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1 Introduction
The discovery of the Higgs boson at the Large Hadron Collider (LHC) marked
a major milestone in particle physics and provided decisive experimental con-
firmation of the mechanism responsible for the electroweak symmetry breaking
and therefore the origin of the masses of the electroweak gauge bosons. After
the Higgs discovery, the interest naturally shifted toward its interaction with
the electroweak gauge bosons, making electroweak processes the center of many
analyses. Among these, the production of ZZ pairs in proton-proton collisions
emerged as particularly valuable because the resulting four-lepton final state
can be reconstructed with remarkable precision and excellent kinematic resolu-
tion, which encodes detailed information about the structure of the underlying
scattering amplitudes, including their angular distributions.

These angular dependencies are described by partial-wave expansion. In
the case of azimuthal symmetry, which applies in this thesis, the scattering
amplitude can be expressed in Legendre polynomials with complex coefficients.
Reconstructing these coefficients from simulated or experimental data provides
a way to probe the underlying dynamics beyond simple shape comparisons and
enables access to amplitude-level information.

This thesis focuses on analyzing the angular distribution of the pp → ZZ →
4` process through the polar angle θ of one Z boson in the ZZ center-of-mass
frame. The distribution is expanded in a Legendre basis and the corresponding
complex partial-wave amplitudes are obtained via pseudo-experiments and non-
linear fitting.

The simulated data used in this thesis was produced with the Herwig 7
framework, where only the dominant continuum subprocess qq̄ → ZZ is simu-
lated, while the loop-induced Higgs contributions are omitted. Because of this
limitation, this thesis should be seen as a proof-of-concept study of whether
partial-wave methods can extract amplitude and phase information from a fi-
nite simulated sample and whether the approach is stable enough to be used in
more complete future analyses.
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2 Theoretical Foundations
2.1 The Standard Model
The Standard Model (SM) of particle physics is a gauge theory and describes the
strong force with quantum chromodynamics and the weak and electromagnetic
forces via the unified electroweak force [1]. The SM can be described by the
product group

SU(3)C × SU(2)L × U(1)Y

where the strong interaction is described by SU(3)C and the electroweak inter-
actions by the SU(2)L × U(1)Y sector.

Gluons are the gauge bosons of the strong force and therefore the SU(3)C
group, they are already physical particles, whereas the gauge bosons of the
electroweak force W 1,W 2 and W 3 of the SU(2)L group and B of the U(1)Y
group are not. They combine into the photon γ, the neutral Z and the charged
W±. In addition to the gauge bosons mediating these forces, the SM also
contains the fundamental fermions. These are arranged in three generations
of quarks and three generations of leptons, which differ by their masses and
quantum numbers.

2.2 Higgs Mechanism
In a pure gauge theory, gauge bosons are massless but the Z and W± bosons
are found to be massive particles. This is explained with the Higgs mechanism
[1] which introduces a scalar doublet with two complex components, governed
by a Mexican hat potential

V (H) = −µ2|H|2 + λ|H|4,

which leads to a nonzero vacuum expectation value (VEV) that breaks the
SU(2)L × U(1)Y symmetry of the electroweak force down to the subgroup
U(1)EM since the charge operator

Q = T3 +
1
2Y

leaves the VEV invariant. Therefore the photon, the gauge boson of the electric
charge and the unbroken subgroup U(1)EM , stays massless, while the W± and
Z bosons acquire mass through their interaction with the VEV.

When a continuous symmetry is spontaneously broken, massless scalar Gold-
stone bosons appear. Since the Higgs field has two complex components there
are four real degrees of freedom. The three angular directions correspond to
three Goldstone bosons, which become longitudinal components of the W± and
Z bosons, whereas the radial fluctuation corresponds to a massive scalar parti-
cle, the Higgs.

After symmetry breaking the Higgs field can be written as fluctuation around
the VEV:
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H(x)= 1√
2

(
0

v + h(x)

)
where v ≈ 246 GeV is the VEV and h(x) the physical Higgs boson.

The fluctuation term h(x) generates a coupling between the Higgs boson
and a pair of W or Z bosons. Thus, information about the Higgs boson can be
extracted from processes involving W and Z pairs.

2.3 Scattering
Interactions between fundamental particles can be studied through scattering
processes. When two particles collide they may exchange momentum and quan-
tum numbers, resulting in a set of final-state particles. The underlying interac-
tion is described by the scattering amplitude M, while experimentally accessible
quantities are cross sections. The differential cross section is in general given by

dσ

dΩ
=

1

64π2s

|~pf |
|~pi|

|M|2,

where s is the center-of-mass energy squared and ~pi,f denote the initial- and
final-state three-momenta. Since this thesis focuses on angular distributions,
the angle-independent prefactor can be omitted, leaving

dσ
dΩ ∝ |M|2,

which describes the angular distribution of the outgoing particles.

2.4 Feynman diagrams and off-shell particles
Those scattering processes can be represented by Feynman diagrams, as shown
in Fig. 1. External lines correspond to physical initial- and final-state particles,
while internal lines represent intermediate propagators, which in general do not
need to satisfy the classical mass-shell relation E2 = p2+m2 of real particles. If
their squared invariant mass differs from their physical pole mass, they are said
to be off-shell (virtual) particles. Such particles cannot be observed directly,
but their presence can be inferred from distortions in measurable distributions
like the differential cross section (see Sec. 2.6 and Eq. 1).

2.5 Subprocesses in pp → ZZ → 4`

The Higgs couplings to electroweak gauge bosons, as discussed in Sec. 2.2, en-
able decay channels that can be probed in proton-proton collisions. Of special
interest is the pp → ZZ → 4` channel. This channel inherits the contributions
from three subprocesses:
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• quark-antiquark annihilation qq̄ → ZZ → 4`

• gluon fusion via Higgs gg → H∗ → ZZ → 4`

• gluon fusion via quark-box diagrams gg → ZZ → 4`

Representative Feynman diagrams for these processes are shown in Fig. 1.
Together they define the leading SM contributions to the four-lepton final state:
a Higgs-mediated signal, an interfering gluon-induced background from box di-
agrams and a non-interfering irreducible background from the quark-antiquark
annihilation, due to different initial states [2].

In this thesis, the 4` final state was implemented as e+e−µ+µ−. This choice
avoids same-flavor ambiguities and provides a fully reconstructible four-lepton fi-
nal state with excellent mass resolution and a small, smooth background, making
it ideally suited for precision studies. For this reason, the channel H → ZZ → 4`
is often referred to as the golden channel of Higgs physics [3].

Whereas in the on-shell region close to the Higgs pole mZZ ' 125 GeV
the interference between the gluon-induced subprocesses is negligible due to the
dominance of the Higgs resonance [4], in the off-shell region mZZ � 125 GeV
the Higgs-mediated and continuum amplitudes are of comparable size, giving
rise to sizeable destructive interference effects [5] thereby modifying the kine-
matic distribution of the final states, in particular its angular distribution. Since
this thesis is conceived as a proof-of-concept study, only the continuum back-
ground subprocess qq̄ → ZZ → 4` is simulated. This restriction is justified
because the relative contribution of the gluon-induced subprocesses would be
small compared to the statistical uncertainties of the limited event sample used
in this study.

q

q̄

Z

Z

e+

e−

µ+

µ−

(a) Continuum background: qq̄ → ZZ.

g

g

H∗

Z

Z

e−

e+

µ−

µ+

(b) Higgs signal: gg → H∗ → ZZ.

g

g

Z

Z

e+

e−

µ+

µ−

(c) Gluon–fusion background:
gg → ZZ.

Figure 1: Representative Feynman diagrams contributing to pp → ZZ →
e+e−µ+µ−.
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2.6 Angular variables and Lorentz boost
The kinematics of the four-lepton final states can be fully described by eight
independent variables, typically chosen as the two dilepton invariant masses
mµ+µ− , me+e− together with six angular variables describing the angular dis-
tribution. These angles consist of the polar and azimuthal orientation (θ∗, φ∗)
of one Z boson in the ZZ center-of-mass (CM) frame, as well as the polar and
azimuthal angles (θ1, φ1) and (θ2, φ2) of the decay leptons in their respective Z
boson CM frame [6].
In this thesis, only a single polar angle is analyzed: the angle θ∗ of one Z boson
with respect to the beam axis in the ZZ CM frame. Since the two Z bosons
are produced back-to-back in this frame, the angle of the second Z boson does
not provide independent information and can therefore be omitted. The angle
is defined in the range 0 ≤ θ ≤ π, with the interval 0 ≤ θ < π

2 corresponding to
the forward hemisphere and π

2 < θ ≤ π to the backward hemisphere. In case of
forward-backward symmetry, which applies in this thesis, the angular distribu-
tion can be folded into the forward hemisphere without loss of information.
In experimental analyses this angle, as well as the invariant mass of the ZZ
system mZZ , would be reconstructed from the momenta of the dilepton decay
products. In the present simulation, however, both quantities can be accessed
directly at the Z-boson level.
To evaluate the polar angle θ∗ the system is boosted into the ZZ CM frame
by applying a Lorentz transformation along the momentum of the ZZ system,
~pZZ , thereby bringing the two Z bosons into the back-to-back configuration.
The corresponding boost velocity is ~β = ~pZZ

EZZ
with Lorentz factor γ = 1√

1−|~β|2
.

This transformation removes the overall momentum of the ZZ system while
preserving invariant quantities such as its mass which now equals the overall
energy of the system mZZ =

√
s = EZZ . This provides a well-defined frame in

which to measure the polar angle θ∗ relative to the beam axis.
A purely scalar Higgs boson would produce an isotropic θ∗ distribution in

the ZZ CM frame, whereas the continuum background generates richer angular
structures. When both contributions are present, their interference does not
simply add the two shapes but introduces additional angular information, lead-
ing to characteristic distortions such as forward-backward asymmetries.
This additional information from the angular structure arises from the inter-
ference of the gg → ZZ amplitudes in the cross section. The total amplitude
for gg → ZZ is the sum of the Higgs-mediated signal contribution MS and
the continuum background MB . The observable differential cross section is
proportional to the squared modulus of this total amplitude.

dσ

dΩ
∝ |M|2 = |MS +MB |2 = |MS |2 + |MB |2 + 2 Re(MSM∗

B) (1)

[7]. Here, the first two terms correspond purely to the signal and the background
rates, while the third term represents the interference between them. This
interference term modifies the angular distribution and thus provides access to
additional information on the Higgs boson couplings.

7



2.7 Partial wave expansion and Legendre polynomials
Angular dependencies in scattering amplitudes can be described by partial waves
[8]. Therefore the amplitude is expanded in spherical harmonics,

M(θ, φ) =
∞∑
`=0

∑̀
m=−`

a`m Y`m(θ, φ),

where the complex coefficient a`m is the partial-wave amplitude and corresponds
to the contribution of each angular momentum mode. For azimuthal symmetric
processes only m = 0 contributes and the spherical harmonic reduces to

Y`0(θ, φ) =

√
2`+ 1

4π
P`(cos θ).

When used to express the amplitude, the normalization gets absorbed by the
definition of the partial-wave coefficient a` and the amplitude can be written as

M(cos θ) =

∞∑
`=0

(2`+ 1) a` P`(cos θ).

The Legendre polynomials P`(cos θ) form a complete orthogonal basis on the
interval −1 ≤ cos θ ≤ 1∫ 1

−1

P`(x)P`′(x) dx =
2

2`+ 1
δ``′ ,

Describing the observable differential cross section leads naturally into a double
sum over products of Legendre polynomials

dσ

dΩ
∝

∣∣M(cos θ)
∣∣2 =

∑
`

∑
`′

(2`+ 1)(2`′ + 1) a`a
∗
`′ P`(cos θ)P`′(cos θ) (2)

which can be re-expressed as a single Legendre series by means of addition
theorems,

P`(cos θ)P`′(cos θ) =

`+`′∑
L=0

C``′L PL(cos θ), (3)

so that

dσ

dΩ
∝

∞∑
L=0

bL PL(cos θ), bL =
∑
`,`′

(2`+ 1)(2`′ + 1) a`a
∗
`′ C``′L. (4)

In practice, the coefficients bL can be obtained by fitting the angular distri-
bution from simulated events to a Legendre series. From these coefficients, the
partial-wave amplitudes a` can be reconstructed by solving the corresponding
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system of equations. In this thesis, however, the partial-wave amplitudes are ex-
tracted by fitting them to discrete evaluation points of the Legendre expansion
N∑

L=0

bL PL(cos θ) obtained in the first step. This indirect approach introduces

an additional source of uncertainty, since the partial-wave amplitudes are no
longer fitted directly to the data. In addition, the limited event statistics can
lead to fluctuations that obscure higher-order terms and destabilize the phase
reconstruction.

As bL is a derived quantity the underlying physical information still resides
in the complex partial wave-amplitude a`.

Since the angular distribution in this thesis is forward-backward symmetric
and can be folded as discussed in Sec. 2.6, this symmetry

dσ

dΩ
(cos θ) =

dσ

dΩ
(− cos θ),

and the fact that Legendre polynomials obey

P`(−x) = (−1)`P`(x)

leads to the elimination of all odd partial waves, so that a` = 0 for odd `. This is
consistent with the physical interpretation: the isotropic s-wave corresponding
to ` = 0 remains as the leading contribution, while the p-wave corresponding to
` = 1, which would generate forward-backward asymmetry, vanishes.

The partial-wave amplitude a` can also be expressed in polar form as

a` = r`e
iφ`

where r` corresponds to the magnitude of the partial wave amplitude and φ`

represents the phase.

2.8 Phase shifts
The phases φ` represent the relative phase shifts between the different par-
tial waves and therefore quantify how much the outgoing waves are delayed or
advanced with respect to free propagation due to the interaction. While the ab-
solute phases δ` are not directly observable, their relative differences ∆φ`m are,
which encode physical information about the interference of different angular
momentum contributions.
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3 Simulation & Data Analysis Methods
3.1 Event Generation
The simulated data used in this thesis were generated with Herwig 7.2.2 [9–46]

event generator, a general-purpose Monte Carlo generator for high-energy
collisions. It combines matrix element calculations with parton-shower evolution
and non-perturbative models.

Event generation employed the Matchbox framework with the
LHC-Matchbox.in template. This template is configured for proton-proton col-
lisions for LHC conditions, with appropriate beam setup and PDF handling.

Collisions were simulated at a center-of-mass energy of
√
s = 13 TeV for

the process pp → e+e− µ+µ−. Matrix elements were provided through the
MadGraph–OpenLoops interface. The calculation was performed at leading
order in the electroweak coupling (O(α4

EW)) with no QCD corrections (O(α0
s)),

thus including only the qq̄-initiated channel. The loop-induced gg → ZZ contri-
bution and interference were not considered here as stated earlier. Parton dis-
tribution functions were taken from the CT14 set in the five-flavor scheme. The
lepton-pair mass scale was used as a dynamical choice for the factorization
and renormalization scales. Events were showered using the MC@LO default
shower setup. Both dilepton pairs were required to satisfy 60 < m`` < 120 GeV
(via ChargedLeptonPairMassCut) to select Z-boson candidates. The full input
file used for this setup is provided in App. D.1.

A total of 10000 events were generated with no explicit random seed set and
saved in HepMC format.

3.2 Rivet Analysis
The generated events were then analyzed using the Rivet framework, based on
a modified version of the the standard MC_ZZINC analysis.

The two ZFinders for e+e− and µ+µ− with their standard selection (pT >
25 GeV, |η| < 3.5, 65 < m`` < 115 GeV, photon recombination ∆R = 0.2)
are retained. The ZZ system is reconstructed and the folded polar angle
θfold = arccos(| cos θ∗|) of the Zµ+µ− candidate with respect to the beam axis
is evaluated in the ZZ rest frame and filled in three mZZ intervals ([160,190],
[195,225] and [230,260] GeV) with 15 bins between 0 and π

2 . An inclusive mZZ

spectrum is also produced. All histograms are normalized using the standard
Rivet cross-section scaling. The histograms were saved as YODA files and
converted to .dat tables for further post-processing. The corresponding Her-
wig 7.2.2 distributions are provided in App. B, App. C. The corresponding
analysis file is provided in App. D.2.

It should be noted that the lowest mass window mZZ ∈ [160, 190] GeV
lies partially below the on-shell threshold for a physical ZZ system (2mZ ≈
182 GeV). While the two ZFinders select dilepton pairs within 65 < m`` <
115 GeV, such that the reconstructed bosons individually satisfy the Z-window
cuts, their combination does not guarantee an on-shell ZZ state.
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3.3 Data post-processing and fitting
3.3.1 Data preparation

For post-processing, the .dat files were loaded into a Python script. The total
cross section was obtained by integrating the differential distribution using a
bin-wise Riemann sum σ =

∑
i

dσ
dX i

∆Xi and used for normalization. The angle
θ for each bin was taken as the bin θi =

1
2 (xlow,i + xhigh,i). Since the statistical

uncertainties are symmetric δ−,i = δ+,i, a single symmetric uncertainty was
used in the further script as error in both directions δ±,i = δ−,i .

3.3.2 Legendre-coefficient fit

Candidate Legendre expansions
N∑

L=0

bLPL(cos θ) with even degrees N (due to

folding) were tested.
For each mZZ interval, the coefficients bL were obtained by solving a weighted

linear least-squares problem. The design matrix Vi,L = PL(cos θi) was con-
structed from the bin centers θi, and statistical uncertainties σi were incorpo-
rated as weights wi = 1/σ2

i . The coefficients minimize

χ2 =
∑
i

wi

[
yi −

N∑
L=0

bLPL(cos θi)
]2
,

which is equivalent to solving the normal equations (V TWV )b = V TWy. The
system was solved using numpy.linalg.solve, with a pseudoinverse fallback
for near-singular cases. The covariance matrix of the fitted coefficients is then
given by Cb = (V TWV )−1 and will be used in Sec. 3.3.4.

Fit quality was assessed using the reduced chi-squared (χ2
red) and the mean

value χ̄2
red over all mZZ intervals for each polynomial degree N . The resulting

mean values are summarized in Tab. 1.

Table 1: Average reduced chi-squared values χ̄2
red across the three mZZ intervals

for different maximal Legendre degrees N .

N χ̄2
red

4 7.36
6 2.72
8 1.74
10 1.62

Although the lowest χ̄2
red occurred at N = 10, the corresponding fits showed

signs of overfitting, as can be seen in figure 2. Therefore, N = 8 was chosen as
the optimal compromise between goodness of fit and model stability and was
used across all mZZ intervals to ensure comparability. Additional fits for all
tested degrees and mZZ intervals are provided in App. A.
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Figure 2: Legendre fits with different maximal degrees N to the angular distri-
bution in the mZZ ∈ [230,260] GeV interval. Reduced chi-squared values χ2

red

are indicated in each panel.
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3.3.3 Pseudo data generation

Since |M|2 is modeled as a double Legendre series and fitted in terms of the coef-
ficients bL, uncertainties were propagated via Monte-Carlo pseudo-experiments
rather than analytically. A total of 300 pseudo-experiments were performed.

For each pseudo-experiment t, a coefficient vector was drawn from a multi-
variate normal distribution N (µ,Σ) with mean b̂ equal to the best-fit Legendre
coefficients bL and the covariance Cb given by their fitted symmetrized covari-
ance matrix (for numerical stability),

b(t) ∼ N
(
b̂, Cb

)
, b̂ = (b̂0, . . . , b̂N ).

Each pseudo-experiment was evaluated on a grid of K = 50 equidistant points
covering the data range {θk}Kk=1:

y(t)(θk) =

N∑
L=0

b
(t)
L PL(cos θk)

3.3.4 Amplitude fit

The pseudo-experiment spectra were fitted with the amplitude model y(θ) ≈

|
N=8∑̀
=0

a`P`(cos θ)|2 as defined in Eq. 2, where the (2` + 1) terms are absorbed

into the complex coefficients a`. The coefficients a` were parameterized in polar
form a` = r`e

iφ` . To ensure comparability a maximal degree of N = 8 was used
again in all mZZ intervals.

The fit was again performed by minimizing a weighted least-squares objective

χ2 =

K∑
k=1

wk

[
y(t)(θk)−

∣∣ N∑
`=0

a`P`(cos θk)
∣∣2]2,

where the weights wk = 1
σ2
k

and σk are the per-point uncertainties propagated
from the Legendre-coefficient covariance Cb via Cy = V Cb V

T (diagonal ap-
proximation), such that σk =

√
(Cy)kk.

Bound constraints r` ≥ 0 and φ` ∈ [−π, π] were imposed and the global phase
was fixed (φ0 = 0). To mitigate convergence to local minima, each pseudo-
experiment was fitted ten times with random initializations generated using
NumPy’s default_rng (PCG64) with a fixed seed for reproducibility, and the
solution with the lowest chi-squared (χ2) was retained.

The uncertainty band is obtained from the ensemble of fitted amplitude
curves: at each angle θ the central prediction is the median over the retained
pseudo-experiment curves and the shaded band shows the pointwise central 68%
interval. For plotting, the curves are evaluated on a dense grid across the data
range as can be seen in Fig. 3.
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Figure 3: Fit of the amplitude model |
∑8

`=0a`P`(cos θ)|2 to pseudo-data in the
mZZ ∈ [230, 260] GeV interval.

3.3.5 Phase distributions

To obtain a meaningful phase shift distribution, the φs samples are filtered.
Only phase samples φs,` associated with sufficiently large amplitudes rs,` are
retained, thereby suppressing random fluctuations in regions of low amplitude.
For each multipole `, the median amplitude rmed,` is calculated and only phase
values φs,` with corresponding amplitudes rs,` ≥ 0.05 · rmed,` are retained.

The circular mean for each phase shift distribution is calculated and visual-
ized in a rose plot together with the corresponding distribution of the relevant
even phases. Additionally, the shortest 68% arc around the mean is indicated
as can be seen in Fig. 4. The zero phase is excluded, as it is fixed to zero by
definition and does not carry physical meaning.
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Figure 4: Phase distributions φ` of the complex coefficients a` = r`e
iφ` obtained

from the ensemble of pseudo-experiment fits in the mZZ ∈ [230, 260] GeV in-
terval. For each multipole, circular mean φ̄, central 68% interval width ∆φ68,
one-sided deviations δ± (all expressed in units of π) and the number of retained
phase samples n, are indicated.
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4 Results
4.1 Angular Distributions
To study the shape evolution of the angular distribution, the raw data seen in
Fig. 5 is examined alongside the normalized spectra presented in Figs. 6, 7 and
8 in the next subsection.

The raw distributions primarily illustrate the relative population of the three
mass windows. As expected from the mass distribution shown in App. B, most
events lie in the intermediate mass window (mZZ ∈ [195, 225] GeV) while the
higher mass window (mZZ ∈ [230, 260] GeV) contains fewer events and the
lowest mass window (mZZ ∈ [160, 190] GeV) receives only a very small fraction
of the total sample. The low population in the lowest mass window is expected
because the mass window lies only partially in the on-shell ZZ region. The
physical cross section is small and the off-shell configurations that populate
the sub-threshold region are also rare. Therefore, the statistics in this region
are strongly limited. Consequently the lowest mass window appears mostly
structureless.

Figure 5: Raw θ distributions in the three mZZ intervals.

After normalization the lowest mass window shows a largely uniform and
slightly noisy distribution that saturates quickly at small angles, with a small,
broader enhancement at around 0.6 rad that introduces a modest amount of
structure.
In contrast, the second and third mass windows seem to follow a continuous
evolution: as the invariant mass increases, the narrow enhancement observed
near 0.4 rad broadens into a wider plateau. At the same time, the lower plateau
at larger angles shifts its center slightly from 1.1 rad to around 0.9 rad and the
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small rise at 1.4 rad develops into a secondary, lower peak.
Since the statistical precision varies across the three mass windows, the in-

termediate mZZ range exhibits the smallest uncertainties after normalization,
whereas the lowest mass window shows larger uncertainties.

4.2 Fitted Amplitudes and Uncertainty Bands
Although a physical interpretation of the fitted amplitudes is not possible in this
setup, it can be assessed how well the method describes the angular distribution
and whether the amplitude and phase extraction in the following section behave
reliably.

The fitted amplitude model is compared with the normalized angular data in
Figs. 6, 7 and 8. The blue curves represent the median of the fitted amplitudes,
while the shaded regions indicate the 68% uncertainty bands derived from the
ensemble of pseudo-experiments.

In the lowest mass window (mZZ ∈ [160, 190] GeV), the agreement between
data and fit is limited by large statistical fluctuations due to limited statistics.
Only one of the three bins forming the central enhancement lies close to the
median fit, while the remaining two fall outside the uncertainty band, with
only parts of their negative uncertainties overlapping. The remaining points
lie mostly within the band or are at least consistent within their uncertainties.
The fit follows the general trend but shows oscillations at larger angles that
likely arise from statistical noise and overfitting. The overall width of the band
is large, reflecting the low statistics and weak angular structure in this mass
region.

Figure 6: Normalized angular distribution for events in the mass interval mZZ ∈
[160, 190] GeV.
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The fit in the intermediate mass window (mZZ ∈ [195, 225] GeV) describes
the data considerably better, except for the first two bins, which deviate with
their uncertainties from the band. Most of the other points lie within the small
68% region. The general structure with the peak, the steady decline to the lower
plateau and the small rise at the end is therefore clearly visible in the fit. In
this mass window, the band is narrow during the steep rise but widens at the
peak and again at the plateau, roughly matching the size of the experimental
errors. The overall description of the structure is good, although slight bumps
during the descent to the plateau and within may indicate minor overfitting to
statistical fluctuations.

Figure 7: Normalized angular distribution for events in the mass interval mZZ ∈
[195, 225] GeV.
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In the highest mass window (mZZ ∈ [230, 260] GeV) the first two bins again
deviate with their uncertainties from the uncertainty band as well as the fourth
bin at the peak. The remaining bins lie within the 68% region, many close to
the median fit. The band broadens again at the peak and from the plateau
onward, roughly matching the sizes of the experimental errors. The rise toward
the second, smaller peak is also captured well.

Figure 8: Normalized angular distribution for events in the mass interval mZZ ∈
[230, 260] GeV.

Since the fits originate from Monte Carlo simulations, no χ2 values are re-
ported. Instead, the fit quality is assessed visually through the 68% uncertainty
bands. These bands reproduce the overall shapes within statistical fluctuations,
and their close correspondence to the experimental error bars in some regions
indicates that the fits correctly reflect the statistical precision of the underlying
data.

4.3 Phase Shift Distributions
The extracted phase shift distributions for the even φ values are shown in Figs. 9,
10 and 11.

In the lowest mass window (mZZ ∈ [160, 190] GeV) the phase distributions
for φ6 and φ8 are sharply peaked and well-aligned around 2π with very small
peaks in the angle at opposing direction at π. The distribution for φ4 shows a
sharp well aligned peak at π. Whereas the φ2 distribution shows a strong peak
at 2π and a notable peak at π with some noise in other directions. This slightly
bimodal shape of the φ2 distribution likely originates from its higher sensitivity
to small anisotropies in the angular spectrum, such as the enhancement visible
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around 0.6 rad in Fig. 6. In addition, the intrinsic 2π-periodicity of the phase
leads to numerically equivalent solutions separated by π, causing the peaks at
opposite angles and producing the unusually broad 68% interval in the φ2 rose
plot. Since in nearly flat angular distributions only the lowest partial waves
contribute appreciably, while higher-order waves are strongly suppressed, the
distributions of φ6 and φ8 are likely aligned by chance. Their phases are dom-
inated by statistical noise due to the absence of pronounced angular structure
and tend to align due to numerical minimization symmetry.

Figure 9: Phase distributions of the extracted partial-wave phases φ` for events
in the mass interval mZZ ∈ [160, 190] GeV. For each distribution, the circular
mean φ̄, the width of the 68% interval ∆φ68, its positive and negative deviations
from the circular mean δ± and the population n are indicated.
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At intermediate mass range (mZZ ∈ [195, 225] GeV), the phase distributions
broaden significantly, with the 68% intervals now covering nearly half of the
possible phase range for each component. All distributions still show a clear
tendency to cluster around π or 2π, with noticeable lower population at the
opposing direction, suggesting that partial coherence among the components is
still maintained.

Figure 10: Phase distributions of the extracted partial-wave phases φ` for events
in the mass interval mZZ ∈ [195, 225] GeV. For each distribution, the circular
mean φ̄, the width of the 68% interval ∆φ68, its positive and negative deviations
from the circular mean δ± and the population n are indicated.
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In the heavy mass range (mZZ ∈ [230, 260] GeV), the phase distributions
continue to broaden, with the 68% intervals now covering more than half of the
possible phase range. Only the φ6 and φ8 distributions retain circular means
near π and 2π, respectively While the φ8 distribution shows a clear trend toward
its circular mean at π, the other distributions exhibit pronounced peaks at
additional phase angles besides its circular mean. This and the broadening of
the 68% region from the intermediate to the highest mass window indicates
a transition from a partially coherent phase structure to a regime dominated
by stronger interference among multiple contributing partial waves within the
fitted model.

Figure 11: Phase distributions of the extracted partial-wave phases φ` for events
in the mass interval mZZ ∈ [230, 260] GeV. For each distribution, the circular
mean φ̄, the width of the 68% interval ∆φ68, its positive and negative deviations
from the circular mean δ± and the population n are indicated.
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The circular means across the mass windows show an overall consistency
of phase orientations with a gradual reduction in coherence at higher invariant
masses. In the two lower mZZ intervals only φ8 shifts from alignment at 2π in
the lowest mass window to π in the intermediate one. This is consistent with
the assumption that φ8 does not carry any physical information in the lowest
mass window and becomes partially constrained with the appearance of angular
structure in the second mass window.

In the highest mass window, φ2 and φ4 lose their alignment and exhibit only
circular mean values without dominant directions. This behavior suggests that
the overall phase structure remains largely unchanged, with the onset of phase
decoherence and increasing interference effects of the fitted model appearing at
the highest mZZ values.
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5 Conclusion
The results show that the Legendre-based amplitude parametrization is capable
of describing the evolution of angular distributions with increasing mZZ and of
extracting information on the associated phase shifts. While the lowest mass
window is dominated by statistical fluctuations, the intermediate and highest
windows exhibit clear angular modulations and a continuous evolution that are
well reproduced by the fitted amplitude bands.
The phase distributions demonstrate that the phases are not uniquely deter-
mined: sharp peaks in the lowest mass window arise from fit degeneracies, while
the two higher mass windows produce broader and partly multimodal solutions.
This indicates that the extraction technique alone is not sufficient to provide
unique or well-constrained phase solutions.

Despite these limitations, the method as a whole is sensitive to the emer-
gence of angular structure and is therefore promising for Higgs applications once
the Higgs-induced sub-processes are included and physically meaningful inter-
ference becomes accessible. However, several challenges need to be addressed
before the approach can be reliably applied to real data. The amplitude-level
fit shows numerical instabilities and converges to different phase configurations
depending on initialization. The phase extraction itself requires stabilization
through filtering, regularization or coherence criteria.

Higher statistics would further improve the determination of partial-wave
contributions, particularly in the low-mass region. This could be partially
achieved by balancing out the statistics over the three mass windows. By ad-
justing the window sizes, the sub-threshold region of the lowest mass window
could be excluded and the event populations equalized, leading to more stable
amplitude and phase estimates in that region.

Additionally, the forward-backward folding used in this thesis is appropriate
for the symmetric continuum background but may obscure possible asymmetric
interference effects between the Higgs-induced and continuum processes. Re-
covering the full angular range would therefore be necessary for a realistic Higgs
analysis.

This proof-of-concept thesis therefore provides a first step toward a more
complete phase-based analysis of Higgs-induced processes, motivating further
development and application to realistic datasets.

24



References
[1] Michael E. Peskin and Daniel V. Schroeder. An Introduction to Quantum

Field Theory. Addison-Wesley, 1995. isbn: 978-0-201-50397-5.
[2] Aleksandr Azatov et al. “Taming the off-shell Higgs boson”. In: Zh. Eksp.

Teor. Fiz. 147 (2015), pp. 410–425. doi: 10.1134/S1063776115030140.
arXiv: 1406.6338 [hep-ph].

[3] Hua-Rong He, Xia Wan, and You-Kai Wang. “Anomalous H → ZZ → 4`
decay and its interference effects on gluon–gluon contribution at the LHC”.
In: Chin. Phys. C 44.12 (2020), p. 123101. doi: 10.1088/1674-1137/
abb4c8. arXiv: 1902.04756 [hep-ph].

[4] Fabrizio Caola and Kirill Melnikov. “Constraining the Higgs boson width
with ZZ production at the LHC”. In: Phys. Rev. D 88 (2013), p. 054024.
doi: 10.1103/PhysRevD.88.054024. arXiv: 1307.4935 [hep-ph].

[5] Nikolas Kauer and Giampiero Passarino. “Inadequacy of zero-width ap-
proximation for a light Higgs boson signal”. In: JHEP 08 (2012), p. 116.
doi: 10.1007/JHEP08(2012)116. arXiv: 1206.4803 [hep-ph].

[6] Yi-Song Lu, You-Kai Wang, and Xiang-Yuan You. “Study of HZZ anoma-
lous couplings by angular differential cross sections”. In: (Nov. 2022).
arXiv: 2211.07478 [hep-ph].

[7] Giampiero Passarino. “Higgs Interference Effects in gg → ZZ and their
Uncertainty”. In: JHEP 08 (2012), p. 146. doi: 10.1007/JHEP08(2012)
146. arXiv: 1206.3824 [hep-ph].

[8] R. G. Newton. Scattering Theory of Waves and Particles. 1982.
[9] L. Lönnblad. “ThePEG”. In: Comput. Phys. Commun. 118 (1999), p. 213.

[10] M. Bahr et al. “Herwig Physics and Manual”. In: Eur. Phys. J. C 58
(2008), p. 639. arXiv: 0803.0883 [hep-ph].

[11] G. Marchesini and B. R. Webber. “Simulation Of QCD Jets Including Soft
Gluon Interference”. In: Nucl. Phys. B 238 (1984), p. 1.

[12] G. Marchesini and B. R. Webber. “Monte Carlo Simulation of General
Hard Processes with Coherent QCD Radiation”. In: Nucl. Phys. B 310
(1988), p. 461.

[13] S. Gieseke, P. Stephens, and B. Webber. “New formalism for QCD parton
showers”. In: JHEP 0312 (2003), p. 045. eprint: hep-ph/0310083.

[14] B. R. Webber. “A QCD Model For Jet Fragmentation Including Soft
Gluon Interference”. In: Nucl. Phys. B 238 (1984), p. 492.

[15] P. Richardson. “Spin correlations in Monte Carlo simulations”. In: JHEP
0111 (2001), p. 029. eprint: hep-ph/0110108.

[16] J. Alwall et al. “MadGraph 5: Going Beyond”. In: (2011). arXiv: 1106.
0522 [hep-ph].

25



[17] S. Platzer and S. Gieseke. “Dipole Showers and Automated NLO Matching
in Herwig”. In: (2011). arXiv: 1109.6256 [hep-ph].

[18] Herwig Collaboration. “Precision LHC Event Generation with Herwig”.
In: (2015). In preparation.

[19] M. Sjödahl. “ColorFull: a C++ library for calculations in SU(Nc) color
space”. In: (2014). arXiv: 1412.3967 [hep-ph].

[20] S. M. Flatte. “Coupled-Channel Analysis Near K Kbar Threshold”. In:
Phys. Lett. B 63 (1976), p. 224.

[21] M. Q. Huang et al. In: Phys. Lett. B 502 (2001), p. 133. eprint: hep-
ph/0012114.

[22] R. L. Singleton. “Semileptonic baryon decays with a heavy quark”. In:
Phys. Rev. D 43 (1991), p. 2939.

[23] M. A. Ivanov et al. “Heavy baryon transitions in a relativistic three-quark
model”. In: Phys. Rev. D 56 (1997), p. 348. eprint: hep-ph/9612463.

[24] A. Kupco. “Cluster hadronization in HERWIG 5.9”. In: (1999). eprint:
hep-ph/9906412.

[25] F. Schlumpf. In: Phys. Rev. D 51 (1995), p. 2262. eprint: hep-ph/9409272.
[26] M. Bahr, S. Gieseke, and M. Seymour. “Simulation of multiple partonic

interactions in Herwig”. In: JHEP 0807 (2008), p. 076. eprint: 0803.3633.
[27] M. Bahr et al. “Soft interactions in Herwig”. In: (2009). eprint: 0905.4671.
[28] J. H. Kuhn and A. Santamaria. “Tau decays to pions”. In: Z. Phys. C 48

(1990), p. 445.
[29] G. Gounaris and J. Sakurai. “Finite width corrections to the vector meson

dominance prediction”. In: Phys. Rev. Lett. 21 (1968), p. 244.
[30] D. Asner et al. In: Phys. Rev. D 61 (2000), p. 012002. eprint: hep-ex/

9902022.
[31] H. Y. Cheng and B. Tseng. In: Phys. Rev. D 53 (1996), p. 1457. eprint:

hep-ph/9502391.
[32] H. Y. Cheng. In: Phys. Rev. D 56 (1997), p. 2799. eprint: hep-ph/9612223.
[33] G. Corcella et al. “HERWIG 6.5”. In: JHEP 0101 (2001), p. 010. eprint:

hep-ph/0011363.
[34] B. Borasoy and B. Holstein. In: Phys. Rev. D 60 (1999), p. 054021. eprint:

hep-ph/9905398.
[35] R. Kleiss and W. Stirling. In: Nucl. Phys. B 385 (1992), p. 413.
[36] A. Aloisio et al. In: Phys. Lett. B 561 (2003), p. 55. eprint: hep-ex/

0303016.
[37] N. Beisert and B. Borasoy. In: Nucl. Phys. A 716 (2003), p. 186. eprint:

hep-ph/0301058.
[38] M. Gormley et al. In: Phys. Rev. D 2 (1970), p. 501.

26



[39] W. Tippens et al. In: Phys. Rev. Lett. 87 (2001), p. 192001.
[40] E. P. Venugopal and B. Holstein. In: Phys. Rev. D 57 (1998), p. 4397.

eprint: hep-ph/9710382.
[41] B. Holstein. In: Phys. Scripta T99 (2002), p. 55. eprint: hep-ph/0112150.
[42] J. Korner and M. Kramer. In: Z. Phys. C 55 (1992), p. 659.
[43] B. Borasoy and B. Holstein. In: Phys. Rev. D 59 (1999), p. 094025. eprint:

hep-ph/9902351.
[44] M. A. Ivanov et al. In: Phys. Rev. D 60 (1999), p. 094002. eprint: hep-

ph/9904421.
[45] M. A. Ivanov, J. Korner, and V. E. Lyubovitskij. In: Phys. Lett. B 448

(1999), p. 143. eprint: hep-ph/9811370.
[46] B. Borasoy and B. Holstein. In: Phys. Rev. D 59 (1999), p. 054019. eprint:

hep-ph/9902431.

27



6 Appendix

A Legendre-coefficient fit
For completeness, the full set of Legendre coefficient fits performed for all tested
maximal degrees N = 4, 6, 8, 10 in each of the three mZZ intervals to comple-
ment the discussion in Sec. 3.3.2 and illustrate how the behavior changes with
increasing polynomial order.
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Figure 12: Legendre fits with different maximal degrees N in the low-mass
interval mZZ ∈ [160, 190] GeV. Reduced chi-squared values χ2

red are indicated
in each panel.
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Figure 13: Legendre fits with different maximal degrees N in the mid-mass
interval mZZ ∈ [195, 225] GeV. Reduced chi-squared values χ2

red are indicated
in each panel.
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Figure 14: Legendre fits with different maximal degrees N in the high-mass
interval mZZ ∈ [230, 260] GeV. Reduced chi-squared values χ2

red are indicated
in each panel.
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B Invariant Mass Distribution mZZ

The distribution below shows the invariant mass spectrum of the simulated ZZ
system containing one Z → e+e− and one Z → µ+µ− decay. The histogram
is normalized to the generator cross section using the total number of weighted
events.

Herwig 7.2.2
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Figure 15: Invariant mass distribution of the reconstructed ZZ system in Her-
wig 7.2.2 simulated events.
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C Angular Distributions θZ→µµ

The following figures show the production angle θZ→µµ of the Z → µ+µ− boson,
defined as the angle between the Z → µµ momentum and the incoming beam
direction in the ZZ centre-of-mass frame. The observable is folded to θ ∈ [0, π

2 ]
and normalized to the generator cross section.
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Figure 16: Folded production angle θZ→µµ in the 160 ≤ mZZ < 190 GeV range,
simulated using the continuum background qq̄ → ZZ process in Herwig 7.2.2.
The Z → µµ boson is reconstructed in the ZZ rest frame and the angle is
measured with respect to the beam direction.
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Herwig 7.2.2
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Figure 17: Folded production angle θZ→µµ in the 195 ≤ mZZ < 225 GeV range,
simulated using the continuum background qq̄ → ZZ process in Herwig 7.2.2.
The Z → µµ boson is reconstructed in the ZZ rest frame and the angle is
measured with respect to the beam direction.
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Figure 18: Folded production angle θZ→µµ in the 230 ≤ mZZ ≤ 260 GeV range,
simulated using the continuum background qq̄ → ZZ process in Herwig 7.2.2.
The Z → µµ boson is reconstructed in the ZZ rest frame and the angle is
measured with respect to the beam direction.
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D Herwig Files
D.1 LHC-Matchbox.in

# -*- ThePEG-repository -*-

##################################################
## Herwig/Matchbox input
##################################################

##################################################
## Collider type
##################################################
read snippets/Matchbox.in
read snippets/PPCollider.in

##################################################
## Beam energy √s = 13 TeV
##################################################
cd /Herwig/EventHandlers
set EventHandler:LuminosityFunction:Energy 13000*GeV

##################################################
## Model assumptions
##################################################
read Matchbox/StandardModelLike.in
read Matchbox/DiagonalCKM.in

##################################################
## Process definition (inclusive 4l)
##################################################
cd /Herwig/MatrixElements/Matchbox
set Factory:OrderInAlphaS 0
set Factory:OrderInAlphaEW 4
do Factory:Process p p -> e+ e- mu+ mu-

##################################################
## Matrix element library
##################################################
read Matchbox/MadGraph-OpenLoops.in

##################################################
## Cuts on lepton pairs
##################################################
cd /Herwig/Cuts
set ChargedLeptonPairMassCut:MinMass 60*GeV
set ChargedLeptonPairMassCut:MaxMass 120*GeV

##################################################
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## Scale choice
##################################################
cd /Herwig/MatrixElements/Matchbox
set Factory:ScaleChoice /Herwig/MatrixElements/Matchbox/Scales/

LeptonPairMassScale

##################################################
## Shower setup (LO)
##################################################
read Matchbox/MCatLO-DefaultShower.in

##################################################
## PDF
##################################################
read Matchbox/FiveFlavourScheme.in
read Matchbox/CT14.in

##################################################
## Analyses (Rivet)
##################################################
cd /Herwig/Analysis
insert Rivet:Analyses 0 MC_ZZANG
insert /Herwig/Generators/EventGenerator:AnalysisHandlers 0

Rivet

##################################################
## Build run and save
##################################################
do /Herwig/MatrixElements/Matchbox/Factory:ProductionMode

cd /Herwig/Generators
saverun LHC-Matchbox EventGenerator
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D.2 MC_ZZANG.cc

// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/ZFinder.hh"
#include "Rivet/Projections/VetoedFinalState.hh"

namespace Rivet {

/// @brief Rivet analysis computing the folded polar angle of
Z[mumu] in Z[ee]Z[mumu] events

class MC_ZZANG : public Analysis {
public:

/// Default constructor
MC_ZZANG()

: Analysis("MC_ZZANG")
{ }

/// @name Analysis methods
//@{

/// Book histograms
void init() {

Cut cut = Cuts::abseta < 3.5 && Cuts::pT > 25*GeV;
ZFinder zeefinder(FinalState(), cut, PID::ELECTRON , 65*

GeV, 115*GeV,
0.2, ZFinder::ClusterPhotons::NODECAY,

ZFinder::AddPhotons::YES);
declare(zeefinder , "ZeeFinder");

VetoedFinalState zmminput;
zmminput.addVetoOnThisFinalState(zeefinder);
ZFinder zmmfinder(zmminput , cut, PID::MUON, 65*GeV, 115*

GeV,
0.2, ZFinder::ClusterPhotons::NODECAY,

ZFinder::AddPhotons::YES);
declare(zmmfinder , "ZmmFinder");

book(_h_thetaZZ_m160_190 , "thetaZZ_m160_190", 15, 0.0, PI
/2);

book(_h_thetaZZ_m195_225 , "thetaZZ_m195_225", 15, 0.0, PI
/2);

book(_h_thetaZZ_m230_260 , "thetaZZ_m230_260", 15, 0.0, PI
/2);

book(_h_mZZ, "mZZ", 25, 100.0, 350.0);
}
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/// Do the analysis
void analyze(const Event& e) {

const ZFinder& zeefinder = apply<ZFinder >(e, "ZeeFinder")
;

if (zeefinder.bosons().size() != 1) vetoEvent;
const ZFinder& zmmfinder = apply<ZFinder >(e, "ZmmFinder")

;
if (zmmfinder.bosons().size() != 1) vetoEvent;

// Z momenta
const FourMomentum& zee = zeefinder.bosons()[0].momentum

();
const FourMomentum& zmm = zmmfinder.bosons()[0].momentum

();
const FourMomentum zz = zee + zmm;

const double mZZ = zz.mass()/GeV;

const double weight = 1.0;

// Boost zee and zmm to the ZZ rest frame
LorentzTransform boost_to_ZZ_rest = LorentzTransform::

mkFrameTransformFromBeta(zz.betaVec());
FourMomentum boosted_zee = boost_to_ZZ_rest.transform(zee

);
FourMomentum boosted_zmm = boost_to_ZZ_rest.transform(zmm

);

const Vector3 nhat_mm = boosted_zmm.p3().unit();
const double costh_mm = nhat_mm.z();

// fold: |cos(theta)| in [0,1] -> theta in [0, pi/2]
const double u_fold = std::fabs(costh_mm);
const double theta_fold = std::acos(u_fold);

double thetaZmm = theta_fold;

_h_mZZ->fill(mZZ, weight);

if (mZZ >= 160.0 && mZZ < 190.0) {
_h_thetaZZ_m160_190 ->fill(thetaZmm, weight);
} else if (mZZ >= 195.0 && mZZ < 225.0) {
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_h_thetaZZ_m195_225 ->fill(thetaZmm, weight);
} else if (mZZ >= 230.0 && mZZ <= 260.0) {
_h_thetaZZ_m230_260 ->fill(thetaZmm, weight);
} else {

return;
}

}

/// Finalize
void finalize() {

const double s = crossSection()/picobarn/sumOfWeights();
scale(_h_thetaZZ_m160_190 , s);
scale(_h_thetaZZ_m195_225 , s);
scale(_h_thetaZZ_m230_260 , s);
scale(_h_mZZ, s);

}

private:
/// @name Histograms
Histo1DPtr _h_thetaZZ_m160_190;
Histo1DPtr _h_thetaZZ_m195_225;
Histo1DPtr _h_thetaZZ_m230_260;
Histo1DPtr _h_mZZ;
//@}

};

// The hook for the plugin system
RIVET_DECLARE_PLUGIN(MC_ZZANG);

}
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