搀

	Curvature Correlators from R
	2-point correlators from R
	Directly subtracted 2-point correlators from R

	Discussion and Interpretation
	Conclusion and Outlook
	Basic Algorithms and Code
	References

