
Dark Matter in Neutron Stars

Bachelor Thesis

Kevin Radl

12026249

supervised by:

Axel Maas

cosupervised by:

Yannick Dengler

Department of Physics
University of Graz

2023



Abstract

It is estimated that most of the mass of the universe appears in the
form of dark matter. Because neutron stars could contain a mixture of
dark and ordinary matter, their extreme conditions make them interesting
cosmic laboratories for studying the nature of dark matter particles. This
thesis studies observable properties of neutron stars like the mass, the
radius, or the second Love number of the star and how those observables
are influenced by dark matter inside the star. For ordinary matter, the
equation of state developed in [5] is used, and for dark matter, the equation
of state from [4] is used. Using those two models for ordinary and dark
matter, the two-fluid Tolman-Oppenheimer-Volkoff equations are solved
using a 4th-order Runge Kutta algorithm with adaptive step size. For
different sets of parameters, the mass-radius relation and plots of the
second Love number over the Compactness are presented and investigated
further. At the end, the results are compared to experimental data.

2



Contents
1 Introduction to Compact stars and Dark matter 4

1.1 Compact stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Mathematical theory 5
2.1 Tolmann-Oppenheimer-Volkoff Equation . . . . . . . . . . . . . . 5
2.2 Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Equation of state . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Tidal Deformability . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Observations from gravitational wave signals . . . . . . . . . . . 10

3 Calculation & Results 11
3.1 Mass-Radius relation and stability analysis . . . . . . . . . . . . 11
3.2 Polytropes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Mixed stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Summary and Outlook 22

A Further Plots 23

B Python Code 25

3



1 Introduction to Compact stars and Dark matter
This thesis aims to understand dark matter in neutron stars, connecting two
seemingly separate fields, namely particle physics and general relativity. This
chapter is a short introduction to compact objects (for example neutron stars),
dark matter in general and the possibility of dark matter in compact objects.

1.1 Compact stars
The term compact star or compact object is used collectively for stars that have
a much higher density than ordinary stars. Examples of compact stars are white
dwarfs and neutron stars. The latter will be the main focus of this thesis.
White dwarfs, neutron stars and black holes are the final stages of the evolution
of most ordinary stars. In ordinary stars, the gravitational pull trying to
contract the star is counteracted by the thermal pressure. The thermal energy
stems from fusion reactions in the core of the star. Once all the elements for
which fusion is an exothermic reaction are used, the star explodes in a supernova.
What is left of the star is either a white dwarf, a neutron stars or a black hole
depending on the previous mass of the star.
The name neutron star stems from the fact that this star consists mostly of
neutrons. The gravitational pressure causes the protons and electrons to merge
into neutrons. The neutron star counteracts the gravitational pull with the
degeneracy pressure. This pressure is the result of the fact that neutrons
are fermions and obey the Pauli principle. They cannot all occupy the same
quantum state and this results in a repulsive interaction between the neutrons.
(For further details see [6] and [3])

1.2 Dark matter
Many astronomical phenomena cannot be explained within the current standard
model. This led physicists to believe that there is a new form of matter called
dark matter (DM). Examples are the flatness of the universe or the fact that
ordinary matter (OM) is subject to greater gravitational forces than the visible
mass would exert. This type of matter does not interact with photons and
therefore cannot be directly observed, hence the name dark matter. It is believed
that the majority of the universe´s mass appears in the form of DM. The exact
nature of DM is still subject to much speculation. There are different methods
to detect DM using particle accelerators or scattering experiments, but this
thesis studies the properties of DM by investigating the effect the presence of
DM has on neutron stars.
In recent years gravitational waves caused by mergers of two neutron stars
orbiting each other have been detected. The gravitational wave signals of such
merger events depend on the deformation of the binary neutron star system
in the inspiral stage. Therefore the tidal deformability of the stars can be
extracted from the gravitational wave signals. Because the tidal deformability
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changes with the amount of DM present in the stars, it is possible to gain insight
into the properties of DM from these gravitational wave signals.
(For further details see [2] and [3])

2 Mathematical theory
This chapter summarizes the mathematical formulas needed for this thesis.

2.1 Tolmann-Oppenheimer-Volkoff Equation
There are two forces acting on a neutron star, the gravitational pull and the
degeneracy pressure. The Tolmann-Oppenheimer-Volkoff (TOV) equation (1)
describes the equilibrium of these two forces for a spherically symmetric, non-
rotating and electrically neutral object. [6] For a detailed introduction and
derivation see [3]

dp

dr
= −Gϵ(r)m(r)

c2r2
(1 +

p(r)

ϵ(r)
)(1 +

4πr3p(r)

m(r)c2
)(1− 2Gm(r)

c2r
)−1 (1)

Here r is the radial distance from the center of the star, p(r) is the pressure
at radius r, ϵ(r) is the energy density, m(r) is the integrated mass and c is the
speed of light.
The dimensionless pressure p′, energy density ϵ′, mass m′ and radius r′ are
defined by p = p′

m4
F c8

(ℏc)3 , ϵ = ϵ′
m4

F c8

(ℏc)3 , m = m′ m
3
p

m2
F

and r = r′
lpmp

m2
F

where mF is the
mass of the fermion (neutron mass), mp and lp are the Planck mass and Planck
length and ℏ is Planck’s constant. Using these dimensionless quantities one can
rewrite the TOV equation to obtain (2).

dp′

dr′
= − (ϵ′ + p′)(m′ + 4πr′

3
p′)

r′(r′ − 2m)
(2)

To solve for the mass and the radius of the star a second equation is needed.
The change of the integrated mass is given by dm = 4πρr2dr. Using ρ = ϵ

c2 and
substituting the dimensionless quantities one arrives at the following equation:

dm′

dr′
= 4πr′

2
ϵ′ (3)

The total mass of the star is M = m(r = R) where R is the radius of the star.

Equations (2) and (3) form a system of coupled differential equations. Given an
equation of state ϵ′(p′) and an initial pressure p′0 this system of equations can
be solved numerically. In this thesis a Runge Kutta 4th Order algorithm with
adaptive step size is used for this purpose. (Note that because the system is two
dimensional a second initial value for the mass is required. This initial mass
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is not independent from the initial pressure and is given by m′
0 = 4

3πr
′3
0 ϵ

′(p′0)
where r0 is a small radius element and the starting point of the Runge Kutta
method.) The algorithm terminates the Runge Kutta method once the pressure
is as close to zero as desired. A solution could look like Figure 1

Figure 1: Solution of the TOV equations for a given initial pressure. (m in solar
masses and p in Pa)

The radius of the neutron star R is the point where the pressure reaches zero
and we end up in vacuum.

2.2 Dark Matter
Dark matter in neutron stars can be treated in exactly the same way as ordinary
matter. Because the two different types of matter influence each other the
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neutron star is described by a system of four coupled differential equations. (4)

dp′OM

dr′
= −(p′OM + ϵ′OM )

dν

dr′

dm′
OM

dr′
= 4πϵ′OMr′2

dp′DM

dr′
= −(p′DM + ϵ′DM )

dν

dr′
(4)

dm′
DM

dr′
= 4πϵ′DMr′2

dν

dr′
=

(m′
OM +m′

DM ) + 4πr′3(p′OM + p′DM ))

r′(r′ − 2(m′
OM +m′

DM ))

Instead of using the initial pressures of ordinary and dark matter as the two
independent initial values, in this thesis the initial pressure of ordinary matter
p′OM,0 and the ratio r =

p′
DM,0

p′
OM,0

are used as initial conditions. Given p′OM,0 and
r as well as two equations of state for ordinary and dark matter ϵ′OM (p′OM )
and ϵ′DM (p′DM ) one can calculate the four initial values needed to solve the four
dimensional system of equations: p′OM,0, p′DM,0, m′

OM,0 = 4
3πr

′3
0 ϵ

′
OM (p′OM ))

and m′
DM,0 = 4

3πr
′3
0 ϵ

′
DM (p′DM ) A solution for the system of equations (4) could

look like Figure 2

Figure 2: Solution of the two fluid TOV equations for a given initial pressure
and ratio. (m in solar masses and p in MeV/fm3)
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2.3 Equation of state
The equation of state (EoS) ϵ(p) of the matter inside the star is needed to solve
the TOV equations (4).

Polytropic equation of state

Different models can be used to describe a compact star. If the matter inside
the star is treated like an ideal Fermi gas, one arrives at polytropic equations
of state. (5) (for a detailed derivation see [6])

p(ϵ) = Kϵ
n+1
n (5)

K is an arbitrary constant and n is called the polytropic index. Different n
represent different physical scenarios. For example the non-relativistic Fermi
gas corresponds to n = 1.5 while the relativistic Fermi gas corresponds to n = 3.
(See Figure 3)

Figure 3: Polytropes for different polytropic indices.

Models using Quantum chromodynamics (QCD)

For ordinary matter, the equation of state from [5] is used in this thesis. (see
Figure 4) While a full nonperturbative calculation of the EoS is not possible
due to the so-called Sign Problem of lattice QCD, they managed to predict the
EoS using chiral effective field theory (EFT) for low pressures and perturbative
QCD (pQCD) for high pressures. There is still an unknown region left between
those limiting cases that can’t be described by either of those two theories.
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Different interpolations using piece-wise polytropic functions are used for this
region which yield many different equations of state. An EoS has to support
all astronomical observations and therefore, the number of possible EoS can be
constrained. First of all, the speed of sound given by c2s,OM =

dp′
OM

dϵ′OM
cannot

exceed the speed of light. Other constraints come, for example, from the
existence of neutron stars with mass 2M⊙, or most recently from gravitational
wave signals caused by neutron star mergers. For more details see [5]

For dark matter, the equation of state from [4] is used. In their approach they
studied a QCD-like theory to avoid the sign problem. In this modified version
the gauge group of QCD SU(3) is replaced by the Lie group G2. To determine
the equation of state they looked at available data from lattice simulations. For
more details see [4]

Figure 4: Plot of the equation of state

2.4 Tidal Deformability
The tidal deformability Λ is a dimensionless parameter describing how a neutron
star is deformed if two neutron stars orbit each other. (It can be determined
experimentally by measuring the gravitational wave singal of a neutron star
merger.)
The tidal deformability Λ can be calculated using equation (6).

2

3

R5

G
k2 = Λ

M5G4

c10
(6)
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k2 is called the second love number and can be calculated using equation (7)
where C = M

R is called the compactness and y is obtained by solving the
differential equation (8) with the initial value y(r′ = 0) = 2.

k2 =
8C5

5
(1− 2C)(2 + 2C(y − 1)− y) · {2C(6− 3y + 3C(5y − 8))+

4C3(13− 11y + C(3y − 2) + 2C2(1 + y))+

3(1− 2C)2(2− y + 2C(y − 1))ln(1− 2C)}−1 (7)

r
dy(r′)

dr′
+ y(r′)2 + y(r′)F (r′) + r′2Q(r) = 0 (8)

F (r′) and Q(r′) are given by (9) and (10) respectively.

F (r′) =
r − 4πr′3((ϵ′OM + ϵ′DM )− (p′OM + p′DM ))

r′ − 2m′(r′)
(9)

Q(r′) =
4πr′(5(ϵ′OM + ϵ′DM ) + 9(p′OM + p′DM ) +

ϵ′OM+pOM′
c2s,OM

+
ϵ′DM+pDM′

c2s,DM
− 6

4πr′2 )

r′ − 2m′(r′)

− 4(
m′ + 4πr′3(p′OM + p′DM )

r′2(1− 2m′

r′ )
) (10)

where m′(r′) = m′
OM (r′) +m′

DM (r′), c2s,OM =
dp′

OM

dϵ′OM
and c2s,DM =

dp′
DM

dϵ′DM

2.5 Observations from gravitational wave signals
The gravitational wave signal of the last moments before two inspiraling neutron
stars merge is called the "chirp signal". Two parameters can be easily determined
from a chirp signal - the chirp mass MC and a combination of the tidal deformabilities
of the inspiraling objects Λ̃. The chirp mass MC is a combination of the
individual masses of the two stars and is given by (11).

MC =
(m1m2)

3
5

(m1 +m2)
1
5

(11)

In 2017 the Laser Interferometer Gravitational-Wave Observatory (LIGO) managed
to measure a gravitational wave signal from a neutron star inspiral for the first
time. LIGO was able to determine the chirp mass of the two stars, the result
was MC = 1.188+0.004

−0.002 M⊙. Additioinally, LIGO constrained the parameter Λ̃

given by (12) to Λ̃ < 800 and the tidal deformabilities of the individual stars to
Λ < 800. [1]

Λ̃ =
16

13

(m1 + 12m2)m
4
1Λ1 + (m2 + 12m1)m

4
2Λ2

(m1 +m2)5
(12)
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3 Calculation & Results
In this chapter, the procedure for analyzing a given equation of state is explained,
and the results for different EoS are shown.

3.1 Mass-Radius relation and stability analysis
Let us first consider a star without any dark matter present. To analyze an EoS
one solves the TOV equations for a range of different central pressures. Every
central pressure leads to a distinct solution like the one in Figure 1. The mass-
radius relation (MRR) is a plot of all the different possible masses and radii
and could look like Figure 5. The central pressure increases along the curve,
starting from the right at large radii. The MRR can be split up into two parts,
the first one between points D and E describing neutron stars, and the second
one to the right of point A describing white dwarfs.

Stability analysis

Not all solutions of the TOV equations are stable and the unstable solutions are
represented by a dashed line in Figure 5. The procedure to determine the stable
solutions works as follows: (for more details see [7]) All of the eigenfrequencies
ω0, ω1, ω2, ... resulting from the Sturm-Liouville eigenvalue equation have to be
real. To check whether those frequencies (or modes) are real, one starts at
a solution for low pressures (somewhere in the white dwarf branch), which is
known to be stable. The pressure is increased until a point where dM

dp0
= 0 is

reached. This occurs at the maximum point A. If at this point dR
dp0

is positive, an
odd mode squared changes sign, if dR

dp0
is negative then an even mode squared

changes sign. At point A the radius is decreasing, therefore an even mode
squared gets negative and the solutions become unstable. At point B the radius
is increasing, and therefore an odd mode squared changes sign. Now both, an
even and an odd mode squared are negative, and the solution is still unstable.
At point C, the radius is increasing and thus the odd mode squared changes
sign and becomes positive again. Finally, at point D, the radius is decreasing
and thus the even mode squared becomes positive again. Now all frequencies
are real, and the solution is stable until the point E is reached.
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Figure 5: A possible mass-radius relation

Dark matter

A star containing both ordinary matter and dark matter is described by an EoS
for ordinary matter ϵ′OM (p′OM ), and an EoS for dark matter ϵ′DM (p′DM ). The
initial values for the TOV equations (4) are the central pressure of ordinary
matter pOM,0 and the ratio r as described in section 2.2. Let’s first consider r
fixed and solve the TOV equations for many different central pressures pOM,0.
Every central pressure leads to a solution like Figure 2 and thus to the masses
and radii of the OM part and the DM part: ROM , RDM , MOM = mOM (ROM ),
MDM = mDM (RDM ). To determine whether a solution is stable, one has to
look at the two mass-radius relations MOM (ROM ) and MDM (RDM ). If the
solution is in the stable regions in both mass-radius relations, then it is overall
stable.
Many different options for the overall MRR are possible, this thesis will focus
mainly on plotting the total mass Mtot = MOM + MDM vs the radius of the
ordinary matter part ROM . Another option would be to plot the mass of the
total star Mtot vs the radius of the total star Rmax = max(ROM , RDM ). The
reason why the former MRR is chosen is that those two quantities Mtot and ROM

can be directly measured. Current radius measurements rely on the observation
of photons and since dark matter does not interact with photons only ROM can
be directly measured. In contrast the radius of the DM part can theoretically
be obtained by observing a dark halo around the neutron star, which appears
if RDM exceeds ROM . However up to this point no experiment observing this
phenomenon has been performed. The total mass of the star can be obtained
through the rotational frequency of two rotating neutron stars.
Up to this point, we have considered the ratio r fixed, if now additionally, r is
varied, this gives rise to a family of curves.
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k2 vs C plots

Other interesting quantities for neutron stars are the tidal deformability Λ and
the second Love number k2 because they can be experimentally constrained by
analyzing gravitational wave signals of merger events. (This thesis will mainly
focus on the second Love number, but this is arbitrary since both quantities are
proportional to each other, and one can be calculated out of the other using
equation (6))
For many different central pressures and a fixed ratio r, additionally to solving
the TOV equations (4), one solves equation (8) and calculates k2 using equation
(7). From the solution of the TOV equations the compactness C = M

R can
be calculated, where M is the total dimensionless mass of the star, and R =
max(ROM , RDM ) is the maximum dimensionless radius of the star. Now, the
second Love number k2 can be plotted against the compactness C of the star.
Again, if r is varied, this results in a family of curves.

3.2 Polytropes
At first, the results for compact stars, which contain only ordinary matter
described by a polytropic EoS (see section 2.3), are shown. Figure 6 is the
mass-radius relation for different polytropic indices and in Figure 7 the second
Love number is plotted against the compactness C = M

R of the star. The n = 0
polytrope (which is very close to the n = 0.01 polytrope in Figure 6) is the
causal limit, this means that there are no solutions allowed on the left of this
curve in the mass-radius relation.

Figure 6: Mass radius relation for the polytropic EoS
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Figure 7: Second Love number vs Compactness plot for polytropic EoS

3.3 Mixed stars
In this section the results for stars containing both ordinary and dark matter are
shown and discussed. The models for the equations of states obtained from QCD
are explained in section 2.3. As explained in section 3.1, every value of r yields a
distinct mass-radius relation. Additionally, the mass of the dark matter particle
MDM can also be varied, which leads to a two dimensional parameter space.
The mass-radius relations and the k2 vs C plots for different parameters can be
seen in Figure 8 and Figure 7, respectively. The unstable parts of the curve are
represented by dashed lines and only the neutron star branch is considered.
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Figure 8: Mass radius relation for different combinations of parameters;
Left figure: In each subplot the ratio is fixed and the mass of the dark matter
particle MDM / GeV is varied. The ratio of r = 0 corresponds to a pure OM
star and a ratio of r = −1 corresponds to a pure DM star.
Right figure: In each subplot the mass of the dark matter particle MDM / MeV
is fixed and the ratio is varied.
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Observations from the mass-radius relation

First, we look at the left panel, where in each subplot the ratio r is fixed.
For a fixed ratio it can be observed that the total mass of the star at first
decreases with increasing mass of the dark matter particle MDM until it reaches
a minimum value of around MDM = 1 GeV, then the mass of the star starts to
increase again with increasing MDM . The same thing happens with the radius
of the star. For a fixed ratio r, at first, the radius of the star decreases with
increasing MDM , until it reaches its minimum around MDM = 1 GeV, then the
radius starts to increase again. These tendencies can be observed for all ratios.
Now we look at the right panel, where in each subplot, the mass of the dark
matter particle MDM is fixed. At first, it can be observed that the mass-radius
relation only really depends on the ratio if MDM is less than 2 GeV. For masses
greater than 2 GeV, the curve looks the same for different ratios. This is due
to the fact that the dark matter starts to decouple from the ordinary matter
once the mass of the dark matter particle is too heavy compared to MN . (The
mass of a neutron is MN = 0.9396 GeV) If MDM is smaller than the mass of
the neutron, the mass of the total star increases as the ratio increases. Once
MDM surpasses the neutron mass, the opposite case can be observed: As the
ratio is increased, both the radius and the mass of the star decrease.
The highest total mass is reached for MDM = 0.25 GeV and r = 4 and is
Mtot = 18.23 M⊙. For this set of parameters, the star is made of 99 % dark
matter. The smallest total mass is reached for the parameters MDM = 1.414
GeV and r = 2.828, and ist Mtot = 0.048 M⊙. In this case the star is made of
approximately 75 % dark matter.
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Figure 9: k2 vs C plots for different combinations of parameters;
Left figure: In each subplot the ratio is fixed and the mass of the dark matter
particle MDM / GeV is varied. The ratio of r = 1 corresponds to a pure OM
star and a ratio of r = −1 corresponds to a pure DM star.
Right figure: In each subplot the mass of the dark matter particle MDM / MeV
is fixed and the ratio is varied.
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Observations from the k2 vs C plots

First, we look at the left panel, where in each subplot the ratio r is fixed. In
each subplot, it can be observed that as MDM is increased, k2 first decreases,
then reaches a minimum and increases again. The maximum value for k2 always
occurs for the highest value of MDM . The mass MDM at which the minimum
value for k2 occurs, seems to change slightly with r: As we go through the
different subplots from top to bottom (increasing r), the mass that leads to the
minimum, increases.
Now we look at the right panel, where in each subplot, the mass of the dark
matter particle MDM is fixed. The same effect, as in the mass-radius relation
occurs, that if MDM is too large compared to the mass of the neutron, the curve
does not depend on the ratio anymore. If MDM is clearly below the mass of the
neutron then k2 increases with increasing ratio, and if MDM is clearly higher
than the neutron mass then k2 decreases with increasing ratio.
The highest value for k2 is reached for MDM = 4 GeV and r = 0.25 and is
k2 = 0.1045.
Another interesting feature in the k2 vs C plots is the appearance of kinks
(sudden changes in the slope of the curve) in some of the curves. To better
understand why those kinks appear, different mass-radius relations are plotted
for fixed parameters r =

√
2 and MDM = 1 GeV in Figure 10. For low central

pressures (right side of the curve), the radius of the MRR is defined by the
radius of the DM star. As the pressure is increased along the curve, a kink
appears. From this point forward, the radius of the star is the radius of the OM
star. Because of the kink in the Mtot vs Rmax curve and because C = Mtot

Rmax
,

there also appears a kink in the k2 vs C plot.

Figure 10: Different mass-radius relations for fixed r and MDM
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Limiting cases

For this discussion, it is best to look at the MRR Mtot(Rmax) instead of Mtot(ROM ).
(see Figure 14 in Appendix A) For high masses of the dark matter particle MDM

(compared to the neutron mass MN = 0.9396 GeV), the MRR and the k2 vs C
plots approach the case of a pure OM star, and for low MDM they approach a
pure DM star. This can easily be seen if one looks at the right panel of Figure 14
and Figure 9 and compares those plots to the pure OM and pure DM cases at
the top of the left panel.
For high ratios r, the MRR and the k2 vs C plots approach the case of a pure
DM star, and for low ratios r they approach a pure OM star. This is most
apparent if one looks at the subplot in Figure 14 and Figure 9 with the mass
of the dark matter particle fixed at MDM = 1 GeV and compares the limiting
cases to the pure OM and pure DM cases at the top of the left panel.

Because r and MDM form a two-dimensional parameter space the results can
be displayed in a three-dimensional plot. From every MRR in Figure 8, the
maximum value is chosen, and the total mass and the OM radius are plotted
as a function of the two parameters. (see Figure 11 left and middle panel)
Analogously, for the k2 vs C plots (Figure 9), the maximum value of every
curve is chosen and plotted as a function of the parameters. (see Figure 11 right
panel)

Figure 11: 3D plots

Observations from the 3D plots

First of all, the ways in which Mtot,ROM and k2 change as the parameters vary,
which are described in the discussion of the MRR and k2 vs C plots above, can
be directly seen in the 3D plots. One more highly interesting feature appears in
the 3D plots: For all three plots, there seems to be one special straight line in
the parameter space for which Mtot, ROM , and k2 have their minimal values.
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Comparison to experimental data

Lastly, the results can be compared to the experimental data measured by LIGO.
(see section 2.5) They constrained the chirp mass to MC = 1.188+0.004

−0.002 M⊙. To
see if the results are consistent with this measurement a Λ-Λ plot is created.
(see Figure 12) To do this, the results for different sets of parameters (fixed r
and MDM ) are searched for pairs of stars, such that their chirp mass is within
the limits given by LIGO. If such a pair is found, the tidal deformabilities of the
two stars are plotted against each other. It can be seen that for ratios smaller
than 1 the results fall well within the 90 % or 50 % credibility lines determined
by LIGO.

Figure 12: Λ-Λ plots for MDM = 0.7071 GeV and different ratios as well as a
pure OM star. Each point in this plot represents two neutron stars with a chirp
mass within MC = 1.188+0.004

−0.002 M⊙. The dotted and dashed lines are the 90%
and 50% credibility limit determined by LIGO.

LIGO also constrained the dimensionless tidal deformability of the individual
neutron stars to Λ < 800. To compare our results to this measurement, the
dimensionless tidal deformability is plotted against the total mass of the star.
(see Figure 13) It can be seen that for most sets of parameters, the results
support stars with a tidal deformability below 800.
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Figure 13: the dimensionless tidal deformability plotted against the total mass
in solar masses for different combinations of parameters;
In each subplot the ratio is fixed and the mass of the dark matter particle MDM

/ GeV is varied. The ratio of r = 1 corresponds to a pure OM star and a ratio
of r = −1 corresponds to a pure DM star.
The dashed line is the limit for the dimensionless tidal deformability determined
by LIGO.
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4 Summary and Outlook
In this work, the influence of dark matter on neutron stars has been studied.
For this purpose, the two-fluid TOV equations were solved using the OM model
from [5] and the DM model from [4]. For different masses of the dark matter
particle and different ratios, the mass-radius relation and k2 vs C plot were
computed. Because the parameter space is two dimensional the results were
also displayed in a three dimensional plot. Finally, the results were compared
to the experimental data from a neutron star merger measured by LIGO.
By analyzing those plots, many tendencies on how the different observables of a
neutron star depend on the mass of the dark matter particle and the ratio were
observed and discussed. The most interesting observation is that there appears
to be a special straight line in the parameter space where a valley appears in
the 3d plots for several different observables for example Mtot, ROM and k2.
Finally, it was found that there are neutron stars containing dark matter that
lie within the experimental constraints given by LIGO. [1]
In the future, the parameter study could be expanded. One could incorporate a
broader range of ratios and masses of the DM particle or use a higher density of
parameter points. Another avenue of investigation is to further constrain and
improve the equations of state.

22



A Further Plots

Figure 14: Mass radius relation for different combinations of parameters;
Left figure: In each subplot the ratio is fixed and the mass of the dark matter
particle MDM / MeV is varied. The ratio of r = 0 corresponds to a pure OM
star and a ratio of r = −1 corresponds to a pure DM star.
Right figure: In each subplot the mass of the dark matter particle MDM / MeV
is fixed and the ratio is varied.
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Figure 15: From every MRR in Figure 8, the maximum value is chosen, and the
different radii are plotted as a function of the two parameters.

Figure 16: From every MRR in Figure 8, the maximum value is chosen, and the
different masses are plotted as a function of the two parameters.

Figure 17: From every MRR in Figure 8, the maximum value is chosen, and the
OM mass/total mass and the DM mass/total mass are plotted.
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Figure 18: From every MRR in Figure 8, the maximum value is chosen, and the
OM radius/maximum radius and the DM radius/maximum radius are plotted.

Figure 19: From every k2 vs C plot in Figure 9, the maximum value is chosen,
and the k2 value is plotted. This is the same plot as in Figure 11 (right panel)
but from a different perspective to highlight the line in the parameter space
where the valley occurs.

B Python Code
The following is the Runge Kutta 4-th order algorithm with adaptive stepsize,
which has been used in this thesis to solve the two fluid TOV equations.

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 """
4 Created on Mo, Mar 6 15:08:17 2023
5
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6 @author: Kevin Radl
7 """
8

9 from cmath import log
10 from shutil import which
11 import numpy as np
12 import matplotlib.pyplot as plt
13 import scipy.constants as const
14 import math as m
15 import scipy.interpolate
16 from scipy.misc import derivative
17

18 A = np.array([[0,0,0,0] , [0.5,0,0,0] , [0,0.5,0,0], [0,0,1,0]])
19 B = np.array([1/6 , 1/3 , 1/3 , 1/6])
20 C = np.array([0 ,0.5 , 0.5 , 1])
21 d=len(B)
22

23 def RK4_calc(func,cur_y,cur_time,eps,termination_factor):
#function to calculate the next Runge Kutta step↪→

24 k = np.zeros((len(y0),d))
25 for j in range(d):
26 sum_1 = np.zeros(len(y0))
27 for l in range(d):
28 sum_1 += A[j,l] * k[:,l]
29 u = cur_time + eps * C[j]
30 v = cur_y + eps*sum_1
31

32 k[:,j] = func(cur_time + eps * C[j], cur_y + eps*sum_1)
33

34 sum_2 = np.zeros(len(y0))
35 for j in range(d):
36 sum_2 += B[j] * k[:,j]
37 y_new = cur_y + eps * sum_2
38 return y_new
39

40

41 def RK4(func,t0,y0,t_max,eps,A,B,C,delta=1e-10): #
main function for the Runge Kutta method with adaptive
stepsize

↪→

↪→

42 print("Starting RK4...")
43 print(f"y0 = {y0}")
44

45 termination_factor = 1e-8
46

47
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48 # time steps and y-values for those time steps are going to
be stored↪→

49 # in the following two arrays
50 t_array = np.array([t0])
51 y_values =

np.array([[y0[0]],[y0[1]],[y0[2]],[y0[3]],[y0[4]]])↪→

52

53 i = 0
54 OM_terminated = False
55 DM_terminated = False
56

57

58 while not OM_terminated or not DM_terminated:
59 cur_time = t_array[i]
60 cur_y = y_values[:,i]
61 print(cur_time)
62 print(cur_y)
63

64

65

66 #Termination Condition:
67 if cur_y[0] < y0[0] * termination_factor and not

OM_terminated:↪→

68 print(f"OM terminated at {cur_time}")
69 OM_terminated = True
70 OM_termination_radius = cur_time
71

72 if cur_y[2] < y0[2] * termination_factor and not
DM_terminated:↪→

73 print(f"cur_y[2] = {cur_y[2]}")
74 print(f"DM terminated at {cur_time}")
75 DM_terminated = True
76 DM_termination_radius = cur_time
77

78

79 err = delta +1
80 while delta < err:
81 dt = eps
82 y_1 =

RK4_calc(func,cur_y,cur_time,eps/2,termination_factor)↪→

83

84 #Termination Condition:
85 if cur_y[0] < y0[0] * termination_factor and not

OM_terminated:↪→

86 print(f"OM terminated at {cur_time}")
87 OM_terminated = True
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88 OM_termination_radius = cur_time
89 if cur_y[2] < y0[2] * termination_factor and not

DM_terminated:↪→

90 print(f"cur_y[2] = {cur_y[2]}")
91 print(f"DM terminated at {cur_time}")
92 DM_terminated = True
93 DM_termination_radius = cur_time
94

95 y_1 =
RK4_calc(func,y_1,cur_time+eps/2,eps/2,termination_factor)↪→

96

97 #Termination Condition:
98 if cur_y[0] < y0[0] * termination_factor and not

OM_terminated:↪→

99 print(f"OM terminated at {cur_time}")
100 OM_terminated = True
101 OM_termination_radius = cur_time
102 if cur_y[2] < y0[2] * termination_factor and not

DM_terminated:↪→

103 print(f"cur_y[2] = {cur_y[2]}")
104 print(f"DM terminated at {cur_time}")
105 DM_terminated = True
106 DM_termination_radius = cur_time
107

108 y_2 =
RK4_calc(func,cur_y,cur_time,eps,termination_factor)↪→

109

110 #Termination Condition:
111 if cur_y[0] < y0[0] * termination_factor and not

OM_terminated:↪→

112 print(f"OM terminated at {cur_time}")
113 OM_terminated = True
114 OM_termination_radius = cur_time
115 if cur_y[2] < y0[2] * termination_factor and not

DM_terminated:↪→

116 print(f"cur_y[2] = {cur_y[2]}")
117 print(f"DM terminated at {cur_time}")
118 DM_terminated = True
119 DM_termination_radius = cur_time
120

121 err = np.linalg.norm(y_2[0:3] - y_1[0:3])/15
122 rho = delta/(err)
123 eps = min(0.9*eps*rho**(1/5),2*eps)
124

125 if cur_time > 1000: #just in case...
126 return t_array[:(i-1)],y_values[:,:i-1],(0,0)
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127

128 if OM_terminated: # If one of the stars is terminated,
the pressure is set to zero (vacuum)↪→

129 y_1[0] = 0
130

131 if DM_terminated:
132 y_1[2]=0
133

134

135 y_new = y_1
136 y_values = np.column_stack((y_values, y_new))
137 t_new = t_array[i] + dt
138 t_array = np.append(t_array, t_new)
139 i += 1
140 print(f"Termination Radii: (OM,DM) = {OM_termination_radius}

and {DM_termination_radius}")↪→

141 return
t_array[:(i-1)],y_values[:,:i-1],(OM_termination_radius,DM_termination_radius)↪→

142

143

144 def read_data(filename): #function to import the
equations of state↪→

145 infile = open(filename)
146 energy_density = []
147 pressure = []
148 lines = infile.readlines()
149 for line in lines:
150 line = line.replace('\n', '')
151 line = line.replace('\t', ' ')
152 line_list = line.split(" ")
153 line_list = [value for value in line_list if value != '']
154 #print(line_list)
155 energy_density.append(float(line_list[0]))
156 pressure.append(float(line_list[1]))
157 return np.array(energy_density), np.array(pressure)
158

159

160

161

162

163

164

165

166

167

168
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169

170 if __name__ == "__main__":
171 print('Start')
172

173 #Defining Constants:
174

175 #using SI units:
176 G = const.gravitational_constant #Gravitational constant
177 c = const.speed_of_light #speed of light
178 M = 1.9891 * 1e30 #mass of the sun in kg
179 m_p = 2.176434 * 1e-8
180 m_f = 1.674927 * 1e-27 #mass of the fermion

(neutron)↪→

181 l_p = 1.616 *1e-35 #m
182

183 hbarc = 197.3 #MeV fm
184 E_N = 1000#939.565 #Mev/c^2
185 p_0 = E_N**4 / hbarc**3
186 m_0 = m_p**3/m_f**2
187 r_0 = l_p*m_p**2/m_f**2
188

189

190

191

#-----------------------------------------------------------------------------↪→

192

193 #Import OM EoS and create a function:
194 energy_density, pressure = read_data("EoS_new.dat")
195 print(energy_density,pressure)
196

197 energy_density_dimless = energy_density / p_0
198 pressure_dimless = pressure / p_0
199 EoS =

scipy.interpolate.interp1d(pressure_dimless,energy_density_dimless,
fill_value='extrapolate')

↪→

↪→

200

201

#-----------------------------------------------------------------------------↪→

202

203 #Import DM EoS and create a function:
204 pressure_DM,energy_density_DM = read_data("EoS_G2_new.dat")
205 print(energy_density_DM,pressure_DM)
206

207

30



208 EoS_DM =
scipy.interpolate.interp1d(pressure_DM,energy_density_DM,
fill_value='extrapolate')

↪→

↪→

209

210

#-----------------------------------------------------------------------------↪→

211

212

213 #implementation of the derivative using interpolation and
scipy derivative↪→

214 p = np.logspace(-18,3,10000)
215 eps_DM = np.zeros(len(p))
216 for i,cur_p in enumerate(p):
217 eps_DM[i] = EoS_DM(cur_p)
218

219 EoS_DM_2 =
scipy.interpolate.interp1d(eps_DM,p,fill_value='extrapolate')↪→

220

221 def Q(r,p_OM,p_DM,m_OM,m_DM):
222 c_s_OM = derivative(EoS, p_OM, dx=1e-18)**(-1)
223 c_s_DM = derivative(EoS_DM, p_DM, dx=1e-18)**(-1)
224 if c_s_OM == 0:
225 OM_term = 0
226 else:
227 OM_term = (EoS(p_OM) + p_OM)/c_s_OM
228 if c_s_DM == 0:
229 DM_term = 0
230 else:
231 DM_term = (EoS_DM(p_DM) + p_DM)/c_s_DM
232 aa = (4*np.pi*r*( 5*(EoS(p_OM)+EoS_DM(p_DM)) + 9*(p_OM

+ p_DM) + OM_term + DM_term - 6/(4*np.pi*r**2)))↪→

233 bb = (r-2*m_OM-2*m_DM)
234 cc = 4*((m_OM + m_DM+4*np.pi*r**3*(p_OM +

p_DM))/(r**2*(1-2*(m_OM+m_DM)/r)))**2↪→

235 return aa/bb - cc
236

237

238

239 def F(r,p_OM,p_DM,m_OM,m_DM):
240 return (r - 4*np.pi*r**3*((EoS_DM(p_DM) +

EoS(p_OM))-(p_DM+p_OM)))/(r-2*(m_OM+m_DM))↪→

241

242

243 #Define differential equation
244 #y[1] = m_OM y[0] = p_OM y[3] = m_DM y[2] = p_DM
245 def func(t,y):
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246 dvdr = (y[1] + y[3] + 4 * np.pi*t**3*(y[0] + y[2])) /
(t*(t-2*(y[1] + y[3])))↪→

247 return np.array( [-(y[0] + EoS(y[0]))*dvdr , 4 *
np.pi * t**2 * EoS(y[0]) , -(y[2] +
EoS_DM(y[2]))*dvdr , 4 * np.pi * t**2 *
EoS_DM(y[2]) , -1/t*(y[4]**2
+y[4]*F(t,y[0],y[2],y[1],y[3]) +
t**2*Q(t,y[0],y[2],y[1],y[3]))])

↪→

↪→

↪→

↪→

↪→

248

249

250 small_initial_radius = 1e-3
251 N = 100 # Number of data points per set off parameters.
252 path = r"/Users/kevin/Desktop/Studium/Bachelorarbeit/Finale

Berechnungen/New_EoS_OM_DM_r=1_data/"↪→

253 filename_start = "final_calculations_testfile"
254

255

256 with open(path+"README"+".txt","w") as f:
257 print('initial_pressure_OM dimensionless

initial_pressure_DM dimensionless radius_OM in km
radius_DM in km mass_OM in sun masses mass_DM in
sun masses compactness second_love_num tidal
deformability',file = f)

↪→

↪→

↪→

↪→

258

259

260

261

262

#-----------------------------------------------------------------------------↪→

263 #creating the List of parameters which should be calculated
264

265 #starting parameters: r=1 M=1 GeV
266 parameters = [] #(r,M) M in GeV
267 power = 0
268 ratios = []
269 for i in range(-power,power+1):
270 ratios.append(2**i)
271

272 #carteasian product
273 for i1 in ratios:
274 for i2 in ratios:
275 parameters.append((i1,i2))
276

277 def delete_parameters(parameters,cur_power): # delete
already calculated parameters↪→

278 delete_list=[]
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279 for par in parameters:
280 if not(par[0]==2**cur_power or par[1]==2**cur_power

or par[0]==2**(-cur_power) or
par[1]==2**(-cur_power)):

↪→

↪→

281 delete_list.append(par)
282 for par in delete_list:
283 parameters.remove(par)
284 return parameters
285

286 #parameters = delete_parameters(parameters,2)
287 print(ratios)
288 parameters = [(1,0.5),(1,1),(1,2)]
289 print(parameters)
290

291

292

#-----------------------------------------------------------------------------↪→

293

294

295 for ratio,M_DM in parameters: # Main loop over the
different parameters↪→

296 filename = path + filename_start + f"_r_{ratio}" +
f"_M_DM_{M_DM}" +".txt"↪→

297

298 hbarc = 197.3 #MeV fm
299 E_N = 1000 * M_DM#939.565 #Mev/c^2
300 m_f = E_N / (5.609586167219 * 10**29)
301 p_0 = E_N**4 / hbarc**3
302 m_0 = m_p**3/m_f**2
303 r_0 = l_p*m_p**2/m_f**2
304

305 energy_density_dimless = energy_density / p_0
306 pressure_dimless = pressure / p_0
307 EoS = scipy.interpolate.interp1d(pressure_dimless,

energy_density_dimless,fill_value='extrapolate')↪→

308

309

310 for i,initial_pressure_OM in
enumerate(np.logspace(-7,-1,N)): #loop over
different central pressures and calculating all
relevant quantities

↪→

↪→

↪→

311

312 initial_pressure_DM = initial_pressure_OM * ratio
313 initial_mass_OM = 4*np.pi/3 * small_initial_radius**3

* EoS(initial_pressure_OM)↪→
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314 initial_mass_DM = 4*np.pi/3 * small_initial_radius**3
* EoS_DM(initial_pressure_DM)↪→

315

316 y0 = np.array([initial_pressure_OM,initial_mass_OM,
initial_pressure_DM,initial_mass_DM,2])↪→

317

318 r,y,r_termination = RK4(func,small_initial_radius,y0,
small_initial_radius*1e6,small_initial_radius*5,A,B,C)↪→

319 #y[1] = m_OM y[0] = p_OM y[3]
= m_DM y[2] = p_DM
y[4]=y_tidaldef

↪→

↪→

320

321 y_tidaldef=y[4,-1]
322 C_tidaldef = (y[1,-1] + y[3,-1]) /

max(r_termination[0],r_termination[1])↪→

323 second_love_number = 8*C_tidaldef**5 / 5 *
(1-2*C_tidaldef)**2 *
(2+2*C_tidaldef*(y_tidaldef-1)-y_tidaldef)*
(2*C_tidaldef*(6-3*y_tidaldef+3*C_tidaldef*(5*y_tidaldef-8))
+ 4*C_tidaldef**3*(13-11*y_tidaldef +
C_tidaldef*(3*y_tidaldef-2) +
2*C_tidaldef**2*(1+y_tidaldef)) +
3*(1-2*C_tidaldef)**2 *
(2-y_tidaldef+2*C_tidaldef*(y_tidaldef-1))*np.log(1-2*C_tidaldef))**(-1)

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

324 gamma_tidaldef = 2/3 * (y[1,-1] + y[3,-1])**(-5) *
max(r_termination[0],r_termination[1])**(5) *
second_love_number #*(G**(-5)* c**(10))

↪→

↪→

325

326 print(f"OM-Mass = {y[1,-1]}, DM-Mass = {y[3,-1]} and
Radius = {r_termination}")↪→

327 print(f"OM-Mass in sun masses = {y[1,-1]*m_0 / M},
DM-Mass in sun masses= {y[3,-1]*m_0 / M} ,
OM-Radius in km = {r_termination[0] * r_0 /1000}
and DM-Radius in km = {r_termination[1] * r_0
/1000}")

↪→

↪→

↪→

↪→

328

329 with open(filename,"a") as f:
330 print(f"{initial_pressure_OM}

{initial_pressure_DM} {r_termination[0]*
r_0 /1000} {r_termination[1]* r_0 /1000}
{y[1,-1]*m_0 / M} {y[3,-1]*m_0 / M}
{C_tidaldef} {second_love_number}
{gamma_tidaldef}",file=f)

↪→

↪→

↪→

↪→

↪→
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