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Abstract

The search for dark matter aims at answering fundamental questions about the workings
and the contents of our universe. While a common paradigm over the last few decades
suggested that dark matter might only be weakly interactive, this work explores the pos-
sibility of strong self interactions in dark particles. For this, a recently proposed QCD-like
gauge theory with gauge group Sp(4) is introduced. Simulation data of the corresponding
fields on a space-time lattice is analysed with respect to the correlation functions of the
dark mesonic particles. A strategy for fitting said correlators is established and tested
with already analysed data, in order to extract the particle masses. The correlators of
a single meson as well a scattering state of two particles are then looked into, while ex-
tracting the ground state energies as well as the scattering length of the latter state. The
resulting cross section is compared to astrophysically observed constraints and assessed
accordingly. It is found that not only the correlation functions of the observed states
are useful tools for this type of evaluation but the probed theory also provides a viable
framwork for describing potential candidates for strongly interacting dark matter.
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Pressler 1 Introduction

1 Introduction

Without a doubt it can be said that the search for dark matter comprises some of the
most captivating riddles modern physics has yet to answer. Behind a veil of technical
terms lies nothing less than the questions about how gravity works, what the universe is
made of and which approaches can guide us in answering them.

This work aims at helping to probe the nature of dark matter as well as finding valu-
able tools to do so. For this, a recently described QCD-like gauge theory with gauge
group Sp(4) is introduced, providing a framework to describe dark particles that interact
strongly. This setting is then transferred on a lattice, where simulations have been done
regarding the behaviour of the dark quark fields.

The main part of this work then consists of analysing the correlation functions of the
corresponding mesonic particles. From these quantities, the ground state energy of the
individual states can be extracted, signifying the mass of the particle.

Furthermore, an extreme low energy s-wave scattering state of two dark pions with
isospin 2 is analysed, from which the scattering length is estimated. The cross section
is calculated, providing a helpful measure of the interaction between the assumed dark
particles. This quantity is then compared to astrophysically observed constraints and
assessed regarding its quality and meaning.
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2 Theoretical Description

2.1 Dark Matter

The first hints that our universe incorporates matter invisible to our eyes and other optical
instruments occured nearly a century ago, when Swiss astronomer Fritz Zwicky observed
the Coma cluster. Using the virial theorem, he estimated the mass of the galaxy cluster
to be much higher than traditional methods based on luminosity would have suggested,
essentially implying that most of the mass in the cluster stems from "invisible matter"
[1].

When in the 1970s Vera Rubin and others conducted a study on the rotation curves of 60
galaxies, they found more evidence backing up the notion of invisible matter governing
the motion of celestial objects. Assuming that the stars within a galaxy mimic the
rotational behaviour of the planets in our solar system, their rotational velocity v(r)
would only be defined by Newtonian gravity, giving

v(r) =

√
Gm(r)

r
(1)

with G being the gravitational constant, r the distance from the center and m(r) the
total mass within r. This implies that v(r) should decrease proportionally to 1/

√
r with

increasing distance from the galactic center. However, the rotational curves that have
been observed showed not the imagined form but turned out to be "flat", meaning that
they would increase until a maximum was reached where v(r) ∼ const. [2]. Thus, Rubin
concluded that "mass, unlike luminosity, is not concentrated near the center of spiral
galaxies" [3].

Since then, a lot more astronomical and cosmological evidence was presented in favor of
the general concept of dark matter, bringing us to the point where we can now assume
ordinary, baryonic matter to only account for about 5% of the overall energy density
of the universe, whereas the contribution of dark matter seems to be about five times
higher. This paves the way for the search for suitable candidates that constitute dark
matter. Research in this area was, for many decades, mainly governed by a focus on
possibly detecting WIMPs, assuming Weakly Interacting Massive Particles, which are
theoretically appealing because of numerous properties that are in concordance with the
observations [1].

However, as the search for them did not yet show the desired results, a recent approach
consists of studying a possible SIMP scenario, in which Strongly Interacting Massive
Particles, as the name implies, interact with each other via a force similar to the strong
nuclear force but not with the electromagnetic field [4]. There are numerous theories
regarding the detailed structure of SIMP dark matter, many of whom can be shown to
agree with the current observational indications just as well as a WIMP theory. This
field is where this work is situated, with the underlying theory being further explained
in the following subsections.
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2.2 Underlying Lattice Gauge Theory

The SIMP theory explored in this work assumes a hidden sector described by a QCD-
like gauge theory. A gauge theory in physics generally describes any theory where the
Lagrangian is invariant under certain gauge transformations [5]. In this case, the trans-
formations are elements of the gauge group Sp(4). The technical details of this theory
are provided in [6].

The field theory is formulated on a lattice, which allows for the use of non-perturbative
techniques and simulations. This approach consists of defining a space-time lattice with
discretized coordinates, giving for example

x = an, n ∈ N (2)

for the spatial coordinate x with a being the lattice spacing (or lattice constant). This
implies that physical quantities on the lattice (like scalar fields) are only defined on lattice
points. Furthermore, a popular choice followed in this work is to consider only a lattice
of finite volume with periodic boundary conditions, described for a scalar field ϕ(x) and
n = 0, 1, 2 . . . L− 1 by:

ϕ(x) = ϕ(x+ aL) (3)

The physical case of a continuous and infinite space-time would then arise in the limit of
an infinite volume with a→ 0 [5].

In this work, a lattice with three spatial and one temporal dimension was simulated,
having the following size:

Li = 12, i ∈ [1, 2, 3] (4)
T = 24 (5)
a = 1 (6)

Here, L and T are the spatial and temporal lattice extents and a is the lattice con-
stant.

A final note on the nomenclature used in this work: Since the investigated theory has
strong similarities to QCD, the studied mesonic particles are named analogously. Hence,
when π, ρ or a0 particles are discussed, not their respective counterparts in QCD are
meant (e.g. the pion), but their manifestations in the framework of this theory.

2.3 Correlation Functions and Obtainable Parameters

The primary observable that has been investigated in this work is the so-called correlation
function or correlator of the simulated states. This quantity is built on the concept of
the propagator in quantum mechanics.
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Looking at its integral representation in quantum mechanics, the wave function for a
particle at a certain position x′′ and time t can be expressed as

ψ(x′′, t) =

∫
K(x′′, t;x′, t0)ψ(x

′, t0)d
3x′ (7)

where ψ(x′, t0) describes the wave function at an earlier time t0 and another position x′.
Here, K is an integral kernel called the propagator, which is given by

K(x′′, t;x′, t0) =
∑
a′

〈
x′′∣∣a′〉 〈a′∣∣x′〉 exp{− iEa′(t− t0)

ℏ

}
(8)

with Ea′ and |a′⟩ being the eigenenergies and eigenkets of the Hamiltonian operator.
This can also be expressed as

K(x′′, t;x′, t0) =
〈
x′′, t

∣∣x′, t0
〉

(9)

with ⟨x′′, t| and |x′, t0⟩ being eigenbras and eigenkets of the position operator. This in
turn leads to the interpretation of the propagator as "transition amplitude": All the
propagator (and hence our correlation function) does is give the amplitude for a particle
to go from a space-time point (x′, t0) to the point (x′′, t) [7].

In the following, the correlator will be denoted by C(t). On a lattice, the correlation
function takes only descrete values, as was mentioned earlier. In our case, being a sum
of two exponential functions with different signs in the exponent, it takes on the form of
a cosh function. The function that the correlators were fitted against reads

C(t) =
f2m

2L3
(e−mt + e−m(T−t)) (10)

with m, f being the mass and the decay constant of the described particle and T , L the
total temporal and spatial lattice extents [8].

Since we have measured these correlators for a single π-meson (Cπ(t)) as well as a state
consisting of two π-mesons (Cππ(t)), we can define a ratio R as

R(t+ a/2) =
Cππ(t) − Cππ(t+ a)

Cπ(t) 2 − C2
π(t+ a)

(11)

where a is the lattice constant and in our case a = 1. This quantity shows the following
behaviour for large times

R(t+ a/2) = AR[cosh (δEππt
′) + sinh (δEππt

′) coth (2 ·mππt
′)] (12)

with a factor AR, the energy shift δEππ and t′ = t+ a/2− T/2 [9].

From this, the scattering length a0 of the ππ-state can be determined by solving the
equation [9]

δEππ =
4πa0
mL3

(
1 + c1

a0
L

+ c2
a20
L2

)
(13)
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with the constants c1 and c2 having the known values [10]:

c1 = −2.837297 (14)
c2 = 6.375183 (15)

This finally leads us to the geometric cross section, which can be calculated using
[7]:

σ = πa20 (16)
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3 Aim and Methodology

The aim of this work is twofold, the primary question being whether or not the studied
correlation functions are of reasonable quality and thus usable for further investigations.
If this is the case, the follow-up question consists of probing whether the investigated
particles then represent suitable candidates for dark matter. In order to answer these
questions, the following methods were used:

First, the dark quark fields, constructing the studied meson states, were simulated on a
lattice, incorporating the theoretical assumptions made earlier. The complete description
of how the data were generated can be found in [6]. Here, the dark quark masses were
non-degenerate in the case of the first simulations in section 4, whereas the second part,
describing the scattering state of two dark pions in section 5, was simulated using mass-
degenerate fields.1

In each case, a series of measurements was conducted where at each step the correlation
function for every point along the time dimension was measured. From this data, the
final correlators were extracted by taking the mean over all measurements C(t). The
associated errors were calculated as the standard errors of the means according to 2

∆C(t) =
σ

τ
√
N

(17)

where σ is the standard deviation, N the number of measurements and τ a factor to
account for autocorrelation, which was estimated to be τ = 2 in the non-degenerate case
and τ = 3 for the mass-degenerate data set.

To obtain a first guess for the mass, the so-called effective mass

meff (t) = log

∣∣∣∣ C(t)

C(t+ 1)

∣∣∣∣ (18)

was computed and fitted to a constant in the region where its curve showed a plateau.
To get an estimation of the fit error, the error bars of the data points were fitted as well
and the resulting difference was taken to be the confidence interval for the fit.

Subsequently, the correlation functions themselves were fitted to Equation 10 using a
non-linear least squares fit strategy, with free parameters being f and m. The confidence
intervals were computed the same way as previously explained. The errors of the fit
parameters were obtained by analysing the respective covariance matrices, while taking
the statistical errors of the correlators into account. Thereby, the masses of the mesons
(and in the case of the non-degenerate π particles, their decay constants as well) could
be extracted.

1Mass degeneracy refers to the concept of constituting quark masses being either equal (degenerate) or
not.

2The mean of the correlator C(t) from now on will just be referred to as C(t), for the sake of clarity.
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In the case of the mass-degenerate scattering state, further analysis was conducted,
whereof the theoretical background has already been mentioned in subsection 2.3 and
which will be described further in the following sections.

All analyses were carried out in Python using the libraries numpy, scipy, pandas, mat-
plotlib and seaborn. All error estimations, if not stated otherwise, made use of error prop-
agation theory, which was incorporated by using Python’s uncertainties package.
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4 Testing of Fit Strategy With Non-Degenerate Flavors

In order to test the fit strategy that has been implemented, the first step of the practical
work consisted of fitting a dataset that has already been evaluated in [8]. All necessary
data files were provided by Fabian Zierler [11]. While fitting the correlation functions, the
fit strategy and intervals have been gradually modified in order to lead to the previously
obtained results.

The particles that have been investigated correspond to a π-meson, a ρ-meson and an
a0-meson, in charged (±) and uncharged (0) form respectively.

For each individual particle, the correlation function was plotted alongside its implied
effective mass. For the latter quantity, a constant fit was done to acquire a first guess
regarding the mass of the particle. Subsequently, the correlation functions were fitted.
The fit intervals for all of the correlators were oriented around the start of those that were
chosen to fit the effective masses, but expanded towards the center of the time vector
(i.e. t = 12), in order to capture the behaviour for high values of t.

4.1 π-Meson

The fitted correlation functions of the charged and uncharged π-correlator as well as
their effective masses are shown in Figure 1 and Figure 2. The resulting graphs show
very small error bands and a good correspondence to their respective fits. For this type
of meson, a renormalization factor ZA has been estimated in order to calculate the decay
constants as well as the masses [12]. It reads

ZA(p, β) = 1 +
(5/4) · (−12.82− 3) · 8

16 · π2
· 1

β · p
(19)

with β the inverse coupling and p the expectation value of the plaquette.3 In this case,
β = 6.9 and p was computed from the data to be p = 0.538± 0.004. In order to account
for the prefactor in Equation 10, the raw data were additionally multiplied by a factor
of L3, specifically for this evaluation. The obtained values are shown in the plots and
agree with the results of previous analyses.

4.2 ρ-Meson

The evaluation for the ρ-meson was carried out just as the one of the former π-meson,
with the caveat that for the lack of a suitable renormalization factor, only the mass
has been extracted from the correlators. The obtained plots are shown in Figure 3 and
Figure 4.

3Here, β describes the coupling to the lattice and p is a gauge invariant expression. These quantities
are used heavily in lattice gauge theories; [5] is recommended for further reading.
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Figure 1: Effective mass and correlator fit for the π0-correlator
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Figure 2: Effective mass and correlator fit for the π±-correlator
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Figure 3: Effective mass and correlator fit for the ρ0-correlator
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Figure 4: Effective mass and correlator fit for the ρ±-correlator
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4.3 a0-Meson

The data of the a0-meson has proven to be of a much poorer quality in terms of error
margins, which is expected. Like with the ρ-meson, it was only possible to extract
the mass of the particle from its correlation function. As can be seen, the errorbars
are expanding rapidly towards large times, which is showcased in the following plots.
However, the results have proven to align with those obtained earlier, and led to a
conclusion in the testing of the fit strategy. The final plots are presented in Figure 5 and
Figure 6.
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Figure 5: Effective mass and correlator fit for the uncharged a0-correlator
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Figure 6: Effective mass and correlator fit for the charged a0-correlator
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5 Scattering State of Two Mass-Degenerate Flavors

After optimizing the fit strategy and testing with already analysed data, a new dataset
has been generated, consisting of the correlation data for a single π-meson Cπ(t) as well
as two particles with isospin 2 in an extreme low energy s-wave scattering state (Cππ(t)).
These mesons have been simulated in a mass-degenerate case, implying that the differ-
entiation between a charged and uncharged particle can be omitted.

5.1 Masses of Cπ(t) and Cππ(t)

First, the masses of the two correlation functions have been determined. For this, the
respective correlation function has been prepared according to section 3. Then, the
corresponding effective mass was plotted to provide a first guess for the mass, which can
be seen in Figure 7 and Figure 8.

The correlation function Cππ(t)was given in four parts, which construct the whole corre-
lator additively and appear in pairs of two, that have similar magnitudes. In this context,
it is interesting to note that not all of them contribute equally to the correlator, which
is dominated by the first and last part.

The fit of the single correlator Cπ(t) is pictured in Figure 7. It shows a strong concordance
with the raw data and a small error margin. The extracted mass in lattice units for one
π-meson then equals:

mπ = 0.5741± 0.0005 (20)

The fit of the double correlator Cππ(t) can be examined in Figure 8. This one also shows
to agree with the correlation data while diverging from it a little more towards the center
(i.e. towards higher times). Its mass – expressing its ground state energy – is calculated
to be:

mππ = 1.0151± 0.0016 (21)
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Figure 7: Effective mass and correlator fit for Cπ(t)
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Figure 8: Effective mass and correlator fit for Cππ(t)
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5.2 Extraction of Scattering Length and Cross Section

Lastly, the R ratio, that has been introduced earlier, was calculated using the provided
correlators. A full plot of the resulting ratio is given in Figure 9.

In order to extract the scattering length of the assumed scattering state described by
Cππ(t) , the R ratio was then fitted to Equation 12 according to the method that was
introduced for the correlators in section 3, which is also shown in Figure 9. From this,
the energy shift δEππ was found to be

δEππ = 0.010± 0.004 (22)

and led – in combination with Equation 13 – to the scattering length in lattice units

a0 = 1.0± 0.5 (23)

from which the cross section σ can be calculated using Equation 16. With an assumed
mass for the single π-state, a scale can be introduced, and an equivalent of the scattering
length in physical units can be found. This has been tried for mπ = 100MeV and
mπ = 1GeV, accompanied by a calculation of the respective cross sections. In accordance
with their mathematical properties, the errors of the cross sections were computed as
asymmetric intervals by variation of a0 inside its error margins. The main results from
this subsection in lattice units are listed in Table 1, their counterparts in physical units
are shown in Table 2. The unit conversions were handled according to Appendix A of
[13].

A frequently used measure to compare findings of this kind is the ratio of cross section
to mass, which was also computed. Within the scale used, it is a dimensioned quantity,
as can be seen by expanding the term, indicating a strong dependency on the pion
mass:

σ

mπ
=
πa20,nat
mπ,nat

=
π(a0,lat · anat)2

mπ,nat
=

πa20,lat ·m2
π,lat

mπ,nat ·m2
π,nat

(24)

Here, the subscript lat refers to quantities given in lattice units and shown in Table 1,
whereas nat describes assumed or converted values in natural units, that are listed in
Table 2. The studied mass range therefore leads to a possible range for the ratio of cross
section to mass of about:

σ

mπ
=

(
2.3+2.8

−0.6

)
· 10−n cm2 g−1, n ∈ [1 . . . 4] (25)
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Table 1: Main results given in lattice units
mπ ... mass of the single π-state
mππ ... mass of the ππ-state
a ... lattice constant
a0 ... scattering length
σ ... cross section

mπ mππ a a0 σ

0.5741(5) 1.0151(16) 1 1.0(5) 3.1+3.9
−0.8

Table 2: Scaled results for the ππ-state given in natural units
mπ ... assumed mass for single π
a ... lattice constant
a0 ... scattering length
σ ... cross section

mπ / GeV a / GeV−1 a0 / GeV−1 σ / GeV−2 σ / mb

0.1 5.741(5) 6(3) 100+130
−30 40+50

−10

1 0.5741(5) 0.6(3) 1.0+1.3
−0.3 0.4+0.5

−0.1
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Figure 9: R ratio and fit in close-up view
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6 Discussion of Results

The first step, consisting of developing a fit strategy suitable for analysing the relevant
datasets, can be considered a success, since the already obtained results of [8] could be
reproduced. The plots for the π- and ρ-mesons showed very small error bars and a very
good correspondence to the fit. Providing a stark contrast, the data regarding the a0
mesons had significantly higher error margins. However, since the obtained results for
the masses were shown to have reasonable errors and still matched the expected ones, it
can be assumed that the fit strategy was good enough to deal with the studied data and
could be maintained for further analyses.

The correlators for the pions in the mass-degenerate case both again showed very good
statistics, small error margins and were in good accordance with the fits. As can be seen,
the extracted mass of Cππ(t) is about 10% lower than the doubled Cπ(t)mass would
be. This indicates a "loss" of energy in the simulation, thus hinting at an interaction
happening between the π-mesons, corresponding to a scattering state.

The fit of R, despite said ratio also showing larger errors, led to very precise parameters.
Regarding the following calculation of the scattering length, it should be noted that the
values used for the coefficients c1 and c2 generally depend on the studied theory and thus
cannot be guaranteed to give the correct results for this work. They should, however,
provide a first guess regarding the order of magnitude of the scattering length, which is
also how these results should be treated.

For the final calculation of the cross section, commonly assumed values for the mass of
the dark pion were used. They led to a cross section to mass ratio of:

σ/m =
(
2.3+2.8

−0.6

)
· 10−n cm2 g−1, n ∈ [1 . . . 4]

This, for example, lies well below the upper limit for self-interacting dark matter found
from investigating merging galaxy clusters described as σ/m < 1 cm2 g−1 in [14]. Other
astrophysical analyses, with a focus on probing dwarf galaxies with regard to the core-
cusp problem, have found even lower upper boundaries like σ/m < 0.19 cm2 g−1 [15]
and σ/m < 0.13 cm2 g−1 [16]. This hints at a dark pion mass greater than 100 MeV,
since the ratio found for this value already lies outside the mentioned upper boundaries.
In conclusion, the findings generally support the idea that the investigated strongly
interacting particles could be viable candidates for dark matter.
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7 Conclusion

In this exploratory work, a recently proposed scenario of strongly interacting dark matter
particles in a QCD-like gauge theory has been studied. This was done by analysing
the correlation functions of dark quark fields and thereby produced mesons in a lattice
simulation. By conducting a non-linear least squares fit of these correlators, the masses
of the investigated particles could be obtained.

For the case of two interacting particles in a mass-degenerate low energy scattering sce-
nario, further analysis was conducted by examining the ratio R as defined in Equation 11
between the single- and double-π-correlators. By fitting this ratio for high values of t,
an expression for the energy shift has been obtained that could be used to estimate the
scattering length in the ππ-state. By fixing the mass of the dark pion to certain values,
a scale could be introduced and a range for possible cross sections was determined. The
main results regarding these analyses are shown in Table 1 in lattice units and Table 2
in natural units. The cross section to mass ratio of the dark pions for an assumed pion
mass in the range of mπ = 100 MeV to mπ = 1 GeV was found to be:

σ/m =
(
2.3+2.8

−0.6

)
· 10−n cm2 g−1, n ∈ [1 . . . 4]

By comparing these findings to the experimental constraints put on dark matter candi-
dates, one can see that the studied particles lie well within the possible range, if the dark
pion mass is set high enough. Thus, it is concluded that the studied theory constitutes
an interesting and promising approach for the search for dark matter particles and should
be investigated more thoroughly. Furthermore, the correlation functions that have been
examined in the mass-degenerate case were well suited for statistical analysis, provided
usable insights and can thereby be regarded as a useful tool for further studies.
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