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ABSTRACT

Despite numerous efforts, no particles predicted by (broken) supersymmetric theories have been
observed in experiments. One possible explanation is that the particle spectrum predicted by
perturbation theory is not the physical spectrum predicted by the full, non-perturbative theory.
In fact, because it is gauge-variant, it cannot be from a field theoretical standpoint.

A framework for analyzing the gauge-invariant, non-perturbative spectrum and efficiently con-
trasting it with perturbation theory results is provided by the Fröhlich-Morchio-Strocchi mech-
anism. For the standard model, this description shows remarkable agreement between the two
spectra, supporting the results of perturbation theory. However, for many grand-unified-theory-
like scenarios, qualitative differences between the two emerge. These have been thoroughly
investigated and are confirmed by lattice findings. The absence of experimental evidence may
be explained by the fact that one would not expect the perturbative spectrum to be observable
in such circumstances.

For the first time, the investigations are extended to supersymmetric theories in this thesis. It
constructs the minimal supersymmetric standard model’s inherently gauge-invariant spectrum
and shows that no qualitative differences occur. This finding supports the results of the standard
perturbative treatment, which means that the actually physical spectrum would indeed include
the undiscovered particles.

KURZZUSAMMENFASSUNG

Trotz zahlreicher Versuche ist es bisher nicht gelungen, die von (gebrochen-) supersymmetrischen
Theorien vorhergesagten Teilchen im Experiment nachzuweisen. Eine Erklärung dafür könnte
sein, dass das von Störungstheorie vorhergesagte Spektrum womöglich nicht dem physikalischen
Spektrum der vollen Theorie entspricht. Aus feldtheoretischer Sicht ist dies sogar ausgeschlossen,
da es eichabhängig ist.

Zur Untersuchung des nicht-störungstheoretischen, eichunabhängigen Spektrums eignet sich
der Fröhlich-Morchio-Strocchi Mechanismus, welcher darüber hinaus eine direkte Verbindung
mit dem bekannten, störungstheoretischen Spektrum herstellt. Im Falle des Standardmodells
kann damit gezeigt werden, dass die beiden Spektren hervorragend übereinstimmen und der
Formalismus folglich die Ergebnisse der Störungstheorie stützt. Allerdings kann es auch zu qual-
itativen Unterschieden kommen, was anhand von zahlreichen Szenarien im Bereich von großen
vereinheitlichten Theorien demonstriert und in Gittersimulationen bestätigt wurde. In solchen
Fällen würde man nicht erwarten, dass das störungstheoretische Spektrum physikalischen Gehalt
hat, die entsprechenden Teilchen also auch im Experiment nicht beobachtbar sind.

In der vorliegenden Arbeit wird diesbezüglich erstmals eine supersymmetrische Theorie un-
tersucht. Es wird gezeigt, wie das eichunabhängige Spektrum des minimal-supersymmetrischen
Standardmodells konstruiert wird, und dass es qualitativ mit den Vorhersagen der Störungstheorie
übereinstimmt. Somit werden abermals die störungstheoretischen Ergebnisse untermauert und
bestätigt, dass das physikalische Spektrum in der Tat die unentdeckten Teilchen beinhaltet.
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1 Introduction

Our current understanding of fundamental particles and interactions is very well captured by the
standard model of particle physics [1–4]. It accurately describes weak and strong interactions
as well as quantum electrodynamic processes up to energies of a few TeV. The Brout-Englert-
Higgs effect [5, 6], which was proposed to explain the mass origin of the weak gauge bosons
and fermions, is an essential component of the standard model, and the 2012 discovery of the
corresponding Higgs boson [7, 8] made a huge impact in our understanding of the inner workings
of the Universe.

Nevertheless, there are some things that cannot be explained solely by the standard model.
Gravity and dark matter are the most obvious missing pieces. Furthermore, physicists work
hard to explain seemingly strange parameters in the standard model, such as the small Higgs
mass (fine-tuning problem) or the θ-parameter (strong CP problem). More often than not, hy-
pothetical particles and symmetries are proposed to ‘elegantly’ address these supposedly strange
circumstances. Peccei and Quinn [9], for example, suggested a new U(1) symmetry and the axion
as a solution to the strong CP problem.

The idea of proposing more hypothetical particles than experimentally verified ones, in addition
to a symmetry that alters our perception of spacetime, is admittedly pretty radical. However,
these supersymmetric theories [10, 11] are extremely popular scenarios of beyond the standard
model physics. And for good reason: Already the most straight-forward supersymmetric exten-
sion of the standard model, the minimal supersymmetric standard model (MSSM), contains a
‘light’ Higgs boson [12] in addition to offering better gauge-coupling unification [13]. Further-
more, it suggests that electroweak symmetry breaking is ultimately connected to the breaking of
supersymmetry at low energies [11], and it yields a dark matter candidate without much effort:
the lightest supersymmetric particle (LSP) [14]. Finally, promoting supersymmetry to a local
symmetry results in supergravity models which could be the long sought-after theory of quantum
gravity [15].

Despite the arguably beautiful maths and implications of (broken) supersymmetry, we cannot
deny the fact that none of its many predicted particles have yet been discovered in experi-
ments [16, 17]. Indeed, many constraint versions of the MSSM are highly restricted by now [18].
Similarly, there is growing evidence that the MSSM’s LSP is not a suitable dark matter candidate,
as direct detection experiment results [19] do not well agree with astrophysical data on the relic
density [20]. The full MSSM, however, contains plenty of parameters that, if left unconstrained,
can be used to fit it to observational data. Instead of extending the parameter space for decades
to come, one might ask a provoking question: Are we even looking for the right particles? What
if the particle spectrum we calculated from the MSSM was incorrect, rather than the MSSM
itself? Is the spectrum obtained by standard perturbation theory the actual physical spectrum?

The MSSM, like the standard model and many of its proposed extensions, is formulated as a
gauge theory. At the same time, only truly gauge-invariant fields can have physical meaning from
a conceptual standpoint. Manifest gauge-invariance in Abelian gauge theories such as quantum
electrodynamics (QED) can be easily achieved by dressing fields with a Dirac phase (‘photon
cloud’) [21]. This, for example, converts the gauge-dependent elementary ‘electron’ field into a
truly physical electron. It shows that the physical spectrum is in one-to-one correspondence with
the elementary spectrum, even though the latter is, strictly speaking, nonphysical. Non-Abelian
theories, on the other hand, require more involved constructions: In quantum chromodynamics
(QCD), quarks and gluons cannot be the physical degrees of freedom because they are gauge-
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1 Introduction

dependent. Unlike before, adding a dressing phase is insufficient, and bound states such as
mesons and baryons are required to obtain gauge-invariant objects [2]. As a result, the physical
spectrum includes these bound states and deviates significantly from the elementary spectrum
of quarks and gluons.

Interestingly, nothing along these lines is found in the usual treatment [3] of the standard
model weak-Higgs sector even though it is a non-Abelian theory as well and the same reasoning
applies [22–24]. In contrast to QCD, the small weak coupling constant seems to motivate the use
of perturbation theory (PT) which cannot treat bound states in the first place. As a result, the
possibility of a physical spectrum that differs qualitatively from the elementary one is dismissed.
The Faddeev-Popov gauge-fixing procedure and the BRST construction [2] are widely believed
to adequately account for gauge-invariance in this case, even though they are only known to
work reliably within PT. The Gribov-Singer ambiguity [25, 26] impedes their non-perturbative
construction. Moreover, they only guarantee gauge-parameter -independence within this specific
framework but not gauge invariance of the full, non-perturbative spectrum. If these ‘subtleties’
are ignored, this procedure yields a Higgs field and weak gauge bosons which carry an open gauge
index. As a result, despite being BRST singlets, they cannot be truly gauge-invariant quantities
of the full theory. Thus, it is strictly speaking incorrect to attribute any sort of physical reality
to them. On the other hand, it is undeniable that the usual description ‘works’, in the sense
that it produces accurate predictions [2–4]. Therefore, it should not come as a surprise that it
appears in many textbooks, despite the fact that, given the discussion above, this description
seems fundamentally flawed.

As it turns out, its success is not entirely coincidental. The FMS mechanism, developed
by Fröhlich, Morchio and Strocchi [23, 24], establishes a connection between the perturbative
spectrum and the theory’s inherently gauge-invariant, non-perturbative spectrum. The latter is
indeed made up of ‘bound state’ objects, but unlike in QCD, they are in one-to-one correspon-
dence with the elementary fields and their masses and decay widths are identical [27]. The FMS
mechanism hence shows, that in the standard model weak-Higgs sector no qualitative differences
between the two spectra arise, and therefore explains perturbation theory’s apparent success.
For a review, see [28]. Thus, demanding full gauge-invariance appears to be an esoteric issue.
As indicated by the emphasize, however, this result is special for the standard model weak-Higgs
sector and should not be taken for granted: For many grand-unified-theory-like (GUT) mod-
els, the FMS mechanism actually indicates a mismatch between the non-perturbative and the
perturbative spectrum [29, 30], which is also found in lattice calculations [31]. It is possible
that some particles present in the elementary spectrum are completely absent from the physical
spectrum. Searching for evidence of the former can thus be highly misleading because it might
contain particles which are not expected to be observable in the first place. In such cases, the
true power of the FMS mechanism shows: Whereas it merely supported the use of perturbation
theory in the standard model, it is now critical to investigate potential discrepancies and arrive
at truly physical statements. Furthermore, even when the spectra agree, the FMS mechanism
predicts sub-leading corrections to off-shell properties, form-factors, cross-sections, etc., that are
in principle detectable under the right kinematical conditions [32–34].

Such considerations are especially appealing for the MSSM, which predicts a plethora of new
particles. Its Higgs sector is essentially a two-Higgs-doublet-model (2HDM), and previous re-
search found that the FMS mechanism predicts no qualitative spectrum changes there [35]. The
more important and as-yet unanswered question is whether the superpartners, particularly the
LSP (the dark matter candidate), are part of the physical spectrum and thus, at least in principle,
observable.

This thesis starts out with a brief introduction to supersymmetry in Chapter 2: The Weyl
spinor formalism which is very practical for its description will be presented first. Following
that, we will look at how a symmetry between bosons and fermions can be established in the
first place. This leads to the Super-Poincaré-Algebra and its irreducible representations, the
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supermultiplets, which are eventually used to formulate supersymmetric Lagrangians. We will
see that supersymmetry imposes severe constraints on the form of the Lagrangian terms, and we
will conclude the chapter by stating the most general supersymmetric Lagrangian as a starting
point for later model building.

Chapter 3 introduces the FMS mechanism which is eventually required to relate the physical
spectrum of the MSSM to the already known elementary spectrum. We will also review the
standard perturbative approach to non-Abelian gauge theories, which includes the Faddeev-
Popov and BRST construction. Beyond PT, we will see that there is no reason to expect these
concepts to be well-defined. Motivated by manifest gauge-invariance, we will then consider
composite bound state operators as a replacement for elementary fields, as well as how PT can
be used in conjunction with the FMS mechanism to make statements about their relationship to
the perturbative spectrum. This will ultimately lead to the concept of augmented perturbation
theory (APT).

Chapter 4 illustrates how APT works in practice. We go over the most important steps in the
usual treatment of the standard model weak-Higgs sector and point out common misconceptions
and subtleties. We show how switching to a bound state operator language results in a concep-
tually much more satisfying description that is automatically in agreement with the standard
treatment using the FMS mechanism and APT.

The minimal supersymmetric standard model is introduced in Chapter 5 as a special case of
the general theory presented in Chapter 2, and the importance of its custodial symmetry for
the FMS mechanism is highlighted. Both the elementary and the physical spectra of the MSSM
must then be constructed to eventually determine if they agree (as in the standard model) or if
qualitative discrepancies emerge (as in many GUT-like theories). First, the perturbative spec-
trum of the weak-Higgs(ino) sector and one (s)lepton generation is calculated. Keeping custodial
symmetry intact makes the calculations slightly unconventional, but extremely insightful. The
physical spectrum is then constructed using gauge-invariant operators, and their relationship
to the elementary fields is established again using the FMS mechanism and APT. Finally, the
results are generalized to the case of broken custodial symmetry and multiple lepton generations,
and the addition of quarks and hypercharge completes the MSSM’s inherently gauge-invariant
description.

Remark on terminology: Throughout this thesis, the terms ‘elementary spectrum’, ‘perturbative
spectrum’ and ‘gauge-variant spectrum’ are used interchangeably. Likewise, ‘gauge-invariant
spectrum’, ‘non-perturbative spectrum’ and ‘physical spectrum’ denote the same concept. The
elements of the latter are called ‘bound states operators’, ‘inherently gauge-invariant operators’
or ‘composite operators’. We freely choose from those options to make the text sound less robotic.
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2 Supersymmetric Theories

Supersymmetry is a popular scenario for beyond the standard model theories and its most promi-
nent feature is that it predicts a symmetry between bosons and fermions. Even though it still
lacks experimental evidence, it is worthwhile to explore because to the best of our knowledge,
supersymmetry would be the largest possible symmetry of spacetime (see Sec. 2.2). Therefore,
finding evidence would be exciting, yet not very surprising. On the other hand, it would be
equally interesting to learn why Nature has not chosen to realize it.

If found true, supersymmetric theories could address numerous issues of the standard model:
An often brought up motivation [10, 11] is the fine-tuning problem. In short, it revolves around the
unnaturally low mass of the standard model (SM) Higgs boson. It can be immediately remedied
by partnering every SM fermion with a boson of equal mass and vice versa. Furthermore, they are
way better at unifying the gauge couplings than the SM [13] and adding more particles results in a
richer phenomenology, which usually comes with dark matter candidates, too. Finally, promoting
supersymmetry to a local symmetry naturally leads to a theory of quantum gravity [15].

In this chapter, we will review the basics of supersymmetry and closely follow [10, 11, 36], to
which the reader is referred for more detailed derivations and explanations. In Sec. 2.2 we will see
how the Poincaré algebra is enlarged to allow for a symmetry that connects bosons and fermions.
The irreducible representations (irreps) of this enlarged symmetry will be supermultiplets which
are built from an equal number of bosonic and fermionic degrees of freedom. In a next step, we
will see how these irreps are used as building blocks for supersymmetric Lagrangians in Sec. 2.3.
So long as supersymmetry is exact, those Lagrangians will turn out to be extremely restrictive
with very few independent parameters. On the other hand, we know that it cannot be realized
at currently explored energies. Thus, every phenomenologically viable theory of supersymmetry
must include a breaking mechanism or at least an effective (‘soft’) parametrization at low energies.
Before we get started, however, we must introduce a bit of notation.

2.1 Weyl Spinor Notation

Describing fermions in a supersymmetric setting is a bit different from what most people are used
to. We will not use Dirac spinors to describe them but the more basic left- and right-handed Weyl
spinors. They are more fundamental in the sense that they are the fundamental representations of
SL(2,C) while Dirac spinors are reducible representations. Furthermore, the fact that they only
entail two degrees of freedom instead of four will be convenient for constructing supersymmetric
Lagrangians later. Even though left- and right-handed spinors are distinct objects, there is
a natural mapping between the two. It turns out, that only one type of spinor is needed to
capture the full information [36]. By convention, they are chosen to be the left-handed spinors
ξ. Right-handed spinors are then obtained by ‘conjugation’, i.e. if χ is left-handed, χ† is right-
handed1. Nevertheless, they are still understood to live in different representation spaces and to
not accidentally contract them, we introduce separate indices a = 1, 2 and ȧ = 1̇, 2̇ as follows:

ξa (left-handed Weyl spinors)

χ†ȧ (right-handed Weyl spinors)

1See [36] and Appendix B.1 for a careful explanation of that statement.
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2 Supersymmetric Theories

These indices can be raised and lowered using the metric tensor ε, defined by

εab = εȧḃ = −εab = −εȧḃ =

 0 1

−1 0

 = iσ2 (2.1)

ξa = εabξb ξa = εabξ
b χ†ȧ = εȧḃχ†

ḃ
χ†ȧ = εȧḃχ

†ḃ.

The metric tensor can also be used to construct a Lorentz-invariant spinor product

ξψ ≡ ξaψa = εabξbψa (left-handed, convention a
a)

χ†ζ† ≡ χ†ȧζ
†ȧ = εȧḃχ

†ḃζ†ȧ (right-handed, convention ȧ
ȧ)

(2.2)

where the index structure is important and chosen by convention to be descending for left-handed
spinors and ascending for right-handed spinors. Notice that due to the anti-commutativity of
spinors and the anti-symmetry of ε, this product is symmetric, i.e. ξψ = ξaψa = ψaξa = ψξ.
It makes working with Weyl spinors very convenient. In fact, we can completely forget about
the index structure in most calculations because we only work in, e.g., gauge space which is
transparent to the spinor structure.

Sometimes, we will reintroduce Dirac spinors for convenience which can be easily built from a
left- and right-handed Weyl spinor as

Ψ =

 ξa

χ†ȧ

 ≡
 ξ

χ†

 . (2.3)

Again, we will drop the indices but keep in mind, that the index structure is important and as
indicated. This ensures that our ‘careless’ calculations work out in terms of spinor indices, e.g.,
that we can combine Weyl mass terms into Dirac mass terms as

χξ + ξ†χ† =
(
χa ξ†ȧ

) ξa

χ†ȧ

 ≡ Ψ̄Ψ. (2.4)

The bar here denotes the usual Dirac adjoint Ψ̄ = Ψ†γ0. By setting χ = ξ, this extends to
Majorana spinors, too.

If we abandon Dirac spinors, we also need to replace the usual γ-matrices by the σ-matrices

(σ̄µ)ȧb ≡ (1,−σ1,−σ2 − σ3)

(σµ)aḃ ≡ (1, σ1, σ2, σ3).
(2.5)

We can use them to build 4-vectors via χ†σ̄µξ, just like with γ-matrices. Likewise, we can express
the generators of homogeneous Lorentz transformations in the Weyl spinor representation as [36]

σµν =
i

4
(σµσ̄ν − σν σ̄µ)

σ̄µν =
i

4
(σ̄µσν − σ̄νσµ),

(2.6)

in complete analogy to γµν = − i
4 [γµ, γν ] as the generators of rotations for Dirac spinors [1].

Above, we only presented the bare minimum of the Weyl spinor formalism in a form that seems
most convenient for this thesis. For more details and many useful relations, see [10, 11, 36, 37].
Be aware, though, that definitions might differ slightly across the literature. For example, our
definition (2.3) matches the one of [10, 36] while some authors [11] consider right-handed spinors
χ† to have a lower index by default. Consequently, a Dirac spinor might be written as

Ψ = (ξ, iσ2χ†)T = (ξ, χc)T (attention: different notation)

in index-free notation. This is completely equivalent if done consistently as iσ2 is just the
metric (2.1) that pulls indices accordingly.
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2.2 Super-Poincaré-Algebra

2.2 Super-Poincaré-Algebra

Since we want to relate bosons and fermions, i.e. particles of different spin, we have to al-
ter the Poincaré algebra in one way or the other. After all, spin is a spacetime property and
any transformation which changes spin will definitely not be completely isolated from or inde-
pendent of Poincaré transformations. However, one of the most famous no-go-theorems, the
Coleman-Mandula theorem [38], seems to forbid exactly this: According to that theorem, the
full symmetry of the S-matrix of a consistent four-dimensional quantum field theory (satisfying
locality, causality, finiteness of particles, etc.) has to be

[Pµ, Pν ] = 0

[Mµν , Pλ] = i(ηνλPµ − ηµλPν)

[Mµν ,Mρσ] = −i(ηµρMνρ − ηµσMνρ − ηνρMµσ + ηνσMµρ)

[Bl, Bm] = icklmBk

[Bl, Pµ] = [Bl,Mµν ] = 0.

(2.7)

I.e. it consists of the Poincaré algebra (first three lines) and some internal symmetry algebra
(fourth line) with structure constants cklm. It is important for the two to be combined trivially,
i.e. the operators Bl must commute with the Poincare generators (last line), and can therefore
never effect the spin of a particle. Luckily for us, Haag,  Lopuszański and Sohnius [39] discovered
that the maximal symmetry is larger if one not only allows bosonic generators, but also some
number N of anti-commuting spinor charges. This upgrades the Poincaré algebra to a graded
algebra. Moving forward, we will only be considering the case N = 1 as N > 1 are scenarios
of extended supersymmetry. The new generator Q satisfies the following (anti-)commutation
relations

{Qa, Qb} = {Q†ȧ, Q
†
ḃ
} = 0

{Qa, Q†ȧ} = 2(σµ)aȧPµ

[Qa, Pµ] = [Q†ȧ, Pµ] = 0

[Qa,M
µν ] = i(σµν) b

a Qb.

(2.8)

We can see that the spinor components of the left-handed (right-handed) version of Q anti-
commute but if we mix them, the result is a spacetime translation, generated by Pµ. Second,
while Q commutes with Pµ, the commutator with Mµν explicitly demonstrates that Q transforms
like a Weyl spinor under homogeneous Lorentz transformations, c.f. Eq. (2.6). Finally, the charge
Q is also assumed to commute with all internal symmetries like gauge symmetries in this thesis2.
The Poincaré algebra and Eq. (2.8) together are called Super-Poincaré-Algebra or SUSY algebra.

Just like our usual notion of ‘particles’ is tied to the irreducible representations (irreps) of the
Poincaré algebra [1], we can also construct irreps of the SUSY algebra to arrive at the notion of
‘superparticles’. However, SUSY algebra irreps are reducible with respect to the Poincaré algebra.
Consequently, it is also appropriate to call them ‘supermultiplets’ instead of ‘superparticles’.
These supermultiplets then contain regular particles.

Earlier, the squares of the 4-momentum and the Pauli-Lubanski-pseudovector were appropri-
ate Casimir operators to classify irreps of the Poincaré algebra according to their mass and spin.
The former is still a Casimir of the SUSY algebra, but the latter has to be modified slightly
(see [36] for details). It is therefore clear, that members of a supermultiplet have the same mass,
but not the same spin. The most important irreps turn out to be the so-called massless3 chiral
and vector/gauge supermultiplet. They host a fermion and a boson, each, which are called super-
partners. From the standpoint of SUSY, they are completely equivalent and indistinguishable,

2The Haag- Lopuszański-Sohnius theorem actually allows Q to be charged under internal symmetries which are
then called R-symmetries [10].

3Massive versions do exist but are discarded here as we will introduce mass via a Brout-Englert-Higgs mechanism.
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2 Supersymmetric Theories

Supermultiplet Superpartners on-shell dof

Chiral
complex scalar Weyl spinor

2 + 2
(2 real dof) (2 spin states)

Gauge
Weyl spinor vector

2 + 2
(2 spin states) (2 helicity states)

Table 2.1: Particle content (irreps of the Poincaré algebra) of the chiral and gauge supermultiplet
(irreps of the SUSY algebra). Evidently, bosonic and fermionic on-shell degrees of
freedom (dof) match inside each supermultiplet.

and the charge Q induces transformations which freely rotate them into each other. The contents
of the supermultiplets are shown in Tab. 2.1.

Those two supermultiplets will serve as the basic building blocks in constructing supersym-
metric theories. Notice that this automatically guarantees that we have as many fermionic as
bosonic on-shell4 degrees of freedom in our theory, hence addressing the fine-tuning-problem au-
tomatically. It should now become clear, why the Weyl spinor description is so convenient. We
also learn that superpartners are identical in mass as long as SUSY is intact, which is bad from a
phenomenological point of view. Hence, SUSY has to be broken at least at low energies. Finally,
since gauge transformations and SUSY transformations commute, the fields in a supermultiplet
must both carry the same gauge charges and live in the same representation. E.g. the gauge
bosons of the SM would get fermionic superpartners which live in the adjoint representation of
the gauge group.

Speaking of the SM, this is a good place to introduce a very common naming convention
for superpartners. Usually, all the particles contained in the SM are called ‘gauge bosons’,
‘fermions’ and ‘Higgs’, as normal. Their superpartners either get a trailing ‘ino’ if it is fermionic,
or a leading ‘s’ if it is scalar. In this way, gauge bosons are partnered with gauginos like the
gluinos and winos and for the Higgs we get the Higgsino. The scalar superpartners of the SM
fermions are referred to as sfermions like selectron, sneutrino (collectively sleptons) and squarks.
Notation-wise, superpartners receive a tilde, e.g., H and H̃ denote the Higgs and the Higgsino.

2.3 Supersymmetric Lagrangians

Demanding our Lagrangian to be Lorentz- and gauge-invariant as well as renormalizable already
poses strong restrictions on the terms we can possibly write down. Supersymmetry turns out
to be yet more restrictive as we will see in a bit. The following is a condensed version of the
derivation found in [10].

We start off by considering chiral supermultiplets containing a complex scalar field φi and their
Weyl spinor superpartner φ̃i. The index i indicates that we already consider an arbitrary number
of chiral supermultiplets. Summation over repeated indices is implied. The kinetic Lagrangian
is then simply given by the free Klein-Gordon and left-handed Weyl Lagrangian

Lchiral
kin = ∂µφ†i∂µφi + iφ̃†i σ̄

µ∂µφ̃i.

Intuitively, one would think that a plethora of interaction terms between the φi and φ̃j is pos-
sible. And there are a lot, but they are not independent. In fact, SUSY forces the interaction

4In order for the supersymmetry algebra to also close off-shell and to match off-shell dof, one has to include
auxiliary fields. We will not go into this but the interested reader is referred to the literature [10, 11, 36].
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2.3 Supersymmetric Lagrangians

Lagrangian to be of the form

Lchiral
int = −1

2

[
∂2W

∂φi∂φj
φ̃iφ̃j + h.c.

]
−
∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 ,

where W is the so-called superpotential. It is a polynomial

W = Liφi +
1

2
Mijφiφj +

1

6
yijkφiφjφk (2.9)

in the scalar fields with coefficients Li, Mij and yijk. We can freely choose those coefficients for
model building but by doing so, we lock the form of the Lagrangian. No terms may be added, nor
omitted. And the factors in front of the interaction terms are not independent. Notice, that W
may only contain scalar fields but no field adjoints! This will lead to the introduction of a second
Higgs boson in Sec. 5.1. The Lagrangian we just built is that of the interacting Wess-Zumino
model [40].

A gauge supermultiplet includes a gauge boson Aµ and the gaugino Ã, its fermionic super-
partner. Their kinetic Lagrangian is

Lgauge
kin = −1

4
F aµνF

µν
a + iÃ†aσ̄µDµÃa with

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν .

Here, a are adjoint gauge-indices, fabc are the structure constants of the gauge group and Dµ is

the gauge covariant derivative in the adjoint representation which couples Ã to the gauge bosons.
Notice that it is better to think of the gauginos as being matter fields and not some weird sort
of ‘fermionic gauge boson’: A gauge transformation on Ã acts as Ãa → Ãa − fabcθbÃc, i.e. it
does not include the ‘g−1∂µθ’ part of the gauge boson transformation which is only required for
the description of (massless) vector bosons [1]. Furthermore, they also do not show up in the
covariant derivative for that very reason.

Coupling the two supermultiplets together is done analogously to Yang-Mills theory: We choose
a gauge group representation with generators T a for the chiral supermultiplet (superpartners
must live in the same representation, as discussed above) and replace ∂µ byDµ (in the appropriate
representation) in its Lagrangian. This automatically introduces interaction terms between Aµ,

φ and φ̃ but one can show that to preserve SUSY, the interaction terms

−
√

2g
(
φ†iT

aφ̃i

)
Ãa −

√
2gÃ†a

(
φ̃†iT

aφi

)
− g2

2

(
φ†iT

aφi

)(
φ†jT

aφj

)
are needed in addition. Notice that the coefficients of these terms are not independent but fixed
by the gauge coupling g. This also means that we cannot omit them.

Collecting everything together, we arrive at the starting point of any supersymmetric gauge
theory:

L = −1

4
F aµνF

µν
a + iÃ†aσ̄µ(DµÃ)a (gauge field kinetic)

+ (Dµφ)†i (D
µφ)i + iφ̃†i σ̄

µDµφ̃i (matter field kinetic)

−
∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 − g2

2
(φ†iT

aφi)(φ
†
jTaφj) (F - and D-terms)

− 1

2

[(
∂2W

∂φi∂φj

)
φ̃iφ̃j + h.c.

]
(Yukawa-type)

−
√

2g
[
(φ†iT

aφ̃i)Ãa + Ã†a(φ̃†iTaφi)
]

(Yukawa-type)

+ Lsoft. (soft breaking terms)

(2.10)
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The first two lines consist of the gauge and chiral supermultiplets’ kinetic Lagrangians. The two
terms in the third line are called F - and D-terms and they constitute the scalar potential. The
fourth and fifth line corresponds to Yukawa-type fermion-fermion-scalar interactions. Finally,
soft breaking terms may be included to make the model phenomenologically viable. Those terms
parametrize the unknown origin of SUSY breaking and vanish at high energies, thus restoring
supersymmetry. Possible terms are scalar and Majorana mass terms or trilinear scalar couplings.
See Sec. 5.1 for the particular Lsoft that will be used in this work, or e.g. [10, 11] for a detailed
discussion. Notice that those terms are not subject to any SUSY constraints and therefore host
a huge number of free parameters.

We can clearly see that building a supersymmetric Lagrangian is quite straight-forward: The
only things we can choose are

• the gauge groups, possibly more than one which requires additional sums over gauge groups
in the Lagrangian above,

• the field content, i.e. the participating supermultiplets together with their gauge group
representation and charge assignments,

• the superpotential W , or rather the parameters Li, Mij and yijk, and

• the soft SUSY breaking terms.

The exact form of the Lagrangian then follows uniquely. Note that even without the soft breaking
terms, Eq. (2.10) is not invariant under SUSY transformations but only the action S =

∫
d4xL

is. Explicit expressions for how such transformations act on L can be found in the literature [10,
11]. They are omitted here because they are quite overwhelming and not relevant for this thesis.
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3 Fröhlich-Morchio-Strocchi Mechanism and
Augmented Perturbation Theory

Gauge theories like the SM are exceptionally successful in describing fundamental particles and
interactions [2, 3]. They have many desirable mathematical properties and serve as a construction
principle for modern theories, including theories beyond the SM. Nevertheless, we must not forget
that the gauge-principle, by its very nature, introduces redundant degrees of freedom. Rotating
(gauge transforming) in the space of these degrees of freedom has no effect on the physical
behavior of a system, by definition. After all, changing the gauge amounts to a coordinate
transformation and Physics better not depends on our coordinate choice.

Although introducing redundancies as quality of life improvements is perfectly legitimate,
the procedure nevertheless calls for a sound prescription on how to extract the physical gauge-
invariant information of such theories. Within the framework of perturbation theory (PT), the
issue is addressed by the so-called Faddeev-Popov procedure and the BRST construction which we
briefly review in Sec. 3.1. As we will discuss, problems and subtleties arise when going beyond PT:
Suddenly, it becomes possible that regular PT and non-perturbative methods (lattice field theory
in this case) disagree on what the physical degrees of freedom of a theory are. The mismatch
is resolved by the so-called Fröhlich-Morchio-Strocchi mechanism (FMS) which is introduced in
Sec. 3.2. It leads to a slightly modified version of PT which we call augmented perturbation
theory (APT). This will be the key concept of the remaining thesis.

3.1 Gauge-Fixing, BRST Symmetry and a subtle Issue

Apart from the conceptual idea of getting rid of redundant degrees of freedom, fixing the gauge
also has very practical purposes: First, in the usual perturbative approach, a saddle-point ap-
proximation is performed, which renders the path integral divergent for gauge theories. The
reason are flat directions in field space and gauge-fixing strips off exactly those directions1. Sec-
ondly, gauge-variant correlation functions of elementary fields vanish without fixing the gauge
properly [41]. In particular, the Higgs vev 〈φ〉 would always be 0, spoiling the usual description
of the BEH effect2 (see Sec. 4.1). The intuitive reason is that all gauge degrees of freedom would
average out if no ‘asymmetry’ is introduced during gauge-fixing.

A rigorous and very general derivation of the perturbative gauge-fixing procedure first de-
scribed by Faddeev and Popov can, e.g., be found in [2]. In practice, however, it can be done in
a recipe-like fashion [3]. It amounts to formulating a local gauge-fixing condition

Ca(Ψ;x) = 0 (3.1)

which depends on any of the fields in the theory (summarized by Ψ) and carries a gauge-index
a. Examples for popular choices are3

Ca = ∂µW
a
µ (Landau gauge)

Ca = ∂µW
a
µ + igξφiT

a
ijvj (’t Hooft gauge, Rξ-gauge).

1In a lattice field theory approach, however, the lattice regularization is sufficient to make the path integral well
defined. Nevertheless, the second point persists.

2The vev serves as an expansion point for the fluctuation fields. A vanishing vev would not support the argument
of ‘small’ fluctuations compared to the vev.

3Notice that the ’t Hooft gauge condition comes in different forms.
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3 Fröhlich-Morchio-Strocchi Mechanism and Augmented Perturbation Theory

In a second step, the condition (3.1) is used to build the gauge-fixing and ghost Lagrangian

Lgf = − 1

2ξ
Ca(Ψ;x)Ca(Ψ;x)

Lghost = −g
∫
d4yc̄a(x)Mab(x, y)cb(y), Mab(x, y) =

δCa
(
θΨ;x

)
δθb(y)

∣∣∣∣∣
θ=0

which are added to the Lagrangian L of the theory. Through the Euler-Lagrange equations,
the gauge-fixing condition then places restrictions on the equations of motion. In the above
expressions, ξ is the gauge-fixing parameter, g is the gauge coupling of the theory, c, c̄ are the
anti-commuting (anti-)ghost fields and θΨ are the fields transformed by a gauge-transformation
parametrized by θ. The effective Lagrangian Leff = L + Lgf + Lghost is then used to perform
subsequent calculations, derive Feynman rules, etc.

Conceptually, it is irrelevant which particular gauge-condition we choose. Nevertheless, the
underlying gauge-invariance of the theory is hidden after gauge-fixing and just by looking at
Leff, one could be lead to believe that inherent gauge-invariance and all of its implications are
lost. That this is not the case has been shown by Becchi, Rouet and Stora, and independently
by Tyutin. They discovered a symmetry of Leff which is essentially the initial gauge symmetry
acting on gauge and matter fields, but it is extended also to the (anti-)ghost fields. It is now
known as BRST symmetry and its key feature is that it allows to define what physical states
(i.e. states which can be used as initial and final states) are. This is achieved by constructing
the conserved, nilpotent BRST charge QBRST, which can be used to divide the state space into
physical and nonphysical subspaces. States with vanishing BRST charge

QBRST |phys〉 = 0

are found to be physical because only for those, matrix elements do not depend on the gauge-fixing
procedure. In a more precise language, the physical subspace corresponds to the cohomology of
QBRST. Details can be found in [2, 3, 42]. For us, the most important point is that inherently
gauge-invariant states are automatically BRST singlets (because BRST acts on gauge and matter
fields as a (global) gauge transformation), but the reverse is not necessarily true (because BRST
is just a special form of a general gauge transformation).

The subtle problem

Within the framework of PT, gauge-fixing and the BRST construction are well understood and
legitimate ways to arrive at physical predictions. If we go beyond PT and employ, e.g., lattice
field theory, however, we have to be very carful in carrying over these concepts. It has been shown
that in a non-perturbative setting, fixing the gauge uniquely, with any of the local gauge-fixing
conditions from before, is impossible. The reason for this inconvenience are so-called Gribov
copies [25, 26]. How gauge-fixing can be approached non-perturbatively is e.g. discussed in [43].

Gribov copies also affect the BRST construction and demand a non-perturbative definition of
BRST symmetry [44]. The details are yet to be fully understood but there are hints that such a
construction is indeed possible [41, 43]. Nevertheless, this altered BRST symmetry might lead
to a different notion of physical states. In other words, the physical state space of the theory
could be changed considerably when going beyond PT.

Many questions still remain unanswered but the important thing for us is to realize that the
straight-forward perturbative description of non-Abelian gauge theories might be severely incom-
plete. Much work has been done on toy theories beyond the SM which explicitly demonstrate
the issue: In [31], the authors studied an SU(3) gauge theory with a fundamental scalar field and
found a mismatch between the spectrum predicted by PT and their lattice results4. Moreover,

4Their lattice calculations found a massive vector singlet for the theory’s ground state while PT predicted a
massless vector triplet.
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3.2 The Framework of FMS and APT

large classes of GUT-like scenarios have been studied and showed similar mismatches [29, 30].
One could be skeptical and refer to the apparent success of the SM, which made accurate pre-
dictions using PT. However, there are attempts to explain why Gribov copies might only have
a tiny impact on the SM and therefore have not been noticed yet [28, 45]. Nevertheless, we
conclude that careful model building is required, especially for theories beyond the SM.

Detached from Gribov copies, we want to point out yet another subtle issue which is of some
importance to us: Classifying the spectrum into multiplets with respect to some symmetry group.
It must be emphasized that only global symmetries have physically observable implications like
mass-degeneracies. The global part of a gauge symmetry, in general, does not make physical
predictions, because after gauge-fixing, the ‘conserved charge’ that corresponds to this symmetry
is in general gauge-variant [46]. The only symmetry that has anything to do with the gauge
group and is still physical (within PT at least) is the aforementioned BRST symmetry. Yet
all physical states are BRST singlets. Nevertheless, in standard treatments, the SM W -triplet5

appears to be a consequence of a (partially) gauged symmetry. In Sec. 4.2 we will see, how this
apparent paradox is resolved.

3.2 The Framework of FMS and APT

An elegant way out of these troublesome topics exists in theories with a Brout-Englert-Higgs
(BEH) effect like the SM. The so-called Fröhlich-Morchio-Strocchi mechanism (FMS) [23, 24]
in combination with augmented perturbation theory6 (APT) [28] allows for an inherently gauge-
invariant formulation of such theories. The key idea is to define the physical (i.e. inherently
gauge-invariant) quantities first and use a formal expansion to compare it to the results obtained
from usual PT afterwards. Since this procedure will be actively performed in the present work,
we shall lay out the details in the following.

Given any correlation function of a quantum field theory, e.g. the propagator of the SM Higgs
field

〈
φ(x)φ†(y)

〉
, we shift our view away from the elementary (gauge-variant) objects (φ in this

case) and adopt a bound state operator language. These bound states must possess two key
properties:

• They must be inherently gauge-invariant, i.e. we have to make sure that whatever operator
combination we write down is a gauge singlet. This automatically means, that they are
physical in the perturbative BRST sense, but also manifestly physical in the full, non-
perturbative theory.

• They must carry defined quantum numbers (if applicable) like spin, (charge)parity, etc.
Those quantum numbers may not be gauge indices but have to correspond to global (and
therefore observable) symmetries.

An example for such an operator would be O0+(x) = (φ†φ)(x) [23] which has the same quantum
numbers as the SM Higgs (JP = 0+) and can be interpreted as a bound state object of two
elementary Higgs fields. The notion of ‘bound state’ should be taken with a grain of salt, though.
After all, the ‘constituents’ of these ‘bound states’ (by their nature gauge-variant, nonphysical
objects) do not exist in isolation. Secondly, one should not imagine some mechanism that ‘binds’
the elementary fields together. It is merely a vivid picture of how we build inherently gauge-
invariant objects out of these elementary fields.

The aforementioned shift in perspective is now to realize, that experiments probe specific
quantum number channels, and that the participants of a scattering process could as well be
composite operators encoding these quantum numbers. We can therefore use them to write

5In absence of hypercharge, the weak gauge bosons are mass degenerate.
6Previously often called gauge-invariant perturbation theory but this term was prone to confusion.
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3 Fröhlich-Morchio-Strocchi Mechanism and Augmented Perturbation Theory

down manifestly gauge-invariant correlation functions. The correlator〈
O0+(x)O†

0+
(y)
〉

=
〈

(φ†φ)(x)(φ†φ)(y)
〉
,

for example, describes the propagation of a spin-0, parity even object. Just like the object〈
φ(x)φ†(y)

〉
did. The difference now is that we made sure that we are only working with physi-

cal objects to begin with, hence we do not have to worry about how to get rid of any nonphysical
gauge-leftovers afterwards. Unfortunately, this correlation function would have to be evaluated
using non-perturbative methods as PT alone cannot treat bound states. Remembering the dis-
cussion of Sec. 3.1, however, we already know that the situation beyond PT might be substantially
different and has to be explored!

We now perform a trick: We expand the scalar field as

φ(x) = vn+ ϕ(x),

where v (chosen to be real) and n are the magnitude and direction of its spacetime independent
vacuum expectation value (vev) and ϕ are the relative fluctuations. Notice that φ, vn and ϕ are
not invariant under gauge transformations and vn is only constant in the (fixed) gauge where
this splitting is defined. Choosing this gauge is completely arbitrary and will have no effect on
the inherently invariant operators. One could just as well choose a gauge where the vev vanishes.
For what we are about to do, however, it is advisable to have a non-vanishing vev, which is e.g.
guaranteed in ’t Hooft gauge. The expansion of φ allows for a formal expansion of the composite
object

O0+ = v2 + 2vRe(n†ϕ) + ϕ†ϕ.

The first term is just an irrelevant constant. The second term describes the fluctuation along the
direction of the vev, which is usually called the Higgs field h ≡

√
2 Re(n†ϕ). If the gauge is now

chosen such that v 6= 0 and ||ϕ|| � v, the properties of the gauge-invariant, non-perturbative
object O0+ are well captured by the properties of the gauge-dependent elementary field h. All
properties are encoded in the correlation functions and thanks to the linearity of the expectation
value, we may perform this split in the correlators as well. E.g. the connected 2-point-function
(propagator) of O0+ is given by〈

O0+(x)O†
0+

(y)
〉
c

= 2v2 〈h(x)h(y)〉c + 2
√

2v
〈
h(x)(ϕ†ϕ)(y)

〉
c

+
〈

(ϕ†ϕ)(x)(ϕ†ϕ)(y)
〉
c
.

Here we used that the propagator only depends on |x − y| [27]. Notice that while the left-
hand side is inherently gauge-invariant, the individual terms on the right-hand side are not.
Only their sum is, by construction. We can see that the dominant contribution is just the
propagator of the elementary Higgs field h, i.e. the propagator of O0+ has the same pole as the
elementary Higgs, and both objects therefore share the same mass. That the remaining terms
are practically irrelevant has been demonstrated in [27]. The advantage of this approach, called
the FMS mechanism [23, 24], is that non-perturbative bound state information can be obtained
by calculating the elementary n-point functions on the right in an appropriate gauge. They can
be expanded and systematically calculated using regular PT. The whole process of formulating
composite objects, applying the FMS mechanism and eventually standard PT is called augmented
perturbation theory (APT). It is an expansion both in v and the gauge coupling. It is important
to emphasize again, that the gauge we choose is completely irrelevant for the left-hand side of
the equation and the FMS expansion works regardless of the vev splitting that we use. However,
in order to establish the connection to the elementary fields, it is crucial to choose a gauge
where ||ϕ|| � v because only then, lower orders in v (or equivalently higher orders in ϕ) are
suppressed [23] and APT is a useful device. Therefore, choosing a gauge where the vev vanishes,
although valid, is not very insightful.
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In practice, none of this has to be done in such great detail. What we will be doing is write down
gauge-invariant bound state operators for the desired channels and perform the FMS expansion
by replacing all appearing Higgs fields by their vev and fluctuation field in ’t Hooft gauge. We
will solely be interested in contributions to leading order in v (i.e. leading order of the FMS
expansion) and on tree-level (i.e. leading order of PT). We will further neglect constant terms in
the expansions right as they appear without explicitly stating that we consider only connected
correlators, etc. In case a bound state object behaves like the tree-level mass eigenstate of regular
PT in leading order, we will use the notation

O0+(x) = v2 +
√

2vh(x) + (ϕ†ϕ)(x)
FMS∼ vh(x) (3.2)

which strips off all further contributions as well as constants other than powers of v.
At this point the reader might think that any arbitrary perturbative mass eigenstate can be

augmented by such a bound state object, yet this does not have to be the case: In the toy theory
mentioned earlier, it turns out that gauge-invariant operators can only be built for some of the
states predicted by regular PT, i.e. not all of them can be truly physical. By carrying through
the formalism of APT, the authors found that those states are indeed removed and the remaining
spectrum is finally in agreement with their lattice results [31]. Similar things can be said about
a large class of GUT-like scenarios [30].

As already mentioned, actually observing such a mismatch in Nature is very hard. By now
it is understood that this is due to the very special structure of the SM, specifically its Higgs
sector [27]. In fact, it has been shown that in the SM, one can find a one-to-one mapping
between elementary fields and gauge-invariant operators in the spirit of APT. See [28] for a
detailed review or Sec. 4 for an overview. Even though it causes no qualitative difference within
the SM, the FMS procedure can nevertheless be used to justify the usual approach of calculating
the spectrum using gauge-dependent states. Furthermore, the sub-leading corrections neglected
above could in principle become relevant under the right kinematical conditions [32–34].

Regardless of what the ‘correct’ theory beyond the SM might be, we can definitely not expect
it to behave as nicely and we should be carefully examining the spectra of all proposed extensions
using APT. Putting the Higgs in a different representation as in GUT-like theories or having a
different relation between gauge and custodial group as in 2HDMs, e.g., has been shown to have
a huge impact on the validity of the ‘naive’ spectrum [28, 30, 31, 35]. A previously unexplored
case are supersymmetric theories like the MSSM, and it will be highly interesting to investigate,
whether undiscovered particles like the lightest supersymmetric particle (LSP) are even part of
the physical spectrum.
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4 Review of the Standard Model in light of
APT

In this chapter we apply the Fröhlich-Morchio-Strocchi (FMS) mechanism and augmented per-
turbation theory (APT) to the standard model (SM). It will help us draw connections later on.
A good overview of perturbative Brout-Englert-Higgs (BEH) physics in the SM can, e.g. be
found in [47]. Its manifestly gauge-invariant treatment is discussed thoroughly in [28]. The most
important results will be presented below. Notice that some of the notation is slightly altered
from the initial authors to better fit the notation used in this thesis.

As mentioned before, manifest gauge-invariance is not a problem in the electromagnetic and
(pure) strong sector of the SM. Furthermore, the formalism developed in Chapter 3 makes it
clear that the interesting subsectors of the SM are those which couple to the Higgs directly. We
will therefore only consider the relevant parts of the SM Lagrangian which are given by

LSM ⊃ (Dµφ)†(Dµφ)− V (φ) + LYukawa, (4.1)

i.e. the kinetic term of the Higgs field φ, its coupling to the gauge bosons W a
µ and Bµ via the

gauge-covariant derivative

Dµ ≡ ∂µ1− igW a
µ

σa

2
− ig′Bµ

1
2
, (4.2)

the scalar potential
V (φ) ≡ −µ2φ†φ+ λ(φ†φ)2, (4.3)

as well as the Yukawa couplings to the quarks and leptons

LYukawa ≡ −d̄ydφ†Q− ūyuφ̃†Q− ēyeφ†L+ h.c. (4.4)

In the last line, family indices have been suppressed (y are 3 × 3 matrices in family space) and
φ̃ ≡ iσ2φ†T is the charge conjugated Higgs field (carrying opposite hypercharge to ensure U(1)Y
invariance of the Yukawa terms).

We will build up (4.1) step by step, starting with the pure weak-Higgs sector in Sec. 4.1. We
will discuss the usual description of the BEH mechanism and point out subtleties along the way.
In Sec. 4.2 we demonstrate how the FMS mechanism and APT can be used to formulate the Higgs
particle, weak gauge bosons and left-handed leptons/quarks gauge-invariantly. Finally, we will
include Yukawa couplings and hypercharge in Sec. 4.3, where we will also see how ‘electroweak-
symmetry-breaking’ should be understood.

4.1 Weak-Higgs Sector

Ignoring the Yukawa terms in Eq. (4.1) and setting g′ = 0 for now, the theory reduces to

L = −1

4
Wµν
a W a

µν + (Dµφ)†(Dµφ) + µ2φ†φ− λ(φ†φ)2 (4.5)

where the covariant derivative simplifies to Dµ = ∂µ1 − igW a
µ
σa

2 as well. This Lagrangian is
inherently invariant under SU(2)L gauge transformations but it also exhibits a slightly less obvi-
ous global SU(2) symmetry which connects the Higgs to its charge conjugate (see Appendix B.2
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for details). Both symmetries can be made explicit by introducing the bidoublet

Φ ≡ (iσ2φ†T , φ) =

 φ†2 φ1

−φ†1 φ2

 (4.6)

and rewriting Eq. (4.5) in the perfectly equivalent form

L = −1

4
Wµν
a W a

µν +
1

2
tr
[
(DµΦ)†(DµΦ)

]
+
µ2

2
tr
[
Φ†Φ

]
− λ

4
tr
[
Φ†Φ

]2
. (4.7)

This version is superior because it is now obvious (due to the cyclic property of the trace) that
the Lagrangian is invariant under SU(2)L × SU(2)C transformations of the form

Φ→ Φ′ = L(x)ΦR†, L(x) ∈ SU(2)L, R ∈ SU(2)C .

Following [28], we shall call SU(2)C the custodial symmetry group but it should be mentioned
that the term is used slightly differently by other authors (see later). SU(2)C will play a central
role in the FMS construction and it also has important phenomenological implications. We
postpone this discussion to Sec. 5.2.

The description of the BEH mechanism then goes as follows [47]: Given that −µ2 < 0 and
λ > 0, we realize that the potential (4.3) has a non-trivial (classical) minimum when the field
‘length’ is ||φ||2 = φ†φ = µ2/(2λ) ≡ v2/2 or tr

[
Φ†Φ

]
= µ2/λ, respectively. Since tr

[
Φ†Φ

]
is an

SU(2)L×SU(2)C invariant, this is a gauge and custodial invariant statement. Even though all φ
satisfying this condition minimize the potential, we have to (arbitrarily) pick one particular field
configuration on the 3-sphere of constant φ†φ to do perturbative phenomenology. A common
choice is

φ =
1√
2

 η1 + iη2

v + h+ iη3


with the real scalar fields h and ηi which are the fluctuation fields around the classical minimum
and they are supposed to be ‘small’ compared to v in the spirit of perturbation theory. Eventually,
h becomes the massive Higgs mode and the remaining three constitute the (would-be) Goldstone
modes. For the bidoublet description, this translates to

Φ = V + η (4.8)

where V ≡ v1/
√

2 is the vev and η is a complex 2× 2 fluctuation matrix of the form (4.6). It is
important to mention that both η and V transform under gauge and custodial transformations,
just like Φ. Notice that even though the theory and minimum are perfectly SU(2)L × SU(2)C
symmetric, our choice of a specific vacuum (which we need to do calculations) ‘breaks’ the
symmetry down to their common diagonal subgroup1

SU(2)L × SU(2)C → SU(2)diag.

In other words, the little group of our chosen minimum V is built from all SU(2)L × SU(2)C
rotations for which L(x) = L = R because then

V → V ′ = LV R† = RV R† = V RR† = V.

If we considered SU(2)L × SU(2)C to be the global symmetry of a classical system this choice
would correspond to us spontaneously breaking the symmetry. Nevertheless, it has to be empha-
sized that this is not ‘spontaneous gauge symmetry breaking’ as this view only works classically.

1It is this diagonal subgroup that many authors refer to as ‘custodial symmetry’.
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4.2 Problems of and Resolution to the usual Treatment

Quantum theoretically, this process has to be understood from a gauge-fixing point of view and
we will shortly see what happens to the symmetry in this case. We perform the usual gauge-fixing
procedure by Faddeev and Popov introduced in Sec. 3.1. Following [28], we employ the ’t Hooft
gauge condition

Ca = ∂µW a
µ + gξ Im tr

[
V †σaΦ

]
(4.9)

with the constant (i.e. it does not transform under symmetry operations) matrix V setting the
direction of the vev2. Again, both the direction and the particular gauge-fixing condition are a
choice. And it is now this choice which breaks the SU(2)L × SU(2)C symmetry on a quantum
level: In order to leave Lgf invariant, we have to compensate every custodial transformation
with an equal (global) gauge-transformation, showing that the full symmetry is ‘broken’ down
to the diagonal subgroup. One could call this ‘spontaneous gauge symmetry breaking’ but
the term is a bit misleading as a particular choice of gauge obviously ‘breaks’ the symmetry –
explicitly. Additionally, true spontaneous breaking of a local symmetry is forbidden by Elitzur’s
Theorem [48]. Notice that the outcome seems to be identical to the classical case but the
reasoning is different!

If one collects all the Lagrangian terms together and plugs in the splitting (4.8) for Φ we
recover the well-known result that the gauge bosons receive mass terms

L ⊃ 1

2
m2
WW

µ
aW

a
µ , mW ≡

gv

2
.

Their mass degeneracy is protected by the remaining diagonal SU(2) subgroup. We also find
that the field h acquires the mass mh =

√
2λv2 and that the masses of the (would-be) Goldstone

modes depend on the gauge-fixing parameter ξ. This is a clear signal that those modes are
nonphysical as no physical mass should depend on our gauge choice. They are often said to
be ‘eaten by the gauge bosons’ as a pictorial explanation of why they become massive but this
picture should be treated with utmost care.

4.2 Problems of and Resolution to the usual Treatment

After examining the spectrum in view of the BRST construction we conclude that the Higgs field
h as well as the massive W s are physical fields [3]. Even though this is fine in a PT setting, we
nevertheless remark the following:

• As discussed in Sec. 3, the BRST construction might break down beyond perturbation
theory, i.e. the mass eigenstates that we just found might not be the physical fields in a
full treatment of the theory.

• We used SU(2)diag as a reason for why the W bosons should be mass degenerate in absence
of hypercharge. In a second step, we argued that those fields are physical, hence the mass
degeneracy should also be physical. Looking at it closer, we realize that SU(2)diag contains
both parts of the custodial as well as the gauge symmetry. And gauge symmetries are
(by their very nature) not observable. The argument seems to fall apart and asks for a
gauge-invariant reason for the degeneracy.

• Similar things pop up once we introduce left-handed leptons and quarks. They are charged
under SU(2)L and are often denoted as L = (ν, e)T and Q = (u, d)T which implies a flavor
symmetry between left-handed neutrinos and electrons (up-type and down-type quarks)3.
Unfortunately, this is highly misleading: The components of these SU(2)L doublets can be

2It only sets the direction of the vev but should not be associated with the vev itself, which is a dynamical
quantity of the theory. In a more pedantic language it would make sense to introduce a different symbol (like
the author of [28]) but we do not do that here as the V here and before are identical in their entries.

3Remember that this is still in absence of hypercharge and Yukawa couplings.
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4 Review of the Standard Model in light of APT

freely rotated into each other by a weak gauge transformation, i.e. the symbols ν, e, u, d
do not correspond to physical fields as they still carry a gauge index.

Luckily, we have already built up the formalism to work around those intricacies. Instead of
jumping right into the usual treatment, we take a step back and construct manifestly gauge-
invariant objects first [23, 24]. Those objects are by construction gauge singlets but may be
classified into multiplets according to their spin, parity and the global custodial symmetry, JPC .
The bidoublet form is of great help in that respect as SU(2)C acts linearly upon Φ which makes
assigning custodial charges easy. A scalar singlet can easily be built, e.g. as O0+1

= tr
[
Φ†Φ

]
. We

already met this operator in its non-bidoublet form in Sec. 3.2. To leading order in the vev, it
augments the elementary Higgs field

O0+1

FMS∼ vh.

A vector triplet is given by OA
1−3 ,µ

= tr
[
Φ†DµΦσA

]
. Notice that the uppercase A is a reminder

that those are custodial indices, not gauge indices. It FMS-expands as

OA
1−3 ,µ

FMS∼ v2δAaW a
µ ,

i.e. SU(2)diag indices a are traded for truly physical SU(2)C indices A, and the elementary
vector degrees of freedom are mapped to the inherently gauge-invariant vector triplet operator.
As long as custodial symmetry is exact, this operator predicts a mass degenerate vector triplet,
and due to the FMS mechanism this is finally a physical argument for the mass degeneracy of
the elementary W a

µ states. Notice that this is only possible because the little group and the
custodial group are both SU(2) in the SM!

Gauge-invariant operators with appropriate quantum numbers can also be built for the left-
handed fermions. For example, the operators φ†L and detφL correspond to the physical electron
and neutrino, respectively [23]. They can further be combined into one operator using the
bidoublet Φ. The bound state

ΨL ≡ Φ†L
FMS∼ v

ν
e

 = vL

is a gauge singlet, but a (physical) doublet with respect to custodial transformations. By means of
the FMS mechanism, it reduces to the elementary ‘doublet’ L and gauge indices are again traded
for custodial indices. We conclude that as long as SU(2)C is intact, the left-handed neutrino
and electron indeed form a physical doublet when dressed with a Higgs. L is still not a physical
doublet, but the FMS mechanism yields an explanation to why it is a good approximation still.
Note that the right-handed electron is an SU(2)L singlet and hence does not need to be dressed
with a Higgs.

Evidently, the same can be applied to quarks as well as the remaining two fermion generations
by constructing analogous bound state operators Φ†Q1,2,3, Φ†L1,2,3. Those can eventually also be
combined into mesons and hadrons in a fully gauge-invariant way [32]. Within our bound state
language, the extension to the second and third generation could possibly also be established by
regarding them as excited states of the first generation [32]. Even though it is highly speculative
at the moment and the only hint in this direction are exploratory calculations [49], it is never-
theless interesting to think about operators like Φ†ΦΦ†L, i.e. just the leptonic bound state Φ†L
with internal Higgs excitations. Those internal excitations could be speculated to provide the
mass discrepancy between fermion generations.
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4.3 The Effect of Hypercharge and Yukawa terms

4.3 The Effect of Hypercharge and Yukawa terms

In the usual treatment [3], B and g′ 6= 0 are included from the very beginning. The BEH effect
induces electroweak symmetry breaking and it is presented as a ‘gauge symmetry breaking’
SU(2)L ×U(1)Y → U(1)EM. It results in the formation of three massive gauge bosons, W± and
Z, as well as the massless photon. Eventually, this also leads to the definition of the electric
charge and coupling constant

Q = T 3 + Y, e ≡ gg′√
g2 + g′2

. (4.10)

We will now show how the same phenomenology can be described gauge-invariantly by exploiting
the intricate structure of SU(2)C .

Custodial symmetry is not exact in the full SM which becomes apparent after reintroducing
B and setting g′ 6= 0. Writing the gauge-kinetic part of Eq. (4.1) in the bidoublet form

L ⊃ 1

2
tr

[(
∂µΦ− igWµ

a

σa

2
Φ + 2ig′BµΦ

σ3

2

)†(
∂µΦ− igW a

µ

σa

2
Φ + 2ig′BµΦ

σ3

2

)]

makes it clear that for g′ 6= 0, SU(2)C is partially broken. What survives is its Abelian subgroup
and since σ3 acts on Φ from the right (just like SU(2)C), we see that this subgroup is actually
the hypercharge group U(1)Y . It acts on the doublets φ as φ→ exp(iα(x)/2)φ which translates
to the bidoublets as

Φ
U(1)Y−−−−→ Φ′ = Φ exp

[
−iα(x)

σ3

2

]
. (4.11)

In other words, introducing hypercharge amounts to gauging the U(1) subgroup of SU(2)C and
since SU(2)/U(1) is merely a coset, this is all the symmetry that remains. A second source of
custodial symmetry violation are the Yukawa terms as can be clearly seen from (4.4). However,
the U(1) subgroup of SU(2)C does not further break by introducing Yukawa terms as long as
we simultaneously perform a U(1) transformation of the fermions according to their hypercharge
assignments. This combined (local) U(1) transformation persists in the full SM and naturally
results in the U(1)EM gauge theory of quantum electrodynamic. Completely without using the
wrong [48] notion of ‘spontaneous gauge-symmetry-breaking’.

Furthermore, in our picture it is very obvious how the weak bosons obtain their electric charge,
despite them having zero hypercharge assigned: Consider again the vector triplet bound state
operator OA

1−3 ,µ
= tr

[
Φ†DµΦσA

]
. Trivial linear combinations can be used to construct OW±,0

and performing the U(1)EM (former custodial) transformation (4.11) reveals that they have the
same electric charge as their elementary counterparts

OW+

OW−

OW 0

 =


tr
[
Φ†DµΦ(σ2 + iσ1)

]
tr
[
Φ†DµΦ(σ2 − iσ1)

]
tr
[
Φ†DµΦσ3

]
 U(1)EM−−−−−→


O′W+

O′W−

O′W 0

 =


eiα

e−iα

1



OW+

OW−

OW 0

 .

Since SU(2)C is broken, there is nothing protecting their mass degeneracy anymore, though, and
the neutral component OW 0 is allowed to mix with the neutral OB operator to create operators
OZ and OΓ for the physical Z and photon in an inherently gauge-invariant way. See [28] for
details. Likewise, lepton operators receive the correct electric charges through

Φ†L
U(1)EM−−−−−→

1

e−iα

Φ†L
FMS∼ v

 ν

e−iαe

 ,
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4 Review of the Standard Model in light of APT

and the Higgs singlet tr
[
Φ†Φ

]
is neutral, as required. We see that electric charge directly follows

from combining the custodial U(1) subgroup acting on Φ and U(1)Y acting on the fermions, and
in some sense it replaces (4.10).

We will discuss this in more detail for the case of the MSSM in Sec. 5.4.2.
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5 Manifestly gauge-invariant Spectrum of the
MSSM

The minimal supersymmetric standard model (MSSM) has been extensively studied over the past
couple of decades. See e.g. [10, 11] for a review. Additionally, huge effort went into attempts
to detect the particles it predicted, without questioning the validity of the (perturbatively) cal-
culated spectrum. As mentioned multiple times by now, one should be extremely careful in
assigning any physical reality to these calculations, as numerous examples beyond the SM have
illustrated, c.f. Chapter 3. Only the inherently gauge-invariant spectrum of a theory can be used
to make reliable physical statements. The FMS mechanism has proved to be an incredibly pow-
erful and convenient tool to investigate the physical spectrum of the SM, GUT-like theories and
the 2HDM. For the first time, these investigations will be extended to a supersymmetric theory,
the MSSM, in this chapter. We will answer the question, whether the truly physical spectrum
of the MSSM agrees with the one calculated from perturbation theory or not. A particularly
interesting point will be whether the lightest supersymmetric particle (LSP) is expected to be
observable.

This Chapter is structured as follows: First, the MSSM will be introduced in Sec. 5.1. Just
like in the SM, we will again look at the weak-Higgs sector in detail in Sec. 5.3.1. Once more,
custodial symmetry plays a major role which is why we spend some time discussing how it is
realized in the MSSM in Sec. 5.2. Afterwards, we include one lepton family in Sec. 5.3.2, where
we will also lay out the details on how to obtain particular supersymmetric Lagrangians from the
general form (2.10) for once. To make things easier and more transparent, we will make some
simplifications along the way. In Sec. 5.4 those restrictions are lifted and the calculations are
generalized to the full MSSM. Finally, Sec. 5.5 summarizes its physical spectrum.

5.1 The Minimal Supersymmetric Standard Model

We have established that every supersymmetric theory is subject to the constraints set by SUSY
itself which is why we have to start from the general Lagrangian (2.10) in any case. Additionally,
we may choose the particle content, gauge groups and charges, the superpotential and soft
breaking terms as explained in Sec. 2.3.

Particle content

The MSSM is minimal in the sense that it reproduces the SM interactions while introducing as
few additional particles as possible to make it supersymmetric. Hence, the SM particles and all its
gauge groups and charges are kept the same but they receive a superpartner: Leptons and quarks
are placed into chiral supermultiplets and are accompanied by spin-0 sleptons and squarks (short
for scalar leptons/quarks). The Higgs shares a chiral supermultiplet with the spin-1/2 Higgsino.
Finally, the gauge bosons go into gauge supermultiplets with gauginos (also spin-1/2) as their
superpartners. A detailed discussion can be found, e.g. in [10, 11]. The particle content of the
MSSM is summarized in Tab. 5.1. There, you will find the (possibly) surprising fact that we also
have to include a second Higgs field in addition to the SM Higgs. It has opposite hypercharge
and is needed to properly cancel the anomalies introduced by just a single Higgsino [10]1. The

1There is yet another reason for why we need two Higgs which we will discuss later.
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5 Manifestly gauge-invariant Spectrum of the MSSM

Names Boson Fermion [SU(3)c, SU(2)L, U(1)Y ]

l.h. (s)quarks Q̃ = (ũ, d̃) Q = (u, d) [3,2, 1
3 ]

r.h. up (s)quark ˜̄u ū [3̄,1, -4
3 ]

r.h. down (s)quark ˜̄d d̄ [3̄,1, 2
3 ]

l.h. (s)leptons L̃ = (ν̃, ẽ) L = (ν, e) [1,2, -1]

r.h. (s)electron ˜̄e ē [1,1, 2]

Higgs(inos)
Hu = (H

(1)
u , H

(2)
u ) H̃u = (H̃

(1)
u , H̃

(2)
u ) [1,2, 1]

Hd = (H
(1)
d , H

(2)
d ) H̃d = (H̃

(1)
d , H̃

(2)
d ) [1,2, -1]

gluons, gluinos g g̃ [8,1, 0]

W bosons, winos W±,W 0 W̃±, W̃ 0 [1,3, 0]

B boson, bino B B̃ [1,1, 0]

Table 5.1: Field content of the MSSM. The convention is as follows: The fields are denoted
by their SM counterpart and the superpartners receive a tilde above their name.
Notice that only the first family of quarks and leptons is listed explicitly. The charge
assignments follow the ones used in [11].

Higgs sector of the MSSM is therefore essentially a two-Higgs-doublet-model (2HDM) which has
been extensively studied in the literature [50]. We further expect its gauge-invariant description
and FMS behavior to be similar to the one of the 2HDM [35], yet it is totally unclear what
happens to their superpartners.

In Sec. 2.1 we established a formalism for describing theories whose fermionic fields are left-
handed. We therefore stress that ū, d̄ and ē in Tab. 5.1 are left-handed fields (the bar signals
that it is the anti-particle field)! In the SM they are treated as right-handed fields and one could
also do so in the MSSM but it would easily lead to confusion and we already established that
supersymmetric theories are formulated with only one type of handedness. The reason for why
one may use left-handed fields instead is that one can consider them to be the charge-conjugate
fields of their right-handed counterparts. E.g. a left-handed positron ē would be used to describe
a right-handed electron e†. Be aware that the term charge-conjugation might be a bit misleading
here as it is often used to just flip conserved charges, i.e. turn a particle into its anti-particle.
However, we define the charge-conjugation operation to also act on spinor space, i.e. we have
the correspondence

ēa ←→ e†ȧ

with different index structure (for details see Appendix B.1). In other words: The dagger changes
all the conserved charges as required for charge-conjugation and the different index position
ensures the correct spinor structure as can be seen from Eq. (2.3). As mentioned in Sec. 2.1,
this identification might be slightly different across the literature. For example the relation
ē = ec = iσ2e† is also sometimes found, e.g. in [11].

Superpotential

A crucial part of the SM Lagrangian are the Yukawa couplings which eventually generate all
the fermion masses once the Higgs acquires its vev. Due to the restrictive nature of the SUSY
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5.1 The Minimal Supersymmetric Standard Model

Lagrangian, however, we may not just add them freely, but have to introduce them through the
superpotential. The MSSM superpotential is chosen as [11]

WMSSM = ˜̄uyuQ̃ ·Hu − ˜̄dydQ̃ ·Hd − ˜̄eyeL̃ ·Hd + µHu ·Hd (5.1)

where y are again 3× 3 matrices in family space and they are equal to the Yukawa matrices in
Eq. (4.4). The dot product is an SU(2) invariant, anti-symmetric product defined by

X · Y ≡ XT (iσ2)Y
X→UX−−−−−−−→
Y→UY

X · Y, U ∈ SU(2). (5.2)

From WMSSM we can see the second reason for why we need an additional copy of the Higgs in the
MSSM: In the SM, the down-type quarks couple to the Higgs field itself, while up-type quarks
couple to its charge conjugate. As mentioned in Sec. 2.3, however, the superpotential must not
include conjugated fields! To construct a hypercharge invariant superpotential, we therefore need
two Higgs fields of opposite hypercharge.

One can then check [10] that this choice of superpotential recovers all the Yukawa terms as
well as the Higgs potential of the SM (and also introduces many new terms). At this point, the
SM has been fully supersymmetrized and µ is the only new parameter.

Soft breaking terms

If we have a closer look at Eq. (5.1) and (2.10), we realize that all of the scalar Lagrangian
terms which result from WMSSM are non-negative. In particular, this means that the Higgs
potential is of the form A(φ†φ) + B(φ†φ)2 with A,B ≥ 0 or in other words, it has no non-
trivial minimum. This means that electroweak symmetry breaking (EWSB) is off the table.
Additionally, supersymmetry is not realized in nature (or otherwise we would have long found
the superpartners which would be mass degenerate with the SM particles). Clearly, we have to
address this fact. In the MSSM, broken supersymmetry at low energies is parametrized using
soft breaking terms. They have coupling constants of positive mass dimension which means they
are suppressed at high energies and SUSY gets restored. Therefore, they can at most be cubic
in fields. A detailed discussion can, e.g. be found in [10, 11] and the soft breaking Lagrangian
of the MSSM turns out to be

Lsoft
MSSM = −1

2

[
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + h.c.

]
(gaugino masses)

−
[˜̄uauQ̃ ·Hu − ˜̄dadQ̃ ·Hd − ˜̄eaeL̃ ·Hd + h.c.

]
(triple scalar couplings)

− Q̃†m2
QQ̃− L̃†m2

LL̃− ˜̄um2
ū
˜̄u† − ˜̄dm2

d̄
˜̄d† − ˜̄em2

ē
˜̄e† (squark/slepton masses)

−m2
uH
†
uHu −m2

dH
†
dHd −

[
m2
udHu ·Hd + h.c.

]
(Higgs masses) (5.3)

Notice that the gauginos are not chiral, which means that we can write down Majorana mass
terms for them. Scalar mass terms can always be written down gauge-invariantly and for the
triple couplings we again used the dot product to build appropriate scalars. The most important
mass terms are the ones for the Higgs doublets as those will eventually allow us to get non-
zero vevs. In principle, there could be more soft breaking terms but (5.3) is the most general
breaking Lagrangian that respects all of the gauge symmetries and conservesR-parity (see below).
Nevertheless, we have just introduced a huge number of new parameters to make the model
phenomenologically viable.

Eventually, a theory of spontaneous SUSY breaking could explain how these parameters arise.
It is by now understood, that such a breaking cannot be described from within the MSSM
and additional sectors are required, which mediate SUSY breaking to the MSSM. The most
popular options are gravity-mediated and gauge-mediated spontaneous breaking mechanisms.
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5 Manifestly gauge-invariant Spectrum of the MSSM

For a review, see [10]. The number of free parameters gets heavily reduced after proposing such
extensions. For example minimal supergravity (mSUGRA) predicts the unification of all scalar
mass terms, gaugino mass terms and trilinear couplings at some unification scale MX [51]

m2
Q = m2

L = m2
ū = m2

d̄ = m2
ē = m2

u = m2
d ≡ m2

0

M1 = M2 = M3 ≡ m1/2

au = A0yu, ad = A0yd, ae = A0ye.

(5.4)

The soft breaking terms in (5.3) would then be obtained by running them down to low energies.
In particular, the runnings of the Higgs mass parameters favor EWSB which also suggests that
SUSY breaking and EWSB could be linked [11].

R-parity

In principle, the superpotential (5.1) could include additional terms and still not be in conflict
with SUSY, gauge-invariance or renormalizability. However, we wish not to include them as they
would not only introduce a huge amount of new coupling constants but more importantly, they
lead to lepton and baryon number violations which are experimentally highly constrained, e.g.
by the non-observation of proton decay.

Simply leaving such terms out of the superpotential feels ad hoc, which is why the MSSM is
assumed to possess a Z2 symmetry which forbids them: We assign to each particle an R-parity
given by

PR ≡ (−1)3(B−L)+2s, (5.5)

where B/L are its baryon/lepton number and s its spin. This definition conveniently assigns
PR = +1 to all SM particles and the Higgs bosons, and PR = −1 to all their superpartners. Any
interaction must conserve R-parity which immediately guarantees that there is no mixing between
sparticles and the SM particles, sparticles can only be produced in even numbers at colliders, the
lightest PR = −1 particle, called the lightest supersymmetric particle (LSP), is absolutely stable
and all the other sparticles must eventually decay into an odd number of LSPs [10].

5.2 Custodial Symmetry

A subtle but crucial feature of the SM weak-Higgs sector is its custodial symmetry which causes
the parameter

ρ ≡
m2
W

m2
Z cos2 θW

(5.6)

to be exactly 1 on tree-level. This quantity, expressing a relation between the W -mass, Z-mass
and the Weinberg angle θW , is tightly constrained by electroweak precision measurements and
appears to deviate from 1 only slightly. Therefore, models which feature a custodial symmetry
are phenomenologically favorable. A review of custodial symmetry and its effects on the experi-
mentally accessible S, T, U parameters2 can e.g. be found in [52]. For our purposes, the custodial
symmetry plays yet another important role: It is a global symmetry which we can use to classify
gauge-invariant bound state operators. Furthermore, as discussed at the end of Sec. 3.2, the
form of the custodial symmetry is very important for the FMS mechanism and APT.

It is therefore important to investigate how it arises in the MSSM. To see it more clearly, we
revisit the situation in the SM: The pure weak-Higgs sector of the SM is both symmetric under
local SU(2)L and global SU(2)C custodial transformations of the Higgs field φ. SU(2)C relates
φ to its charge conjugate field iσ2φ†T . Hypercharge transformations are a subgroup of SU(2)C

2Eventually, ρ can be calculated from T and the fine-structure-constant α.
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5.2 Custodial Symmetry

which is why SU(2)C is merely approximate in the full SM. Additionally, the Yukawa couplings
explicitly distinguish between Higgs and charge conjugated Higgs which couple to down- and
up-type quarks, respectively. Hence SU(2)C is further broken once (non-degenerate) Yukawa
couplings are switched on. We remind ourselves that the Lagrangian of the SM weak-Higgs
sector could be brought into manifestly SU(2)L × SU(2)C invariant form by placing φ and its
charge conjugate into a bidoublet Φ = (iσ2φ†T , φ).

The situation in the MSSM is more involved because we have two Higgs doublets. Conse-
quently, one would naturally expect a larger symmetry to be present: The straight-forward
generalization of the SM case would be to build two bidoublets for both Hu and Hd and the
theory would be expected to exhibit an SU(2)L×SU(2)C1 ×SU(2)C2 symmetry. As it turns out,
the special structure of the MSSM potential (which is enforced by SUSY) breaks most of this

enlarged symmetry, the troublesome term being (H†dHu)(H†uHd). We will later see that this term
shows up in the MSSM Higgs potential. Since our motivation for such a symmetry is driven by
SM phenomenology, we do not need an enlarged symmetry, though. Just one SU(2)C is totally
enough to protect the ρ-parameter and to classify doublet and triplet states gauge-invariantly.
Luckily, we are able to find such an SU(2)C and in Appendix B.3 we show that it is in fact
the only additional global symmetry of the MSSM Higgs potential (The argumentation follows
the work of [53] on the 2HDM). We find that SU(2)C is a Higgs flavor symmetry connecting
Hu ↔ −Hd and that we can again establish a manifestly symmetric form using the bidoublets3

H ≡ (Hu,−Hd) =

H(1)
u −H(1)

d

H
(2)
u −H(2)

d

 and H̃ ≡ (H̃u,−H̃d) =

H̃(1)
u −H̃(1)

d

H̃
(2)
u −H̃(2)

d

 (5.7)

to describe the degrees of freedom of the Higgs(inos). The action of gauge and custodial trans-
formations is then linear

H → L(x)HR†, H̃ → L(x)H̃R†,

with L(x) ∈ SU(2)L and R ∈ SU(2)C . The fact that a Higgs flavor symmetry plays the role of
the custodial symmetry comes up very naturally: In the SM, SU(2)C connected φ with its charge
conjugate. Due to SUSY, conjugate fields are not allowed in the superpotential, yet we explicitly
introduced a second Higgs field to act as the charge conjugated SM Higgs in the Yukawa sector.
Therefore, it is no surprise that the MSSM SU(2)C rotates between the two Higgs fields now.
It is noteworthy, that in the MSSM the rotation also includes a sign flip: This is absolutely
necessary and can be seen from the Higgs potential (which we will calculate in Sec. 5.3.1) as well
as the superpotential (5.1).

The expression for the superpotential makes it clear that SU(2)C is only approximate due to
the Yukawa couplings (just like in the SM). Furthermore, hypercharge transformations

Hu → H ′u = eiα/2Hu Hd → H ′d = e−iα/2Hd (5.8)

translate to the bidoublet as

H → H ′ = H exp

(
iα
σ3

2

)
, (5.9)

just like in the SM. U(1)Y is therefore again a subgroup of SU(2)C and the global symmetry
breaks upon gauging hypercharge. From all that we may already suspect that the gauge-invariant
description of the MSSM will follow similar lines as in the SM.

Finally, there are two more sources of custodial symmetry violation in the MSSM: For the
MSSM weak-Higgs sector to be symmetric under SU(2)C

3See Appendix B.2 to learn how this bidoublet relates to the SM bidoublet.
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Name Boson Fermion [SU(2)L, U(1)Y ]

Higgs(inos)
Hu = (H

(1)
u , H

(2)
u ) H̃u = (H̃

(1)
u , H̃

(2)
u ) [2, 1]

Hd = (H
(1)
d , H

(2)
d ) H̃d = (H̃

(1)
d , H̃

(2)
d ) [2, -1]

W(ino) Wµ = W a
µT

a W̃ = W̃ aT a [3, 0]

Table 5.2: Field content of the weak-Higgs(ino) sector of the MSSM.

• the soft breaking parameters cannot be arbitrary: We must require m2
u = m2

d ≡ m2. This
can actually be motivated by the discussion prior to Eq. (5.4), i.e. SU(2)C could be thought
of as being realized only above some unification scale.

• both Higgs must acquire the same vev. However, tanβ ≡ vu/vd most likely is larger than
1 [11]. Luckily, this has little consequences for the ρ-parameter as even the extreme cases
of tanβ → 0,∞ barely affect its value [54].

5.3 Gauge-invariant Spectrum of a simplified Model

Now that we know how custodial symmetry works in the MSSM we can start working on a
bound state operator description just like for the SM in Chapter 4. Unlike in the SM, where
the custodial symmetry was exact as long as hypercharge was not gauged or Yukawa couplings
introduced, the situation in the MSSM is slightly different. As argued in Sec. 5.2, custodial
symmetry is already broken in the weak-Higgs sector of the MSSM by the soft breaking masses.
Subsequently, the (phenomenologically viable) situation where we have two different vevs for the
two Higgs fields also explicitly violates this symmetry. For simplicity, we will make sure to keep
the symmetry intact for now. The case of broken symmetry is addressed in Sec. 5.4.1.

Like in the case of the SM, we start out with the description of just the weak-Higgs(ino) sector
in Sec. 5.3.1. Our main interest will be to investigate the special role of the second Higgs field
in the MSSM. Afterwards we will include a single generation of leptons in Sec. 5.3.2.

5.3.1 Weak-Higgs(ino) Sector

First of all, we have to find the Lagrangian which describes our reduced model. The relevant
parts of the MSSM are the SU(2)L gauge bosons W a

µ , their superpartners, the winos W̃ a, as
well as two chiral supermultiplets containing the Higgs fields Hu,d and their respective Higgsinos

H̃u,d. For the SU(2)L generators, the convention T a = σa

2 is used. The field content is sum-
marized in Tab. 5.2. For the superpotential we choose the currently relevant part of the MSSM
superpotential (5.1), i.e.

W = µHu ·Hd. (5.10)

The relevant soft breaking terms contained in (5.3) are

Lsoft = −m2
uH
†
uHu −m2

dH
†
dHd −

[
m2
udHu ·Hd + h.c.

]
− M2

2

[
W̃ aW̃ a + h.c.

]
.

As discussed in Sec. 5.2, we restrict the diagonal mass parameters to m2
u = m2

d ≡ m2 for the
weak-Higgs sector to become custodial symmetric. The parameter m2

ud can always be chosen to
be real by redefining either of the Higgs fields to absorb its phase [55]. Usually, it is also assumed
that µ,M2 ∈ R to avoid additional CP violations [10, 11]. We will follow this reasoning here.
Finally, one can easily check that for the resulting scalar potential to have a non-zero stationary
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point, m2
ud cannot be arbitrary but has to equal |µ|2 +m2 in order to avoid contradictions4. The

soft breaking Lagrangian we are going to work with hence simplifies to

Lsoft = −m2(H†dHd +H†uHu)− (µ2 +m2) [Hu ·Hd + h.c.]− M2

2

[
W̃ aW̃ a + h.c.

]
. (5.11)

Using (5.10) and (5.11) in the general SUSY Lagrangian (2.10) results in (i = u, d)

L = −1

4
W a
µνW

µν
a + iW̃ †aσ̄µ(DµW̃ )a + (DµHi)

†(DµHi) + iH̃†i σ̄
µDµH̃i

− g√
2

[
(H†i σ

aH̃i)W̃a + W̃ †a(H̃†i σ
aHi)

]
− µ

[
H̃u · H̃d + h.c.

]
(5.12)

− M2

2

[
W̃ aW̃ a + h.c.

]
− V (Hd, Hu)

with the scalar potential

V (Hd, Hu) = (|µ|2 +m2)
[
H†dHd +H†uHu + (Hu ·Hd + h.c.)

]
(5.13)

+
g2

8

[
(H†dHd)

2 + (H†uHu)2
]
− g2

4
(H†dHd)(H

†
uHu) +

g2

2
(H†dHu)(H†uHd).

This MSSM subsector with the appropriately chosen soft breaking parameters has an SU(2)L ×
SU(2)C ×Z2,R symmetry and it is made manifest by introducing the Higgs(ino) bidoublets from
Eq. (5.7). This allows us to rewrite the model Lagrangian as

L = −1

4
W a
µνW

µν
a + iW̃ †aσ̄µ(DµW̃ )a + tr

[
(DµH)†(DµH)

]
+ tr

[
iH̃†σ̄µDµH̃

]
− g√

2

[
tr
[
H†σaH̃

]
W̃a + W̃ †atr

[
H̃†σaH

]]
+ µ

[
det H̃ + h.c.

]
(5.14)

− M2

2

[
W̃ aW̃ a + h.c.

]
− V (H)

V (H) = (|µ|2 +m2)
[
tr
[
H†H

]
− 2 Re detH†

]
+
g2

8
tr
[
H†H

]2
− g2

2
detH†H. (5.15)

It is clearly symmetric upon local SU(2)L, global SU(2)C as well as R-parity transformations of
the form

H
SU(2)L,C−−−−−−→ L(x)HR† W a

µ
PR−−→ W a

µ

H̃
SU(2)L,C−−−−−−→ L(x)H̃R† H

PR−−→ H

Wµ
SU(2)L−−−−→ L(x)WµL

†(x)− ig−1(∂µL(x))L†(x) W̃ a PR−−→ − W̃ a

W̃
SU(2)L−−−−→ L(x)W̃L†(x) H̃

PR−−→ − H̃.

Just like in the SM, our next step is to calculate what mass eigenstates are predicted by conven-
tional perturbation theory.

Tree-level spectrum (bosonic masses)

After making sure that vu = vd ≡ v 6= 0, we let the Higgs doublets acquire a vev in the following
way5

Hu → ( 0
v ) + ηu

Hd → ( v0 ) + ηd

4Looking for stationary points of the potential where m2
ud is an independent parameter either leads to vd = vu = 0

(which makes a perturbative treatment of the Higgs effect impossible) or vd 6= vu. The latter option, however,
violates SU(2)C which we want to avoid for now.

5Choosing the vev with a factor of 1√
2

is also widely spread in the literature but we refrain to do so here to avoid
clutter.
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5 Manifestly gauge-invariant Spectrum of the MSSM

with ηi the 8 real degrees of freedom of the fluctuation fields. Notice that the vevs are in the
first and second component, respectively, just like in the full MSSM, yet they have the same
magnitude. This choice translates to the bidoublet as

H →
(

0 −v
v 0

)
+

(
η
(1)
u −η(1)d
η
(2)
u −η(2)d

)
≡ V + η, V = −v(iσ2). (5.16)

Plugging this into the potential (5.15), one immediately finds that it points along a flat direction,
i.e. the value of v cannot be expressed in terms of the other tree-level parameters of the theory.
One therefore has to treat it as a free parameter for now.

It is clear that V is again not invariant under the full SU(2)L × SU(2)C group but for every
custodial transformation R we can find a corresponding gauge transformation LR such that the
vev respects the combined symmetry

V → LRV R
† = V.

The specific form of LR can easily be worked out and gives

LR = V RV −1 = (−iσ2)R(iσ2) = R∗, (5.17)

since R is an SU(2) matrix. After the Higgs fields acquire this vev, all fields will fall into
multiplets of this remaining symmetry which we shall call SU(2)m. To make this process as
transparent as possible it is useful to introduce the basis

bi =
{
iσ2,−σ3, i1, σ1

}
= σi(iσ2) (i = 0, 1, 2, 3) (5.18)

which is orthonormal with respect to the scalar product

〈x, y〉 ≡ 1

2
tr
[
x†y
]
. (5.19)

Any bidoublet Y can then be expressed in terms of this basis and the field bilinears yi via

Y =

Y (1)
2 −Y (1)

1

Y
(2)

2 −Y (2)
1

 = yibi with y = −1

2


Y

(1)
1 +Y

(2)
2

Y
(2)
1 +Y

(1)
2

i
(
−Y (2)

1 +Y
(1)
2

)
Y

(1)
1 −Y (2)

2

 . (5.20)

The transformation behavior for the components of y under SU(2)m transformations can be
easily inferred using (5.17) and (5.18):

y′i =
〈
bi, LRY R

†
〉

=
1

2
tr
[
b†iLRY R

†
]

=
1

2
tr
[
b†iLRbj(iσ

2)L†R(−iσ2)
]
yj =

1

2
tr
[
σiLRσjL

†
R

]
yj ≡ T̃ (LR)ijy

j .

The matrix T̃ (LR) decomposes as

T̃ (LR) =

 1 0

0 T (LR)


with T (LR) the adjoint SU(2)L rotation matrix induced by LR. The adjoint transformations are
now of course restricted to LR = R∗ but the important thing to realize is that y0 is a singlet
under said transformation and the yk (k = 1, 2, 3) form a triplet, and this transformation is
identical to how the gauge fields and gauginos transform under the remaining symmetry group.
Therefore, we will also use the same indices from now on. If we make use of this decomposition
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5.3 Gauge-invariant Spectrum of a simplified Model

for the Higgs fluctuations η = hibi and Higgsinos H̃ = h̃ibi, we can summarize the transformation
behavior of all fields as follows:

h0

h̃0

SU(2)m−−−−−−−−→
h0

h̃0

W a
µ

W̃ a

ha

h̃a

SU(2)m−−−−−−−−→

T (LR)abW b
µ

T (LR)abW̃ b

T (LR)abhb

T (LR)abh̃b.

We now insert the expansion (5.16) into the Lagrangian and fix to ’t Hooft gauge

Ca = ∂µW
µ
a + gξ Im tr

[
V †σaH

]
.

Mass terms for the gauge bosons emerge from the kinetic Higgs Lagrangian

tr
[
(DµH)†(DµH)

]
⊃ tr

[
∂µη

†∂µη
]

+ g(∂µW
µ
a ) Im tr

[
V †σaη

]
+
g2

4
tr
[
V †σaσbV

]
W a
µW

µ
b .

The second term is canceled by the mixing terms of the gauge-fixing Lagrangian

Lgf = − 1

2ξ
CaCa,

and the third term6 yields the gauge boson masses m2
W ≡ g2v2:

g2

4
tr
[
V †σaσbV

]
W a
µW

µ
b =

1

2

{
g2

4
tr
[
V †σaσbV

]
W a
µW

µ
b +

g2

4
tr
[
V †σbσaV

]
W a
µW

µ
b

}
=

1

2

g2

4
tr
[
V †(σaσb + σbσa)V

]
W a
µW

µ
b =

1

2
m2
WW

a
µW

µ
a

Do not get confused when comparing this to the SM W -mass: Since we have two vevs now and
refused to carry along the factor of

√
2, a rescaling would be needed to match the previous result.

Mass terms for the scalar fields are contained in the gauge-fixing Lagrangian

Lgf ⊃ −
g2ξ

2

(
Im tr

[
V †σaH

])2
= −2ξg2v2(Imha)2,

and the scalar potential after the vev expansion. Using

tr
[
H†H

]
→ 2

[
v2 + h0h0† + haha† − 2vReh0

]
detH†H → (v2 − 2vh0 + h0h0 − haha)(v2 − 2vh0† + h0†h0† − ha†ha†)

Re detH† → v2 − 2vReh0 + (Reh0)2 − (Imh0)2 − (Reha)2 + (Imha)2

we write the relevant parts of the potential as

V (H) ⊃ 4(|µ|2 +m2)
[
(Imh0)2 + (Reha)2

]
+ g2v2

[
3(Reh0)2 + (Imh0)2 + (Reha)2 + (Imha)2

]
− g2v2

[
3(Reh0)2 + (Imh0)2 − (Reha)2 + (Imha)2

]
= 4(|µ|2 +m2)

[
(Imh0)2 + (Reha)2

]
+ 2g2v2(Reha)2.

6Note that since W a
µW

µ
b is symmetric in a and b we remove the anti-symmetric parts of the matrix by sym-

metrization.
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Field Decomposition SU(2)m T 3 squared mass

W 0 W 3 3 0 m2
W

W+ 1√
2

(
W 2 − iW 1

)
3 +1 m2

W

W− 1√
2

(
W 2 + iW 1

)
3 −1 m2

W

h −ReH
(1)
d − ReH

(2)
u 1 0 0

A − ImH
(1)
d − ImH

(2)
u 1 0 2(|µ|2 +m2)

H0 −ReH
(1)
d + ReH

(2)
u 3 0 m2

A +m2
W

H+ i√
2

(
H

(2)
d +H

(1)†
u

)
3 −1 m2

A +m2
W

H− − i√
2

(
H

(1)
u +H

(2)†
d

)
3 +1 m2

A +m2
W

G0 − ImH
(1)
d + ImH

(2)
u 3 0 ξm2

W

G+ 1√
2

(
H

(2)
d −H

(1)†
u

)
3 −1 ξm2

W

G− - 1√
2

(
H

(1)
u +H

(2)†
d

)
3 +1 ξm2

W

Table 5.3: Bosonic mass spectrum: Literature names for the mass eigenstates as well as their
decomposition into initial degrees of freedom. Notice that m2

H± = m2
A + m2

W and
m2
h +m2

H0 = m2
A +m2

Z which are MSSM tree-level relations enforced by SUSY [56].

Expressing the kinetic Lagrangian in terms of these new fields is also easy because of the or-
thonormality of the basis:

tr
[
∂µη†∂µη

]
= 2 ∂µhi†∂µh

i =
1

2
∂µ(2 Rehi)∂µ(2 Rehi) +

1

2
∂µ(2 Imhi)∂µ(2 Imhi)

Here we see the appropriate normalization of the (now real) scalar fields 2 Rehi and 2 Imhi. In
total the relevant parts are therefore

L ⊃ 1

2
∂µ(2 Reh0)∂µ(2 Reh0)

+
1

2
∂µ(2 Imh0)∂µ(2 Imh0)− 2(|µ|2 +m2)

2
(2 Imh0)2

+
1

2
∂µ(2 Reha)∂µ(2 Reha)− 1

2

[
2(|µ|2 +m2) +m2

W

]
(2 Reha)2

+
1

2
∂µ(2 Imha)∂µ(2 Imha)− ξ

m2
W

2
(2 Imha)2,

from which we can immediately read off that our scalar spectrum contains a massless scalar field
h ≡ 2 Reh0, a pseudoscalar A ≡ 2 Imh0 of mass m2

A ≡ 2(|µ|2 + m2) and a mass-degenerate
scalar triplet Ha ≡ 2 Reha of mass m2

H = m2
A + m2

W . The remaining fields are the would-be
Goldstone bosons Ga ≡ 2 Imha which are also an SU(2)m triplet and have the gauge-parameter
dependent mass m2

G = ξm2
W . The fact that their mass is gauge-dependent again reveals that they

are nonphysical degrees of freedom. We can further build linear combinations of the members of
each triplet to get eigenstates of the (T 3)ab = −iε3ab operator. We find that H± ≡ (H2∓iH1)/

√
2

and H0 ≡ H3 are eigenstates of definite T 3 = ±1, 0 and analogously for Ga. Finally, the bosonic
spectrum is summarized in Tab. 5.3.
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Tree-level spectrum (fermionic masses)

Next, we calculate the fermionic mass eigenstates. Again, we look only at the relevant parts
which are in this case the explicit Higgsino and wino mass terms and the Higgs-Higgsino-wino
vertices of (5.14)

L ⊃ − g√
2

[
tr
[
H†σaH̃

]
W̃a + W̃ †atr

[
H̃†σaH

]]
+ µ

[
det
(
H̃
)

+ h.c.
]
− M2

2

[
W̃ aW̃ a + h.c.

]
.

After expanding H̃ = h̃ibi and H = V + hibi, using det H̃ = h̃0h̃0 − h̃ah̃a and remembering that
bj 6= b†j , this turns into

L ⊃ − gv√
2

[
tr
[
(iσ2)σabj

]
h̃jW̃a + h.c.

]
+ µ

[
h̃0h̃0 − h̃ah̃a + h.c.

]
− M2

2

[
W̃ aW̃ a + h.c.

]
=
√

2gvh̃aW̃a + µ
[
h̃0h̃0 − h̃ah̃a

]
− M2

2
W̃ aW̃ a + h.c.

if we again only keep terms quadratic in the fields. Since the mass terms already look suspicious
(c.f. Eq. (2.4)), we proceed by introducing the Majorana spinors

Ψχ̃0
3
≡
√

2

 ih̃0

−ih̃0†

 Ψ
h̃a
≡
√

2

 h̃a

h̃a†

 Ψ
W̃a ≡

√
2

 W̃ a

W̃ a†

 .

The relevant Higgsino-wino Lagrangian can then be expressed as

L ⊃ i

2
Ψ̄χ̃0

3
γµ∂µΨχ̃0

3
+
i

2
Ψ̄
h̃a
γµ∂µΨ

h̃a
+
i

2
Ψ̄
W̃aγ

µ∂µΨ
W̃a

− µ

2
Ψ̄χ̃0

3
Ψχ̃0

3
− µ

2
Ψ̄
h̃a

Ψ
h̃a
− M2

4
Ψ̄
W̃aΨ

W̃a +
gv

2
√

2

(
Ψ̄
h̃a

Ψ
W̃a + Ψ̄

W̃aΨ
h̃a

)
.

We can already read off that Ψχ̃0
3

is a singlet Majorana mass eigenstate7 with mχ̃0
3

= µ but the

triplet states still mix. Luckily, this mixing is transparent to SU(2)m, i.e. independent of a, and
we can write it in the (Ψ

h̃a
,Ψ

W̃a) basis as

− 1

2

(
Ψ̄
h̃a

Ψ̄
W̃a

) µ − gv√
2

− gv√
2

M2
2

Ψ
h̃a

Ψ
W̃a

 . (5.21)

The diagonalization is straight-forward8

(5.21) = −1

2

(
Ψ̄
h̃a

Ψ̄
W̃a

)
SST

 µ − gv√
2

− gv√
2

M2
2

SST

Ψ
h̃a

Ψ
W̃a


= −1

2

(
X̄a

1 X̄a
2

)m1 0

0 m2

Xa
1

Xa
2


and we obtain the mass eigenvalues (remember m2

W = g2v2)

m1,2 =
1

4

(
M2 + 2µ±

√
(M2 − 2µ)2 + 8m2

W

)
. (5.22)

7This will turn out to be the LSP.
8Notice that S is not a similarity transformation as Majorana mass matrices cannot be unitarily diagonalized in

general [57].
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Field Decomposition SU(2)m T 3 Mass

χ̃0
3

−i√
2

(
H̃

(1)
d + H̃

(2)
u

)
1 0 µ

χ̃0
1

1
N1

[
κ1

(
−H̃(1)

d + H̃
(2)
u

)
+
√

2 W̃ 0
]

3 0 m1

χ̃+
1

√
2i
N1

[
κ1H̃

(2)
d − iW̃

+
]

3 +1 m1

χ̃−1
−
√

2i
N1

[
κ1H̃

(1)
u + iW̃−

]
3 -1 m1

χ̃0
2

1
N2

[
κ2

(
−H̃(1)

d + H̃
(2)
u

)
+
√

2 W̃ 0
]

3 0 m2

χ̃+
2

√
2i
N2

[
κ2H̃

(2)
d − iW̃

+
]

3 +1 m2

χ̃−2
−
√

2i
N2

[
κ2H̃

(1)
u + iW̃−

]
3 -1 m2

Table 5.4: Fermionic mass spectrum: Literature names as well as the decomposition into initial
Higgsino and wino degrees of freedom. The Higgsino and wino components mix to
form three neutralinos and two charginos. The masses m1,2 are given in (5.22) and

we have introduced the common notations W̃± ≡ (W̃ 2 ∓ iW̃ 1)/
√

2 and W̃ 0 ≡ W̃ 3.

By defining

κ1,2 =
1

2

M2

mW
− m1,2

mW
N1,2 =

√
1 + 2κ2

1,2 (5.23)

we can then also express the mass eigenstates

S =

√2 κ1N1

√
2 κ2N2

1
N1

1
N2

 ,

Xa
1

Xa
2

 = ST

Ψ
h̃a

Ψ
W̃a

 =

 1
N1

(
√

2κ1Ψ
h̃a

+ Ψ
W̃a)

1
N2

(
√

2κ2Ψ
h̃a

+ Ψ
W̃a)


which are still SU(2)m triplets. Just like for the scalar fields, we build linear combinations to
also get T 3 eigenstates:

Ψχ̃±i
≡ 1√

2
(X2

i ∓ iX1
i ), Ψχ̃0

i
≡ X3

i (i = 1, 2) (5.24)

Those mass eigenstates have famous names in the literature: Ψχ̃±1,2
are the charginos (Dirac

fermions) and Ψχ̃0
1,2,3

are called neutralinos (Majorana fermions). In Weyl components they can

be written as

Ψχ̃±1,2
=

χ̃±1,2
χ̃∓†1,2

 Ψχ̃0
1,2,3

=

χ̃0
1,2,3

χ̃0†
1,2,3


and we will for simplicity denote them by their upper Weyl component only. It is nevertheless
good to remember their 4-spinor form, though, because this way it is clear that χ̃+

i and χ̃−i are
anti-particles, for example.

We conclude that the mass spectrum contains three Majorana fermions. One of them (χ̃0
3)

has mass µ and is the lightest of the undiscovered particles (LSP). The other two are part of
the SU(2)m triplets of mass m1,2 which also host one Dirac fermion χ̃±1,2 each. The fermionic
spectrum is summarized in Tab. 5.4.

44



5.3 Gauge-invariant Spectrum of a simplified Model

Operator Spin SU(2)C PR
FMS∼

tr
[
H†H

]
0 1 +1 vh

Im detH 0 1 +1 vA

tr
[
H†HσA

]
0 3 +1 vcAaHa

tr
[
H†H̃

]
1
2 1 -1 vχ̃0

3

tr
[
H†H̃σA

]
1
2 3 -1 vcAah̃a

tr
[
H†σaHσA

]
W̃a

1
2 3 -1 v2cAaW̃ a

tr
[
H†DµHσ

A
]

1 3 +1 v2cAaW a
µ

Table 5.5: Gauge-invariant bound state operators with minimal field content up to spin 1 for
the custodial symmetric special case of the MSSM weak-Higgs(ino) sector. The last
column contains the corresponding leading order FMS contributions.

Gauge-invariant operators

Now that we know what the mass eigenstates predicted by PT look like, we can start to investigate
the non-perturbative, gauge-invariant spectrum. At first, we have to construct gauge-invariant
operators which is quite easily done by using the bidoublet formulation. Obviously, all those
operators will be gauge singlets by construction but we also have two global quantum numbers
that we can assign: The custodial quantum number and R-parity. In Tab. 5.5 those operators
are listed. Notice that we explicitly distinguish between gauge indices (lower case) and custodial
indices (upper case) just like before. We find both scalar and fermionic singlets and triplets as
in the tree-level spectrum and the vector triplet is present as well. In particular, we find an
operator which has the quantum numbers of the LSP. The remaining question is whether or not
those physical (custodial) triplets map to the triplets found in standard perturbation theory in
the spirit of the FMS mechanism. The last column in Tab. 5.5 states the leading order FMS
expansion of the operators, i.e. the fields with highest powers of v after performing the split
H → −v(iσ2) + η. For example the first operator decomposes as

tr
[
H†H

]
= tr

[
(v(iσ2) + η†)(−v(iσ2) + η)

]
⊃ −2v tr

[
σi
]

Rehi = −4vReh0 ∼ vh,

i.e. it reduces to the elementary scalar singlet. Likewise, the fermionic singlet operator reduces
to χ̃0

3, i.e. the LSP as described by PT is indeed part of the physical spectrum. The matrix cAa

maps gauge indices a to custodial (physical) indices A. Because of its special form

cAa = diag(1,−1, 1) (5.25)

this mapping is one-to-one but not trivial like in the SM. This shows that the nonphysical SU(2)m
triplets can be augmented by SU(2)C triplets and their mass degeneracy is hence physical. The
(pseudo)scalar singlet and fermionic singlet operators already map to perturbative mass and T 3

eigenstates so no more work has to be done here. For the rest, we can easily construct linear
combinations to augment all other eigenstates. E.g. the charginos can be constructed as

√
2κitr

[
H†H̃(σ2 + iσ1)

]
+ tr

[
H†σaH(σ2 + iσ1)

]
W̃a

FMS∼ χ̃+
i .

Writing the bound state operators for χ̃+
i and χ̃−†i into a 4-spinor is also straight-forward in case

one prefers a Dirac description. Notice that the + sign between the Pauli matrices is due to the
special structure of (5.25) and opposite to the convention in Eq. (5.24) for example.
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5 Manifestly gauge-invariant Spectrum of the MSSM

Name Boson Fermion [SU(2)L, U(1)Y ]

l.h. (s)leptons L̃ = (ν̃, ẽ) L = (ν, e) [2, -1]

r.h. (s)electron ˜̄e ē [1, 2]

r.h. (s)neutrino ˜̄ν ν̄ [1, 0]

Higgs(inos)
Hu = (H

(1)
u , H

(2)
u ) H̃u = (H̃

(1)
u , H̃

(2)
u ) [2, 1]

Hd = (H
(1)
d , H

(2)
d ) H̃d = (H̃

(1)
d , H̃

(2)
d ) [2, -1]

W(ino) W a W̃ a [3, 0]

Table 5.6: Field content of the toy model including one lepton generation and (for simplicity)
right-handed neutrinos. In terms of charge assignment we follow [11] and assign zero
hypercharge to the additional ν̄.

It is important to realize that there is no gauge-invariant operator describing the (nonphysical)
would-be Goldstone bosonsG0,±! They are ‘projected’ out of the physical spectrum automatically
and we do not have to use their gauge-parameter dependent mass to argue their nonphysical
nature.

Those operators can now be used to build correlation functions. In particular, we can investi-
gate the propagators and find that to leading order in v, the propagators of the (physical) bound
state objects reduce to the (gauge-variant) elementary fields, e.g.〈

OAµ (x)OBν (y)
〉 FMS∼ v4cAacBb

〈
W a
µ (x)W b

ν (y)
〉
,

for the vector triplet operators OAµ = tr
[
H†DµHσ

A
]
. Therefore, to leading order, the propaga-

tion of the gauge-invariant bound state object OAµ is well described by the propagation of the
elementary W a

µ . In particular, both sides of the equation must have the same pole structure and
therefore an identical masses.

We have herewith shown that the weak-Higgs sector of the MSSM can just as well be described
by gauge-invariant objects and the differences to the usual perturbative treatment are merely
quantitative.

5.3.2 Leptons

Now that we have the weak-Higgs(ino) sector under control we include our first lepton generation
in an MSSM-like toy model described in the following. Practically, this means that we consider
two additional chiral supermultiplets in our Lagrangian: One hosting the left-handed part of a
lepton which is charged under SU(2)L and the other contributing the respective right-handed
degrees of freedom. For simplicity, we assume neutrinos to be Dirac fermions and hence also
the existence of right-handed neutrinos here. This is different from the pure MSSM case and it
means that we have to include a third new chiral supermultiplet. We emphasize that this has
a completely exploratory reason motivated by the work done in [58] and the FMS description
would work just fine without them. The field content of the theory we are going to discuss in the
following is summarized in Tab. 5.6. The hypercharge assignment of ν̄ is not part of the MSSM
and we assign it a value of zero. We stress that ē and ν̄ in Tab. 5.6 are left-handed fields, as
explained in Sec. 5.1.

As a first step, we derive the Lagrangian for this theory and formulate it in a custodial
symmetric way for we want to eventually be able to follow the construction done in [58] for the
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5.3 Gauge-invariant Spectrum of a simplified Model

SM. Writing down the kinetic parts is straight-forward

L ⊃ −1

4
W a
µνW

µν
a + iW̃ †aσ̄µ(DµW̃ )a

+ (DµHi)
†(DµHi) + iH̃†i σ̄

µDµH̃i

+ (DµL̃)†(DµL̃) + iL†σ̄µDµL

+ (∂µ˜̄e)†(∂µ˜̄e) + iē†σ̄µ∂µē+ (∂µ˜̄ν)†(∂µ˜̄ν) + iν̄†σ̄µ∂µν̄.

(5.26)

We only gauge the left-handed lepton doublet under SU(2)L which is why their right-handed
counterparts get a normal derivative. The interaction part is dictated by the superpotential

W = µHu ·Hd − ye˜̄eL̃ ·Hd + yν ˜̄νL̃ ·Hu. (5.27)

Again, note that the right-handed neutrino is usually not part of the MSSM superpotential (5.1).
We include it analogously to the MSSM up- and down-type quarks, i.e. with opposite sign9. For
the soft breaking terms, we adopt all the soft breaking terms from before in Eq. (5.11)

Lsoft ⊃ −m2(H†dHd +H†uHu)− (|µ|2 +m2) [Hu ·Hd + h.c.]− M2

2

[
W̃ aW̃ a + h.c.

]
, (5.28)

and additionally add (one generation of) the trilinear and mass terms of Eq. (5.3) which are
relevant for the current particle content. Once again, we extend the description to right-handed
neutrinos and arrive at

Lsoft ⊃ ae˜̄eL̃ ·Hd − aν ˜̄νL̃ ·Hu −m2
LL̃
†L̃−m2

ē
˜̄e†˜̄e−m2

ν̄
˜̄ν†˜̄ν. (5.29)

We can now start from the general SUSY Lagrangian (2.10) and work our way through some
calculations to get the remaining mass and interaction terms from the superpotential. Since it
is helpful to see the calculations done at least once, we go over them in great detail:

1. We calculate the F-term contribution |∂W/∂φi|2 for φi ∈
{
Hd, Hu, L̃, ˜̄e, ˜̄ν}:∣∣∣∣ ∂W∂Hd

∣∣∣∣2 = |µ|2H†uHu + |ye|2˜̄e†˜̄eL̃†L̃− [µy∗e˜̄e†L̃†Hu + h.c.
]

∣∣∣∣ ∂W∂Hu

∣∣∣∣2 = |µ|2H†dHd + |yν |2˜̄ν†˜̄νL̃†L̃− [µy∗ν ˜̄ν†L̃†Hd + h.c.
]

∣∣∣∣∂W
∂L̃

∣∣∣∣2 = |ye|2˜̄e†˜̄eH†dHd + |yν |2˜̄ν†˜̄νH†uHu −
[
yey
∗
ν
˜̄ν†˜̄eH†uHd + h.c.

]
∣∣∣∣∂W∂˜̄e

∣∣∣∣2 = |ye|2
∣∣∣L̃ ·Hd

∣∣∣2∣∣∣∣∂W∂˜̄ν
∣∣∣∣2 = |yν |2

∣∣∣L̃ ·Hu

∣∣∣2

(5.30)

The minus sign in the second line is not a mistake and actually very important, though it
is easy to overlook when calculating the derivative.

2. The D-term contributions are fairly simple because we only have to sandwich the SU(2)L
generators T a = σa/2 with all the left-handed fields and multiply them. There are no
D-terms for right-handed fields as they carry no gauge-charge [10].

−g
2

8

[
(H†dσ

aHd)
2 + (H†uσ

aHu)2 + (H†dσ
aHd)(H

†
uσ

aHu)

+(L̃†σaL̃)2 + (L̃†σaL̃)(H†dσ
aHd) + (L̃†σaL̃)(H†uσ

aHu)
] (5.31)

9This is also well motivated by our attempt to keep custodial symmetry manifest (remember that it includes a
sign flip).
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5 Manifestly gauge-invariant Spectrum of the MSSM

3. Similarly, the gaugino Yukawa-like interaction terms only emerge from the winos and the
left-handed fields:

− g√
2

[
(H†dσ

aH̃d)W̃a + (H†uσ
aH̃u)W̃a + (L̃†σaL)W̃a + h.c.

]
(5.32)

4. Finally, the Yukawa contributions from ∂2W/(∂φi∂φj) are more involved:

Luckily, not all 25 combinations of (i, j) have
to be calculated because, first of all, the
derivative is symmetric. Secondly, we find
that many combinations vanish just because
there are no respective couplings in the su-
perpotential (5.27). For example Hd does
not couple to ˜̄ν and ∂2W/(∂Hd∂˜̄ν) thus van-
ishes. The table to the right visualizes the
non-zero combinations. Those contributions
are calculated below.

Hd Hu L̃ ˜̄e ˜̄ν
Hd 0 x x x 0

Hu 0 x 0 x

L̃ 0 x x˜̄e 0 0˜̄ν 0

(
∂2W

∂Hd∂Hu

)
H̃dH̃u = µH̃u · H̃d

(
∂2W

∂Hu∂˜̄ν
)
H̃uν̄ = yν ν̄L̃ · H̃u(

∂2W

∂Hd∂L̃

)
H̃dL = −ye˜̄eL · H̃d

(
∂2W

∂L̃∂˜̄e
)
Lē = −yeēL ·Hd(

∂2W

∂Hd∂˜̄e
)
H̃dē = −yeēL̃ · H̃d

(
∂2W

∂L̃∂˜̄ν
)
Lν̄ = yν ν̄L ·Hu(

∂2W

∂Hu∂L̃

)
H̃uL = yν ˜̄νL · H̃u

(5.33)

Combining Eq. (5.26) and (5.28) to (5.33) finally gives the Lagrangian of our toy model. Putting
all of this together as is seems tedious and little insightful. However, remember that the pure
weak-Higgs sector (with our assumptions on the soft breaking parameters) is symmetric under
SU(2)C transformations connecting Hu and −Hd. Our current model is obviously still symmetric
under this rotation when ye = yν = ae = aν = 0. But not only that: From the terms derived
above we get a hint that they could be transformed into each other as well. Even for non-zero
parameters.

Lagrangian in manifestly symmetric form

We now want to establish the supersymmetric analogy to the theory discussed in [58]. There,
the authors considered one lepton generation, assumed degenerate Yukawa couplings and the
existence of right-handed neutrinos. They show that the perturbative electron-neutrino-doublet
can be described via a suitable bound state operator which is a physical doublet under a custodial-
flavor subgroup.

Since the MSSM has more parameters (due to the soft breaking trilinear and mass terms), our
situation is slightly different. In analogy, we assume

ye = yν ≡ y (degenerate Yukawa couplings)

ae = aν ≡ a (degenerate trilinear parameters)

mē = mν̄ ≡ mλ̄ (degenerate soft breaking masses).

(5.34)
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5.3 Gauge-invariant Spectrum of a simplified Model

Next, we place ē and ν̄ (as well as their superpartners) into SU(2)F flavor doublets

λ̄ ≡

ν̄
ē

 ˜̄λ ≡
˜̄ν˜̄e
 (5.35)

and rewrite the terms (5.26) and (5.28) to (5.33) in terms of these doublets. In the pure weak-
Higgs(ino) sector this obviously makes no difference which is why we only write down the new
terms in the following expressions. The Lagrangian of the weak-Higgs(ino) sector LWH is given
by Eq. (5.14).

First, the new kinetic terms (5.26) can be expressed as

L ⊃ (DµL̃)†(DµL̃) + iL†σ̄µDµL+ (∂µ
˜̄λ)†(∂µ˜̄λ) + iλ̄†σ̄µ∂µλ̄.

The contributions to the scalar potential F-terms (5.30) which are not yet contained in LWH are

L ⊃ −|y|2
[˜̄e†˜̄e+ ˜̄ν†˜̄ν] L̃†L̃+

[
µy∗

(˜̄e†L̃†Hu + ˜̄ν†L̃†Hd

)
+ h.c.

]
− |y|2

[˜̄e†˜̄eH†dHd + ˜̄ν†˜̄νH†uHu −
(˜̄ν†˜̄eH†uHd + h.c.

)]
− |y|2

[∣∣∣L̃ ·Hd

∣∣∣2 +
∣∣∣L̃ ·Hu

∣∣∣2]
= −|y|2(˜̄λ†˜̄λ)(L̃†L̃) +

[
µy∗

(˜̄e†L̃†Hu + ˜̄ν†L̃†Hd

)
+ h.c.

]
− |y|2

(˜̄e†H†d − ˜̄ν†H†u) (˜̄eHd − ˜̄νHu

)
− |y|2L̃T (iσ2)

[
HdH

†
d +HuH

†
u

]
(−iσ2)L̃∗

= −|y|2(˜̄λ†˜̄λ)(L̃†L̃) +

[
µ∗y˜̄λT (−iσ2)H†L̃+ h.c.

]
− |y|2

(
H ˜̄λ)† (H ˜̄λ)− |y|2L̃T (iσ2)HH†(−iσ2)L̃∗

= −|y|2(˜̄λ†˜̄λ)(L̃†L̃)−
[
µ∗y˜̄λ ·H†L̃+ h.c.

]
− |y|2

(
H ˜̄λ)† (H ˜̄λ)− |y|2(L̃ ·H)(L̃ ·H)†.

In the second to last step we reintroduced the Higgs(ino) bidoublets from Eq. (5.7). Next, we
look at the additional D-terms (5.31) and gaugino interactions (5.32):

L ⊃ −g
2

8

[
(L̃†σaL̃)2 + (L̃†σaL̃)(H†dσ

aHd +H†uσ
aHu)

]
− g√

2

[
(L̃†σaL)W̃a + h.c.

]
= −g

2

8

[
(L̃†σaL̃)2 + (L̃†σaL̃) tr

[
H†σaH

]]
− g√

2

[
(L̃†σaL)W̃a + h.c.

]
(5.36)

The Yukawa terms (5.33) can be rewritten as

L ⊃ y
[˜̄eL · H̃d − ˜̄νL · H̃u + ēL̃ · H̃d − ν̄L̃ · H̃u + ēL ·Hd − ν̄L ·Hu

]
+ h.c.

= −y
[
(L · H̃)˜̄λ+ (L̃ · H̃)λ̄+ (L ·H)λ̄

]
+ h.c.

Finally, the soft breaking terms (5.29) contribute

L ⊃ −a
(˜̄νL̃ ·Hu − ˜̄eL̃ ·Hd + h.c.

)
−m2

LL̃
†L̃−m2

λ̄

(˜̄e†˜̄e+ ˜̄ν†˜̄ν)
= −

[
a(L̃ ·H)˜̄λ+ h.c.

]
−m2

LL̃
†L̃−m2

λ̄
˜̄λ†˜̄λ.

Altogether, we find that the Lagrangian of our toy theory is

L = LWH + (DµL̃)†(DµL̃) + iL†σ̄µDµL+ (∂µ
˜̄λ)†(∂µ˜̄λ) + iλ̄†σ̄µ∂µλ̄

− g2

8

[
(L̃†σaL̃)2 + (L̃†σaL̃) tr

[
H†σaH

]]
− g√

2

[
(L̃†σaL)W̃a + h.c.

]
(5.37)

− |y|2(˜̄λ†˜̄λ)(L̃†L̃)−
[
µ∗y˜̄λ ·H†L̃+ h.c.

]
− |y|2

(
H ˜̄λ)† (H ˜̄λ)− |y|2(L̃ ·H)(L̃ ·H)†

−
[
y(L · H̃)˜̄λ+ y(L̃ · H̃)λ̄+ y(L ·H)λ̄+ h.c.

]
−
[
a(L̃ ·H)˜̄λ+ h.c.

]
−m2

LL̃
†L̃−m2

λ̄
˜̄λ†˜̄λ.

49



5 Manifestly gauge-invariant Spectrum of the MSSM

In this form, it is easy to see that Eq. (5.37) exhibits a number of symmetries for y = a = 0:
First of all, it is invariant under SU(2)L gauge-transformations. Second, the custodial symmetry
SU(2)C acting on the Higgs(ino) bidoublets is still present and finally, there is an SU(2)F flavor
symmetry of the right-handed (s)leptons

H → UL(x)HU †C L→ UL(x)L λ̄→ UF λ̄

H̃ → UL(x)H̃U †C L̃→ UL(x)L̃ ˜̄λ→ UF
˜̄λ.

When the (degenerate) Yukawa coupling y and/or the soft breaking parameter a is non-zero, the
custodial and flavor symmetry break down to their diagonal subgroup

SU(2)C × SU(2)F → SU(2)f .

We can easily convince ourselves that this is indeed a symmetry using the special form of the
Lagrangian (5.37), e.g.

˜̄λ ·H†L̃→ (Uf
˜̄λ) · (HU †f )†L̃ = (Uf

˜̄λ) · (UfH†)L̃ = ˜̄λ ·H†L̃
by the invariance property of the · product or

H ˜̄λ→ HU †fUf
˜̄λ = H ˜̄λ

because Uf is unitary. To see that (L̃ ·H)(L̃ ·H)† is invariant it is actually easier to go back a
few steps in the derivation where we find the product

HH† → HU †f (HU †f )† = HH†.

Because all terms contain an even number of SUSY particles it is also easy to see that R-parity
is still a symmetry, i.e. the Lagrangian is invariant if we flip the sign of all SUSY particles but
not of the SM particles.

Tree-level masses

Just like before, we assume µ, v ∈ R. Furthermore, we assume y and a to be real. After the
Higgs acquires its vev H = v(−iσ2) + η the relevant parts of the Lagrangian are10

L ⊃ −v(a− yµ)

(˜̄λT L̃+ h.c.

)
− (v2y2 +m2

λ̄)˜̄λ†˜̄λ− (v2y2 +m2
L)L̃†L̃− vy

(
LT λ̄+ h.c.

)
= −

(
L̃T ˜̄λ†)

v2y2 +m2
L v(a− yµ)

v(a− yµ) v2y2 +m2
λ̄

L̃†T˜̄λ
− vy [(νν̄ + eē) + h.c.] . (5.38)

The last bracket contains Dirac mass terms of the electron and neutrino (c.f. Eq. (2.4)). We
therefore combine their left- and right-handed components into Dirac spinors ψe and ψν , and
since they have the same mass vy, we collect them into a doublet ψ

ψ ≡

ψν
ψe

 , ψe ≡

 e

ē†

 , ψν ≡

 ν

ν̄†

 . (5.39)

10The vev cancels the · product. Notice further that the term proportional to tr
[
H†σaH

]
in (5.36), which would

in principle contribute a mass term, vanishes for equal vevs.
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Operator Spin SU(2)C SU(2)F SU(2)f PR

H†L 1
2 2 1 2 +1

H†L̃ 0 2 1 2 −1

λ̄ 1
2 1 2 2 +1˜̄λ 0 1 2 2 −1

Table 5.7: Gauge-invariant operators in the lepton toy model and their quantum numbers.

Do not get confused by the fact that both look like doublets: ψ is a doublet hosting two Dirac
spinors ψe and ψν which in turn contain two Weyl spinors each (the upper component is left-
handed, the lower component right-handed and the spinor index structure is as indicated in
Eq. (2.3)).

To determine the scalar masses, we have to diagonalize the mass matrix in (5.38). A straight-
forward calculation yields the mass Lagrangian

L ⊃ −m2
φ1φ
†
1φ1 −m2

φ2φ
†
2φ2 −mψψ̄ψ

m2
φ1,2 =

1

2

(
m2
L +m2

λ̄ + 2v2y2 ±
√(

m2
L −m2

λ̄

)2
+ 4v2(a− yµ)2

)
mψ = vy.

The fields φ1,2 are linear combinations of L̃†T and ˜̄λ, i.e. they still contain selectrons and
sneutrinos which form mass-degenerate doublets. From that we can read off that our mass
spectrum consists of two scalar doublets of mass m2

φ1,2
and a doublet of Dirac fermions of mass

mψ = vy. However, the ‘doublets’ are not really doublets under a single symmetry group but

they actually mix SU(2)L and SU(2)F rotations, e.g. L̃ transforms under SU(2)L while ˜̄λ
transforms under SU(2)F and φ1,2 transform under neither of them. Even if we mixed the two
transformations, the result would contain parts of the gauge group and hence be nonphysical.
This is a strong hint that what we just found following the usual perturbative procedure cannot
be physical doublet states.

Gauge-invariant operators

The right-handed leptons are already gauge-invariant (physical) objects because they form mul-
tiplets of SU(2)F or SU(2)f , respectively. The left-handed lepton doublet on the other hand has
an open gauge-index and is therefore nonphysical. However, we can just write down a gauge-
invariant bound state operator of a left-handed lepton and the Higgs bidoublet. This is very
similar to what we did earlier in the pure weak-Higgs sector and the only new thing is that we
can now build custodial doublets, too, which was previously impossible because we were missing
SU(2)L doublets which are also SU(2)C singlets (a role now played by L). In Tab. 5.7 we state
the possible operators (with minimal field content) and both the SU(2)C and SU(2)F multiplet
structure to drive home the point that both are important and their interplay is crucial. Nonethe-
less, the only remaining (global) symmetry is SU(2)f and all states listed above are doublets
with respect to that group. Both H†L and λ̄ are Weyl spinors and can readily be combined into
Dirac spinors

Ψe ≡

(H†L)1

v(λ̄c)1

 , Ψν ≡

(H†L)2

v(λ̄c)2

 . (5.40)
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Notice that the charge conjugation now acts on the doublet of Weyl spinors as

λ̄c = iσ2

ν̄†
ē†

 =

 ē†

−ν̄†


and that λ̄c transforms identical to λ̄ under SU(2)F , resp. SU(2)f . Furthermore, λ̄c carries
upper dotted spinor indices. We can now use those elements to build a gauge-invariant lepton
doublet

Ψ =

Ψν

Ψe

 =

[(H†L)2,−vν̄†]T

[(H†L)1, vē
†]T

 FMS∼ v

−[ν, ν̄†]T

[e, ē†]T

 = v

−ψν
ψe


which transforms like a proper doublet under SU(2)f and almost reduces to the elementary
lepton doublet in leading order of the FMS expansion. The difference, however, is that the global
(physical) SU(2) transformation mixes the elementary electron and neutrino with different signs
(which does not change arguments about mass degeneracy and the like).

Having a supersymmetric theory at hand, we already know that the scalar partners of the
leptons will also form a doublet. They are readily constructed from the operators in the table as

Φ1,2 ≡ α1,2iσ
2(H†L̃)∗ + β1,2v

˜̄λ FMS∼ v
(
α1,2L̃

†T + β1,2
˜̄λ) = vφ1,2 (5.41)

where α and β encode the relative phases obtained by diagonalizing the mass matrix of (5.38).
Φ1,2 now truly transform as

Φ1,2
U∈SU(2)f−−−−−−→ Φ′1,2 = UΦ1,2

and we once again observe that the perturbative ‘doublet’ can be mapped to a proper doublet
using non-perturbative bound state operators and APT. In total, we have shown that the physical
spectrum indeed contains a doublet of Dirac fermions Ψ as well as two scalar doublets Φ1,2, the
description (and in particular masses) of which reduces to the perturbative results in leading
order of the FMS expansion. In the totally symmetric case the members of the doublets are
mass degenerate, which is now a physical statement.

Next, we will see how those degeneracies are lifted once we turn to the more realistic case
of vd 6= vu, ye 6= yν , ae 6= aν and mē 6= mν̄ . All those changes break both the custodial as
well as the flavor symmetry from before. Consequently, SU(2)f will not be an exact symmetry
of the theory anymore and the degeneracies of the bound state objects will be lifted. Via the
FMS mechanism, this in turn explains how the elementary ‘doublets’ obtain different masses in
a completely gauge-invariant fashion.

Important note: If we did not include right-handed neutrinos, we could have still formulated
the gauge-invariant operators and applied the FMS mechanism. However, we could not have
established the additional flavor symmetry and consequently, custodial symmetry would have
been the only global symmetry. It would be broken even for degenerate couplings, yet for zero
couplings at least, the left-handed leptons would constitute a proper SU(2)C doublet.

5.4 Extension to the full MSSM

Up until now, we intentionally kept custodial symmetry intact and many parameters degenerate
in order to make the calculations of the tree-level spectra easier and to see the structure behind
how the different multiplets are mapped to gauge-invariant operator multiplets. Lifting these
restrictions is straight-forward in the sense that we can easily generalize the calculations done

52



5.4 Extension to the full MSSM

so far. In Sec. 5.4.1 we will see, how explicitly breaking custodial symmetry and having non-
degenerate Yukawa couplings and soft breaking terms (which is the case in the full MSSM)
merely mixes both the elementary spectra as well as the corresponding bound state operators.
Including hypercharge into the description is analogous to the SM (c.f. Sec. 4.3) and discussed
in Sec. 5.4.2. Finally, Sec. 5.4.3 discusses the extension to quarks/mesons as well as multiple
fermion generations.

5.4.1 Broken Custodial Symmetry

So far, we had the two Higgs fields acquire the same vacuum expectation value which is nice to
work with and it actually gave us a lot of structural insight. However, it is phenomenologically
not viable. We should therefore finally discuss the theory presented above for non-degenerate
Higgs vevs, masses and soft breaking parameters.

Consider first the pure weak-Higgs(ino) sector: Introducing separate soft breaking masses for
the two Higgs, making their off-diagonal mass an independent parameter and letting them acquire
different vevs, explicitly breaks the custodial symmetry. We therefore expect the previously found
mass eigenstates to mix with each other. Unfortunately, this also means that the bidoublet
formalism does not quite work anymore as mass terms like tr

[
H†H

]
would always enforce a

symmetry between Hu and Hd. By introducing M2 ≡ diag(m2
u + |µ|2,m2

d + |µ|2) as an auxiliary
mass matrix, however, we can still write down the Lagrangian in matrix form. The broken
custodial symmetry becomes manifest. In the weak-Higgs(ino) sector only the scalar potential
has to be modified, which now reads

V (H) = tr
[
H†HM

]
− 2m2

ud Re detH† +
g2

8
tr
[
H†H

]2
− g2

2
detH†H.

A detailed discussion of this potential including the calculation of the scalar masses can, e.g.,
be found in [11]. However, we want to take a slightly different route here as we want to see the
connection to the calculation we did previously.

Minimizing the potential leads to two independent vevs, vu and vd, and we align their directions
in the bidoublet language as follows

H =

 0 −vd
vu 0

+ η =
vu + vd

2
(−iσ2) +

vu − vd
2

σ1 + η. (5.42)

Without loss of generality, we choose vu > vd and we define the famous parameter

tanβ ≡ vu
vd
. (5.43)

After inserting the split (5.42) into the Lagrangian we find the gauge-boson mass

m2
W =

g2

2
(v2
u + v2

d).

After expressing the fluctuation fields again via the bilinears defined in Eq. (5.20), i.e. η = hibi,
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we can write the scalar mass matrix in the (Rehi, Imhi) basis in block-diagonal form

L ⊃
(

Reh0 Reh3
)a1 b1

b1 c1

Reh0

Reh3

+
(

Imh0 Imh3
)a2 b2

b2 c2

Imh0

Imh3


+
(

Reh1 Imh2
)a3 b3

b3 c3

Reh1

Imh2

+
(

Reh2 Imh1
) a3 −b3

−b3 c3

Reh2

Imh1


=

1

2

(
h H0

)a1/2 b1/2

b1/2 c1/2

 h

H0

+
1

2

(
A G0

)a2/2 b2/2

b2/2 c2/2

 A

G0


+
(
H− G−

)a3/2 −ib3/2

ib3/2 c3/2

H+

G+

 , (5.44)

where the matrix entries ai, bi and ci are overwhelming constants. In the second step we already
renamed the fields (with the proper normalization) to match the mass eigenstates from Sec. 5.3.1.
We can clearly see that the fields only mix pair-wise as compared to the previous (symmetric)
case. Solving the eigenvalue problem yields the explicit mixing for the pseudoscalar and charged
scalars

A′ =
(vu + vd)A+ (vu − vd)G0

√
2
√
v2
u + v2

d

=
1√
2

[
(cosβ + sinβ)A+ (sinβ − cosβ)G0

]
H+′ =

i(vu + vd)H
+ + (vu − vd)G+

√
2
√
v2
u + v2

d

=
1√
2

[
i(cosβ + sinβ)H+ + (sinβ − cosβ)G+

]
.

Primed fields correspond to mass eigenstates of the non-custodial-symmetric case. We see that
for vd = vu the relations reduce to the previous pseudoscalar A and charged scalars H, even
though the entire model does not approach the fully symmetric case in that limit. This becomes
apparent when looking at the neutral Higgs scalars h′ and H0′ where the mixing is not just
because vu and vd are different but also due to the newly introduced parameters (m2

u, m
2
d, m

2
ud

all independent). They do not reduce nicely to the previous states which is not surprising at all.
Nevertheless, we know from (5.44), that they will be linear combinations of the previously found
fields h and H0. Furthermore, we can still state the corresponding mass eigenvalues

m2
A′ = m2

ud

v2
u + v2

d

vuvd

m2
h′,H0′ =

1

2

(
m2
A′ +m2

W ∓
√

(m2
A′ +m2

W )2 − 4m2
Am

2
W cos2 2β

)
m2
H±′

= m2
A′ +m2

W

m2
G0,±′ = ξm2

W .

As for the gauge-invariant operators we find that the ones corresponding to A and H± from
before (c.f. Tab. 5.5) now automatically reduce to the new mass eigenstates, i.e.

Im detH
FMS∼ (vu + vd)A+ (vu − vd)G0 ∼ A′

tr
[
H†H(σ2 ± iσ1)

]
FMS∼ (vu + vd)H

± ± i(vu − vd)G± ∼ H±
′
.

As already mentioned, this is not the case for h and H0. However, we can express h and H0 via

54



5.4 Extension to the full MSSM

the operators

(vu + vd)tr
[
H†H

]
− (vu − vd)tr

[
H†Hσ3

]
FMS∼ vdvu Reh0 ∼ h

(vu − vd)tr
[
H†H

]
− (vu + vd)tr

[
H†Hσ3

]
FMS∼ vdvu Reh3 ∼ H0

which in leading order correspond to the elementary fields of the fully symmetric case. Appro-
priate linear combinations then reduce to the corresponding primed fields.

Next, we turn to the higgsinos and winos: The relevant parts of the Lagrangian are unchanged

L ⊃ − g√
2

[
tr
[
H†σaH̃

]
W̃a + W̃ †atr

[
H̃†σaH

]]
+ µ

[
det
(
H̃
)

+ h.c.
]
− M2

2

[
W̃ aW̃ a + h.c.

]
,

however, the new vev V =
(

0 −vd
vu 0

)
introduces additional mixing terms

L ⊃ − g√
2

[
tr
[
V †σabj

]
h̃jW̃a + tr

[
b†jσ

aV
]
W̃ a†h̃j†

]
+ µ

[
h̃0h̃0 + h̃0†h̃0† − h̃ah̃a − h̃a†h̃a†

]
=

g√
2

(vu + vd)
[
h̃aW̃a + W̃ a†h̃a†

]
− g√

2
(vu − vd)

[
h̃0W̃ 3 + ih̃2W̃ 1 − ih̃1W̃ 2 + h.c.

]
+ µ

[
h̃0h̃0 + h̃0†h̃0† − h̃ah̃a − h̃a†h̃a†

]
.

Notice that we can read off that for vd = vu, the Higgsino-wino mass Lagrangian reduces to the
fully symmetric case. We introduce the fields h̃± = (h̃2 ∓ ih̃1)/

√
2 and W̃± = (W̃ 2 ∓ iW̃ 1)/

√
2

and rewrite the Lagrangian as

L ⊃ g√
2

(vu + vd)
[
W̃ 3h̃3

]
− g√

2
(vu − vd)

[
W̃ 3h̃0

]
+
√

2vdg
[
W̃−h̃+

]
+
√

2vug
[
W̃+h̃−

]
+ µ

[
h̃0h̃0 − h̃3h̃3 − 2h̃+h̃−

]
− M2

2

[
W̃ 3W̃ 3 + 2W̃+W̃−

]
+ h.c.

To make contact with our previous calculations, we express the fields by the previous mass
eigenstates of Tab. 5.4

h̃0 = − i√
2
χ̃0

3,

 h̃3,±

W̃ 3,±

 = B−1

χ̃0,±
1

χ̃0,±
2

 , B =

2 κ1N1

√
2
N1

2 κ2N2

√
2
N2

 ,

with κi,Ni as defined in Eq. (5.23). This yields the mass terms

(
χ̃0

1 χ̃0
2 χ̃0

3

)
· ∗ ∗

∗ · ∗

∗ ∗ ·



χ̃0

1

χ̃0
2

χ̃0
3

+
(
χ̃−1 χ̃−2

) · ∗
∗ ·

 χ̃+
1

χ̃+
2

+ h.c.

where the off-diagonal elements ∗ are terms of the form (v2
u+v2

d)
1/2−(vu+vd)/

√
2 or (vd−vu) and

therefore vanish when vu = vd. We have thus demonstrated that the neutral (charged) fermions
mix once custodial symmetry is violated. As expected and explained above, we furthermore
see, that the new mass eigenstates approach the previous result when the symmetry is restored.
Once again, appropriate linear combinations of the operators found in Sec. 5.3.1 can be used to
build gauge-invariant bound states. Those in turn reduce to the elementary mass eigenstates in
leading order of the FMS mechanism. In particular, an operator which augments the lightest of
the uncharged fermions can be constructed, i.e. the LSP is part of the physical spectrum.
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At last, we investigate the case of vd 6= vu in the (s)lepton sector. Additionally, we set ye 6= yν ,
ae 6= aν and m2

ē 6= m2
ν̄ but still assume that they are real11. Inserting the new split (5.42) into

the lepton Lagrangian yields

L ⊃ g2

8
(v2
u − v2

d)
[
ν̃†ν̃ − ẽ†ẽ

]
−
[
(vuaν − µvdyν)ν̃˜̄ν + (vdae − µvuye)ẽ˜̄e+ h.c.

]
−
[
(v2
dy

2
e +m2

ē)˜̄e†˜̄e+ (v2
dy

2
e +m2

L)ẽ†ẽ+ (v2
uy

2
ν +m2

ν̄)˜̄ν†˜̄ν + (v2
uy

2
ν +m2

L)ν̃†ν̃
]

− [vdyeeē+ vuyννν̄ + h.c.]

= −ξ†1M1ξ1 − ξ†2M2ξ2 − vdyeψ̄eψe − vuyνψ̄νψν .

Notice that now a term proportional to the gauge coupling appears because the term tr
[
H†σaH

]
in Eq. (5.36) does not disappear anymore. We immediately see that the lepton doublet splits,
with masses proportional to the different vevs. The slepton masses are currently written in the
basis

ξ1 =

 ν̃˜̄ν†
 , ξ2 =

 ẽ˜̄e†


with the matrices

M1 =

(y2
ν −

g2

8

)
v2
u + g2

8 v
2
d +m2

L vuaν − µvdyν

vuaν − µvdyν v2
uy

2
ν +m2

ν̄


M2 =

(y2
e −

g2

8

)
v2
d + g2

8 v
2
u +m2

L vdae − µvuye

vdae − µvuye v2
dy

2
e +m2

ē


which are yet to be diagonalized. It is straight-forward to do so but adds nothing new apart
from four different slepton mass eigenstates. We notice, however, that for the case of equal vevs
and degenerate y, a,mλ̄, both mass matrices reduce to the one found in the fully symmetric case,
Eq. (5.38), which restores the mass-degenerate doublets.

For the leptons, we can immediately write down gauge-invariant bound state operators

Ψe =

(H†L)1

vu(λ̄c)1

 FMS∼ vuψ
e

Ψν =

(H†L)2

vd(λ̄
c)2

 FMS∼ vdψ
ν

(5.45)

which are essentially the lepton operators found in the fully symmetric case, Eq. (5.40). Now, they
merely expand with the different vevs. The slepton mass eigenstates will be linear combinations

of ν̃ and ˜̄ν† (ẽ and ˜̄e†, respectively) which is why it is sufficient to know that

(H†L̃)1
FMS∼ vuẽ (H†L̃)2

FMS∼ vdν̃

vu(˜̄λ†)2
FMS∼ vu˜̄e† vd(

˜̄λ†)1
FMS∼ vd˜̄ν†.

Those operators are all gauge-invariant and can simply be combined such that they match what-
ever form the explicit mass eigenstates have. Notice that the linear combinations are formed

11Just like in the weak-Higgs sector, we can implement the non-degeneracy within the bidoublet formalism via
the left-/right-multiplication of H with a matrix diag(ye, yν).
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between (H†L̃)1 and (˜̄λ†)2, i.e. with the components reverse. This is not a mistake and also
present in the fully symmetric case, Eq. (5.41), where this ‘mixing’ is slightly hidden by iσ2.
Furthermore, do not get confused by the fact that the sneutrino FMS-expands with vd whereas
the selectron expands with vu. This is indeed opposite to the masses, which are proportional to
vu and vd, respectively.

We conclude, that a mapping between perturbative mass eigenstates and non-perturbative
bound states is possible, even for different Higgs vevs and non-degenerate couplings. The mixing
of the perturbative mass eigenstates is completely dual to the mixing of the gauge-invariant
bound state operators. Therefore, we can understand the mixing of elementary fields completely
gauge-invariantly by means of the mixing of composite operators once they are not protected by
a global symmetry anymore.

5.4.2 Electric Charge and QED

In Sec. 5.2 we learnt, that U(1)Y is a subgroup of SU(2)C . As a result, fields that have no explicit
hypercharge assignment in the elementary field description (e.g. W a

µ ) nevertheless acquire a non-
zero electric charge in the composite operator language. This is in contrast to the usual definition
of electric charge (4.10). We should therefore check whether the operators we constructed carry
the same electric charge as their elementary counterparts. For that it is sufficient to investigate
what effect the (global) hypercharge transformations12

H → H ′ = H exp

(
iα
σ3

2

)
, L→ L′ = e−iα/2L, ē→ ē′ = e2α/2ē

of the elementary fields have on the bound state operators. The neutrino has 0 hypercharge
and therefore does not transform. The scalar and pseudo-scalar singlet operators tr

[
H†H

]
and Im detH are invariant under such transformation because of the properties of trace and
determinant. Hence, they are charge neutral just like their elementary counterparts h and A.

Likewise, the LSP operator tr
[
H†H̃

]
is charge neutral. The Higgs triplet is investigated in more

detail:

tr
[
H†HσA

]
→ tr

[
H†Heiασ

3/2σAe−iασ
3/2
]

= RAB tr
[
H†HσB

]
with the SO(3) matrix

R =

(
cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

)
.

Diagonalization reveals the charge eigenstates
OH+

OH−

OH0

 =


tr
[
H†H(σ2 + iσ1)

]
tr
[
H†H(σ2 − iσ1)

]
tr
[
H†Hσ3

]
→


O′H+

O′H−

O′H0

 =


eiα

e−iα

1



OH+

OH−

OH0

 ,

which are identical to the T 3 eigenstates found earlier. This confirms that they indeed carry
electric charges of 0,±1, just like the corresponding H0,±. The same can be done for the remain-
ing triplet operators of the pure weak-Higgs sector as all of them boil down to a rotation with
R. We showed earlier, that the perturbative mass eigenstates are linear combinations of these
operators and that they combine in a way which is transparent to this rotation13. Therefore, we

12See Tab. 5.1 for hypercharge assignments
13I.e. only states with the same T 3 quantum number mix.
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can conclude that the bound state object corresponding to the physical W+, e.g., has indeed the
same charge as the elementary object.

The left-handed (s)leptonic operators14 transform asOe
Oν

 = H†L→

O′e
O′ν

 =

e−iα
1

Oe
Oν


Oẽ
Oν̃

 = H†L̃→

O′ẽ
O′ν̃

 =

e−iα
1

Oẽ
Oν̃


and we have therefore shown that their charge assignment is correct as well. Notice that right-
handed fields automatically adopt their hypercharge as electric charge.

If we now gauge hypercharge, i.e. include Bµ in the covariant derivative, SU(2)C breaks
down to its U(1) subgroup and becomes local (see also Sec. 4.3). This subgroup is not further
broken by any other custodial symmetry offending term. If we now simultaneously perform the
U(1) ⊂ SU(2)C transformation on the Higgs and a U(1)Y transformation on the (s)fermions
according to their hypercharge assignments of Tab. 5.1, we naturally obtain a theory which
is locally U(1)EM symmetric. In other words, the gauge theory of (supersymmetric) quantum
electrodynamics arises, just like in the SM in Sec. 4.3.

Since U(1)EM is a local symmetry, we again have to discuss gauge-invariance. Luckily, the
situation for an Abelian gauge-group is straight-forward: A Dirac phase factor can be used to
dress fields with open U(1) gauge index to make them inherently gauge-invariant [21]. This
can be thought of as charged (physical) particles to only exist as surrounded by a photon cloud,
constituting their Coulomb field. Likewise, the gauge field can be made inherently gauge-invariant
by projecting out the physical (transversal) part. The U(1) gaugino neither carries charge nor
is it a 4-vector, hence, no dressing or projecting is required to make it gauge-invariant.

Due to the introduction of Bµ and the breaking of the W a
µ triplet we now have two fields

in the neutral vector singlet channel which mix to create the Z boson and the photon. This
holds both in a perturbative sense as well as in the operator language, where the breaking of the
triplet happens naturally upon breaking SU(2)C . For the superpartners, the situation is similar:
Introducing the bino B̃ (which is neutral) does not affect the charginos and merely mixes with
the neutralinos. Non-perturbatively, this mixing would manifest itself as the existence of an
additional mass pole in the respective channels. Neither (the transversal part of) Bµ nor B̃
have to be combined with the Higgs to create invariant bound states as they are not charged
under SU(2)L. They can therefore readily be used as physical fields. Matching the new mass
eigenstates with inherently gauge-invariant bound state operators again reduces to a task of
linear combination.

5.4.3 Multiple Generations and Quarks

Including all three lepton generations substantially increases the complexity but changes nothing
about our construction. Inter-generation mixing is completely transparent to our composite
operator construction as one could just introduce operators for each generation (c.f. Tab. 5.7)

H†Le, H
†Lµ, H

†Lτ λ̄e, λ̄µ, λ̄τ

H†L̃e, H
†L̃µ, H

†L̃τ
˜̄λe, ˜̄λµ, ˜̄λτ .

Both components of these operators are inherently gauge-invariant and can be linearly combined
and rotated in generation space to augment all resulting mass eigenstates. Note however, that
we again assumed the existence of right-handed neutrinos for all generations.

14With λ̄ and L as defined in Eq. (5.35) and Tab. 5.1.
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In the context of (S)QCD, speaking about bound states is much more generally established:
The low energy description is all about objects which are built from elementary quarks and
gluons to form color neutral (i.e. gauge-invariant with respect to SU(3)c) bound states, e.g.
Mesons. Nevertheless, fields like the pion still carry SU(2)L charge which has to be taken care
of. Luckily, in terms of electroweak and Higgs physics, the description of quarks is completely
analogous to leptons15, i.e. we can readily write down16

Ψd =

(H†Q)1

vud̄
†

 FMS∼ vu

 d

d̄†

 = vuψ
d

Ψu =

(H†Q)2

vdū
†

 FMS∼ vdψ
u,

in analogy to Eq. (5.45) for leptons. The only difference is, that Ψu,d are not yet physical as they
still carry color charge. Even though these ‘quark-Higgs bound states’ cannot exist in isolation,
such contractions are still important when building the usual color singlets. An inherently gauge-
invariant operator for π+ would e.g. be17

Π+ ≡ Ψ̄dΨu =
(
vud̄ (H†Q)†1

)(H†Q)2

vdū
†

 FMS∼ vuvd

(
d̄u+ d†ū†

)
∼ vuvdπ+. (5.46)

Notice that the expression on the right hand side is a color singlet but not an SU(2)L singlet
which makes it apparent that the FMS mechanism is also important in (S)QCD. Finally, just
like before, we can use the U(1) subgroup of SU(2)C as well as the hypercharge assignments of
the quarks to find that Ψd,u carry electric charges −1/3 and 2/3, respectively. Consequently, Π+

carries the correct electric charge of +1.
Squarks and gluinos are no gauge-invariant fields either and have to be treated in a bound

state language with respect to SU(3)c, too. Nevertheless, this has no effect on our construction.
Gluinos carry no weak charge and are therefore trivial in terms of the FMS mechanism. ‘Left-
handed’ squarks get an appropriate Higgs dressing, just like in the leptonic case.

This concludes the generalization of the FMS mechanism and augmented perturbation theory to
the full MSSM.

5.5 Summary of the Physical Spectrum

Finally, we collect all the results obtained in this thesis in Tab. 5.8. It shows the inherently gauge-
invariant spectrum of the MSSM which looks qualitatively identical to the spectrum obtained by
performing standard perturbation theory. The FMS mechanism establishes a one-to-one mapping
(c.f. last column), i.e. just like in the standard model, all mass eigenstates can be augmented
by appropriate composite operators. We only list one generation of (s)leptons, but as argued in
Sec. 5.4.3, the generalization is trivial. Furthermore, we excluded the right-handed (s)neutrinos
in the table which also makes the flavor symmetry constructed in Sec. 5.3.2 obsolete. Therefore,
the only remaining global quantum number (apart from spin, electric charge and (charge)parity)
is given by the custodial symmetry. As discussed before, this symmetry is only approximate in
the full MSSM which is why identical quantum number channels mix, as can be also seen in the
table.
15In a sense it is even better as we have right-handed up- and down- type quarks, and we therefore do not have

to assume the existence of additional particles like we did for the right-handed neutrinos.
16Remember that both d and d̄ are taken to be left-handed Weyl spinors in the MSSM. See discussion in Sec. 5.1.

In SM notation, (d, d̄†)T would read (dL, dR)T .
17Again, in the usual SM notation the expansion would read d̄RuL + d̄LuR ∼ π+.

59



5 Manifestly gauge-invariant Spectrum of the MSSM

Name Operator(s) SU(2)C
FMS∼

light Higgs
tr
[
H†H

]
1 h

tr
[
H†Hσ3

]
pseudoscalar Higgs Im detH 1 A

heavy Higgs
tr
[
H†Hσ3

]
3, 0 H0

tr
[
H†H

]
charged Higgs ϕ tr

[
H†Hσ±

]
3, ± H±

Z boson
tr
[
H†DµHσ

3
]

3, 0 Zµ
DBµ

charged W ϕ tr
[
H†DµHσ

±] 3, ± W±µ

photon
DBµ

1 Γµ
tr
[
H†DµHσ

3
]

neutralino (LSP)

tr
[
H†H̃

]
1 χ̃0

3tr
[
H†H̃σ3

]
, tr
[
H†σaHσ3

]
W̃a

B̃

other neutralinos

tr
[
H†H̃σ3

]
, tr
[
H†σaHσ3

]
W̃a

3, 0 χ̃0
1,2tr

[
H†H̃

]
B̃

charginos ϕ tr
[
H†H̃σ±

]
, ϕ tr

[
H†σaHσ±

]
W̃a 3, ± χ̃±1,2

left-handed leptons ϕ(H†L)1, (H†L)2 2 e, ν

‘left-handed’ sleptons ϕ(H†L̃)1, (H†L̃)2 2 ẽ, ν̃

right-handed electron ϕē 1 ē

‘right-handed’ selectron ϕ˜̄e 1 ˜̄e
SQCD bound states example: ϕΠ+ (Eq. (5.46)) - example: π+

Table 5.8: Summary of the physical, gauge-invariant spectrum of the MSSM. The second column
shows possible operators describing the respective quantum number channels. If mul-
tiple are listed vertically, the top one corresponds to the custodial symmetric case. If
SU(2)C is broken, mixing of the operators occurs. If multiple are listed horizontally,
they already mix in the SU(2)C symmetric case. Invariance under U(1)EM transforma-
tions is ensured by the (not necessarily universal) Dirac phase ϕ. Likewise, D is used
to project the transversal part out of vector fields for the same reason. We introduced
σ± ≡ σ2± iσ1 for brevity. The third column denotes the multiplicity of the respective
operators while SU(2)C is intact. The last column shows the corresponding fields of
the perturbative, elementary spectrum. Analogous to the SM, the FMS mechanism
establishes the duality between the two spectra.
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6 Summary and Conclusion

The goal of this thesis was to both motivate and construct the manifestly gauge-invariant spec-
trum of the minimal supersymmetric standard model (MSSM) and compare it to the known
perturbative spectrum using the Fröhlich-Morchio-Strocchi (FMS) mechanism. For reasons dis-
cussed in Chapter 3, such a description is not only desirable theoretically, but also crucial in
answering the non-trivial question of whether the particle spectrum predicted by perturbation
theory is the same as the physical spectrum predicted by the full theory. In our case this could
be rephrased as ‘whether particles predicted by the standard MSSM treatment, like the lightest
supersymmetric particle (LSP), are even observable in principle’.

Previous research on the standard model, GUT-like theories, and the 2-Higgs-doublet-model
has revealed that this is indeed a delicate issue: While the FMS mechanism in the standard model
justifies the use of perturbation theory by establishing a one-to-one correspondence between the
elementary and physical spectrum (c.f. Chapter 4), many GUT-like models display a qualitative
mismatch. It is therefore crucial to test the perturbative MSSM spectrum as well and see if there
are any discrepancies.

To answer this question, the FMS framework was applied to the MSSM in this thesis. It is the
first time that such investigations have been extended to the realm of supersymmetric theories. It
was discovered that, as in the standard model, there is a duality between the elementary and the
inherently gauge-invariant spectrum. The findings are summarized in Table 5.8. We have gained
a thorough understanding of the structure of custodial symmetry in the MSSM: It can be used
to gauge-invariantly explain mass degeneracies of weak bosons and left-handed (s)leptons while
intact (Sec. 5.3.1 and 5.3.2). When it breaks, it reveals how the degeneracies of the elementary
states are lifted by mixing the corresponding bound state operators (Sec. 5.4). Furthermore,
it appears that SUSY and the FMS construction do not interfere. This is an important result
because it suggests that supersymmetric GUTs behave like regular GUTs in terms of the FMS
mechanism.

Finally, this thesis does not impose any new constraints or limits on previously known results
for the MSSM. It rather places its usual description on theoretically sound ground, confirming
the ‘naive’ results obtained decades ago. It tells us, in particular, that experiments are searching
the right quantum number channels, and particles like the LSP are indeed expected to be part
of the MSSM’s physical spectrum. Furthermore, as an immediate result of the FMS mechanism,
the masses of the physical spectrum would remain unchanged in comparison to the masses of
the elementary spectrum. Nonetheless, sub-leading FMS contributions to, e.g., cross-sections are
expected, which may become relevant if any of the new particles are discovered.
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Appendix A

Conventions

Pauli Matrices

σ0 = 1 σ1 =

0 1

1 0

 σ2 =

0 −i

i 0

 σ3 =

1 0

0 −1

 (A.1)

Yang-Mills Theory

Below, T a, ta and T a are generators of the fundamental, adjoint and unspecified representation,
respectively. fabc are the Lie algebra’s structure constant (in the totally anti-symmetric basis),
φ and Φ are fields in the fundamental and adjoint representation, g is the gauge coupling and
Aaµ and F aµν are the components of the gauge field and field strength tensor. Notice that in
the derivation, one has some freedom in absorbing constants and choosing signs which leads to
slightly different conventions. The following is what is used in this thesis.

[T a, T b] = ifabcT c (Lie algebra)

(ta)bc = −ifabc (adjoint representation)

Dab
µ = δab∂µ − igAcµ(T c)ab (covariant derivative)

Dab
µ φb = ∂µφa − igAcµ(T c)abφb (acting on field in fund. rep.)

Dab
µ Φb = ∂µΦa + gfabcAbµΦc (acting on field in adj. rep.)

Aµ = AaµT
a (gauge field)

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν

Fµν = F aµνT
a = ∂µAν − ∂νAµ − ig[Aµ, Aν ] (field strength)

The matter fields, gauge fields and field strength transform under gauge-transformations as
follows:

φ→ V φ = exp(iθaT a)φ (matter fields)

φa → φa + iθb(T b)acφc (matter fields in fund. rep., infinitesimal)

Φa → Φa − fabcθbΦc (matter fields in adj. rep., infinitesimal)

Aµ → V AµV
† − i

g
(∂µV )V † (gauge fields)

Aaµ → Aaµ +
1

g
∂µθ

a − fabcθbAcµ (gauge fields, components, infinitesimal)

Fµν → V (x)FµνV
†(x) (field strength)

F aµν → F aµν − fabcθbF cµν (field strength, components, infinitesimal)
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Appendix B

Additional Information and Calculations

B.1 Notes on Weyl Spinors

Even though we are not going to be as pedantic in the main work, I want to point out a possible
source of confusion which is the ‘sloppy’ language of using a dagger to denote right-handed Weyl
spinors. It is ‘sloppy’ because left- and right-handed spinors are elements of two completely
unrelated representation spaces of SL(2,C). At least at first. We will see how we can still use
this broadly used notation while keeping the exact meaning in the back of our minds.

For this, we shall adopt the precise formalism of [36], i.e. we distinguish between the repre-
sentations of SL(2,C) as follows. For all M ∈ SL(2,C) we define two representations

D(M) ≡M (fundamental representation)

D(M) ≡M∗ (conjugate representation)

which act on representation spaces F and Ḟ , respectively. Elements of these spaces are called

ψa ∈ F (left-handed Weyl spinors)

ψ̄ȧ ∈ Ḟ (right-handed Weyl spinors)

with a, b = 1, 2 and ȧ, ḃ = 1̇, 2̇. Notice that (unlike in the main text), right-handed spinors have
a lower index by default in this Appendix. Furthermore, the bar should not be understood as
any kind of operator: It merely serves to distinguish between left- and right-handed spinors1.
Within their respective representation spaces they transform according to

ψ′a = M b
a ψb

ψ̄′ȧ = (M∗) ḃ
ȧ ψ̄ḃ

where summation over repeated indices of different height is performed. Dotted indices may not
be contracted with undotted ones and vice versa. This is the main reason for introducing them.
One can construct two more two-dimensional representations

D(M) ≡M−1T (contravariant (dual) representation)

D(M) ≡M∗−1T (contra-conjugate representation)

but it turns out that they are equivalent to the ones introduced above in the sense that they can
be related by a similarity transformation

(M−1T )ad = εabM c
b εcd

(M∗−1T )ȧ
ḋ

= εȧḃ(M∗) ċ
ḃ
εċḋ,

1Later we will see that the components are connected but we will have to pile up some more formalities before
we can introduce that relationship without getting caught in confusion and contradictions.
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Appendix B Additional Information and Calculations

Representation Elements Transformation

Fundamental ψa ∈ F ψ′a = M b
a ψb

Conjugate ψ̄ȧ ∈ Ḟ ψ̄′ȧ = (M∗) ḃ
ȧ ψ̄ḃ

Contravariant ψa ∈ F ∗ ψa
′

= ψb(M−1) a
b

Contra-conjugate ψ̄ȧ ∈ Ḟ ∗ ψ̄ȧ
′

= ψ̄ḃ(M∗−1) ȧ
ḃ

Table B.1: Two-dimensional representations of SL(2,C), their elements and transformations.

where we have introduced the totally anti-symmetric quantity

(εab) = (εȧḃ) = (−εab) = (−εȧḃ) =

 0 1

−1 0

 = iσ2. (B.1)

These representations (despite being equivalent to the initial ones) inhabit yet more states. We
denote them and their representation spaces as follows:

ψa ≡ εabψb ∈ F ∗

ψ̄ȧ ≡ εȧḃψ̄ḃ ∈ Ḟ
∗

The stars here do not denote complex conjugation but F ∗ is the dual space of F , etc. The
ε-symbol can be understood as a map from the space into its dual or (more conveniently) as a
tool to raise or lower indices2. Finally, the transformation behavior is

ψa
′

= (M−1T )abψ
b = ψb(M−1) a

b

ψ̄ȧ
′

= (M∗−1T )ȧ
ḃ
ψ̄ḃ = ψ̄ḃ(M∗−1) ȧ

ḃ
.

We thus have four different representations and representation spaces, collected in Tab. B.1, but
only two are distinct, i.e. the representations on F and F ∗ are equivalent, and so are those on Ḟ
and Ḟ ∗. This is still not the whole story, though. Because also elements of F and Ḟ ∗ are related
(and Ḟ with F ∗). This can be seen as follows: Define two new matrices

(σ̄µ)ȧb = (1,−σ)

(σµ)aḃ = (1,σ)

i.e. 4-vectors of the identity and the Pauli matrices. The crucial thing here is the index structure.
As is, they can be interpreted as maps

(σ̄µ)ȧb : F → Ḟ ∗

(σµ)aḃ : Ḟ ∗ → F.

In particular, we may use σ0 (which is merely the identity) to do the following:

ψ̄ȧ = (σ̄0)ȧa(ψa)
∗ (ψa)

∗ = (σ0)aȧψ̄
ȧ

ψa = (ψ̄ȧ)
∗(σ̄0)ȧa (ψ̄ȧ)

∗ = ψa(σ0)aȧ

ψ̄ȧ = (ψa)∗(σ0)aȧ (ψa)∗ = ψ̄ȧ(σ̄
0)ȧa

ψa = (σ0)aȧ(ψ̄
ȧ)∗ (ψ̄ȧ)∗ = (σ̄0)ȧaψa

2Notice that the order is important: By convention indices are raised/lowered with an ε from the left. Though
one can also apply it from the right. The only thing to keep in mind is that this changes the sign as the
ε-symbol is anti-symmetric.

66



B.1 Notes on Weyl Spinors

This tells us that the complex conjugated elements of ψa ∈ F transform like ψ̄ȧ, i.e. like an
element of Ḟ ∗, if we apply the additional mapping induced by σ0. This now finally is the reason
why in much of the literature people write things like

(ψ∗a) ≡ ψ†ȧ

and call ψ† the right-handed Weyl spinors, never introducing the bar in the first place. While
technically correct (in the sense that both objects have the same components) this is rather
sloppy and leads to confusion if one does not exactly know what they are doing. First, the
complex conjugation is to be replaced by a dagger in QFT (which only acts on the creation-
/annihilation-operators in the field but performs a regular complex conjugation on everything
else). Therefore, we would have the same symbol for two different things (which, on top, are
almost identical). Another reason is that the index structure is different on both sides of the
equal sign and can easily lead to confusions in calculations without σ0. What we can do, though
(and this is mostly to stay consistent with all the other literature), is the following: For the
transition from classical fields to quantum fields, we replace

·∗ → ·†

where the dagger is to be understood as acting on the creation-/annihilation-operators of the
fields while it still acts as complex conjugation on the mode functions for example. Now you can
see where it can get messy: The relations above become

(ψa)
† = (σ0)aȧψ̄

ȧ ≡ ψ̄a
(ψ̄ȧ)

† = ψa(σ0)aȧ ≡ ψȧ
(ψa)† = ψ̄ȧ(σ̄

0)ȧa ≡ ψ̄a

(ψ̄ȧ)† = (σ̄0)ȧaψa ≡ ψȧ

where we defined bar-ed spinors with undotted indices (and vice versa). Surely, we can always
define things to be the way we would like them to be, but here it is somewhat intuitive because
σ0 is merely the identity which means that e.g. (ψa)

† has the same entries as ψ̄ȧ, just a different
index structure! Similarly we have

ψ̄ȧ = (σ̄0)ȧa(ψa)
† ≡ ψ†ȧ

ψa = (ψ̄ȧ)
†(σ̄0)ȧa ≡ ψ̄†a

ψ̄ȧ = (ψa)†(σ0)aȧ ≡ ψ†ȧ
ψa = (σ0)aȧ(ψ̄

ȧ)† ≡ ψ̄†a

which is perfectly consistent with the relations above. Here we can clearly see that the information
stored in a right-handed spinor ψ̄ȧ can equally well be described by the conjugate of a left handed
spinor (ψa)

†. This finally establishes the duality

(ψa)
† ←→ ψ†ȧ

(ψa)† ←→ ψ†ȧ

which is exploited throughout the literature. One might now be lead to think ‘Why do we even
care about the bar if the dagger describers the exact same thing?’. This is probably what most
authors think which is why the bar notation is so rarely employed. Nevertheless, it caused me a
lot of confusion which is why I wanted to write it down. On the other hand, strictly using the
bar notation might also cause problems as the bar is used differently in the standard notation of
the MSSM, see Sec. 5.1.
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B.2 The Higgs Bidoublet as an SO(4) Representation

Both the SM and MSSM Higgs potential have an SO(4) ∼= SU(2) × SU(2) symmetry3. One
of those SU(2) symmetries is gauged and becomes SU(2)L, the second one remains a global
symmetry called SU(2)C . Both transformations can be considered separately (and acting linearly
on the Higgs) once we rewrite the theory in terms of the bidoublet (4.6) or (5.7), respectively.
In the following, we will see what representation those bidoublets actually live in.

Consider an arbitrary element g ∈ SO(4). Every such g can be decomposed as [59]

g =

(
α1 −α2 β1 −β2
α2 α1 β2 β1
−β1 −β2 α1 α2

β2 −β1 −α2 α1

)(
γ1 −γ2 −δ1 −δ2
γ2 γ1 −δ2 δ1
δ1 δ2 γ1 −γ2
δ2 −δ1 γ2 γ1

)
(B.2)

=
[
(α11 + iβ1σ

2)⊗ 1− i(α2σ
3 + β2σ

1)⊗ σ2
][

1⊗ (γ11− iγ2σ
2)− iσ2 ⊗ (δ1σ

3 + δ2σ
1)
]

≡ g1g2

where σi are the Pauli matrices and αk, βk, γk, δk are real coefficients satisfying

α2
1 + α2

2 + β2
1 + β2

2 = 1

γ2
1 + γ2

2 + δ2
1 + δ2

2 = 1.
(B.3)

One can easily check that g1 and g2 commute by exploiting the (anti-)commuting property of
the Pauli matrices and the special tensor structure. This also means that

gg′ = (g1g2)(g′1g
′
2) = (g1g

′
1)(g2g

′
2) = (gg′)1(gg′)2,

i.e. the structure g = g1g2 is preserved within SO(4). We can now define two maps (i = 1, 2)

λi : SO(4)→ Gi ⊂ SO(4)

g 7→ gi.

From the explicit form (B.2), one easily sees that gi both are still orthogonal matrices, which
means that both λi map to some subset of SO(4). And because of

λi(gg
′) = (gg′)i = gig

′
i = λi(g)λi(g

′),

we find that the maps are homomorphisms and, consequently, that Gi are subgroups of SO(4).
That those are isomorphic to the two copies of SU(2) that we are after, can be seen as follows:
There exist similarity transformations4, such that

(S1 ◦ λ1)(g) = s1λ1(g)s−1
1 =

(
α1+iα2 β1+iβ2 0 0
−β1+iβ2 α1−iα2 0 0

0 0 α1+iα2 β1+iβ2
0 0 −β1+iβ2 α1−iα2

)
≡

(
α β 0 0
−β∗ α∗ 0 0

0 0 α β
0 0 −β∗ α∗

)

(S2 ◦ λ2)(g) = s2λ1(g)s−1
2 =

(
γ1+iγ2 0 δ1+iδ2 0

0 γ1+iγ2 0 δ1+iδ2
−δ1+iδ2 0 γ1−iγ2 0

0 −δ1+iδ2 0 γ1−iγ2

)
≡

(
γ 0 δ 0
0 γ 0 δ
−δ∗ 0 γ∗ 0

0 −δ∗ 0 γ∗

)
via two isomorphisms S1 and S2. We can now clearly see that two identical SU(2) matrices
each are hidden inside g1 and g2

5. Therefore, Gi ∼= SU(2) and defining the trivial isomorphisms
(i = 1, 2)

Ii : Gi → SU(2)

(Si ◦ λi)(g) 7→ (Ii ◦ Si ◦ λi)(g)

3Strictly speaking, it’s even O(4) but we do not worry about that in the present work.
4The similarity of two matrices can be checked by comparing their Jordan decomposition
5Because α2

1 +α2
2 + β2

1 + β2
2 = 1, a straight-forward calculation shows that

(
α β
−β∗ α∗

)
is indeed unitary. Likewise

for
(

γ δ
−δ∗ γ∗

)
.
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B.3 The MSSM Higgs Sector as a Special Case of the 2HDM

allows us to write down two distinct complex representations6 of SO(4):

Λ1 : SO(4)→ SU(2)

g 7→ (I1 ◦ S1 ◦ λ1)(g) =
(

α β
−β∗ α∗

)
Λ2 : SO(4)→ SU(2)

g 7→ (I2 ◦ S2 ◦ λ2)(g) =
(

γ δ
−δ∗ γ∗

)
These two representations act on V1, V2 = C2 and we can use them to naturally construct a
representation ρ(g) on Hom(V2, V1) ∼= Mat(2× 2,C) via [60]

ρ(g)A ≡ Λ1(g)ΘΛ2(g)−1, Θ ∈ Mat(2× 2,C).

The bidoublet (5.7) is just a complex (2×2)-matrix like Θ. Hence, the representation space of the
MSSM Higgs (which has 8 real degrees of freedom) is precisely Mat(2× 2,C). The SU(2) acting
from the left correspond to weak gauge transformations and custodial SU(2) transformations act
from the right. Since Λi(g) are SU(2) matrices, we immediately see that the matrices

V ≡
{( y z
−z∗ y∗

)∣∣ y, z ∈ C
}

= {κU | U ∈ SU(2), κ ∈ R}

furnish an invariant subspace7 of Mat(2 × 2,C). This is the representation space of the SM
Higgs (4.6), which only has 4 real degrees of freedom. Every element in v ∈ V can be written as
κU with an ‘amplitude’ κ and a ‘phase’ (unimodular matrix) U .

B.3 The MSSM Higgs Sector as a Special Case of the 2HDM

Two-Higgs-doublet-models (2HDMs) are usually formulated with both Higgs fields carrying the
same hypercharge Y = +1 [53, 61]. Therefore, we have to perform a charge conjugation on Hd

in order to use results from 2HDMs as explained e.g. in [55]

φ1 = iσ2H†Td
φ2 = Hu.

(B.4)

We now consider the scalar sector of the MSSM Lagrangian as introduced in Sec. 5.3.1 as well
as the parameter restriction mu = md ≡ m. Using the relations φ†1φ1 = H†dHd, φ

†
2φ2 = H†uHu

and φ†1φ2 = HT
2 (iσ2)Hd, we can rephrase it as a valid 2HDM:

L′ ⊃ (Dµφi)
†(Dµφi)− V (φ1, φ2)

V (φ1, φ2) = (|µ|2 +m2)(φ†1φ1 + φ†2φ2) +m2
ud

[
φ†1φ2 + φ†2φ1

]
+
g2

8

[
(φ†1φ1)2 + (φ†2φ2)2

]
+
g2

4
(φ†1φ1)(φ†2φ2)− g2

2
(φ†1φ2)(φ†2φ1).

(B.5)

Notice that the last two signs in the potential are opposite to the potential in terms of the fields
Hu,d in Eq. (5.13). From V we can read off

µ2
1 = µ2

2 = −(|µ|2 +m2) m2
12 = −m2

ud ∈ R λ1 = λ2 =
g2

8

λ3 =
g2

4
λ4 = −g

2

2
λ5 = λ6 = λ7 = 0

6They are representations because we constructed them from successively applied homo- and isomorphisms.
7Because SU(2) is closed under matrix multiplication and the constant κ (which is nothing but the determinant)

does not change that behavior. In fact, V is still a group if one excludes κ = 0. Notice, that κ ∈ R, since the
determinant of such matrices is always real.
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as the 2HDM parameters corresponding to the general form in [53]8. Following this work, we
collect both fields into a Majorana type object

Φ ≡

 φ1
φ2

iσ2φ†T1
iσ2φ†T2


which allows us to rewrite (B.5) as

L′ ⊃ 1

2
(DµΦ)†(DµΦ) +

1

2
MAΦ†ΣAΦ− 1

4
LABΦ†ΣAΦΦ†ΣBΦ with

MA = (−2(|µ|2 +m2),−2m2
ud, 0, 0, 0, 0)

LAB = diag

(
g2

2
,−g

2

2
,−g

2

2
, 0, 0, 0

)
.

Inserting the specific forms of MA and LAB turns the Lagrangian into

L′ ⊃ 1

2
(DµΦ)†(DµΦ)− (|µ|2 +m2)Φ†Σ0Φ−m2

12Φ†Σ1Φ

− g2

8
(Φ†Σ0Φ)2 +

g2

8

[
(Φ†Σ1Φ)2 + (Φ†Σ2Φ)2

] (B.6)

where

Σ0 =
1

2
1⊗ 1⊗ 1 Σ1 =

1

2
1⊗ σ1 ⊗ 1 Σ2 =

1

2
σ3 ⊗ σ2 ⊗ 1.

Notice that none of the Σ-matrices acts in gauge-space. For completeness, the covariant derivative
here is

DµΦ =

[
1⊗ 1⊗

(
1∂µ − igW a

µ

σa

2

)]
Φ.

The kinetic part (DµΦ)†(DµΦ) is SUM (4) symmetric [53], i.e. it has a restricted SU(4) symmetry
which turns out to be 10-dimensional and generated by

K0 =
1

2
σ3 ⊗ 1⊗ 1 K5 =

1

2
σ1 ⊗ σ3 ⊗ 1

K1 =
1

2
σ3 ⊗ σ1 ⊗ 1 K6 =

1

2
σ2 ⊗ 1⊗ 1

K2 =
1

2
1⊗ σ2 ⊗ 1 K7 =

1

2
σ2 ⊗ σ3 ⊗ 1

K3 =
1

2
σ3 ⊗ σ3 ⊗ 1 K8 =

1

2
σ1 ⊗ σ1 ⊗ 1

K4 =
1

2
σ1 ⊗ 1⊗ 1 K9 =

1

2
σ2 ⊗ σ1 ⊗ 1

(B.7)

This SUM (4) symmetry is broken by the scalar potential – but not completely: Our specific set
of parameters9 (almost) falls into category 10 in Table 1 of [53], which is shown in Tab. B.2.
Now actually, µ2

12 6= 0 as long as m2
ud 6= 0. This is not a problem, though, because we only break

the O(2) by introducing m2
ud 6= 0. But the theory stays O(3) symmetric even after including a

non-vanishing m2
ud. This in turn means, that we may enhance the accidental global symmetry

by requiring the absence of the soft SUSY breaking m2
ud-terms.

8Notice that this potential is defined without factors 1
2

in front of λ1,2 but this differs across the literature.
9Attention: this classification applies to a (φ1, φ2) basis in which LAB is diagonal only ! Luckily, this is already

the case here.
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No. Symmetry µ2
1 µ2

2 µ2
12 λ1 λ2 λ3 λ4 Reλ5 λ6 = λ7

10 O(2)×O(3) - µ2
1 0 - λ1 2λ1 - 0 0

Table B.2: Excerpt of Table 1 in [53], showing the remaining symmetry for a 2HDM with the
given set of parameters.

The generators K0,K8,K9 in (B.7) generate O(3) and K3 generates O(2)

Φ
O(3)−−−→ Φ′ = UΦ = exp

(
iθAKA

)
Φ (A = 0, 8, 9)

Φ
O(2)−−−→ Φ′ = U3Φ = exp

(
iθ̄K3

)
Φ,

which can be read off from Table 2 in [53]. We can use those to explicitly check, that (B.6) is
invariant under the first of these transformations but only for m2

ud = 0 also under the second
one. For convenience we define

κ1 = −2K8 κ2 = 2K9 κ3 = −2K0

which can be checked to satisfy the SU(2) algebra just like the Pauli matrices. The structure of
U is then as follows:

U =

(
α 0 0 β
0 α β 0
0 γ δ 0
γ 0 0 δ

)
⊗ 1 = exp

(
iηC

κC

2

)
where

Ũ∗ =
(
α β
γ δ

)
= exp

(
iηC

σC

2

)
(C = 1, 2, 3),

i.e. the rescaling had the nice effect that the center of U is already Ũ , generated by the Pauli
matrices and the same ηi! This is nothing more than a nice presentation and has no real practical
benefit.

Now, even though the construction was such that (B.6) is invariant under U , we can do a short
sanity check here: One can easily calculate that

[Σ0,1,2, U ] = 0,

i.e. the potential part of L′ is definitely invariant. On the other hand, U is just 1 in gauge space,
the only space in which Dµ acts. Consequently, we can pull it through the covariant derivative
which also makes the invariance of the kinetic term trivial.

Back to the MSSM

At this point, we are done with the analysis of accidental global symmetries and we can trans-
late the whole theory back from the 2HDM to the MSSM (i.e. have scalar fields of opposite
hypercharge). Using (B.4), we can translate Φ as

Φ =

 φ1
φ2

iσ2φ†T1
iσ2φ†T2

→ H ≡

 iσ2H†Td
Hu
−Hd

iσ2H†Tu

 ,

which we can use to express the Higgs part of the Lagrangian as

L ⊃ 1

2
(DµH)†(DµH)− 1

2
(|µ|2 +m2)H†H −m2

ud(H
†Σ1H)

− g2

32
(H†H)2 +

g2

8
[(H†Σ1H)2 + (H†Σ2H)2].
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This form is concise and manifestly invariant under

H → UH (always)

H → U3H (if m2
ud = 0)

but for what we will eventually do, a different form is more practical. Following [61], we introduce

Hud ≡ (φ2, iσ
2φ†T1 ) = (Hu, iσ

2(iσ2Hd)) = (Hu,−Hd) =

(
H

(1)
u −H(1)

d

H
(2)
u −H(2)

d

)
.

Then

L ⊃ tr
[
(DµHud)

†(DµHud)
]
− V (Hud)

V (Hud) = (|µ|2 +m2)tr
[
H†udHud

]
− 2m2

ud(Re detH†ud)

− g2

2
detH†udHud +

g2

8
tr
[
H†udHud

]2

can be checked to be an equivalent form of the Lagrangian. The nice thing about this representa-
tion is that now everything is expressed in a non-tensor-product-fashion and the transformations
are just

Hud → L(x)HudR
† with L(x) ∈ SU(2)L, R ∈ SU(2)C ,

and the translation to the previous representation is conveniently given (thanks to the careful
definition of κa) by

UH = exp

(
iηc

κc

2

)
↔ HudR

† = Hud exp

(
−iηcσ

c

2

)
= HudŨ

T .

And since Hud just includes the initial doublets as columns, the action of SU(2)L from the left
is obviously also equivalent.

Extension to the Higgsinos

Since H̃i are the superpartners of the Hi we expect them to have the same global symmetries.
That this is indeed the case can be seen by putting them into a bidoublet H̃ud ≡ (H̃u,−H̃d),
upon which transformations again act as

H̃ud → L(x)H̃udR
† with L(x) ∈ SU(2)L, R ∈ SU(2)C .

With H̃ud and Hud we can not only write the two sectors separately, but also their interaction
terms in a manifestly SU(2)L × SU(2)C invariant way:

L = −1

4
W a
µνW

µν
a + iλ†aσ̄µ(Dµλ)a + tr

[
(DµHud)

†(DµHud)
]

+ tr
[
iH̃†udσ̄

µDµH̃ud

]
− g√

2

[
tr
[
H†udσ

aH̃ud

]
λa + λ†atr

[
H̃†udσ

aHud

]]
+ µ

[
det
(
H̃ud

)
+ h.c.

]
− V (Hud)

V (Hud) = (|µ|2 +m2)tr
[
H†udHud

]
− 2m2

ud(Re detH†ud) +
g2

8
tr
[
H†udHud

]2
− g2

2
detH†udHud

Notice that we call the bidoublets H and H̃ instead of Hud and H̃ud in the main work.
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[23] J. Fröhlich, G. Morchio, and F. Strocchi, “Higgs phenomenon without a symmetry breaking
order parameter”, Phys.Lett.B 97, 249–252 (1980).
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