
Fabian Zierler
Mat. No. 01310461

Lattice studies of Sp(4)

as a candidate Dark Matter theory

PhD Thesis

Doctoral thesis to achieve the university degree of

Doctor of Natural Sciences (Dr.rer.nat.)

University of Graz

Institute of Physics

Supervisor: Prof. Axel Maas

2nd Examiner: Prof. Biagio Lucini

Graz, May 2023



Abstract

The microscopic nature of Dark Matter is one of the most pressing and challenging problems

in current particle physics. There is strong observational evidence for its existence based on

astrophysical and cosmological observations on large scales. Searches for direct detection of

particle Dark Matter at dedicated experiments and at colliders have not found any concrete

signals that would illuminate our understanding of Dark Matter at the microscopic level.

This has lead to an increased interest in novel ways of constructing microscopic Dark Matter

models. Among them are non-Abelian, confining gauge theories in which the Dark Matter

candidates are bound states within a rich sector of further dark states. Their bound state

nature poses challenges in providing theoretical description and necessitates the use of non-

perturbative methods. In this thesis Sp(4) gauge theory with two fermions is investigated as

a model of composite Dark Matter. There are several open questions relevant for this model

in a Dark Matter context. What are the symmetries of the theory with non-degenerate

fermions and what are the symmetries of the dark hadron sector? What is the mesonic

spectrum of the non-Abelian theory as a function of the fermion masses? Which degrees

of freedom describe the low-energy physics? In order to answer this, the methods of lattice

gauge theory are used. The spectrum of low-lying pseudoscalar, vector and scalar states is

determined and a description of their multiplet structures based on global symmetries is given.

The numerical investigation of the mesonic spectrum includes flavour non-singlet and singlet

states for degenerate and non-degenerate fermions. The mass hierarchies of the non-singlet

states and the pseudoscalar singlets are established as a function of the fermion masses. The

results on the scalar singlet are inconclusive, but they are consistent with potentially light

masses. A first exploratory investigation of pseudoscalar scattering lengths is performed.
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Kurzfassung

Die mikroskopische Struktur Dunkler Materie ist eines der größten und wichtigsten ungelösten

Probleme der modernen Teilchenphysik. Astrophysikalische und kosmologische Beobach-

tungen liefern starke Indizien für dessen Existenz. Suchen, an Teilchenbeschleunigern und

in eigens dafür geschaffenen Experimenten, nach neuen Elementarteilchen, die Dunkle Ma-

terie bilden können, konnten bisher nicht Klarheit in unser Verständnis der mikroskopischen

Struktur Dunkler Materie bringen. Das Ausbleiben eines direkten Nachweises motiviert

die Konstruktion von neuartigen mikroskopischen Modellen der Dunklen Materie. Dazu

zählen nicht-abelsche Eichtheorien, in denen Dunkle Materie ein Bindungszustand inner-

halb eines Dunklen Sektors ist, der Confinement unterliegt. Die theoretische Beschreibung

von Bindungszuständen ist herausfordernd und benötigt nicht-perturbative Methoden. In

dieser Arbeit wird eine Sp(4) Eichtheorie mit zwei fundamentalen Fermionen als Modell

von Dunkler Materie untersucht. Im Kontext eines Modells von Dunkler Materie beste-

hen einige offene Fragen zu dieser Theorie. Was sind die globalen Symmetrien mit nicht-

entarteten Fermionen und was sind die Symmetrien des dazugehörigen Hadronenspektrums?

Wie sieht das Mesonenspektrum als Funktion der Fermionmassen aus? Welche Freiheits-

grade beschreiben die Niederenergiephysik dieses Modells. Um diese Fragen zu beantworten,

wird die Methodik der Gittereichfeldtheorien verwendet. Die Massen der niederenergetischen

pseudoskalaren, vektoriellen und skalaren Mesonen werden bestimmt und eine Beschreibung

der Symmetriestrukturen des Spektrums wird beschrieben. Die numerische Untersuchung

des Mesonenspektrums beinhaltet die Singulett- und nicht-Singulettzustände der globalen

Flavoursymmetrie. Die Massenhierarchie der nicht-Singulettzustände und pseudoskalaren

Singulettzustände als Funktion Fermionmassen werden ermittelt. Die Massen der skalaren

Singulettzuständen konnten nicht ausreichend signifikant bestimmt werden, sie sind allerd-

ings konsistent mit relativ leichten Massen. Eine explorative Untersuchung der Streulängen

der pseudoskalaren Mesonen wurde durchgeführt.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is currently the best available description of

three out of the four fundamental forces in nature. It describes electromagnetism and the

weak interaction combined in a unified description as well as the strong interaction. Math-

ematically it is formulated as quantum field theory (QFT). So far, it successfully describes

all experimental observations made in dedicated particle physics experiments.

While the SM is extremely successful at explaining almost all observed physical phenom-

ena, it is still incomplete. It does not contain a quantum description of gravity, where the

most accurate description is currently given by the general theory of relativity (general rel-

ativity, GR). The SM is unable to explain astrophysical observations of Dark Matter (DM),

whose gravitational effects in astronomy and cosmology are a well-established empirical fact.

It is, however, completely unknown what causes these effects on a microscopic level.

The main motivation for models of particle DM are briefly reviewed in Sec. 1.1. This

includes an overview of astrophysical and cosmological evidence for DM in Sec. 1.1.1, a

discussion of the small structure problems in Sec. 1.1.2 and a review of constraints on self-

interacting DM in Sec. 1.1.3. In Sec. 1.1.4 DM as a thermal relic is discussed and the

Strongly Interacting Massive Particles (SIMP) paradigm is introduced. In Sec. 1.2 the core

concepts of non-Abelian gauge theories such as asymptotic freedom and chiral symmetry

breaking will be discussed. This will be complemented by discussions of specifics of Quantum

Chromodynamics (QCD) which motivate DMmodel building with other non-Abelian theories

as a model of SIMP DM. In Sec. 1.2.8 the symmetry patterns of QCD will be generalized to

real and pseudo-real representations and the construction of an effective field theory (EFT)

will be discussed in Sec. 1.3. In Sec. 1.4 a model of SIMP DM based on Sp(2N) gauge theories

is introduced which will be studied throughout the remainder of the thesis. In Sec. 1.5 the

relevance of Sp(2N) theories for other models of Physics Beyond the Standard Model (BSM

1



CHAPTER 1. INTRODUCTION

physics) is briefly discussed.

1.1 Dark Matter

1.1.1 Observational evidence

Empirical evidence of Dark Matter comes from observations on a variety of different scales –

see e.g. [7–9] for overviews. On a galactic scale, the rotation curves of spiral galaxies [10,11]

are one piece of evidence. The rotational velocity is expected to fall off as a function of the

distance to the centre of the galaxy. However, a roughly constant velocity distribution is

observed, indicating the existence of additional non-visible matter surrounding the galaxy.

On larger scales, observations of gravitational lensing caused by a cluster of galaxies allows

a determination off the mass distribution within the cluster [12]. A particularly important

case of (weak) gravitational lensing is seen in the bullet cluster merger where the reconstructed

gravitational potential is offset from the centre of the visible mass implying the existence of

another form of non-visible matter. The astrophysics of the merging galaxy clusters provide

constraints on the self-interaction of DM [13]. The strong lensing of galaxy clusters [14]

and measurements of their internal density profiles [15] provide further constraints on these

scales.

Further evidence for DM can be extracted from the anisotropies of the cosmic microwave

background (CMB). In a world without DM, the density perturbations in the early universe

would not have been sufficiently strong in order for the currently observed structures of visible

matter to form. This implies, that non-visible matter, i.e. DM, is required to facilitate the

structure formation from the observed small CMB anisotropies [7, 8].

This is not an exhaustive list of empirical evidence for the existence of DM. A discussion

of further observations as well as a guide to further literature can be found in Ref. [9].

These observations suggest the existence of an additional form of non-standard matter.

Given that all aforementioned observations are of gravitational origin, it cannot be excluded

that they are caused by an incomplete description of gravity at galactic scales and beyond.

This has lead to the development of modified theories of gravity [16]. These approaches often

have difficulties describing the observed effects of DM on all length scales – see the Particle

Data Group’s (PDG) review [17] and references therein. As of now, particle DM is the most

widely pursued hypothesis.

Assuming particle DM, some constraints on its properties can be deduced. It is required

that all astrophysical observations can be explained by the additional particle content beyond

the SM. Furthermore, any candidate theory must be compatible with the non-observation

2



CHAPTER 1. INTRODUCTION

of any physics beyond the SM at current collider and direct detection experiments. This

entails that DM can have only minuscule charges under any other SM charge. Astrophysical

observations further constrain DM self-interaction. This will be discussed in more detail in

Sec. 1.1.3. While model specific limits on DM candidates can impose strong constraints,

model independent bounds on the DM itself are extremely loose with a lower bound on

fermionic DM of m ≥ 70 eV and m ≥ 10−22 eV for bosonic DM. Assuming that particle DM

is point-like, an upper limit of 5 solar masses can be established [17]. Note, that some of

these constraints are modified if DM is made of more than one species of particles.

1.1.2 Small-scale structure problems

While the hypothesis of cold, non-interacting DM is extremely successful at explaining the

observed astrophysical structures at large scales, i.e. at the scales above 1 Mpc. Below these

scales, tensions appear when comparing gravitational simulations of DM to observation. The

most pressing small-scale issues are known as the core-vs-cusp problem, the too-big-to-fail

and, initially, the missing satellites problem – see [18] for a review.

The core-vs-cusp problem refers to the mismatch between the expected DM density pro-

files close to the galactic centre within DM dominated galaxies. Simulations of cold, col-

lisionless DM predict a cusp-like rising density profile towards the galactic centre whereas

a flat density profile is observed. An open question here is the influence of baryonic mat-

ter on the density profiles obtained from numerical simulation. Present-day simulations have

mostly been performed with DM only due to the increased complexity of adding the baryonic

feedback [18,19].

The too-big-to-fail problem concerns galaxies whose DM halos have a large central mass

of roughly 1010 solar masses. Galaxies with halos of this mass are believed to always facilitate

star creation of its enclosed baryonic matter. However, fewer galaxies of this kind have been

observed than predicted. Since the associated baryonic mass is expected to be a small fraction

of the total mass in these systems, the effects of neglected baryonic feedback are likely smaller

than in the core-vs-cusp problem [17,18].

The missing satellites problem refers to the non-observation of comparatively small satel-

lite galaxies with masses as low as 300 solar masses. This is in tension with simulations

of cold non-interacting DM which predict a larger number based on the expected number

of DM halos that can accommodate such satellite galaxies [17, 18]. Recent investigations

suggest that based on recently improved detections of satellite galaxies and a better under-

standing of dwarf galaxies in general might explain the apparent mismatch and might even

provide an excess of satellite galaxies [20]. The missing satellite problem is now thought to

3



CHAPTER 1. INTRODUCTION

be resolved [21].

1.1.3 Self-Interacting Dark Matter

One way to explain the persisting small scale structure problems is to no longer assume col-

lisionless DM but self-interacting DM (SIDM) with comparatively large self-scattering cross-

sections σ [22]. The relevant quantity here is the ratio σ/m between the DM self-scattering

cross-section σ and the DM mass m. It is important to note the potential velocity depen-

dence of this quantity. Astrophysical observations and constraints on DM self-interaction

are obtained at different scales (galaxy cluster, groups, individual galaxies). The collision

velocity of DM particles depends on the scales of the observed systems. Here, a brief overview

of the constraints at different collision velocities is given.

Recent analyses of clusters with a mean velocity of about 1500 km/s obtained constraints

as low as σ/m ≤ 0.13cm2/g, but noted possible systematic uncertainties at the level of

0.1cm2/g [14]. Other studies obtained similar but slightly looser constraints at comparable

collision velocities between 1000−2000 km/s at σ/m ≤ 0.19cm2/g [15] and σ/m ≤ 0.35cm2/g

[23]. The quoted values are understood at a 95% confidence level. These investigations often

prefer a non-vanishing self-scattering cross-section.

At lower velocities the self-interaction cross-section is less constrained. Simulations of

SIDM suggest that the too-big-to-fail and the core-cusp problem can be addressed by a

(velocity-independent) SIDM cross-sections of around σ/m ≈ 0.5 − 10cm2/g [17, 24]. In

light of the constraints at high collision velocity, a velocity dependent cross-section appears

favourable. Much stronger cross-section at velocities below 20 km/s would also be able to fit

stellar dispersions [21].

These findings based on SIDM simulations generally assume only a single DM particle

coupled through a light scalar or vector mediator to the SM. In particular, the physics of

richer dark sectors containing more than a single DM candidate and a mediator is less studied.

This is particularly relevant for models of hadron-like DM where dark sector particles are

confined under a new gauge force. These sectors additionally permit different, stable DM

candidates with distinct masses and interactions. The individual components could then

provide different contributions to self-interactions [21].

Overall, the proposition of DM self-interactions is promising. At comparatively large

velocities stringent bounds from strong-lensing in galactic clusters and groups exist. In order

to explain the small-scale structure problems a velocity dependent self-scattering cross-section

appears favourable with scattering cross-sections ranging between σ/m = 0.1−10 cm2/g from

large to low velocities.
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CHAPTER 1. INTRODUCTION

1.1.4 Thermal Particle Dark Matter: WIMPs and SIMPs

If a dark sector is coupled by any mediator to the SM, then it is reasonable to expect that the

dark sector was in thermal and chemical equilibrium with the SM in the early, hot and dense

universe. Depending on the mediator, equilibrium between DM and the SM might even be

unavoidable. Furthermore, thermal DM can provide production processes of DM. Among

these processes the freeze-out mechanism has been considered in many DM models – see

e.g. [8] for a textbook review. In this scenario DM is thermally coupled to the visible sector

in the early universe. As the universe cools and expands a DM number changing process

falls out of equilibrium and reduces the overall number of DM particles in the universe. This

process is then stopped once the interaction rate drops below the Hubble rate H, which

parameterizes the expansion of the universe. At this point the DM number freezes. This

scenario places further constraints on the underlying DM model.

The coupling to the SM needs to be sufficiently strong to allow a thermal equilibrium,

while simultaneously evading constraints from collider and direct detection searches. The DM

number changing process must lead to the observed DM relic density in the current universe

after freeze-out. The former constraint restricts the possible coupling strengths between the

dark sector and the SM, while the latter requirement can usually be used to constrain the

DM particle mass.

A particularly popular case is obtained when the number depletion process is provided

by the scattering of two DM particles into two SM particles. Under some assumptions

(among them are homogeneity and isotropy [17]) the relic density is obtained by solving the

Boltzmann equation

dn

dt
+ 3Hn = −⟨σ2DM→2SMv⟩

(
n2 − n2

eq

)
, (1)

where n denotes the DM number density and neq its value at the equilibrium, H the Hubble

rate and ⟨σ2DM→2SMv⟩ the thermal average of the depleting cross-section times the DM

collision velocity. This leads to a typical DM mass scale in the range of mDM ∼ TeV, i.e. at

the electroweak scale. These DM models are commonly called Weakly Interacting Massive

Particles (WIMPs) and have attracted substantial theoretical and experimental interest over

the past decades. This has lead to stringent exclusion limits of WIMP DM models since

many experiments specifically targeted the WIMP scale in their searches.

Recently, in light of the non-detection of DM and the previously discussed small-scale

structure problems, other freeze-out mechanisms have gained increasing interest. Specifically,

models in which the number depletion process occurs purely in the dark sector through

5



CHAPTER 1. INTRODUCTION

processes such as nDM → 2DM. In particular, the 3DM → 2DM process has gained

significant attention. This process already implies the existence of DM self-interaction. By

considering cosmological constraints it was shown that such a process points towards strongly

interacting DM and this scenario was named Strongly Interacting Massive Particles (SIMPs)

[25–27]. The relevant Boltzmann equation, using the same assumptions as in the case of the

WIMP scenario, reads

dn

dt
+ 3Hn = −⟨σ3DM→2DMv

2⟩
(
n3 − n2neq

)
, (2)

Based on the solution to this equation, the typical SIMP DM particle is expected to be

below 1 GeV where experimental constraints are relatively loose. These models naturally

provide larger self-interactions as WIMP like models and are thus better suited to resolve

small-structure problems. Since thermal equilibrium with the SM is required for freeze-out,

SIMP models require a mediator into the SM.

Among the many possible models, that can accommodate a SIMP freeze-out, dark sectors

based on QCD-like theories, i.e. asymptotically free, non-Abelian, confining gauge theories

with fermionic matter which exhibits spontaneous chiral symmetry breaking, are particularly

exciting – see Sec. 1.2. They can provide a rich sector of dark hadrons and can naturally

have 3DM → 2DM interactions. The additional global symmetries of the dark sector can

guarantee the stability of the DM candidate and portal mediators into the SM allow for the

dark hadrons to always be SM singlets. The existence of 3DM → 2DM interactions can be

understood by considering effective descriptions of such theories. This will be discussed in

Sec. 1.3.

1.2 Non-Abelian Gauge Theories and Quantum Chro-

modynamics

Here, the most relevant details of non-Abelian theories in general and QCD in particular will

be reviewed. This includes their microscopic description, the global symmetries of the theory

itself and the hadron spectrum in particular, and its generalizations to non-SU(N) theories

and fermions under different representations.
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CHAPTER 1. INTRODUCTION

1.2.1 Lagrangian and Action

The Lagrangian of a set of matter fields {ψf} with masses of mf charged under a colour

group is given by 1

L(x) = 1

2
Tr [Fµν(x)F

µν(x)] +
∑

f

ψ̄f(x) (γµDµ(x) + mf)ψ
f(x) (3)

where we consider Euclidean spacetime and the Dirac gamma matrices γµ obey {γµ, γν} =

2δµν1 unless stated otherwise2. Additionally, the matrix γ5 = γ1γ2γ3γ0 is introduced, which

anti-commutes with all other γ-matrices. The adjoint spinor is denoted as ψ̄f (x) and is

defined as

ψ̄f = ψ†
fγ0. (4)

In (3), Fµν(x) is the field-strength tensor and Dµ(x) is the covariant derivative for a given

gauge group. Different fermion species are labelled by the index f . These two quantities can

be expressed in terms of the spin-1 gauge fields Aµ(x) as

Fµν(x) = ∂µAν(x)− ∂νAµ(x) + ig [Aµ, Aν ] (5)

Dµ(x) = ∂µ + igAµ(x). (6)

If the commutator [Aµ, Aν ] is non-vanishing then self-interactions of the gauge fields occur in

these theories and the gauge theory is called non-Abelian. The Lagrangian is invariant under

a local symmetry group generated by the generators τa of a symmetry groupG which obey the

commutation relations
[
τa, τ b

]
= ifabcτ c where the Latin indices a, b, c label the generators.

The gauge fields can be expressed as components of the generators Aµ(x) = Aaµ(x)τ
a and the

colour indices can be made explicit as

F a
µν(x) = ∂µAν(x)

a − ∂νAµ(x)
a − gfabcAbµA

c
ν (7)

(Dµ(x))ij = δij∂µ + igτaijA
a
µ. (8)

Note, that the structure constants fabc are in the adjoint representation of the gauge group

while the matter fields can transform under a different representation of the gauge group in

1The notation of [28] after rescaling the gauge fields by a factor of 1
g is used.

2In principle, a term θϵµνρσF
µν(x)F ρσ(x) may be added. For the purposes of this thesis the coefficient is

set to θ = 0 and only theories where this term is not present are considered.
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CHAPTER 1. INTRODUCTION

which the generators are represented by matrices τaij
3. The Lagrangian is invariant under

gauge transformations of the local symmetry group G. Specifically, under a hermitian group

element U the matter fields in the fundamental representations and the adjoint gauge fields

transform as

ψ → U(x)ψ(x) (9)

ψ̄ → ψ̄(x)U(x)† (10)

Aµ(x) → U(x)Aµ(x)U(x)
† + i(∂µU(x))U(x)

† (11)

leaving the Lagrangian invariant. Note, that the transformation acts differently on matter

fields if they are charged under a non-fundamental representation – e.g. in the two-index

antisymmetric representation the fermion field ψ transforms into ψ → U(x)ψ(x)U(x)T [29].

In the absence of fermions in a non-Abelian gauge theory, pure Yang-Mills theory is recovered.

The Lagrangian is related to the action and the partition function in Euclidean metric as

Z =

∫
D[Aµ, ψ, ψ̄]e

−S[Aµ,ψ,ψ̄] (12)

S[Aµ, ψ, ψ̄] =

∫
L(x)dx (13)

In this thesis, only Dirac fermions are considered. Note, that other matter fields such as

Weyl or Majorana fermions can also be charged under non-Abelian gauge theories.

1.2.2 Asymptotic Freedom and Confinement

One of the key features of non-Abelian gauge theories with a sufficiently small number of

matter fields is the existence of asymptotic freedom. This can be read off from the β function

which gives the dependence of the running coupling on the renormalization scale µ as β(g) =
dg
g lnµ

. Given the Lagrangian from above the β-function at one loop in perturbation theory

for massless fermions is given by [30,31]

β(g) = −
(
11

3
C2(G)−

4

3
NfT (R)

)
g3

16π2
+O(g5) (14)

3In QCD the matter fields transform under the three-dimensional fundamental representation of the gauge
group SU(3)c while the gauge fields are in the eight-dimensional adjoint representation. In this context the
fermion fields are the quark fields and the gauge bosons are the gluons.

8



CHAPTER 1. INTRODUCTION

where the coefficients depend on the gauge group and the fermion representation through

facdf bcd = C2(G)δa,b and Tr(τa(R)τ b(R)) = T (R)δab with τ
a(R) being the generators of the

group G in the representation R. As long as the number of fermion flavours is smaller than

NAF =
11C2(G)

4T (R)
, (15)

the first coefficient of the β-function is negative, and the running coupling gets arbitrarily

small at large energies. Thus, the coupling is small at larger energies and the theories can

be treated within perturbation theory (PT) up to genuinely non-perturbative effects. This

entails that the theory is consistent up to arbitrarily large energies – the theory is ultraviolet

(UV) complete.

A key empirical, non-perturbative fact of Quantum Chromodynamics is the absence of

free quarks or gluons in the spectrum of observed particles. All observable states need to

be singlets under the colour group. Given that neither the gauge fields nor the fermion

fields are colour charge singlets (they transform non-trivially under gauge transformations),

the observable states need to be bound states of the fundamental fields, called hadrons. See

[32,33] for detailed discussion of confinement. The observable spectrum of hadrons of any non-

Abelian gauge theory as defined above needs to reflect all possible ways of constructing colour

singlets. In QCD, these bound states are either mesons (quark-antiquark-states), baryons

(three-quark-state) or other exotic states such as tetraquarks (four quarks), pentaquark (five

quarks), glueballs (only gauge fields) and hybrid states. The lightest hadronic states are of

particular interest for models of physics beyond the SM. In the following section the light

hadronic spectrum of QCD will be reviewed.

1.2.3 The Light Hadron Spectrum of Quantum Chromodynamics

The hadron spectrum of QCD has inspired different models of BSM physics. In particular,

the lightest states of the spectrum are of relevance. The most recent experimental results on

the hadron spectrum can be found in the PDG review [17]. The lightest states of QCD are the

pseudoscalar JP = 0− pions π which occur as charged pions π± and a neutral pion π0. The

neutral pion π0 is the lightest state in the QCD spectrum with a mass of roughly 135 MeV

while the charged pions are slightly heavier at 139 MeV. Other light pseudoscalar hadrons

include the four kaons, where two of them are the charged K± states at 493 MeV while the

other two are the neutral K0 and K̄0 which are slightly heavier at 497 MeV. An eight and

ninth light pseudoscalar is given by the η hadron which is slightly heavier than the kaons at

around 547 MeV and the η′ hadron at 958 MeV. The number of light pseudoscalar states

9
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Figure 1: Light hadronic states of the QCD spectrum. These states include the pseudoscalar,
scalar and vector mesons as well as the spin-1

2
proton and neutron. Note that the experimental

uncertainties and the widths of these states can be sizeable. They are omitted for visual
clarity and only the currently best estimate [17] is depicted. All other states are heavier than
1 GeV.

can be understood in the context of approximate global symmetries of the QCD Lagrangian.

This also applies to the other hadron states and will be discussed in section 1.2.4.

The sector of light, scalar hadrons contains the very broad f0(500) particle as its lightest

state. The experimental status of the light scalar mesons has been a long-standing puzzle. A

detailed discussion can be found in the PDG review article “Scalar Mesons below 1 GeV” [17].

Further scalar states are given by the three a0(980), the single f0(980) and the four K∗
0(700)

which are sometimes denoted as the κ. The numbers in parentheses give their approximate

mass in MeV, i.e. the f0(500) has a mass of roughly 500 MeV.

In the vector sector three vector mesons ρ± and ρ0 exist at an energy of 775 MeV. Further

vector states are given by the ω(782), the ϕ(1020) and the four K∗(892) states. The light

hadronic states of QCD are completed by the proton (938 MeV) and the neutron (939 MeV)

as the lightest fermionic bound states. All other states are heavier than 1 GeV and heavier

than all aforementioned hadrons. A plot of all light states is given in figure 1.

Overall, a pattern of several hadrons that have approximately the same mass appears.

Note, that the pion states are substantially lighter than all other states. This pattern can be

explained by considering the global symmetries of the theory.

10
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1.2.4 Global Flavour Symmetries, Chiral Symmetry and Hadron

Multiplets

The Lagrangian of isolated QCD (i.e. the Lagrangian of quarks and gluons without taking

the effects of the electroweak sector into account) is of the form (3) with an SU(3) colour

group. The fermionic content is given by six massive quarks called up u, down d, strange

s, charm c, bottom b and top t. The latter three are all heavier than all the light hadrons

mentioned above and have distinct masses. They will be disregarded for the purposes of this

discussion. The other three light quarks are, however, lighter than all the hadrons mentioned

above.

Let us focus for now on the pseudoscalar sector of the light meson spectrum. The mesons

can be identified as bound states of the three light quarks. Specifically, interpolating fields of

the mesons are given in terms of the quark spinors and the adjoint spinors. An appropriate

choice of gamma matrices ensures the correct quantum numbers JP = 0−

π+ = uγ5d̄ K+ = uγ5s̄

π− = dγ5ū K− = sγ5ū

π0 =
1√
2

(
dγ5d̄− uγū

)
K0 = dγ5s̄

η =
1√
6

(
dγ5d̄+ uγū− 2sγ5s̄

)
K̄0 = sγ5d̄

η′ =
1√
3

(
dγ5d̄+ uγū+ sγ5s̄

)
. (16)

Some mesons are almost mass-degenerate as a consequence of the global symmetries. We will

mostly follow the treatment in [28]. It is convenient to split the fermion fields into left- and

right-handed components by introducing the projection operators PR/L and defining their

action on four-component Dirac spinors as

PR =
1 + γ5

2
PL =

1 − γ5
2

PRψ = ψR PLψ = ψL (17)

where 1 is the identity matrix in Dirac space. The fermionic part of the Lagrangian density

11
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for a single fermion can be rewritten as

ψ̄γµDµψ = ψ̄LγµDµψL + ψ̄RγµDµψR

mψ̄ψ = m
(
ψ̄RψL + ψ̄LψR

)
. (18)

Observe that the kinetic part of the Lagrangian does not mix left- and right-handed com-

ponents. A combination of left- and right-handed spinors only occurs in the Lagrangian

in the presence of a fermion mass. For Nf fermions the kinetic part of the Lagrangian

is invariant under SU(Nf ) × U(1) transformations of the left- and right-handed compo-

nent respectively. The Lagrangian of massless fermions is thus invariant under the group

SU(Nf )L × SU(Nf )R × U(1) × U(1). Since this symmetry does not mix the chiral compo-

nents of the spinor field, it is usually called chiral symmetry and the limit of all masses

approaching vanishing masses is referred to as the chiral limit. Obviously, the mass term

of the Lagrangian breaks this symmetry as the left- and right-handed components are no

longer independent. This can be seen by rewriting the spinor fields in a vector nota-

tion, i.e. Ψ̄ =
(
ψ̄1, . . . , ψ̄Nf

)
for the adjoint spinors and accordingly for Ψ and introduc-

ing the mass matrix M = diag(m1, . . . ,mNf
). The fermionic Lagrangian is then given by

Lf = Ψ̄
(
γµDµ1Nf

+M
)
Ψ where 1Nf

denotes the Nf × Nf unit matrix. For degenerate

masses both kinetic and mass terms are invariant under the transformations

Ψ′ = eiαTiΨ,

Ψ′ = eiα1NfΨ,

Ψ̄′ = Ψ̄e−iαTi ,

Ψ̄′ = Ψ̄e−iα1Nf . (19)

Here, Ti are the generators of an SU(Nf ) symmetry. The symmetry group is SU(Nf )V ×
U(1)V . Both terms in the fermionic Lagrangian are invariant because these transformations

only mix different fermion flavours but never change the structure of the chiral components.

The extra chiral rotations are given by inserting γ5 into (19)

Ψ′ = eiαγ5TiΨ,

Ψ′ = eiαγ51NfΨ,

Ψ̄′ = Ψ̄e−iαγ5Ti ,

Ψ̄′ = Ψ̄e−iαγ51Nf , (20)

12
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which enlarges the symmetry in the absence of fermion masses to SU(Nf )L × SU(Nf )R ×
U(1)A × U(1)V . Thus, the hadron spectrum of QCD could be explained by an approximate

SU(Nf )L × SU(Nf )R × U(1)A × U(1)V symmetry if all fermion masses are relatively light.

Additional small corrections due to the small fermion masses, which break the symmetry

further down to SU(Nf )V × U(1)A × U(1)V , would appear. However, it turns out that this

symmetry is not realized in nature. The reasons for this are two-fold.

1.2.5 Chiral Symmetry Breaking and the Axial Anomaly

In the previous section, the global symmetries of the fermionic part of the Lagrangian was

discussed. The group SU(Nf )L × SU(Nf )R × U(1)A × U(1)V was identified as the global

symmetry of the Lagrangian. However, the symmetries of the physical theory are not those

of the Lagrangian but those of the partition function. It can be shown that this causes an issue

in the case of the chiral rotation generated by the unit matrix 1Nf
in (20) which is usually

known as the axial U(1)A. This symmetry is broken through quantum effects, i.e. through

non-invariance of the fermion measure in the path integral under the global U(1)A. The

corresponding current is no longer conserved and thus the symmetry is not manifest in the

physical spectrum [34]. In the language of lattice field theory this corresponds to the fermion

determinant being non-invariant under this symmetry. See [28] for a demonstration of this

property on a lattice. This symmetry is not realized in QCD which is reflected in the meson

spectrum. The relatively large mass of the pseudoscalar meson η′ and its dependence on the

number of colours Nc and fermion flavours Nf are directly linked to the axial anomaly [35,36].

In addition to the axial anomaly no effects of the full SU(Nf )L × SU(Nf )R symmetry in

the meson spectrum are observed. If this were the case, the states with the same J quantum

number but opposing parity would be approximately degenerate in the presence of small

fermion masses. This is clearly not the case, as can be seen by comparing the pseudoscalar

states 0− to the scalar states 0+ in fig. 1. The symmetry must be broken by a different

mechanism. This can be explained by considering the chiral condensate defined as

⟨0|Ψ̄(0)Ψ(0)|0⟩. (21)

It has the same structure as the mass term in the Lagrangian and is therefore not invariant

under chiral rotations. If the chiral condensate (21) is non-vanishing, this signals that the

ground state of theory is not invariant under the full symmetry of the Lagrangian and this

symmetry is said to be spontaneously broken and only the SU(Nf )V symmetry which leaves

the condensate invariant remains. This explains the mass differences between parity partners
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in QCD. In this way the chiral condensate acts as an order parameter for chiral symmetry

breaking. Note, that this symmetry is not always broken. At high temperatures the theory

undergoes a crossover phase transition in which chiral symmetry is again restored and the

chiral condensate vanishes. Thus, it is more appropriate to say that chiral symmetry is

hidden at low temperatures but re-emerges in the high-temperature case. This effect has

also been observed using lattice studies of the finite-temperature particle spectrum [37–39].

The spontaneous breaking of a continuous global symmetry has far-reaching consequences

for the mesonic spectrum since Goldstone’s theorem now applies (see [40] for a textbook

treatment) which implies the existence of massless bosonic states. In particular, when the

global symmetry is spontaneously broken from a global group G down to a smaller subgroup

H, the number of massless Goldstone states (sometimes also called Nambu-Goldstone bosons)

is given by the number of broken generators of G [41]. Here, symmetry breaking from

SU(Nf )×SU(Nf ) → SU(Nf ) occurs. This leads to N
2
f −1 massless Goldstone modes. In the

presence of small but non-vanishing fermion masses chiral symmetry is only approximate.

Due to the explicit breaking from the mass terms the would-be Goldstone modes acquire a

small mass and are commonly referred to as (pseudo-)Nambu-Goldstone bosons ((P)NGB).

Through the axial anomaly the U(1)A is broken in QCD. At low temperatures the chiral

symmetry SU(Nf )L × SU(Nf )R is spontaneously broken by the non-vanishing chiral con-

densate down to SU(Nf )V . Overall, the global symmetries of this gauge theory with mass-

degenerate fermion is given by

SU(Nf )V × U(1)V . (22)

This line of reasoning can be straightforwardly generalized to situation where not all fermions

are mass-degenerate. For every N
(i)
f degenerate fermions a global symmetry (after accounting

for the axial anomaly and spontaneous chiral symmetry breaking) of SU(N
(i)
f ) remains. In

the case of fully-degenerate fermion masses, the global symmetry is given by a product of Nf

individual U(1) symmetries.

1.2.6 Global SU(2)F and SU(3)F flavour symmetries in QCD

The similar masses of many hadrons can be understood through the approximate global

symmetries of the QCD Lagrangian. Assuming that up and down quark masses are light, an

approximate SU(2)F symmetry between those fermions manifests. In the context of QCD this

symmetry is usually called strong isospin. Additionally, the strange quark gives an additional

U(1) that preserves its fermion number and the additional U(1)V symmetry can be shown

14



CHAPTER 1. INTRODUCTION

to cause baryon number conservation. Specifically, under an element U ∈ SU(2)F the light

quark fields transform as

(
u

d

)
→ U

(
u

d

)
=

(
a b

−b∗ a∗

)(
u

d

)
=

(
a · u+ b · d

−b∗ · u+ a∗ · d

)
(23)

where a and b are complex numbers for which |a|2 + |b|2 = 1. On any fermion bilinear with

two light quarks, such a flavour transformation decomposes into 2⊗ 2 = 3⊕ 1. This means

that the bilinear operators are either a triplet or a singlet under SU(2)F . The pion states

in (16) form a triplet under this global symmetry, whereas the η and η′ states are singlets.

This already can explain the approximate symmetry between all three pions and the distinct

masses for the η and η′. Furthermore, the SU(2)F transforms a kaon K+ into a superposition

of itself and the K0. This further explains the near degeneracy between K+, K0 and their

antiparticles K− and K̄0.

Since chiral symmetry was spontaneously broken, three almost-massless PNGBs appear.

Indeed, three pions are substantially lighter than any other state in the theory. They can be

identified as the PNGBs of the SU(2)L × SU(2)R → SU(2)V .

Similar considerations apply for the vector and scalar mesons. The ρ and a0(980) mesons

form a triplet under SU(2)F while the ω, the ϕ and both f0 scalars appear to be singlets. The

approximate degeneracy between the vectorK∗ mesons and the scalarK∗
0 mesons arises in the

same fashion as for the pseudoscalar kaons. The quark structure of the scalar mesons is more

involved than those of the pseudo-scalars (16). Their quark content is still an open issue [17],

but there are strong hints that some of these states are tetraquark states or molecular bound

states of pions and kaons.

The approximate global SU(2)F symmetry of QCD appears to be a very good approxi-

mation of the underlying theory. A mass-difference between states from the same multiplet

has only been experimentally established for the pions where mπ± − mπ0 = 4.5 MeV and

the kaons mK0 −mK± = 3.9 MeV. This indicates the presence of further symmetry breaking

effects in the SM due to the different electric charges of the u and d quarks as well as a small

mass difference between them [42].

A direct determination of the quark masses themselves is not possible. No quark has

been observed in isolation due to colour confinement [33]. Within QCD, the masses of quarks

can be calculated, however, they are not physical but scheme-dependent quantities. Quark

masses are only comparable when they have been calculated in the same renormalization

scheme at the same renormalization scale µ. The light quarks of QCD are commonly given

in the MS scheme at a scale of µ = 2 GeV [17]. Within this scheme the u quark has a
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SU(2)F

π triplet
K four-plet
η singlet
η′ singlet

ρ triplet
K∗ four-plet
ω singlet
ϕ singlet

a0 triplet
K∗

0 four-plet
f0(500)/σ singlet
f0(980) singlet

SU(3)F

(π,K, η) octet
η′ singlet

(ρ,K∗, ω) octet
ϕ singlet

(a0, K
∗
0 , f0(980)) octet

f0(500)/σ singlet

Figure 2: Multiplets of the light mesonic states of QCD under SU(2)F and SU(3)F . In real-
world QCD these symmetries are broken by the non-vanishing and distinct quark masses as
well as electroweak interactions.

mass of 2.2+0.5
−0.3 MeV, while the d quark mass is 4.7+0.5

−0.2 MeV [17]. This is consistent with

the expectation of small but non-vanishing masses based on the analysis of the light hadron

spectrum. In contrast, the strange quark s has a mass of 94+9
−4 MeV at this scale in the MS

scheme.

Given that the strange mass (in this definition) is still lighter than the hadrons observed

in the physical spectrum, some imprints of an approximate SU(3)F symmetry and its spon-

taneous chiral symmetry breaking pattern remain. Under this symmetry group the mesons

appear either as octets or singlets. In the pseudoscalar sector the pions, kaons and the η

meson are the eight PNGBs of SU(3)L × SU(3)R → SU(3)V and form an octet while the η′

remains a singlet. In the vector sector the ρ’s, K∗’s and the ω meson form the octet while

the ϕ is a singlet and in the scalar sector the octet consists of the a0(980), K
∗
0 and the f0(980)

mesons, while the f0(500) is a singlet.

The pattern of light mesonic states further provides a case for the existence of the U(1)A
anomaly. The absence of the anomaly would lead to an additional Goldstone mode in the

spectrum. In that sense, the anomaly provides mass to the η′ prime which would otherwise

be a Goldstone boson. This can be seen from considering the limit of large-N gauge groups,

where the effect of the anomaly is suppressed by N and the η′ has the same mass as the other

PNGBs in the limit N → ∞ [35, 36]. For later reference, the different mesonic multiplets of

QCD under SU(2)F and SU(3)F are shown in figure 2.
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1.2.7 Conformal Window and Banks-Zaks fixed point

In section 1.2.2, it was shown that non-Abelian gauge theories lose asymptotic freedom if the

theory contains too many fermions, specifically more than NAF. At this point the theory is

no longer consistent up too arbitrarily high energies. It is no longer UV complete.

This poses constraints on possible non-Abelian extensions to the SM with fermions as

long as UV completeness is required. For models based on relatively light PNGBs, then

another constraint occurs. This can be seen by looking at the perturbative two-loop beta

function of massless quarks [43]

β(g) = −β0
g3

16π2
+ β1

g5

16π2
+O(g7), (24)

β0 =

(
11

3
C2(G)−

4

3
NfT (R)

)
, (25)

β1 =

(
−34

3
C2

2(G) +
20

3
C2(G)NfT (R) + 4C2(R)NfT (R)

)
, (26)

where C2(R) is the second Casimir operator of the fermion representation R. The beta func-

tion contains another zero for a number of fermions smaller than NAF. At this point the

theory develops an infrared (IR) fixed point known as the Banks-Zaks fixed point and the

theory is expected to go into a conformal phase in which chiral symmetry is no longer spon-

taneously broken [44]. In that case the Goldstone theorem no longer applies, and no PNGBs

will appear in the spectrum. The range of Nf in which the theory is chirally symmetric and

conformal but still asymptotically free is referred to as the conformal window.

The Banks-Zaks fixed point has also gained considerable interest as a model for extending

the SM. Theories close to the conformal window have been investigated in the context of

composite Higgs bosons. Depending on the specific model these theories can also provide

additional Dark Matter candidates and/or contain a partially composite top quark [45].

For Dark Matter models based on PNGBS, the occurrence of the infrared fixed-point will

set another limit on the allowed fermion content of such a Dark Matter model. Note, that the

exact value of this limit cannot be determined from perturbation theory and non-perturbative

determinations are required. These calculations have proven to be particularly challenging

the exact number N crit
f is still debated, see [46–48] for recent reviews. For a moderately small

number of fermions the chirally broken phase is, however, extremely well established. For

the remainder of this thesis only gauge theories with no more than Nf = 2 Dirac fermions in

the fundamental representation of the gauge group will be considered.
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1.2.8 Real and Pseudo-real Breaking Patterns and Diquarks

In Sect. 1.2.4 it was shown that in SU(3) gauge theory with Nf degenerate fundamentally

charged fermions, the global symmetry is SU(Nf )V × U(1) and in case of massless fermions

spontaneous chirally symmetry breaking from SU(Nf )L × SU(Nf )R × U(1)V → SU(Nf )V ×
U(1)V occurs, leading to N2

f − 1 pseudo-Goldstone bosons. The derivation of this pattern

in Sect. 1.2.4 only used the decomposition into right- and left-handed components of the

Dirac spinors. Thus, this symmetry should be present for other gauge theories and fermion

representations as well. However, it could still be larger if an additional symmetry between

the different projections exists. This is indeed the case for Sp(2N) theories (see appendix A.2

for the defining properties of the gauge group) with fundamental fermions as there always

exists a global constant transformation S that fulfils

(τa)∗ = (τa)T = −SτaS−1, (27)

where τa are the generators of Sp(2N). The representation is said to be pseudo-real if

S2 = −1 which is the case here. The colour matrix S is explicitly given by

S = iσ2 ⊗ 1N , (28)

with σ2 being the second Pauli matrix and 1N the N × N unit matrix. These equations

relate the fundamental representation of Sp(2N) to its complex conjugate [49, 50]. This can

be made explicit by rewriting the fermionic Lagrangian again in left- and right-handed chiral

Weyl components of the Dirac spinors 4

ψi =

(
ψil
ψir

)
, (29)

and subsequently grouping the left- and right-handed components in a vector of spinors with

Nf Weyl components.

ψL =



ψ1
l
...

ψ
Nf

l


 , ψR =



ψ1
r
...

ψ
Nf
r


 . (30)

4The left- and right-handed projections of the four-component Dirac spinors are denoted as ψL and ψR

(17) and the corresponding two-component Weyl spinors as ψl and ψr
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Making use of the chiral representation of the Dirac gamma matrices, they can be rewritten

in the massless, fermionic Lagrangian as block matrices of Pauli matrices – see Appendix A.

Lf = Ψ̄γµDµΨ = i

(
ψ∗
l

ψ∗
r

)T (
σ̄µD

µ 0

0 σµD
µ

)(
ψl
ψr

)
. (31)

Here, the four-component notation σµ = (1, σ⃗) and σ̄ = (1,−σ⃗) where σj are the usual Pauli
matrices was used. So far this is not different from the case of SU(3). Note that this equation

is implicitly written in flavour space, i.e. (ψ†
l , ψ

†
r) is a vector of 2Nf Weyl components. Now,

the pseudo-reality of the colour group (27) and S2 = −1 are used, as well as the relation

σ2σµσ2 = σ̄Tµ (which is just the pseudo-reality condition for the fundamental representation

of Sp(N) = SU(2)). The fermionic kinetic term is rewritten as

Lf = i

(
ψ∗
l

σ2Sψr

)T (
σ̄µD

µ 0

0 σ̄µD
µ

)(
ψl

σ2Sψ
∗
r

)
. (32)

Note, that the Dirac matrix term now has the same diagonal components. This implies

that both ψL and σ2Sψ
∗
R have the same transformation properties. This is made explicit by

introducing the notation

Ψ̃ =

(
ψl

σ2Sψ
∗
r

)
≡
(
ψl
ψ̃r

)
. (33)

The fermionic Lagrangian is rewritten as

Lf = iΨ̃†σ̄µD
µΨ̃, (34)

which makes it apparent that this Lagrangian is invariant under SU(2Nf ) transformations of

the extended spinors Ψ̃. The extended symmetry exists for any fermion representation that

fulfils the pseudo-reality condition (27). In the case of SU(2) it is also known as the Pauli-

Gürsey symmetry [51, 52]. The particular vector notation is known as the Nambu-Gorkov

formalism and the object Ψ̃ is sometimes called the Nambu-Gorkov spinor [49]. A similar

argument applies to fermions in the adjoint representation of any gauge group. There, the

generators τa (where a labels the different generators) are given by the structure constants

(τa)bc = fabc which are antisymmetric in its indices. In this case

(τa)T = −τa (35)
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which is the same condition as in (27) with S being the identity matrix and subsequently

S2 = +1. The adjoint representation (and other representation fulfilling (27) with S2 =

+1) are called real representation. Rewriting the adjoint fermionic Lagrangian using the

same Nambu-Gorkov spinor as before, makes it apparent that also in this case the massless

Lagrangian is invariant under SU(2Nf ) transformations. The global symmetry is enlarged

from SU(Nf )L × SU(Nf )R to SU(2Nf ) if the fermion representation is either real or pseudo-

real. All other representations are referred to as complex, as there is no isomorphism between

the fermion representation and its conjugate representation.

So far only the kinetic part of the fermionic Lagrangian was discussed. In a chirally broken

phase, the fermion condensate will further break the global symmetry. This will then be the

same global symmetry as for degenerate, massive fermions. The pattern of chiral symmetry

breaking can be deduced by examining the symmetries of the mass term for degenerate

fermions [53]. In terms of Nambu-Gorkov spinors for pseudo-real representations the mass

term can be shown to be [50]

Ψ̄Ψ = −1

2
Ψ̃Tσ2S

(
0 1Nf

−1Nf
0

)
Ψ̃ +

1

2
Ψ̃∗Tσ2S

(
0 1Nf

−1Nf
0

)
Ψ̃∗ (36)

= −1

2
Ψ̃Tσ2SEΨ̃ + h.c., (37)

and for the real, adjoint representations

Ψ̄Ψ = −1

2
Ψ̃Tσ2

(
0 −1Nf

−1Nf
0

)
Ψ̃ + h.c. =

1

2
Ψ̃Tσ2FΨ̃ + h.c. . (38)

After introduction of a degenerate mass term and/or after spontaneous chiral symmetry

breaking the remaining symmetry is given by the subgroup of SU(2Nf ) transformations that

leave the mass term invariant.

In the case of pseudo-real representations, they are the transformations U for which

UTEU = E, (39)

holds. In equations (34),(36) and (38) the enlarged global symmetry has been made apparent

by rewriting the Lagrangian in terms of two-component Weyl spinors. Equivalently, it can be

rewritten in terms of the left- and right-handed projected Dirac spinors PRψ and PLψ. In the

case of Weyl spinors the (pseudo-)reality condition and σ2σµσ2 = σ̄Tµ were used. Expressing
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everything in terms of Dirac spinors this relation is replaced by

−CγµC−1 = γTµ , (40)

where C is the charge conjugation matrix. In the chiral representation it is explicitly given

by C = iγ2γ4 and C−1 = −C∗ holds and the spinor (33) can be written as [54]

Ψ̂ =

(
ψL

−SCψ̄TR

)
≡
(
ψL
ψ̃R

)
. (41)

The role of the σ2 in (33) is equivalent to charge conjugation of the Dirac spinor which ensures

that ψL and ψ̃R transform under the same global group.

Note that the matrix E is the flavour space equivalent of the colour matrix S as defined

in (28). It is the invariant tensor of Sp(2N) groups. Thus, for pseudo-real representations

remaining symmetry is Sp(2Nf ). In the real case, the mass-term is slightly different. It is

invariant under all transformations that preserve

UTFU = F, (42)

which is the group of SO(2Nf ) transformations. Even though the massless Lagrangian has

the same global symmetry for real and pseudo-real representations, the breaking pattern of

chiral symmetry breaking is distinct. In summary, three distinct patterns occur [53,55,56]

complex : SU(Nf )L × SU(Nf )R →SU(Nf )V , (43)

real : SU(2Nf ) →SO(2Nf ), (44)

pseudo-real : SU(2Nf ) →Sp(2Nf ). (45)

The number of associated PNGBs of chiral symmetry breaking is obtained by counting the

number of broken generators. As noted earlier, complex representations have N2
f −1 PNGBs,

whereas for pseudo-real representations (2Nf −1)Nf −1 PNGBS and for real representations

there are (2Nf+1)Nf−1 PNGBs occur. Not only the global symmetry is enlarged compared

to a complex representation, but also the PNGBs and all other hadronic multiplets.

In the case of QCD the PNGBs are pseudoscalar mesonic bound states, i.e. bound states

of a light anti-quark and a light quark. In the case of real and pseudo-real representations

there are more Goldstone modes without increasing the number of fermion flavours in the

theory. One obvious question is to ask what operators correspond to the additional PNGBs?

In order to see this, it is instructive to consider the operator of a generic meson in terms of
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its chiral components. For concreteness, let us consider the π± meson given by

ūγ5d = ūLdR + ūRdL. (46)

Using (41), it follows that

(
ψL
ψ̃R

)
→ U

(
ψL
ψ̃R

)
=

(
A B

C D

)(
ψL
ψ̃R

)
=

(
AψL +Bψ̃R
CψL +Dψ̃R

)
=

(
AψL −BSCψ̄TR
CψL −DSCψ̄TR

)
, (47)

where A,B,C,D are theNf×Nf block matrices of the global SO(2Nf ) or Sp(2Nf ) (see [56] for

more specific parametrizations). Under a global transformation of (33) a left-handed spinor

component can transform into its adjoint right-handed counterpart. When performing such

a transformation on a meson operator such as (46), new operators of a fermion and a fermion

as well as an anti-fermion and another anti-fermion arise. These states are often referred

to as diquarks and anti-diquarks. Contrary, to QCD where diquarks are colour non-singlet

quantities, here these operators are colour singlets and correspond to physical states in the

mesonic spectrum. Their overall structure is ψTi (. . . )ψj for diquarks and ψ̄i(. . . )ψ̄
T
j for anti-

diquarks. The additional PNGBs are specifically of this form – as are the other states in the

enlarged meson multiplets.

1.3 Effective Field Theories

In composite DM models, the low-energy physics of the underlying theory is of particular

interest. This is especially the case if the DM candidate is the PNGB of a QCD-like theory.

A powerful tool, to make predictions in the low-energy, non-perturbative regimes of

strongly interacting theories is provided through effective field theories (EFTs) [57–59]. They

provide a simplified, non-renormalizable description of the underlying UV complete theory

at low energies in terms of the low-lying bound-states and resonances. In an EFT descrip-

tion of confining theories the fermions and gluons are replaced as the degrees of freedom by

the lowest lying hadrons which govern its dynamics up to some energy cutoff. EFTs can

be constructed such that all global symmetries of the underlying UV complete theory are

preserved.
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1.3.1 Chiral Perturbation Theory

For theories close to chiral limit the PNGBs are the lightest states. The global symmetries

are given by the global breaking pattern from a symmetry group G down to a subgroup H.

The number of PNGBs is then identical to the number of broken generators in G → H, i.e.

the number of generators that span the coset G/H. Denoting the broken global generators

by T a, the PNGB fields are parameterized as

π = πaT a, (48)

where the generators are normalized as Tr
[
T aT b

]
= δab/2. The field Σ is introduced as

Σ = exp (2iπ/fπ) I, (complex) (49)

Σ = exp (2iπ/fπ)E, (pseudo-real) (50)

Σ = exp (2iπ/fπ)F, (real) (51)

which is proportional to the chiral condensate (21) ensuring that the field has the correct

breaking pattern under chiral symmetry breaking. By canonically normalizing the PNGB

fields, the low-energy constant fπ can be identified as the PNGB decay constant. A low

energy EFT at lowest order is provided by

Leff =
f 2
π

4
Tr
[
∂µΣ∂

µΣ†] . (52)

This describes the true NGBs as the components of π while maintaining the breaking pattern

since ⟨Σ⟩ ∝ I/E/F depending on the fermion representation. In this description, the fields

πa are massless. This Lagrangian describes only the dynamics of the true Goldstone modes.

An explicit mass term for sufficiently small fermion masses is added, which preserves the

same symmetries as the one of the underlying UV complete theory as

Lmass = −v
3

2

(
Tr [MΣ] + Tr

[
M †Σ†]) , (53)

where M is an appropriate mass matrix of the fermions and v3 is the magnitude of the chiral

condensate (21). In the mass-degenerate case it is M = mI for complex representations,

M = mE for pseudo-real representations andM = mF for real ones. This can be generalized

to non-degenerate masses. In the complex case the matrixM is diagonal with entriesmi while

in the pseudo-real and real case it requires correct assignment of the masses corresponding
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to the individual Weyl components [27]. If combined with the kinetic term of the massless

PNGBs this gives the effective Lagrangian of chiral perturbation theory (χPT) in the lowest

order in Σ as

LLO
χPT =

f 2
π

4
Tr
[
∂µΣ∂

µΣ†]− v3

2

(
Tr [MΣ] + Tr

[
M †Σ†]) . (54)

Since the EFT does not need to be renormalizable higher order terms such as Tr
[
∂µΣ∂

µΣ†]2

could be included. For the purposes of this thesis, only the leading order contributions are

taken into account. The field Σ can be expanded in terms of the PNGB fields as

LLO
χPT =Tr [∂µπ∂

µπ]− 2

3f 2
π

Tr
[
π2∂µπ∂µπ − π∂µππ∂µπ

]

− 2v3m

f 2
π

Tr
[
π2
]
+

2v3m

3f 4
π

Tr
[
π4
]
+O

(
π6

f 4
π

)
(55)

The product of the renormalization group dependent quantities, the renormalized chiral

condensate v3 and the renormalized quark masses m appearing in the mass matrixM is itself

renormalization group invariant. From the term quadratic in the PNGB fields follows the

universal PNGB mass. This relation can also be understood through the partially conserved

axial current leading to the Gell-Mann–Oakes–Renner (GMOR) relation

f 2
πm

2
π = −mNfv

3, (56)

at this order in the expansion. This allows us to express the lowest-order expansion of chiral

perturbation theory in terms of two physical quantities mπ and fπ that can be calculated on

the lattice. Furthermore, the GMOR relation shows that the PNGB mass depends quadrati-

cally on the renormalized quark mass contrary to heavy fermion limit where the pseudoscalar

meson mass will depend linearly on the fermion mass. The GMOR relation will be useful in

testing the applicability of chiral perturbation theory, specifically it can be tested whether a

PNGB mass squared is indeed linear with respect to the fermion mass. In this expansion the

PNGB fields only occur in even powers. Thus, it cannot describe any process that involves

an odd number, even though such processes occur in QCD and thus the symmetry π → −π
is not present in the underlying theory. This can be remedied by noting an additional topo-

logical term of the action [60, 61] which can be written as the integral over the boundary of
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a five dimensional disk which is identified as the four-dimensional spacetime

SWZW =
−in
240π2

∫

Q5

Tr

[(
Σ†∂Σ

∂x
dx

)5
]
, (57)

where the prefactor n has been shown to be an integer [60] and can be identified as n = Nc

in SM QCD. Expanding again in PNGB fields π and making use of Stokes’ theorem reveals

that this Wess-Zumino-Witten (WZW) term sources processes with an odd number of PNGB

fields. At lowest order, this is the five-PNGB interaction

LWZW =
2Nc

15π2f 5
π

ϵµνρσ Tr [π∂µπ∂νπ∂ρπ∂σπ] +O
(
π6/f 6

π

)
. (58)

This term does not always appear. It requires a sufficient amount of fermions in the gauge

theory such that the fifth homotopy group of the coset G/H is non-trivial [62]. It is equivalent

to the statement that at least five PNGB states under chiral symmetry breaking need to exist.

This implies, that for the existence of a WZW it is required that

complex : Nf ≥ 3 Dirac fermions (59)

pseudo-real : Nf ≥ 2 Dirac fermions (60)

real : Nf ≥ 3 Weyl fermions. (61)

This is now the full effective Lagrangian after both an expansion in the lowest order of Σ

and a subsequent expansion of Σ in the PNGB fields. These expansions require that the

overall energies of observables as well as the PNGB masses (and thus the fermion masses)

are sufficiently small, i.e. E ≪ 4πfπ and mπ ≪ 4fπ [63].

The EFT is formulated only in terms of PNGB and fully specified by their masses mπ

and their decay constants fπ. These low energy constants (LECs) cannot be determined from

within the EFT. In theories where experimental data is available such as SM QCD this can

be used. Alternatively, they can be calculated from the underlying theory directly.

1.3.2 Beyond Chiral Perturbation Theory

As soon as the energies involved reach those of the next lowest state or resonance in the

full theory, it no longer adequately describe the correct low-energy physics. At this point,

the next-lowest states need to be included in the EFT to provide an adequate description at

those energy scales. Again, this requires knowledge of the hadronic spectrum which needs to
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be provided either through experimental observations or theoretical calculations. Once the

relevant low-energy states have been identified, they can be included in the EFT.

The main goal of this thesis is to calculate the low-lying hadron masses of a candidate

DM theory from first principles using lattice field theory and determine the relevant LECs in

the lowest order.

Based on the observed hadrons in SM QCD and lattice calculations in QCD and related

theories, the next relevant hadronic states are the vector mesons ρ, the pseudoscalar singlet

η′ and the scalar singlet f0/σ.

The vector mesons (and the axial-vector mesons) can be included along the PNGBs using

the framework of hidden local symmetry as in [63]. The vector and axial-vector mesons are

introduced as the fields of an additional auxiliary local symmetry group GA that has the

same structure as the global unbroken group G. This choice will ensure that the vector

and axial vector mesons appear in the correct multiplets under the broken, remaining global

symmetries. Let T a denote the generators of GA, then the spin-1 mesons are parameterized

as

ρµ =
∑

a

ρaµT
a. (62)

The vector mesons are identified as the ρaµ corresponding to the unbroken generators under

G → H, and the axial-vector mesons as ρaµ corresponding to the broken generators. The

chiral perturbation theory can now be expanded by a kinetic term and a mass term for the

spin-1 mesons

Lρ = −1

2
Tr [ρµνρ

µν ] +
m2
ρ

2
Tr [ρµρ

µ] , (63)

ρµν = ∂µρν − ∂νρµ − igρ[ρµ, ρν ], (64)

and the interaction between the spin-1 particles and the PNGBs can be introduced by a

covariant derivative of Σ with respect to the auxiliary global GA

DµΣ = ∂µΣ + igρ
(
ρµΣ + ΣρTµ

)
. (65)

This leads to an additional LEC gρ parametrizing the coupling of the spin-1 states to the

PNGBs. At first glance it appears as if the vector and axial vector mesons would have the

same mass in this framework which is in contradiction to experimental evidence. This is

however not the case. The covariant derivative leads to non-diagonal kinetic terms for the
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PNGBs and the axial vectors states

aµ =
∑

Ta broken

T aρaµ, (66)

of the form

Lkin =
1

2
Tr
[(
∂µπ − fπgρaµ/

√
2
)(

∂µπ − fπgρaµ/
√
2
)]
. (67)

Diagonalizing these states leads to field redefinitions of aµ and π as well as fπ and introduces

a mass difference between axial-vector mesons a1 and the vector mesons ρ given by

m2
a1

= m2
ρ/Z

2 (68)

Z2 = 1− g2ρf
2
π

2m2
ρ

, (69)

which is always positive, i.e. the axial-vector mesons are heavier than their vector counter-

parts. In total, two additional LECs were introduced, the vector meson mass mρ and the

coupling constant gρ that need to be determined from the underlying theory. The latter can

be determined from scattering processes such as ππ → ρ [64–66]. An estimate of gρ = mρ/fπ
can be given through the KSRF relation [67,68] (see also [69] for an alternative derivation and

a discussion of its assumptions). KSRF predicts ma1/mρ =
√
2 which in SM QCD is slightly

below the experimental value of ma1/mρ = 1.59(6) [17]. The inclusion modifies the WZW

term and contributes to decays such as ρ → ππ, but it does not introduce any additional

LECs [2, 70].

The pseudoscalar singlet is included in the EFT treatment by extending the unbroken

global symmetry G to G × U(1)A, since the pseudoscalar singlet η′ is associated with the

U(1)A. In the large-Nc expansion the mass difference mη′ −mπ is suppressed by Nc and in

the limit of Nc → ∞ the mass of the η′ becomes degenerate with the other PNGBs. This

motivates the inclusion of this state as another would-be Goldstone mode in this limit which

can be achieved by modifying the Σ field as

Σ → exp

(
2iη′

fη′

)
Σ, (70)

where η′ is a field in flavour space proportional to the appropriately normalized unit matrix.

The explicit breaking of the U(1)A is introduced by giving the η′ a distinct mass from the
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other PNGBs

Lmass
η′ = m2

η′η
′2 =

(
m2
π +∆m2

η′

)
η′

2
, (71)

at lowest order. These terms include an additional LEC in the form of the mass of the

pseudoscalar singlet η′. Within this expansion at leading order its decay constant fη′ is equal

to the one of the PNGBs, i.e. fπ = fη′ [2].

The inclusion of the scalar singlet f0/σ is less straightforward. While it is comparatively

light in SM QCD, it is also exceptionally broad and its hadronic composition is not yet fully

understood. Close to the chiral limit it is expected to be dominated by tetraquark contri-

butions [71]. Lattice studies have proven to be extremely challenging and an understanding

of this state’s fermion mass dependence in QCD is just emerging [72, 73]. There has been

a particular interest in the effective description of the scalar singlet in theories close to the

conformal window. Lattice investigations suggest a comparatively light scalar singlet [74–81]

which is interpreted as the pseudo-Goldstone of approximate scale invariance. In this case

the state is known as the dilaton [82] and an effective description in the form of the dila-

ton EFT has been proposed and tested against lattice results – see Ref. [83] for a review.

While these theories are quite different from theories deep in the chirally broken phase, it

provides an example of a theory with a phenomenologically highly relevant scalar singlet.

Together with the surprisingly light and broad scalar singlet in SM QCD, this highlights the

importance of dedicated lattice investigations of this hadron when attempting to construct

an EFT. Specifically, the mass of this state as a function of the fermion masses is highly

relevant.

1.4 Strongly Interacting Massive Particles from Sp(2N)

Based on an effective theory, it is possible to construct well-motivated SIMP DM theories

which naturally provide semi-annihilation 3DM → 2DM as a freeze-out process, as well as

sizeable self-interactions. It was realized that theories with a Wess-Zumino-Witten term

automatically provide 3 → 2 interaction that can set the DM relic density [26]. In this setup

the PNGBs are the DM candidates and the PNGBs are often referred to as dark pions.

A minimal realization of SIMP DM are symplectic gauge theories Sp(2N) with two fermion

flavours in the pseudo-real fundamental representation. For two fermion flavours the theory

is deep in the chirally broken phase [84, 85] with exactly 5 PNGBs which is the minimal

number of PNGBs needed to have a WZW term. The number of colours Nc = 2N is always

even which makes every bound state of this theory a boson. The stability of the PNGBs for
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degenerate fermions is guaranteed by flavour symmetry.

SIMP models based on Sp(2N) gauge theories have first been proposed in [26] and anal-

ysed within leading order (LO) chiral perturbation by solving the respective Boltzmann

equations (1) and (2). It was shown that this model gives the correct order of magnitude

self-scattering cross-section to address the cusp-vs-core and too-big-to-fail problem. The

mass of the dark pions is then roughly in the regime of QCD hadrons, between a few MeV

and below 1 GeV. Studies using chiral perturbation theory at LO [26] as well as next-to-

leading-order (NLO) and next-to-next-to-leading-order (NNLO) [86] suggest that constraints

are stronger at a lower number of colours Nc and in the presence of an unbroken global

symmetry Sp(2Nf ).

This motivates a choice of a non-minimal number of colours Nc > 2. Since one main

goal of this thesis is to provide lattice input for further phenomenological studies, large Nc

are somewhat problematic. Firstly, the dimension of the all involved colour representations

are larger and thus require substantial computing power. Secondly, at large Nc the standard

lattice algorithms (see Sec. 2.3.3) experience topological freezing [87]. The sampling of the

path integral can become non-ergodic, which might introduce unaccounted for systematic

effects. This exploratory investigation starts with Sp(4) gauge theory which is the smallest

non-SU(N) symplectic gauge group.

As noted before, an additional breaking of the global Sp(2Nf ) appears phenomenologically

relevant. Apart from relaxing constraints derived from chiral perturbation a further breaking

of this global symmetry leads to even richer dark sectors. This can have consequences for

small-scale structure formation as it modifies DM self-scattering. In particular, it can provide

inelastic scattering [88] as well as realizations of subcomponent DM [21]. Therefore, not only

the case of two mass-degenerate fermions charged under the Sp(4) group is investigated,

but also the non-degenerate case starting from small fermion mass differences up to sizeable

splittings.

1.5 More Beyond the Standard Model Physics from

Sp(2N)

Section 1.4 motivated the choice of Sp(4) gauge theory with two fundamentally charged

fermions as a realization of the SIMP DM model. Other models for physics beyond the

standard model (BSM) exist, that are based on similar theories. Investigations of such a

strongly-interacting theory produce useful information for other models.

The breaking pattern SU(2Nf ) → Sp(2Nf ) and in particular the SU(4)/Sp(4) coset have
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gained significant attention in the context of composite Higgs models as well as in the context

of partial top compositeness [63,89–93]. Symplectic gauge theories have also been used in the

construction of non-SIMP DM models. Since the system is expected to show chiral symmetry

breaking, it can be a model of generic mesonic, Goldstone DM [94–100] where the DM relic

abundance might be obtained through other mechanisms than the 3 → 2 interaction provided

by the WZW terms or in scenarios where the SIMP mechanism is either modified or replaced

through other scattering interactions within the dark sector [101, 102]. For heavy fermions

these theories can also provide DM candidates in the form of glueballs [95].

The study of Sp(4) provides further insights into the generic structures of chirally broken,

confining gauge theories. Being the smallest non-SU(N) group its study will help to identify

commonalities and differences between Sp(2N) and SU(N) gauge theories. Furthermore, it

will provide insights into how these theories approach the limit of large-N .

1.6 The Case for Lattice Methods

The study of SIMP DM models based on confining gauge theories has currently been mostly

based on chiral perturbation theory, i.e. based on dark pion dynamics alone [26]. NLO and

NNLO calculations [86] have shown that sizeable corrections to LO can appear. However,

these studies are plagued by a lacking knowledge of the low energy constants (LECs) of the

underlying theory. The LECs cannot be computed within the EFT itself but require further

input, e.g. in the form of first-principles lattice calculations. Additionally, the use of an EFT

based purely on dark pions might be inappropriate. Given the moderately heavy fermions

masses required to obtain the correct relic density [26], other light states such as the vector

mesons ρ and the scalar and pseudoscalar singlets f0/σ and η′ might require inclusion in the

EFT treatment as discussed in Sec. 1.3.

In order to test this, knowledge of the full low-energy spectrum of this theory is required

as well as results on all relevant LECs. In principle, the LECs could be treated as free

parameters of the EFT. However, not every possible combination of LECs corresponds to a

UV microscopic complete theory. This is not surprising, given that at each order in the EFT

expansion new LECs are introduced, whereas the UV complete theory is fully parameterized

by the gauge coupling and the fermion masses.

In case of the theory at hand, the potentially relevant LECs are the masses of the mesons,

their decay constants as well as the coupling between dark pions and vector mesons as noted

in Sec. 1.3.2. The methods of lattice field theory allow us to determine them from first

principles as a function of the free parameters of the theory, the gauge coupling and the
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fermion masses. It can be calculated, which mesonic states are likely to provide relevant

contributions to the EFT and which combination of LECs correspond to actual UV complete

theories.

Additionally, other quantities beyond EFT LECs can be obtained directly on the lattice,

such as scattering lengths and cross-sections for both 2DM → 2DM self-scattering and the

3DM → 2DM semi-annihilation; the spectrum of existed states and matrix elements relevant

for coupling the strongly-interaction theory to a mediator. These results can then be used to

further constrain the parameter space to phenomenologically relevant sub-spaces, to test the

validity of the EFT by comparing its predictions to first-principles calculation and in further

astrophysical and phenomenological investigations.

There are some lattice results available for symplectic gauge groups with fundamental

fermions: The non-singlet spectrum for two-degenerate fermions has been studied for both

SU(2) [54, 97, 103–105] and Sp(4) [29, 91] gauge theory. Scattering lengths as well as ρππ

scattering and singlet channel scattering have been studied only in SU(2) thus far [64,106,107].

Little is known about the spectrum of singlet states in symplectic theories. An exploratory

study in SU(2) [108,109] exists, indicating that these states might be light, but it was unable

to resolve the respective mass hierarchies. Symplectic theories with non-degenerate fermions

have so far never been studied on the lattice.

The main goal of this thesis is to fully resolve the low-energy spectrum of Sp(4) gauge

theory with two fermions both for degenerate and non-degenerate masses. Additionally, all

relevant LECs at LO in the EFT detailed in Sec. 1.3 will be determined. Since the scattering

properties between DM candidates is of utmost importance for setting the relic density and

for addressing the small-scale structure problems, an exploratory investigation of the dark

pion scattering lengths in an appropriate channel will be provided. The relevant details of

lattice gauge theory will be reviewed in Sec. 2. Both numerical and analytic results on the

spectrum of such theories will be presented in Sec. 3.
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Lattice Gauge Theory

In this chapter the required techniques for performing non-perturbative calculations using

lattice gauge theory will be reviewed. Sec. 2.1 deals with the effects of discretized spacetime

and its relation to the continuum theory. In Sec. 2.2 the continuum action for non-Abelian

gauge theories will be discretized. Sec. 2.3 and Sec. 2.4.1 examine the sampling algorithms

for the path integral as well as statistical methods used in data analysis. The chapter closes

by reviewing the details of hadron spectroscopy within lattice gauge theory. Most of the

contents of this chapter can be found in dedicated lattice QFT textbooks [28,110–113].

2.1 Finite and discrete spacetime

The starting point for lattice field theory is the Wick-rotated partition function Z of the QFT

at hand, i.e. the Wick-rotated path-integral. In the case of a gauge theory with fermions

fields ψ and their adjoint fields ψ̄ it reads

Z =

∫
D[Aµ, ψ, ψ̄]e

−S[Aµ,ψ,ψ̄], (72)

where Aµ denote the gauge field andD the measure of the path integral. Within this approach

expectation values of operators O are

⟨O⟩ = 1

Z

∫
D[Aµ, ψ, ψ̄]e

−S[Aµ,ψ,ψ̄]O[Aµ, ψ, ψ̄], (73)

where the operator can depend on any of the fields present in the theory. As long as the action

is positive-definite the exponential e−S[Aµ,ψ,ψ̄] can be interpreted as a probability distribution.
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This allows the use of numerical techniques in analogy to statistical mechanics. Discretizing

spacetime to a grid of finite extent makes such a system potentially tractable for numerical

investigation. Even more importantly, it provides genuinely non-perturbative UV and IR

regulators.

In almost every case, spacetime is discretized to a hypercubic lattice with a lattice spacing

a and NT × N3
L lattice sites. Here, NT denotes the number of lattice sites in a “temporal”

direction, whereas NL denotes the number of lattice sites in the “spatial” direction. Because

the lattice theory is formulated in a Euclidean metric there is no a priori distinction between

temporal and spatial direction. However, in certain aspects of zero-temperature hadron

spectroscopy it will be advantageous to have more lattice points in one of the four dimensions

of the lattice and identify this dimension as the temporal one in the analysis 1.

The physics of the continuum theory corresponds to the limit of an infinite volume, and

the limit of an infinitely small lattice spacing.

L→ ∞, (74)

T → ∞, (75)

a→ 0. (76)

When setting up a lattice calculation, the parameters are the bare gauge coupling g and the

bare fermion masses m0. The number of lattice sites is given by NT and NL. Once a lattice

simulation is performed, the lattice spacing a can be determined in physical units by fixing

an appropriate scale based on experimental input. For example, this could be a meson mass.

The remaining free parameters can then be fixed from other distinct quantities.

This is problematic for BSM theories. Despite tremendous experimental effort, there

are (currently) no experimental reference values for setting such a scale. In this case only

dimensionless ratios that do not involve the lattice spacing a such as the ratio of hadron

masses or decay constants can be obtained. The overall scale of the theory at a given lattice

spacing is then unfixed.

The lattice spacing a is not an input parameter, and can only be determined once a

lattice simulation with bare input parameters (g,m0) has been performed. Which choices of

the bare parameters corresponds then to the continuum limit a→ 0? It can be shown that,

1In the case of non-vanishing temperatures this direction can also be associated with temperature. In this
case the T is usually smaller than L and the boundary conditions need to be chosen carefully.
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due to asymptotic freedom, the continuum limit is reached as

g → 0. (77)

In a real-world simulation the continuum limit cannot be reached directly. As a decreases,

the number of lattice sites in a given dimension NL and NT must increase in order to keep

the physical volume fixed. This will quickly become infeasible as the required computing

power grows rapidly as the number of lattice sites scales for a fixed volume with the fourth

power of 1/a. In practice, first the quantities of interest are determined at fixed spacing

a (i.e. fixed bare parameters) for different lattice sizes. For theories with chiral symmetry

breaking the leading finite volume contributions are derived from chiral perturbation theory

at a fixed volume, allowing an extrapolation to infinite volumes L, T → ∞ [114,115].

mπ(L) = minf
π

(
1 + A(mπL)

−3/2 exp (mπL)
)
, (78)

where mπ in general denotes the PNGB mass, i.e. the mass of the dark pion in the DM

model or the SM pion in QCD. Similar expressions can be derived for the decay constants and

generalizations have been applied to extrapolate other meson masses to the infinite volume

limit [91]. Due to this relation, the product mπL is often used to estimate the relevance of

finite volume effects.

Then, the lattice spacing is decreased by lowering the bare coupling g while preserving all

ratios of observables that are used to fix the remaining free parameters of the theory. Using

this procedure the results obtained at different lattice spacings a can be compared. When a

is smaller than all relevant hadronic scales, the effects of finite a should be small which can

be explicitly checked. Other prescriptions of approaching the continuum limit are usually

better motivated but are infeasible due to the associated computational cost [28].

2.2 Discretizing the continuum action

Once spacetime is restricted to a discrete lattice a discretization prescription for the gauge

fields as well as the fermion fields is required. Formulating lattice gauge theory goes back

to the seminal work of Wilson [116]. It is formulated in terms of the lattice sites and links

between neighbouring sites. In this formulation the gauge fields are given by link variables

Uµ(n), connecting a lattice site n = (n0, n1, n2, n3) to a neighbouring site in the direction µ,

denoted as n + µ̂ = (n0 + δµ0, n1 + δµ1, n2 + δµ2, n3 + δµ3) with the Kronecker symbols δµν .

The link variables are related to the lattice gauge fields in the fundamental representation
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Aµ(n) as

Uµ(n) = exp (iaAµ(n)) . (79)

Since the fields Aµ(n) are in the algebra of the gauge group, the link variables are elements

of the gauge group itself. In the lattice formulation of the gauge theory the link variables Uµ
replace Aµ in the path integral as the fundamental variables. In contrast, the fermion fields

ψ(n) live on the lattice site. Under a local gauge transformation specified by a group element

Ω(n) they transform as

ψ(n) → Ω(n)ψ(n) (80)

ψ̄(n) → ψ̄(n)Ω(n)† (81)

Uµ(n) → Ω(n)Uµ(n)Ω(n+ µ̂)†. (82)

From the gauge transformation of the links, it can be seen that closed paths are gauge

invariant due to the unitarity of Ω(n). The action of pure gauge theory can be expressed in

terms of a sum of all shortest closed loops. The smallest loop Uµν is a product of four links

and referred to as plaquette

Uµν = Uµ(n)Uν(m+ µ̂)U−µ(m+ µ̂+ ν̂)U−ν(m+ ν̂). (83)

The Wilson plaquette action of pure Yang-Mills theory is then given by

SG = β
∑

n

∑

µ<ν

(
1 − 1

Nc

Re (TrUµν(n))

)
. (84)

Rewriting the plaquette action in terms of the lattice gauge fields (79) shows that this gives

the correct continuum action in the limit of a→ 0. Then the coefficient β is identified as

β =
2Nc

g2
, (85)

and the continuum limit corresponds to

β → ∞. (86)

In practical lattice calculation β will be specified rather than the gauge coupling g. The

quantity β is known as the inverse gauge coupling. The choice of the action is not unique
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as many other formulations will produce the same continuum limit. This can be used to

construct actions that minimize effects of the lattice spacing a. For the purposes of this

thesis only standard plaquette action is used. The naively discretized fermion action is

Snaive
F = a4

∑

n,m

ψ̄(n)Dnaive(n|m)ψ(m) (87)

= a4
∑

n

∑

µ

ψ̄(n)γµ
Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2a
+ a4

∑

n

mψ̄(n)ψ(n), (88)

where the discretized derivative has been introduced symmetrically and D(n|m) denotes the

Dirac operator from lattice site n to m. The gauge links Uµ ensure gauge invariance and

provide the interactions arising between the fermions and gauge fields from the covariant

derivative of the continuum. The case of free fermions is obtained by setting Uµ(n) =

1. Careful inspection of this action shows, that the fermion propagator obtains additional

(unphysical) poles on a finite lattice. In the case of massless, free fermions the physical pole

at p = (0, 0, 0, 0) remains while additional poles at momenta pi = π/a occur. This is due

to the term sin(pµa) in the lattice Dirac operator in momentum space. In the formulation

by Wilson [116] these poles are removed by introducing additional terms that vanish in the

continuum limit. The discretized Wilson Dirac action is then

SF = a4
∑

n,m

ψ̄(n)D(n|m)ψ(m) (89)

= a4
∑

n,µ

ψ̄(n)
(1 + γµ)Uµ(n)ψ(n+ µ̂)− (1− γµ)U−µ(n)ψ(n− µ̂)

2a

+ a4
∑

n

(
m+

4

a

)
ψ̄(n)ψ(n), (90)

where the Wilson Dirac operator D(n|m) between lattice sites n and m with suppressed

indices was implicitly defined in the first line. It can be shown that these additional terms

give the additional poles a mass of m+ 2l
a
, where l is the number of non-vanishing momentum

components in the additional pole. In the continuum limit a → 0 these poles acquire an

infinite mass and decouple from the remaining theory while the physical pole approaches its

correct continuum limit. This discretization comes at the cost of breaking chiral symmetry at

finite lattice spacing a through the introduction of an additional mass term. For the purposes

of this investigation this is sufficient since the theories of interest also have moderate fermion

masses that break chiral symmetry explicitly. Combining the Wilson plaquette gauge action
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(84) with the Wilson discretization of fermions(89), the full discretized action for the Wilson

formulation of lattice gauge theory is

S[U, ψ, ψ̄] = SG[U ] + SF [U, ψ, ψ̄], (91)

and the partition function

Z =

∫
D[ψ̄, ψ, U ] exp

(
−S[U, ψ, ψ̄]

)
. (92)

The path integral measures are defined as a product of the individual measures at a single

lattice site

D[ψ̄, ψ] =
∏

n,α,c

dψα,c(n)dψ̄α,c(n), (93)

D[U ] =
∏

n,µ

dUµ(n), (94)

where α and c are the spinor and colour index. Note that ψ and ψ̄ are Grassmann valued

fields and the partition function requires Grassmann integration. The integration over the

group in dUµ(n) is defined via the Haar measure which is unique given the requirements of

invariance under group multiplication and normalization of the measure [110].

2.3 Sampling the Path Integral

2.3.1 Importance Sampling

By introducing a discretization the partition function is a high-dimensional finite integral. A

numerical evaluation of the path integral is in principle feasible, but a direct evaluation of

the integral is numerically intractable due to the number of degrees of freedom. Monte-Carlo

methods can still be used to sample the integral, which in the case for pure Yang-Mills theory

is

⟨O⟩ =
∫
D[U ] exp (−S[U ])O[U ]∫

D[U ] exp (−S[U ]) . (95)

Furthermore, the factor exp (−S[U ]) provides different weights to different gauge configura-

tions. The method of importance sampling can be used to randomly generate new gauge
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configurations according to the distribution

ρ(U) =
exp (−S[U ])∫

D[U ] exp (−S[U ]) . (96)

By sampling gauge configuration U according to this distribution, the expectation value of

O is approached as

⟨O⟩ = lim
N→∞

1

N

N∑

i=1

O[Ui]. (97)

This approach hinges on the fact that e−S[U ] is a positive definite quantity so that ρ(U) can

be interpreted as probability distribution. Already by including fermions this is no longer

generically guaranteed.

2.3.2 Fermions and pseudofermions

Consider a generic observable in a gauge theory with fermions for a fixed gauge configuration

U

⟨O⟩ =
∫
D[U ] exp (−SG[U ])

∫
D[ψ, ψ̄] exp

(
−ψ̄D[U ]ψ

)
O[U, ψ̄, ψ]∫

D[U ] exp (−SG[U ])
∫
D[ψ, ψ̄] exp

(
−ψ̄D[U ]ψ

) , (98)

where D[U ] is the (Wilson) Dirac operator for a fixed gauge configuration. The fermionic

contributions can be integrated analytically because they are built from Grassmann variables.

For one species of fermions ψ and its adjoint ψ̄ an observable can be rewritten as

⟨O⟩ =
∫
D[U ] exp (−SG[U ])OF [U ]∫

D[U ] exp (−SG[U ])
, (99)

OF [U ] =
1

ZF [U ]

∫
D[ψ, ψ̄] exp

(
−ψ̄D[U ]ψ

)
O[U, ψ̄, ψ], (100)

ZF [U ] =

∫
D[ψ, ψ̄] exp

(
−ψ̄D[U ]ψ

)
. (101)

Interpreting OF [U ] as a new observable with respect to the pure gauge theory this expression

is rewritten as

⟨O⟩ = 1

Z

∫
D[U ] exp (−SG[U ])OF [U ]ZF [U ], (102)
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where Z is the partition function of the full theory. For sampling the full path integral it suf-

fices to generate gauge configurations as the fermionic integrations can be done analytically.

The O independent quantity, ZF [U ], can be shown to be proportional to the determinant of

the Dirac operator

ZF [U ] =

∫
D[ψ, ψ̄] exp

(
−ψ̄D[U ]ψ

)
=

∫ ∏

i

(
dψ̄idψi

)
exp

(∑

ij

ψ̄i(−Dij)ψj

)
= det [−D] .

(103)

In the final step the Matthews-Salam formula for Gaussian integrals of Grassmann variables

has been applied [28] and i, j are multi indices combining lattice site, spinor and colour

indices. For multiple fermion species products of the fermion determinant occur. Similarly,

expressions for the fermionic expectation value of spinors can be derived

⟨
n∏

l=1

ψilψ̄jl⟩F =
1

ZF

∫ ∏

j

(
dψ̄jdψj

)∏

l

ψilψ̄jle
∑

ij ψ̄i(−Dij)ψj

= (−1)n
∑

P (1,...,n)

sign(P )
n∏

l=1

(−D−1)il,jP (l)
. (104)

The fermionic expectation value evaluates to the sum over all permutations of products of

inverse Dirac operators. The relative signs are given by the permutation P of the n involved

products of Grassmann variables.

In the case of the expectation value of fermion operators, the fermionic integrals are

given by products the inverse Dirac operator from multi index i = (n, α, a) to multi index

j = (m,β, b). This inverse is known as the fermion propagator. D−1
i,j corresponds to the as

the operator which propagates a fermion from lattice site x to y, from spinor index α to β

and from colour index a to b. It will be useful to introduce a graphical notation for this as

D−1
i,j =

(
D−1

)a,b
α,β

(x|y) = . (105)

Equations (103) and (104) show that OF [U ] and ZF [U ] have a different structure with respect

to the Dirac operatorD. Typically, the determinant leads to large fluctuations and introduces

numerical instabilities while being computationally expensive [28]. Including the fermion

determinant as an observable has proven to be useless for most systems. Thus, it needs to be

included as a weight together with exp (−SG[U ]). Setting the determinant to 1 is known as
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the quenched approximation. This is equivalent to considering the effect of infinitely heavy

fermions where the fields decouple from the gauge field dynamics in the generation of the

gauge configurations. This is opposed to including the determinant in the generation of

samples. In this case the fermions are said to dynamical. The Wilson fermion discretization

is γ5-hermitian, i.e.

γ5Dγ5 = D† (106)

and thus the fermion determinant is always real. This further implies that for an even number

of degenerate fermions, the product of the determinants is always positive definite and can

safely be used as a probability distribution

det [D] det [D] = det [D] det
[
D†] = det

[
DD†] ≥ 0. (107)

For odd numbers of degenerate fermions, this is not guaranteed. However, specifically for

moderately heavy fermions, the determinant might remain positive due to the comparatively

large diagonal term in the Dirac operator proportional to the fermion mass. One approach to

including the fermion determinant is to rewrite it as an exponential of fictitious bosonic fields

ϕ, known as pseudofermions. Using the bosonic version of (103) the fermion determinant

can be written as

det
[
DD†] = π−N

∫

R2N

D
[
ϕ, ϕ†] exp

(
−ϕ† (DD†)−1

ϕ
)
, (108)

where N the number of real components of the complex field ϕ.

2.3.3 Markov Chain Monte-Carlo and (R)HMC algorithms

The algorithms used in this thesis start with an initial gauge configuration and randomly

generate a new configuration based on the previous one. This step is then repeated and

the succession of new, random configurations set up the so-called Markov chain. The con-

figurations should be distributed according to the weight factor exp (−S[U ]). This can be

achieved by requiring a suitable transition probability T (U ′|U) from one configuration U to

the new one U ′ (which can be generalized in case more fields, such as the pseudofermions,

are present). For a sufficiently long Markov chain the configurations will obey an equilibrium
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distribution. In equilibrium the balance equation

∑

U

T (U ′|U)P (U) =
∑

U

T (U |U ′)P (U ′), (109)

holds. The Metropolis algorithm [117] provides such an update scheme. By first selecting a

new candidate configuration according to a selection probability of Ts(U
′|U), but only accept

the new configuration with an acceptance probability of

Ta(U
′|U) = min

(
1,
Ts(U |U ′) exp(−S[U ′])

Ts(U ′|U) exp(−S[U ])

)
. (110)

It can be shown that the combined probability T = TsTa fulfils the balance equation ele-

mentwise and produces the correct equilibrium distribution. In case of symmetric Ts, the

acceptance probability is proportional to exp (−∆S[U ′, U ]), i.e. this algorithm suppresses

large changes to the action. For the generation of configurations with dynamical fermions

the cost of evaluating the action is high, since it involves the inversion of Dirac operators

(108). An effective algorithm should make a larger number of updates to the links in the

configuration when selecting a candidate configuration to reduce the correlation between con-

figurations, while keeping the change in the action small so that the acceptance rate of Ta
remains sufficiently high. This can be achieved by using the molecular dynamics algorithm,

which introduces conjugate variables to the gauge links Uµ(n) on each lattice site π(n, µ) as

π(n, µ) = iπa(x, µ)τa, (111)

where τa are the generators of the colour group. Including the conjugate momenta in the

expectation values, does not change anything, because the fictitious π cancel. This corre-

sponds to a non-relativistic Hamiltonian (hence the name molecular dynamics) which can be

evolved in Monte-Carlo time through its classical equations of motion.

H[π, U, ϕ] =
1

2

∑

x,µ

π(x, µ)π(x, µ) + SG[U ] + SF [U, ϕ, ϕ
†], (112)
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with SG[U ] the gauge action and SF [U, ϕ, ϕ
†] the pseudo-fermion action. The equations of

motion in computer time tMC are

d

dtMC

Uµ(n) = π(x, µ)Uµ(n), (113)

d

dtMC

π(x, µ) = δSG[U ] + δSF [U, ϕ, ϕ
†], (114)

where δSG/F denotes the change in the action upon an infinitesimal change in the link vari-

ables. An update in the gauge configurations can then be made by numerically evolving the

equations of motion in Monte-Carlo time tMC. First a pseudo-fermion field configuration is

generated by solving ϕ = Dχ, where χ are drawn from a multidimensional Gaussian distri-

bution exp(−χTχ). Then the conjugated momenta are generated according to a Gaussian

exp(−Tr[π2]). After evolving the fields for some time ∆tMC the gauge field configuration is

the new candidate configurations and an accept-reject step (110) is performed. The accep-

tance rate is given by the change in the Hamiltonian

Ta = min (1, exp (−∆H)) = min (1, exp (− [H[π′, U ′, ϕ′]−H[π, U, ϕ]])) . (115)

If the evolution of the equations of motion is perfect, then the change in H will always be

vanishing. The accept-reject step thus accounts for numerical inaccuracies. The combination

of a molecular dynamics algorithm with Gaussian distributed conjugate momenta and a

Metropolis accept step is known as the hybrid Monte Carlo (HMC) algorithm.

Assuming a positive definite fermion determinant det[D], the HMC algorithm can be

generalized to an arbitrary number of fermion species Nf . In this case, the pseudo-fermion

action is written as

SF [U, ϕ, ϕ
†] = exp

(
−ϕ† (D[U ]D[U ]†

)−Nf/2 ϕ
)
, (116)

which is combined with an approximation of DD† based on rational functions

(
1

DD†

)Nf/2

≈ α0 +
∑

n

αn
DD† − sn

, (117)

where the expansion coefficients can be pre-calculated using e.g. the Remez algorithm. This

leaves the form of the pseudo-fermion action unchanged (up to a shift by the coefficient

sn) and the HMC is thus generalized to an arbitrary number of dynamical fermions which is

known as the rational HMC (RHMC) algorithm. The (R)HMC algorithms can be generalized
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to non-fundamental fermion representations [118].

2.4 Statistical analysis and autocorrelation

By generating gauge configurations using the (R)HMC algorithms, the expectation value of

operator can be estimated as

⟨O⟩ = 1

N

N∑

n=1

O[Un] +O
(

1√
N

)
. (118)

For a finite number N of samples Oi, the lattice result are given in terms of an estimator Ō

and an estimation of the variance σ2
O defined using the usual definitions as

Ō =
1

N

N∑

i=1

Oi (119)

σ2
O =

1

N − 1

N∑

i=1

(
Oi − Ō

)2
. (120)

The statistical uncertainty is given not by σ2
O but by the standard deviation of the mean Ō.

Assuming that individual measurements Oi are uncorrelated, the standard deviation of the

mean σ2
Ō
is given by

σ2
Ō =

σ2
O

N
, (121)

showing that the statistical uncertainty drops off with the factor 1/
√
N as a function of

the number of MC measurements as in (118). The best estimator is then quoted with the

uncertainty as ⟨O⟩ = Ō ± σO/
√
N assuming that the individual measurements in a Markov

chain are fully uncorrelated. In practice individual elements in a Markov chain are correlated

with the previous elements in the chain, which is known as autocorrelation. This can be

quantified by explicitly studying the correlation between successive MC samples.

In equilibrium, it only depends on the separation in MC time

CO(t) = C(Oi, Oi+t) = (Oi − ⟨Oi⟩) (Oi+t − ⟨Oi+t⟩) . (122)

If there is no auto-correlation between measurements then this quantity is compatible with
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zero. In case they are present it can be parameterized by its leading exponentially decaying

contribution

CO(t)

CO(0)
∼ exp

( −t
τexp

)
, (123)

which is parameterized by the exponential auto-correlation time τexp. For an auto-correlation

time much smaller than one, this indicates that no autocorrelation between successive mea-

surements exists. If τexp > 1, this is taken into account by replacing the number of mea-

surements N in (119) by an estimate of the number of uncorrelated measurements N/τexp.

However, the determination of τexp comes with inherent uncertainties. It is difficult to judge, a

priori, whether the extracted auto-correlation time is reliable. Thus, it is useful to recompute

the auto-correlation time based on N/τexp blocked measurements.

2.4.1 Jackknife and bootstrap resampling techniques

Quite often, the determination of observables goes beyond taking a statistical average as in

(119). This may include combining different quantities in non-linear expressions, performing

fits and/or extrapolation and interpolation. This is even more pronounced when some quan-

tities cannot be determined based only on a measurement of one or few configurations, e.g.

in the case of fits the statistical fluctuations may make the fits unstable.

In these cases error propagation is far from straightforward. Resampling techniques pro-

vide ways of estimating uncertainties even for involved analysis setups. The jackknife and

the bootstrap methods are standard procedures for performing such an analysis by construct-

ing many new datasets based on the existing N measurements. The resampled sets are of

comparable size to the initial ones, which ensures that fitting can remain stable.

In the jackknife method, from the existing dataset {Oi} consisting of N samples in total,

N new sets of size N − 1 are created by removing the ith element in each set. Consider an

observable θ, where the best estimator based on the original dataset is θ̃. The resampled

datasets are then used to calculate the observable of interest, leading to N resampled values

of the observable denoted as θj. The best estimator θ̂ and jackknife uncertainty σθ are then
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given by

θ̂ =
1

N

N∑

j=1

θj, (124)

σθ =
N − 1

N

N∑

j=1

(
θj − θ̃

)
. (125)

The bootstrap method similarly builds new datasets, but allows the construction of an arbi-

trary number of resampled datasets K. They are generated by randomly drawing N samples

without replacement from the original datasets. In this case the estimators of the observable

θ are given by

θ̂ =
1

K

K∑

j=1

θj, (126)

σθ =
1

K

K∑

j=1

(
θk − θ̃

)
. (127)

A number of variations of these two methods exists [119]. The jackknife method can be

generalized to variations where more than one sample is removed from the original dataset.

Similarly, the bootstrap can be extended to an arbitrary number of the resample size, instead

of generating samples of the same size as the original set.

2.5 Hadron Spectroscopy and Scattering

Within this thesis, spectroscopic properties are the most interesting observables. The ground

state properties of mesons are of particular interest. This information can be extracted from

the meson correlators at large Euclidean time separations.

2.5.1 Meson spectroscopy

A meson correlator can be constructed from interpolators which correspond to operators that

create and annihilate the states of the desired quantum numbers. For the purposes of this

thesis, the creation operators are denoted as O† and the annihilating operators as O. For
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JP Γ

pseudoscalar 0− γ5, γ0γ5
scalar 0+ 1
vector 1− γi

axial vector 1+ γ5γi

Table 1: Spin and parity quantum number, corresponding to the different choices of Γ used
in this thesis. Vector and axial vector mesons are sourced by the spatial γ-matrices γi, where
i = 1, 2, 3.

mesons in two-flavour theories these operators are typically of the form

Omeson = ψ̄1(n)Γψ2(n), (128)

where Γ is a combination of γ-matrices, chosen such that the desired JP quantum numbers of

the meson are obtained. The spinor fields are denoted as ψ1 and ψ2. For notational simplicity

and in analogy with QCD, they will be referred to as dark up quark ψ1 = u and dark down

quark ψ2 = d. The choices of Γ used throughout this thesis are given in Tab. 1. Note, that

operators of the form (128) have open flavour indices. Additional non-flavoured states exist

both in mesonic multiplets and in the form of singlets. In the two-flavour theory they are

given by

Omeson =
1√
2

(
ψ̄1(n)Γψ1(n)± ψ̄2(n)Γψ2(n)

)
. (129)

The corresponding interpolator that creates the flavoured meson is given by

Ōmeson ≡ O†
meson =

(
ψ̄1(n)Γψ2(n)

)†
= ±ψ̄2Γψ1, (130)

where the overall sign is (±) if −γ0Γ†γ0 = ±Γ. This straightforwardly applies as well for the

unflavoured meson interpolators. The ground state information dominates at large Euclidean

times. This can be seen by formally expanding the time separated operators O(t) and Ō(t′)

in the eigenstates of the theory.

⟨O(t)Ō(t′)⟩ =
∑

n

1

2En
⟨0|O|n⟩⟨n|O†|0⟩e−|t−t′|En (131)

At large separations all states except for the states corresponding to the lowest energy E0,

i.e. the ground state, are strongly suppressed and negligible. The suppression of the next
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highest state is governed by the energy difference to the first excited state, ∆E = E1 − E0.

On the lattice this quantity can be obtained by Fourier transformation and projecting to

definite momentum of the state.

C(t− t′, p⃗) =
1

L3

∑

n⃗,m⃗

e−i(n⃗−m⃗)·p⃗⟨Ō(t, n⃗)O(t′, m⃗)⟩, (132)

where the possible momenta on a fixed lattice are discretized to multiples of (2π)/L in every

component. At large times the correlator C(t− t′, p⃗) have the desired behaviour

C(t− t′, p⃗) = Ae−|t−t′|E0(p⃗) +O
(
e−|t−t′|∆E(p⃗)

)
, (133)

and the ground state energy is obtained at vanishing momentum E0(p⃗ = 0). The right-hand

side of (132) can be calculated directly on the lattice and the result can be fitted to the

function (133) to extract E0. The continuum mass can then be achieved by performing the

continuum limit as discussed in Sec. 2.

2.5.2 Meson Scattering

In the case of multi-particle states, the finite volume effects are no longer expected to drop

of exponentially, but they are expected to be only suppressed in inverse powers of L. For

scattering of mesons this can be used to extract information of the infinite volume scattering

properties as shown by Lüscher [120–122]. This allows investigations into the scattering

properties of two dark pions which encode the information of the scattering cross-section

⟨σ2DM→2DM⟩. Lüscher derived relations between scattering phase shift δ(k) in the infinite

volume limit, the finite lattice size L and momentum k. Thus, by calculating the one-

particle and two-particle energies (and the associated momenta) on a finite lattice of spatial

extent L, the infinite volume phase shift is determined.

The most accessible quantity is the s-wave scattering of two identical particles without

any relative momenta. For the scattering of the PNGB the cleanest state on the lattice

is given by the two-PNGB in the highest-dimensional representation of the global flavour

symmetry, i.e. at maximal isospin in QCD [123,124]. For pseudo-real representations of a two-

flavour theory the representations under the global Sp(4) have a one-to-one correspondence

to the case of isospin I = 0, 1, 2 in two-flavour QCD [106]. The dark pions of Nf = 2

are in a five-dimensional representation and the product representation decomposes into

5 ⊗ 5 = 1 ⊕ 10 ⊕ 14 2. The singlet representation corresponds to the I = 0 case of QCD,

2See [105] for the decomposition of a three-pion state which can be classified in the multiplets 5⊗ 5⊗ 5 =

47



CHAPTER 2. LATTICE GAUGE THEORY

the ten-dimensional representation corresponds to I = 1, and the fourteen-dimensional one

corresponds to maximal isospin i.e. I = 2. In the limit of limk→0 δ(k)/k only the momentum

independent term of scattering phase shift survives which is the scattering length a0. For

s-wave scattering of (dark) pions in the isospin channel I at vanishing relative momentum

on a lattice of spatial extent L the relation

δEI
ππ

mπ

≡ EI
ππ − 2mπ

mπ

=
4πmπa

I
0

(mπL)3

(
1 + c1

aI0
L

+ c2

(
aI0
L

)2

+O(L−6)

)
(134)

holds. Here EI
ππ is the energy of the two-PNGB state in the isospin channel I and aI0 the

corresponding scattering length. The coefficients c1 and c2 can be calculated analytically

[121]. Assuming that the PNGB mass is already known, only the energy of the two-PNGB

state needs to be determined on the lattice to calculate the scattering length. For the isospin

I = 2 channel a corresponding interpolator is

Oππ(n) = Oπ(n)Oπ(n), (135)

where the PNGBs π need to correspond to identical off-diagonal PNGB fields, i.e. in the case

of QCD the operator Oπ+π+ = ūγ5dūγ5d is interpolating the I = 2 channel. The energy can

be extracted in the same way as for the mesonic one-particle operators discussed in Sec. 2.5.1

2.5.3 Fermionic integrals

The operators corresponding to mesonic one- and two-particle states of interest are given by

Eqs. (128),(129) and (135). The fermionic Grassmann integrals according to (104) needs to

be performed. The simplest case is given by the flavoured meson (128). There the fermionic

integrals factorize for the different fermion species and

⟨O(n)Ō(m)⟩F = −⟨ū(n)Γd(n)d̄(m)Γu(m)⟩F = ±Tr
[
ΓD−1

u (n|m)ΓD−1
d (m|n)

]
, (136)

where the potential overall sign due to (130) has been assumed to be positive. The different

fermions are labelled as u and d respectively. This trace can be expressed diagrammatically

5⊕ 5⊕ 5⊕ 10⊕ 30⊕ 35⊕ 35. Note that only the ten-dimensional representation - which happens to be the
representation of the vector meson multiplet - appears in both decompositions.
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following the notation introduced in Eq. (105) as

⟨O(n)Ō(m)⟩ = − n m

u

d

, (137)

and it can be interpreted as a fermion u propagating from lattice site n to m and the other

fermion d propagating from n to m. For the unflavoured mesons (129) the fermionic integral

does not always factorize. Additional terms appear with fermions propagating from lattice

site n back to the same lattice site known as disconnected contributions or disconnected pieces.

In contrast, the other diagrams are known as connected contributions. Diagrammatically one

obtains

2⟨O±(n)Ō±(m)⟩ = − n m

u

u

− n m

d

d

± 2 n mu d + n mu u + n md d .

(138)

On the left-hand side the choice of sign in the interpolator (129) has been made explicit.

The additional terms give rise to pure gluonic propagation of the meson. Thus, they can

only correspond to operators that do not have a conserved quantum number arising due to

flavour symmetry. These contributions can only be non-vanishing for singlets. In the case of

the flavour-diagonal non-singlet states this becomes explicit when setting the fermion masses

equal. Then D−1
u = D−1

d , the diagrams simplify to

⟨O−(n)Ō−(m)⟩ = ⟨O(n)Ō(m)⟩ = − n m , (139)

⟨O+(n)Ō+(m)⟩ = − n m + 2 n m . (140)

This makes it apparent that the operator O− sources the flavour-diagonal non-singlet meson

states. In the case of the two-PNGB operators the number of fermion fields increases even

further. Due to the maximal isospin in the I = 2 only two distinct diagrams appear after

setting D−1
u = D−1

d which are both connected

⟨Oπ+π+(n)Ōπ+π+(m)⟩ =
n m

n m

−
n m

n m

. (141)
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For other channels than the I = 2 case more diagrams contribute [107]. In order to evaluate

the correlators on a given gauge configuration the inverse fermion propagator D−1(n|m) is

needed. Since the Dirac operator D[U ] depends on the gauge configuration (89) this needs

to be done for each configuration separately.

2.5.4 Calculating the fermion propagator

A straightforward inversion of the Dirac operator Da,b
α,β(x|y) is unfeasible. On a given lattice

of size Λ = N3
LNt with fermions in the fundamental representation it is a (4NcΛ) × (4NcΛ)

matrix, where for even moderate lattices sizes studied in this thesis it has roughly O(107)−
O(108) rows and columns.

For connected diagrams involving two fermions the Dirac operator does not have to be

fully inverted. When performing the lattice Fourier transform of (137), a sum over all lattice

sites n and m occurs. Fixing one of the lattice sites when performing the average reduces

the required computations substantially. In this context it is useful to make all indices in

(136) explicit. After performing the Fourier transform to definite momentum p⃗ in (132) and

dropping the normalization the correlator is obtained as

C(t− t′) =
∑

m⃗,n⃗

e−i(n⃗−m⃗)·p⃗Tr
[
ΓD−1

u (n|m)ΓD−1
d (m|n)

]
(142)

=
∑

m⃗,n⃗,αi,a,b

e−i(n⃗−m⃗)·p⃗ Γα1,α2D
−1
u (n|m)abα2,α3

Γα3,α4D
−1
d (m|n)baα4,α1

. (143)

Fixing one lattice site as m = m0 = (m⃗0, t
′
0) and dropping the sum over m is equivalent to

inserting a Kronecker delta δm,m0 . Setting m0 = 0 for concreteness leads to

C(t) =
∑

n⃗,αi,a,b

e−in⃗·p⃗ Γα1α2D
−1
u (n|0)abα2α3

Γα3α4D
−1
d (0|n)baα4α1

. (144)

The inverse Dirac operator D−1(n|m0)
a0b
α0,β

with fixed lattice site m0 and fixed colour a0 and

spinor α0 index now corresponds to a single row of the full propagator D−1 and is known

as a one-to-all propagator. For calculating C(t) according (144) only Nc × 4 rows of the full

propagator are required 3. This can be achieved by introducing sources. A source η can be

understood as an object that projects out components of the fermion propagator. It allows

us to relate the full propagator D−1(n|m)abαβ to the propagator where (m0, a0, α0) are fixed

3This is because the fundamental representation of the fermions which is Nc-dimensional. For a general
representation Nc needs to be replaced by the dimension of the fermion representation.
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D−1(n|m0)
a0b
α0β

as

ϕm0a0α0(n, b, β) ≡ D−1(n|m0)
a0b
α0β

=
∑

m,a,α

D−1(n|m)abαβη
m0a0α0(m, a, α), (145)

ηm0a0α0(m, a, α) = δm,m0δa,a0δα,α0 . (146)

Because this approach fixes a specific index the associated sources are known as point sources.

This equation can now be solved for the vector ϕ iteratively. With ϕ for all required colour

and spin indices, the meson propagator in (144) can be calculated. Rewriting the above

equation in matrix notation ϕ = D−1η leads to

Dϕ = η, (147)

where the right-hand side is a known source and the problem of finding ϕ is equivalent to

solving the system of equations (147). The Dirac operator D is sparse in contrast to its

inverse. This means that acting with it on a generic test vector ϕ0 is comparatively cheap

in computational cost. In practice, algorithms from the family of Krylov solvers are usually

used to obtain ϕ (see e.g. [113] for a textbook treatment). At first glance, it appears as if

(147) requires inversions for both D−1(n|0) and D−1(0|n). This can be avoided by making

use of γ5-hermiticity (106). This can be used for rewriting the propagator in terms of its

hermitian conjugate which leads to

(
γ5D

−1(0|n)γ5
)ab
αβ

=
(
D−1(n|0)baβα

)∗
. (148)

Thus, the entire meson correlator can be obtained by only calculating Nc × 4 rows of the

full fermion propagator. This is no longer possible when the relevant diagrams contain a

propagator that connects a lattice site to itself such as the disconnected pieces appearing in

the singlet mesons (140). In this case the disconnected contributions are given by

Cdisc.(t− t′) =
∑

m⃗,n⃗

e−in⃗·p⃗eim⃗·p⃗Tr
[
ΓD−1(n|n)

]
Tr
[
ΓD−1(m|m)

]
(149)

=
∑

n⃗

e−in⃗·p⃗Tr
[
ΓD−1(n|n)

]∑

m⃗

eim⃗·p⃗Tr
[
ΓD−1(m|m)

]
. (150)

In this situation, it is no longer possible to keep one lattice site fixed while still obtaining

a signal for the disconnected diagram. This requires an estimate of the fermion all-to-all

propagator. The notion of a source introduced earlier can be generalized to circumvent these
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issues. In theory, the full propagator could be calculated by inverting D with a different point

source for each row of the full propagator and then summing over all sources. By finding an

approximation to summing over all point sources

∑

m0,a0,α0

ηm0a0α0
point (m, a, α), (151)

the all-to-all propagator can be estimated with reduced computational cost. Specifically, a

set of N vectors containing random noise {ηi} as sources for the inversion of the propagator

can be used, given that they approximate the full propagator in the limit of infinitely many

samples N → ∞ [125]. This can be achieved by requiring

lim
N→∞

N∑

i=1

(ηi)
naα (η∗i )

mbβ = δm,nδa,bδα,β, (152)

which includes an appropriate normalization of the source so that the product of the Kro-

necker deltas is recovered. For a suitable choice of noisy source vectors a finite number of

N is sufficient to calculate the fermion propagator at the desired accuracy. Using complex

Z2 × Z2 noise (i.e. a random element of the set Z2 × Z2 =
{

1+i√
2
, −1+i√

2
, 1−i√

2
, −1−i√

2

}
is chosen

for every element of the source ηi) has proven to be an adequate choice [125]. Using this

approach the disconnected contributions are given by

Tr
[
ΓD−1(n|n)

]
= ΓαβD

−1(n|n)βαa,a = lim
N→∞

N∑

i

Γαβϕ
i(n, β, a) (η∗i )

n,α,a , (153)

where ϕi denotes the solution vector after inverting the Dirac operator with the source ηi.

Note, that the source appears explicitly in the estimate of the disconnected pieces. That this

expression leads to the correct all-to-all propagator can be seen by inserting (145) into (153).

lim
N→∞

N∑

i

Γαβϕ
i(n, β, a) (η∗i )

n,α,a = lim
N→∞

N∑

i

Γαβ
∑

n′,β′,a′

D−1(n′|n)β′β
a,a′ (ηi)

n′,β′,a′ (η∗i )
n,α,a (154)

= Γαβ
∑

n′,β′,a′

D−1(n′|n)β′β
a,a′ lim

N→∞

N∑

i

(ηi)
n′,β′,a′ (η∗i )

n,α,a (155)

= Γαβ
∑

n′,β′,a′

D−1(n′|n)β′β
a,a′δn,n′δa,a′δβ′,α = Tr

[
ΓD−1(n|n)

]

(156)
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In general, the method of noisy sources can also be applied to one-to-all propagators. It

was found that fewer inversions of the Dirac operator are needed to reach the same level

of accuracy as with point sources [126]. In this case the sources can again be restricted to

probing a subset of the entire fermion propagator by restricting them to be only non-vanishing

on a specific timeslice t. These sources are known as wall sources. It was found that diluting

the existing stochastic noise vectors provides additional computational advantage [127,128].

In the dilution approach a given stochastic source ηi is split up into multiple sources

ηi =

Nd∑

d

η
(d)
i , (157)

where every η
(d)
i is non-vanishing for distinct entries. This was nicely illustrated in [129] as




ηi

Z1

Z2

Z3

...

ZNd




−→




η
(1)
i

Z1

0

0
...

0







η
(2)
i

0

Z2

0
...

0







η
(3)
i

0

0

Z3

...

0




. . .




η
(Nd)
i

0

0

0
...

ZNd




,

where Zi label all non-vanishing entries to the noisy sources. Many possible choices of

partitioning the diluted sources exist. Partitioning non-vanishing terms in the spin index

(spin dilution), colour index (colour dilution), on even or odd lattice sites (even-odd dilution),

or on fixed timeslices (time dilution) have all been used in the literature. Time dilution in

particular, is widely used in the study of singlet mesons [129].

2.5.5 Correlator fitting

Once the correlator C(t) has been calculated on the lattice, the ground state information

according to (133) can be extracted from large Euclidean times t. The coefficient of the

exponential A in (133) is related to the matrix element of the probed state and the vacuum

state (131). For a meson stateM interpolated by the operator OM the asymptotic behaviour
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is given by

C(t) =
1

2mM

⟨0|OM |M⟩⟨M |O†
M |0⟩e−tmM +O

(
e−t∆E

)
, (158)

=
1

2mM

|⟨0|OM |M⟩|2e−tmM +O
(
e−t∆E

)
. (159)

In the limit of infinite Euclidean time t the correlator is given by a single exponential. The

prefactor and the exponential decay can then be extracted using non-linear fitting, such as

the Levenberg–Marquardt algorithm [130]. On a finite lattice the fit has to performed at

sufficiently large times. Due to lattice periodicity an additional exponential term in (133)

appears that corresponds to a backward propagating hadron. Depending on the relative sign

between the exponential terms a cosh- or sinh-like behaviour emerges

Ae−mt ± Ae−m(T−t) = Ã




cosh

[
m
(
T
2
− t
)]

sinh
[
m
(
T
2
− t
)] . (160)

The cosh-term which is symmetric around T/2 corresponds to a positive sign in (160) and

the antisymmetric sinh-term corresponds to a negative sign. Thus, the largest Euclidean

time separation obtainable on a finite lattice is T/2. All larger separations are equivalent to

smaller separations due to (anti-)periodic boundaries. The interval [tmax, tmin] in which the

correlator is dominated by the leading exponential terms can be found by considering the

logarithm of the ratio of the correlator at neighbouring times

m
(1)
eff

(
t+

1

2

)
= log

(
C(t)

C(t+ 1)

)
. (161)

If the correlator is only given by a single exponential term, this reduces to

log

(
C1 exp(t)

C1 exp(t+ 1)

)
= log

(
e−mt

e−m(t+1)

)
= m. (162)

In that case the effective mass is constant and equal to the mass of the hadron. This allows

an identification of the interval [tmax, tmin] by looking for a plateau in the effective mass.

This definition does not take into account the (anti-)periodicity of the correlator on a finite

lattice. A straightforward way of taking the periodicity into account is to use the inverse of
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the hyperbolic functions as

m
(2)
eff

(
t+

1

2

)
=




acosh

(
C(t)

C(T/2)

)
1

T/2−t

asinh
(

C(t)
C(T/2)

)
1

T/2−t

. (163)

This requires the correlator at the mid-point of the lattice for the effective mass at every

t + 1/2. This is unfortunate, as the relative errors at the largest at the midpoint 4. An

alternative, is to define the effective mass for a time (t+ 1/2) implicitly as

C(t)

C(t+ 1)
=

e−tm
(3)
eff ± e−(T−t)m(3)

eff

e−(t+1)m
(3)
eff ± e−(T−(t+1))m

(3)
eff

, (164)

and to numerically solve for meff at every timeslice t. For the purposes of this thesis, a simple

secant method was sufficient. It needs to be stressed, that the effective mass should only

be used for determining the fitting interval [tmax, tmin]. Once the interval is determined it

is advantageous to directly fit the correlator instead of the effective mass. The fit interval

of correlation functions corresponding to other states such as the dark two-PNGB states

relevant for the study of scattering processes.

2.5.6 Decay constants

The decay constants can be extracted from the coefficients of the exponentially decaying

terms in (158). The decay constant is defined as in [91] by the matrix elements involving the

pseudoscalar |π⟩ and vector meson |ρ⟩ ground states

⟨0|Oγ5γµ |π⟩ = fπpµ (165)

⟨0|Oγµ|ρ⟩ = fρmρϵµ. (166)

In this convention the decay constant of the π in QCD is approximately 93 MeV. This

definition ensures that this quantity corresponds to the LEC of chiral perturbation theory

defined in (52). Here ϵµ is the polarization vector for which ϵµp
µ = 0 and ϵ∗µϵ

µ = 1 hold. In

the rest frame the pseudoscalar matrix element is then

⟨0|Oγ5γ0|π⟩ = fπmπ. (167)

4This is because at the mid-point the magnitude of the correlator is the smallest. For a roughly constant
absolute error, the relative error is at its maximum there.
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Note, that this definition corresponds to a choice of Γ = γ5γ0 in the interpolating operators

(128) and (129). This choice also interpolates the pseudoscalar mesons - see Tab. 1. By

replacing the dark pion interpolator with the singlet interpolator, the same relation for the

singlet η′ meson is obtained. Inserting this expression into the corresponding correlators at

large times gives

Cπ,γ5γ0(t) =
mπ

2
f 2
π exp (−mπt) (168)

Cρ(t) =
mρ

2
f 2
ρ exp (−mρt) (169)

Alternatively, the decay constants can be extracted from correlators where the creating and

annihilating operators have different structures in terms of γ matrices. Defining a generalized

correlator as

CΓ1,Γ2(t− t′, p⃗) =
1

L3

∑

n⃗,m⃗

e−i(n⃗−m⃗)·p⃗⟨ŌΓ1(t, n⃗)OΓ1(t
′, m⃗)⟩, (170)

where the choice of Γ in the individual operators has been made explicit. The mixed correlator

with Γ1 = γ5γ0 and Γ2 = γ5 can also be used for the pseudoscalars [91] by performing a

simultaneous fit to this correlator and the standard dark pion correlator with Γ1 = Γ2 = γ5.

Matrix elements calculated on the lattice need to be treated as unrenormalized, bare quan-

tities. The lattice merely acts as a regulator [131]. The relevant renormalization constants

that need to be introduced are

f ren
π = ZAfπ, (171)

f ren
ρ = ZV fρ. (172)

The non-perturbative determination of renormalization constants is highly involved. In light

of the exploratory nature of this investigation the prescription from [91] for determining

the renormalization constants is sufficient. They are obtained from leading order lattice

perturbation theory. In this approach the renormalization constants are given [132] by

ZA = 1 + CF
(
∆Σ1 +∆γ5γµ

) g2

16π2⟨P ⟩ , (173)

ZV = 1 + CF
(
∆Σ1 +∆γµ

) g2

16π2⟨P ⟩ , (174)

where CF is the quadratic Casimir in the fundamental representation. For Sp(4) it is CF =
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5/4. The effective coupling is g̃2 = g2/⟨P ⟩, where ⟨P ⟩ is the average value of the plaquette.

By matching to the MS scheme in the continuum the coefficients are determined to be [132]

∆Σ1 = −12.82, (175)

∆γ5γµ = −3.0, (176)

∆γµ = −7.75. (177)

It can be shown, that at this loop in the perturbative expansion the renormalization factors

are the same for the singlet and the non-singlet mesons. The difference between the singlet

and non-singlet factors only appears at order O(g4) [133].

2.5.7 Fermion masses

For any lattice simulation the bare fermion masses are input parameters. These input masses

are unrenormalized and thus regulator-dependent and unphysical. An obvious question is,

therefore, if there is a way of calculating a “physical” quark mass. This is however not

possible. Due to confinement there is no notion of a physical quark mass since no physical

quark has ever been observed in experiment. Any definition of a quark mass is scheme-

dependent and necessarily not unique. In the context of Standard Model QCD several ways

of a defining a quark mass are being used. See for example the current PDG review [134] for

a detailed discussion of quark masses in the SM.

The scheme-dependence of any quark mass implies that quark masses are comparable

only in the same scheme at the same energy scale µ. This requires a determination of

the renormalization constants associated with the bare quark masses mu and md in order

to obtain the renormalized quark masses m
(r)
u and m

(r)
d . The discretization of the fermion

fields on the lattice makes this even more challenging: The Wilson action of fermions breaks

chiral symmetry explicitly on the lattice and results in both a multiplicative and additive

renormalization of the bare quark mass as long as the lattice spacing is non-vanishing, i.e.

a > 0 [113]. It is not uncommon for bare Wilson fermion masses to be negative. This is

another example highlighting the unphysical nature of bare parameters.

A quark mass can be defined based on the partially conserved axial current (PCAC) equa-

tion (see e.g. [28] for a textbook discussion) which relates the axial current to the pion field

and the axial Ward identity (AWI) which connects the axial current JµA to the renormalized
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quark mass m(r). The AWI for the flavoured π PNGB reads

JµA = d̄γ0γ5u (178)

∂µJ
µ
A = (m(r)

u +m
(r)
d )d̄γ5u (179)

The unrenormalized quark mass can be defined through correlation functions CΓ(t) of the

unrenormalized axial currents ūγ0γ5d and ūγ5d

mPCAC = lim
t→∞

1

2

∂tCγ0γ5,γ5(t)

Cγ5(t)
= lim

t→∞

1

2

∂t
∫
d3x⃗⟨(ū(x⃗, t)γ0γ5d(x⃗, t))† ū(0)γ5d(0)⟩∫
d3x⃗⟨(ū(x⃗, t)γ5d(x⃗, t))† ū(0)γ5d(0)⟩

. (180)

Here the notation introduced in (170) is used, for correlators with mixed Γ structures. A

number of alternative ways exist to obtain the renormalized mass through appropriate com-

binations of correlators – see e.g. [135] for a detailed discussion. At large times t the ratio of

the two correlation functions in Eq. (180) tends to the constant PCAC-mass. In the mass-

non-degenerate case this expression gives the average mass of up-type quarks and down-type

quarks mPCAC = (mPCAC
u +mPCAC

d )/2. The PCAC-mass is related to the renormalized (av-

erage) mass by a multiplicative factor

m(r) =
ZA
ZP

mPCAC, (181)

and is therefore an unrenormalized quantity. In order to obtain the renormalized mass

the factor ZA/ZP needs to be determined and a scheme to be chosen. This is however

quite involved and in addition a matching to other commonly used renormalization scheme is

needed in order for this mass to be used in perturbative calculations (see e.g. [136]). Therefore,

this calculation is skipped in this thesis for degenerate fermions. In the non-degenerate case,

however, the renormalization factors cancel for of PCAC-masses such as mPCAC
u /mPCAC

d since

only multiplicative renormalization occurs. The PCAC relation allows to quantify the non-

degeneracy in ratios of fermion masses. While this ratio is still unphysical, it corresponds to

commonly used definitions in the continuum.

Note that the PCAC relation is closely linked to chiral perturbation theory and the Gell-

Mann-Oakes-Renner (GMOR) relation in particular (56). It appears as if chiral perturbation

theory can be tested by calculating both the chiral condensate v3 and the PCAC mass.

However, the calculation of the PCAC mass uses the PCAC relation which connects to the

GMOR relation which is usually used to define the chiral condensate. Thus, calculating

the PCAC masses and the chiral condensate and comparing this to the GMOR relation
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cannot be considered to be a truly independent and quantitative test of chiral perturbation

theory. It can still be used as a qualitative test by examining the dependence of square

of the Goldstone masses on the PCAC-masses and comparing the results to the expected

linear behaviour m2
π ∝ m(r) ∝ mPCAC. This was done (although with a differently defined

unrenormalized quark mass) in [91].

59



Chapter 3

The Spectrum of Two-Flavour Sp(4)

Gauge Theory

In this chapter results obtained from explicit lattice simulations of Sp(4) gauge theory with

two fermions are presented.

First, the explicit structure of the meson states under the global symmetries is discussed

in Sec. 3.1.1. For non-degenerate fermions their explicit structure under the global transfor-

mations of the remaining SU(2)× SU(2) is derived. The parity assignment of diquark states

is discussed in Sec. 3.1.3 and the simulation details are described in Sec. 3.2.

In Sec. 3.3 the results on the non-singlet spectrum in Nf = 1+1 are presented, including

the masses and decay constant of the non-singlet mesons, as well as the fermion mass defined

through the PCAC relation. Lattice systematics are studied and a consistency check with the

chiral effective theory for non-degenerate fermions of [2] is performed. In Sec. 3.4 the singlet

spectrum for both degenerate and non-degenerate is presented. This includes the singlet

states η′ and σ, as well as the π0 state for non-degenerate fermions. Finally, in Sec. 2.5.2 an

exploratory determination of the isospin 2 scattering length on a single ensemble is performed.

3.1 Breaking Patterns, Global Symmetries and Parity

3.1.1 Meson multiplets for degenerate fermions

The flavour symmetry of the Sp(4) gauge theory is enlarged compared to a theory with a

complex fermion representation such as QCD due to the pseudo-reality of the fundamental

representation of Sp(4) – see Sec. 1.2.8. Specifically, for Nf = 2 the global symmetry of the

massless Lagrangian neglecting the anomalous U(1)A is SU(4). It is broken both by non-
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vanishing degenerate fermion masses and the chiral condensate down to Sp(4). This entails

that also the meson multiplets are enlarged in both the degenerate and non-degenerate case,

e.g. there are now five instead of three Goldstone bosons of two-flavour QCD. This can

be seen by rewriting the generic fermion bilinears (128) and (129) in Minkowski space in

terms of the Nambu-Gorkov spinors (41). The PNGBs in this theory are denoted as πN ,

the pseudoscalar singlet as η′, the scalar non-singlets as aN0 , the scalar singlet as σ, the

axial-vector non-singlets as aN1 and the vector mesons as ρN , such that

πN = −Ψ̂TSCTNEΨ̂ +
¯̂
ΨETNSC

¯̂
ΨT (N = A,B,C,D,E), (182)

η′ = −Ψ̂TSCEΨ̂ +
¯̂
ΨESC

¯̂
ΨT , (183)

aN0 = Ψ̂TSCTNEΨ̂ +
¯̂
ΨETNSC

¯̂
ΨT (N = A,B,C,D,E), (184)

σ = Ψ̂TSCEΨ̂ +
¯̂
ΨESC

¯̂
ΨT , (185)

aN1 =
¯̂
ΨTNγµΨ̂ (N = A,B,C,D,E), (186)

ρN =
¯̂
ΨTNγµΨ̂ (N = F,G,H, . . . , O). (187)

Among the non-singlets the PNGB π, scalars a0 and the axial vectors a1 appear in 5-plets,

while the vector mesons appear in a 10-plet. The generators of the unbroken SU(2N) global

symmetry are denoted by TA...N , where the generators A . . . E correspond to the broken

generators under chiral symmetry breaking, while the remaining ones are the unbroken gen-

erators of the global Sp(4). It is also possible to express the operators (182)-(187) in terms

of their Weyl components (33) as was done in Ref. [29].

The meson multiplets are enlarged by quark-quark and antiquark-antiquark operators.

In appendix B the meson sources in terms of the spinors u and d are listed. The extra states

are quark-quark and antiquark-antiquark states. The extra operators corresponding to the

Goldstone bosons are given by [54,94]

πD = d̄γ5SCū
T (188)

πE = dTSCγ5u, (189)

which are known as diquark states. In this case, only diquarks of differing flavour are possible

for scalar, pseudoscalar and axial vector states. Other operators of this form vanish identically

for spin-0 composite states, i.e. the ones corresponding to (182) and (184) with unbroken

generators. They can occur, however, for other spin states such as J = 1. In the case of the

axial vectors, replacing a broken generator by an unbroken one leads to the resulting state
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to be in the vector meson multiplet. This highlights the non-trivial relation between flavour

symmetries and parities – see also Sec. 3.1.3

The multiplet structure of mesons for mass-degenerate fermions is discussed in [29,63,91].

It is the same structure as in two-flavour SU(2)c gauge theory – see e.g. [108]. The pattern in

Eqs. (182)-(187) is consistent with the one found for one-flavour SU(2)c gauge theory [137].

There, scalar, pseudoscalar and axial vector states exist only as singlets as there are no broken

generators. The vector multiplet is larger than the other multiplets and corresponds to the

unbroken generators of the global symmetry.

3.1.2 Meson multiplets for non-degenerate fermions

For non-degenerate fermions, the Sp(4) flavour symmetry is broken to SU(2)u× SU(2)d, one

for each fermion flavour u and d. In general for any non-degenerate fermion in a pseudo-real

theory, there will be a global SU(2) symmetry. It will be shown that the 5-plet splits into a

degenerate 4-plet and a singlet. The 10-plet of the vector mesons ρ decomposes into a 4-plet

of similar structure as the 4-plet of Goldstones and two degenerate triplets under each of the

SU(2) groups, i.e., the remaining 6 states will have identical properties. The 4-plets contain

in both cases the flavoured mesons of the form (128).

Because SU(2) exponentials are easily calculated analytically, general analytic expres-

sions for SU(2)d × SU(2)u transformations of mesonic states are obtainable. This provides a

straightforward classification of the individual states under the remaining global symmetry.

In the basis given by (249), the transformation is in block diagonal form

V =




a −b∗ 0 0

b a∗ 0 0

0 0 e −c∗
0 0 c e∗


 , (190)

where the diagonal matrix blocks are elements of SU(2). Denoting the complex coefficients

of the individual SU(2) by (a, b) and (e, c); they fulfil |a|2 + |b|2 = 1 and |c|2 + |e|2 = 1,

respectively. It is convenient to rewrite the Dirac spinors in terms of their left- and right-

handed projections (17). Under an SU(2)d × SU(2)u transformation the components of Ψ̂
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transform as Ψ̂ → V Ψ̂, or, explicitly,




uL
ũR
dL
d̃R


 =




uL
−SCūTR
dL

−SCd̄TR


→




auL − b∗ũR
buL + a∗ũR
edL − c∗d̃R
cdL + e∗d̃R


 . (191)

Note, that the change of basis also reflects in the way the Nambu-Gorkov spinor (41) is writ-

ten. It corresponds to an exchange between the second and third element. For completeness,

I give the following useful relations for the colour matrix S as well as the charge conjugation

operator C in Minkowski space.

C† = C−1 = CT = −C, C2 = −1, CγµC
−1 = −γTµ , (192)

(SC)† = (SC)−1 = (SC)T = SC, (SC)2 = 1, SCγµSC = −γTµ , (193)

For the individual left- and right-handed spinors ũR and d̃R, the following relations hold

qR = SC ¯̃qTR, qTR = ¯̃qRSC, (194)

q̄R = −q̃TRSC, q̄TR = −SCq̃R. (195)

The scalar ūd and vectors ūγµd transform under SU(2)d × SU(2)u as

ūd = ūLdR + ūRdL → a∗c∗
(
ūLSCd̄

T
L + ūRSCd̄

T
R

)
− be

(
uTLSCdL + uTRSCdR

)
(196)

+ a∗e (ūLdR + ūRdL)− bc∗
(
uTLd̄

T
R + uTRd̄

T
L

)

= a∗c∗
(
ūSCd̄T

)
− be

(
uTSCd

)
+ a∗e (ūd) + bc∗

(
d̄u
)
, (197)

ūγµd = ūLγµdL + ūRγµdR → a∗e (ūLγµdL + ūRγµdR) + bc∗
(
uTLγ

T
µ d̄

T
L + uTRγ

T
µ d̄

T
R

)

+ a∗c∗
(
ūLγµSCd̄

T
R + ūRγµSCd̄

T
L

)

+ be
(
uTLγ

T
µ SCdR + uTRγ

T
µ SCdL

)
(198)

= a∗e (ūγµd)− bc∗
(
d̄γµu

)
+ a∗c∗

(
ūγµSCd̄

T
)
− be

(
uTSCγµd

)
. (199)

Here, the property
(
ϕTΓχ

)T
= −χTΓTϕ for Grassmann variables ϕ, χ was used. The pseu-
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doscalars and axial-vectors transform similarly since they only differ by γ5.

ūγ5d = ūLdR − ūRdL

→ a∗c∗
(
ūSCγ5d̄

T
)
− be

(
uTSCγ5d

)
+ a∗e (ūγ5d) + bc∗

(
d̄γ5u

)
(200)

ūγµγ5d = ūRγµdR − ūLγµdL

→ a∗e (ūγµγ5d)− bc∗
(
d̄γµγ5u

)
+ a∗c∗

(
ūγµγ5SCd̄

T
)
− be

(
uTSCγµγ5d

)
(201)

These states form a quadruplet under SU(2)d × SU(2)u. The remaining pseudo-scalars and

scalars transform as singlets. The associated operators have the form ūΓu± d̄Γd and the indi-

vidual SU(2)d,u only change one of the terms, so it is sufficient to look at the transformation

property of, say, ūΓu,

ūu = ūLuR + ūRuL → ūLuR + ūRuL = ūu, (202)

ūγ5u = ūLuR − ūRuL → ūLuR + ūRuL = ūγ5u, (203)

ūγµu = ūLγµuL + ūRγµuR

→
(
|a|2 − |b|2

)
(ūγµu) + 2a∗b∗

(
ūγµSCPLū

T
)
− 2ab

(
uTSCγµPLu

)
, (204)

ūγµγ5u = ūRγµuR − ūLγµuL → ūγµγ5u. (205)

Similar expressions for d̄Γd are obtained by replacing u → d, a → e and b → c. The scalar,

pseudoscalar and axial vector states transform as singlets under the remaining symmetry.

Thus, the associated flavour-neutral states are all singlets. The situation is different for

the unflavoured vectors where each unflavoured bilinear transforms as a triplet under the

corresponding global SU(2). The same pattern has previously been found in SU(2) gauge

theory with one fermion [137].

Figure 3 groups mesons into degenerate and non-degenerate sets and compares them to

QCD with two degenerate fundamental fermions. In the case of different UV fermion masses

mu ̸= md, π
C becomes a singlet under the global flavour symmetry, whereas before it was

part of a multiplet. This has consequences for its viability as a dark matter candidate: it is

no longer protected by a flavour symmetry and, equipped with further interactions, may in

principle decay. Even after breaking the global symmetry, no vector singlet meson appears

in the spectrum due to the additional unflavoured diquark states. This will occur in every

10-plet of mesons that has the same structure as the vector mesons. For the 5-plet states

this does not happen, as the unflavoured diquark states are identically zero.
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SU(3)c
mu = md

π+,π−,π0

ρ+,ρ−,ρ0

SU(3)c

mu ̸= md

π+,π−

π0

ρ+,ρ−

ρ0

Sp(4)c
mu = md

πA,...,E

ρF,...,O

Sp(4)c

mu ̸= md

πA,B,D,E

πC

ρG,H,K,M

ρF,I,J,L,N,O

Figure 3: The flavour structure of the meson multiplets for an Sp(4) gauge theory with
Nf = 2, compared to QCD with the same number of quarks. The multiplets of Sp(4) are
enlarged due to additional diquark states. When the flavour symmetry is explicitly broken
by non-degenerate fermion masses, mu ̸= md, the pseudoscalar and vector multiplets split
further into smaller flavour-multiplets under the flavour group. The unflavoured πC becomes
a singlet.

3.1.3 Parity and diquarks

Since the global flavour transformation acts on combinations of the left- and right-handed

Dirac components, the relation between flavour symmetries and parity is non-trivial. Con-

ventionally, the transformation of a Dirac fermion under parity is defined as [138]

P : ψ(x, t) → γ0ψ(−x, t). (206)

This implies that parity mixes left-handed and right-handed components. This can be made

explicit by going to the chiral representation of the γ-matrices,

P :
ψL(x, t) → ψR(−x, t),

ψR(x, t) → ψL(−x, t).
(207)

The discrete ordinary parity transformation P leaves the Lagrangian invariant and is thus

a symmetry. However, it is important to note that the global flavour symmetry mixes left-

handed and right-handed components. In general, such transformations do not commute

with parity as defined above. In other words, the flavour eigenstates are not eigenstates

of P . This has the consequence that a diquark Goldstone state is a scalar rather than a
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JP JD

πA, πB, πC 0− 0−

πD, πE 0+ 0−

ρH , ρM , ρN , ρO 1− 1−

ρF , ρG, ρI , . . . , ρL 1+ 1−

Table 2: Parity assignments of the quark-antiquark bound-states and the additional diquark
states. Under ordinary P -parity different parity-eigenstates occur in the same meson multi-
plet. Only under D-parity all Goldstones can be classified as pseudoscalars and all particles
in the ρ-multiplets as vectors. An extension of this table is given in App. B.

pseudoscalar under P :

πE(x, t) = dT (x, t)SCγ5u(x, t)
P−→ dT (−x, t)γT0 SCγ5γ

0u(−x, t)

= dT (−x, t)SCγ5u(−x, t) = +πE(−x, t). (208)

The different sign is caused by the charge conjugation matrix C in the diquark states for

which γT0 Cγ0 = −C holds. Concretely, the multiplet of the Goldstones bosons consists of

3 pseudoscalar mesons and 2 scalar diquarks and the multiplet containing the ρ is made up

of 4 vectors and 6 axialvectors under P ; these states may then change their ordinary parity

under flavour transformations.

A “better” definition of parity is obtained by combining it with any other internal sym-

metry present in the Lagrangian, see e.g. [40]. Introducing an additional phase in the trans-

formation properties of the spinors (206). A new parity D can be chosen so that it now

commutes with all flavour transformations [105]. It is given by

D : ψ(x, t) → ±iγ0ψ(−x, t). (209)

The extra phase cancels in all operators of the form ūΓd but produces an extra minus sign in

the diquark operators. The new parity D is again a symmetry of the Lagrangian introduced

below and all members of a meson multiplet share the same parity assignment under D. In

this way, all Goldstones become pseudoscalars and all members of the ρ-multiplet become

vectors under D; see Tab. 2 for an overview of P - and D-parity of the mesons considered

in this work. The detailed flavour structure of these mesons - including the vector meson

multiplet - can be found in appendix B. For concreteness consider the diquark πE and its
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transformation under the parity assignment D. It transforms as

πE(x, t) = dT (x, t)SCγ5u(x, t)
D−→ i2dT (−x, t)γT0 SCγ5γ

0u(−x, t)

= −dT (−x, t)SCγ5u(−x, t) = −πE(−x, t), (210)

and thus remains a pseudoscalar under D. For the remainder of the thesis, the definition

(209) will be used, when referring to parity. This assignment is identical for all quark-

antiquark states appearing in QCD and general theories with complex representations. The

multiplet of the flavoured PNGBs πA...E is the generalization of the π± states of QCD, and

the flavour diagonal πC is the equivalent of the π0. Similarly, the flavoured vector mesons

are the generalization of the ρ± states and the unflavoured multiplet as the generalization of

the flavour diagonal ρ0 and ω states. In order to highlight the correspondence between the

enlarged multiplets and its QCD counterpart, they will occasionally be referred to by the

name of their QCD counterparts.

3.2 Lattice setup and technicalities

Gauge configurations are generated with two dynamical fermions using the HiRep code [118,

139] extended for Sp(2N) gauge theories [63,91,140]. For two degenerate fermions the HMC

algorithm was used to include them dynamically and for non-degenerate fermions the RHMC

algorithm was employed. This gives rise to a potential sign problem as the determinant is

not guaranteed to be positive. The studied masses were moderately heavy and the lowest

eigenvalues of the Dirac operator were monitored and no signs of a negative eigenvalue and

thus a potentially negative determinant was found. No O(a) improvement was used for the

gauge and the fermion action.

The theory has three free parameters, the gauge coupling g and the two bare fermion

masses mu and md. In the context of lattice calculations, it is convenient to express the

gauge coupling as β = 8/g2. Note that both the coupling and the fermion masses are the

unrenormalized bare parameters and thus unphysical. For degenerate fermions mu = md

only two free parameters remain.

In the continuum theory, the overall scale would be set by one of the dimensionful param-

eters, but in a lattice calculation it is convenient to use instead the finite lattice spacing a.

Masses are then measured in units of the inverse lattice spacing a−1. Only once some dimen-

sionful quantity is fixed, e.g., by experimental input, explicit units become possible. Fixing

the scale, and thus the lattice spacing, implies that also one of the bare lattice parameters is
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fixed. It is convenient to choose the gauge coupling for this fixing of the scale, leaving two

dimensionless quark masses to uniquely characterize the physics. These two free parameters

can be used to fix two observable quantities, e.g. properties of the dark hadrons such as

masses or scattering cross-sections. All other results are then predictions.

For degenerate fermions the quantity used to relate the bare parameters to physical

quantity is the ratio between the PNGB mass and the vector meson mass mπ/mρ. In the

limit of vanishing mass it approaches mπ/mρ → 0 as the PNGBs become massless. In the

limit of infinite fermion mass all masses are dominated by the quark masses and the effects of

dynamical mass generation becomes negligible and the ratio approaches unity mπ/mρ → 1.

For non-degenerate fermions, I always start from degenerate dark quark masses, and

then incrementally increase one of them, breaking the flavour symmetry from Sp(4) down

to SU(2)u × SU(2)d explicitly. In terms of physical units mπ±/mπ0 is used to monitor the

strength of strong isospin breaking. In SM QCD a relatively large change in the fermion

mass (usually defined in the MS scheme) can lead to only small changes in the pion ratio.

Thus, the PCAC mass ratio of the fermions is additionally monitored.

Fig. 4 depicts the previously outlined workflow. All bare input parameters are unrenor-

malized and thus unphysical (this includes the bare quark masses.)

The data analysis was performed using the Julia programming language [141]. For least-

squares fitting the package LsqFit.jl [142] was used. Plots were generated using the

Plots.jl [143] package using the PGFPlotsX backend. Error estimates quoted in this

thesis were obtained using the standard jackknife method discussed in Sec. 2.4.1. When

comparing the jackknife errors to the ones obtained using the statistical bootstrap, no ap-

preciable differences were found.

3.3 Non-Singlet states in Nf = 1 + 1

3.3.1 Parameter choice and interpolators

In this section, the light non-singlet spectrum of Sp(4) gauge theory with two fundamental

non-degenerate Dirac fermions are considered. The mass degenerate case was already studied

in [91]. The scalar and axial-vector singlet mesons were found to be substantially heavier

than the vector and pseudoscalar non-singlets.

In this work ensembles withmρ/mπ ≈ 1.15, 1.25 and 1.4 or equivalentlymπ/mρ ≈ 0.87, 0.8

and 0.72 in the mass degenerate limits1 have been studied. These values are slightly smaller

1For the degenerate case, if possible, results from [91] are used, since these have been obtained on larger
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pick physical target quantities (e.g. mρ/mπ)
that characterize the parameter space of interest

start with arbitrary unrenormalized,
unphysical lattice input β,mu,md

run lattice simulation

perform analysis and obtain physical
quantities such as hadron properties

are
the target
quantities

(e.g. mρ/mπ)
obtained?

done

use results to
obtained improved
values of β,mu,md

all other observables are lattice predictions!

yes

no

Figure 4: Workflow for choosing suitable input parameters mu,md and β. These input
parameters are unrenormalized and thus unphysical. They are chosen such that a set of
observables has a prescribed value (in this case the ratio mρ/mπ and mπ+/mπ0). All other
observables are then predictions from the lattice. No overall scale of the observables has been
fixed.
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than those suggested by existing phenomenological investigations of such theories as dark

matter candidates [144]. Ensembles with mπ/mρ < 0.7 come at a significantly increased

computational cost and will not be studied within this thesis. For the bare inverse coupling

values of β > 6.8 are used. It was shown in [63], that for smaller values the system can enter

a lattice phase with no connection to the continuum physics. A bulk phase transition as a

function of the fermion mass was observed. Ensembles with β > 6.8 are thought to be in

the same phase as the continuum limit of β → ∞. The fermions studied here are more akin

to the strange quark in SM QCD. Note that in all cases the aforementioned ratio mρ/mπ is

smaller than 2 and the ρ at rest cannot decay into two Goldstone bosons.

Only quark-antiquark interpolators (129), (128) are used. The HiRep code has been

modified to perform simultaneous measurements of the diagrams depicted in Eq. (137), i.e.

a connected meson diagram with unequal fermion masses, and the degenerate counterparts

of Eq. (138). This is sufficient to probe every meson multiplet in this theory. All diquark

states are related to conventional meson states by flavour transformations. This has also

been numerically checked using the HiRep code in [54]. Stochastic Z2×Z2 wall sources [126]

with spin dilution [128] with three stochastic samples per configuration have been used.

3.3.2 Disconnected diagrams and expansion in the mass difference

In principle the flavour neutral operators give rise to disconnected diagrams, as can be seen

in (138). In the isospin symmetric limit the disconnected contributions cancel for states that

are degenerate with other flavoured states such as the ones appearing for the flavour-neutral

pion.

For states where no singlet contribution can arise due to flavour symmetry such as the

dark vector mesons ρ and ω in pseudo-real representations, the disconnected contributions

need to vanish. However, for the true singlets of the theory they do not generically vanish.

These states include the dark η′ and f0/σ mesons as well as the flavour-neutral pion π0 for

non-degenerate masses.

For the latter state the relevance of disconnected contributions is expected to be sup-

pressed by two mechanisms. Firstly, by the mass of the fermions which suppress disconnected

diagrams in general. Additionally, for states such as the π0 cancellations between the two

distinct disconnected contributions will arise – see Eq. (129). Thus, in Sec. 3.3 the π0 is

included in the study of “non-singlet” states assuming that disconnected contributions will

be negligible. This will be shown to be a good approximation for the fermion masses studied

in this thesis. Results on the π0 and the other non-singlet states will be presented in Sec. 3.4

lattices with better statistics in comparison to ours.
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For small mass differences it appears reasonable to first study the theory in the mass-

degenerate limit and then introduce the strong isospin-breaking corrections perturbatively.

This approach was employed in the study of the pion mass difference of QCD [145] allowing

an extrapolation to small differences. On the lattice this requires the calculation of additional

diagrams where in the usual diagrams (137) and (138) correlators are replaced with insertions

on every spacetime point.

x y →
∑

z

x z y. (211)

This has to be done for both the connected and disconnected diagrams irrespective of the

details of the isospin breaking expansion. This would require additional operators to be

measured on the lattice which require additional all-to-all propagators. Thus, they are not

studied in this work. The derivation the relevant diagrams for different methods of expanding

in the isospin breaking terms are derived in appendix D.

3.3.3 Masses and decay constants

The masses and decay constants of both the Goldstones and the vector mesons as well as the

previously outlined unrenormalized PCAC masses were calculated. The tabulated results

can be found in appendix C. The non-singlet meson masses and their decay constant for

the ensembles with varying mρ/mπ at degeneracy are shown in Fig. 5 as a function of the

PCAC mass ratio. Both for the Goldstone and vector mesons, the flavour-neutral states

are the lighter states once strong isospin breaking is introduced. This makes the πC (which

is the equivalent of the QCD state π0) the lightest state in the theory. The remaining four

Goldstones are heavier and remain degenerate. This is the same pattern as observed in

the SM where the neutral pion is the lightest bound state of the strong sector. The mass

difference between the flavoured and unflavoured vector mesons is less pronounced. Again,

the situation is similar in the SM where the mass difference between the charged and neutral

vector mesons currently cannot be resolved [17]. The overall pattern is observed for all

ensembles on all lattice spacing considered β = 6.9, 7.05 and 7.2, as well as for all values of

mπ/mρ at degeneracy.

At some point the six lighter unflavoured vector mesons — corresponding to the un-

flavoured vector mesons ρ0 and ω of QCD — become even lighter than the heavier pseu-

doscalars. The inversion of the mass hierarchy depends more strongly on the overall mass of

the involved fermions. For generally lighter quarks it occurs at a higher ratio of the PCAC

masses than for the heavier fermions. For large mass splittings the system resembles more
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Figure 5: Masses and decay constants of the pseudo-Goldstone mesons and the vector mesons
for different non-degenerate fermion masses against the ratio of the unrenormalized PCAC
masses. One fermion mass is kept fixed while the other is incrementally increased. The
unflavoured pseudo-Goldstone is the lightest particle in the spectrum of the isolated theory.
For a larger mass difference between the fermions the unflavoured vector mesons get lighter
than the flavoured pseudo-Goldstones.
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Figure 6: Same plot as Fig. 5 but plotted against the dark pion mass ratio. Even for large
mass fermion mass differences the relative splitting between the dark pions never exceeds
50%.
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Figure 7: Masses of the pseudo-Goldstones (upper) and vector mesons (lower) for different
values of the inverse coupling β in units of the pseudo-Goldstone mass degeneracy. The
results at different β agree within errors except for the β = 7.2 ensembles with one relatively
heavy fermion . Overall, the finite spacing effects for the meson masses are small.

closely a heavy-light system where the unflavoured mesons are the lightest hadronic states.

At some point the mass of the second dark quark is so heavy that it decouples and the low-

energy part of this theory is effectively an Nf = 1 theory which contains three vector mesons

and one (massive) pseudoscalar [137]. In this case the theory develops a hierarchy of scales.

A similar pattern is observed for the decay constants of those dark mesons shown. The

unflavoured decay constants are smaller than their flavoured counterparts. This is seen for

both the Goldstone and the vector mesons, although the difference is less pronounced as in

the case of the meson masses. No change in the hierarchy of decay constants is observed.

The decay constant depicted in Fig. 5 are the renormalized using lattice perturbation theory

at one loop – see Sec. 2.5.6. Furthermore, for the heavier ensembles the unflavoured decay

constants shows a non-monotonic behaviour at intermediate values of the dark fermion mass

splitting. This is less pronounced for lighter fermion masses. Fig. 6 shows the same meson

masses against the mass ratio of the distinct dark pion species. Comparing these results

to those of the PCAC mass ratio shows, that a rather large change in the fermion masses

only leads to a moderate mass difference between the dark pions which never exceeds 50%,

whereas PCAC mass ratios up to 10 were obtained.

Different lattice spacings

Figs. 7, 8 and 9 depict the masses and decay constants at different values of the inverse

coupling and thus at different lattice spacings for the set of ensembles with intermediate
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Figure 8: Decay constants of the pseudo-Goldstones (upper) and vector mesons (lower) for
different values of the inverse coupling β in units of the pseudo-Goldstone mass degeneracy.
The results at different β show stronger deviations than the meson masses even at very light
fermion masses. For the pseudo-Goldstones the deviations are approximately 10% or smaller
whereas for the vector mesons they can be as large as 20%.

1.0 1.1 1.2 1.3 1.4
1.10

1.15

1.20

1.25

1.30

m(π±)/m(π0)

m
(ρ

0
)/
m
(π

0
)

Lines of constant physics :
(
m(ρ)
m(π)

)

deg
=1.247(10) - 1.29(2)

(β = 6.9)
(β = 7.05)
(β = 7.2)

Figure 9: Ratio of the flavour-neutral vector and pseudoscalar mesons against the pseu-
doscalar mesons’ mass ratio. Since the theory has only two free mass parameters, two co-
inciding points on this plot are defined describe the same physical system even at different
lattice spacing. It can be seen that the different ensembles at distinct β are not exactly on
constant lines oh physics. However, here they deviate by no more than 5%.
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fermion masses. The same plots for the ensembles with lighter and heavier fermions can be

found in appendix C. They show the same qualitative behaviour. Due to the different lattice

spacings a, the lines of constant physics need to be defined through dimensionless quantities.

Here, the masses were tuned so that at fermion masses a comparable value of mπ/mρ at

degeneracy is obtained for the different values of β. Then the mass of one fermion was

subsequently increased while the other was kept fixed. This is motivated by the observation

that in SU(3)c gauge theory with fermions, the lattice spacing a depends strongly on the

value of the inverse coupling β and only weakly on the masses of the fermions mf [28].

Two dimensionless quantities are needed to fix the two free fermion mass parameters this

theory. A choice of such quantities then defines point or lines of constant physics. In this

theory the chosen quantities are the mass ratio of the neutral pseudoscalar and vector meson

and the ratio of the distinct pseudoscalar mesons. These quantities are plotted in figure 9.

While the individual simulations at distinct β are not exactly on constant lines of physics,

they never deviate by more than 5%.

It can be seen that the other mass ratios depicted in Figs. 7, 8 are mostly consistent across

the different lattice spacings. Comparing the values of mπ at degeneracy, one concludes that

the finest lattice at β = 7.2 is roughly 40% finer than the coarsest one at β = 6.9. Only for the

finer lattice a statistically significant deviation for the flavour-neutral mesons is observed. The

situation is different for the decay constants. The PNGB decay constants deviate at different

lattice spacings by roughly 10% and the vector mesons show deviations of up to 20%.

Generically, the spacing effects become more pronounced for larger fermion mass differ-

ences. This can be understood by the relatively heavy mass of the mesons in lattice units.

Tabulated results can be found in appendix C. On the coarsest lattice the meson masses are

heavier than 1.0 in lattice units and discretization artefacts are expected to be sizeable. For

a better control of these systematic issues on a quantitative level further investigations are

certainly needed. At the level of 10%− 20% the results presented here appear to be reliable.

The same hierarchies are observed in all sets of ensembles irrespective of the overall mass of

the fermions and the lattice spacing.

Finite volume effects

As discussed in Sec. 2.1, the finite volume of a lattice can introduce additional artefacts.

To quantify the effects of the finite spatial extent L the expression (78) for PNGBs in chiral
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Figure 10: Finite volume extrapolation for the lighter, flavour-neutral Goldstone mass in the
almost mass-degenerate limit. Only in the lightest ensembles on the finest lattices studied
here, the finite volume effects become apparent.

perturbation theory in a finite box is generalized to other mesons as

mmeson(L) = minf.
meson

(
1 + A

exp(−minf
π L)

(minf
π L)

(3/2)

)
, (212)

and the coefficient A – which can be calculated within chiral perturbation theory – is taken to

be a free parameter to account for deviations from the chiral theory as in [91]. By calculating

the meson mass at different L, a fit to Eq.(212) can be performed and the infinite volume mass

can be extracted. If the physical volume in relation to the PNGB mass mπL is sufficiently

large, the deviations at a finite volume will be negligible. In [91] the finite volume effects

were found to be below the level of 0.3% for minf
π L < 7.5. For smaller volumes at roughly

minf
π L ≈ 6 the finite volume effects were of the order 1−2% and even at volumes of minf

π L ≈ 5

they typically did not exceed 5%.

In Figs. 10 and 11 a selection of infinite volume extrapolations in the almost mass-

degenerate limit are shown. They include the lightest ensemble on the finest lattice where

the finite volume effects will be most pronounced. Only in the latter ensembles finite volume

effects become apparent and generally the deviation from the infinite volume extrapolation

stays well below 10%. On the coarser lattices the finite volume effects are less pronounced

and mostly negligible compared to the statistical uncertainties.
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Figure 11: Finite volume extrapolation for the lighter, flavour-neutral vector meson mass in
the almost mass-degenerate limit.

Lattice asymmetry

In this analysis the masses and decay constants are extracted from the behaviour of correla-

tion functions at large Euclidean time t. For convenience, the lattices have a larger temporal

extent than spatial extent, i.e. lattices of dimensions L3 × T with T > L are used. This al-

lows a calculation of the correlation functions at large t while avoiding significantly increased

computation time.

It is, however, still possible, that this introduces systematic error. Comparing meson

masses on symmetric lattices of size L4 to the masses obtained for asymmetric lattices can

provide an estimate of such effects. On the symmetric lattices the time extent is substantially

smaller. Even at the largest Euclidean times effects of excited state contamination are present.

I therefore take the second-lightest state into account and extract the mass from the effective

mass of the correlator.

This allows us to extract the masses from a three-parameter fit while simultaneously

minimizing the effects of contamination of higher states. This comes at the cost of larger

errors, since the effective mass defined this way discards some information because it as a

local quantity around Euclidean time
(
t+ 1

2

)
. As can be seen in table 3, no systematic effects

from the use of asymmetric lattice appear within the errors reported. However, the errors on

the symmetric lattice are substantially larger.
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(−am0
1,−am0

2) am(π±)(24× 123) am(π±)(124) am(π0)(24× 123) am(π0)(124)

(0.90,0.70) 0.993(7) 0.994(15) 0.83(1) 0.85(4)
(0.90,0.75) 0.917(14) 0.92(2) 0.80(2) 0.81(5)
(0.90,0.80) 0.826(11) 0.83(5) 0.76(2) 0.77(7)
(0.90,0.85) 0.712(15) 0.7(2) 0.69(2) 0.7(2)
(0.90,0.90) 0.56(4) 0.58(9) 0.56(4) 0.58(9)

(−am0
1,−am0

2) am(ρ±)(24× 123) am(ρ±)(124) am(ρ0)(24× 123) am(ρ0)(124)

(0.90,0.70) 1.070(9) 1.071(15) 0.951(14) 0.97(3)
(0.90,0.75) 1.001(14) 1.00(2) 0.92(2) 0.94(3)
(0.90,0.80) 0.921(15) 0.93(3) 0.88(2) 0.90(3)
(0.90,0.85) 0.82(2) 0.82(4) 0.81(2) 0.82(4)
(0.90,0.90) 0.70(2) 0.72(4) 0.70(2) 0.72(4

Table 3: Comparison of meson masses extracted from both symmetric and asymmetric lat-
tices for an inverse coupling of β = 6.9. The other two input parameters are m0

1 and m0
2

- the unrenormalized bare quark masses. They agree within errors albeit with significantly
larger uncertainties. There are no relevant systematic effects due to the asymmetric lattices
used throughout this work at the level of the uncertainties of the masses on the symmetric
lattices.

3.3.4 Validity of the Chiral Lagrangian

The chiral theory of Secs. 1.3 is based on the dynamics of the lightest hadronic states,

which in this case are the pseudo-Goldstone bosons π. In the chiral limit, i.e., in the limit

of massless dark fermions, the flavour symmetry is broken only spontaneously and the π’s

become massless themselves. Close to the chiral limit for degenerate quarks the GMOR

relation gives the dependence of the product of Goldstone masses on the renormalized quark

masses m
(r)
q and the magnitude of the chiral condensate (v3)(r)

(fπmπ)
2 = 2m(r)(v3)(r). (213)

It can be seen that the square of the pseudo-Goldstone mass depends linearly on the average

renormalized quark mass and in the chiral limit the equation is trivially fulfilled. As pointed

out in section 2.5.7 the renormalized quark mass and the condensate are scheme-dependent.

However, their product is scheme-independent since the involved renormalization constants

cancel. For simplicity, the unrenormalized PCAC mass mPCAC is used and the chiral con-

densate is defined through the GMOR relation. This entails that also the condensate is then

unrenormalized and regulator-dependent. The superscript (r) is dropped in the following.
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For non-degenerate quarks GMOR relations have been constructed in [2]. It is conveniently

rewritten as

GMORπ±(mu,md, µu, µd) = (mπ±fπ±)2 − 2v6u(mu +md)

v3u + v3d
= 0

GMORπ0(mu,md, µu, µd) = (mπ0fπ0)2 − 2v6u(muv
3
u +mdv

3
d)

v6u + v6d
= 0. (214)

For sufficiently large UV mass difference in the dark fermions, the mass hierarchy in the

mesonic spectrum changes qualitatively: the multiplet of vector mesons containing the ρ0

becomes lighter than the multiplet of flavoured pseudoscalars containing the π±. The set of

π’s are then no longer the lightest hadronic states and an inclusion of the relevant vector

states becomes necessary. This provides an upper limit on the amount of strong isospin

breaking.

Using the GMOR relations a potentially even stronger bound can be set on the amount

of strong isospin breaking. The validity of the GMOR relation was already studied for

degenerate fermions in [91]. It was found that dependence of the square of the pseudo-

Goldstone mass on a (differently defined) unrenormalized quark mass is linear for ensembles

with mρ/mπ > 1.4. Due to the increased computational cost of non-degenerate fermions

no results on ensembles that fulfil mρ/mπ ≫ 1.4 are currently available. Nevertheless, con-

sistency tests can be performed using the GMOR relations in (214) around the threshold

mρ/mπ ≈ 1.4 and below, see table 4. The fact that in the non-degenerate simulations one

bare quark mass has been kept fixed is exploited:

At degenerate fermion masses, the degenerate GMOR relation (213) is taken for granted,

and it is used to determine the chiral condensate (µ3
u)

PCAC from the fixed quark mass mPCAC
u

2. Since these quantities are regulator-dependent, only results at the same value of the (bare)

inverse gauge coupling β are compared. This determines three out of the four quantities

that enter the non-degenerate GMOR relations in (214). Both equations in (214) can be

used to determine (v3d)
PCAC. If the non-degenerate GMOR relation holds, the functions

GMORπ±,0(mu,md, µu, x) have common roots at x = µPCAC
d . This is shown in Fig. 12 for

specific ensembles GMORπ±,0(mu,md, µu, x) as a function of x. It can be seen that at larger

quark-mass-ratios the functions do not share a common root. In particular GMORπ0 no

longer has root in this region of x.

This is a sign that at this point the description provided by the leading order chiral

2From [91] it follows that the dependence of the squared Goldstone mass on the quark mass only becomes
linear for mρ/mπ ≳ 1.4. However, this approach allows testing whether the explicit introduction of isospin
breaking effects cause a breakdown.
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Figure 12: GMORπ0,±(mu,md, µu, x) as a function of x for an inverse gauge coupling of
β = 6.9 and values of mρ/mπ ≈ 1.24 and mρ/mπ ≈ 1.46 at degeneracy. If the non-degenerate
GMOR relation holds, the condensate µd is given by the common root of the two functions.
For small isospin breaking a common root exists. Starting at around md/mu ≈ 1.5 in both
cases a tension develops. At around md/mu ≈ 1.7 for the heavier ensemble and at around
md/mu ≈ 2 for the lighter ensemble the non-existence of a common root is more than one-
sigma significant.
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β
(
mρ

mπ

)
deg

(
mu

md

)
where mρ0 ≈ mπ±

(
mu

md

)
where non-deg. GMOR breaks down

6.9 1.144(5) 2.8(3) 3.0(2)
6.9 1.25(1) 4.4(4) 1.5(1)
6.9 1.46(4) 8(1) 1.8(5)
7.05 1.16(1) 2.7(3) 2.2(2)
7.05 1.29(2) 4.7(5) 1.7(2)
7.05 1.46(4) 6.8(8) 1.7(2)
7.2 1.17(1) 2.7(4) 4(1)
7.2 1.26(2) 4.4(7) 1.7(4)
7.2 1.37(4) 6(2) 4(2)

Table 4: The point at which a change in the meson mass hierarchy occurs and the point at
which the non-degenerate GMOR relation breaks down at one-sigma significance. In general,
this breakdown sets a stronger bound. Note that with increased statistics the breakdown of
the non-degenerate GMOR can occur at even smaller PCAC-mass-ratios.

Lagrangian that lead to (214) no longer captures the underlying theory. This sets another

upper bound on the validity of the non-degenerate GMOR relation. The non-degenerate

GMOR relation holds true and the leading order Lagrangian might be an adequate description

of strong isospin breaking in this theory at fixed mρ/mπ ≳ 1.4 at degeneracy. The tabulated

upper limits can be found in table 4. Note that this is only an upper bound and the EFT

might break down even earlier.

There are two reasons why the non-degenerate GMOR relation can break down: 1) The

quark-mass-difference is too large in order for the system to be treated at leading order. In

this case the next step would be to investigate this chiral Lagrangian at next-to-leading order

in strong isospin breaking. 2) The average pseudo-Goldstone masses are in general too large

to reliably use the GMOR relation at leading order even close to the mass-degenerate limit.

In any case, for small isospin breaking the non-degenerate GMOR relations do not break

down immediately even for significantly heavier quarks than those used in the chiral extrap-

olation of [91]. It will be therefore already worthwhile to study this UV complete theory and

the chiral Lagrangian at leading order in this region of parameter space.

3.4 Singlet Mesons in Symplectic Gauge Theories

In the context of SIMP DM models, singlet mesons can be of particular interest as they

can decay into SM particles. The singlet meson spectrum of Sp(4) has never been studied

previously. Most studies of singlet mesons have been performed in SU(3) gauge theory. Both
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QCD like models with dynamically broken chiral symmetry and near-conformal theories have

been studied in great detail. The pseudoscalar singlet has been studied in Refs. [71,146–157].

The determination of the mass (and width) of the lightest scalar singlet has proven to be

particularly challenging and a number of studies in SU(3) with dynamical fermions exist both

in the context of real-world QCD [73, 158–166] and more general field content [74, 77, 79, 81,

167–169].

Interpolating operators and singlet correlators

Two-quark operators are used for sourcing both singlet and non-singlet mesons. Due to the

focus on moderately heavy fermions only quark-antiquark operators are used and for now no

other operators are considered such as ππ operators, glueballs or even tetraquarks. In order

to determine the mesonic spectrum both the connected and disconnected pieces need to be

calculated and then fitted to the zero momentum correlator

C(t) =
∑

n⃗

⟨O(n⃗, t)Ō(⃗0, 0)⟩ (215)

on a Euclidean time interval (tmin, tmax), where the ground state dominates and its energy and

thus the mass can be extracted. The different components of C(t) drop off exponentially with

their energy as ∝ exp (−Ent) and thus at sufficiently large t only the ground state remains

as all other states are exponentially suppressed. However, an additional constant term arises

for both the η′ and the σ meson. In the former case this is due to an insufficient topological

sampling of the path integral and this constant vanishes in the continuum limit [170, 171].

For the scalar singlet σ it arises due to the fermion condensate and persists in the continuum

limit for vanishing momenta. At large times the correlator C(t) is then given by

lim
t→∞

C(t) = A
(
e−mt + e−m(T−t))+ ⟨0|O|0⟩2 (216)

where the second exponential term is due to the lattice periodicity. While in the case of the η′

this constant is small compared to the signal and only affects the correlator at large t this is

not the case for the σ meson. This constant is multiple orders of magnitudes larger than the

signal and its removal is a significant challenge. A numerical derivative as proposed in [172]

is performed. Alternatively, the constant term ⟨0|O|0⟩2 could have been calculated directly

and subsequently subtracted. A comparison with this method is performed in Sec. 3.4.4 3.

3Other ways of subtracting the constant have been proposed recently. Specifically, the configuration-wise
subtraction of the constant term to the scalar singlet by averaging over all Euclidean times t was used for
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Ensemble group β m0 L T nconf nsrc Iη′ Iπ Iσ Iσconn. Iρ ⟨P ⟩
SU2B1L1M8 SU(2) 2.0 -0.947 20 32 1020 300 - (10, 16) (5, 8) (7, 10) (10, 16) 0.56734(2)
SU2B1L1M7 SU(2) 2.0 -0.94 14 24 1851 192 (8, 12) (8, 12) - - (9, 12) 0.56516(3)
SU2B1L1M6 SU(2) 2.0 -0.935 16 32 951 256 (7, 11) (9, 16) - - (9, 16) 0.563654(28)
SU2B1L1M5 SU(2) 2.0 -0.93 14 24 1481 256 (7, 12) (8, 12) - - (9, 12) 0.56245(3)
SU2B1L1M4 SU(2) 2.0 -0.925 14 24 1206 192 (6, 10) (8, 12) - - (9, 12) 0.56119(3)
SU2B1L1M3 SU(2) 2.0 -0.92 12 24 2401 192 (6, 9) (7, 12) - (6, 11) (8, 12) 0.559983(29)
SU2B1L1M2 SU(2) 2.0 -0.9 12 24 500 128 (6, 9) (7, 12) - - (8, 12) 0.55571(6)
SU2B1L1M1 SU(2) 2.0 -0.88 10 20 2582 128 (5, 8) (8, 10) - - (9, 10) 0.55225(4)

Sp4B3L1M8 Sp(4) 7.2 -0.799 32 40 451 224 - (15, 20) (5, 9) (11, 19) (15, 20) 0.590862(5)
Sp4B3L1M7 Sp(4) 7.2 -0.794 28 36 504 288 (7, 12) (10, 18) - (11, 16) (11, 18) 0.590452(7)
Sp4B3L1M6 Sp(4) 7.2 -0.79 24 36 500 320 (7, 12) (12, 18) (5, 8) (10, 16) (13, 18) 0.590127(9)
Sp4B3L1M5 Sp(4) 7.2 -0.78 24 36 508 384 (6, 12) (12, 18) - (11, 15) (13, 18) 0.589278(8)
Sp4B3L1M4 Sp(4) 7.2 -0.77 24 36 200 384 (6, 11) (11, 18) - (10, 15) (12, 18) 0.588460(12)
Sp4B3L1M3 Sp(4) 7.2 -0.76 16 36 200 384 - (11, 18) (5, 8) (9, 14) (12, 18) 0.587666(25)

Sp4B1L1M7 Sp(4) 6.9 -0.924 24 32 492 320 - (9, 16) (4, 7) (7, 10) (10, 16) 0.56317(2)
Sp4B1L1M6 Sp(4) 6.9 -0.92 24 32 503 484 - (7, 16) (4, 9) (8, 12) (8, 16) 0.562075(13)
Sp4B1L2M6 Sp(4) 6.9 -0.92 16 32 176 128 (6, 10) (9, 16) (4, 10) (7, 10) (9, 16) 0.56212(5)
Sp4B1L1M5 Sp(4) 6.9 -0.91 16 32 435 256 (6, 11) (8, 16) - (7, 9) (9, 16) 0.55935(3)
Sp4B1L2M5 Sp(4) 6.9 -0.91 14 24 513 256 (5, 10) (8, 12) (4, 7) (9, 12) (9, 12) 0.55941(3)
Sp4B1L1M4 Sp(4) 6.9 -0.9 16 32 547 512 (6, 10) (9, 16) - (7, 10) (10, 16) 0.556921(25)
Sp4B1L2M4 Sp(4) 6.9 -0.9 14 24 942 128 (7, 10) (8, 12) (4, 9) (7, 9) (9, 12) 0.556981(26)
Sp4B1L3M4 Sp(4) 6.9 -0.9 12 24 2904 128 (6, 10) (8, 12) (4, 8) (8, 10) (9, 12) 0.557009(18)
Sp4B1L2M3 Sp(4) 6.9 -0.89 14 24 461 128 (7, 10) (8, 12) (5, 9) (8, 11) (9, 12) 0.55468(4)
Sp4B1L3M3 Sp(4) 6.9 -0.89 12 24 1019 320 (6, 10) (8, 12) (3, 6) (7, 11) (9, 12) 0.55467(3)
Sp4B1L2M2 Sp(4) 6.9 -0.87 12 24 1457 128 (7, 11) (8, 12) (5, 8) (8, 10) (9, 12) 0.550497(27)
Sp4B1L2M3 Sp(4) 6.9 -0.87 10 20 976 128 (6, 9) (8, 10) - (6, 10) (8, 10) 0.55068(5)

Table 5: List of all ensembles with degenerate fermion masses used in this work including
the number of configurations nconf , the number of the stochastic sources used in the approx-
imation of the all-to-all quark propagator nsrc, the intervals for fitting the resulting meson
correlators Imeson and the average value of the plaquette ⟨P ⟩. In some cases no clear plateau
was identified in the effective masses and could not determine the singlet masses. In these
cases no fit interval is reported. For the singlet mesons the interval quoted here was used to
fit the correlators after subtracting the excited state contributions in the connected pieces
and after performing a numerical derivative.
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Ensemble β m1
0 m2

0 L T nconf nsrc Iη′ Iπ0 Iπ± Iσ Iσconn. Iρ ⟨P ⟩
Sp4B1L2M4ND1 6.9 -0.9 -0.89 14 24 300 64 (6, 9) (2, 9) (8, 14) (4, 8) (8, 14) (8, 14) 0.55583(5)
Sp4B1L2M4ND2 6.9 -0.9 -0.88 14 24 191 128 (5, 9) (3, 9) (8, 14) (4, 8) (8, 14) (8, 14) 0.55474(5)
Sp4B1L2M4ND3 6.9 -0.9 -0.87 14 24 400 128 - (5, 8) (8, 14) (5, 8) (8, 14) (8, 14) 0.55361(4)
Sp4B1L2M4ND4 6.9 -0.9 -0.85 14 24 300 64 (5, 9) (2, 9) (8, 14) (5, 8) (8, 14) (8, 14) 0.55163(4)
Sp4B1L2M4ND5 6.9 -0.9 -0.8 14 24 400 128 (5, 8) (5, 9) (8, 14) - (8, 14) (8, 14) 0.54735(4)
Sp4B1L2M4ND6 6.9 -0.9 -0.75 12 24 264 64 (4, 7) (3, 9) (8, 12) - (8, 12) (8, 12) 0.54395(6)
Sp4B1L2M4ND7 6.9 -0.9 -0.7 12 24 249 128 (5, 8) (5, 9) (8, 12) - (8, 12) (8, 12) 0.54104(6)

Table 6: Same data as in table 5 for the non-degenerate ensembles.

The resulting correlator is the anti-periodic with respect to the midpoint T/2.

C̃(t) =
1

2
(C(t− 1)− C(t+ 1))

t→∞−−−→ A sinh (m)
(
e−mt − e−m(T−t))

)
(217)

In order to determine the Euclidean time interval for fitting the effective mass meff(t) defined

in (164) is used. The interval (tmin, tmax) is determined by visually inspecting the effective

mass and identifying a plateau at large times t. Restricting ourselves to ensembles where the

plateau persists over four or more time slices, a fit of a single exponential term to the correlator

C̃(t) is performed. In Sec. 3.4.2 this method is compared to computing the additional constant

⟨0|O|0⟩2 directly without the use of a numerical derivative.

3.4.1 Variance reduction techniques

Both the connected and disconnected pieces in Eq. (138) need to be measured. The dis-

connected diagrams in particular are very noisy, and the signal is already lost at small to

intermediate t where contaminations from excited states are non-negligible. A direct de-

termination of the ground state mass at large t is thus not possible. This problem can be

circumvented by removing the contributions of excited states in the singlet correlators man-

ually. This is straightforward for the connected pieces. There, the signal for the connected

pseudoscalar and vector mesons persists for all time slices t and in the case of the connected

piece of the scalar meson a signal persists up to large t. At large times the correlator fit is

performed (see Tabs. 5 and 6 for the choices of fit intervals) to a single exponential

C1exp
conn(t) = A0

(
e−mconnt + e−mconn(T−t)

)
, (218)

studying SU(3) close to the conformal window where the scalar singlet is expected to be light. This method
was used on a particularly large and fine lattice and did not produce useful results for this use-case. [173]
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and replace the full connected piece by the ground state correlator [174], where A0 and mconn

are the fit parameters. The new singlet correlators are then

C1exp
η′ (t) = C1exp

π,conn(t) + Cη′,disc.(t) , (219)

C1exp
π0 (t) = C1exp

π,conn(t) + Cπ0,disc.(t) , (220)

C1exp
σ (t) = C1exp

σ,conn(t) + Cσ,disc.(t) . (221)

The excited state contributions in the connected pieces are the dominant ones, and removing

them shows a much earlier onset of a plateau in the effective masses. Sec. 3.4.5 shows that

the results obtained by subtracting the connected excited state contributions through a fit at

larger times produce the same results as using smeared operators, for the connected pieces

with more overlap with the ground state.

The evaluation of disconnected pieces requires all-to-all propagators. In this thesis Z2×Z2

noisy sources with spin and even-odd dilution [128] were used. The connected pieces are

evaluated using stochastic wall sources as discussed in Sec. 2.5.4. Uncertainties are estimated

using the jackknife method – see Sec. 2.4.1.

3.4.2 Constant contributions to the correlators

In the beginning of section 3.4 the occurrence of constant terms in the propagators was noted

of both the pseudoscalar singlet η′ meson and the scalar singlet σ meson. This makes it diffi-

cult to determine when the excited states in the meson correlator are sufficiently suppressed

and a fit can be performed. As shown in equations (216), this can be circumvented either by

direct calculation of ⟨0|O|0⟩ or by performing a numerical derivative. Once the interval [ti, tf ]

where only the ground state contributes is known, a fit of the correlator to an exponentially

decaying term plus a constant can be performed. In figure 13 an example of the correlator

for the η′ meson and the pseudo-Goldstone π are given. The flavour-singlet correlator shows

a constant term at large Euclidean times while such a contribution is absent for the π meson.

This is expected to occur for the disconnected pieces in a finite volume and at finite statistics

if the topological sampling is insufficient [156,170]. Then, the constant takes the form

const ∝ 1

V

(
Q2

V
− χt −

c4
2χtV

)
+O(V−3) +O(e−mπ |x|). (222)

A test of this relation was attempted by taking the ensemble with the largest statistics

(corresponding to the bare parameters m0 = −0.90, β = 6.9 on a 24 × 123 lattice) and

measuring the topological charge Q using the same approach as in [91] and smooth the gauge
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Figure 13: (left) Correlator of the pseudoscalar non-singlet π and the pseudoscalar singlet
η′. At large times the singlet correlator shows a constant term, while this is absent for the
non-singlet case. For visual clarity, twice the pion correlator is plotted. (right) Correlators
of the pseudoscalar singlet for fixed values of the topological charge Q. The constant term
shows signs of a dependence on Q. While the constant is not significantly different for any
two examples shown here, the magnitude of the constant appears to be increasing with |Q|.

fields using the gradient flow. The test is performed by dividing the full statistics into sets

of equal topological charge 4 and computing the pseudoscalar singlet η′ correlator at fixed

|Q|. Examples of the correlators for fixed Q with sufficient statistics are depicted in fig. 13.

The constant term arising is sometimes statistically different for any pair of Q’s present in

this ensemble. A trend towards a constant with larger magnitudes for larger |Q| as expected
from Eq. (222) is observed.

3.4.3 Singlet Masses

The excited state contributions in the connected pieces were subtracted by fitting the con-

nected diagram at large Euclidean times. A numerical derivative was performed to remove

the constant term present both in the pseudoscalar and scalar singlet channels.

Pseudoscalar singlet in SU(2) and Sp(4) with Nf = 2

The results for the pseudoscalar singlet η′ for degenerate fermions are tabulated in table 7.

Plots are shown in figure 14. Only ensembles where mπL > 6 were considered. In [91] it

was found that for mπL ≈ 6 the finite volume effects are in the order of 1 − 2% which is

4In practice, the topological charge is not strictly an integer on a finite lattice. Q is rounded to the closest
integer.
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Figure 14: (left panel) Masses of the η′ in Sp(4) gauge theory for two different lattice spacings
corresponding to the two values of the inverse coupling β = 6.9 and 7.2. The pseudoscalar
singlet is lighter than the vector mesons. For ensembles with lighter fermions no sufficiently
good signal was found as to extract the mass of the pseudo-scalar singlet. The pseudoscalar
singlet does not show significant spacing effects when expressed in units of the pseudo-
Goldstone boson mass. (right panel) The same plot as above but in SU(2) gauge theory
for a single lattice spacing. The same pattern is observed as in Sp(4). The green solid lines
mρ/mπ = 1/x are displayed for reference.
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Figure 15: (left) Same data as in figure 14 but with the overall scale set using the gradient
flow scale w0 for two different values of the inverse coupling β. The larger value β = 7.2
corresponds to a lattice with a roughly 40% smaller lattice spacing than the ensembles at
β = 6.9. Contrary to figure 14 clear finite spacing effects are visible. The absolute values
quoted in this work are likely contaminated by finite spacing systematics while this is less
pronounced for ratios of meson masses such as mη′/mπ. The blue solid line w0mπ = x is
displayed for reference. (right) Mass ratio between of the vector mesons ρ and the scalar
singlet η′.
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significantly smaller than the uncertainties of the singlet meson masses in almost all cases.

For a few ensembles the mass of the η′ was determined to an accuracy of roughly 2%. In all

these cases the considered volumes large enough to fulfil mπL > 7 where the finite volume

effects have been estimated to be at the sub-percent level [91]. The pseudoscalar singlet is

always lighter than or compatible with the mass of the vector mesons. The results of the

lightest ensembles is associated with larger statistical errors and the hierarchies between the

pseudoscalar singlet and the vector mesons are not clearly resolved. For β = 7.2 the lattice

spacing is approximately 40% smaller than for the coarser β = 6.9 ensembles [91]. The masses

of the η′ at different spacings agree within the quoted one sigma error bars when expressed

in units of the pseudo-Goldstone mass. In [91] it was shown that the spacing effects can be

generally large when the scale is set by employing the gradient flow scale. This indicates that

some spacing effects cancel when considering only ratios of hadron masses. Figure 15 shows

the results where an overall scale was set using a gradient flow scale w0 and confirms that

this behaviour persists for the η′ meson. The spacing effects in the masses of the η′ meson

are not severe when expressed as a multiple of another meson mass, but the absolute values

can still have sizeable finite spacing effects when expressed in terms of gradient flow scales.

This suggests that leading finite size effects are similar for all mesons and thus cancel to

some extent. For SU(2) the same mass hierarchy is seen both for the heavier and the lighter

fermions. Only a single fairly coarse lattice is spacing considered here and the relevance of

finite spacing effects is unclear.

Pseudoscalar singlets in Sp(4) with Nf = 1 + 1

For non-degenerate fermions the theory contains two singlet pseudoscalar mesons, the η′ as

before as well as the flavour-diagonal pseudo-Goldstone π0. In the limit of degenerate quarks

the π0 becomes again a non-singlet which is degenerate with the other pseudo-Goldstone

bosons as can be seen in (139). The meson masses are given in figure 16 and the tabulated

results in table 8 which includes the mass of the neutral pion in a connected-only approxima-

tion obtained by dropping the last two terms in (138) denoted by mπ0
c
. For the Nf = 1 + 1

theory this approximation was already used in Sec. 3.3 and the results of the full π0 allows

a check of this approximation.

Consistent masses for the π0 and η′ are recovered as the degenerate limit is approached.

As one fermion mass is increased the η′ becomes lighter while the flavoured pseudo-Goldstones

get heavier relative to the π0 which is the lightest meson. This leads to an inversion of their

hierarchy already at small relative pion mass differences < 5%. When the mass of the heavier

fermion is increased further the regime of a heavy-light system is approached and the mass
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β m0 L T mπL mπ/mρ mπ mρ mη′ mσ

SU(2) 2.0 -0.947 20 32 7.47(3) 0.690(7) 0.3735(13) 0.540(5) - 0.53(4)
SU(2) 2.0 -0.94 14 24 6.40(2) 0.746(6) 0.4576(14) 0.612(4) 0.67(6) -
SU(2) 2.0 -0.935 16 32 7.91(2) 0.767(5) 0.4946(14) 0.644(4) 0.60(3) -
SU(2) 2.0 -0.93 14 24 7.491(19) 0.787(4) 0.5350(14) 0.679(3) 0.65(3) -
SU(2) 2.0 -0.925 14 24 7.999(19) 0.806(4) 0.5713(14) 0.708(3) 0.634(16) -
SU(2) 2.0 -0.92 12 24 7.323(10) 0.8210(19) 0.6102(8) 0.7432(14) 0.665(9) -
SU(2) 2.0 -0.9 12 24 8.620(17) 0.862(3) 0.7183(14) 0.832(2) 0.770(16) -
SU(2) 2.0 -0.88 10 20 8.120(11) 0.885(2) 0.8120(11) 0.9169(19) 0.842(5) -

Sp(4) 7.2 -0.799 32 40 8.087(16) 0.668(4) 0.2527(5) 0.377(2) - 0.36(5)
Sp(4) 7.2 -0.794 28 36 8.072(11) 0.710(2) 0.2882(4) 0.4055(11) 0.397(16) -
Sp(4) 7.2 -0.79 24 36 7.505(19) 0.742(6) 0.3127(8) 0.421(3) 0.387(13) 0.56(6)
Sp(4) 7.2 -0.78 24 36 8.882(17) 0.793(4) 0.3700(7) 0.466(2) 0.418(7) -
Sp(4) 7.2 -0.77 24 36 10.16(2) 0.829(5) 0.4236(10) 0.510(3) 0.456(8) -
Sp(4) 7.2 -0.76 16 36 7.544(17) 0.850(4) 0.4715(10) 0.554(2) - 0.64(12)

Sp(4) 6.9 -0.924 24 32 8.208(12) 0.663(2) 0.3420(5) 0.5157(17) - 0.46(3)
Sp(4) 6.9 -0.92 24 32 9.356(12) 0.7036(17) 0.3898(5) 0.5540(12) - 0.42(2)
Sp(4) 6.9 -0.92 16 32 6.22(2) 0.696(7) 0.3889(14) 0.558(5) 0.49(3) 0.45(6)
Sp(4) 6.9 -0.91 16 32 7.817(19) 0.769(5) 0.4885(12) 0.634(4) 0.560(14) -
Sp(4) 6.9 -0.91 14 24 6.86(2) 0.766(6) 0.4902(16) 0.639(5) 0.541(9) 0.41(3)
Sp(4) 6.9 -0.9 16 32 9.006(13) 0.815(3) 0.5629(8) 0.690(2) 0.611(9) -
Sp(4) 6.9 -0.9 14 24 7.897(14) 0.812(3) 0.5641(10) 0.694(2) 0.619(16) 0.57(4)
Sp(4) 6.9 -0.9 12 24 6.796(9) 0.809(2) 0.5663(8) 0.6994(18) 0.610(6) 0.55(2)
Sp(4) 6.9 -0.89 14 24 8.813(19) 0.843(4) 0.6295(13) 0.746(3) 0.69(2) 0.57(9)
Sp(4) 6.9 -0.89 12 24 7.581(15) 0.841(3) 0.6318(12) 0.751(3) 0.661(9) 0.62(7)
Sp(4) 6.9 -0.87 12 24 8.925(10) 0.878(2) 0.7437(9) 0.8468(17) 0.782(13) 0.80(15)
Sp(4) 6.9 -0.87 10 20 7.470(16) 0.871(3) 0.7470(16) 0.857(3) 0.764(9) -

Table 7: Results on the light spectrum with degenerate fermions including the singlet mesons.
All dimensionful quantities are given in appropriate powers of the lattice spacing a. For the
singlets a numerical derivative to subtract the constant term in the propagator was used. For
the scalar singlet both a direct calculation of the term ⟨0|O|0⟩ and a numerical derivative
were performed. This produces equivalent result in almost all cases, while providing a better
quality of fit for the rest of the ensembles. For details on the specific methods see appendix
3.4.2.
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β m
(1)
0 m

(2)
0 L T mπ0 mπ0

c
mπ± mρ0 mρ± mη′ mσ

6.9 -0.9 -0.89 14 24 0.55583(5) 0.5968(18) 0.597(2) 0.596(2) 0.723(3) 0.45(6) 0.719(4)
6.9 -0.9 -0.88 14 24 0.55474(5) 0.6267(16) 0.6261(18) 0.628(2) 0.749(2) 0.51(8) 0.745(3)
6.9 -0.9 -0.87 14 24 0.55361(4) 0.6535(16) 0.6510(14) 0.6606(17) 0.7731(19) 0.69(14) 0.775(2)
6.9 -0.9 -0.85 14 24 0.55163(4) 0.6900(18) 0.6889(19) 0.709(2) 0.813(3) 0.51(12) 0.813(4)
6.9 -0.9 -0.8 14 24 0.54735(4) 0.761(2) 0.7563(16) 0.8277(18) 0.879(2) - 0.922(3)
6.9 -0.9 -0.75 12 24 0.54395(6) 0.805(3) 0.803(4) 0.921(4) 0.927(6) - 1.005(5)
6.9 -0.9 -0.7 12 24 0.54104(6) 0.840(4) 0.833(4) 0.996(3) 0.954(5) - 1.073(5)

Table 8: Results on the light spectrum with non-degenerate fermions including the singlet
mesons. All dimensionful quantities are given in appropriate powers of the lattice spacing
a. The same methods for subtraction of the constant contributions as in the degenerate case
are used. The mass of the neutral pseudo-Goldstone without the disconnected pieces mπ0

c
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reported. This does not impact the results significantly.
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Figure 16: Masses of the η′ with non-degenerate fermions at a fixed inverse coupling β = 6.9.
The left panel shows the results as a function of the pion mass ratio and in the right panel
as a function of the PCAC mass ratio. The solid blue line mπ±/mπ0 = x is displayed for
reference. For quasi-degenerate fermions the results from the degenerate case are recovered.
Already for small isospin breaking a change in hierarchy is observed where the η′ meson gets
lighter than the non-singlet pseudoscalars and the η′ and π0 become the lightest mesons.
They become near-degenerate as the fermion masses is increased.
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Figure 17: Masses of the σ with degenerate fermions in the Sp(4) theory. Strong signs of
finite spacing effects are observed even when expressed as a ration of hadrons. On the coarser
lattice the scalar singlet appears to be extremely light, in some cases even lighter than the
pseudo-Goldstones. For the finer lattice this changes drastically and the scalar singlet σ is
usually heavier than the vector meson but still below the two-pseudo-Goldstone threshold.
The green solid lines mρ/mπ = 1/x are displayed for reference.

difference between the η′ and the π0 decreases. They are then the lightest states of this theory

(with the caveat being the unclear nature of the scalar singlet as discussed in sec. 3.4.3).

This is consistent with the limit of an infinitely heavy fermion mass where only one light

fermion remains and the employed operators of the π0 and the η′ source the same state [137].

Scalar singlet in Sp(4) with Nf = 2

In the case of the scalar singlet σ the signal is consistently worse even for different subtraction

techniques. Furthermore, clear signs of finite spacing effects emerge – as shown in figure 17.

For Sp(4) an extremely light state is observed on the coarse β = 6.9 lattices which is often

even lighter than the pseudo-Goldstones. This pattern persists over the entire mass range

considered here. On the finer lattices at β = 7.2 the mass of the σ increases and is consistently

heavier than the pseudo-Goldstones and the vector meson. This suggests the existence of

larger finite spacing effects that suppress the mass of the scalar singlet. Still, even for the finer

lattice the state is lighter than its non-singlet counterpart. This signals that further studies

are still needed, specifically on finer lattices or with (chirally) improved fermion actions.

The scalar singlet might be a light meson at moderately heavy fermions well below the 2mπ
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threshold.

Comparison to SU(3) with Nf = 2

Figure 18 shows the available data published on the pseudoscalar singlet in SU(3) with

Nf = 2. In some cases the measurement has been performed using different methods in the

analysis or different operators have been used to study the same mesons (e.g. the mass of the

η′ has been obtained from pure gluonic operators as well as the usual fermionic operators or

in the case of twisted mass fermions the non-singlet mesons include isospin breaking effects)

and different sets of analysis results are available. The results that are closest to the standard

determination of directly fitting the correlator of a pure fermionic operator have been used

in this comparison. When this was not possible the largest and smallest values of the masses

are quoted as mi ±∆mi for all measurements i and the uncertainties ∆mi are chosen to be

symmetric. The data depicted in figure 18 has been taken from the UKQCD collaborations

denoted by UKQCD1 [146, 147] and UKQCD2 [151]; the SESAM/TχL collaboration [148,

149]; the CP-PACS collaboration [150]; the RBC collaboration using domain-wall fermions

[154]; the CLQCD collaboration using Wilson clover fermions on anisotropic lattices [155];

the ETMC collaboration denoted by ETMC1 [152, 153] and ETMC2 [71, 156] and from the

analysis of η′−glueball mixing denoted by Beijing [157]. In all but the very lightest ensemble

(and one obvious outlier at heavy fermions) the vector meson ρ was found to be lighter

than the pseudoscalar singlet η′. The authors of [71] point out that in the lightest ensemble

the ρ might be unusually light due to the small number of energy levels below the inelastic

threshold in the determination of the ππ phase shift. It is lighter than their extrapolation to

the physical point at which mρ = 786(20) and even lighter than their extrapolation to the

chiral limit. The mass dependence of the η′ meson was found to be flat and an extrapolation

in [156] to the physical point gave mη′ = 772(18)MeV. This is in contrast to SM QCD where

the η′ is significantly heavier – the current PDG lists mPDG
η′ = 957.78(6) MeV [17] which is in

agreement with recent SU(3), Nf = 2+1 lattice results of mη′ = 929.9 (47.521.0) MeV [175]. The

contribution of the s-quark that leads to the heavier mass. A quark model of the pseudoscalar

singlet mesons based on approximate SU(3)F flavour symmetry [176–178] was applied to early

lattice results in [147]. In the regime of moderate and heavy fermion masses the SU(3) results

are in agreement with the new Sp(4) and SU(2) lattice results, as depicted in the lower right

panel in Fig. 18.
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Figure 18: Comparison to the available lattice data in SU(3) with two fundamental fermions.
The upper panels depict all available lattice results in SU(3). In the upper left panel the
white markers denote the vector meson ρ and the grey ones the pseudoscalar singlet η′. The
different marker shapes denote the different collaborations. The η′ is lighter than the vector
mesons almost everywhere. In the upper right panel the ratio mη′/mρ is plotted. The lower
panels show the SU(3) results compared to the Sp(4) and SU(2) data. The lower left panel
shows the ratio mη′/mπ as a function of mπ/mρ for values of mπ/mρ ≈ 0.7 and larger.
Different results of the ratio mη′/mρ are compared in the lower right plot.
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3.4.4 Masses from different subtraction methods

In order to test the robustness of the subtraction choice, the mass of the pseudoscalar singlet

η′ for various techniques is reported. The results reported in section 3.4.3 are based on

correlators where the connected part was modelled by a single sum of exponentials (216)

taking lattice periodicity into account and removing the constant by a numerical derivative.

In table 9 this is compared to four alternative methods: i) Direct calculation and subtraction

of ⟨0|Oη′ |0⟩ ii) Ignoring the constant and restricting the fit to early time-slices iii) Performing

a three-parameter fit of the decaying exponential plus a term modelling the constant. This

procedure gives the numerical value of the constant as a by-product. As a check the constant

was subtracted from the correlator a posteriori and the effective mass was examined for

signs of a plateau. iv) Removing the constant using a numerical derivative but without any

modelling of the connected part.

Whenever a signal without an explicit modelling of the connected pieces is obtained, the

results agree within errors. The removal of excited state contamination leads to masses that

are generally slightly lighter. The same pattern has been observed in SU(3) theory [156]. The

explicit calculation of the constant ⟨0|Oη′ |0⟩ does not quantitatively capture the constant

in the correlator. The results are almost indistinguishable from not taking the constant

into account. For some ensembles (e.g. Sp(4) with β = 7.2) these methods appear to

underestimate the meson’s mass. This is a result from combining the modelling of the

connected piece with an insufficient subtraction of the constant. Due to the absence of

connected excited states in the correlator the effective mass is increasing at small t while for

large t the constant leads to a decrease of the effective masses. This can lead to the formation

of an apparent plateau in the effective mass and thus to a possibly severe underestimation of

the meson’s mass. The methods (ii) and (iii) do not appear sufficiently reliable. Modelling

the constant as an additional fit parameter did not lead to any significant improvements. In

most cases no reliable signal can be extracted. In the few cases where this is possible the

constant term is quantitatively small and this method agrees with the others while providing

no improvement at the cost of an additional fit parameter.

The method used throughout the main part of this work has proven to be the most reliable

approach among the options considered here. Its results are always consistent with forgoing

the explicit removal of subtracted states and the removal of the additional constant through

derivative avoids any further estimations of the topological constant terms at the expense of

a shorter plateau in the effective masses and thus, a smaller interval for fitting the correlator.

For the scalar singlet it is vastly different. The constant term is not related to an insuf-

ficient sampling of all topological sectors but arises due to the vacuum quantum numbers of
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the scalar singlet. In addition, the modelling of the connected pieces is less important since

the non-singlet state appears generally heavier than the singlet states and the connected

pieces show a stronger exponential decay. In this case the direct estimation of the constant

term ⟨0|Oσ|0⟩ appears to be quantitatively reliable. Still, in some cases the modelling of the

connected pieces can extend the plateau in the effective mass to lower timeslices t. Since the

constant is several order of magnitude larger than the actual signal of the σ state a direct

modelling of it as a fit parameter is infeasible and the constant can also not be ignored in the

analysis. In table 10 approach used in the main part of this paper is compared to (i) using

only a direct calculation of and (ii) using a numerical derivative without any modelling of

the connected pieces.

3.4.5 Comparison between excited state subtraction and smeared

connected diagrams

In Sect. 3.4.1 it was remarked that the signal of the singlet mesons can be extended to

smaller time separations, t, if its connected contribution is replaced by approximating it with

a single exponential term. Because the connected part corresponds to the flavoured mesons,

the exponential is decaying with the energy of the non-singlet meson. This removes all the

excited state contaminations of the connected piece.

A similar effect can be obtained by using smearing techniques on the connected piece.

This can increase the overlap of the source operator with the ground state of the non-singlet

and reduce the contribution of excited states. Recently, this approach has been implemented,

tested, and shown to work in Sp(4) gauge theories [179]. These developments allow us to

compare the excited-state subtraction technique.5

In order to compare the two techniques smearing was applied to only the connected

piece. However, the use of smearing techniques leads to an overall change of normalization.

Applying Wuppertal smearing [181] with N1 steps at the source and N2 steps at the sink

leads to an asymptotic correlator of the form

CN1,N2(t→ ∞) = αN1αN2e
−mconnt , (223)

where the normalization of unsmeared point sources is recovered for the choice of the param-

eters αN1 = αN2 = α0. Two sets of correlators with the smearing steps (N1, N2) = (N, 0) and

(N1, N2) = (N,N) were considered, to restore the normalization as the point source. A new

5I thank the authors of [179,180] for performing smeared measurements on a set of our configurations for
comparison prior to publication.
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β m0 L T mη′ m
(i)
η′ m

(ii)
η′ m

(iii)
η′ m

(iv)
η′

SU(2) 2.0 -0.947 20 32 - - - - -
SU(2) 2.0 -0.94 14 24 0.67(6) 0.699(14) 0.572(14) - 0.67(6)
SU(2) 2.0 -0.935 16 32 0.60(3) 0.67(3) 0.61(5) 0.60(3) -
SU(2) 2.0 -0.93 14 24 0.65(3) - - - 0.68(5)
SU(2) 2.0 -0.925 14 24 0.634(16) - - - 0.63(8)
SU(2) 2.0 -0.92 12 24 0.665(9) - - - 0.66(3)
SU(2) 2.0 -0.9 12 24 0.770(16) - - - 0.79(8)
SU(2) 2.0 -0.88 10 20 0.842(5) 0.855(14) 0.855(14) - -

Sp(4) 7.2 -0.799 32 40 - 0.37(2) 0.37(2) - 0.57(6)
Sp(4) 7.2 -0.794 28 36 0.397(16) 0.368(12) 0.368(12) - 0.47(7)
Sp(4) 7.2 -0.79 24 36 0.387(13) - - - 0.36(6)
Sp(4) 7.2 -0.78 24 36 0.418(7) 0.43(2) 0.45(2) - 0.43(5)
Sp(4) 7.2 -0.77 24 36 0.456(8) 0.450(6) 0.450(6) 0.459(7) -
Sp(4) 7.2 -0.76 16 36 - 0.511(13) 0.512(13) - 0.59(3)

Sp(4) 6.9 -0.924 24 32 - - - - 0.60(8)
Sp(4) 6.9 -0.92 24 32 - 0.51(4) 0.52(4) 0.486(16) 0.40(6)
Sp(4) 6.9 -0.92 16 32 0.49(3) 0.46(2) 0.46(2) 0.50(2) 0.45(13)
Sp(4) 6.9 -0.91 16 32 0.560(14) 0.59(4) 0.59(4) 0.560(13) 0.59(4)
Sp(4) 6.9 -0.91 14 24 0.541(9) 0.58(3) 0.58(3) - -
Sp(4) 6.9 -0.9 16 32 0.611(9) - - - 0.63(3)
Sp(4) 6.9 -0.9 14 24 0.619(16) 0.614(12) 0.615(12) 0.620(9) 0.63(3)
Sp(4) 6.9 -0.9 12 24 0.610(6) 0.620(15) 0.620(15) 0.612(5) -
Sp(4) 6.9 -0.89 14 24 0.69(2) 0.680(16) 0.681(16) 0.69(2) 0.72(4)
Sp(4) 6.9 -0.89 12 24 0.661(9) 0.660(5) 0.660(5) 0.660(10) -
Sp(4) 6.9 -0.87 12 24 0.782(13) 0.80(4) 0.80(4) - 0.80(2)
Sp(4) 6.9 -0.87 10 20 0.764(9) 0.763(6) 0.763(6) - -

Table 9: Determination of the masses of the pseudoscalar singlets using different techniques
for removing the constant term in the correlator. The method used in the main part of
this work is compared to: i) Direct calculation and subtraction of ⟨0|Oη′ |0⟩ ii) Ignoring the
constant and restricting the fit to early time-slices iii) Performing a three-parameter fit of the
decaying exponential plus a term modelling the constant. iv) Removing the constant using
a numerical derivative but without any modelling of the connected part.
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β m0 L T mσ m
(i)
σ m

(ii)
σ m

(iii)
σ

SU(2) 2.0 -0.947 20 32 0.53(4) 0.53(3) 0.58(5) 0.54(4)
SU(2) 2.0 -0.94 14 24 - 0.64(5) 0.61(4) 0.64(5)
SU(2) 2.0 -0.935 16 32 - 0.47(10) 0.55(8) 0.47(10)
SU(2) 2.0 -0.93 14 24 - - 0.62(9) -
SU(2) 2.0 -0.925 14 24 - - - -
SU(2) 2.0 -0.92 12 24 - 0.71(7) 0.75(13) 0.72(7)
SU(2) 2.0 -0.9 12 24 - - - -
SU(2) 2.0 -0.88 10 20 - - - -

Sp(4) 7.2 -0.799 32 40 0.36(5) 0.35(8) 0.41(4) 0.38(8)
Sp(4) 7.2 -0.794 28 36 - 0.55(8) - 0.55(8)
Sp(4) 7.2 -0.79 24 36 0.56(6) 0.56(6) 0.48(7) 0.65(12)
Sp(4) 7.2 -0.78 24 36 - - 0.55(6) -
Sp(4) 7.2 -0.77 24 36 - - - -
Sp(4) 7.2 -0.76 16 36 0.64(12) 0.64(7) - -

Sp(4) 6.9 -0.924 24 32 0.46(3) 0.46(3) 0.45(3) 0.48(7)
Sp(4) 6.9 -0.92 24 32 0.42(2) 0.43(3) 0.45(3) -
Sp(4) 6.9 -0.92 16 32 0.45(6) 0.40(8) 0.42(7) 0.37(11)
Sp(4) 6.9 -0.91 16 32 - - - 0.71(8)
Sp(4) 6.9 -0.91 14 24 0.41(3) 0.41(3) - -
Sp(4) 6.9 -0.9 16 32 - - - -
Sp(4) 6.9 -0.9 14 24 0.57(4) 0.56(4) 0.48(5) 0.51(10)
Sp(4) 6.9 -0.9 12 24 0.55(2) 0.56(4) - 0.57(3)
Sp(4) 6.9 -0.89 14 24 0.57(9) 0.56(9) 0.61(9) 0.59(9)
Sp(4) 6.9 -0.89 12 24 0.62(7) - 0.64(4) -
Sp(4) 6.9 -0.87 12 24 0.80(15) 0.76(11) - 0.72(7)
Sp(4) 6.9 -0.87 10 20 - 0.70(6) - -

Table 10: Results on the masses of the scalar singlet σ using the standard approach of a
numerical derivative as well as (i) a direct calculation of the vacuum term ⟨0|Oσ|0⟩ and (ii) a
numerical derivative without an explicit subtraction of excited states in the connected piece.
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Figure 19: Comparison of excited state subtraction by modelling the connected part of
the correlator as a single exponential term to smeared operators on a preliminary set of
configurations for a single ensemble. Both methods of removing excited state contaminations
agree remarkably well.

correlator was defined as

Csmeared
conn. (t) ≡ CN,0(t)

2

CN,N(t)
, (224)

by squaring the connected correlator with N steps of source smearing and no sink smearing

and divide that by the connected correlator with an equal amount of smearing steps at

both the source and the sink. This correlator has the same large-t behaviour and the same

normalization as a non-smeared one. This allows a construction of the full correlator of the

singlet meson. In Fig. 19 the full singlet correlator obtained from Eq. (224) was compared

to using Wuppertal smearing with N = 60 smearing steps, to the correlator obtained using

the single-exponential modelling and subtraction of the connected piece. The subtracted

correlator and the smeared correlator agree remarkably well in the interesting, plateau region.
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3.5 Dark Matter self-scattering: ππ scattering lengths

In Sec. 1.1.3 it was pointed out that self-interacting Dark Matter can address several small-

scale structure problems, provided that the self-interaction strength of the 2DM → 2DM

process is sufficiently strong while avoiding experimental constraints. A direct lattice de-

termination can provide insight into the viability of the DM model. Furthermore, a lattice

calculation allows a direct test of the chiral effective theory. General expressions for meson-

meson scattering have been derived for every breaking pattern considered in 1.2.8. For

the scattering length aI0 chiral perturbation theory predicts for Nf ≥ 2 mass-degenerate

fermions [182]

mπa
I=0
0 = −m

2
π

f 2
π

(
4Nf − 1

32
− 1

32Nf

)
, (225)

mπa
I=1
0 = −m

2
π

f 2
π

(
Nf − 1

48

)
, (226)

mπa
I=2
0 = − m2

π

32f 2
π

. (227)

As noted in Sec 2.5.2, the scattering processes at maximal isospin I = 2 are likely less

noisy than the channels corresponding to isospin I = 0, 1. Furthermore, the isospin 2 channel

does not contain any contributions from meson resonances since the associated representation

is 14-dimensional and no meson state transforming under this representation exists. This is

in contrast to the 10-dimensional representation of isospin I = 1 scattering where the vector

mesons will contribute, and the singlet channel I = 0 scattering where the extremely noisy

scalar singlet needs to be taken into account.

Thus, the scattering lengths at isospin 2 are a good starting point for investigations into

PNGB scattering. The scattering length can be understood as the first order expansion

in the scattering phase shift δ(k) in the momentum k. This has been recently applied to

PNGB DM models with I = 0 self-scattering enhancement through the dark σ meson. The

numerical determination of the scattering length can be seen in this context as a step towards

the determination of the full phase shift via Lüscher’s formalism [120,122].

Numerically, the scattering lengths in SU(2) gauge theory with Nf = 2 have first been

explored in [106]. As a proof of principle, the isospin 2 scattering length is studied on the

ensemble with the highest available statistics given by the bare gauge coupling β = 6.9 and

a degenerate, bare fermion mass m0 = −0.9 on a 24 × 123 lattice. The energy shift δEππ is
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extracted from the ratio of correlators [106]

R(t) =
Cππ(t)− Cππ(t+ 1)

C2
π(t)− C2

π(t+ 1)
. (228)

At first, one would expect that it is sufficient to only consider the ratio of the single pion

correlator Cπ and the two-pion correlator Cππ as

R(t) =
Cππ(t)

C2
π(t)

, (229)

since the correlator Cππ gives the energy of two-interacting pions and C2
π gives the energy of

two non-interaction dark pions. The ratio R(t) at large times t should then be proportional

to the mass difference that enters the determination of the scattering length in Eq. (134).

However, as in the case of the singlets, an additional constant contribution to the two-

pion correlator appears [172]. Similarly, as in Sec. 3.4 this can be removed by a numerical

derivative. The choice in (228) ensures that both single-pion and two-pion correlator have

the same symmetry with respect to the lattice mid-point T/2 and at large times t the ratio

behaves as

R(t→ ∞) = A [cosh (δEππ(t− T/2)) + sinh (δEππ(t− T/2)) coth (mπ(t− T/2))] . (230)

From this the energy difference δEππ can be extracted using (134) with coefficients c1 =

−2.837 and c2 = 6.375 [121]. As a proof of principle, the scattering length is calculated for

the ensemble with the highest available statistics. This corresponds to the 24×123 lattice with

an inverse coupling of β = 6.9 and a bare, degenerate fermion mass of m0 = −0.90 [3, 183].

A value of

δEππ = −0.010(4), (231)

has been obtained on this single ensemble 6. This corresponds to a scattering length of

aI=2
0 = −0.6(3). (232)

This is substantially lower than the prediction from chiral perturbation theory which suggests

a value of aχPT0 = −1.6(3). Using σ = πa20 the result is compared with experimental con-

straints on σ/mphys.
π . The physical lattice spacing a was not yet fixed. From the experimental

6Note the different sign compared to the value reported in [3]
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constraints σ/mphys.
π < 0.19 cm2g−1 [15] and σ/mphys.

π < 0.13 cm2g−1 [14] a lower limit for the

physical dark pion mass of mπ > 80MeV is obtained. This is consistent with the constraints

of the Dark Matter relic density [25] and thus provides a hint that the ensemble corresponds

to a phenomenologically interesting points in parameter space. It is important to note, that

this is only a rough lower bound. The mismatch between the direct calculation and chiral

perturbation theory could be caused by the large fermion masses or by unaccounted for sys-

tematic effects. A larger value of the scattering length will increase the lower bound on the

PNGB mass in physical units. This is particularly relevant, since the isospin I = 0 might

have a larger magnitude of the scattering length as predicted by chiral perturbation theory

(225).

Eventually, a full scattering analysis is needed. This result has been obtained only on a

fixed volume for one lattice spacing and one (degenerate) fermion mass. More investigations

on finer lattices with different physical volumes are needed. It was pointed out in Ref. [106]

that finite volume effects are expected to be large in this system. The current constraints

[14, 15] are so strong that the core-vs-cusp problem might not be resolved by a velocity-

independent cross-section but that rather an explicit velocity dependence σ(v) is needed. This

further motivates going beyond a study of the scattering length to fully velocity-dependent

ππ scattering.
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Summary and Conclusion

In this thesis the low-lying spectrum of Sp(4) gauge theory with two fundamental fermions

has been calculated from first principles on the lattice. This is motivated by the models of

SIMP Dark Matter [25–27] for which this theory is the simplest realization, with Sp(4) being

the smallest non-SU(N) gauge group that can provide exactly five PNGBs which are needed

for the 3 → 2 semi-annihilation process. The lattice results are crucial input parameters for

the low-energy effective description of this theory as reviewed in Sec. 1.3.

For non-degenerate fermions the symmetry of the multiplets under the remaining SU(2)u×
SU(2)d have been derived in Sec. 3.1. The PNGB five-plet π decomposes into a degenerate

four-plet and a singlet for non-degenerate fermions. This has profound implications for this

theory as a DM model as the singlet PNGB will no longer be protected from decay into the

SM by flavour symmetry. Thus, a different mechanism needs to ensure that the singlet PNGB

is sufficiently long-lived for setting the correct DM relic density via the 3 → 2 process in the

SIMP model. This is not the case if mass-differences between PNGBs is induced by radiative

corrections, where the five-plet can be split into a doublet and triplet as was shown in [2]. The

ten-plet of vector mesons splits into a degenerate flavoured four-plet and an unflavoured six-

plet – more specifically two triplets under the individual SU(2)u/d symmetries. This multiplet

also includes the state that would source the vector singlet ω in two-flavour QCD. Thus, no

singlet vector meson appears as long as the theory is studied in isolation. This is different

from QCD and two-flavour theories with complex fermion representations in general.

Numerically, the case for non-degenerate fermions was studied for moderately heavy

fermions due to the increased computational cost compared to the degenerate case. It was

found that the flavour-diagonal, singlet PNGB π0 is the lightest state of the theory. Similarly,

as in QCD, the flavoured PNGB states are heavier. The same pattern has been observed

for the vector meson masses as well as both vector and pseudoscalar decay constants. No
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sizeable finite volume effects were found for the meson masses and decay constants. The

finite size effects of meson mass ratios were within statistical uncertainties. For the decay

constant the finite size effects were of the order of 10% for the PNGBs and around 20% for

the vector mesons. As caveat, it needs to be mentioned that the decay constants were renor-

malized using one-loop lattice perturbation theory and no non-perturbative approach was

used. The lightest fermions used in this investigation correspond to a ratio of mπ/mρ ≈ 0.7

in the degenerate limit. In [91] it was found that at this point the PNGB squared depends

linearly on the fermion mass as predicted by LO chiral perturbation theory. The masses con-

sidered in this thesis are almost always heavier, and the EFT at leading order is not expected

to hold. However, a consistency check of the construction for non-degenerate fermions was

performed in Sec. 3.3.4 where it was found that the non-degenerate EFT breaks down at

roughly a fermion mass ratio of 2. This does not guarantee that the EFT provides a correct

description. Given the relatively heavy fermions is even unlikely to be applicable in this

case. This consistency check shows that the construction can be adequate for small mass

splitting. Still, a more thorough investigation at lighter fermion masses would be extremely

illuminating. It would also be advantageous to test the EFT with quantities that do not

need renormalization. A prime candidate for this would be PNGB scattering.

In Sec. 3.4 the singlet spectrum of two-flavour Sp(4) gauge theory was studied. This

was the first determination of any singlet meson in any Sp(Nc ≥ 4). For the first time the

mass hierarchy between the pseudoscalar singlet η′ associated with the axial anomaly and the

PNGBs was established in any symplectic gauge theory. For fermion masses corresponding

to mπ/mρ > 0.7 it was found to be lighter than the vector mesons and relatively close

to the other PNGBs for Sp(4). In SU(2) gauge theory the same pattern was observed for

mπ/mρ > 0.75. For the lightest masses, the masses of the η′ and the vector mesons are

comparable within the relatively large uncertainties of the pseudoscalar singlets. The overall

behaviour at intermediate to heavy fermion masses was found to be in agreement with the

literature on two-flavour QCD. This suggests that this is a generic pattern of two-flavour

theories. The agreement between SU(2), SU(3) and Sp(4) indicates that the behaviour of

the η′ meson differs significantly from the behaviour at small fermion masses where the mass

difference between the PNGBs π and the η′ is suppressed by 1/Nc. It will be interesting to

see if the expected scaling Nf persists in further dedicated lattice investigations. The singlet

spectrum was also studied for non-degenerate fermions. For the relatively heavy fermion

masses the connected-only approximation of the π0 was found to be justified over the entire

range of mass splittings studied. At some point this behaviour is expected to change when

approaching the chiral limit but no signs of it have been observed for fermions as light as

mπ/mρ ≈ 0.8. For the scalar singlet signs of sizeable finite spacing effects have been observed
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in Sp(4). On a coarse lattice the scalar singlet σ was often comparable or even lighter than

the PNGBs, whereas on a finer lattice their masses were comparable to those of the vector

mesons. It is unclear if the scalar singlet masses will be even heavier on finer lattices or if it

remains a light meson that is kinematically protected from strong decays.

Further studies are needed to resolve its properties better. Given the challenging nature

of the scalar singlet a multitude of improvements might be required. The standard Wilson

action could be replaced by its O(a) improved version. Alternatively, a chiral fermion action

which automatically includes O(a) improvement could be used. This would also pave the

way for further studies closer to the chiral limit. The analysis could be improved by switching

to a full variational analysis or to investigate the use of Bayesian approaches to correlator

fitting.

Finally, an exploratory analysis of PNGB scattering has been performed in Sec. 3.5. It was

found that the regime of moderately heavy fermions might be compatible with experimental

constraints. However, a rather large number of caveats appear. First, this is based on only

a single ensemble at a fixed volume and on a fixed lattice spacing. The contribution of

discretization artefacts is completely unclear. Secondly, only the isospin channel I = 2 has

been studied for purely technical convenience. For a correct comparison with experimental

constraints the scattering information of all channels is needed. Given the predictions of

chiral perturbation theory, the different channels cannot be assumed to be similar. Lastly,

the scattering length only provide scattering information at vanishing velocity while a velocity

dependent scattering cross-section might be preferred by astrophysics and a full determination

of the scattering phase shift will be needed. Thus, this investigation can only be seen as a

technical proof of principle towards a description of ππ → ππ and πππ → ππ scattering on

the lattice.

In summary, the low-lying spectrum of hadrons in two-flavour Sp(4) gauge theory was

calculated for moderately heavy fermions. The determination of the mesonic masses and their

decay constants provide crucial lattice input for further phenomenological investigations.

The results highlight potentially important differences from SM QCD. A comparatively light

pseudoscalar singlet was observed and in the case of non-degenerate fermions a change in

mass hierarchy as a function of the fermion masses was observed. This all points towards

the necessity to include non-PNGB states in phenomenological models. The results are a

stepping stone towards more elaborate simulations of Sp(2N) gauge theory on a finite lattice

including meson spectroscopy at lighter fermion masses and the scattering of mesons. In

light of all this, symplectic gauge groups with fermions remain a valid and interesting model

of composite Dark Matter.
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Definitions

A.1 Gamma and Pauli matrices

The Dirac γ matrices in Euclidean metric are defined through their anti-commutation rela-

tions

{γµ, γν} = 2δµν , µ, ν = 0, 1, 2, 3. (233)

Additionally, the fifth gamma matrix is introduced as

γ5 = γ1γ2γ3γ0. (234)

It anti-commutes with all other γµ and similarly squares to 1. Using the Minkowski metric

they obey
{
γMµ , γ

M
ν

}
= 2ηµν , with ηµν = diag(1,−1,−1,−1). They are connected to Eu-

clidean ones by γMi = iγi for the spatial gamma matrices with i = 1, 2, 3 while γ0 = γM0 holds

for the temporal γ matrix. A particularly useful representation for the purposes of this thesis

is the chiral representation, in which γ5 is block-diagonal.
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γ1 =




0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0


 γ2 =




0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0


 γ3 =




0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0




γ0 =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


 γ5 =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 .

(235)

In this form they can be recast as block-diagonal matrices in terms of the Pauli matrices σi
with i = 1, 2, 3 which are the generators of SU(2) satisfying [σi, σj] = 2ϵijkσk, where ϵijk is

the Levi-Civita symbol, and the Einstein summation convention is implied. Explicitly, they

are given by

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
. (236)

The γ matrices in the chiral representation (235) can then be written as

γi =

(
0 −iσi
iσi 0

)
γ0 =

(
0 12×2

12×2 0

)
γ5 =

(
12×2 0

0 −12×2

)
. (237)

The charge conjugation operator C in general is defined as

C = γµC
−1 = −γTµ , (238)

and in the chiral representation it is explicitly given as

C = iγ2γ0. (239)

A.2 Defining properties of Sp(2N)

The fundamental representation of any Sp(2N) group is pseudo-real. The representation

is isomorphic to its complex conjugate representation. This can be seen from the defining
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property of the Sp(2N) group: it is the subgroup of SU(2N) that leaves

E =

(
0 1N

−1N 0

)
(240)

invariant. It consists of all SU(2N) transformations that fulfil U∗ = EUE†. Here the notation

E for the invariant tensor in the context of 2p(2N) flavour symmetry is used. In the context

of colour groups the invariant tensor is as S to make the context unambiguous. The following

relations hold:

E† = E−1 = ET = −E, E2 = −12N . (241)

On the level of the generators T a using U = exp (iαaT a) this is equivalent to

T a∗ = −ET aE†, (242)

which fulfils the pseudo-reality condition (27).
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A.3 SU(4) and Sp(4) generators

The generators with normalization Tr{T aT b} = 1
2
δab are given by [184]

T 1 = 1√
8




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


 T 2 = 1√

8




0 −i 0 0

i 0 0 0

0 0 0 i

0 0 −i 0


 T 3 = 1√

8




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1




T 4 = 1√
8




0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0


 T 5 = 1√

8




0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


 T 6 = 1√

8




0 0 −i 0

0 0 0 −i
i 0 0 0

0 i 0 0




T 7 = 1√
8




0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0


 T 8 = 1√

8




0 −i 0 0

i 0 0 0

0 0 0 −i
0 0 i 0


 T 9 = 1√

8




0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0




T 10 = 1
2




0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0


 T 11 = 1√

8




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


 T 12 = 1

2




0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0




T 13 = 1
2
√
2




0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0


 T 14 = 1√

8




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


 T 15 = 1√

8




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 .

(243)

The totally antisymmetric structure constants fa,b,c of the SU(4) group are defined as

[
T a, T b

]
= ifabcT c (244)

and all non-zero structure constants are given by

f 1,2,14 = f 2,3,13 = f 2,4,6 = f 3,5,7 = −f 1,3,8 = −f 1,5,9 = −f 3,4,11 = −f 4,5,15 =
1√
2

(245)

f 1,4,10 = f 2,5,10 = f 2,5,12 = −f 1,4,12 =
1

2
. (246)
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The group SU(4) has 15 generators and the subgroup Sp(4) has 10 generators. From (242)

follows the relation

FT a + (T a)T F = 0 for a = 6, . . . , 15 (247)

for the generators of the Sp(4) subgroup while the other 5 generators satisfy

FT a − (T a)T F = 0 for a = 1, . . . , 5. (248)

Occasionally it is convenient to use another basis of the generators than the one in (243). A

different basis of SU(4) and Sp(4) algebras is obtained by exchanging the second row with

the third row and the second column with the third column. In this form, all generators are

either block-diagonal or anti-block-diagonal where the different blocks are either the identity

matrix 1 or one of the Pauli matrices σi,

T̃ 1 =
1

2
√
2

(
0 12

12 0

)
T̃ 2 =

1

2
√
2

(
0 −iσ3
iσ3 0

)
T̃ 3 =

1

2
√
2

(
12 0

0 −12

)

T̃ 4 =
1

2
√
2

(
0 −iσ1
iσ1 0

)
T̃ 5 =

1

2
√
2

(
0 iσ2

−iσ2 0

)
T̃ 6 =

1

2
√
2

(
σ2 0

0 σ2

)

T̃ 7 =
1

2
√
2

(
0 σ2
σ2 0

)
T̃ 8 =

1

2
√
2

(
0 −i12

i12 0

)
T̃ 9 =

1

2
√
2

(
σ2 0

0 −σ2

)

T̃ 10 =
1

2

(
σ1 0

0 0

)
T̃ 11 =

1

2
√
2

(
0 σ1
σ1 0

)
T̃ 12 =

1

2

(
0 0

0 σ1

)

T̃ 13 =
1

2
√
2

(
0 σ3
σ3 0

)
T̃ 14 =

1

2
√
2

(
σ3 0

0 −σ3

)
T̃ 15 =

1

2
√
2

(
σ3 0

0 σ3

)
. (249)

Then, the symplectic matrix F is written as

F̃ =

(
iσ2 0

0 iσ2

)
. (250)
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In this basis, all SU(2)u×SU(2)d generators and thus transformations are fully block-diagonal:

T̃ 1
u = T̃ 10 =

1

2

(
σ1 0

0 0

)
, T̃ 2

u =
(T̃ 6 + T̃ 9)√

2
=

1

2

(
σ2 0

0 0

)
, T̃ 3

u =
(T̃ 14 + T̃ 15)√

2
=

1

2

(
σ3 0

0 0

)
,

T̃ 1
d = T̃ 12 =

1

2

(
0 0

0 σ1

)
, T̃ 2

d =
(T̃ 6 − T̃ 9)√

2
=

1

2

(
0 0

0 σ2

)
, T̃ 3

d =
(T̃ 15 − T̃ 14)√

2
=

1

2

(
0 0

0 σ3

)
.

(251)

Another useful basis can be obtained by considering the matrix of the Goldstone bosons

in (48) as well as the matrices of the spin-1 states in (62). Requiring that all off-diagonal

elements contain only one field defines a new basis as

TA =
1√
2

(
T 1 − iT 2

)
TB =

1√
2

(
T 1 + iT 2

)
TC = T 3

TD =
1√
2

(
T 5 − iT 4

)
TE =

1√
2

(
T 5 + iT 4

)
T F = T 10 − i√

2

(
T 6 + T 9

)

TG =
1√
2

(
T 11 − iT 7

)
TH =

1√
2

(
T 13 − iT 8

)
T I = T 12 − i√

2

(
T 6 − T 9

)

T J = −T 10 − i√
2

(
T 6 + T 9

)
TK =

−1√
2

(
T 11 + iT 7

)
TL = −T 12 − i√

2

(
T 6 − T 9

)

TM =
1√
2

(
T 13 + iT 8

)
TN = T 14 TO = T 15. (252)
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States and Sp(4) multiplets

The meson spin-0 and spin-1 fermion bilinears have already been constructed in [29]. They

have the same structure as those appearing in a Nf = 1 theory [137]. For completeness

table 11 gives the operators that source the JD = 0−, 1+ and 1− multiplets of Sp(4), i.e. the

pseudoscalars, axial-vectors and vectors constructed from the generators in the basis of (243)

and (252), respectively. The other spin-0 and spin-1 states are the scalar 5-plet as well as

the scalar flavour singlet which differ from the flavour structure of the pseudoscalars only by

the extra γ5 in the bilinears.
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−ΨTSCT nEΨ+ Ψ̄ET nSCΨ̄T −ΨTSCTNEΨ+ Ψ̄ETNSCΨ̄T JP JD

π1
1√
2

(
ūγ5d+ d̄γ5u

)
πA ūγ5d 0− 0−

π2
i√
2

(
d̄γ5u− ūγ5d

)
πB d̄γ5u 0− 0−

π3
1√
2

(
ūγ5u− d̄γ5d

)
πC 1√

2

(
ūγ5u− d̄γ5d

)
0− 0−

π4
i√
2

(
d̄γ5SCū

T − dTSCγ5u
)

πD d̄γ5SCū
T 0+ 0−

π5
1√
2

(
d̄γ5SCū

T + dTSCγ5u
)

πE dTSCγ5u 0+ 0−

−ΨTSCT 0EΨ+ Ψ̄ET 0SCΨ̄T −ΨTSCT 0EΨ+ Ψ̄ET 0SCΨ̄T JP JD

η′ 1√
2

(
ūγ5u+ d̄γ5d

)
η′ 1√

2

(
ūγ5u+ d̄γ5d

)
0− 0−

2Ψ̄T nγµΨ 2Ψ̄TNγµΨ JP JD

ρ1
1√
2

(
ūγµγ5d+ d̄γµγ5u

)
aA d̄γµγ5u 1+ 1+

ρ2
i√
2

(
d̄γµγ5u− ūγµγ5d

)
aB ūγµγ5d 1+ 1+

ρ3
1√
2

(
ūγµγ5u− d̄γµγ5d

)
aC 1√

2

(
ūγµγ5u− d̄γµγ5d

)
1+ 1+

ρ4
i√
2

(
d̄SCγµγ5ū

T − dTSCγµγ5u
)

aD dTSCγµγ5u 1− 1+

ρ5
1√
2

(
d̄SCγµγ5ū

T + dTSCγµγ5u
)

aE d̄γµγ5SCū
T 1− 1+

2Ψ̄T nγµΨ 2Ψ̄TNγµΨ JP JD

ρ6
i√
2

(
ūγµSCPLū

T + uTSCγµPLu ρF uTSCγµPLu 1+ 1−

+d̄γµSCPLd̄
T + dTSCγµPLd

)

ρ7
i√
2

(
ūγµSCd̄

T + uTSCγµd
)

ρG uTSCγµd 1+ 1−

ρ8
i√
2

(
−ūγµd+ d̄γµu

)
ρH d̄γµu 1− 1−

ρ9
i√
2

(
ūγµSCPLū

T + uTSCγµPLu ρI dTSCγµPLd 1+ 1−

−d̄γµSCPLd̄T − dTSCγµPLd
)

ρ10 uTSCγµPLu− ūγµSCPLū
T ρJ ūγµSCPLū

T 1+ 1−

ρ11
1√
2

(
−ūγµSCd̄T + uTSCγµd

)
ρK ūγµSCd̄

T 1+ 1−

ρ12 dTSCγµPLd− d̄γµSCPLd̄
T ρL d̄γµSCPLd̄

T 1+ 1−

ρ13
1√
2

(
ūγµd+ d̄γµu

)
ρM ūγµd 1− 1−

ρ14
1√
2

(
ūγµu− d̄γµd

)
ρN 1√

2

(
ūγµu− d̄γµd

)
1− 1−

ρ15
1√
2

(
ūγµu+ d̄γµd

)
ρO 1√

2

(
ūγµu+ d̄γµd

)
1− 1−

Table 11: Fermion bilinears of the JD = 0−, 1± meson multiplets constructed from the
generators in the basis of (243) (left) and (252) (right) respectively. In addition, the JP

quantum numbers are shown.
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Appendix C

Tabulated results and additional plots
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Figure 20: Ratio of the flavour-neutral vector and pseudoscalar mesons against the pseu-
doscalar mesons’ mass ratio for the ensembles not depicted in Sec. 3.3.3.
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Figure 21: Ratio of the flavour-neutral vector and pseudoscalar mesons against the pseu-
doscalar mesons’ mass ratio for the ensembles not depicted in Sec. 3.3.3.
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Figure 22: Masses of the pseudo-Goldstones (left) and vector mesons (right) for different
values of the inverse coupling β in units of the pseudo-Goldstone mass degeneracy for the set
of ensembles with comparatively heavy fermions .
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Figure 23: Masses of the pseudo-Goldstones (left) and vector mesons (right) for different
values of the inverse coupling β in units of the pseudo-Goldstone mass degeneracy for the set
of ensembles with comparatively heavy fermions .
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Figure 24: Decay constants of the pseudo-Goldstones and vector mesons for different values
of the inverse coupling β in units of the pseudo-Goldstone mass degeneracy for the set of
ensembles with comparatively light fermions.
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Figure 25: Decay constants of the pseudo-Goldstones and vector mesons for different values
of the inverse coupling β in units of the pseudo-Goldstone mass degeneracy for the set of
ensembles with comparatively light fermions.
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Appendix D

Isospin breaking as a perturbation

D.1 Expansion of the path integral

If the isospin breaking due to non-degenerate fermion masses is small. The breaking effects

can be including perturbatively using measurements on purely iso-symmetric configurations.

This is achieved by splitting the fermionic part of the action into an iso-symmetric part and

a perturbation proportional to mu −md [185]:

L = (mu +md)(ūu+ d̄d)/2 + (mu −md)(ūu− d̄d)/2

= m(ūu+ d̄d) + ∆m(ūu− d̄d) = L0,1 +∆mLIB,1 (253)

This splitting has been used for QCD at first and second order in [145,185] to induce strong

isospin breaking from a Nf = 2 + 1 to a Nf = 1 + 1 + 1 theory. In this case the breaking

term is itself symmetric and both fermion masses are perturbed, i.e. mu = m − ∆m and

md = m±∆m. However, a different splitting can be chosen by setting

L = m(ūu+ d̄d) + ∆m(d̄d) = L0,2 +∆mLIB,2, (254)

such that only one fermion mass is perturbed md = mu +∆m = m +∆m. In this case the

perturbation is itself no longer symmetric. For now, a generic breaking term is considered.

Denoting SIB =
∑

x LIB a generic expectation value of an observable O is

⟨O⟩ = 1

Z

∫
Dϕ Oe−S =

∫
Dϕ Oe−(S0+∆mSIB)

∫
Dϕ e−(S0+∆mSIB)

(255)
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APPENDIX D. ISOSPIN BREAKING AS A PERTURBATION

At first order the expansion of (255) gives

⟨O⟩ ≈ ⟨O⟩0 −∆m⟨OSIB⟩0
1−∆m⟨SIB⟩0

= ⟨O⟩0 +∆m [⟨SIB⟩0⟨O⟩0 − ⟨OSIB⟩0] +O(∆m2). (256)

Note, that for the specific form the first order correction to the partition function Z is

proportional to SIB evaluated on a symmetric theory denoted by ⟨SIB⟩0 which vanishes for

SIB,1 due to the anti-symmetry w.r.t u and d. For some observables the first order corrections

vanish and the terms proportional to ∆m2 are the leading order iso-spin breaking effects [145].

At second order the expansion is given by

⟨O⟩ ≈ ⟨O⟩0 −∆m⟨OSIB⟩0 + 1
2
∆m2⟨OS2

IB⟩0
1−∆m⟨SIB⟩0 + 1

2
∆m2⟨S2

IB⟩0
= ⟨O⟩0 +∆m [⟨O⟩0⟨SIB⟩0 − ⟨OSIB⟩0]

+
1

2
∆m2

[
⟨OS2

IB⟩0 − 2⟨S2
IB⟩0⟨O⟩0 − ⟨SIB⟩0⟨OSIB⟩0

]
+O(∆m3) (257)

where it was not used that ⟨SIB⟩0 vanishes and even more extra terms arise in comparison

with [145, 185]. For the case of the difference between two observables that are degenerate

in the iso-symmetric limit the expression simplifies even further. Denoting the operators as

OA and OB with ⟨OA⟩0 = ⟨OB⟩0 it follows that

⟨OA⟩ − ⟨OB⟩ ≈ −∆m [⟨OASIB⟩ − ⟨OBSIB⟩] +
∆m2

2

[
⟨OAS

2
IB⟩ − ⟨OBS

2
IB⟩
]
, (258)

and all additional terms cancel. Only ⟨OSnIB⟩ needs to be in order to obtain the difference

between two otherwise degenerate observables for a generic isospin breaking term SIB. Let

us first consider ⟨OSIB,2⟩ for meson mass differences where O is a single meson correlator

such as Oπ± and Oπ0 . The following fermion contractions need to be performed

⟨ū(x)Γd(x)d̄(y)Γu(y)LIB,2⟩F = ⟨ū(x)Γd(x)d̄(y)Γu(y)d̄(z)d(z)⟩F
⟨ū(x)Γu(x)ū(y)Γu(y)LIB,2⟩F = ⟨ū(x)Γu(x)ū(y)Γu(y)d̄(z)d(z)⟩F
⟨ū(x)Γu(x)d̄(y)Γd(y)LIB,2⟩F = ⟨ū(x)Γu(x)d̄(y)Γd(y)d̄(z)d(z)⟩F
⟨d̄(x)Γd(x)d̄(y)Γd(y)LIB,2⟩F = ⟨d̄(x)Γd(x)d̄(y)Γd(y)d̄(z)d(z)⟩F (259)
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APPENDIX D. ISOSPIN BREAKING AS A PERTURBATION

where the first contraction is needed for non-singlet mesons and the other three are needed for

singlet mesons after symmetry breaking such as the η meson or the π0. Instead of calculating

all these contractions directly it is useful to observe a few patterns. The general form of these

contractions are

∑

z

⟨OLIB,2(z)⟩F =
∑

z

⟨Od̄(z)d(z)⟩F . (260)

If the two quark fields of LIB,2 are contracted an extra factor of
∑

z tr[G(z|z)] = tr[SIB]
appears - where G(x|y) is the quark propagator from x to y - times all the usual fermion

contractions. Diagrammatically, this means the every fermion contraction is multiplied by

this factor and yields

⟨usual fermion contraction of O⟩F ×
∑

z

z ∆m. (261)

In the case of the symmetric breaking term there is such a diagram both for the u and

the d quark with opposing sign and these diagrams cancel. This can also be understood

as a consequence of the tracelessnes of LIB,1 in flavour space [185]. For the case of the

non-symmetric breaking operator this is not the case. However, since these expressions are

evaluated on symmetric gauge configurations these contributions cancel in expressions like

(258).

If the additional quark fields are contracted with a quark field of the operator O of the

same flavour (in this case d) one propagator of a quark from some point on the lattice x to

the inserted point z and due to the second adjoint quark field a corresponding propagator

to another point y (which can coincide with x) results in the contraction. Diagrammatically

this corresponds to an insertion of an additional quark propagator into an existing d-quark

propagator [185] while keeping the u-quark propagators unchanged

x y →
∑

z

x z y. (262)

In case of the symmetric isospin breaking operator these insertions are also present for the

u-quark propagators. Note, that in the first order expansion only one insertion per product

of diagrams is allowed since every insertion comes with a factor of ∆m.

The situation is similar at second order for the operators ⟨OBSIB(x)SIB(y)⟩. If the

fermion operators of are contracted with themselves the usual contracted diagrams times a all
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APPENDIX D. ISOSPIN BREAKING AS A PERTURBATION

possible contractions in SIB(x)SIB(y) are obtained. Even in the case of a symmetric breaking

term this does not vanish. However, when considering the difference of two observables

that are degenerate in the isosymmetric limit these contributions cancel for every breaking

operator.

The contractions of SIB(x)SIB(y) with other quark fields in O lead either to a double

insertion of an extra d-quark propagator into one quark line or two separate insertions in one

product of diagram, i.e. replacements of the form

x y →
∑

z,v

x z v y (263)

and

x y

x’ y’
→

∑

z,v

x z y

x’ v y’
. (264)

With these diagrammatic replacement rules the relevant diagrams for measuring isospin

breaking effects can be constructed. Only need the usual diagrams after fermion contraction

and the ones after applying the insertion rules derived above need to be considered. In the

case of the iso-symmetric breaking operator this is sufficient to calculate all isospin breaking

corrections to all operators at first order in ∆m. For non-symmetric breaking operators and

higher orders with the symmetric operator this is only sufficient for obtaining the difference

between observables that are degenerate in the isosymmetric limit like mπ± −mπ0 . For other

observables (like meson properties of a bound state like mπ± or mη) ⟨LIB⟩0 needs to be

measured for the first order expansion and ⟨L2
IB⟩0 for the second order expansion.

The relevant diagrams depend on the specific meson and theory at hand as well as on

the desired breaking pattern. The isospin breaking effects of Nf = 2 → 1 + 1 as well as

Nf = 3 → 1 + 1 + 1 and Nf = 3 → 2 + 1 for mesonic operators will be discussed here.

For concreteness, the pseudoscalar mesons will be discussed. The other JP mesons can be

obtained by exactly the same procedure. 1

The relevant diagrams after fermion contraction for the pions are given in (137) and (138).

For the kaons of the three-flavour theories the diagrams are the same as for the π± above

after suitable replacements of u and d by s.

1In some cases like the vector mesons of Sp(4) gauge theory the disconnected contributions of the diagrams
are vanishing even in the non-isosymmetric case and thus this method might become even easier.
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D.2 Two flavour theories: Nf = 2 → 1 + 1

Only have bound states of u and d quarks appear. For the isosymmetric breaking operator

the contributions to the pions cancel at first order in ∆m since both the u and the d quark

propagator receive the same correction with opposing sign. The breaking effects at second

order are [185]

LIB,1 : Cπ0π0 − Cπ±π± = −2

[
n m − n m

]
(265)

where the blank, white circles denote the insertions and summation over all lattice points

of insertions is implied and the quark propagators are the isosymmetric ones. Even for

the non-symmetric isospin breaking operator the pion mass difference has no leading order

contribution

LIB,2 : Cπ0π0 − Cπ±π± = −1

2

[
n m − n m + 4 n m

]
(266)

In both cases an Nf = 1+1 theory is obtained. Note that in both cases disconnected diagrams

appear. They arise because isospin breaking turns the neutral pion into a singlet. If the global

symmetry preserves a multiplet structure of these mesons then also the contributions vanish

as is the case for the ρ mesons in Sp(4) gauge theory.

The key difference between the two different methods of parameterizing the isospin break-

ing that in the first case both u and d type quarks get corrections whereas in the second case

only the u type quark changes:

LIB,1 : mu,md

md

mu

2∆m LIB,2 : mu,md

md

mu

∆m

(267)

D.3 Three flavour theories: Nf = 3

The choice of breaking operator matters in Nf = 3 theories where they lead two different

breaking patterns. The usual term LIB,1 shifts the masses of both the u and d quark but

keeps the third mass mS unchanged. This leads to the same diagrams as above but the
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overall theory breaks down to Nf = 1 + 1 + 1.

LIB,1 : msmd,mu,ms

md

mu

2 ∆m (268)

The other operator only shifts the mass of the d upwards. In this case a Nf = 2 + 1 theory

results.

LIB,2 :
md,mu,ms

md

mu,ms

∆m (269)

There are of course other additional particles present in these theories (the K, the η mesons,

... ) which also receive isospin breaking correction. The corresponding diagrams can be

derived as outlined above.

D.4 Relevance of the disconnected diagrams

The disconnected diagrams need to be evaluated to compute the corrections of strong isospin

breaking to the pion masses. Since these are not identical to usual ones but come with extra

insertions of quark propagators it is a priori not known if they suffer as badly from statistical

noise as the other disconnected terms.

In [145] these terms have been evaluated for QCD using the rotated twisted mass (RTM)

scheme for an ensemble with a degenerate pion mass of ≈ 260MeV. It was found that the

connected and disconnected contributions are roughly of the same size and that the signal-to-

noise ratio is significantly worse for the disconnected diagrams. When choosing the breaking

operator LIB,2, a third connected diagram appears. This third diagram has not yet been

computed in the literature but it could lead to a situation where the connected diagrams

dominate.
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