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Motivation: Gauge invariant
formulation of Higgs theories



Why a gauge invariant formulation?

BSM theories with Higgs construction

• A Gauge Invariant (GI) formulation could provide a different spectrum than the
one obtained with usual Perturbation Theory (PT) in a fixed gauge, given certain
conditions.

• GUT setup: need to find a massless vector state which is GI.

Insight on mass hierarchy

• Fermions have to be rethinked with a different operator structure.
• GI treatment of Higgs mass renormalization has only logarithmic divergences.1

• FMS provide potentially observable phenomenological consequences, can bring
further insight in areas of tension of SM, or create new ones where there are none.

1Maas and Sondenheimer, “Gauge-invariant description of the Higgs resonance and its phenomenological
implications”.
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Standard Higgs approach

Gauge Higgs theory prototype

L = −1
2 tr(WµνW µν) + 1

2(Dµφ)†Dµφ+ λ(φ†φ− v2)2

• Classical minimum at φ†φ = v2 .
• One performs ’spontaneous symmetry breaking’.
• In a suitable fixed gauge, the split φ(x) = vn + ϕ(x) is possible.
• In this gauge 〈φ〉 = vn .
• Reinserting it in the Lagrangian, one obtains the masses of the gauge bosons, and

can use perturbation theory.
• This construction is gauge dependent2.

2Lee and Zinn-Justin, “Spontaneously broken gauge symmetries ii. perturbation theory and renormalization”.
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Main motivation

• No spontaneous breaking of local symmetries exists.3

• Wilson GI formulation has 〈φ〉 = 0, also there exist gauges in which 〈φ〉 = 0.4

• Perturbative results are gauge dependent, potentially nonphysical.
• No phase boundary for BEH effect with fund. Higgs → symmetry breaking is a

gauge fixing artifact.5

• Why PT works so well for the Standard Model?
• Is PT always reliable then?
• Answers lie in a gauge-invariant formulation of the theory.

3Elitzur, “Impossibility of Spontaneously Breaking Local Symmetries”.
4Osterwalder and Seiler, “Gauge Field Theories on the Lattice”; Fröhlich, Morchio, and Strocchi, “Higgs

phenomenon without a symmetry breaking order parameter”.
5Fradkin and Shenker, “Phase Diagrams of Lattice Gauge Theories with Higgs Fields”.
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Gauge invariant formulation of SM observables

• Elementary fields are treated as observable in PT, even if not gauge invariant.
• The real physical objects must be described with gauge invariant composite

operators6.

• Elementary Higgs φ(x) → Physical Higgs (φ†φ)(x)
• Elementary Fermion ψ(x)→ Physical fermion (φ†ψ)(x)
• Elementary Vector W a

µ (x)→ Physical vector (taφ†Dµφ)(x)

ta
φφ

Dµ

φφ φψ

6Fröhlich, Morchio, and Strocchi, “Higgs phenomenon without a symmetry breaking order parameter”.
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6Fröhlich, Morchio, and Strocchi, “Higgs phenomenon without a symmetry breaking order parameter”.

6



FMS Mechanism

• Correlators of GI operators give access to physical spectrum → explanation for
ordinary PT spectrum validity.

• Example: SU(2) + fundamental Higgs: O0+(x) = (φ†φ)(x)
• Expand the correlator, H(x) =

√
2 Re(n†φ)

〈O†0+(x)O0+(y)〉 = 4v2 〈H(x)†H(y)〉+O(v) .
• Mapping of on-shell properties. Off-shell contributions from non leading terms7.

7Maas and Sondenheimer, “Gauge-invariant description of the Higgs resonance and its phenomenological
implications”.
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Vector channel and custodial charge

• GI vector operator: Custodial Triplet Oa
1−,µ(x) = tr(taφ†Dµφ)(x)

• In a suitable gauge it expands as
Oa

1−,µ(x) = −i gv
2 tr

(
tan†tbn

)
W b
µ (x) = −i gv

2 cabW b
µ (x)

• Expansion the correlator,
〈Oa

1−,µ(x)Oa
1−,µ(y)〉 = − (gv)2

4 cabcac 〈W b
µ (x)W c

µ (y)〉+O(v) .
• The gauge triplet of the Aa

µ is mapped to the GI custodial triplet Oa
µ.

• Weak sector of SM → Custodial group SU(2) = Gauge group SU(2) .
• Only true quantum numbers: JPC and custodial charge.
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FMS Mechanism for weak sector of SM

• GI spectrum of the weak sector corresponds to perturbation theory.
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FMS for toy SU(3) GUT

• A SU(3) theory with a fundamental scalar has been investigated on lattice.

• Lattice spectrum support FMS predictions.8

8Maas and Törek, “The spectrum of an SU(3) gauge theory with a fundamental Higgs field”.
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8Maas and Törek, “The spectrum of an SU(3) gauge theory with a fundamental Higgs field”.

10



New challenges for the FMS mechanism

Massless composite GI vector state in Higgs theories

• Composite GI operators have been analyzed on the lattice, also for BSM theories.
• There is always a mass gap.

• Is it possible to obtain massless composite bound states?

GI fermions on the lattice

• The fermion sector of the SM, as GI bound states, has never been analyzed
nonperturbatively.

• Parity violation is not accessible on the lattice9.
• Is it possible to obtain fermion bound states on the lattice?

9Nielsen and Ninomiya, “No Go Theorem for Regularizing Chiral Fermions”.
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Massless vector state in the SU(2)
adjoint Higgs theorya

aAfferrante, Maas, and Törek, “Composite massless vector boson”.



SU(2) Gauge theory coupled with an adjoint Scalar

SU(2)+Adjoint Higgs theory

L = −1
4F a

µνF aµν + tr
[
(DµΦ)†(DµΦ)

]
− V (Φ) .

• Φ(x) is the scalar field in the adjoint representation.
• Potential:

V = −µ2 tr Φ2 + λ

2 (tr Φ2)2 .

• We look for potentials that allow a BEH effect.
• It is a toy GUT model10 with a low energy QED (massless vector).

10Georgi and Glashow, “Unity of All Elementary Particle Forces”.
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Brout-Englert-Higgs Effect - Perturbation theory approach

• The only relevant breaking pattern which leads to a potential with a minimum is
SU(2)→ U(1).

• Split scalar field in vev and fluctuations:

Φ(x) = 〈Φ〉+ φ(x) ≡ wΦ0 + φ(x) .

• Φ0 is the direction of the vev: Φa
0Φa

0 = 1, can always be chosen diagonal.
• Perturbative tree level mass matrix for the gauge fields:

(M2
A)ab = −2(gw)2 tr

(
[T a,Φ0][T b,Φ0]

)
.

• Φ0 direction: massless gauge boson,
• Remainder coset: 2 massive gauge bosons mA = gw .
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FMS mechanism for the SU(2) adjoint Higgs

GI operator for the vector channel:

Oµ
1− =∂ν

∂2 tr[ΦFµν ]

=− w tr
[
Φ0(δµν − ∂µ∂ν/∂2)Aν

]
(x) +O(A, φ)

=− w tr
[
Φ0Aµ⊥

]
(x) +O(A, φ) .

With Φa
0 = δa3

〈Oµ
1−(x)O1−,µ(y)〉 = w2

4 〈A
3µ
⊥ (x)A3

⊥,µ(y)〉+ O(w0)

We expect a massless composite vector bound state11.

11Maas, Sondenheimer, and Törek, “On the observable spectrum of theories with a Brout-Englert-Higgs effect”.
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Spectrum for the SU(2) adjoint Higgs vector channel

Perturbation theory spectrum

• One massless gauge boson.

• Two massive vector states with mass mA = gw .

FMS mechanism

• One massless vector boson (from first order expansion).
• One next level state with mass 2mA (further expansion in the coupling,

constituent picture)12.

12Maas, Sondenheimer, and Törek, “On the observable spectrum of theories with a Brout-Englert-Higgs effect”.
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Scan of the phase diagram

• Lattice implementation of the theory has been performed.
• Previous lattice results point to phase transition: QCD-like vs. BEH13.

• We can use the vev and the plaquette as order parameters.

• We fixed β = 4, λ = 1 and we varied κ over [0.1, 0.8].

• Lattice sizes: 84, 164, 244, 324.

13Baier, Gavai, and Lang, “Tricritical structure in the adjoint Higgs model?”; Baier, Lang, and Reusch, “The
Renormalization Flow in the Adjoint SU(2) Lattice Higgs Model”.
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Scan of the phase diagram

κ
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• The vev and plaquette variable show a discontinuity around κ ∼ 0.5 (with β, λ
fixed).

• We expect to be in the BEH phase for κ > 0.5. 17



Gauge boson propagator

ap
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Gauge boson dressing function
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=0.6 (BEH), U(1) cosetκ, 424

Gauge boson propagator

• Phase diagram and FMS RHS result, using gauge propagator in a fixed gauge, at
κ = 0.4 and κ = 0.6.

• The split of the two cosets at κ = 0.6 is a strong hint of the BEH phase. 18



Operator for lattice spectroscopy

• Check LHS of FMS (lattice realization of Oµ
1−)14:

B i (x) = 1√
2 Tr(Φ2)

Im Tr
(

Φ(~x , t)U jk(~x , t)
)
.

• Correlator showed no signal in rest mass frame.

• We give the operator a non-zero momentum via

Bj(~p, t) = 1√
V~x

Re
∑
~x

Bj(~x , t)ei~p·~x .

• We choose as momentum the smallest one in the z direction

~pz =
(

0, 0, 2π
Nz

)
.

14Lee and Shigemitsu, “Spectrum Calculations in the Lattice Georgi-glashow Model”.
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Transverse and Longitudinal Correlator

Split of the correlator in the transverse and the longitudinal part

C⊥(t) = 1
Nt

Nt−1∑
t′=0

2∑
j=1
〈Bj(~pz , t ′)Bj(~pz , t + t ′)〉 ,

C‖(t) = 1
Nt

Nt−1∑
t′=0
〈B3(~pz , t ′)B3(~pz , t + t ′)〉 .

We expect the two correlators to behave as

C⊥(t) ∝ exp(−E (Pz )t) ,
C‖(t) ∝ δ(t = 0) .
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Transverse and Longitudinal Correlator - results

t/a
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(t
)

|| 
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Longitudinal correlator

t/a
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(t
)

  
C

-110

1
Massless tree-level particle

Data

Transverse correlator

• No signal from the longitudinal correlator.
• Transverse correlator compatible with massless ansatz.
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Expanded Basis

• We enlarge the basis by adding two more operators:

• BΦ,i
1− (x) = 2 tr

(
φ2)B i

1−(x)
• B2,i

1−(x) =
(∑

j Bj
1−(x)Bj

1−(x)
)

B i
1−(x)

• The pz momentum has been assigned to this two operators.
• Also it has been added the B operator with momentum 2pz .

• To further increase the basis, APE smearing has been performed, up to 5 times.
• Full basis for variational analysis consisted of 20 operators.
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Massless state investigation

• For a lattice state with nonzero momentum we expect

cosh(aE ) = cosh(am) +
∑

i
(1− cos(api ))

• Energies extracted from

E (k)
eff (t + 0.5) = log

(
λ

(k)
⊥ (t)

λ
(k)
⊥ (t + 1)

)

• Fitting procedure for energy extraction, with the expected cosh behaviour for a
massless or a massive state.
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Spectroscopy fit examples

1 2 3 4 5 6 7
t/a
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a 
E(

t)

κ=0.55,V=124κ=0.55,V=124

Fi st level
G ound state (exact)
Single cosh fit, aE=0.53(1)
Second level
Scatte ing state (exact)
Single cosh fit, aE=0.98(4)
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Spectroscopic results

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

a/L

0.00
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0.50

0.75

1.00

1.25

1.50

1.75

a
E

κ = 0.55

first level

ground state (exact)

second level

scattering state (exact): 2pz

third level

scattering state (exact): 3pz

Massive PT prediction: mA

Massive FMS prediction: 2mA

Lattice results confirm the massless hypothesis. 25



Gauge invariant fermion spectruma

aAfferrante et al., “Testing the mechanism of lepton compositness”.



FMS Mechanism for fermions in SM

• Left handed fermions in SM are not GI → they can be treated with the FMS
mechanism.

• We can employ fermionic GI bound states Ψ(x) = X †(x)ψ(x), but never proven,
X = (φ̃ φ). 〈

Ψ(x)Ψ(y)
〉

= v2

2 〈ψ(x)ψ(y)〉+ O(ϕ)

• The flavor weak doublet is mapped to a custodial doublet.
• If the FMS construction holds, the mass of the bound state should be the same as

the elementary one.
• The main goal of this work is to analyze this hypothesis on the lattice.
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FMS for fermions

• Lattice chiral fermions formulation is a longstanding problem → Vectorial
fermions.

• Toy model of SM Weyl fermions with vectors of Dirac fermions.
• Vectorial fermion ψ = (ψ1, ψ2) which is gauged → L = (νL, lL).
• Vectorial fermion χ = (χ1, χ2) which is ungauged → (νR , lR).

Vectorial fermion action

S =
∫

d4x
[
− 1

4W a
µνW a µν +

(
Dµφ

)†(Dµφ
)

+ ψ
(
i /D −m

)
ψ+

χk̄
(
i/∂ −m

)
χk̄ − y

(
ψφ̃χ1 + χ1φ̃

†ψ
)

− y
(
ψφχ2 + χ2φ

†ψ
)
− V (φ†φ)

]
.
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Elementary mass spectrum

• Apply the Higgs mechanism φ = v√
2

(
0
1

)
+ ϕ.

• Tree level mass matrix for the fermion fields with the convention
(
ψ1 ψ2 χ1 χ2

)T:

M =


m 0 v√

2y 0
0 m 0 v√

2y
v√
2y 0 m 0
0 v√

2y 0 m

 .

• The matrix is degenerate with two eigenvalues

M± = m ± yv√
2
.

• The ψ and χ doublets are degenerate at a tree level.
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NLO masses eigenstates

• We can add the NLO correction to TL masses

m(1)
ψ = m(1 + cyy2 + cWαW),

m(1)
χ = m(1 + cyy2),

• NLO eigenmasses

M± =
m(1)
ψ + m(1)

χ

2 ± 1
2

√(
m(1)
ψ −m(1)

χ

)2
+ 2y2v2

= m
(

1 + cyy2 + cW
2 αW

)
± 1

2
√

c2
Wα

2
Wm2 + 2v2y2.

• Behaviour with respect to y is not linear.
• Small y : larger split of mψ −mχ.
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Lattice setup

• Fermion propagator obtained by inversion of the Dirac operator, quenched setting

(
ψ χ

)
D
(
ψ

χ

)
=
(
ψ χ

)(Dψψ Dψχ

Dχψ Dχχ

)(
ψ

χ

)
,

• Standard Wilson-Dirac operator, first diagonal block:

Dψψ(x |y)ij = 1δij − κF

±4∑
µ=±1

(1− γµ) Uµ(x)ij δx+µ̂,y ,

• Here κF = 1
2(m+4) .

• The second diagonal block is the free Wilson-Dirac operator for χ.
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Lattice Setup

• Non-diagonal blocks are the Yukawa terms

Dψ̄χ
if ′ (x |y) = δxy1

(
YXi1δ1f + YX †i2δ2f

)
,

Dχ̄ψ
f ′i (x |y) = Dψ̄χ†

if ′ (x |y).

• BiCGStab-M method15 with one point source is used.
• Bosonic sector is obtained through dynamical configurations16: 5 parameters sets.
• Two parameters: κF = 0.11, 0.12 and the Yukawa coupling Y = 0.01, 0.05, 0.1.
• Lattice sizes 84, 124, 164, 204, 244.

15Jegerlehner, “Krylov space solvers for shifted linear systems”.
16Maas and Mufti, “Two- and three-point functions in Landau gauge Yang-Mills-Higgs theory”.
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Observables

• Interesting GI observables are

O1 = φ†ψ
FMS∝ ψ2 + · · · , O2 = φ̃†ψ

FMS∝ ψ1 + · · · , χ1 , χ2 .

• Correlators GI matrix

MGI(x |y) =
(

X †(x)(D−1)ψ̄ψ(x |y)X (y) (D−1)ψ̄χ(x |y)X (y)
X †(x)(D−1)χ̄ψ(x |y) (D−1)χ̄χ(x |y)

)
.

• We add to the base the two gauge variant component ψ1, ψ2, which are evaluated
on a smaller subset of gauge fixed configurations.
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ψ and χ masses

• Propagators of ψ(with GF) and χ show a good plateau → eigenmasses.
• Propagator of χ→ First mass eigenvalue M−.
• Propagator of ψ(GF )→ Second mass eigenvalue M+.
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Comparison of bound state

• The bound state mixing depends on the Yukawa coupling.
• Small Yukawa: compatibility with ψ.
• Large Yukawa: compatibility with χ.

34



Bound state mixing
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Bound state correlator

Combination, r = 0.692508

contribution from χ

contribution from ψ

Parameter set 4, L=20, κF = 0.11, Y = 0.05

• Intermediate Yukawa: combination of ψ and χ gives a good fit
C(t)

C(Nt/2) = 1
1 + r [cosh

(
M−(t − Nt/2)

)
+ r cosh

(
M+(t − Nt/2)

)
]
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Spectroscopic results
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• Mass dependence on Yukawa coupling independently of Dirac mass parameter.
• Two stable states at larger Yukawa. Infinite volume extrapolate results.
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Conclusions



Conclusions

• All previous lattice tests of the FMS mechanism have passed.

• A GI composite photon in a SU(2) GUT type theory with an adjoint Higgs has
been studied in a lattice simulation.

• The GI spectrum of a SU(2) theory with vectorial fermions has been investigated,
thus proving the possibility of a valence Higgs component.

Outlook:

• Lattice: exploration of SU(3) + fundamental and adjoint → better understanding
of BSM Higgs theories.

• Pheno: Valence Higgs contributions17 can be explored with the HL-LHC and the
newly proposed linear lepton colliders → flavor and g − 2 anomalies.

17Fernbach et al., “Constraining the Higgs valence contribution in the proton”.
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Thanks for the attention!
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Lattice action for SU(2)+adjoint

A multihit Montecarlo has been implemented, with action

S[Φ,U] = SW [U] +
∑

x
2 tr(Φ(x)Φ(x)) + λ(2 tr(Φ(x)Φ(x))− 1)2

− 2κ
∑
µ

tr
(

Φ(x)Uµ(x)Φ(x + µ̂)U†µ(x)
)

3 parameters: β, κ, λ. Center symmetry Z2.
Explicitating the generators of the algebra

S[φ,U] =SW [U] +
∑
x ,a

Φa(x)Φa(x) + λ(Φa(x)Φa(x)− 1)2

− 2κ
∑
µ,a,b

Φa(x)V ab
µ (x)Φb(x + µ̂)

where
V ab
µ (x) = tr

(
T aUµ(x)T bU†µ(x)

)
.
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Infinite volume behaviour

Masses behaves exponentially with
respect to infinite volume limit.
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κF = 0.12, Y = 0.05, r from mN
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κF = 0.11, Y = 0.01, ψ

κF = 0.12, Y = 0.05, χ

κF = 0.12, Y = 0.05, ψ
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Full results

We examined 5 different parameters set for the
bosonic sector.

# β κ λ a−1 [GeV] m0+
0

[GeV] αW (200 Gev) v(200 GeV) =
m1−3√
παW

[GeV]
1 2.7984 0.2954 1.328 384 118(9) 0.544 39
2 2.7984 0.2978 1.317 326 129(12) 0.495 64
3 3.9 0.2679 1 509 116(19) 0.140 121
4 5.082 0.249 0.7 636 123(19) 0.170 110
5 5.082 0.2552 0.7 427 131(5) 0.0794 161

# κF Y aM− aM+ r
1 0.12 0.01 0.421+0.001

−0.008 0.817(3) 1.9
1 0.12 0.05 0.407(6) 0.77(3) 0.4
1 0.12 0.1 0.353(9) 0.54(1) 0.2
1 0.11 0.01 0.137(1) 0.58(1) 1.4
1 0.11 0.05 0.111(1) 0.45(1) 0.2
1 0.11 0.1 0.044(5) 0.21(1) 0.1
2 0.12 0.01 0.422(3) 0.810(4) 1.4
2 0.12 0.05 0.406(3) 0.75(2) 0.6
2 0.12 0.1 0.352(2) 0.62(3) 0.4
2 0.11 0.01 0.136(1) 0.583(4) 1.4
2 0.11 0.05 0.103(1) 0.49(2) 0.3
2 0.11 0.1 0.032(2) 0.17(1) 0.2
3 0.12 0.01 0.422+0.001

−0.006 0.674(3) 6.5
3 0.12 0.05 0.407(5) 0.645(2) 0.3
3 0.12 0.1 0.357(3) 0.574(4) 0.09
3 0.11 0.01 0.136(1) 0.426(5) 3.0
3 0.11 0.05 0.112+0.004

−0.002 0.385(2) 0.8
3 0.11 0.1 0.043(1) 0.24(1) 0.2
4 0.12 0.01 0.422(1) 0.604(2) 11.5
4 0.12 0.05 0.402(2) 0.54(1) 0.6
4 0.12 0.10 0.331(7) 0.43(1) 0.1
4 0.11 0.01 0.136(3) 0.346(2) 2.4
4 0.11 0.05 0.098(1) 0.27(2) 1.0
4 0.11 0.10 0.036(9) 0.09(1) 0.4
5 0.12 0.01 0.422(5) 0.599(2) 7.1
5 0.12 0.05 0.39(1) 0.51(1) 1.0
5 0.12 0.1 0.305(5) 0.35(1) 0.4
5 0.11 0.01 0.126(4) 0.347(6) 7.1
5 0.11 0.05 0.086(2) 0.22(1) 1.0
5 0.11 0.1 0.03(2) 0.1+0.09

−0.05 0.1
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Variational analysis
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• Results point a compatibility between the second GI eigenvalues and the
elementary mass.

• Statistical noise is very high in this extrapolation.
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