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Abstract

The microscopic nature of Dark Matter is one of the most pressing and challenging problems
in current particle physics. There is strong observational evidence for its existence based on
astrophysical and cosmological observations on large scales. Searches for direct detection of
particle Dark Matter at dedicated experiments and at colliders have not found any concrete
signals that would illuminate our understanding of Dark Matter at the microscopic level.
This has lead to an increased interest in novel ways of constructing microscopic Dark Matter
models. Among them are non-Abelian, confining gauge theories in which the Dark Matter
candidates are bound states within a rich sector of further dark states. Their bound state
nature poses challenges in providing theoretical description and necessitates the use of non-
perturbative methods. In this thesis Sp(4) gauge theory with two fermions is investigated as
a model of composite Dark Matter. There are several open questions relevant for this model
in a Dark Matter context. What are the symmetries of the theory with non-degenerate
fermions and what are the symmetries of the dark hadron sector? What is the mesonic
spectrum of the non-Abelian theory as a function of the fermion masses? Which degrees
of freedom describe the low-energy physics? In order to answer this, the methods of lattice
gauge theory are used. The spectrum of low-lying pseudoscalar, vector and scalar states is
determined and a description of their multiplet structures based on global symmetries is given.
The numerical investigation of the mesonic spectrum includes flavour non-singlet and singlet
states for degenerate and non-degenerate fermions. The mass hierarchies of the non-singlet
states and the pseudoscalar singlets are established as a function of the fermion masses. The
results on the scalar singlet are inconclusive, but they are consistent with potentially light

masses. A first exploratory investigation of pseudoscalar scattering lengths is performed.



Kurzfassung

Die mikroskopische Struktur Dunkler Materie ist eines der grofften und wichtigsten ungelosten
Probleme der modernen Teilchenphysik. Astrophysikalische und kosmologische Beobach-
tungen liefern starke Indizien fiir dessen Existenz. Suchen, an Teilchenbeschleunigern und
in eigens dafiir geschaffenen Experimenten, nach neuen Elementarteilchen, die Dunkle Ma-
terie bilden konnen, konnten bisher nicht Klarheit in unser Verstandnis der mikroskopischen
Struktur Dunkler Materie bringen. Das Ausbleiben eines direkten Nachweises motiviert
die Konstruktion von neuartigen mikroskopischen Modellen der Dunklen Materie. Dazu
zahlen nicht-abelsche Eichtheorien, in denen Dunkle Materie ein Bindungszustand inner-
halb eines Dunklen Sektors ist, der Confinement unterliegt. Die theoretische Beschreibung
von Bindungszustinden ist herausfordernd und benétigt nicht-perturbative Methoden. In
dieser Arbeit wird eine Sp(4) Eichtheorie mit zwei fundamentalen Fermionen als Modell
von Dunkler Materie untersucht. Im Kontext eines Modells von Dunkler Materie beste-
hen einige offene Fragen zu dieser Theorie. Was sind die globalen Symmetrien mit nicht-
entarteten Fermionen und was sind die Symmetrien des dazugehorigen Hadronenspektrums?
Wie sieht das Mesonenspektrum als Funktion der Fermionmassen aus? Welche Freiheits-
grade beschreiben die Niederenergiephysik dieses Modells. Um diese Fragen zu beantworten,
wird die Methodik der Gittereichfeldtheorien verwendet. Die Massen der niederenergetischen
pseudoskalaren, vektoriellen und skalaren Mesonen werden bestimmt und eine Beschreibung
der Symmetriestrukturen des Spektrums wird beschrieben. Die numerische Untersuchung
des Mesonenspektrums beinhaltet die Singulett- und nicht-Singulettzustande der globalen
Flavoursymmetrie. Die Massenhierarchie der nicht-Singulettzustande und pseudoskalaren
Singulettzustande als Funktion Fermionmassen werden ermittelt. Die Massen der skalaren
Singulettzustanden konnten nicht ausreichend signifikant bestimmt werden, sie sind allerd-
ings konsistent mit relativ leichten Massen. Eine explorative Untersuchung der Streulangen
der pseudoskalaren Mesonen wurde durchgefiihrt.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is currently the best available description of
three out of the four fundamental forces in nature. It describes electromagnetism and the
weak interaction combined in a unified description as well as the strong interaction. Math-
ematically it is formulated as quantum field theory (QFT). So far, it successfully describes
all experimental observations made in dedicated particle physics experiments.

While the SM is extremely successful at explaining almost all observed physical phenom-
ena, it is still incomplete. It does not contain a quantum description of gravity, where the
most accurate description is currently given by the general theory of relativity (general rel-
ativity, GR). The SM is unable to explain astrophysical observations of Dark Matter (DM),
whose gravitational effects in astronomy and cosmology are a well-established empirical fact.
It is, however, completely unknown what causes these effects on a microscopic level.

The main motivation for models of particle DM are briefly reviewed in Sec. [I.I} This
includes an overview of astrophysical and cosmological evidence for DM in Sec. [[.1.1] a
discussion of the small structure problems in Sec. and a review of constraints on self-
interacting DM in Sec. [[.1.3] In Sec. DM as a thermal relic is discussed and the
Strongly Interacting Massive Particles (SIMP) paradigm is introduced. In Sec. the core
concepts of non-Abelian gauge theories such as asymptotic freedom and chiral symmetry
breaking will be discussed. This will be complemented by discussions of specifics of Quantum
Chromodynamics (QCD) which motivate DM model building with other non-Abelian theories
as a model of SIMP DM. In Sec. the symmetry patterns of QCD will be generalized to
real and pseudo-real representations and the construction of an effective field theory (EFT)
will be discussed in Sec. . In Sec. a model of SIMP DM based on Sp(2N) gauge theories
is introduced which will be studied throughout the remainder of the thesis. In Sec. the
relevance of Sp(2/V) theories for other models of Physics Beyond the Standard Model (BSM



CHAPTER 1. INTRODUCTION

physics) is briefly discussed.

1.1 Dark Matter

1.1.1 Observational evidence

Empirical evidence of Dark Matter comes from observations on a variety of different scales —
see e.g. [7H9] for overviews. On a galactic scale, the rotation curves of spiral galaxies [10}/11]
are one piece of evidence. The rotational velocity is expected to fall off as a function of the
distance to the centre of the galaxy. However, a roughly constant velocity distribution is
observed, indicating the existence of additional non-visible matter surrounding the galaxy.

On larger scales, observations of gravitational lensing caused by a cluster of galaxies allows
a determination off the mass distribution within the cluster [12]. A particularly important
case of (weak) gravitational lensing is seen in the bullet cluster merger where the reconstructed
gravitational potential is offset from the centre of the visible mass implying the existence of
another form of non-visible matter. The astrophysics of the merging galaxy clusters provide
constraints on the self-interaction of DM [13]. The strong lensing of galaxy clusters [14]
and measurements of their internal density profiles [15] provide further constraints on these
scales.

Further evidence for DM can be extracted from the anisotropies of the cosmic microwave
background (CMB). In a world without DM, the density perturbations in the early universe
would not have been sufficiently strong in order for the currently observed structures of visible
matter to form. This implies, that non-visible matter, i.e. DM, is required to facilitate the
structure formation from the observed small CMB anisotropies [7,[§].

This is not an exhaustive list of empirical evidence for the existence of DM. A discussion
of further observations as well as a guide to further literature can be found in Ref. [9].

These observations suggest the existence of an additional form of non-standard matter.
Given that all aforementioned observations are of gravitational origin, it cannot be excluded
that they are caused by an incomplete description of gravity at galactic scales and beyond.
This has lead to the development of modified theories of gravity |[16]. These approaches often
have difficulties describing the observed effects of DM on all length scales — see the Particle
Data Group’s (PDG) review [17] and references therein. As of now, particle DM is the most
widely pursued hypothesis.

Assuming particle DM, some constraints on its properties can be deduced. It is required
that all astrophysical observations can be explained by the additional particle content beyond
the SM. Furthermore, any candidate theory must be compatible with the non-observation
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CHAPTER 1. INTRODUCTION

of any physics beyond the SM at current collider and direct detection experiments. This
entails that DM can have only minuscule charges under any other SM charge. Astrophysical
observations further constrain DM self-interaction. This will be discussed in more detail in
Sec. While model specific limits on DM candidates can impose strong constraints,
model independent bounds on the DM itself are extremely loose with a lower bound on
fermionic DM of m > 70 eV and m > 10722 eV for bosonic DM. Assuming that particle DM
is point-like, an upper limit of 5 solar masses can be established [17]. Note, that some of
these constraints are modified if DM is made of more than one species of particles.

1.1.2 Small-scale structure problems

While the hypothesis of cold, non-interacting DM is extremely successful at explaining the
observed astrophysical structures at large scales, i.e. at the scales above 1 Mpc. Below these
scales, tensions appear when comparing gravitational simulations of DM to observation. The
most pressing small-scale issues are known as the core-vs-cusp problem, the too-big-to-fail
and, initially, the missing satellites problem — see [18] for a review.

The core-vs-cusp problem refers to the mismatch between the expected DM density pro-
files close to the galactic centre within DM dominated galaxies. Simulations of cold, col-
lisionless DM predict a cusp-like rising density profile towards the galactic centre whereas
a flat density profile is observed. An open question here is the influence of baryonic mat-
ter on the density profiles obtained from numerical simulation. Present-day simulations have
mostly been performed with DM only due to the increased complexity of adding the baryonic
feedback [18,/19].

The too-big-to-fail problem concerns galaxies whose DM halos have a large central mass
of roughly 10'° solar masses. Galaxies with halos of this mass are believed to always facilitate
star creation of its enclosed baryonic matter. However, fewer galaxies of this kind have been
observed than predicted. Since the associated baryonic mass is expected to be a small fraction
of the total mass in these systems, the effects of neglected baryonic feedback are likely smaller
than in the core-vs-cusp problem [17][18].

The missing satellites problem refers to the non-observation of comparatively small satel-
lite galaxies with masses as low as 300 solar masses. This is in tension with simulations
of cold non-interacting DM which predict a larger number based on the expected number
of DM halos that can accommodate such satellite galaxies [17,|18]. Recent investigations
suggest that based on recently improved detections of satellite galaxies and a better under-
standing of dwarf galaxies in general might explain the apparent mismatch and might even

provide an excess of satellite galaxies [20]. The missing satellite problem is now thought to



CHAPTER 1. INTRODUCTION

be resolved [21].

1.1.3 Self-Interacting Dark Matter

One way to explain the persisting small scale structure problems is to no longer assume col-
lisionless DM but self-interacting DM (SIDM) with comparatively large self-scattering cross-
sections o [22]. The relevant quantity here is the ratio o/m between the DM self-scattering
cross-section ¢ and the DM mass m. It is important to note the potential velocity depen-
dence of this quantity. Astrophysical observations and constraints on DM self-interaction
are obtained at different scales (galaxy cluster, groups, individual galaxies). The collision
velocity of DM particles depends on the scales of the observed systems. Here, a brief overview
of the constraints at different collision velocities is given.

Recent analyses of clusters with a mean velocity of about 1500 km /s obtained constraints
as low as o/m < 0.13cm?/g, but noted possible systematic uncertainties at the level of
0.1cm?/g [14]. Other studies obtained similar but slightly looser constraints at comparable
collision velocities between 1000 —2000 km/s at o/m < 0.19cm?/g [15] and o/m < 0.35¢cm? /g
[23]. The quoted values are understood at a 95% confidence level. These investigations often
prefer a non-vanishing self-scattering cross-section.

At lower velocities the self-interaction cross-section is less constrained. Simulations of
SIDM suggest that the too-big-to-fail and the core-cusp problem can be addressed by a
(velocity-independent) SIDM cross-sections of around o/m = 0.5 — 10cm?/g [17,24]. In
light of the constraints at high collision velocity, a velocity dependent cross-section appears
favourable. Much stronger cross-section at velocities below 20 km/s would also be able to fit
stellar dispersions [21].

These findings based on SIDM simulations generally assume only a single DM particle
coupled through a light scalar or vector mediator to the SM. In particular, the physics of
richer dark sectors containing more than a single DM candidate and a mediator is less studied.
This is particularly relevant for models of hadron-like DM where dark sector particles are
confined under a new gauge force. These sectors additionally permit different, stable DM
candidates with distinct masses and interactions. The individual components could then
provide different contributions to self-interactions [21].

Overall, the proposition of DM self-interactions is promising. At comparatively large
velocities stringent bounds from strong-lensing in galactic clusters and groups exist. In order
to explain the small-scale structure problems a velocity dependent self-scattering cross-section
appears favourable with scattering cross-sections ranging between o/m = 0.1—10 cm? /g from

large to low velocities.
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1.1.4 Thermal Particle Dark Matter: WIMPs and SIMPs

If a dark sector is coupled by any mediator to the SM, then it is reasonable to expect that the
dark sector was in thermal and chemical equilibrium with the SM in the early, hot and dense
universe. Depending on the mediator, equilibrium between DM and the SM might even be
unavoidable. Furthermore, thermal DM can provide production processes of DM. Among
these processes the freeze-out mechanism has been considered in many DM models — see
e.g. [8] for a textbook review. In this scenario DM is thermally coupled to the visible sector
in the early universe. As the universe cools and expands a DM number changing process
falls out of equilibrium and reduces the overall number of DM particles in the universe. This
process is then stopped once the interaction rate drops below the Hubble rate H, which
parameterizes the expansion of the universe. At this point the DM number freezes. This
scenario places further constraints on the underlying DM model.

The coupling to the SM needs to be sufficiently strong to allow a thermal equilibrium,
while simultaneously evading constraints from collider and direct detection searches. The DM
number changing process must lead to the observed DM relic density in the current universe
after freeze-out. The former constraint restricts the possible coupling strengths between the
dark sector and the SM, while the latter requirement can usually be used to constrain the
DM particle mass.

A particularly popular case is obtained when the number depletion process is provided
by the scattering of two DM particles into two SM particles. Under some assumptions
(among them are homogeneity and isotropy [17]) the relic density is obtained by solving the

Boltzmann equation

dn

pn + 3Hn = —(02pM_2sMV) (n2 - nzq) ) (1)

where n denotes the DM number density and n.q its value at the equilibrium, A the Hubble
rate and (oopar—2snv) the thermal average of the depleting cross-section times the DM
collision velocity. This leads to a typical DM mass scale in the range of mpy ~ TeV, ie. at
the electroweak scale. These DM models are commonly called Weakly Interacting Massive
Particles (WIMPs) and have attracted substantial theoretical and experimental interest over
the past decades. This has lead to stringent exclusion limits of WIMP DM models since
many experiments specifically targeted the WIMP scale in their searches.

Recently, in light of the non-detection of DM and the previously discussed small-scale
structure problems, other freeze-out mechanisms have gained increasing interest. Specifically,

models in which the number depletion process occurs purely in the dark sector through
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processes such as nDM — 2DM. In particular, the 3DM — 2DM process has gained
significant attention. This process already implies the existence of DM self-interaction. By
considering cosmological constraints it was shown that such a process points towards strongly
interacting DM and this scenario was named Strongly Interacting Massive Particles (SIMPs)

[25-27]. The relevant Boltzmann equation, using the same assumptions as in the case of the
WIMP scenario, reads

dn

I +3Hn = —<U3DM—>2DMU2> (n3 - ”2”eC1) ) (2)

Based on the solution to this equation, the typical SIMP DM particle is expected to be
below 1 GeV where experimental constraints are relatively loose. These models naturally
provide larger self-interactions as WIMP like models and are thus better suited to resolve
small-structure problems. Since thermal equilibrium with the SM is required for freeze-out,
SIMP models require a mediator into the SM.

Among the many possible models, that can accommodate a SIMP freeze-out, dark sectors
based on QCD-like theories, i.e. asymptotically free, non-Abelian, confining gauge theories
with fermionic matter which exhibits spontaneous chiral symmetry breaking, are particularly
exciting — see Sec. They can provide a rich sector of dark hadrons and can naturally
have 3DM — 2DM interactions. The additional global symmetries of the dark sector can
guarantee the stability of the DM candidate and portal mediators into the SM allow for the
dark hadrons to always be SM singlets. The existence of 3DM — 2DM interactions can be
understood by considering effective descriptions of such theories. This will be discussed in

Sec. [L.3]

1.2 Non-Abelian Gauge Theories and Quantum Chro-

modynamics

Here, the most relevant details of non-Abelian theories in general and QCD in particular will
be reviewed. This includes their microscopic description, the global symmetries of the theory
itself and the hadron spectrum in particular, and its generalizations to non-SU(N) theories

and fermions under different representations.



CHAPTER 1. INTRODUCTION

1.2.1 Lagrangian and Action

The Lagrangian of a set of matter fields {¢)y} with masses of m; charged under a colour
group is given byE|

£(r) = 3T [Fu (P (5)] 4 3709 (D) + me) v () Q
f

where we consider Euclidean spacetime and the Dirac gamma matrices 7, obey {v,, %} =
20,1 unless stated otherwiseﬂ. Additionally, the matrix v5 = v1727y370 is introduced, which
anti-commutes with all other y-matrices. The adjoint spinor is denoted as ﬁf(x) and is
defined as

by = w}%- (4)

In (3), F,.(z) is the field-strength tensor and D, (x) is the covariant derivative for a given
gauge group. Different fermion species are labelled by the index f. These two quantities can
be expressed in terms of the spin-1 gauge fields A, (x) as

Flu(z) = 0,A,(7) — 0,Au(x) +ig [Au, Al (5)
D,(x) =0, +igA,(z). (6)

If the commutator [A,,, A,] is non-vanishing then self-interactions of the gauge fields occur in
these theories and the gauge theory is called non-Abelian. The Lagrangian is invariant under
a local symmetry group generated by the generators 7% of a symmetry group G which obey the
commutation relations [t 7°] = ife7¢ where the Latin indices a, b, c label the generators.
The gauge fields can be expressed as components of the generators A, (r) = Af.(z)7* and the

colour indices can be made explicit as

Fo(2) = 0,A,(2)" — 0,4, (x)" — g ALA; ™)
(Dl))yy = 650y + 975 AL, ®)

Note, that the structure constants f®¢ are in the adjoint representation of the gauge group

while the matter fields can transform under a different representation of the gauge group in

!The notation of [28] after rescaling the gauge fields by a factor of é is used.

?In principle, a term e, o F* (2)F*? (z) may be added. For the purposes of this thesis the coefficient is
set to # = 0 and only theories where this term is not present are considered.
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which the generators are represented by matrices T%ﬂ. The Lagrangian is invariant under
gauge transformations of the local symmetry group G. Specifically, under a hermitian group
element U the matter fields in the fundamental representations and the adjoint gauge fields
transform as

v = Ulz)(x) (9)
) = P(x)U ()t (10)
Au(a) = U(2)Au(2)U () +i(8,U (2))U ()" (11)

leaving the Lagrangian invariant. Note, that the transformation acts differently on matter
fields if they are charged under a non-fundamental representation — e.g. in the two-index
antisymmetric representation the fermion field ¢ transforms into ¢ — U(z)y(x)U(x)" [29].
In the absence of fermions in a non-Abelian gauge theory, pure Yang-Mills theory is recovered.

The Lagrangian is related to the action and the partition function in Euclidean metric as

2= [ DAy, Gl e (12)
S[A,. 4, 9] = / C(x)ds (13)

In this thesis, only Dirac fermions are considered. Note, that other matter fields such as
Weyl or Majorana fermions can also be charged under non-Abelian gauge theories.

1.2.2 Asymptotic Freedom and Confinement

One of the key features of non-Abelian gauge theories with a sufficiently small number of
matter fields is the existence of asymptotic freedom. This can be read off from the £ function

which gives the dependence of the running coupling on the renormalization scale p as B(g) =
dg

glnp”

for massless fermions is given by [30}31]

Given the Lagrangian from above the g-function at one loop in perturbation theory

B9) = - (5 Cu(6) - 3N ) 12+ Ol (14

3 1672

3In QCD the matter fields transform under the three-dimensional fundamental representation of the gauge
group SU(3). while the gauge fields are in the eight-dimensional adjoint representation. In this context the
fermion fields are the quark fields and the gauge bosons are the gluons.
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where the coefficients depend on the gauge group and the fermion representation through
facd foed = C5(@)dap and Tr(t%(R)TY(R)) = T(R)d4 with 7%(R) being the generators of the
group G in the representation R. As long as the number of fermion flavours is smaller than
NAF — M7 (15)
AT (R)
the first coefficient of the f-function is negative, and the running coupling gets arbitrarily
small at large energies. Thus, the coupling is small at larger energies and the theories can
be treated within perturbation theory (PT) up to genuinely non-perturbative effects. This
entails that the theory is consistent up to arbitrarily large energies — the theory is ultraviolet
(UV) complete.

A key empirical, non-perturbative fact of Quantum Chromodynamics is the absence of
free quarks or gluons in the spectrum of observed particles. All observable states need to
be singlets under the colour group. Given that neither the gauge fields nor the fermion
fields are colour charge singlets (they transform non-trivially under gauge transformations),
the observable states need to be bound states of the fundamental fields, called hadrons. See
[32,33] for detailed discussion of confinement. The observable spectrum of hadrons of any non-
Abelian gauge theory as defined above needs to reflect all possible ways of constructing colour
singlets. In QCD, these bound states are either mesons (quark-antiquark-states), baryons
(three-quark-state) or other exotic states such as tetraquarks (four quarks), pentaquark (five
quarks), glueballs (only gauge fields) and hybrid states. The lightest hadronic states are of
particular interest for models of physics beyond the SM. In the following section the light
hadronic spectrum of QCD will be reviewed.

1.2.3 The Light Hadron Spectrum of Quantum Chromodynamics

The hadron spectrum of QCD has inspired different models of BSM physics. In particular,
the lightest states of the spectrum are of relevance. The most recent experimental results on
the hadron spectrum can be found in the PDG review [17]. The lightest states of QCD are the
pseudoscalar J¥ = 0~ pions 7 which occur as charged pions 7% and a neutral pion 7°. The
neutral pion 7° is the lightest state in the QCD spectrum with a mass of roughly 135 MeV
while the charged pions are slightly heavier at 139 MeV. Other light pseudoscalar hadrons
include the four kaons, where two of them are the charged K+ states at 493 MeV while the
other two are the neutral K and K° which are slightly heavier at 497 MeV. An eight and
ninth light pseudoscalar is given by the 1 hadron which is slightly heavier than the kaons at
around 547 MeV and the n’ hadron at 958 MeV. The number of light pseudoscalar states
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Light hadron masses [MeV]
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Figure 1: Light hadronic states of the QCD spectrum. These states include the pseudoscalar,
scalar and vector mesons as well as the spin-% proton and neutron. Note that the experimental
uncertainties and the widths of these states can be sizeable. They are omitted for visual
clarity and only the currently best estimate [17] is depicted. All other states are heavier than
1 GeV.

can be understood in the context of approximate global symmetries of the QCD Lagrangian.
This also applies to the other hadron states and will be discussed in section [I.2.4]

The sector of light, scalar hadrons contains the very broad f,(500) particle as its lightest
state. The experimental status of the light scalar mesons has been a long-standing puzzle. A
detailed discussion can be found in the PDG review article “Scalar Mesons below 1 GeV” [17].
Further scalar states are given by the three a¢(980), the single f;(980) and the four K;(700)
which are sometimes denoted as the k. The numbers in parentheses give their approximate
mass in MeV, i.e. the f3(500) has a mass of roughly 500 MeV.

In the vector sector three vector mesons p* and p° exist at an energy of 775 MeV. Further
vector states are given by the w(782), the ¢(1020) and the four K*(892) states. The light
hadronic states of QCD are completed by the proton (938 MeV) and the neutron (939 MeV)
as the lightest fermionic bound states. All other states are heavier than 1 GeV and heavier
than all aforementioned hadrons. A plot of all light states is given in figure [T}

Overall, a pattern of several hadrons that have approximately the same mass appears.
Note, that the pion states are substantially lighter than all other states. This pattern can be
explained by considering the global symmetries of the theory.

10
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1.2.4 Global Flavour Symmetries, Chiral Symmetry and Hadron
Multiplets

The Lagrangian of isolated QCD (i.e. the Lagrangian of quarks and gluons without taking
the effects of the electroweak sector into account) is of the form with an SU(3) colour
group. The fermionic content is given by six massive quarks called up u, down d, strange
s, charm ¢, bottom b and top t. The latter three are all heavier than all the light hadrons
mentioned above and have distinct masses. They will be disregarded for the purposes of this
discussion. The other three light quarks are, however, lighter than all the hadrons mentioned
above.

Let us focus for now on the pseudoscalar sector of the light meson spectrum. The mesons
can be identified as bound states of the three light quarks. Specifically, interpolating fields of
the mesons are given in terms of the quark spinors and the adjoint spinors. An appropriate

choice of gamma matrices ensures the correct quantum numbers J = 0~

7t = uysd Kt =uyss
T = dvysu K™ =svyu
1 _
70 = 7 (d%d — umi) K° = dvs5
1 - _ -
n= % (d%d + uyu — 23755) K° = sy5d
1 _
' = —= (dysd + uyti 4 5755) . (16)

V3

Some mesons are almost mass-degenerate as a consequence of the global symmetries. We will
mostly follow the treatment in [28]. It is convenient to split the fermion fields into left- and
right-handed components by introducing the projection operators Pg/;, and defining their

action on four-component Dirac spinors as
1 + V5 . 1 — 5
2 2
Pryp =g Pr =4y (17)

Pr =

where 1 is the identity matrix in Dirac space. The fermionic part of the Lagrangian density

11
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for a single fermion can be rewritten as

&WND“@/J = QZL,YMD}LwL + Q/GR’V;LD;LQ/}R
mpy =m (Vpbr, + rir) - (18)

Observe that the kinetic part of the Lagrangian does not mix left- and right-handed com-
ponents. A combination of left- and right-handed spinors only occurs in the Lagrangian
in the presence of a fermion mass. For Ny fermions the kinetic part of the Lagrangian
is invariant under SU(Ny) x U(1) transformations of the left- and right-handed compo-
nent respectively. The Lagrangian of massless fermions is thus invariant under the group
SU(Ny) x SU(Ng)gr x U(1) x U(1). Since this symmetry does not mix the chiral compo-
nents of the spinor field, it is usually called chiral symmetry and the limit of all masses
approaching vanishing masses is referred to as the chiral limit. Obviously, the mass term
of the Lagrangian breaks this symmetry as the left- and right-handed components are no
longer independent. This can be seen by rewriting the spinor fields in a vector nota-
tion, ie. ¥ = (@El, - ﬂZfo) for the adjoint spinors and accordingly for ¥ and introduc-
ing the mass matrix M = diag(my, ... ,me). The fermionic Lagrangian is then given by
Ly =T (%Dule + M) U where 1y, denotes the Ny x N; unit matrix. For degenerate

masses both kinetic and mass terms are invariant under the transformations

U= Ty,

U=

U = Petoli,

U = Te My (19)

Here, T; are the generators of an SU(N;) symmetry. The symmetry group is SU(Ny)y X
U(1)y. Both terms in the fermionic Lagrangian are invariant because these transformations
only mix different fermion flavours but never change the structure of the chiral components.
The extra chiral rotations are given by inserting 5 into

I iaysT;
P’ = 'y,
1 _ Jloysin
U'=e AV
\Ij/ — \Ijefla"}%Ti,

U = \Ile_imsle, (20)

12
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which enlarges the symmetry in the absence of fermion masses to SU(Ny), x SU(Ny)g X
U(1)a x U(1)y. Thus, the hadron spectrum of QCD could be explained by an approximate
SU(N¢) x SU(Nf)r x U(1)a x U(1)y symmetry if all fermion masses are relatively light.
Additional small corrections due to the small fermion masses, which break the symmetry
further down to SU(Ny)y x U(1)4 x U(1)y, would appear. However, it turns out that this
symmetry is not realized in nature. The reasons for this are two-fold.

1.2.5 Chiral Symmetry Breaking and the Axial Anomaly

In the previous section, the global symmetries of the fermionic part of the Lagrangian was
discussed. The group SU(Ny) x SU(Ns)g x U(1)a x U(1)y was identified as the global
symmetry of the Lagrangian. However, the symmetries of the physical theory are not those
of the Lagrangian but those of the partition function. It can be shown that this causes an issue
in the case of the chiral rotation generated by the unit matrix 1y, in (20)) which is usually
known as the axial U(1)4. This symmetry is broken through quantum effects, i.e. through
non-invariance of the fermion measure in the path integral under the global U(1),. The
corresponding current is no longer conserved and thus the symmetry is not manifest in the
physical spectrum [34]. In the language of lattice field theory this corresponds to the fermion
determinant being non-invariant under this symmetry. See [28] for a demonstration of this
property on a lattice. This symmetry is not realized in QCD which is reflected in the meson
spectrum. The relatively large mass of the pseudoscalar meson 7’ and its dependence on the
number of colours IV, and fermion flavours Ny are directly linked to the azial anomaly [35,36).
In addition to the axial anomaly no effects of the full SU(Ny), x SU(Ny)r symmetry in
the meson spectrum are observed. If this were the case, the states with the same J quantum
number but opposing parity would be approximately degenerate in the presence of small
fermion masses. This is clearly not the case, as can be seen by comparing the pseudoscalar
states 0~ to the scalar states 07 in fig. [l The symmetry must be broken by a different
mechanism. This can be explained by considering the chiral condensate defined as

(0[w(0)®(0)[0). (21)

It has the same structure as the mass term in the Lagrangian and is therefore not invariant
under chiral rotations. If the chiral condensate (21)) is non-vanishing, this signals that the
ground state of theory is not invariant under the full symmetry of the Lagrangian and this
symmetry is said to be spontaneously broken and only the SU(Ny)y symmetry which leaves

the condensate invariant remains. This explains the mass differences between parity partners

13
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in QCD. In this way the chiral condensate acts as an order parameter for chiral symmetry
breaking. Note, that this symmetry is not always broken. At high temperatures the theory
undergoes a crossover phase transition in which chiral symmetry is again restored and the
chiral condensate vanishes. Thus, it is more appropriate to say that chiral symmetry is
hidden at low temperatures but re-emerges in the high-temperature case. This effect has
also been observed using lattice studies of the finite-temperature particle spectrum [37-39).
The spontaneous breaking of a continuous global symmetry has far-reaching consequences
for the mesonic spectrum since Goldstone’s theorem now applies (see [40] for a textbook
treatment) which implies the existence of massless bosonic states. In particular, when the
global symmetry is spontaneously broken from a global group G down to a smaller subgroup
H, the number of massless Goldstone states (sometimes also called Nambu-Goldstone bosons)
is given by the number of broken generators of G [41]. Here, symmetry breaking from
SU(Ny) x SU(Ny) — SU(Ny) occurs. This leads to N7 — 1 massless Goldstone modes. In the
presence of small but non-vanishing fermion masses chiral symmetry is only approximate.
Due to the explicit breaking from the mass terms the would-be Goldstone modes acquire a
small mass and are commonly referred to as (pseudo-)Nambu-Goldstone bosons ((P)NGB).

Through the axial anomaly the U(1) 4 is broken in QCD. At low temperatures the chiral
symmetry SU(Ny), x SU(Ny)g is spontaneously broken by the non-vanishing chiral con-
densate down to SU(Ny)y. Overall, the global symmetries of this gauge theory with mass-
degenerate fermion is given by

SU(Nyp)v x U(L)y. (22)

This line of reasoning can be straightforwardly generalized to situation where not all fermions
are mass-degenerate. For every N ](f) degenerate fermions a global symmetry (after accounting
for the axial anomaly and spontaneous chiral symmetry breaking) of SU(N ](f)) remains. In
the case of fully-degenerate fermion masses, the global symmetry is given by a product of Ny

individual U(1) symmetries.

1.2.6 Global SU(2)r and SU(3)r flavour symmetries in QCD

The similar masses of many hadrons can be understood through the approximate global
symmetries of the QCD Lagrangian. Assuming that up and down quark masses are light, an
approximate SU(2)r symmetry between those fermions manifests. In the context of QCD this
symmetry is usually called strong isospin. Additionally, the strange quark gives an additional

U(1) that preserves its fermion number and the additional U(1)y symmetry can be shown

14
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to cause baryon number conservation. Specifically, under an element U € SU(2)p the light
quark fields transform as

G)o ()= 0 ()=o)

where a and b are complex numbers for which |a|* + [0/ = 1. On any fermion bilinear with
two light quarks, such a flavour transformation decomposes into 2 ® 2 = 3 @ 1. This means
that the bilinear operators are either a triplet or a singlet under SU(2)r. The pion states
in form a triplet under this global symmetry, whereas the n and 7’ states are singlets.
This already can explain the approximate symmetry between all three pions and the distinct
masses for the n and 7. Furthermore, the SU(2)x transforms a kaon K into a superposition
of itself and the K°. This further explains the near degeneracy between K+, K° and their
antiparticles K~ and K°.

Since chiral symmetry was spontaneously broken, three almost-massless PNGBs appear.
Indeed, three pions are substantially lighter than any other state in the theory. They can be
identified as the PNGBs of the SU(2);, x SU(2)g — SU(2)y.

Similar considerations apply for the vector and scalar mesons. The p and a¢(980) mesons
form a triplet under SU(2)r while the w, the ¢ and both fj scalars appear to be singlets. The
approximate degeneracy between the vector K* mesons and the scalar Kj mesons arises in the
same fashion as for the pseudoscalar kaons. The quark structure of the scalar mesons is more
involved than those of the pseudo-scalars . Their quark content is still an open issue [17],
but there are strong hints that some of these states are tetraquark states or molecular bound
states of pions and kaons.

The approximate global SU(2)r symmetry of QCD appears to be a very good approxi-
mation of the underlying theory. A mass-difference between states from the same multiplet
has only been experimentally established for the pions where m,+ — m, = 4.5 MeV and
the kaons mgo — mg+ = 3.9 MeV. This indicates the presence of further symmetry breaking
effects in the SM due to the different electric charges of the v and d quarks as well as a small
mass difference between them [42].

A direct determination of the quark masses themselves is not possible. No quark has
been observed in isolation due to colour confinement [33]. Within QCD, the masses of quarks
can be calculated, however, they are not physical but scheme-dependent quantities. Quark
masses are only comparable when they have been calculated in the same renormalization
scheme at the same renormalization scale p. The light quarks of QCD are commonly given
in the MS scheme at a scale of u = 2 GeV [17]. Within this scheme the u quark has a
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| SU@2)r | |
T triplet
K four-plet
n singlet ’ SU@3)r ‘
n' singlet (m, K, n) octet
P) triplet n singlet
K* four-plet (p, K*,w) octet
w singlet 0] singlet
¢ singlet (a0, K¢, £0(980)) | octet
agp triplet fo(500) /0 singlet
K four-plet

f0(500) /o | singlet

f0(980) | singlet

Figure 2: Multiplets of the light mesonic states of QCD under SU(2)r and SU(3)p. In real-
world QCD these symmetries are broken by the non-vanishing and distinct quark masses as
well as electroweak interactions.

mass of 2.270% MeV, while the d quark mass is 4.7705 MeV [17]. This is consistent with
the expectation of small but non-vanishing masses based on the analysis of the light hadron
spectrum. In contrast, the strange quark s has a mass of 94 MeV at this scale in the MS
scheme.

Given that the strange mass (in this definition) is still lighter than the hadrons observed
in the physical spectrum, some imprints of an approximate SU(3)r symmetry and its spon-
taneous chiral symmetry breaking pattern remain. Under this symmetry group the mesons
appear either as octets or singlets. In the pseudoscalar sector the pions, kaons and the n
meson are the eight PNGBs of SU(3), x SU(3)g — SU(3)y and form an octet while the n/
remains a singlet. In the vector sector the p’s, K*’s and the w meson form the octet while
the ¢ is a singlet and in the scalar sector the octet consists of the ay(980), K and the f,(980)
mesons, while the f;(500) is a singlet.

The pattern of light mesonic states further provides a case for the existence of the U(1)4
anomaly. The absence of the anomaly would lead to an additional Goldstone mode in the
spectrum. In that sense, the anomaly provides mass to the 7’ prime which would otherwise
be a Goldstone boson. This can be seen from considering the limit of large-N gauge groups,
where the effect of the anomaly is suppressed by N and the 1’ has the same mass as the other
PNGB:s in the limit N — oo [35,136]. For later reference, the different mesonic multiplets of
QCD under SU(2)r and SU(3)r are shown in figure
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1.2.7 Conformal Window and Banks-Zaks fixed point

In section [1.2.2], it was shown that non-Abelian gauge theories lose asymptotic freedom if the
theory contains too many fermions, specifically more than NAF. At this point the theory is
no longer consistent up too arbitrarily high energies. It is no longer UV complete.

This poses constraints on possible non-Abelian extensions to the SM with fermions as
long as UV completeness is required. For models based on relatively light PNGBs, then
another constraint occurs. This can be seen by looking at the perturbative two-loop beta

function of massless quarks [43]

3 5

Bl9) = ~bogs— + Pige— + Olg"), (24)
o= (5 culc) - 3N (25)
By = (_%03(0) + ?CQ(G)NfT(R) + 402<R>NfT(R)) : (26)

where Cy(R) is the second Casimir operator of the fermion representation R. The beta func-
tion contains another zero for a number of fermions smaller than NAF. At this point the
theory develops an infrared (IR) fixed point known as the Banks-Zaks fixed point and the
theory is expected to go into a conformal phase in which chiral symmetry is no longer spon-
taneously broken [44]. In that case the Goldstone theorem no longer applies, and no PNGBs
will appear in the spectrum. The range of Ny in which the theory is chirally symmetric and
conformal but still asymptotically free is referred to as the conformal window.

The Banks-Zaks fixed point has also gained considerable interest as a model for extending
the SM. Theories close to the conformal window have been investigated in the context of
composite Higgs bosons. Depending on the specific model these theories can also provide
additional Dark Matter candidates and/or contain a partially composite top quark [45].

For Dark Matter models based on PNGBS, the occurrence of the infrared fixed-point will
set another limit on the allowed fermion content of such a Dark Matter model. Note, that the
exact value of this limit cannot be determined from perturbation theory and non-perturbative
determinations are required. These calculations have proven to be particularly challenging
the exact number N;Erit is still debated, see [46-48] for recent reviews. For a moderately small
number of fermions the chirally broken phase is, however, extremely well established. For
the remainder of this thesis only gauge theories with no more than Ny = 2 Dirac fermions in
the fundamental representation of the gauge group will be considered.
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1.2.8 Real and Pseudo-real Breaking Patterns and Diquarks

In Sect. it was shown that in SU(3) gauge theory with N; degenerate fundamentally
charged fermions, the global symmetry is SU(Ny)y x U(1) and in case of massless fermions
spontaneous chirally symmetry breaking from SU(Ny), x SU(Ng)g x U(1)y — SU(Ny)y X
U(1)y occurs, leading to NJ% — 1 pseudo-Goldstone bosons. The derivation of this pattern
in Sect. only used the decomposition into right- and left-handed components of the
Dirac spinors. Thus, this symmetry should be present for other gauge theories and fermion
representations as well. However, it could still be larger if an additional symmetry between
the different projections exists. This is indeed the case for Sp(2/V) theories (see appendix
for the defining properties of the gauge group) with fundamental fermions as there always
exists a global constant transformation S that fulfils

(r) = (r)" = -Sr*S, (27)
where 7% are the generators of Sp(2/V). The representation is said to be pseudo-real if
S? = —1 which is the case here. The colour matrix S is explicitly given by

SZiO’Q@lN, (28)

with o9 being the second Pauli matrix and 1y the N x N unit matrix. These equations
relate the fundamental representation of Sp(2/V) to its complex conjugate [49,50]. This can
be made explicit by rewriting the fermionic Lagrangian again in left- and right-handed chiral
Weyl components of the Dirac spinorsF_f]

Wi = (Zl> , (20)

and subsequently grouping the left- and right-handed components in a vector of spinors with
Ny Weyl components.

U} U;
vp=1| |, wr=| (30)
wle 7{Vf

4The left- and right-handed projections of the four-component Dirac spinors are denoted as 17, and g
and the corresponding two-component Weyl spinors as ¢; and 1),
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Making use of the chiral representation of the Dirac gamma matrices, they can be rewritten
in the massless, fermionic Lagrangian as block matrices of Pauli matrices — see Appendix [A]

T
= Y o, D" 0 (i
L;=Tr,D,V =i (w;) ( & UMD“> <¢> . (31)

Here, the four-component notation o, = (1,5) and & = (1, —¢) where o; are the usual Pauli
matrices was used. So far this is not different from the case of SU(3). Note that this equation
is implicitly written in flavour space, i.e. (ML, Y1) is a vector of 2V ¢+ Weyl components. Now,
the pseudo-reality of the colour group and S? = —1 are used, as well as the relation
090,09 = 65 (which is just the pseudo-reality condition for the fundamental representation
of Sp(N) = SU(2)). The fermionic kinetic term is rewritten as

T
. ¢7 5‘MD“ 0 ¢l
Lr=t (aﬁ%) < 0 JND“) (gﬁﬁ) ' (32)

Note, that the Dirac matrix term now has the same diagonal components. This implies
that both 11, and 025} have the same transformation properties. This is made explicit by

R A Y
Y= <azsw:> - (w) | (33)

The fermionic Lagrangian is rewritten as

introducing the notation

L; =iV, D", (34)

which makes it apparent that this Lagrangian is invariant under SU(2Ny) transformations of
the extended spinors U. The extended symmetry exists for any fermion representation that
fulfils the pseudo-reality condition (27)). In the case of SU(2) it is also known as the Pauli-
Giirsey symmetry [51,52]. The particular vector notation is known as the Nambu-Gorkov
formalism and the object ¥ is sometimes called the Nambu-Gorkov spinor [49]. A similar
argument applies to fermions in the adjoint representation of any gauge group. There, the
generators 7% (where a labels the different generators) are given by the structure constants

(7%)” = f which are antisymmetric in its indices. In this case

()" = (35)
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which is the same condition as in (27)) with S being the identity matrix and subsequently
S? = +1. The adjoint representation (and other representation fulfilling with S? =
+1) are called real representation. Rewriting the adjoint fermionic Lagrangian using the
same Nambu-Gorkov spinor as before, makes it apparent that also in this case the massless
Lagrangian is invariant under SU(2Ny) transformations. The global symmetry is enlarged
from SU(Ny)r, x SU(Ny)g to SU(2Ny) if the fermion representation is either real or pseudo-
real. All other representations are referred to as complex, as there is no isomorphism between
the fermion representation and its conjugate representation.

So far only the kinetic part of the fermionic Lagrangian was discussed. In a chirally broken
phase, the fermion condensate will further break the global symmetry. This will then be the
same global symmetry as for degenerate, massive fermions. The pattern of chiral symmetry
breaking can be deduced by examining the symmetries of the mass term for degenerate
fermions [53]. In terms of Nambu-Gorkov spinors for pseudo-real representations the mass

term can be shown to be [50]

- 1= 0 1 1. 0 1 ~

U = —-076,9 Nl O+ — 0,8 N ) (36)
2 =1y, O 2 =1y, O
1~ .

= —5@%25@11 +h.c., (37)
and for the real, adjoint representations

- 1=~ 0 -1 ~ 1=~ ~

IV = —-07q, Y)W 4 he = =UToFU + he. . (38)
2 —1y, 0 2

After introduction of a degenerate mass term and/or after spontaneous chiral symmetry
breaking the remaining symmetry is given by the subgroup of SU(2Ny) transformations that
leave the mass term invariant.

In the case of pseudo-real representations, they are the transformations U for which
UT'EU = E, (39)

holds. In equations , and the enlarged global symmetry has been made apparent
by rewriting the Lagrangian in terms of two-component Weyl spinors. Equivalently, it can be

rewritten in terms of the left- and right-handed projected Dirac spinors Pry and Pr. In the

T

.. were used. Expressing

case of Weyl spinors the (pseudo-)reality condition and 090,05 = &
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everything in terms of Dirac spinors this relation is replaced by
—Cy,C =11, (40)

where C' is the charge conjugation matrix. In the chiral representation it is explicitly given
by C' = iyy7, and C~! = —C* holds and the spinor (33]) can be written as [54]

s Yt _ (YL
e <—SC¢£) - (&R) | )

The role of the o3 in (33) is equivalent to charge conjugation of the Dirac spinor which ensures
that ¢, and ¢g transform under the same global group.

Note that the matrix E' is the flavour space equivalent of the colour matrix S as defined
in . It is the invariant tensor of Sp(2/N) groups. Thus, for pseudo-real representations
remaining symmetry is Sp(2/Ny). In the real case, the mass-term is slightly different. It is

invariant under all transformations that preserve
U'FU = F, (42)

which is the group of SO(2Ny) transformations. Even though the massless Lagrangian has
the same global symmetry for real and pseudo-real representations, the breaking pattern of

chiral symmetry breaking is distinct. In summary, three distinct patterns occur [53}55|56]

complex : SU(Nf)L X SU(Nf)R —)SU(Nf)V, (43)
real : SU(2Ny) =SO(2Ny), (44)
pseudo-real : SU(2Ny) —Sp(2Ny). (45)

The number of associated PNGBs of chiral symmetry breaking is obtained by counting the
number of broken generators. As noted earlier, complex representations have NJ? —1 PNGBs,
whereas for pseudo-real representations (2Ny —1)Ny —1 PNGBS and for real representations
there are (2Ny+1)Ny—1 PNGBs occur. Not only the global symmetry is enlarged compared
to a complex representation, but also the PNGBs and all other hadronic multiplets.

In the case of QCD the PNGBs are pseudoscalar mesonic bound states, i.e. bound states
of a light anti-quark and a light quark. In the case of real and pseudo-real representations
there are more Goldstone modes without increasing the number of fermion flavours in the
theory. One obvious question is to ask what operators correspond to the additional PNGBs?
In order to see this, it is instructive to consider the operator of a generic meson in terms of
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its chiral components. For concreteness, let us consider the 7% meson given by
uysd = urdgr + ugrdy,. (46)

Using ([41)), it follows that

(2 6)- (D) (3505 o
YR YR C D) \¥r Cir + Dipg Ctpp, — DSCyg |

where A, B, C, D are the Nyx N block matrices of the global SO(2Ny) or Sp(2Ny) (see [56] for
more specific parametrizations). Under a global transformation of a left-handed spinor
component can transform into its adjoint right-handed counterpart. When performing such
a transformation on a meson operator such as (46]), new operators of a fermion and a fermion
as well as an anti-fermion and another anti-fermion arise. These states are often referred
to as diquarks and anti-diquarks. Contrary, to QCD where diquarks are colour non-singlet
quantities, here these operators are colour singlets and correspond to physical states in the
mesonic spectrum. Their overall structure is 17 (... )y, for diquarks and (. .. )@Z_J]T for anti-

diquarks. The additional PNGBs are specifically of this form — as are the other states in the
enlarged meson multiplets.

1.3 Effective Field Theories

In composite DM models, the low-energy physics of the underlying theory is of particular
interest. This is especially the case if the DM candidate is the PNGB of a QCD-like theory.

A powerful tool, to make predictions in the low-energy, non-perturbative regimes of
strongly interacting theories is provided through effective field theories (EFTSs) [57-59]. They
provide a simplified, non-renormalizable description of the underlying UV complete theory
at low energies in terms of the low-lying bound-states and resonances. In an EFT descrip-
tion of confining theories the fermions and gluons are replaced as the degrees of freedom by
the lowest lying hadrons which govern its dynamics up to some energy cutoff. EFTs can
be constructed such that all global symmetries of the underlying UV complete theory are
preserved.
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1.3.1 Chiral Perturbation Theory

For theories close to chiral limit the PNGBs are the lightest states. The global symmetries
are given by the global breaking pattern from a symmetry group GG down to a subgroup H.
The number of PNGBs is then identical to the number of broken generators in G — H, i.e.
the number of generators that span the coset G/H. Denoting the broken global generators
by T, the PNGB fields are parameterized as

T =T, (48)

where the generators are normalized as Tr [T“T”] = §%/2. The field ¥ is introduced as

Y =exp (2in/fr) 1, (complex) (49)
Y =exp (2ir/f;) E, (pseudo-real) (50)
Y =exp (2ir/fr) F, (real) (51)

which is proportional to the chiral condensate (21 ensuring that the field has the correct
breaking pattern under chiral symmetry breaking. By canonically normalizing the PNGB
fields, the low-energy constant f, can be identified as the PNGB decay constant. A low
energy EFT at lowest order is provided by

2

Lop = 3T (0,205 . (52)

This describes the true NGBs as the components of m while maintaining the breaking pattern
since (X) o< I/E/F depending on the fermion representation. In this description, the fields
m¢ are massless. This Lagrangian describes only the dynamics of the true Goldstone modes.
An explicit mass term for sufficiently small fermion masses is added, which preserves the
same symmetries as the one of the underlying UV complete theory as

3

Lonsss = = (Tr [ME] + Tr M), (53)

where M is an appropriate mass matrix of the fermions and v3 is the magnitude of the chiral
condensate (21)). In the mass-degenerate case it is M = ml for complex representations,
M = mF for pseudo-real representations and M = mF for real ones. This can be generalized
to non-degenerate masses. In the complex case the matrix M is diagonal with entries m; while
in the pseudo-real and real case it requires correct assignment of the masses corresponding
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to the individual Weyl components [27]. If combined with the kinetic term of the massless
PNGBs this gives the effective Lagrangian of chiral perturbation theory (xPT) in the lowest
order in X as

2 3
Lifr = 72 T [0,20"51] — o (Tr [ME] + Tr [MIE1]) (54)

4
Since the EFT does not need to be renormalizable higher order terms such as Tr [@E@“ET} ?

could be included. For the purposes of this thesis, only the leading order contributions are
taken into account. The field ¥ can be expanded in terms of the PNGB fields as

2
c;%T =Tr [0, m0"7| — 32 Tr [r*0*md,m — 7" 7m0, 7]
203m 203m ®
T Tr [7*] + 3fi Tr [7*] + O (E) (55)

The product of the renormalization group dependent quantities, the renormalized chiral
condensate v and the renormalized quark masses m appearing in the mass matrix M is itself
renormalization group invariant. From the term quadratic in the PNGB fields follows the
universal PNGB mass. This relation can also be understood through the partially conserved
azial current leading to the Gell-Mann-Oakes-Renner (GMOR) relation

fﬁmi = —mevg, (56)

at this order in the expansion. This allows us to express the lowest-order expansion of chiral
perturbation theory in terms of two physical quantities m, and f, that can be calculated on
the lattice. Furthermore, the GMOR relation shows that the PNGB mass depends quadrati-
cally on the renormalized quark mass contrary to heavy fermion limit where the pseudoscalar
meson mass will depend linearly on the fermion mass. The GMOR relation will be useful in
testing the applicability of chiral perturbation theory, specifically it can be tested whether a
PNGB mass squared is indeed linear with respect to the fermion mass. In this expansion the
PNGB fields only occur in even powers. Thus, it cannot describe any process that involves
an odd number, even though such processes occur in QCD and thus the symmetry 7 — —7
is not present in the underlying theory. This can be remedied by noting an additional topo-
logical term of the action [60,/61] which can be written as the integral over the boundary of
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a five dimensional disk which is identified as the four-dimensional spacetime

S _—_m/ | (20 (57)
WV T 0407 Jo, |\ Ox ’

where the prefactor n has been shown to be an integer [60] and can be identified as n = N..

in SM QCD. Expanding again in PNGB fields 7 and making use of Stokes’ theorem reveals
that this Wess-Zumino-Witten (WZW) term sources processes with an odd number of PNGB
fields. At lowest order, this is the five-PNGB interaction

N,

"7 Tt [10,m,m0,mdpm] + O (m°/ 7). (58)

This term does not always appear. It requires a sufficient amount of fermions in the gauge
theory such that the fifth homotopy group of the coset G/ H is non-trivial [62]. Tt is equivalent
to the statement that at least five PNGB states under chiral symmetry breaking need to exist.
This implies, that for the existence of a WZW it is required that

complex : Ny >3 Dirac fermions (59)
pseudo-real : N; >2 Dirac fermions (60)
real : Ny >3 Weyl fermions. (61)

This is now the full effective Lagrangian after both an expansion in the lowest order of ¥
and a subsequent expansion of ¥ in the PNGB fields. These expansions require that the
overall energies of observables as well as the PNGB masses (and thus the fermion masses)
are sufficiently small, i.e. E < 47 f, and m, < 4f; [63].

The EFT is formulated only in terms of PNGB and fully specified by their masses m.
and their decay constants f,. These low energy constants (LECs) cannot be determined from
within the EFT. In theories where experimental data is available such as SM QCD this can
be used. Alternatively, they can be calculated from the underlying theory directly.

1.3.2 Beyond Chiral Perturbation Theory

As soon as the energies involved reach those of the next lowest state or resonance in the
full theory, it no longer adequately describe the correct low-energy physics. At this point,
the next-lowest states need to be included in the EFT to provide an adequate description