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1 Introduction

Quantum gravity is an approach to unite the two big theories of the 20th century, namely
general relativity and quantum-mechanics. General relativity describes how space and
time are behaving in the presence of mass, an affect which plays a role if one takes
a look on heavy objects, such as stars. Different in quantum-mechanics were the one
concentrates on small objects, such as atoms or molecules.
The other three fundamental forces, namely: strong interaction, weak interaction and
electromagnetism can be well described on a quantum-mechanical point of view. Unit-
ing gravitation with quantum-mechanics is a major goal for today’s science, so many
theories have already been set up to make this possible. A candidate for ”the theory of
everything” is quantum gravity.
The goal in this bachelor thesis is to reconstruct the metric of a space-time grid with
causal dynamical triangulation and analyzing the problems which can occur. It is struc-
tured in such a way that first the theoretical background is referred to, after that the
metric of three space-time grids are calculated as well as discussed and at the end there
will be a discussion on the evaluated results and a brief outlook.

2 Theoretical background

The aim of the following subchapters is to give a brief insight into the topic and to
address the theoretical background of the bachelor thesis.

2.1 Observables in quantum gravity

Observables in physics need to be invariant under the choice of the coordinate system
as well as under gauge transformations. In quantum gravity this condition leads to
invariance under diffeomorphism.1 Therefore the metric is not physical. The simplest
quantities are operators which are scalar and therefore invariant. Two possible and
interesting examples are given below:[1]

O1(x) = ϕ†(x)ϕ(x) (1)

O2(x) = R(x) (2)

Where O1(x) describes the Higgs particle and O2(x) describes the local curvature and
x stands for an event. Another fundamental quantity to describe the particle is the
propagator, which can be defined as:

D(x, y) = ⟨O(y)O(x)⟩ (3)

1Invertible function that maps one differentiable manifold to another differntiable manifold that such
the function and its inverse are differentiable
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Since the propagator is depending on events and not on coordinates, it is diffeomorphism-
invariant and therefore one can give this a physical meaning. In quantum gravity space-
time is expected to be isotropic on average, but it is more difficult to find one quantity
which fulfills the diffeomorphism - invariance condition, since the distances depend on
the metric and are therefore dynamical as well and become itself an expectation value.
For every event there should exist a unique geodesic length connecting two events:

r(X, Y ) = ⟨minz(t)

∫ Y

X

dtgµν
dz(t)µ
dt

dz(t)ν
dt

⟩ (4)

Where g stands for the metric, z(t) describes a specific path and X and Y are events.
The minimum of equation 4 leads to the geodesic length. The propagator could be
seen as an function of expectation values of the geodesic distance.[2] Scalar curvature
invariants, which are from a quantumfield theory point of view composite operators,
which are difficult to evaluate and therefore the Fröhlich-Morchio-Strocchi-formalism
(FMS) is used. For more details see [1] and [2].

2.2 FMS formalism and dynamical triangulation

The FMS mechanism is based on constructing observables by splitting the metric in a
classical term gc, which is dominating the system and a fluctuation term γ. The classical
part does not have a preferred event, different to the Friedman-Robertson-Walker space-
time2, which has such an event, namely the big-bang and has therefore limitations. Since
γ is small in comparison to gc, a linear split can be made, which leads to the following:

g = gc + γ (5)

Taking the existence of a cosmological constant into account leads to the fact, that gc

can only be (anti) de-Sitter or Minkowski space-time.3 Since the γ−1 fulfills a Dyson-
equation 4 one is able to state a polynomial in γ and γ−1 up to a certain order using the
formalism of perturbation theory.
Dynamical triangulation supports the assumption that the geometry is de-Sitter space-
time.[1] In this work the causal dynamical triangulation (CDT) is used. This designates
a nonperturbative path-integral approach to quantum gravity. The main idea is based on
piecewise flat space which allows to introduce causal features into gravitational paths.
CDT tries to build a theory of quantum gravity with a suitable scaling limits of lat-
tice theory, where as their dynamics are given in nonperturbative pathintegrals which
approximately represent the curved space time. [3]

2describes a homogeneous, isotropic,expanding universe
3de-Sitter → positive cosmological constant, anti de-Sitter → negative cosmological constant, flat
spacetime → cosmological constant is zero

4γ−1 = −(gc)−1γ(gc + γ)−1[1]
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3 Determination of metric in a two-dimensional grid

In order to clearly solve the metric on every event one has to introduce a suitable gauge,
the path integral, invertibility of the metric as well as appropriate boundary conditions.
In determination of the metric one has to introduce a gauge in order to have the same
number of equations and variables. There are more possible gauges to use but in this
thesis the Haywood gauge is used, which is listed below.

∑

µ,ν

gµν∂νgµρ = 0 (6)

Where gµν stands for the elements of the metric and gµρ represents the elements of the
inverse metric. The derivative since one deals with linear vectors, can be expressed:

∂1g(A⃗) = g

(

A1 + 1
A2

)

− g(A⃗) (7)

Where A⃗ stands for the current position in the grid, where one wants to calculate the
derivative. The same procedure has to be done if one wants to look at the derivative of
the second coordinate, only with the difference that one now has a slope of one along
the second direction.
The mentioned path integral above can be described by the following equation:

s(x, y)2 =

∫ y

x

gµν
dz(t)µ
dt

dz(t)ν
dt

dt (8)

Where z(t) stands for the time dependent path, x and y are the placeholders for the time
span and gµν are the elements of the current metric. Last condition is the invertibility
of the metric, which can be mathematically expressed:

gµνgµρ = I (9)

Since invertibility is required, the matrix must not have a determinant which is equal
to zero. The boundary conditions in this work are periodic. Taking equations 6 - 9 into
account and also making the exception that one is looking for a symmetric metric one
is clearly able to solve the metric on every event in the grid. In the following chapters
the formalism is going to be demonstrated with three examples.
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3.1 Formalism demonstrated in Minkowski-space

In order to demonstrate the procedure of the algorithm, the Minkowski metric is calcu-
lated in this chapter. The following picture illustrates the grid:

Figure 1: Space-time-grid for Minkowski-space
every horizontal connection equals 1 and every vertical connection equals -1

Using equation 8 one is able to calculate g11 and g22 with the help of vectors z1(t) and
z2(t) as well as geodesic length, which can be taken from Figure 1.5 This procedure re-
spectively the vectors could be done on every event in the grid, which means the stated
conditions above are the same for every point A⃗. So far the following elements have
been found: g11 = 1 and g22 = −1.
One is left with the fact, that the elements g12 and g21 (which are the same, since we
allow only the case of a symmetrical metric) can not be calculated with the definition
of the geodesic length, since the grid has not any diagonal connection.

To solve this one can use the invertibilty condition together with the gauge. For the
sake of simplicity in calculation and because this calculation only serves to demonstrate
the algorithm, the gauge is simplified to:

g22(∂1g
11 − ∂1g

12) = g11(∂2g
22 − ∂2g

21) (10)

Since the aim is demonstrate that g21(1, 1) = g12(1, 1)
!
= 0 a condition for g12 can be

obtained from equation 10 and together with the invertibilty (eq. 9), the following equa-
tion can be set up:

5z1(t) =

(

t

0

)

and z2(t) =

(

0
t

)
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−g12(1, 1) · (g12(1,2)+g12(2,1)
2

) = −g12(1, 1)2 → g121 (1, 1) = 0, g122 (1, 1) = g12(1,2)+g12(2,1)
2

As one can see the equation above is quadratic which means one obtains two solu-
tions. But one can show through the same formalism on the other points in the grid
that those two solutions are equally. Which means that the Minkowski metric is obtain-
able with this formalism. The calculation on the other points, for instance (2,1), can be
determined with the same algorithm and should also lead to the same metric, because
one has on every point in the grid the same conditions. As boundary conditions one can
use periodic.

3.2 Determination of metric with one cross connection and four

events

In this chapter one wants to concentrate on the following grid which is shown below.

Figure 2: Space-time-grid with one diagonal connection and 4 events
every horizontal connection equals 1 and every vertical and diagonal connection
equals -1

As discussed in the last chapter, one is able to solve the non diagonal matrix elements
through the equation 8, as long as one has at least one diagonal connection from one
event to another. If one has more than one there can be some contradiction in the results
if one takes a look on different events, but this is discussed in the next chapter, where
one has to deal with such a problem.
The metric elements g11 and g22 can be calculated through the same procedure and
vectors which is discussed in chapter 3.1. Furthermore there are also having the same
value as in Minkowski-space.6 One is now able to calculate the metric elements g12(1, 1)
and g12(2, 2) with equation 8, since there is a connection between those two events. The
vectors which one has to use are listed below:

6g11 = 1, g22 = −1
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z(t) = 1√
2

(

t
t

)

and z(t) = 1√
2

(

−t
−t

)

By evaluating one is left with the condition that g12(1, 1) = g12(2, 2) = −1. In order to
able to evaluate the non diagonal metric elements for the events (1,2) and (2,1) one has
to use the Haywood gauge (eq. 6). The boundary conditions are periodic. After the
calculation, the values for the elements are g12(2, 1) = g12(1, 2) = −1.
One has determined on every point in the grid the metric which are listed below:

g(1, 1) = g(1, 2) = g(2, 1) = g(2, 2) =

(

1 −1
−1 −1

)

Once one has found a metric that satisfies the gauge it is necessary to counter-check
if the metric also fulfills: The geodetic length calculated using the metric must be same

for all paths together as if one directly took the geodetic distance of the individual points

together.

A picture of the possible paths one is going to look at is given below.

Figure 3: Possible paths
every horizontal connection equals 1 and every vertical and diagonal connection
equals -1

Firstly one can concentrate on the green path, where following steps are need to be
taken. The path can be divided into three ’subpaths’, namely the one from the event
(1,1) to (2,2), to the event (2,1) and back to (1,1).
The three paths can be described by the following vectors:

⃗z(t)green1 =

(

t+ 1
t+ 1

)

, where t ∈ (0, 1)
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⃗z(t)green2 =

(

2
−t+ 3

)

, where t ∈ (1, 2)

⃗z(t)green3 =

(

−t+ 4
1

)

, where t ∈ (2, 3)

As one can see from Figure 3 if one sums up the three geodesic lengths it leads to the
value -1.
It is important to work with normalized vectors in order to get the correct solution. The
normalized differential of the vectors lead to:

d ˜z(t)green1
dt

=

(

1
1

)

· 1√
2

d ˜z(t)green2
dt

=

(

0
−1

)

d ˜z(t)green3
dt

=

(

−1
0

)

Below an example is given of how the calculation was done with each subpath. Important
is that the addition of all the three subpaths above leads to the value -1, because that
is the value which one take from Figure 2.

∫ 1

0
g11(1, 1) · dzgreen11 (t)

dt
· dzgreen11 (t)

dt
+ 2 · g12(1, 1) · dzgreen11 (t)

dt
· dzgreen12 (t)

dt

+g22(1, 1) · dzgreen12 (t)

dt
· dzgreen12 (t)

dt
dt

Once calculated one is left with the fact that the solution of the calculated length is
the same as one sums up all the geodesic lengths. Same procedure can be done if one
looks at the red path, which is shown in Figure 3. If we are going from event (1,1) via
a detour to event (2,2) the lengths should be add up to zero. The following paths were
used in the calculation and are listed below:

⃗z(t)red1 =

(

1
t+ 1

)

, where t ∈ (0, 1)

⃗z(t)red2 =

(

t
2

)

, where t ∈ (1, 2)

The same calculation was done, as mentioned above and the solution for this sum is
zero, as expected. It should also be mentioned that path 1 is light-like and can therefore
only influence the event at (2,2) causally if it moves at the speed of light, while path 2
is a time-like path, so the results can be affected even if the carrier is not moving at the
speed of light.
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3.3 Determination of metric with more cross connections and nine

events

The following situation is now considered, whereby the bachelor’s student came up with
this grid because the author was interested in a non symmetric case. A picture of the
situation is given below.

Figure 4: Space-time-grid with more cross connections and nine events
every horizontal connection equals 1 and every vertical and diagonal connection
equals -1

To evaluate the metric on every event, the author wrote a program with ”Mathemat-
ica”. The program is included in the last chapter of the thesis. The boundary conditions
are in this case also periodic. With the help of the program the author came up with
the following metric:

g(1, 1) = g(1, 2) = g(1, 3) = g(2, 2) = g(2, 1) = g(3, 1) = g(2, 3) =

(

1 1
1 −1

)

g(3, 3) =

(

1 −1
−1 −1

)

g(3, 2) =

(

1 0
0 −1

)

The main thought by creating the program was to write it based on differences between
every event in the grid. Therefore one gets also values for g12 where there is no connection
between the events and therefore these values are simply not existing. This could be
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improved that the program is able filter only relevant solutions but this would go beyond
the scope of this work.
As one sees in Figure 4 the event (2,2) is overdetermined, which leads to problems
and are therefore discussed in the next chapter. On event (2,3) there were also some
difficulties, because the gauge (eq. 6) leads to the condition that every number fulfills
it. But this is not the main issue because one can use (since the gauge has to be true for
every event in the grid) the gauge on other events, such as (2,2) and (1,3) and evaluate
g12(2, 3) over these applicable terms.

3.3.1 Problems with the calculation

As mentioned in the chapter before, the event (2,2) is causing a few problems because
there are three diagonal connections which contradict by considering equation 8. The
connections from (2,2) to (3,1) and (1,3) have the same direction and therefore don’t
contradict. Whereas the connection to (3,3) has another direction and leads to an-
other value for g12(2, 2). The gauge is also collapsing, because one tries to differentiate
although they are different sets and therefore a transfer function would have to be de-
veloped to convey correctly. But this procedure is very complicated and would therefore
go beyond the scope of this work. One can utter that a problem of contradiction will
appear if one has at least five connections from one event to the others. A picture of a
situation that would also cause problems according to the author is given below:

Figure 5: Space-time-grid that would also cause problems in determination of the metric
on event (2,2)
every horizontal connection equals 1 and every vertical and diagonal connection
equals -1

It is well illustrated by Figure 5 that the main problem are the two connections facing
in opposite directions, namely the one from event (1,3) to (2,2) and from (3,3) to (2,2).
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If one thinks of the definition of the path integral it also makes sense that it causes
contradiction, since one gets an extra minus-sign by comparing these two connections.
To be able to determine the ’correct’ solution for g12(2, 2) one has to calculate it through
the proper time, which is discussed in the next chapter.

3.3.2 Paths

In order to determine the g12(2, 2) one has to determine it by using the definition of the
proper time, which is defined:

dτ = −
√
ds2 (11)

The proper time is always positive, since there is no negative time, which leads to the
fact that the sign of the inputs does not influence as it does in the definition of equation
8. To determine g12(2, 2) it is necessary to find a path which does not cross event (2,2)
but has the same proper time if one choose a path through event (2,2). The metric
element g12(2, 2) is also necessary to evaluate g12(2, 3), because one has to use the gauge
on (2,2) in order to get a clearly result for it. A picture of the situation is given below:

Figure 6: Paths with the same proper time
every horizontal connection equals 1 and every vertical and diagonal connection
equals -1
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For path 1 the metric on every event is known, so one can calculate the proper time.
Since the two paths should have the same proper time, one can determine which value
g12(2, 2) should have in order to be correct according to this definition. Executing the
described leads to the result that g12(2, 2) is equal to 1. The evaluated proper time can
be found in the Mathematica program which can be found in chapter 6.
Together with the gauge (eq.6) and the evaluated g12(2, 2) one is able to clearly determine
g12(2, 3), which leads to the value -1. Trying to calculate g12(2, 3) thorough the gauge on
event (1,3) was also tried but it also led to the fact that every number can be a solution
for the element g12(2, 3).
Since it has not yet been proven that there is only one solution for a metric element,
it would not be dramatic if the gauge via the event (2,2) also resulted in a not clearly
defined solution for the metric element g12(2, 3).

4 Results and Outlook

After the calculation one left with the following metric for each space-time grid:7

g(1, 1) = g(1, 2) = g(2, 1) = g(2, 2) =

(

1 −1
−1 −1

)

g(1, 1) = g(1, 2) = g(1, 3) = g(2, 2) = g(2, 1) = g(3, 1) = g(2, 3) =

(

1 1
1 −1

)

g(3, 3) =

(

1 −1
−1 −1

)

g(3, 2) =

(

1 0
0 −1

)

The determination of the metric for the grid containing four events, it was relatively
straight forward, because there was no contradiction between the connections to the
events. Different to the calculation of the metric of the grid, which is containing nine
events, which results in contradiction in the value of g12(2, 2). In the course of the thesis
one comes to the conclusion that there is always a contradiction between the values when
one has more than five connections, however this can also occur when such a situation
as in Figure 5 is given. It is very interesting what is happening at the event (2,2) from
a physical point of view. If one has given a space-time grid with more connections,
there is a curvature in space, which is singular and can therefore be seen as a black
hole. As already mentioned in this thesis, one can use a transfer function to describe
what happens there, or one can replace the points with a pentagon, which on the one
hand causes fewer points but on the other hand results in a new length scale. It is also
possible to define the metric as a limit value process. The next step would be to test
these three mechanisms and thus trying to solve this problem.

7see chapter 3.2 and 3.3
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5 Summary

In course of processing on the thesis, interesting details emerged with regard to the cal-
culation of the metric at the events in the space-time grid.
First, the formalism was demonstrated using the Minkowski-metric, then a grid contain-
ing a cross-connection was considered, and finally a space-time grid with nine events
was considered using a self-written Mathematica program. With the latter, problems
arose with the determination of g12(2, 2) with regard to a contradiction resulting from
equation 8. This problem results from overdetermination of the event (2,2). Since it
would go beyond the scope of the bachelor thesis, no transfer function or limit value
process was developed that would solve the problem of the undefined derivatives (which
occur in equation 6) over the set. Instead, the element g12(2, 2) was calculated using the
proper time of another path, since the paths used in Figure 6 require the same proper
time.
In the course of processing it was found out that it leads to a contradiction if one has
more than five connections to events. The contradiction can also occur if one has less
than five connections but the they are in the opposite diagonal direction, like in Figure
5.
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EdgeWeight → InvariantLengths,EdgeWeight → InvariantLengths,EdgeWeight → InvariantLengths,

GraphLayout → Automatic]GraphLayout → Automatic]GraphLayout → Automatic]

(*Obtainds2MatrixfromPlot*)(*Obtainds2MatrixfromPlot*)(*Obtainds2MatrixfromPlot*)

ds2 = WeightedAdjacencyMatrix[%];ds2 = WeightedAdjacencyMatrix[%];ds2 = WeightedAdjacencyMatrix[%];

ds2//MatrixFormds2//MatrixFormds2//MatrixForm
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



















































0 −1 0 1 0 0 0 0 0

−1 0 −1 −1 1 0 0 0 0

0 −1 0 0 −1 1 0 0 0

1 −1 0 0 −1 0 1 0 0

0 1 −1 −1 0 −1 −1 1 −1

0 0 1 0 −1 0 0 0 1

0 0 0 1 −1 0 0 −1 0

0 0 0 0 1 0 −1 0 −1

0 0 0 0 −1 1 0 −1 0





















































(*listing all possible differences*)(*listing all possible differences*)(*listing all possible differences*)

A = CoordsA = CoordsA = Coords

B = CoordsB = CoordsB = Coords

subfora11 = Table[{1, 1} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]subfora11 = Table[{1, 1} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]subfora11 = Table[{1, 1} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]

subfora12 = Table[{1, 2} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]subfora12 = Table[{1, 2} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]subfora12 = Table[{1, 2} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]

subfora13 = Table[{1, 3} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]subfora13 = Table[{1, 3} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]subfora13 = Table[{1, 3} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]

subfora21 = Table[{2, 1} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]subfora21 = Table[{2, 1} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]subfora21 = Table[{2, 1} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]

subfora22 = Table[{2, 2} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]subfora22 = Table[{2, 2} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]subfora22 = Table[{2, 2} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]

subfora23 = Table[{2, 3} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]subfora23 = Table[{2, 3} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]subfora23 = Table[{2, 3} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]

subfora31 = Table[{3, 1} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]subfora31 = Table[{3, 1} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]subfora31 = Table[{3, 1} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]

subfora32 = Table[{3, 2} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]subfora32 = Table[{3, 2} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]subfora32 = Table[{3, 2} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]

subfora33 = Table[{3, 3} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]subfora33 = Table[{3, 3} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]subfora33 = Table[{3, 3} − B[[i, j]], {i, 1, 3}, {j, 1, 3}]

{{{1, 1}, {1, 2}, {1, 3}}, {{2, 1}, {2, 2}, {2, 3}}, {{3, 1}, {3, 2}, {3, 3}}}
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{{{1, 1}, {1, 2}, {1, 3}}, {{2, 1}, {2, 2}, {2, 3}}, {{3, 1}, {3, 2}, {3, 3}}}

{{{0, 0}, {0,−1}, {0,−2}}, {{−1, 0}, {−1,−1}, {−1,−2}}, {{−2, 0}, {−2,−1}, {−2,−2}}}

{{{0, 1}, {0, 0}, {0,−1}}, {{−1, 1}, {−1, 0}, {−1,−1}}, {{−2, 1}, {−2, 0}, {−2,−1}}}

{{{0, 2}, {0, 1}, {0, 0}}, {{−1, 2}, {−1, 1}, {−1, 0}}, {{−2, 2}, {−2, 1}, {−2, 0}}}

{{{1, 0}, {1,−1}, {1,−2}}, {{0, 0}, {0,−1}, {0,−2}}, {{−1, 0}, {−1,−1}, {−1,−2}}}

{{{1, 1}, {1, 0}, {1,−1}}, {{0, 1}, {0, 0}, {0,−1}}, {{−1, 1}, {−1, 0}, {−1,−1}}}

{{{1, 2}, {1, 1}, {1, 0}}, {{0, 2}, {0, 1}, {0, 0}}, {{−1, 2}, {−1, 1}, {−1, 0}}}

{{{2, 0}, {2,−1}, {2,−2}}, {{1, 0}, {1,−1}, {1,−2}}, {{0, 0}, {0,−1}, {0,−2}}}

{{{2, 1}, {2, 0}, {2,−1}}, {{1, 1}, {1, 0}, {1,−1}}, {{0, 1}, {0, 0}, {0,−1}}}

{{{2, 2}, {2, 1}, {2, 0}}, {{1, 2}, {1, 1}, {1, 0}}, {{0, 2}, {0, 1}, {0, 0}}}

(*listing the differences (except (2,2),(3,2) and(2,3))*)(*listing the differences (except (2,2),(3,2) and(2,3))*)(*listing the differences (except (2,2),(3,2) and(2,3))*)

(*(1,2)*)(*(1,2)*)(*(1,2)*)

a12diffa1b1 = Table[subfora12[[i, j, 1]], {i, 1, 3}, {j, 1, 3}]a12diffa1b1 = Table[subfora12[[i, j, 1]], {i, 1, 3}, {j, 1, 3}]a12diffa1b1 = Table[subfora12[[i, j, 1]], {i, 1, 3}, {j, 1, 3}]

a12diffa1b1 = ArrayReshape[a12diffa1b1, {1, 9}]a12diffa1b1 = ArrayReshape[a12diffa1b1, {1, 9}]a12diffa1b1 = ArrayReshape[a12diffa1b1, {1, 9}]

a12diffa2b2 = Table[subfora12[[i, j, 2]], {i, 1, 3}, {j, 1, 3}]a12diffa2b2 = Table[subfora12[[i, j, 2]], {i, 1, 3}, {j, 1, 3}]a12diffa2b2 = Table[subfora12[[i, j, 2]], {i, 1, 3}, {j, 1, 3}]

a12diffa2b2 = ArrayReshape[a12diffa2b2, {1, 9}]a12diffa2b2 = ArrayReshape[a12diffa2b2, {1, 9}]a12diffa2b2 = ArrayReshape[a12diffa2b2, {1, 9}]

{{0, 0, 0}, {−1,−1,−1}, {−2,−2,−2}}

{{0, 0, 0,−1,−1,−1,−2,−2,−2}}

{{1, 0,−1}, {1, 0,−1}, {1, 0,−1}}

{{1, 0,−1, 1, 0,−1, 1, 0,−1}}
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(*(1, 3)*)(*(1, 3)*)(*(1, 3)*)

a13diffa1b1 = Table[subfora13[[i, j, 1]], {i, 1, 3}, {j, 1, 3}]a13diffa1b1 = Table[subfora13[[i, j, 1]], {i, 1, 3}, {j, 1, 3}]a13diffa1b1 = Table[subfora13[[i, j, 1]], {i, 1, 3}, {j, 1, 3}]

a13diffa1b1 = ArrayReshape[a13diffa1b1, {1, 9}]a13diffa1b1 = ArrayReshape[a13diffa1b1, {1, 9}]a13diffa1b1 = ArrayReshape[a13diffa1b1, {1, 9}]

a13diffa2b2 = Table[subfora13[[i, j, 2]], {i, 1, 3}, {j, 1, 3}]a13diffa2b2 = Table[subfora13[[i, j, 2]], {i, 1, 3}, {j, 1, 3}]a13diffa2b2 = Table[subfora13[[i, j, 2]], {i, 1, 3}, {j, 1, 3}]

a13diffa2b2 = ArrayReshape[a13diffa2b2, {1, 9}]a13diffa2b2 = ArrayReshape[a13diffa2b2, {1, 9}]a13diffa2b2 = ArrayReshape[a13diffa2b2, {1, 9}]

{{0, 0, 0}, {−1,−1,−1}, {−2,−2,−2}}

{{0, 0, 0,−1,−1,−1,−2,−2,−2}}

{{2, 1, 0}, {2, 1, 0}, {2, 1, 0}}

{{2, 1, 0, 2, 1, 0, 2, 1, 0}}

(*(3, 3)*)(*(3, 3)*)(*(3, 3)*)

a33diffa1b1 = Table[subfora33[[i, j, 1]], {i, 1, 3}, {j, 1, 3}]a33diffa1b1 = Table[subfora33[[i, j, 1]], {i, 1, 3}, {j, 1, 3}]a33diffa1b1 = Table[subfora33[[i, j, 1]], {i, 1, 3}, {j, 1, 3}]

a33diffa1b1 = ArrayReshape[a33diffa1b1, {1, 9}]a33diffa1b1 = ArrayReshape[a33diffa1b1, {1, 9}]a33diffa1b1 = ArrayReshape[a33diffa1b1, {1, 9}]

a33diffa2b2 = Table[subfora33[[i, j, 2]], {i, 1, 3}, {j, 1, 3}]a33diffa2b2 = Table[subfora33[[i, j, 2]], {i, 1, 3}, {j, 1, 3}]a33diffa2b2 = Table[subfora33[[i, j, 2]], {i, 1, 3}, {j, 1, 3}]

a33diffa2b2 = ArrayReshape[a33diffa2b2, {1, 9}]a33diffa2b2 = ArrayReshape[a33diffa2b2, {1, 9}]a33diffa2b2 = ArrayReshape[a33diffa2b2, {1, 9}]

{{2, 2, 2}, {1, 1, 1}, {0, 0, 0}}

{{2, 2, 2, 1, 1, 1, 0, 0, 0}}

{{2, 1, 0}, {2, 1, 0}, {2, 1, 0}}

{{2, 1, 0, 2, 1, 0, 2, 1, 0}}
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(*(3, 1)*)(*(3, 1)*)(*(3, 1)*)

a31diffa1b1 = Table[subfora31[[i, j, 1]], {i, 1, 3}, {j, 1, 3}]a31diffa1b1 = Table[subfora31[[i, j, 1]], {i, 1, 3}, {j, 1, 3}]a31diffa1b1 = Table[subfora31[[i, j, 1]], {i, 1, 3}, {j, 1, 3}]

a31diffa1b1 = ArrayReshape[a31diffa1b1, {1, 9}]a31diffa1b1 = ArrayReshape[a31diffa1b1, {1, 9}]a31diffa1b1 = ArrayReshape[a31diffa1b1, {1, 9}]

a31diffa2b2 = Table[subfora31[[i, j, 2]], {i, 1, 3}, {j, 1, 3}]a31diffa2b2 = Table[subfora31[[i, j, 2]], {i, 1, 3}, {j, 1, 3}]a31diffa2b2 = Table[subfora31[[i, j, 2]], {i, 1, 3}, {j, 1, 3}]

a31diffa2b2 = ArrayReshape[a31diffa2b2, {1, 9}]a31diffa2b2 = ArrayReshape[a31diffa2b2, {1, 9}]a31diffa2b2 = ArrayReshape[a31diffa2b2, {1, 9}]

{{2, 2, 2}, {1, 1, 1}, {0, 0, 0}}

{{2, 2, 2, 1, 1, 1, 0, 0, 0}}

{{0,−1,−2}, {0,−1,−2}, {0,−1,−2}}

{{0,−1,−2, 0,−1,−2, 0,−1,−2}}

(*(2, 1)*)(*(2, 1)*)(*(2, 1)*)

a21diffa1b1 = Table[subfora21[[i, j, 1]], {i, 1, 3}, {j, 1, 3}]a21diffa1b1 = Table[subfora21[[i, j, 1]], {i, 1, 3}, {j, 1, 3}]a21diffa1b1 = Table[subfora21[[i, j, 1]], {i, 1, 3}, {j, 1, 3}]

a21diffa1b1 = ArrayReshape[a21diffa1b1, {1, 9}]a21diffa1b1 = ArrayReshape[a21diffa1b1, {1, 9}]a21diffa1b1 = ArrayReshape[a21diffa1b1, {1, 9}]

a21diffa2b2 = Table[subfora21[[i, j, 2]], {i, 1, 3}, {j, 1, 3}]a21diffa2b2 = Table[subfora21[[i, j, 2]], {i, 1, 3}, {j, 1, 3}]a21diffa2b2 = Table[subfora21[[i, j, 2]], {i, 1, 3}, {j, 1, 3}]

a21diffa2b2 = ArrayReshape[a21diffa2b2, {1, 9}]a21diffa2b2 = ArrayReshape[a21diffa2b2, {1, 9}]a21diffa2b2 = ArrayReshape[a21diffa2b2, {1, 9}]

{{1, 1, 1}, {0, 0, 0}, {−1,−1,−1}}

{{1, 1, 1, 0, 0, 0,−1,−1,−1}}

{{0,−1,−2}, {0,−1,−2}, {0,−1,−2}}

{{0,−1,−2, 0,−1,−2, 0,−1,−2}}

(*(1, 1)*)(*(1, 1)*)(*(1, 1)*)

a11diffa1b1 = Table[subfora11[[i, j, 1]], {i, 1, 3}, {j, 1, 3}]a11diffa1b1 = Table[subfora11[[i, j, 1]], {i, 1, 3}, {j, 1, 3}]a11diffa1b1 = Table[subfora11[[i, j, 1]], {i, 1, 3}, {j, 1, 3}]
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a11diffa1b1 = ArrayReshape[a11diffa1b1, {1, 9}]a11diffa1b1 = ArrayReshape[a11diffa1b1, {1, 9}]a11diffa1b1 = ArrayReshape[a11diffa1b1, {1, 9}]

a11diffa2b2 = Table[subfora11[[i, j, 2]], {i, 1, 3}, {j, 1, 3}]a11diffa2b2 = Table[subfora11[[i, j, 2]], {i, 1, 3}, {j, 1, 3}]a11diffa2b2 = Table[subfora11[[i, j, 2]], {i, 1, 3}, {j, 1, 3}]

a11diffa2b2 = ArrayReshape[a11diffa2b2, {1, 9}]a11diffa2b2 = ArrayReshape[a11diffa2b2, {1, 9}]a11diffa2b2 = ArrayReshape[a11diffa2b2, {1, 9}]

{{0, 0, 0}, {−1,−1,−1}, {−2,−2,−2}}

{{0, 0, 0,−1,−1,−1,−2,−2,−2}}

{{0,−1,−2}, {0,−1,−2}, {0,−1,−2}}

{{0,−1,−2, 0,−1,−2, 0,−1,−2}}

(*function to solve for g12, g11 and g22 is not included because they are always 1 and -1*)(*function to solve for g12, g11 and g22 is not included because they are always 1 and -1*)(*function to solve for g12, g11 and g22 is not included because they are always 1 and -1*)

(*the divided by two and the missing 2*g12 is due to the norm*)(*the divided by two and the missing 2*g12 is due to the norm*)(*the divided by two and the missing 2*g12 is due to the norm*)

g12solver[a1 , a2 , g12 ]:=a1∧2/2 + g12 ∗ a1 ∗ a2− a2∧2/2g12solver[a1 , a2 , g12 ]:=a1∧2/2 + g12 ∗ a1 ∗ a2− a2∧2/2g12solver[a1 , a2 , g12 ]:=a1∧2/2 + g12 ∗ a1 ∗ a2− a2∧2/2

(*(1, 2)*)(*(1, 2)*)(*(1, 2)*)

g12fora12 = Table[Solve[g12solver[a12diffa1b1, a12diffa2b2, g12][[1, i]]==ds2[[2, i]], g12], {i, 1, 9}]g12fora12 = Table[Solve[g12solver[a12diffa1b1, a12diffa2b2, g12][[1, i]]==ds2[[2, i]], g12], {i, 1, 9}]g12fora12 = Table[Solve[g12solver[a12diffa1b1, a12diffa2b2, g12][[1, i]]==ds2[[2, i]], g12], {i, 1, 9}]

{

{}, {{}}, {}, {{g12 → 1}}, {}, {{g12 → 0}},
{{

g12 → 3
4

}}

, {},
{{

g12 → −3
4

}}}

(*(1, 3)*)(*(1, 3)*)(*(1, 3)*)

g12fora13 = Table[Solve[g12solver[a13diffa1b1, a13diffa2b2, g12][[1, i]]==ds2[[3, i]], g12], {i, 1, 9}]g12fora13 = Table[Solve[g12solver[a13diffa1b1, a13diffa2b2, g12][[1, i]]==ds2[[3, i]], g12], {i, 1, 9}]g12fora13 = Table[Solve[g12solver[a13diffa1b1, a13diffa2b2, g12][[1, i]]==ds2[[3, i]], g12], {i, 1, 9}]

{

{}, {}, {{}},
{{

g12 → −3
4

}}

, {{g12 → 1}}, {}, {{g12 → 0}},
{{

g12 → 3
4

}}

, {}
}
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(*(3, 3)*)(*(3, 3)*)(*(3, 3)*)

g12fora33 = Table[Solve[g12solver[a33diffa1b1, a33diffa2b2, g12][[1, i]]==ds2[[9, i]], g12], {i, 1, 9}]g12fora33 = Table[Solve[g12solver[a33diffa1b1, a33diffa2b2, g12][[1, i]]==ds2[[9, i]], g12], {i, 1, 9}]g12fora33 = Table[Solve[g12solver[a33diffa1b1, a33diffa2b2, g12][[1, i]]==ds2[[9, i]], g12], {i, 1, 9}]

{

{{g12 → 0}},
{{

g12 → −3
4

}}

, {},
{{

g12 → 3
4

}}

, {{g12 → −1}}, {}, {}, {}, {{}}
}

(*(3, 1)*)(*(3, 1)*)(*(3, 1)*)

g12fora31 = Table[Solve[g12solver[a31diffa1b1, a31diffa2b2, g12][[1, i]]==ds2[[7, i]], g12], {i, 1, 9}]g12fora31 = Table[Solve[g12solver[a31diffa1b1, a31diffa2b2, g12][[1, i]]==ds2[[7, i]], g12], {i, 1, 9}]g12fora31 = Table[Solve[g12solver[a31diffa1b1, a31diffa2b2, g12][[1, i]]==ds2[[7, i]], g12], {i, 1, 9}]

{

{},
{{

g12 → 3
4

}}

, {{g12 → 0}}, {}, {{g12 → 1}},
{{

g12 → −3
4

}}

, {{}}, {}, {}
}

(*(2, 1)*)(*(2, 1)*)(*(2, 1)*)

g12fora21 = Table[Solve[g12solver[a21diffa1b1, a21diffa2b2, g12][[1, i]]==ds2[[4, i]], g12], {i, 1, 9}]g12fora21 = Table[Solve[g12solver[a21diffa1b1, a21diffa2b2, g12][[1, i]]==ds2[[4, i]], g12], {i, 1, 9}]g12fora21 = Table[Solve[g12solver[a21diffa1b1, a21diffa2b2, g12][[1, i]]==ds2[[4, i]], g12], {i, 1, 9}]

{

{}, {{g12 → 1}},
{{

g12 → −3
4

}}

, {{}}, {}, {}, {}, {{g12 → 0}},
{{

g12 → 3
4

}}}

(*now we need to include the gauge in order to get (1,1)*)(*now we need to include the gauge in order to get (1,1)*)(*now we need to include the gauge in order to get (1,1)*)

eich1[g12known , g12sol ]:=(g12known− g12sol) + g12sol ∗ (−g12known + g12sol)(*gauge x-direc.*)eich1[g12known , g12sol ]:=(g12known− g12sol) + g12sol ∗ (−g12known + g12sol)(*gauge x-direc.*)eich1[g12known , g12sol ]:=(g12known− g12sol) + g12sol ∗ (−g12known + g12sol)(*gauge x-direc.*)

eich2[g12known , g12sol ]:=(−(g12known) + g12sol) + g12sol ∗ (−g12known + g12sol)(*gauge y-direc.*)eich2[g12known , g12sol ]:=(−(g12known) + g12sol) + g12sol ∗ (−g12known + g12sol)(*gauge y-direc.*)eich2[g12known , g12sol ]:=(−(g12known) + g12sol) + g12sol ∗ (−g12known + g12sol)(*gauge y-direc.*)

(*(1, 1)*)(*(1, 1)*)(*(1, 1)*)

g12fora11 = Solve[eich1[1, g12sol]==eich2[1, g12sol], g12sol]g12fora11 = Solve[eich1[1, g12sol]==eich2[1, g12sol], g12sol]g12fora11 = Solve[eich1[1, g12sol]==eich2[1, g12sol], g12sol]

{{g12sol → 1}}
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(*points where boundary condition is needed (2,3) and (3,2)*)(*points where boundary condition is needed (2,3) and (3,2)*)(*points where boundary condition is needed (2,3) and (3,2)*)

(*(2, 3)*)(*(2, 3)*)(*(2, 3)*)

g12fora23 = Solve[eich1[−1, g12sol]==eich2[1, g12sol], g12sol]g12fora23 = Solve[eich1[−1, g12sol]==eich2[1, g12sol], g12sol]g12fora23 = Solve[eich1[−1, g12sol]==eich2[1, g12sol], g12sol]

{{}}

(*Placeholder Matrix to solve the following*)(*Placeholder Matrix to solve the following*)(*Placeholder Matrix to solve the following*)

save = {{1, x}, {x,−1}}save = {{1, x}, {x,−1}}save = {{1, x}, {x,−1}}

save//MatrixFormsave//MatrixFormsave//MatrixForm

{{1, x}, {x,−1}}






1 x

x −1







(*there the gauge does not help because every number fulfills it, trying it with invertion condition*)(*there the gauge does not help because every number fulfills it, trying it with invertion condition*)(*there the gauge does not help because every number fulfills it, trying it with invertion condition*)

g12fora23Invertion = Solve[Dot[save, Inverse[save]]=={{1, 0}, {0, 1}}, x]g12fora23Invertion = Solve[Dot[save, Inverse[save]]=={{1, 0}, {0, 1}}, x]g12fora23Invertion = Solve[Dot[save, Inverse[save]]=={{1, 0}, {0, 1}}, x]

{{}}

(*Inverse condition not working - calculation will be done through gauge from (2,2)*)(*Inverse condition not working - calculation will be done through gauge from (2,2)*)(*Inverse condition not working - calculation will be done through gauge from (2,2)*)

(*(3, 2)*)(*(3, 2)*)(*(3, 2)*)

g12fora32 = Solve[eich1[1, g12sol]==eich2[−1, g12sol], g12sol]g12fora32 = Solve[eich1[1, g12sol]==eich2[−1, g12sol], g12sol]g12fora32 = Solve[eich1[1, g12sol]==eich2[−1, g12sol], g12sol]
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{{g12sol → 0}}

(*Creating two paths to determine g12(2,2) together with the proper time*)(*Creating two paths to determine g12(2,2) together with the proper time*)(*Creating two paths to determine g12(2,2) together with the proper time*)

propertime[g11 , g12 , g22 , z ]:=propertime[g11 , g12 , g22 , z ]:=propertime[g11 , g12 , g22 , z ]:=

(−g11 ∗D[z[[1]], lambda] ∗D[z[[1]], lambda]− 2 ∗ g12 ∗D[z[[1]], lambda] ∗D[z[[2]], lambda](−g11 ∗D[z[[1]], lambda] ∗D[z[[1]], lambda]− 2 ∗ g12 ∗D[z[[1]], lambda] ∗D[z[[2]], lambda](−g11 ∗D[z[[1]], lambda] ∗D[z[[1]], lambda]− 2 ∗ g12 ∗D[z[[1]], lambda] ∗D[z[[2]], lambda]

−g22 ∗D[z[[2]], lambda] ∗D[z[[2]], lambda])∧(0.5)−g22 ∗D[z[[2]], lambda] ∗D[z[[2]], lambda])∧(0.5)−g22 ∗D[z[[2]], lambda] ∗D[z[[2]], lambda])∧(0.5)

(*Path1 : (2, 1)->(1, 2)->(1, 3)*)(*Path1 : (2, 1)->(1, 2)->(1, 3)*)(*Path1 : (2, 1)->(1, 2)->(1, 3)*)

firstPath1 = {2− lambda, 1 + lambda}firstPath1 = {2− lambda, 1 + lambda}firstPath1 = {2− lambda, 1 + lambda}

firstPath2 = {1, 1 + lambda}firstPath2 = {1, 1 + lambda}firstPath2 = {1, 1 + lambda}

{2− lambda, 1 + lambda}

{1, 1 + lambda}

timePath1 = 0.5 ∗ (Integrate[propertime[1, 1,−1, firstPath1], {lambda, 0, 1}]timePath1 = 0.5 ∗ (Integrate[propertime[1, 1,−1, firstPath1], {lambda, 0, 1}]timePath1 = 0.5 ∗ (Integrate[propertime[1, 1,−1, firstPath1], {lambda, 0, 1}]

+Integrate[propertime[1, 1,−1, firstPath2], {lambda, 1, 2}])+Integrate[propertime[1, 1,−1, firstPath2], {lambda, 1, 2}])+Integrate[propertime[1, 1,−1, firstPath2], {lambda, 1, 2}])

1.20711

(*Path2 : (2, 1)->(2, 2)->(1, 3)*)(*Path2 : (2, 1)->(2, 2)->(1, 3)*)(*Path2 : (2, 1)->(2, 2)->(1, 3)*)

(*Calculating the metricelement g12 of (2,2)*)(*Calculating the metricelement g12 of (2,2)*)(*Calculating the metricelement g12 of (2,2)*)

secondPath1 = {2, 1 + lambda}secondPath1 = {2, 1 + lambda}secondPath1 = {2, 1 + lambda}

secondPath2 = {3− lambda, 1 + lambda}secondPath2 = {3− lambda, 1 + lambda}secondPath2 = {3− lambda, 1 + lambda}

{2, 1 + lambda}
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{3− lambda, 1 + lambda}

g12fora22 =g12fora22 =g12fora22 =

Solve[Solve[Solve[

timePath1==0.5 ∗ (Integrate[propertime[1, 1,−1, secondPath1], {lambda, 0, 1}timePath1==0.5 ∗ (Integrate[propertime[1, 1,−1, secondPath1], {lambda, 0, 1}timePath1==0.5 ∗ (Integrate[propertime[1, 1,−1, secondPath1], {lambda, 0, 1}]

+Integrate[propertime[1, g12,−1, secondPath2], {lambda, 1, 2}]),+Integrate[propertime[1, g12,−1, secondPath2], {lambda, 1, 2}]),+Integrate[propertime[1, g12,−1, secondPath2], {lambda, 1, 2}]),

g12]g12]g12]

{{g12 → 1.}}

(*Listing every metric in the grid*)(*Listing every metric in the grid*)(*Listing every metric in the grid*)

(*g(1, 1) = g(2, 1) = g(1, 2) = g(1, 3) = g(2, 2) = g(3, 1) = {{1, 1}, {1,−1}},(*g(1, 1) = g(2, 1) = g(1, 2) = g(1, 3) = g(2, 2) = g(3, 1) = {{1, 1}, {1,−1}},(*g(1, 1) = g(2, 1) = g(1, 2) = g(1, 3) = g(2, 2) = g(3, 1) = {{1, 1}, {1,−1}},

g(3, 2) = g(2, 3) = {{1, 0}, {0,−1}},g(3, 2) = g(2, 3) = {{1, 0}, {0,−1}},g(3, 2) = g(2, 3) = {{1, 0}, {0,−1}},

g(3, 3) = {{1,−1}, {−1,−1}}*)g(3, 3) = {{1,−1}, {−1,−1}}*)g(3, 3) = {{1,−1}, {−1,−1}}*)
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