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Abstract

This thesis is a continuation of the work of the bachelor’s theses of Lukas Wiirger [1]
and Christina Perner [2], who treated methods of extracting the metric from pre-defined 2-D
triangulations in the framework of causal dynamical triangulation (CDT). However, since
their work turned out to contain substantial difficulties, the aim of this thesis is to reverse
the setup and try to extract possible triangulations from different given metrics. Moreover,
geodesic integrals around singularities were investigated, as they are of interest for CDT.
After treating the simple case of 2-D Minkowski space, the thesis turns to more advanced
geometries: the 2-sphere and the Schwarzschild geometry. For the 2-sphere, promising
results were obtained, although the transcendental nature of the geodesic equations posed
challenges for finding analytical expressions. Nevertheless, the numerical implementation
of these methods demonstrated how the framework can still be applied effectively. For the
Schwarzschild geometry, geodesic expressions were successfully constructed in the radial
case, while computational challenges prevented a systematic search for true equilateral sim-
plices.
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1 Introduction

General relativity (GR) and the standard model are the two pillars of modern theoretical physics.
In a nutshell, the standard model is a theory explaining all fundamental forces except gravity,
and their interaction with matter (fermions). Each fundamental force has its own carrier (gauge
bosons):

- Weak force: W and Z bosons

- Strong force: Gluons g

- Electromagnetic force: Photons y
The standard model is one case of a more general family of physical theories: It is a field theory.
For each boson (in fact for every particle in the standard model), there exists a corresponding
field (similar to the vector potential in electrodynamics). In GR however, the field describing
the gravitational force is spacetime itself! As a consequence, one often hears that gravity isn’t
regarded as a force at all, but rather as a manifestation of the curvature of space and time. The
hypothetical particle corresponding to this field is the graviton, which has not been detected yet.

While both theories work wonderfully in their respective domain, GR breaks down at scales
near the Planck length (1.62x 10733 cm), the Planck time (5.39 x 10™** s) and the Planck energy
(1.22x 10'° GeV), as quantum fluctuations begin to play a significant role [3]. As countless tests
have confirmed both theories on their domain, and they are yet to be falsified by an experiment,
several attempts have been made at finding an underlying theory that contains both the standard
model and GR in the limit of high energies and large scales. One famous example of such a
‘theory of everything’ is string theory. While theorists have been working on string theory for
over 50 years now, there has not yet been a single experiment confirming that it is indeed the
reality we live in. As a consequence, many other theories try to deliver a quantized description
of gravity.

One example is causal dynamical triangulation (CDT), which is the framework from which
this thesis arose. However, it focuses solely on quantizing gravity while not trying to describe
other interactions. It is therefore not a theory of everything. The present thesis will first give
an overview of the theoretical basics designed to prepare a physics student at the end of their
bachelor’s degree for the subsequent chapters. In the main part, we will first address the simple
case of flat Minkowski spacetime, before moving on to the intrinsic geometry of the 2-D sphere
(2-sphere), including introductory numerical calculations. The thesis then closes with an intro-
duction to the 4-D Schwarzschild geometry, including methods for extracting a triangulation.

2 Theoretical background

Throughout this thesis, vectors will be written in bold, while scalars and vector components
will be displayed as usual in italics.! In this notation, we will not differentiate between abstract
vectors and lists of components (coordinate vectors).

2.1 Linear algebra

I assume that the reader is familiar with the key concepts of linear algebra. However, since
GR and differential geometry are built upon rather abstract formulations, I want to give a brief
overview of important concepts and notations.

The idea of vectors commonly used when first studying linear algebra (as a physicist) is that a
three-dimensional physical quantity characterized by a magnitude and direction can be specified

I'This is different from the notation used for example by Hartle [3]. He uses boldface notation only for four-
vectors and an arrow (0) for three-vectors. However, this notation runs into problems when dealing with dimensions
different from 3 and 4.
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by measuring this magnitude (e.g. its length) along a basis of three different directions ey, e,, es.
If we label these components with a, b, c we can represent it by these numbers

a
v=|b]. (2.1)
c

However, this is just a shorthand notation for the basis representation of this vector which can
be written more clearly as
v = ae, + be, + ce;, (2.2)

where (e;) is an arbitrary Cartesian basis. However, if one chose any other basis of our vector
space and the components in (2.1) would look different, even though they represent the same
vector (the = symbol indicates ‘is represented by’).

When dealing with vector spaces of arbitrary dimensions, it is wiser to simplify the notation
used in Eq. (2.2) by using a summation symbol ) _. However, it is much easier to omit this symbol
altogether and to use the Einstein summation convention, where one sums over the whole range
of identical indices when they occur pairwise in the sub- and superscript. If we label a, b, ¢ from

the equation above with superscript indices v!, v2, v® we can write it as follows?:

v=y1'e; .

Note that the indices must not necessarily belong to two different entities when using the sum-
mation convention, e.g. the trace of a linear map F' : V' — V can be written as

Tr(F) = FX_ .

The question then arises how exactly vector components transform during a change of basis.
It is helpful to introduce the following:

Definition 2.1. Let V' be a vector space over a field K with two different bases (ex);—; ., and
(€x)gr=1,. n- Thelinear map S : V — V is called a transition matrix if

€, = Skl/ € . (23)

We know that every basis change can be regarded as such a matrix S, because Eq. (2.3)
implies that the columns of S must be the components of the new basis vectors represented in
our old basis. One can then prove that the transition matrix is regular, and its inverse corresponds
to the transition matrix in the opposite direction. Note that the primed indices indicate different
vectors, e.g. e, 7# e,.

It is easy to see how our vector components change correspondingly. Using the two bases
from Def. 2.1, we have:

v =vke, = vFe, = 0¥ ST ;.
This of course implies that v’ = S%, v*’. The fact that the vector components transform oppos-
itely as the basis vectors is the reason why they are sometimes also referred to as contravariant
vectors [4]. Alternatively we could also write this as v¥ = § kk/ v¥’, since the primed indices
indicate a change of basis.’

Analogously to vectors, we can define multidimensional lists of numbers, which transform
similarly during a change of basis: Tensors. If we label the components of the inverse of S with
Tk/l , which implies that S, Tk/n = d". A tensor X of type (r, s) then transforms as follows:

’

k" k _ k] k. I I ki-k
X rli"-l;_Slk]'“S rkrT iTSléX rl

_—a
In fact, tensors are defined by objects which transform in this way. A vector is therefore a type
(1, 0) tensor.

Not to be mistaken with powers of v.
3This is the convention Carroll uses in his GR book [5].
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2.2 Differential geometry and topology

We will now define some important terminology. The precise definitions will make understand-
ing the concepts in later chapters easier, and explain why multiple coordinate systems are some-
times needed. Even though we will get rid of some of the pedantic precision when actually
working with the concepts, it is still useful to review the exact definitions.

Definition 2.2. Let X, Y be two topological spaces. A function f : X — W is a homeomorph-
ism, if f~! exists and both f and f~! are continuous. If such a function exists, X and Y are
considered homeomorphic [6].

For the sake of the argument let us look at

U—-M

(x', ..., x") = r(x! .. x")

. UCR", M CRV,

with n < N. We can also regard r as N maps from U to R. r is then called regular iff it is
smooth and the Jacobian matrix (%’/) has a maximal rank (rank ) at every xo € U. This leads
us to the following definition: ‘

Definition 2.3. Let M C R”" be our manifold. Further let U C R” be an opensetandr : U —

M be an injective map. The pair (r, U) is then called a coordinate system if [7]:
i) ris a homeomorphism and the set r(U) is also open.
ii) r is smooth and regular.

Note: The first point in the definition above makes r ‘respect’ the topology of M.

Similar to the transition matrix of Cartesian coordinate systems in Def. 2.1, we can introduce
transition functions for arbitrary (often curvilinear) coordinate systems. Suppose we have two
coordinate systems (ry, Uy) and (r, U,). The functions ry, r, will cover different areas of the
manifold M. Suppose there exist an overlap region r;(U;) N ry(Uy) on M, then we can define
the following transition functions:

. Ui = Uy . Uz — Up2
| S 1 | S 1 s (2421)
X (ry" ory)(x) X (ry orz)(x)
where U, = rl_l(rl(Ul) Nry(U,)), (2.4b)
Usi =15 ' (r1(Uy) Nr2(Uy)) . (2.4¢)

These functions can of course only be defined on the respective preimage of the overlap region.
They then work essentially the same as the transition matrix, i.e. we can plug in the coordinates
in one coordinate system and the function gives us the coordinates of the same vector described
by the other coordinate system. We can now introduce the important concept of an atlas:

Definition 2.4. A family of coordinate systems (r;, U;); on M is called an atlas, if it covers
M, so M C |, ri(U;), and between each pair of coordinate systems exist smooth transition
functions [7].

2.3 Theory of relativity

We will now turn to metrics. They are technically still a part of differential geometry but since
they are such an integral part of GR and this thesis, they will serve as an excellent introduction
to relativity.
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Definition 2.5. [7] The metric g is a (0,2) tensor on M, which defines the scalar product:

g(u,v) =g, uv?,
and is symmetric in its components, g,,, = gy, and also satisfies g(u,u) > 0. *

The metric thus raises or lowers vector components in the following way:
gijv) = v;.

Furthermore, the positive definiteness and symmetry of g fulfil the axioms of a metric in the
common sense, and therefore gives us a notion of ‘distance’.

At this point it must be mentioned that v’ and v; generally do not have the same components.
However, in Euclidean space, where g;; = §;;, the components of vectors and covectors are
equal, which is why we do not differentiate between them normally.

2.3.1 Special relativity

The topology of our universe, spacetime, is a four-dimensional manifold. We further demand
from the topology that locally (if we ‘zoom in’ far enough), it looks like ‘flat’ Minkowski space.
Minkowski space is the spacetime in the absence of gravity (‘flat’ spacetime), which arises from
the fact that the speed of light, ¢, is constant in every inertial frame (see [3] for an intuitive
introduction to relativity).

This thesis will use the notation that indices denoted with Greek letters («, B, ...) will run
from O to 3, while Latin indices (7, j,...) will run from 1 to 3. In Minkowski spacetime, the
index O corresponds to the time multiplied by the speed of light, c¢, and 1 through 3 correspond
to x, y and z. Furthermore, we will use geometrized units, in which we set the speed of light
and the gravitational constant to one, i.e. ¢ = G = 1. Therefore, length, time and mass will all
have the same units (meters). The geometry of flat spacetime is given by the Minkowski metric
Nuv- The sign of the Minkowski metric is dependent on convention, we will use the signature
(=4, +,+):

-1 0 0 0
. 0 1 00
(nu,v) - dlag(_l’ la 17 1) — O O 1 O (25)
0 0 01
The key characteristic of flat spacetime is that the discrete spacetime interval
As? = N AXH AxY (2.6)

between two events stays invariant under a change of basis. This means that the components
of the metric in (2.5) must stay the same in every coordinate system. In fact, the basis trans-
formations A, which are called Lorentz transformations in flat spacetime, are defined by this
constraint:

N = N A 1,

Traditionally, 2-D spacetime diagrams are arranged so that the x! coordinate is the horizontal
axis and the x° the vertical one (Fig 2.1). From Eq. (2.5) and (2.6) it becomes obvious, that (As)
between two events in spacetime can be smaller, greater, or equal to zero. We give these cases
the names as seen in Fig. 2.1. Thus, spacelike-separated events are not causally connected, i.e.
there is no particle path (not even light) which could pass through both events.

“Technically, the scalar product is defined on the tangent vector space T,, but we will disregard this for our
discussion.
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(As)? <0

(timelike) V=,
(As)? =0

(null)

(As)? >0
(spacelike)

Figure 2.1: Representation of differently separated events with reference to
the origin in the Minkowski diagram.

As? gives the spacetime a measure of distance between two events. Therefore, to get the
length of a parameterized curve with coordinates (x*). The infinitesimal spacetime distance is
simply:

ds? = N,dxtdx”. 2.7
If we wanted to integrate over ds we would have to distinguish between timelike and spacelike
curves. Luckily, these two do not mix: All particles move along timelike curves; photons move
along null curves; and tachyons would move along spacelike curves [3, 5]. Even though tachy-
ons are only hypothetical, nothing can stop us from still looking at spacelike connections and
calculating their length - in fact, this is exactly what I am going to do later. We therefore have
two different integrals we can evaluate:

dx® dxv
dr di
dx* dxv

AL dA

for spacelike curves: As = / M
(2.8)

dA.

for timelike curves: At = / \/ —1

In fact Az, the proper time (German: Eigenzeit), is the time an observer would measure when
moving along the trajectory. These integrals give the spacetime a meaning of ‘straight’ paths:
A straight trajectory is defined by the path that maximizes the proper time. In flat space, this
becomes quite obvious: A pair of twins, Alice and Bob, are both located at the same time and
place on earth (neglecting both the rotation and gravity of earth). While Alice remains on earth,
Bob hops on a spaceship and starts moving away from earth with a speed close to ¢. Quite
famously, after his return to earth Bob has aged less than Alice. The simple reason for this
asymmetry is that while Alice was moving along a straight path through spacetime, Bob was
not, as he had to turn around back to earth halfway through his journey, which lead to a shorter
proper time for Bob. This example should illustrate that straight paths between two events have
the longest proper time of all paths.

We can interpret the integrands of (2.8) as an action, with a Lagrangian £ for timelike curves:

[ \/ dx® dxv

“eTax an

The differential equations can then be calculated through the Euler-Lagrange equations

dt ox*  Ox#t
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where x* is a shorthand notation for %.
Very often however, it is easier to use the altered Lagrangian

P 1£2 _ 1 dx® dxV (2.9)
) U dt drt '

instead, where we parameterize our curve with the proper time t instead of an arbitrary A, which

simplifies the Euler-Lagrange equations slightly. It is then quite easy to show that it is indeed
true:

d oF oF  dL L d oL 0L\ dL oL
dr 0x*  dxt  dt dxH dvox*  oxn ) droxn

where in the last step one can exploit that £ = —7,,,, d;: % = 1 is just the negative norm of the
four-velocity [5]. The same follows for spacelike curves, where we parameterize with s instead.

Furthermore, this is also true for arbitrary metrics g, where we will turn to now.

2.3.2 General relativity

In special relativity (flat spacetime), straight line paths between two timelike separated events
maximize the proper time in (2.8). The situation is similar in GR in that sense that straight line
paths still extremize the action but not necessarily maximize it [3]. The Minkowski metric in the
line element of Eq. (2.7) is replaced by an arbitrary metric g,,,:

ds?* = g,,dx"dx".

While g,,, will still be a symmetric matrix, its components are generally functions of the coordin-
ates and therefore not constant in space and time. Two metrics describing the same geometry can
have different components when using different coordinate systems [3]. Similar to the transition
matrices, the inverse metric g"” is defined by [5]

g"veg,, =8, . (2.10)

The differential equations arising from minimizing the action can be written in a general
form as [5]:

d?xH dxP dx°
re — =0, 2.11
dA? b0 dr dA @10
which are called the geodesic equations for u = 0, ..., 1. The coefficients I'5, are called Chris-

toffel symbols and can be calculated by [5]:

1
Fga = Eguv(apgov + aagvp - 3vgp0), (2.12)

where d, = d/0x®. Furthermore, they are symmetric in the lower indices: I'f, = T';/). How-
ever, for our purpose it is often easier to extract the geodesic equation not by calculating the
Christoffel symbols, but by calculating the Euler-Lagrange equations resulting from extremiz-
ing the action.

The Einstein field equations tell us how the curvature of spacetime reacts to mass and energy
distributions:

1 _
Ruv — ERglw = 871GTW ,

where R, is the Ricci curvature tensor, R the scalar curvature, g, is the metric, T}, is
the stress-energy tensor and G is the gravitational constant. Historically, Karl Schwarzschild
provided the first exact solution to Einstein’s equation in 1916, for a spherical source of curvature
(like a star or a black hole). We will however not concern with Einstein’s equation at all but rather
just use the Schwarzschild metric as it is, to investigate its geometry.
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2.4 Causal dynamical triangulation

Causal dynamical triangulation (CDT) is a non-perturbative theory of quantum gravity, which
means that it does not add any extra structure to the physical system of GR (unlike the extra
dimensions of string theory). It is based on Regge calculus, which is a discretized version of
GR, consisting of four-dimensional simplices of spacetime [8]. Similar to the discretization of
the dome in Fig. 2.2, the simplices in itself are flat - only in the way of their arrangement does
the curvature arise [9]. Without getting into too much detail, the reason for doing this is that it
allows to get from the gravitational path integral formulation

7 = /D[g]eis[g],

where g is the metric and we sum over all virtual paths, to a discrete version of it:

1 .
7 = li lS[T]’
Jm D ()¢

causal T

where we replaced the Einstein-Hilbert action S[g] with the simplicial version of it, C(T') is the
number of symmetries of the possible triangulations (to account for equivalent triangulations)
and N, is the amount of simplices included (the limit refers to the continuous case) [9, 10].

In 2-D, the simplices (triangles) have two timelike edges with length At = a and one space-
like edge with length As = a [8]. In this thesis, we will set @ = 1 for simplicity.

Figure 2.2: Discretization of the surface of a radio telescope in Itapetinga,
Brazil [11].
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3 Triangulation of the 2-D Minkowski spacetime

The first goal of this thesis is to create a triangulation in a two-dimensional Minkowski space.
Since we only have one time and one spacial dimension, one may set x2 = x* = 0, and as usual
x®=rand x!' = x.

With the Minkowski metric (2.5), our altered Lagrangian for timelike geodesics from Eq. (2.9)

now becomes:
P 2 (dx\? G
2| \dr dt ’ )

It is then easy to see that the Euler-Lagrange equations are

d?t _0 d?x _0
d2 7 dr2 7
which we can solve as follows:
d di d 0 = t., t(7) +1
—_—— =y = v = const., T) =y1 ,
drdt drt Y 4 0
X _ o — () +
— = x(t) = at + xo,
dt? 0
where #y, xo and « are constants, and we have used the time dilation formula dt = dt/y.

However, because the norm of the four-velocity has to be —1, there is an additional constraint

on «:
dx"* dx” > 1
n,uvd_d_:_l — —)/2—|—0[2:—1 _— o = )/2—1 :UJ/. (32)
T T

We can now however easily switch back to our coordinate time ¢ and write our path as:
X([) = (V77+[0, UVT+XO) = (t’ U([_ZO)+XO)7 (33)

which is, trivially, the graph of a straight line. What we have shown therefore is that the discrete
spacetime interval in Eq. (2.6) is indeed the geodesic distance between two events.

4 ) 2
- As3, =1
....... 2 _
3! Asi, = —1
_ 2 __
Asyy =1
....... AS§3 =1
2 is
\ . ’
\ S,
\ \\-1..4,. ....... 4
\ \ /
\ \ / /
\\ \‘ X //X2 (/
1
| S x
-2 1 ) I\ 2 3 4
// // \\ \\
// —r/l ...... \\
_2 1

Figure 3.1: Illustration of equidistant points away from x; in blue away from
X, in red. Dotted: timelike. Dashed: spacelike.
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To start the triangulation process we are completely free in our choice for the first point
and might as well choose the origin (x]) = (0,0). To can then calculate, which events are a
‘distance’ As? = £1 away:

!
(As12)” = 1, (¥ = ) () — x3) = —(x9)* + (x3)* = £1.
This conditions are satisfied by the functions:

(Asi2)®> = +1: (x5 (X)) = (£ cosh A,sinh 1),
(As;p)> = —1: (x4(A)) = (sinh A, £ cosh 1),

which are the generalizations of a circle in the non-Euclidean metric of flat spacetime. The
functions are visualized through the blue lines in Fig. 3.1. Since CDT requires one spacelike
connection, we can choose the event lying on the x!-axis as our next event, i.e. (x5) = (0, 1).
The third point must then satisfy a system of two equations, where (As»3)? = (Asi3)? = —1,
since the other two connections must be timelike in CDT. The solutions for this system would
be the intersections between the dotted red and blue lines in Fig. 3.1. The choice between the
top and bottom intersection already indicate the shape of the two triangles needed for filling the
whole space:
—ED? D= -l =P (- P =1 = () = (i? %) .

The triangulated grid resulting from these choices is visualized in Fig. 3.2a, in which the
axis-ratio was set to suggest equilateral triangles. As a remark, there is an infinite amount of
triangulations, as the choice of the spacelike point, i.e. X,, can be chosen anywhere on the blue
dashed line in Fig. 3.1. An extremer example of a possible triangulation is provided in Fig. 3.2b.

We can go from Fig. 3.2a to 3.2b by a Lorentz transformation, since they leave the spacetime
intervals unchanged.

t t
3% 3
21 2
1 1+
. > X \ f X
=2 ~] 1 2 -2 -1 1 2
~1 -1
-2t -2
-3 -3
(a) (b)

Figure 3.2: Example of possible triangulation for a 2D-Minkowski grid with
the two elementary building blocks in blue and red. (a) Horizontal lines are
At = +/5/2 apart. (b) Extremer example of valid triangulation.
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Furthermore, it must be mentioned that the grid in Fig. 3.2a cannot be physically visualized
in a Euclidean geometric sense (by a rigid object). The blue triangle however can perhaps be
imagined by a rod of length 1, becoming smaller and smaller until it ceases to exist after a time of
V/5/2 m (since we measure time in meters). Nevertheless, the Minkowski space diagram is still
a helpful geometric representation of particle word lines, when considered that longer distances
on paper does not equal longer spacetime distances (as shown by Fig. 3.2).

4 Triangulation of the 2-sphere

An example of a curved, two-dimensional manifold is the 2-sphere S2. It is a subset of R? given

by [7]:
§2:={x e R?®| (x")? + (x2)> + (x*)> = R, (4.1)

Using the spherical coordinates (6, ¢), the metric and line element become [3, 7]:

() = R ((1) Sing 9) > ds*> = R*(df? + sin® 6 dp?). (4.2)

However, not every point on S? can be represented by a single spherical coordinate system, as
including the poles would destroy the injectivity of the coordinate function. One possible way
to set up a coordinate system would be:

sin 6 cos ¢
r(6,¢) = R|sinfsing |, 6 € (x/5,4n/5), ¢ €[0,2m1), (4.3)
cos 6

where 2 domes at the north and south poles are ‘cut out’.

4.1 Single coordinate system

We will turn to our full atlas later, and will now only look at geodesics within the bounds of the
coordinate system in (4.3).

4.1.1 Analytical solution

The differential equations resulting from the Lagrangian (2.9) can be solved for example by
setting (0 = /2, d6 = 0), which leads to the equation for a great circle (in this case the
equator). However, it would be more practical to find an expression for a geodesic between two
arbitrary points (61, ¢1) and (6>, ¢,). It turns out to be wiser to instead minimize the action

. . d 2
As = / Vgijdxidx) = / \/d02 + sin? 0 dp? = / \/1 + sin® 6 (d_(g) o, (4.4)

where we assumed d6 # 0. In the case of df = 0 the geodesic just becomes the equator. It is
not possible to square the Lagrangian in (4.4), since we did not use a natural parametrization.
Using ¢’ := d¢/d0, the Euler-Lagrange equation becomes:

s 2 9 /
sin” 0 ¢ = C = const. (4.5a)
V1 +sin? 0 ¢?
, C
= ¢ = (4.5b)

sin 0+/sin20 — C2
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This can be solved by simple integration and leads to the following expression:
P(0) = arccos(ci1 cot 9) + C,, orimplicitly: cotf = Cycos(¢p; — C»), (4.6)

where C; = /1/C? — 1. The full derivation of the integral can be seen in Eq. (A.1) of the
appendix. The constants Cy, C, are determined by the start point (61, ¢»;) and end point (65, ¢»)
of the geodesic, i.e. ¢p(01) = ¢; and ¢ (6,) = ¢,. Since we presumed d¢ # 0 one constraint of
this geodesic is that ¢; # ¢,. We can then calculate the constants:

cot 91 =C COS(¢1 - C2)
cot B, = Cycos(¢p — C»)

cot 6,

= cos(¢ — ¢p9) = K cos(¢py — ¢pg), where K =
cot 6,

cos ¢, — K cos ¢, . cot 0;
K sing; —sing, ’ YT cos(gr — o)

where we assumed 0; # /2. Furthermore, the arctan(-) must in fact be changed to a two-valued
function to accommodate for the whole range of ¢, as we will see later.

It turns out to be possible to find analytical expressions for C; and C, for certain start and
end points, but due to the transcendental nature of the equation, not for arbitrary boundaries.
If it were possible to get a general expression for C; and C,, then one could use it to calculate
the geodesic length by Eq. (4.4). In fact, this integral is solvable even for arbitrary C;, C, but
the solution is so complicated that there is little hope for using it to set up solvable systems of
equations with it.

However, once an equilateral triangle is found, the rest of the surface could technically be
covered by symmetry transformations (rotations) of copies of this triangle. To find two points
which are geodesic distance of 1 apart, one could start with a known geodesic parametrization.
Leaving either ¢ constant while varying 6 or fixing 6 = /2 while varying ¢ will lead to great
circles (longitudes and the equator). We can therefore start with the point x; = (r/2, 0), which
lies on the geodesic x(A) = (4,0) where A € [0, ). To find a point a geodesic distance of 1
apart, we can calculate the (trivial) integral resulting from (4.4):

— (, = arctan

Ao
As:/ RdA:R(AO—z)é1:>AO=£+l. 4.7)
/2 2 2 R

This means that the second vertex can be located at x, = (/2 4+ 1/R,0). Finding the third
point imposes a greater challenge, as we do not know the geodesic it will lie on in advance (note
that latitudinal lines are not geodesics).

To calculate the geodesic distance between to arbitrary points, it is easiest to refer to the
coordinate system in (4.3) and calculate the central angle o between the two points by the dot
product:

r(61.¢1) - r(02,¢2) = R*cosa (4.8a)
= « = arccos(sin 0 sin 6, cos(¢; — ¢») + cos 6y cos 6,). (4.8b)

Even though we could only calculate this by referring to our extrinsic coordinates (x, y, z), the
central angle o will be invariant under coordinate changes because it was calculated by a scalar
product. Because the curvature of the sphere is the same at every point, it is possible to calculate
the geodesic distance As = s(x,y) by

s((61,¢1), (62, $2)) = Ra = R arccos(sin 6; sin 6, cos(¢p; — ¢») + cos by cosb)  (4.9)

in every coordinate system. From (4.9) we can construct a system of equations to find a third
point x3 which is a distance s(x3,X;) = s(X3,X2) = 1 away from both the points x, and x; we
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found before. While the solution cannot be written in a compact form, the system of equation
turns out to be analytically solvable (the solution for x5 is included in the appendix in List-
ing B.1).

We have therefore successfully created an equilateral geodesic triangle on a sphere. However,
as it turns out this method has its limits: If we tried to solve a similar system of equations as
before but with the two points x; = (27/5,0) and X, = (27/5 + 1/R, 0), the solutions are not
analytically solvable by Mathematica. The Mathematica code for this situation can be seen in
Listing B.2, where the ‘Solve’ command in the penultimate line yields no result. As a conclusion,
this method cannot be used to generate equilateral connections/triangles for arbitrary points. As
a result, it seems that due to the transcendental nature of trigonometric functions, a numerical
calculation is the next plausible step.

4.1.2 Numerical solution

As a short demonstration, I show that the methods introduced in the previous chapter do indeed
allow us to find a triangulation of the sphere. The solution to the system of equations generated
from the geodesic distance in Eq. (4.9) can be solved by subtracting both sides and finding the
roots that satisfy both expressions. An example is displayed in Fig. 4.1, where a radius of R =
1 was assumed. On the left the figure shows the vertices and geodesic paths of the intrinsic
coordinates, while the right side shows how this triangulation actually looks like on the sphere.
The python code for this calculation is presented in Listing B.3. One problem that could not be
resolved in this short demonstration was that the geodesic between the points 0 and 4 could not be

27
37‘[/2‘ 4,/‘ -
| 0
I 2
¢ R 9. 1,
r;! 1
&\

7‘[/2_ >§‘ \\“/

0 .

0 /2 v/
6

Figure 4.1: Demonstration of numerical calculations for finding geodesic
triangles on a sphere. Created from Code in Listing B.3.
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calculated correctly from Eq. (4.6). The difficulty probably arose because of the parametrization
with 6, as the two 6 coordinates lie very close. Furthermore, the triangulation process only
works for a small amount of vertices, as the algorithm in which order the vertices are generated
must still be improved. Nevertheless, with further investigation, the methods presented look
promising in finding a successful numerical triangulation.

The implemented code works by giving two start vertices, which already have the desired
separation of 1. A for-loop then iteratively generates new vertices by a root finding functions.
While the order in which the vertices are generated is given by the code (which must still be
improved), the start value (first guess) for finding the roots is calculated (pseudo-)randomly for
each vertex. This implies that the triangulation will look different each time, but because there
is a finite set of different possibilities for two given start points, one could - in theory - determine
all possible triangulations for two given starting points.

4.2 Multiple coordinate systems

In addition to the coordinate system in (4.3), at least one other coordinate system is needed to
construct a full atlas of the sphere. An example of an atlas would be:

sin 0 cos ¢

ri(01.¢1) = R|sinO;sing, |, 0, € (/5,47/5), ¢1 € [0,27), (4.102)
cos 6,
cos 6,

r2(92,¢2) = R | sin 92 COS¢2 s 92 (S (71'/5,47'[/5), ¢2 (S [0, 27'[) (410b)

sin 60, sin ¢,

The two coordinate systems are displayed in Fig. 4.2. The transition functions ry, and r;;
can then be calculated according to (2.4):

il (x,y,2) = (arccos %, arctan2(x, y)) , (4.11a)
-1 X
r, (x,y,z) = (arccos e arctan2(y,z)) , (4.11b)
r12(02, ¢2) = ri' oy = (arccos(sin 6, sin ¢,), arctan2(cos 6,, sin 6, cos ¢,)) (4.11¢c)

r1(01,¢1) = 1'2_1 or; = (arccos(sin 01 cos ¢), arctan2(sin 6; sin ¢y, cos 0)) (4.11d)

We have used the function arctan2(a, b) instead of arctan(b/a) in order to achieve the full
range of the ¢s.

Figure 4.2: Visualization of the two coordinate systems r; (left) and r,
(right) in Eq. (4.10).
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4.2.1 Analytical solution

In the overlap regions between the two coordinate systems, Eq. (4.11c) and (4.11d) can be used
to switch between the coordinates, i.e. r12(62,¢2) = (01, ¢1), r21(01,¢1) = (62,¢2). For
example, if the edge of a triangle lies inside the overlap region, there is no difficulty in then
switching coordinates, before continuing the triangulation process. However, as mentioned be-
fore, solving this analytically was found to not be possible with the methods used before.

When creating a geodesic triangle given two already existing points on the manifold, there
are three different cases that can occur at the boundaries between two coordinate systems, when
the third point completing the triangle can only be put into the image of the second coordinate
system r,, and can therefore not be represented by ry:

[Case 1] Both vertices lie on the overlap of the two coordinate systems.

[Case 2] One of the existing vertices only lies inside the image of ry, while the other lies on
the overlap of the two coordinate systems.

[Case 3] Both of the two existing vertices lie solely in the image of r;.

Case 1 is the easiest to handle, as we can simply switch to the coordinates of the second coordin-
ate system with the help of the transition function r;; in (4.11d) and continue to build more
vertices from there. Cases 2 and 3 impose a greater challenge, as for the point which does not
lie inside the overlap, it is necessary to calculate the geodesic distance up to a (variable) point in
the overlap, use r,; to switch coordinates, and then continue the measuring of geodesic distance
from there. As an example for case 3, let x;, X, be two points solely represented by r; with a
geodesic distance of 1 between them and let Xpid,1, Xmia,2 be two point in the overlap region. If
the edge of r;’s domain lies inside the overlap, one could for example limit the variability of the
two mid-points to lie along this edge, rather than anywhere inside the region of overlap. Using
Eq. (4.9) and (4.11), the equations which have to be satisfied to find the third point x5 which is
solely represented by r, are

s(er (x0), 17 Xiig,1)) + (005 Kmia,1) .15 (X3)) = 1,

s(r7 ' (%2), 17 (Ximia,2)) + (05 (Xmig,2) . 15 (x3)) = 1.

However, this is a system of 2 equations with 4 unknowns. Two further constraints are that the
geodesics do indeed continue geodetically after the mid-points, i.e. that there is no ‘bend’ at the
mid-points.

Nevertheless, one could avoid case 2 and 3 by making the overlap region wide enough, or
reducing the edge length (since we would do so anyway in the limit) so that at least one edge
must always be inside it. As mentioned before, in this case one only has to apply the transition
functions in Eq. (4.11) (for the case of a sphere).

4.2.2 Qualitative methods

Suppose we can calculate the geodesic (6(A), ¢(A)) connecting two arbitrary points Xy, X, from
the same coordinate system and suppose that we can calculate the distance arbitrarily through the
action d (X1, X). If we look at case 3 from before (see Fig. 4.3), we can calculate every geodesic
starting at point A, going through an arbitrary mid-point A’ € r{(U;) N ry(U,), translating this
geodesic into the second coordinate system with r,;, which we can use to extend the geodesic,
and then ending on the point C so that the total geodesic length is 1. Iterating this process for
every mid-point in ry (U;) N ry(U,) leads to a set of points C4. Repeating this method for the
second point B from ry, one gets the set Cp. The desired point is then (unique, at least for the
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Figure 4.3: Qualitative view of finding the third vertex C in the second co-
ordinate system.

sphere) C € C4 N Cp (see Fig. 4.3). However, this method is quite ‘brute force’, which would
make numerical computation perhaps expensive.

To find a more elegant expression, we first consider splitting up the action at a point X(A piq),
which lies inside the overlap. For the second integral we then may use the transition function
r>; from (4.11d):

B Ami A w v
mid oxM dxv end ory; or |
d(A,B)=/ ds=f ,,——d)t-l—f Je s p Ly @y
A w VER O o V8w

However, it might be appropriate at this point to check if such an ‘extension’ of a geodesic
is possible for the coordinate systems used in this chapter. Let us consider a simple geodesic
described by the first coordinate system in (4.3): (x!(1)) = (7 /2—A,0), where A € (0,37/10)
and the bounds come from the domain of the first system. We will label the start of this curve
as A = x1(;r/5). Translating this geodesic to the second coordinate system, one gets:

(ri, (A, 0)) = (arccos[sin(rr/2 — A)], arctan2[0, cos(rr/2 — A)]) = (1,0) = (x5(1)), (4.14)

where we already know that this is indeed a geodesic, i.e. the equator of the second coordinate
system. The expression is therefore valid for A € (;r/5, 47/5) for the second coordinate system
and we will set the end point at B = x,(47/5). We therefore have a geodesic defined for A €
(0,47/5) where A € (0,3m/10) is defined in the first coordinate system and A € (;r/5, 47/5)
is defined in the second coordinate system. Therefore, the overlap of the geodesic, where it is
defined in both coordinate system, lies in A € (7/5,37/10). Choosing Apnq = /4 in the
overlap region, we can use Eq. (4.13) to calculate the length of this geodesic.

/4 4 /5 37
d(A,B) = R/ dA + R/ d\ = R, (4.15)
/5 /4 5

which is of course what we would expect.

4.2.3 Testing the limits

We are now interested in what might happen if we calculate the distance similarly as in Eq. (4.13)
while this time not being so careful and neglecting the domain of the first coordinate system.
The restraint in the domain of 6, in Eq. (4.10) was set arbitrarily to (7r/5, 47r/5) just so we cut
out the singularities (which are ill-defined) at 6; € {0, w}. Therefore, it is of interest to test
what happens in the integral of d (A, B) if we, for example, integrate over this singularity, using
the same geodesic as before, i.e. x;(A) = (/2 — A, 0), however where this time we stay in this
coordinate system and integrate in A € (;r/5, 4r/5). This is trivial however, as we already know
that the integrand of this geodesic is 1 and we get exactly the same result as in Eq. (4.15).
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Figure 4.4: Example path (red) to test integrating over a coordinate singu-
larity. Bounds of coordinate systems indicated in blue.

As a second test, let us look at a geodesic calculated from Eq. (4.6) of the form x;(1) =
(A, ¢ (L)), where we labelled A as the parameter instead of 6. Experimenting with different
values of the general solution lead to the following geodesic (in ry):

cot A

(1) = cos—l( "

3
) + G, with Cp=—+/3, C,= 7” (4.16)
1

which is of course only valid in r; for A € (7/5,47/5). We could technically now extend this
interval in order to achieve a similar situation as before, where a part of the curve is only valid
in ry, one in the overlap, and one only valid in r; (as depicted in Fig. 4.4) However, we are now
only interested in the part of d (A, B), where we are integrating over the singularity of r,, which
liesinry(/2,0).

Inserting the expression for ¢’ in Eq. (4.5b) into the expression for d(A, B) in Eq. (4.4) we
get

As—/ 1+C—2d9— ﬁd@ 4.17)
B sin —C2 ) Jsin29—C2 .

which can be solved as demonstrated in Eq. (A.2) in the appendix.

We can now compare the two methods of calculating the length: Let us consider the same
path (4.16) but this time for A € (27 /5,37/5). For A = /2 we get from Eq. (4.16):

b1 (%) — 27 =0, (4.18)

which is exactly one of the singularities of r,. As a reference, integrating over this in r; gives
us, from Egs. (4.17), (A.2) with C = (C2 + 1)7Y/2 = 1/2:

d(A.B) _/WS sindl g [T S0y
’ 2/5 +/sin® 0 —1/4 27/5 +/sin® 0 —1/4

(4.19)

2 3 2 &z
@ mccos(%) — arccos (%) ~ 0.73.

Now let us compare this to the calculation in r,. We first have to use the transition function
rp; in Eq. (4.11d) and then of course ignore the bounds of r, and let 8, € [0, r]. This can be
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most easily calculated in Mathematica (see Listing B.4). We end up at:

r21(A. ¢1(1) = (62(1). 92(1)) =

/ t2 A A
= | arccos| sinA4/1 — 003 , arctan2(coS , COS )L) =
V3 (4.20)
/ t2 A
= | arccos| sinA4/1 — €0 , T
3 3

The constant value in ¢, is exactly what we would expect for a geodesic in r, going through the
poles. Consequently, d¢,/dA = 0 and

db,  2|cosA|secA @21)
dA V3—co?A’ '

which was again calculated with Mathematica (see Listing B.4). Now, calculating the geodesic
length in r, we get:

3n/5 OxH 9xv 3n/5 2 A A
d(A,B)=/ gﬂv;—A%dk: M‘dlz
27/5 2n/5 3 —cot? A
3n/5
— A=
/2n/5 3 —cot? A 4.22)
2cot( 2cot (%
= arctan 0 ( S ) — arctan 0 ( =l ) ~ 0.73,
3 —cot?(3F) 3 —cot?(3F)

which is exactly the same result as when integrated in r; in Eq. (4.19). The solution to the
integral is derived in the appendix in Eq. (A.3).

5 Schwarzschild geometry

One solution to the vacuum Einstein field equation describes the curvature of spacetime around
a non-rotating spherically symmetrical massive object, like stars or even black holes [12]. It is
called the Schwarzschild geometry and when described by Schwarzschild coordinates, the line
element is given by

oM oM\ !
ds? = — (1 — _) dr® + (1 — —) dr? + r?(d0? + sin® 0 d¢?) 5.1)
r

r

in geometrized units [3]. Therefore, the Schwarzschild metric reads
(gap) = diag[—(1 —2M/r), (1 —2M/r)~", 2, r?sin’ 6], (5.2)

where the coordinates are labelled with (¢, r, 0, ¢). M is the total mass of the spherical object
located at the centre. Furthermore, there are coordinate singularities at the Schwarzschild radius
rs = 2M (whichis rg = 2GM/c? in non-geometrized units) and at » = 0. For normal stars the
Schwarzschild radius is much smaller than their actual radius, which is why we will be looking
at the geometry of a Schwarzschild black hole.
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The conserved quantities, which arise from the independence of ¢ and ¢ in (5.1) are labelled

with [3]:
( 2M) dt
e=1——|]—, (5.3a)
r dt
d
¢ =r?sin?6 —¢. (5.3b)
dt

In the non-relativistic limit, these conservations are identified with the conservation of energy
(e) and angular momentum (£). Because of the spherical symmetry, it becomes clear that the
particle orbits are not leaving a certain spacial plane and one can set 6 = 7 /2, df = 0 for
simplicity, similarly on how one shows that the equator is a geodesic of the 2-sphere. If we
define

E=(*-1)/2
Vo (1) M n 02 M2
effi\l') = —— A, 2
T ro o 2r? r3
the geodesic equation is reduced to a differential equation of the radius [3]:
1 (dr\?
E=—|— Ve (). 54
s (55) + v 5.4)

Due to the singularities at the Schwarzschild radius and at the origin, the Schwarzschild
coordinates are only valid in r € (2M, oo) [12]. To describe the spacetime beyond that, other
coordinates are needed. By a coordinate transformation to Kruskal-Szekeres (or simply Kruskal)
coordinates, the Schwarzschild metric (5.1) becomes [3]:

32M?° o1/2M
;

ds? = (—dV? +dU?) + r*(d6” + sin> 6 d?), (5.5)

where the coordinates are labelled with (V, U, 6, ¢). r, 6 and ¢ are the same as in the Schwarz-
schild coordinates, while V' and U are defined as [3]:

. Vs — LM sinh(;4), r>2M (5.6a)
= \/qer/4M COSh(ﬁ)» r<2Mm ’ .

p = (VT (). 7 =2 o)
T e M sinh(y). r<2M |

We are now interested in the overlap between Schwarzschild and Kruskal coordinates in the
interval r € (2M,4M) = (rs, 2rs). We therefore only consider the definitions of U and V for
r > 2M . In this overlap the transition functions become:

ry(¢,7r,0,¢9) = (U(t,r),V(tr),0,¢), (5.7a)

U2 _ VZ
ri(V,U,0,¢) = (ZM [1 + Wo(—)] ,4M artanh(V/U), G,qb) , (5.7b)

e

with U, V defined as above for r > 2M and where W, is the Lambert W function as a solution
for r of the implicit equation [3]:

(ﬁ _ 1) oM — 2 _ 2 (5.8)
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5.1 Radial plunge

By setting £ = 0 (or d¢p = 0), we will expect a path drifting inwards. If we give the test particle
a kinetic energy of 0 at r — oo, we see that e = 1 and therefore £ = 0. Equation (5.4) can then
be easily solved, which Hartle demonstrates in [3]:

dr 2M
— =4, (5.9a)
dt r
3 23 1/3 2/3
r(r) = (5) QM) > (t — t9)”'°, (5.9b)
dr 1 59
dt _ 1-2M/r (5:9¢)
B 2 /1 \3/2 ro\1/2 (r/2M)"? + 1
1(1) = 1o +2M {—5 (537) —2(557) +m D= H (5.9d)

where the negative square root in (5.9a) corresponds to a path going inward. We are now, again,
interested in the geodesic equation. We want to set up a path that crosses the singularity of the
Schwarzschild coordinates at rs = 2M . As the Lagrangian is a constant of motion in GR (for
natural parametrizations), we would get At = 1, which is of course what we would expect,
since At is the ‘distance’ between two time-like separated points.

However, since we are interested to see what might happen in the integral when we cross rg,
we could substitute r(t) with dt = /r/2M dr. We then see immediately that the integrand
is still continuous and well-defined for r > 0, in contrast to the coordinate time ¢, which di-
verges. This shows that the singularity at rg is purely a coordinate artifact of the Schwarzschild
coordinates, and could therefore be extended to r < rg when using Kruskal coordinates.

Calculation in Kruskal coordinates

We now perform the analogous calculation for the radial plunge, but now in Kruskal coordinates.

The line element is given by Eq. (5.5). For a timelike geodesic, dt?> = —ds?, we get for the

radial path (d6 = d¢ = 0):

32M3
r

dt* = e”PM (qv? — dU?).

If we assume parametrization with r, we get:

3 2
dt = 32M e—r/zM ((d_V) (dU) )dr (510)
r dr dr

; e 4V _ 3V dVdr
, we can make use of the chain rule, i.e. =S5t 5

To compute the derivatives 4% o Y and 4% dV

From Eq. (5.9a) and (5.9¢), we get

dt dt/dt  Jr/2M
dr  drjdt  1-2M/r’
The partial derivatives of the Kruskal coordinates (V, U) with respect to the Schwarzschild co-
ordinates (¢, r) must be calculated from their definitions in Eq. (5.6a) and (5.6b). For r > 2M,

the partial derivatives are:

W U W rV
9 4AM T ar  SM2(r/2M —1)°
w v W rU
9t 4M° Or  8M2(r/2M — 1)
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Substituting these into Eq. 5.10 gives

dt = — ! dr,
2M
as before.
This showed that the integrand for the proper time is identical in both coordinate systems,
and is smoothly calculable across rg, just as the length of a geodesic on a sphere was shown to
be smoothly calculable across the boundary of two coordinate systems in its atlas.

5.2 Geodesic with angular momentum

From Eq. (2.12) we can calculate the Christoffel symbols for the Schwarzschild metric in (5.2).
Since the metric is diagonal, we have g** = 1/g44. We therefore get:

M
0o _ 10 _
Por =1 = 503
M M
1 _ 1 _
Poo = 51 =2M/7). Th=—"—%
[y, =2M —r, I3 = (2M —r)sin® 6, (5.12)
1
M, =rs3 = - '3, = —sinf cos 6,
1
r,=ri= - 3, =T =coth .

From Eq. (2.11) we would get the geodesic equations. However, as we already discussed, we
can set @ = /2. The equation we get for r (were we use u* = dx®/dr):
du!

ar T Irw—zﬂ —2M /1))’ — %WI)Z —(r—2M)(W?)’ ~ (r —2M) sin® 6(u?)” = 0

can be replaced by the norm of the four-velocity:

1 2 2 —1 if timelike
utu® = —(1=2M/r)(u® 2—l—— u) +r2w?” = 5.13
Sy ( /1) 1—-2M/ r( ) @) 1 if spacelike )

since differentiating with respect to t and inserting the geodesic equations of the other compon-
ents recovers the geodesic equation for the radius. This way we can choose between timelike and
spacelike geodesics, which of course is needed for CDT. We get the following set of equations:

d?t _ 2M  dr dt (5.142)
dt2 r2—2Mr dt dt’ '
d? 2dr d
¢ _ r d¢ (5.14b)

dv2 ~  rdrdt
oM} oM\ (dr\? dep\> |—1  if timelike
—(1-—) &+(1-— — +r2(—) = . (5.14c
( r ) ( r ) (dr) dt 1 if spacelike ( )
5.2.1 Triangulation in the r-7-plane
For a timelike radial plunge, with arbitrary constant e, the equation for dt/dr from Eq. (5.9)

becomes:
dt e —1

dr — 1=2M/r J2@E + Mjr)
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Figure 5.1: (a) Geodesics 7(r) of the Schwarzschild metric. (b) Geodesic
triangle, where the x indicate vertices. Blue: timelike. Red: spacelike.

Turning to spacelike radial geodesics, we get from Eq. (5.14c¢):

-1 —1 2
_(1_%) e2+(1_%) (ﬂ) _1, (5.16)
r r dt

which can be rewritten as

1, 1 (dr\> M _
—(e“+1)==—) —Veg(r), Veg(r) =—— (forradial plunge). (5.17)
2 2 \dt R

=£

Replacing now dtv — ds, we get:

dr\? ~ dr ~
(%) =26 -2M/)r = 7= +y2(E—-2M/r), (5.18a)

a_ __ ¢ (5.18b)
ds 1-2M/r’ ‘
dt dt/ds e 1 (5.18¢)

— ar _drjds My gy

Mathematica’s symbolic integrator seemed to only return solutions involving complex values
that could not be easily simplified to a real form. In the end, GeoGebra was used to get a sensible
solution for both the timelike and spacelike geodesics ¢(r) for M = e = 1:

- 2 2
timelike: 1(r) = —2 ln<‘2x/7— 2&‘ —\/2? —:_{) — —\g_r?’/z —242r +C, (5.19a)
—2r

5
spacelike: ¢(r) = 2_«/5 ln‘—2r +2Vr2—r + 1‘ + 21n<—2\/§ + 3)

242
—r+Vr2—r+ 4242

2 _
_ %Jrc. (5.19b)

—2In|1 —
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The geodesics are visualized in Fig. 5.1a, where the coordinate singularity at r = 2 is immedi-
ately noticeable. Testing around with the solution, we find that the graphs come closer together
for increasing values of e. The triangulation process then consists of splitting up the geodesics
into slices r; = r(t;), where t; = 19 +n with n € N. The time coordinates are then determined
by (5.19). We would then have to find more geodesics with different values of e and integra-
tion constants and connect them to find triangles with two timelike and a spacelike connection.
This is demonstrated by the triangle in Fig. 5.1b, which are however not equilateral, because of
problems with Mathematica.

6 Conclusion and outlook

As we have seen in Chapter 3, the implementation of a triangulated 2-D Minkowski space has
worked as intended, also showing how different realizations of the triangulation could look like
(see Fig. 3.2).

The analysis of the 2-sphere proved to be more difficult, due to the transcendental nature of
the systems of equations encountered. Nonetheless, we were able to show methods to produce
equilateral geodesic triangles both analytically and numerically (see Fig. 4.1). Furthermore, we
demonstrated how one could calculate transition functions in multiple coordinate systems and
provided examples that the geodesic integral did not diverge at coordinate singularities. Never-
theless, we could not provide robust methods in triangulating the whole surface of the 2-sphere,
neither analytically nor numerically. While the numeric demonstration could be improved by
more robust methods, such as a different parametrization of the geodesics, the analytical ap-
proach in this thesis was limited by Mathematica’s abilities to solve the arising equations.

For the Schwarzschild geometry, we demonstrated how to calculate timelike and spacelike
geodesics. We showed how an atlas can be constructed with a combination of Schwarzschild
and Kruskal-Szekeres coordinates and confirmed that the coordinate singularity of the Schwar-
zschild coordinates at r = 2M had no impact on the geodesic integral. Although analytical
expressions for spacelike and timelike geodesics were found, a full triangulation of the Schwar-
zschild geometry was not carried out. This was due to the problem encountered in Mathematica
with the geodesic integrals of Eq. (5.15) for the timelike and (5.18c) for the spacelike geodesic.
However, the methods for achieving such a triangulation were briefly discussed, and an example
triangle was presented in Fig. 5.1b. Since the issue with Mathematica could not be resolved
within the scope of this thesis, it remains a subject for future investigation.
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A Integrals
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B Code

Listing B.1: Mathematica code for successful analytical calculation of
geodesic triangle and unsuccessful calculation for the parametrization
between two vertices.
1 In[73]:= (*x \
define function for geodesic distance from the central angle x*)
geodesicDistance [R_, \[Thetall_, \[Phil1_, \[Thetal2_, \[Phi]2_] :=
4 R *ArcCos|[
5 Sin[\[Thetal1] Sin[\[Thetal2] Cos[\[Phil1l - \[Phi]2] +
6 Cos [\[Thetal1]l Cos[\[Thetal2]];
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7 Clear [R]
8 (xR = 1%)

10 {thetal, phil} = {Pi/2, 0}; (* define starting point *)

1 phi2 = 0; (* constraint for second point x*)

2 sol2 = Simplify[

13 SolveValues [geodesicDistance [R, thetal, phil, x, phi2] == 1, x],

14 Assumptions -> 1/Pi < R] /. C[1] -> 0 ;

Is theta2 = sol2[[1]]

16 N[%] /. R -> 1

17

18 so0l3 = FullSimplifyl[

19 SolveValues [{geodesicDistance [R, thetal, phil, x, y] == 1,

20 geodesicDistance [R, theta2, phi2, x, yl == 1}, {x, y}l,

21 Assumptions -> {1/Pi < R}] /. {c[1] -> 0 , C[2] -> O} ;

2 {theta3, phi3} = sol3[[-1]]

23 N[%#] /. R -> 1

24 (* doesnt converge:*)

25 (xso0ld = \

2 FullSimplify[SolveValues [{geodesicDistance [R,theta2 ,phi2 ,x,y]l==1,\

27 geodesicDistance [R,theta3 ,phi3 ,x,yl==1},{x,y}],Assumptions ->{1/Pi<R
A\

28 /. {Subscript [\[ConstantC], 1]->0 ,Subscript[\[ConstantC], 2] -> 0}

2 (#{thetad ,phi4} = sol4[[-1]1]1x%)x*)

30

31

32

33 Out [78]= \[Pi] - ArcSin[Cos[1/R]]

34

35 Out [79]= 2.5708

36

37 During evaluation of In[73]:= SolveValues::ifun: Inverse functions

are being used by SolveValues, so some solutions may not be found;
use Reduce for complete solution information.

3 Out [81]= {ArcSec[-2 (1 + Cos[1/R]) CscI[2/R1]1,

40 ArcSec[Sqrt[3 + (-2 + Cos[1/R]) Cos[1/R] - 2/(1 + Cos[1/R]1)] Sec[1/
R11}

41

2 Out [82]= {1.87043, 0.969759}

43

4 In[69]:=

45 phi[theta_] :=

46 ArcCos [Cot [thetal*C1] +

47 C2; (x general expression for geodesic connection between two
point\

48 s %)

49

50 (¥ e.g. determining C1,C2 for geodesic between (theta2,\

51 phi2) and (theta3,phi3): x)

52 Gl = phil[theta2] == phi2;

53 G2 = phil[theta3] == phi3;

54

55 Solve[G1l && G2, {C1, C2}]

56

57 (* not solvable x*)

o Out [72]= $Aborted
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During evaluation of In[1334]:= SolveValues::ifun: Inverse functions
are being used by SolveValues, so some solutions may not be found;
use Reduce for complete solution information.

Listing B.2: Mathematica code for unsuccesful triangulation.

geodesicDistance [R_, \[Thetall_, \[Phi]1_, \[Thetal2_, \[Phil2_] :=
R *ArcCos [
Sin[\[Thetal1] Sin[\[Thetal2] Cos[\[Phill - \[Phil2] +
Cos [\[Thetal1] Cos[\[Thetal2]]
s Clear [R]
(¥R = 1x%)
{thetal, phil} = {2 Pi/5, 0};
¢ phi2 = 03
s0l2 = Simplifyl[
SolveValues [geodesicDistance [R, thetal, phil, x, phi2] == 1, x],
Assumptions -> 1/Pi < R] /. C[1] -> 0 ;
theta2 = so0l2[[1]1];

so0l3 = N[
FullSimplify[
SolveValues [{geodesicDistance [R, thetal, phil, x, y] == 1,
geodesicDistance [R, theta2, phi2, x, y] == 1}, {x, y1}],
Assumptions -> {1/Pi < R}]] /. {Cc[1] -> 0 , Cc[2] -> 0, R -> 1} ;
{theta3, phi3} = sol3[[4]]

Listing B.3: Python code of numerical calculation for finding a geodesic
triangulation of the two-sphere.

import numpy as np

import matplotlib.pyplot as plt

s from scipy.optimize import least_squares
import random

plt.rcParams.update ({

"text.usetex": True,
"font.family": "serif",
"font.size": 12,
"text.latex.preamble": r
\usepackage [T1]{fontenc}
\usepackage{tgtermes}
\usepackage[lite, subscriptcorrection,zswash]{mtpro2}

"figure.figsize": (6.2, 4.6), # (6.4, 4.8) standard

b

HARAAHAAHHHS

N = 5 # number of vertices

R = 1 # radius of sphere

s = 1 # edge length (geodetic)
initialize arrays:

3 #
theta

phi

np.zeros (N)

np.zeros (N)

# set start values (first two points):
theta[0] = np.pi/4

phi [0]

= np.pi

theta[1l] = np.pi/4+1/R

phi [1]

= np.pi
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33 # calculates geodetic distance between two points:

34

35

36

53

54

55

56

57
58
59
60

61

5

63

65

66

68

69

70

def GeoDist(theta_1,phi_1,theta_2,phi_2):

return R*np.arccos(np.sin(theta_1)*np.sin(theta_2)*np.cos(phi_1-
phi_2)+np.cos(theta_1)*np.cos(theta_2))

# creates system of equations to find roots
def EquSys(theta_1,phi_1,theta_2,phi_2):

def Func(x):
return [GeoDist (theta_1,phi_1,x[0],x[1]) - s,
GeoDist (theta_2,phi_2,x[0],x[1]) - s]

return Func

# iteratively generate new points:
s for k in range(2,N):

# print("k = ",k)

test = 1

while test != O:
guesstheta = random.random () *np.pi
guessphi = random.random() *2*np.pi
if k % 2 == 1 or k == 2:

[thetal[k] ,phi[k]] = least_squares (EquSys(thetal[k-2],phil[k
-2] ,thetal[k-1] ,phi[k-1]), [guesstheta,guessphil], bounds = ([0, 0], [
np.pi, 2*np.pil)).x
else:
[theta[k] ,phi[k]] = least_squares (EquSys(thetal[k-4],phil[k
-4] ,theta[k-2],phi[k-2]), [guesstheta,guessphil], bounds = ([0, 0], [
np.pi, 2*np.pil)).x

test = sum(np.logical_and(np.isclose(thetal[:k],thetalk]), np.
isclose(phil:k],phi[k]))) # testing variable to eliminate identical
points

# print (theta)

# print (phi)

# print (test)

# generate system of equations for determining the coefficients of phi (

theta)

def FindConst(theta_1,phi_1,theta_2,phi_2):

def Func2(x):
return [np.cos(phi_1-x[1])-x[0]/np.tan(theta_1),
np.cos(phi_2-x[1])-x[0]/np.tan(theta_2)]

return Func2

edges = [0,1,0,2,1,2,1,3,2,3,0,4,4,2] # pairs of vertices which

contribute to a geodetic edge (0,1),(0,2),...
7

# initializing variables used for plots later:

= np.zeros ([2*n,100])

3 phi_par = np.zeros([2*n,100])

s # iteritevly calculating geodesics between pairs of vertices defimned in

edges

for k in range(n):

C = least_squares (FindConst (theta[edges [2*k]],phi[edges [2*k]], thetal
edges [2*k+1]] ,phi[edges [2*xk+1]1]), [-2,1]) .x

# print (C)

# if k == 3:

# print (C)
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88
89
90
91

92

94
95

96

lam[k,] = np.linspace(thetaledges[2*k]],thetaledges[2*k+1]],100)
phi_par[k,] = np.arccos(C[0]/np.tan(lam[k,]))+C[1]

plt.close(’all’)
# plotting vertices and geodesics between them:
plt.figure ()
for k in range(n):
plt.plot(lam[k,],phi_par([k,],’orange’)
plt.plot (theta,phi,"x"
# plt.plot(lam[3,],phi_par[3,]) # 3 seems to be a problem

s plt.grid ()

plt.x1im ([0,np.pil)

plt.ylim([0,2%np.pil)

plt.xlabel(r"$\theta$")

plt.ylabel (r"$\phi$",rotation=np.pi/2)

for i in range(N):
plt.text(thetal[il, phi[i]+0.1,1)

plt.gca() .set_aspect (’equal’)

plt.xticks ([0,np.pi/2,np.pil,["0",r"$\pi/28",r"$\pi$"])

plt.yticks ([0,np.pi/2,np.pi,3*np.pi/2,2*np.pil,["0",r"$\pi/28" ,r"$\pis"
r"$3\pi/28$",r"$2\pi$"])

-

# 3D-Plot

s hmatplotlib inline

# %matplotlib qt
fig = plt.figure()

s ax = plt.axes(projection=’3d’)

# plot sphere:

u = np.linspace(0, 2 * np.pi, 100)

= np.linspace (0, np.pi, 100)

R * np.outer(np.cos(u), np.sin(v))

= R * np.outer(np.sin(u), np.sin(v))

= R * np.outer(np.ones(np.size(u)), np.cos(v))
ax.plot_wireframe(x, y, z,alpha=0.2,rstride=3, cstride=3)

N < X <

7 for k in range (n):

# plt.figure ()

xline = R#*np.sin(lam[k,]) *np.cos(phi_par[k,])
yline = R*np.sin(lam[k,])*np.sin(phi_par([k,])
zline = R*np.cos(laml[k,])

ax.plot3D(xline, yline, zline, ’orange’,zorder=1)

for i in range(N):
ax.text (R*np.sin(theta[i]) *np.cos(phi[i]) ,0.1+R*np.sin(thetal[i]) *np.
sin(phi[i]) ,0.05+R*np.cos(thetalil]),i,zorder=2)

ax.set_xlabel (r’$x$°)

ax.set_ylabel (r’$y$’)

ax.set_zlabel (r’$z$’)
ax.set_proj_type(’ortho’)

ax.set_aspect (’equal’)
ax.view_init(elev=10, azim=150, roll=0)

3 ax.set_axis_off ()

Listing B.4: Mathematica code of test integral for the 2-sphere.

In[100]:=
R = 1;

s r1[{thetal_, phil_}] :=

R*{Sin[thetal]l*Cos[phil], Sin[thetall*Sin[phil]l, Cos[thetall};
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s r2[{theta2_ , phi2_3}] :=

R*¥{Cos[theta2], Sin[theta2]*Cos[phi2], Sin[theta2]*Sin[phi2]};

riinv[{x_, y_, z_1}] {ArcCos[z/R], ArcTanl[x, yl};

r2inv [{x_, y_, z_}] := {ArcCos[x/R], ArcTanly, zl};
r12[{theta2_, phi2_}] := rlinv[r2[{theta2, phi2}]];
r21 [{thetal_, phil_}] := r2inv[ri[{thetal, phil}]];
Cl1 = -Sqrt[3];

C2 = 3 Pi/2;

x[lambda_] := {lambda, ArcCos[Cot[lambdal/C1] + C2};

FullSimplify[r21[x[\[Lambdall]l]
FullSimplify[D[r21[x[\[Lambdall]l, \[Lambdalll

Out [110]= {ArcCos[Sqrt[1 - Cot[\[Lambdall~2/3] Sin[\[Lambdalll,
ArcTan[Cos [\ [Lambdal]/Sqrt [3], Cos[\[Lambdalll}

Out [111]1= {-((2 Sqrt[Cos[\[Lambdall~2] Sec[\[Lambdall)/Sqrtl
3 - Cot[\[Lambdal]l~2]), 0}
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