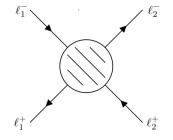


Subleading effects for future lepton colliders

Fabian Veider

In collaboration with Axel Maas and Simon Plätzer Institute of Physics, University of Graz

> Supported by Paul Urban Scholarship Foundation


September 28th, 2022

Goal

NLO precision calculation of a leptonic scattering process

 $\ell_1^- \ell_1^+ \rightarrow \ell_2^- \ell_2^+$

- Future lepton colliders opens new energy-regimes
- Experimentally easily accessible process
- ► Able to polarize initial particles → effects?

Problem

- Elementary particles not gauge-invariant
- Fundamental requirement in order to represent measurable quantities
- Strong agreement between standard perturbation and experiments

Question

Why does the usual approach work so well?

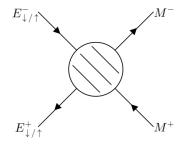
Solution

- 1. Start with a gauge-invariant (GI) description of particles, combine fermions with Higgs field h $\ell^{\pm} \rightarrow L^{\pm} = h\ell^{\pm}$
- 2. Fröhlich-Morchio-Strocchi (FMS) mechanism relates quantities of GI particles to perturbation theory¹²³ $L^{\pm} \xrightarrow{FMS} \ell^{\pm}$
- 3. LO contribution equal to regular calculations $\langle L^{\pm} ... \rangle = \langle \ell^{\pm} ... \rangle + \text{Higher orders}$

¹Fröhlich, Morchio, and Strocchi 1980

²For a review see Maas 2019

³For the lepton composite-operator see Afferrante et al. 2021


Our initial process

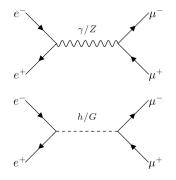
- 1. Use four-point function of composite electron-positron scattering to muon-antimuon⁴ $\langle E^-E^+M^-M^+ \rangle$
- 2. FMS expansion in elementary e, μ and h $\langle E^-E^+M^-M^+ \rangle = \langle e^-e^+\mu^-\mu^+ \rangle + \langle he^-e^+\mu^-\mu^+ \rangle + \dots$
- 3. Leads to additional contributions in the (differential) cross section
- 4. Effects of GI approach are compatible with data so far, but...

⁴Egger, Maas, and Sondenheimer 2017

Central questions

- Are the additional contributions relevant in high-energy collisions?
- Can better precision in low-energy results resolve these contributions?
- How are different initial helicity configurations affected?

Research

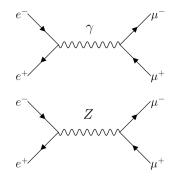

Approach

- Calculate (differential) cross section from standard matrix elements M_S up to NLO for initial states E⁻E⁺, E⁻_↑E⁺_↑, E⁻_↑E⁺_↓ ... → M⁻M⁺
- ► Include contributions from the GI approach $d\sigma_{FMS} \propto |\mathcal{M}_S + \mathcal{M}_{FMS}|^2$
- Compare results between both approaches $\frac{d\sigma_{FMS}}{d\sigma} \propto 1 + \frac{2Re(\mathcal{M}_{S}\mathcal{M}_{FMS}^{*})}{|\mathcal{M}_{S}|^{2}} + \frac{|\mathcal{M}_{FMS}|^{2}}{|\mathcal{M}_{S}|^{2}}$

Tree-level

Results

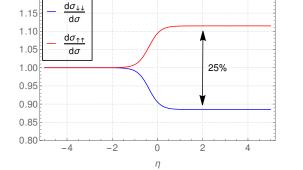
- Four contributions to the tree-level cross sections $d\sigma \propto |\mathcal{M}_{\gamma} + \mathcal{M}_{Z} + \mathcal{M}_{h} + \mathcal{M}_{G}|^{2}$
- No effects from the FMS approach $d\sigma_{FMS} = d\sigma$
- γ and Z main contributions



Tree-level

Results

- External masses can be neglected
- For massless external particles only helicity configurations e⁻_↓e⁺_↓ and e⁻_↑e⁺_↑ survive
- Scalar effects vanish as Yukawa-coupling $\propto m_{e/\mu}$
- Compare different initial helicity cross sections dσ_{↓↓} and dσ_{↑↑}



1.20

Highlights

- Polarization effects remain visible at high energies
- Helicity most relevant for forward-scattering

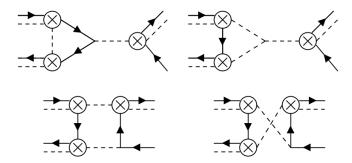
Tree-level

Differential polarizations at 1 TeV

First remarks

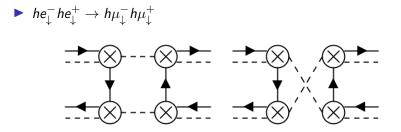
- ► FMS terms couple for massless external states only to fields with negative helicity L[±]_↓ = hℓ[±]_↓, L[±]_↑ = ℓ[±]_↑
- Leads to matrix elements with up to four additional Higgs contributions → 16 possible sets of matrix elements
 ⟨E_↓⁻E_↓⁺M_↓⁻M_↓⁺⟩
 → ⟨e_↓⁻e_↓⁺µ_↓⁻µ_↓⁺⟩ + ⟨he_↓⁻e_↓⁺µ_↓⁻µ_↓⁺⟩ + ... + ⟨he_↓⁻he_↓⁺hµ_↓⁺hµ_↓⁺⟩
- ▶ No difference to standard perturbation in process $E^-_{\uparrow}E^+_{\uparrow} \rightarrow M^-_{\uparrow}M^+_{\uparrow}$
- ▶ Strongest amplification possibly for experimental setup of $E^-_\downarrow E^-_\downarrow \to M^- M^+$

Feynman diagrams


- Same topologies for loop diagrams for one Higgs insertion in FMS contributions
- \blacktriangleright Composite state contributes as special interaction vertex \rightarrow allows for diagrams with Yukawa term in external states
- Diagrams more restricted for more Higgs insertions
- How do these two aspects interplay?

Three Higgs insertions

$$\blacktriangleright he_{\downarrow}^{-}he_{\downarrow}^{+} \rightarrow h\mu_{\downarrow}^{-}\mu_{\uparrow}^{+}$$



Only triangle and box diagrams

Four Higgs insertions

Only box diagrams

Overview

- Generation of helicity one-loop diagrams with QGraf ⁵ for different helicities
- Strong difference in position of Higgs insertion

$$h_1e^-h_2e^+
ightarrow h_3\mu^-h_4\mu^+$$

Helicity	No FMS	h_1	h_1h_2	h ₁ h ₃	$h_1h_2h_3$	$h_1 h_2 h_3 h_4$
$\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow$	197	181	21	224	21	9
$\downarrow\downarrow\downarrow\downarrow\uparrow$	206	238	21	27	9	0
$\downarrow\downarrow\uparrow\uparrow$	196	181	22	0	0	0
$\downarrow\uparrow\downarrow\uparrow$	266	31	0	13	0	0
$\downarrow\uparrow\uparrow\downarrow$	265	31	0	0	0	0
$\uparrow \uparrow \uparrow \uparrow$	197	0	0	0	0	0

Next steps

- Deal with WF-renormalization and external composite states
- Calculation of $d\sigma$ for different initial and final leptons
- Include external masses
 - \rightarrow Spin treatment for chirality \neq helicity
 - \rightarrow Increased number of contributions

- Gauge-invariant description of the SM particles leads to composite-operator formalism
 ℓ[±] → L[±] = hℓ[±]
- Yields further matrix amplitudes and therefore adds to the differential cross section dσ_{FMS} ∝ |M_S + M_{FMS}|²
- Effects on leptons could be relevant for future high-energy and precisions measurements in FCC-ee, CLIC, ILC...

References I

- Fröhlich, J, G Morchio, and F Strocchi (1980). "Higgs phenomenon without a symmetry breaking order parameter".
 In: *Physics Letters B* 97.2, pp. 249–252.
- Maas, Axel (2019). "Brout–Englert–Higgs physics: From foundations to phenomenology". In: Progress in Particle and Nuclear Physics 106, pp. 132–209.
- Afferrante, Vincenzo et al. (2021). "Testing the mechanism of lepton compositeness". In: *SciPost Physics* 10.3. DOI:

10.21468/scipostphys.10.3.062. URL:

https://doi.org/10.21468%2Fscipostphys.10.3.062.

Egger, Larissa, Axel Maas, and René Sondenheimer (2017).

"Pair production processes and flavor in gauge-invariant perturbation theory". In: *Modern Physics Letters A* 32.38, p. 1750212.

 Nogueira, Paulo (Mar. 1, 2022). QGraf. Version 3.5.1. URL: http://cfif.ist.utl.pt/~paulo/qgraf.html.
 Shtabovenko, Vladyslav, Rolf Mertig, and Frederik Orellana (2020). "FeynCalc 9.3: New features and improvements". In:

Computer Physics Communications 256, p. 107478.