

Dark Matter in Neutron Stars

Bachelor Thesis

Kevin Radl 12026249

supervised by:

Axel Maas

cosupervised by:

Yannick Dengler

Department of Physics University of Graz 2023

Abstract

It is estimated that most of the mass of the universe appears in the form of dark matter. Because neutron stars could contain a mixture of dark and ordinary matter, their extreme conditions make them interesting cosmic laboratories for studying the nature of dark matter particles. This thesis studies observable properties of neutron stars like the mass, the radius, or the second Love number of the star and how those observables are influenced by dark matter inside the star. For ordinary matter, the equation of state developed in [5] is used, and for dark matter, the equation of state from [4] is used. Using those two models for ordinary and dark matter, the two-fluid Tolman-Oppenheimer-Volkoff equations are solved using a 4th-order Runge Kutta algorithm with adaptive step size. For different sets of parameters, the mass-radius relation and plots of the second Love number over the Compactness are presented and investigated further. At the end, the results are compared to experimental data.

Contents

1	Intr	oduction to Compact stars and Dark matter	4	
	1.1	Compact stars	4	
	1.2	Dark matter	4	
2	Mathematical theory			
	2.1	Tolmann-Oppenheimer-Volkoff Equation	5	
	2.2	Dark Matter	6	
	2.3	Equation of state	8	
	2.4	Tidal Deformability	9	
	2.5	Observations from gravitational wave signals	10	
3	Calculation & Results			
	3.1	Mass-Radius relation and stability analysis	11	
	3.2	Polytropes	13	
	3.3	Mixed stars	14	
4	Sun	nmary and Outlook	22	
Α	Further Plots		23	
в	Pyt	hon Code	25	

1 Introduction to Compact stars and Dark matter

This thesis aims to understand dark matter in neutron stars, connecting two seemingly separate fields, namely particle physics and general relativity. This chapter is a short introduction to compact objects (for example neutron stars), dark matter in general and the possibility of dark matter in compact objects.

1.1 Compact stars

The term compact star or compact object is used collectively for stars that have a much higher density than ordinary stars. Examples of compact stars are white dwarfs and neutron stars. The latter will be the main focus of this thesis.

White dwarfs, neutron stars and black holes are the final stages of the evolution of most ordinary stars. In ordinary stars, the gravitational pull trying to contract the star is counteracted by the thermal pressure. The thermal energy stems from fusion reactions in the core of the star. Once all the elements for which fusion is an exothermic reaction are used, the star explodes in a supernova. What is left of the star is either a white dwarf, a neutron stars or a black hole depending on the previous mass of the star.

The name neutron star stems from the fact that this star consists mostly of neutrons. The gravitational pressure causes the protons and electrons to merge into neutrons. The neutron star counteracts the gravitational pull with the degeneracy pressure. This pressure is the result of the fact that neutrons are fermions and obey the Pauli principle. They cannot all occupy the same quantum state and this results in a repulsive interaction between the neutrons. (For further details see [6] and [3])

1.2 Dark matter

Many astronomical phenomena cannot be explained within the current standard model. This led physicists to believe that there is a new form of matter called dark matter (DM). Examples are the flatness of the universe or the fact that ordinary matter (OM) is subject to greater gravitational forces than the visible mass would exert. This type of matter does not interact with photons and therefore cannot be directly observed, hence the name dark matter. It is believed that the majority of the universe 's mass appears in the form of DM. The exact nature of DM is still subject to much speculation. There are different methods to detect DM using particle accelerators or scattering experiments, but this thesis studies the properties of DM by investigating the effect the presence of DM has on neutron stars.

In recent years gravitational waves caused by mergers of two neutron stars orbiting each other have been detected. The gravitational wave signals of such merger events depend on the deformation of the binary neutron star system in the inspiral stage. Therefore the tidal deformability of the stars can be extracted from the gravitational wave signals. Because the tidal deformability changes with the amount of DM present in the stars, it is possible to gain insight into the properties of DM from these gravitational wave signals. (For further details see [2] and [3])

2 Mathematical theory

This chapter summarizes the mathematical formulas needed for this thesis.

2.1 Tolmann-Oppenheimer-Volkoff Equation

There are two forces acting on a neutron star, the gravitational pull and the degeneracy pressure. The Tolmann-Oppenheimer-Volkoff (TOV) equation (1) describes the equilibrium of these two forces for a spherically symmetric, non-rotating and electrically neutral object. [6] For a detailed introduction and derivation see [3]

$$\frac{dp}{dr} = -\frac{G\epsilon(r)m(r)}{c^2r^2}\left(1 + \frac{p(r)}{\epsilon(r)}\right)\left(1 + \frac{4\pi r^3 p(r)}{m(r)c^2}\right)\left(1 - \frac{2Gm(r)}{c^2r}\right)^{-1}$$
(1)

Here r is the radial distance from the center of the star, p(r) is the pressure at radius r, $\epsilon(r)$ is the energy density, m(r) is the integrated mass and c is the speed of light.

The dimensionless pressure p', energy density ϵ' , mass m' and radius r' are defined by $p = p' \frac{m_F^4 c^8}{(\hbar c)^3}$, $\epsilon = \epsilon' \frac{m_F^4 c^8}{(\hbar c)^3}$, $m = m' \frac{m_p^3}{m_F^2}$ and $r = r' \frac{l_p m_p}{m_F^2}$ where m_F is the mass of the fermion (neutron mass), m_p and l_p are the Planck mass and Planck length and \hbar is Planck's constant. Using these dimensionless quantities one can rewrite the TOV equation to obtain (2).

$$\frac{dp'}{dr'} = -\frac{(\epsilon' + p')(m' + 4\pi {r'}^3 p')}{r'(r' - 2m)}$$
(2)

To solve for the mass and the radius of the star a second equation is needed. The change of the integrated mass is given by $dm = 4\pi\rho r^2 dr$. Using $\rho = \frac{\epsilon}{c^2}$ and substituting the dimensionless quantities one arrives at the following equation:

$$\frac{dm'}{dr'} = 4\pi r'^2 \epsilon' \tag{3}$$

The total mass of the star is M = m(r = R) where R is the radius of the star.

Equations (2) and (3) form a system of coupled differential equations. Given an equation of state $\epsilon'(p')$ and an initial pressure p'_0 this system of equations can be solved numerically. In this thesis a Runge Kutta 4th Order algorithm with adaptive step size is used for this purpose. (Note that because the system is two dimensional a second initial value for the mass is required. This initial mass

is not independent from the initial pressure and is given by $m'_0 = \frac{4}{3}\pi r_0^{\prime 3}\epsilon'(p'_0)$ where r_0 is a small radius element and the starting point of the Runge Kutta method.) The algorithm terminates the Runge Kutta method once the pressure is as close to zero as desired. A solution could look like Figure 1

Figure 1: Solution of the TOV equations for a given initial pressure. (m in solar masses and p in Pa)

The radius of the neutron star R is the point where the pressure reaches zero and we end up in vacuum.

2.2 Dark Matter

Dark matter in neutron stars can be treated in exactly the same way as ordinary matter. Because the two different types of matter influence each other the neutron star is described by a system of four coupled differential equations. (4)

$$\frac{dp'_{OM}}{dr'} = -(p'_{OM} + \epsilon'_{OM})\frac{d\nu}{dr'}
\frac{dm'_{OM}}{dr'} = 4\pi\epsilon'_{OM}r'^2
\frac{dp'_{DM}}{dr'} = -(p'_{DM} + \epsilon'_{DM})\frac{d\nu}{dr'}
\frac{dm'_{DM}}{dr'} = 4\pi\epsilon'_{DM}r'^2
\frac{d\nu}{dr'} = \frac{(m'_{OM} + m'_{DM}) + 4\pi r'^3(p'_{OM} + p'_{DM}))}{r'(r' - 2(m'_{OM} + m'_{DM}))}$$
(4)

Instead of using the initial pressures of ordinary and dark matter as the two independent initial values, in this thesis the initial pressure of ordinary matter $p'_{OM,0}$ and the ratio $r = \frac{p'_{DM,0}}{p'_{OM,0}}$ are used as initial conditions. Given $p'_{OM,0}$ and r as well as two equations of state for ordinary and dark matter $\epsilon'_{OM}(p'_{OM})$ and $\epsilon'_{DM}(p'_{DM})$ one can calculate the four initial values needed to solve the four dimensional system of equations: $p'_{OM,0}$, $p'_{DM,0}$, $m'_{OM,0} = \frac{4}{3}\pi r_0^{'3}\epsilon'_{OM}(p'_{OM})$) and $m'_{DM,0} = \frac{4}{3}\pi r_0^{'3}\epsilon'_{DM}(p'_{DM})$ A solution for the system of equations (4) could look like Figure 2

Figure 2: Solution of the two fluid TOV equations for a given initial pressure and ratio. (m in solar masses and p in MeV/fm^3)

2.3 Equation of state

The equation of state (EoS) $\epsilon(p)$ of the matter inside the star is needed to solve the TOV equations (4).

Polytropic equation of state

Different models can be used to describe a compact star. If the matter inside the star is treated like an ideal Fermi gas, one arrives at polytropic equations of state. (5) (for a detailed derivation see [6])

$$p(\epsilon) = K \epsilon^{\frac{n+1}{n}} \tag{5}$$

K is an arbitrary constant and n is called the polytropic index. Different n represent different physical scenarios. For example the non-relativistic Fermi gas corresponds to n = 1.5 while the relativistic Fermi gas corresponds to n = 3. (See Figure 3)

Figure 3: Polytropes for different polytropic indices.

Models using Quantum chromodynamics (QCD)

For ordinary matter, the equation of state from [5] is used in this thesis. (see Figure 4) While a full nonperturbative calculation of the EoS is not possible due to the so-called Sign Problem of lattice QCD, they managed to predict the EoS using chiral effective field theory (EFT) for low pressures and perturbative QCD (pQCD) for high pressures. There is still an unknown region left between those limiting cases that can't be described by either of those two theories.

Different interpolations using piece-wise polytropic functions are used for this region which yield many different equations of state. An EoS has to support all astronomical observations and therefore, the number of possible EoS can be constrained. First of all, the speed of sound given by $c_{s,OM}^2 = \frac{dp'_{OM}}{d\epsilon'_{OM}}$ cannot exceed the speed of light. Other constraints come, for example, from the existence of neutron stars with mass $2M_{\odot}$, or most recently from gravitational wave signals caused by neutron star mergers. For more details see [5]

For dark matter, the equation of state from [4] is used. In their approach they studied a QCD-like theory to avoid the sign problem. In this modified version the gauge group of QCD SU(3) is replaced by the Lie group G_2 . To determine the equation of state they looked at available data from lattice simulations. For more details see [4]

Figure 4: Plot of the equation of state

2.4 Tidal Deformability

The tidal deformability Λ is a dimensionless parameter describing how a neutron star is deformed if two neutron stars orbit each other. (It can be determined experimentally by measuring the gravitational wave singal of a neutron star merger.)

The tidal deformability Λ can be calculated using equation (6).

$$\frac{2}{3}\frac{R^5}{G}k_2 = \Lambda \frac{M^5 G^4}{c^{10}} \tag{6}$$

 k_2 is called the second love number and can be calculated using equation (7) where $C = \frac{M}{R}$ is called the compactness and y is obtained by solving the differential equation (8) with the initial value y(r'=0) = 2.

$$k_{2} = \frac{8C^{5}}{5}(1-2C)(2+2C(y-1)-y) \cdot \{2C(6-3y+3C(5y-8)) + 4C^{3}(13-11y+C(3y-2)+2C^{2}(1+y)) + 3(1-2C)^{2}(2-y+2C(y-1))ln(1-2C)\}^{-1}$$
(7)

$$r\frac{dy(r')}{dr'} + y(r')^2 + y(r')F(r') + r'^2Q(r) = 0$$
(8)

F(r') and Q(r') are given by (9) and (10) respectively.

$$F(r') = \frac{r - 4\pi r'^3((\epsilon'_{OM} + \epsilon'_{DM}) - (p'_{OM} + p'_{DM}))}{r' - 2m'(r')}$$
(9)

$$Q(r') = \frac{4\pi r'(5(\epsilon'_{OM} + \epsilon'_{DM}) + 9(p'_{OM} + p'_{DM}) + \frac{\epsilon'_{OM} + p_{OM'}}{c^2_{s,OM}} + \frac{\epsilon'_{DM} + p_{DM'}}{c^2_{s,DM}} - \frac{6}{4\pi r'^2})}{r' - 2m'(r')} - 4(\frac{m' + 4\pi r'^3(p'_{OM} + p'_{DM})}{r'^2(1 - \frac{2m'}{r'})})$$
(10)

where $m'(r') = m'_{OM}(r') + m'_{DM}(r')$, $c_{s,OM}^2 = \frac{dp'_{OM}}{d\epsilon'_{OM}}$ and $c_{s,DM}^2 = \frac{dp'_{DM}}{d\epsilon'_{DM}}$

2.5 Observations from gravitational wave signals

The gravitational wave signal of the last moments before two inspiraling neutron stars merge is called the "chirp signal". Two parameters can be easily determined from a chirp signal - the chirp mass M_C and a combination of the tidal deformabilities of the inspiraling objects $\tilde{\Lambda}$. The chirp mass M_C is a combination of the individual masses of the two stars and is given by (11).

$$M_C = \frac{(m_1 m_2)^{\frac{3}{5}}}{(m_1 + m_2)^{\frac{1}{5}}} \tag{11}$$

In 2017 the Laser Interferometer Gravitational-Wave Observatory (LIGO) managed to measure a gravitational wave signal from a neutron star inspiral for the first time. LIGO was able to determine the chirp mass of the two stars, the result was $M_C = 1.188^{+0.004}_{-0.002} M_{\odot}$. Additionally, LIGO constrained the parameter $\tilde{\Lambda}$ given by (12) to $\tilde{\Lambda} < 800$ and the tidal deformabilities of the individual stars to $\Lambda < 800$. [1]

$$\tilde{\Lambda} = \frac{16}{13} \frac{(m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_1)m_2^4 \Lambda_2}{(m_1 + m_2)^5}$$
(12)

3 Calculation & Results

In this chapter, the procedure for analyzing a given equation of state is explained, and the results for different EoS are shown.

3.1 Mass-Radius relation and stability analysis

Let us first consider a star without any dark matter present. To analyze an EoS one solves the TOV equations for a range of different central pressures. Every central pressure leads to a distinct solution like the one in Figure 1. The mass-radius relation (MRR) is a plot of all the different possible masses and radii and could look like Figure 5. The central pressure increases along the curve, starting from the right at large radii. The MRR can be split up into two parts, the first one between points D and E describing neutron stars, and the second one to the right of point A describing white dwarfs.

Stability analysis

Not all solutions of the TOV equations are stable and the unstable solutions are represented by a dashed line in Figure 5. The procedure to determine the stable solutions works as follows: (for more details see [7]) All of the eigenfrequencies $\omega_0, \omega_1, \omega_2, \ldots$ resulting from the Sturm-Liouville eigenvalue equation have to be real. To check whether those frequencies (or modes) are real, one starts at a solution for low pressures (somewhere in the white dwarf branch), which is known to be stable. The pressure is increased until a point where $\frac{dM}{dp_0} = 0$ is reached. This occurs at the maximum point A. If at this point $\frac{dR}{dp_0}$ is positive, an odd mode squared changes sign, if $\frac{dR}{dp_0}$ is negative then an even mode squared changes sign. At point A the radius is decreasing, therefore an even mode squared gets negative and the solutions become unstable. At point B the radius is increasing, and therefore an odd mode squared changes sign. Now both, an even and an odd mode squared are negative, and the solution is still unstable. At point C, the radius is increasing and thus the odd mode squared changes negative again. Finally, at point D, the radius is decreasing and thus the even mode squared becomes positive again. Now all frequencies are real, and the solution is stable until the point E is reached.

Figure 5: A possible mass-radius relation

Dark matter

A star containing both ordinary matter and dark matter is described by an EoS for ordinary matter $\epsilon'_{OM}(p'_{OM})$, and an EoS for dark matter $\epsilon'_{DM}(p'_{DM})$. The initial values for the TOV equations (4) are the central pressure of ordinary matter $p_{OM,0}$ and the ratio r as described in section 2.2. Let's first consider r fixed and solve the TOV equations for many different central pressures $p_{OM,0}$. Every central pressure leads to a solution like Figure 2 and thus to the masses and radii of the OM part and the DM part: R_{OM} , R_{DM} , $M_{OM} = m_{OM}(R_{OM})$, $M_{DM} = m_{DM}(R_{DM})$. To determine whether a solution is stable, one has to look at the two mass-radius relations $M_{OM}(R_{OM})$ and $M_{DM}(R_{DM})$. If the solution is in the stable regions in both mass-radius relations, then it is overall stable.

Many different options for the overall MRR are possible, this thesis will focus mainly on plotting the total mass $M_{tot} = M_{OM} + M_{DM}$ vs the radius of the ordinary matter part R_{OM} . Another option would be to plot the mass of the total star M_{tot} vs the radius of the total star $R_{max} = \max(R_{OM}, R_{DM})$. The reason why the former MRR is chosen is that those two quantities M_{tot} and R_{OM} can be directly measured. Current radius measurements rely on the observation of photons and since dark matter does not interact with photons only R_{OM} can be directly measured. In contrast the radius of the DM part can theoretically be obtained by observing a dark halo around the neutron star, which appears if R_{DM} exceeds R_{OM} . However up to this point no experiment observing this phenomenon has been performed. The total mass of the star can be obtained through the rotational frequency of two rotating neutron stars.

Up to this point, we have considered the ratio r fixed, if now additionally, r is varied, this gives rise to a family of curves.

k_2 vs C plots

Other interesting quantities for neutron stars are the tidal deformability Λ and the second Love number k_2 because they can be experimentally constrained by analyzing gravitational wave signals of merger events. (This thesis will mainly focus on the second Love number, but this is arbitrary since both quantities are proportional to each other, and one can be calculated out of the other using equation (6))

For many different central pressures and a fixed ratio r, additionally to solving the TOV equations (4), one solves equation (8) and calculates k_2 using equation (7). From the solution of the TOV equations the compactness $C = \frac{M}{R}$ can be calculated, where M is the total dimensionless mass of the star, and $R = max(R_{OM}, R_{DM})$ is the maximum dimensionless radius of the star. Now, the second Love number k_2 can be plotted against the compactness C of the star. Again, if r is varied, this results in a family of curves.

3.2 Polytropes

At first, the results for compact stars, which contain only ordinary matter described by a polytropic EoS (see section 2.3), are shown. Figure 6 is the mass-radius relation for different polytropic indices and in Figure 7 the second Love number is plotted against the compactness $C = \frac{M}{R}$ of the star. The n = 0 polytrope (which is very close to the n = 0.01 polytrope in Figure 6) is the causal limit, this means that there are no solutions allowed on the left of this curve in the mass-radius relation.

Figure 6: Mass radius relation for the polytropic EoS

Figure 7: Second Love number vs Compactness plot for polytropic EoS

3.3 Mixed stars

In this section the results for stars containing both ordinary and dark matter are shown and discussed. The models for the equations of states obtained from QCD are explained in section 2.3. As explained in section 3.1, every value of r yields a distinct mass-radius relation. Additionally, the mass of the dark matter particle M_{DM} can also be varied, which leads to a two dimensional parameter space. The mass-radius relations and the k_2 vs C plots for different parameters can be seen in Figure 8 and Figure 7, respectively. The unstable parts of the curve are represented by dashed lines and only the neutron star branch is considered.

Figure 8: Mass radius relation for different combinations of parameters; Left figure: In each subplot the ratio is fixed and the mass of the dark matter particle M_{DM} / GeV is varied. The ratio of r = 0 corresponds to a pure OM star and a ratio of r = -1 corresponds to a pure DM star.

Right figure: In each subplot the mass of the dark matter particle M_{DM} / MeV is fixed and the ratio is varied.

Observations from the mass-radius relation

First, we look at the left panel, where in each subplot the ratio r is fixed. For a fixed ratio it can be observed that the total mass of the star at first decreases with increasing mass of the dark matter particle M_{DM} until it reaches a minimum value of around $M_{DM} = 1$ GeV, then the mass of the star starts to increase again with increasing M_{DM} . The same thing happens with the radius of the star. For a fixed ratio r, at first, the radius of the star decreases with increasing M_{DM} , until it reaches its minimum around $M_{DM} = 1$ GeV, then the radius starts to increase again. These tendencies can be observed for all ratios. Now we look at the right panel, where in each subplot, the mass of the dark matter particle M_{DM} is fixed. At first, it can be observed that the mass-radius relation only really depends on the ratio if M_{DM} is less than 2 GeV. For masses greater than 2 GeV, the curve looks the same for different ratios. This is due to the fact that the dark matter starts to decouple from the ordinary matter once the mass of the dark matter particle is too heavy compared to M_N . (The mass of a neutron is $M_N = 0.9396$ GeV) If M_{DM} is smaller than the mass of the neutron, the mass of the total star increases as the ratio increases. Once M_{DM} surpasses the neutron mass, the opposite case can be observed: As the ratio is increased, both the radius and the mass of the star decrease.

The highest total mass is reached for $M_{DM} = 0.25$ GeV and r = 4 and is $M_{tot} = 18.23 \text{ M}_{\odot}$. For this set of parameters, the star is made of 99 % dark matter. The smallest total mass is reached for the parameters $M_{DM} = 1.414$ GeV and r = 2.828, and ist $M_{tot} = 0.048 \text{ M}_{\odot}$. In this case the star is made of approximately 75 % dark matter.

Figure 9: k_2 vs C plots for different combinations of parameters; Left figure: In each subplot the ratio is fixed and the mass of the dark matter particle M_{DM} / GeV is varied. The ratio of r = 1 corresponds to a pure OM star and a ratio of r = -1 corresponds to a pure DM star. Right figure: In each subplot the mass of the dark matter particle M_{DM} / MeV is fixed and the ratio is varied.

Observations from the k2 vs C plots

First, we look at the left panel, where in each subplot the ratio r is fixed. In each subplot, it can be observed that as M_{DM} is increased, k_2 first decreases, then reaches a minimum and increases again. The maximum value for k_2 always occurs for the highest value of M_{DM} . The mass M_{DM} at which the minimum value for k_2 occurs, seems to change slightly with r: As we go through the different subplots from top to bottom (increasing r), the mass that leads to the minimum, increases.

Now we look at the right panel, where in each subplot, the mass of the dark matter particle M_{DM} is fixed. The same effect, as in the mass-radius relation occurs, that if M_{DM} is too large compared to the mass of the neutron, the curve does not depend on the ratio anymore. If M_{DM} is clearly below the mass of the neutron then k_2 increases with increasing ratio, and if M_{DM} is clearly higher than the neutron mass then k_2 decreases with increasing ratio.

The highest value for k_2 is reached for $M_{DM} = 4$ GeV and r = 0.25 and is $k_2 = 0.1045$.

Another interesting feature in the k_2 vs C plots is the appearance of kinks (sudden changes in the slope of the curve) in some of the curves. To better understand why those kinks appear, different mass-radius relations are plotted for fixed parameters $r = \sqrt{2}$ and $M_{DM} = 1$ GeV in Figure 10. For low central pressures (right side of the curve), the radius of the MRR is defined by the radius of the DM star. As the pressure is increased along the curve, a kink appears. From this point forward, the radius of the star is the radius of the OM star. Because of the kink in the M_{tot} vs R_{max} curve and because $C = \frac{M_{tot}}{R_{max}}$, there also appears a kink in the k_2 vs C plot.

Figure 10: Different mass-radius relations for fixed r and M_{DM}

Limiting cases

For this discussion, it is best to look at the MRR $M_{tot}(R_{max})$ instead of $M_{tot}(R_{OM})$. (see Figure 14 in Appendix A) For high masses of the dark matter particle M_{DM} (compared to the neutron mass $M_N = 0.9396$ GeV), the MRR and the k_2 vs Cplots approach the case of a pure OM star, and for low M_{DM} they approach a pure DM star. This can easily be seen if one looks at the right panel of Figure 14 and Figure 9 and compares those plots to the pure OM and pure DM cases at the top of the left panel.

For high ratios r, the MRR and the k_2 vs C plots approach the case of a pure DM star, and for low ratios r they approach a pure OM star. This is most apparent if one looks at the subplot in Figure 14 and Figure 9 with the mass of the dark matter particle fixed at $M_{DM} = 1$ GeV and compares the limiting cases to the pure OM and pure DM cases at the top of the left panel.

Because r and M_{DM} form a two-dimensional parameter space the results can be displayed in a three-dimensional plot. From every MRR in Figure 8, the maximum value is chosen, and the total mass and the OM radius are plotted as a function of the two parameters. (see Figure 11 left and middle panel) Analogously, for the k_2 vs C plots (Figure 9), the maximum value of every curve is chosen and plotted as a function of the parameters. (see Figure 11 right panel)

Figure 11: 3D plots

Observations from the 3D plots

First of all, the ways in which M_{tot}, R_{OM} and k_2 change as the parameters vary, which are described in the discussion of the MRR and k_2 vs C plots above, can be directly seen in the 3D plots. One more highly interesting feature appears in the 3D plots: For all three plots, there seems to be one special straight line in the parameter space for which M_{tot} , R_{OM} , and k_2 have their minimal values.

Comparison to experimental data

Lastly, the results can be compared to the experimental data measured by LIGO. (see section 2.5) They constrained the chirp mass to $M_C = 1.188^{+0.004}_{-0.002} M_{\odot}$. To see if the results are consistent with this measurement a Λ - Λ plot is created. (see Figure 12) To do this, the results for different sets of parameters (fixed r and M_{DM}) are searched for pairs of stars, such that their chirp mass is within the limits given by LIGO. If such a pair is found, the tidal deformabilities of the two stars are plotted against each other. It can be seen that for ratios smaller than 1 the results fall well within the 90 % or 50 % credibility lines determined by LIGO.

Figure 12: Λ - Λ plots for $M_{DM} = 0.7071$ GeV and different ratios as well as a pure OM star. Each point in this plot represents two neutron stars with a chirp mass within $M_C = 1.188^{+0.004}_{-0.002} M_{\odot}$. The dotted and dashed lines are the 90% and 50% credibility limit determined by LIGO.

LIGO also constrained the dimensionless tidal deformability of the individual neutron stars to $\Lambda < 800$. To compare our results to this measurement, the dimensionless tidal deformability is plotted against the total mass of the star. (see Figure 13) It can be seen that for most sets of parameters, the results support stars with a tidal deformability below 800.

Figure 13: the dimensionless tidal deformability plotted against the total mass in solar masses for different combinations of parameters;

In each subplot the ratio is fixed and the mass of the dark matter particle M_{DM} / GeV is varied. The ratio of r = 1 corresponds to a pure OM star and a ratio of r = -1 corresponds to a pure DM star.

The dashed line is the limit for the dimensionless tidal deformability determined by LIGO.

4 Summary and Outlook

In this work, the influence of dark matter on neutron stars has been studied. For this purpose, the two-fluid TOV equations were solved using the OM model from [5] and the DM model from [4]. For different masses of the dark matter particle and different ratios, the mass-radius relation and k_2 vs C plot were computed. Because the parameter space is two dimensional the results were also displayed in a three dimensional plot. Finally, the results were compared to the experimental data from a neutron star merger measured by LIGO.

By analyzing those plots, many tendencies on how the different observables of a neutron star depend on the mass of the dark matter particle and the ratio were observed and discussed. The most interesting observation is that there appears to be a special straight line in the parameter space where a valley appears in the 3d plots for several different observables for example M_{tot} , R_{OM} and k_2 .

Finally, it was found that there are neutron stars containing dark matter that lie within the experimental constraints given by LIGO. [1]

In the future, the parameter study could be expanded. One could incorporate a broader range of ratios and masses of the DM particle or use a higher density of parameter points. Another avenue of investigation is to further constrain and improve the equations of state.

Figure 14: Mass radius relation for different combinations of parameters; Left figure: In each subplot the ratio is fixed and the mass of the dark matter particle M_{DM} / MeV is varied. The ratio of r = 0 corresponds to a pure OM star and a ratio of r = -1 corresponds to a pure DM star. Right figure: In each subplot the mass of the dark matter particle M_{DM} / MeV is fixed and the ratio is varied.

Figure 15: From every MRR in Figure 8, the maximum value is chosen, and the different radii are plotted as a function of the two parameters.

Figure 16: From every MRR in Figure 8, the maximum value is chosen, and the different masses are plotted as a function of the two parameters.

Figure 17: From every MRR in Figure 8, the maximum value is chosen, and the OM mass/total mass and the DM mass/total mass are plotted.

Figure 18: From every MRR in Figure 8, the maximum value is chosen, and the OM radius/maximum radius and the DM radius/maximum radius are plotted.

Figure 19: From every k_2 vs C plot in Figure 9, the maximum value is chosen, and the k_2 value is plotted. This is the same plot as in Figure 11 (right panel) but from a different perspective to highlight the line in the parameter space where the valley occurs.

B Python Code

The following is the Runge Kutta 4-th order algorithm with adaptive stepsize, which has been used in this thesis to solve the two fluid TOV equations.

```
1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 """
4 Created on Mo, Mar 6 15:08:17 2023
5
```

```
Qauthor: Kevin Radl
6
    .....
7
8
    from cmath import log
9
    from shutil import which
10
    import numpy as np
^{11}
    import matplotlib.pyplot as plt
12
    import scipy.constants as const
^{13}
    import math as m
14
    import scipy.interpolate
15
    from scipy.misc import derivative
16
17
    A = np.array([[0,0,0,0]], [0.5,0,0,0]], [0,0.5,0,0], [0,0,1,0]])
18
19
    B = np.array([1/6, 1/3, 1/3, 1/6])
    C = np.array([0, 0.5, 0.5, 1])
20
    d=len(B)
21
22
    def RK4_calc(func,cur_y,cur_time,eps,termination_factor):
23
        #function to calculate the next Runge Kutta step
    \hookrightarrow
        k = np.zeros((len(y0),d))
^{24}
        for j in range(d):
^{25}
             sum_1 = np.zeros(len(y0))
26
             for l in range(d):
27
                 sum_1 += A[j,1] * k[:,1]
28
            u = cur_time + eps * C[j]
^{29}
            v = cur_y + eps*sum_1
30
31
            k[:,j] = func(cur_time + eps * C[j], cur_y + eps*sum_1)
32
33
        sum_2 = np.zeros(len(y0))
34
        for j in range(d):
35
             sum_2 += B[j] * k[:,j]
36
        y_{new} = cur_y + eps * sum_2
37
        return y_new
38
39
^{40}
    def RK4(func,t0,y0,t_max,eps,A,B,C,delta=1e-10):
                                                                       #
41
        main function for the Runge Kutta method with adaptive
    \hookrightarrow
        stepsize
    _
        print("Starting RK4...")
42
        print(f"y0 = {y0}")
^{43}
44
        termination_factor = 1e-8
45
46
47
```

```
# time steps and y-values for those time steps are going to
^{48}
        \hookrightarrow be stored
        # in the following two arrays
49
        t_array = np.array([t0])
50
        y_values =
51
        → np.array([[y0[0]],[y0[1]],[y0[2]],[y0[3]],[y0[4]]])
52
        i = 0
53
        OM_terminated = False
54
        DM_terminated = False
55
56
57
        while not OM_terminated or not DM_terminated:
58
            cur_time = t_array[i]
59
            cur_y = y_values[:,i]
60
            print(cur_time)
61
            print(cur_y)
62
63
64
65
             #Termination Condition:
66
             if cur_y[0] < y0[0] * termination_factor and not
67
             \hookrightarrow OM_terminated:
                 print(f"OM terminated at {cur_time}")
68
                 OM_terminated = True
69
                 OM_termination_radius = cur_time
70
71
            if cur_y[2] < y0[2] * termination_factor and not
72
             \rightarrow DM_terminated:
                 print(f"cur_y[2] = {cur_y[2]}")
73
                 print(f"DM terminated at {cur_time}")
74
                 DM_terminated = True
75
                 DM_termination_radius = cur_time
76
77
78
            err = delta + 1
79
            while delta < err:
80
                 dt = eps
81
                 y_1 =
82
                 → RK4_calc(func,cur_y,cur_time,eps/2,termination_factor)
83
                 #Termination Condition:
84
                 if cur_y[0] < y0[0] * termination_factor and not
85
                 \rightarrow OM_terminated:
                     print(f"OM terminated at {cur_time}")
86
                     OM_terminated = True
87
```

88	OM_termination_radius = cur_time
89	if cur_y[2] < y0[2] * termination_factor and not
	\rightarrow DM_terminated:
90	<pre>print(f"cur_y[2] = {cur_y[2]}")</pre>
91	<pre>print(f"DM terminated at {cur_time}")</pre>
92	DM_terminated = True
93	DM_termination_radius = cur_time
94	
95	y_1 =
	\rightarrow RK4_calc(func,y_1,cur_time+eps/2,eps/2,termination_factor)
96	
97	#Termination Condition:
98	if cur_y[0] < y0[0] * termination_factor and not
	\rightarrow OM_terminated:
99	<pre>print(f"OM terminated at {cur_time}")</pre>
100	OM_terminated = True
101	OM_termination_radius = cur_time
102	if cur_y[2] < y0[2] * termination_factor and not
	\rightarrow DM_terminated:
103	print(f"cur_y[2] = {cur_y[2]}")
104	<pre>print(f"DM terminated at {cur_time}")</pre>
105	DM_terminated = True
106	DM_termination_radius = cur_time
107	
108	$y_2 =$
	\rightarrow RK4_calc(func,cur_y,cur_time,eps,termination_factor)
109	HTermination Condition.
110	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
111	OM terminated.
	\rightarrow on_terminated.
112	OM terminated = True
113	OM_terminated = file
114	$bM_c termination_radius - cur_time$
115	DM terminated:
116	$\Rightarrow DM_terminated.$
110	print(f"DM terminated at {cur time}")
117	DM terminated = True
118	$DM_{termination radius} = cur time$
119	
120	err = nn linalg norm(y 2[0:3] - y 1[0:3])/15
122	rho = delta/(err)
123	eps = min(0.9 * eps * rho * * (1/5).2 * eps)
124	
125	if cur time > 1000: #just in case
126	return t array[:(i-1)].v values[:.:i-1].(0.0)

```
127
                                     # If one of the stars is terminated,
              if OM_terminated:
128
              \leftrightarrow the pressure is set to zero (vacuum)
                  y_1[0] = 0
129
130
              if DM_terminated:
131
                  y_1[2]=0
132
133
134
135
              y_{new} = y_1
              y_values = np.column_stack((y_values, y_new))
136
              t_new = t_array[i] + dt
137
              t_array = np.append(t_array, t_new)
138
              i += 1
139
         print(f"Termination Radii: (OM,DM) = {OM_termination_radius}
140
          \hookrightarrow
              and {DM_termination_radius}")
         return
141
             t_array[:(i-1)],y_values[:,:i-1],(OM_termination_radius,DM_termination_radius)
          \hookrightarrow
142
143
    def read_data(filename):
                                              #function to import the
144
         equations of state
     \hookrightarrow
         infile = open(filename)
145
         energy_density = []
146
         pressure = []
147
         lines = infile.readlines()
148
         for line in lines:
149
              line = line.replace('\n', '')
150
              line = line.replace('\t', ' ')
151
              line_list = line.split(" ")
152
              line_list = [value for value in line_list if value != '']
153
              #print(line_list)
154
              energy_density.append(float(line_list[0]))
155
              pressure.append(float(line_list[1]))
156
         return np.array(energy_density), np.array(pressure)
157
158
159
160
161
162
163
164
165
166
167
168
```

```
169
    if __name__ == "__main__":
170
        print('Start')
171
172
        #Defining Constants:
173
174
        #using SI units:
175
        G = const.gravitational_constant
                                              #Gravitational constant
176
                                          #speed of light
        c = const.speed_of_light
177
        M = 1.9891 * 1e30
                                            #mass of the sun in kg
178
        m_p = 2.176434 * 1e-8
179
        m_f = 1.674927 * 1e-27
                                            #mass of the fermion
180
        \leftrightarrow (neutron)
        l_p = 1.616 *1e-35 #m
181
182
        hbarc = 197.3 #MeV fm
183
        E_N = 1000 #939.565
                            #Mev/c^2
184
        p_0 = E_N * * 4 / hbarc * * 3
185
        m_0 = m_{p**3/m_f**2}
186
        r_0 = l_p * m_p * * 2/m_f * * 2
187
188
189
190
191
        ↔ #-----
192
        #Import OM EoS and create a function:
193
        energy_density, pressure = read_data("EoS_new.dat")
194
        print(energy_density, pressure)
195
196
        energy_density_dimless = energy_density / p_0
197
        pressure_dimless = pressure / p_0
198
        EoS =
199
        → scipy.interpolate.interp1d(pressure_dimless,energy_density_dimless,
           fill_value='extrapolate')
        \hookrightarrow
200
201
            #_____
        \hookrightarrow
202
        #Import DM EoS and create a function:
203
        pressure_DM, energy_density_DM = read_data("EoS_G2_new.dat")
204
        print(energy_density_DM,pressure_DM)
205
206
207
```

```
EoS_DM =
208

    scipy.interpolate.interp1d(pressure_DM,energy_density_DM,

             fill_value='extrapolate')
         \hookrightarrow
209
210
             #-----
                                                    211
212
         #implementation of the derivative using interpolation and
213
         \rightarrow scipy derivative
        p = np.logspace(-18,3,10000)
214
         eps_DM = np.zeros(len(p))
215
        for i,cur_p in enumerate(p):
216
             eps_DM[i] = EoS_DM(cur_p)
217
218
        EoS_DM_2 =
219

    scipy.interpolate.interp1d(eps_DM,p,fill_value='extrapolate')

220
        def Q(r,p_OM,p_DM,m_OM,m_DM):
221
             c_s_OM = derivative(EoS, p_OM, dx=1e-18)**(-1)
222
             c_s_DM = derivative(EoS_DM, p_DM, dx=1e-18)**(-1)
223
             if c_s_OM == 0:
224
                 OM_term = 0
225
             else:
226
                 OM_term = (EoS(p_OM) + p_OM)/c_s_OM
227
             if c_s_DM == 0:
228
                 DM_term = 0
229
             else:
230
                 DM_term = (EoS_DM(p_DM) + p_DM)/c_s_DM
231
             aa = (4*np.pi*r*( 5*(EoS(p_OM)+EoS_DM(p_DM)) + 9*(p_OM)
232
             \rightarrow + p_DM) + OM_term + DM_term - 6/(4*np.pi*r**2)))
             bb = (r-2*m_OM-2*m_DM)
233
             cc = 4*((m_OM + m_DM+4*np.pi*r**3*(p_OM +
234
             \rightarrow p_DM))/(r**2*(1-2*(m_OM+m_DM)/r)))**2
             return aa/bb - cc
235
236
237
238
        def F(r,p_OM,p_DM,m_OM,m_DM):
239
             return (r - 4*np.pi*r**3*((EoS_DM(p_DM) +
240
             \rightarrow EoS(p_OM))-(p_DM+p_OM)))/(r-2*(m_OM+m_DM))
241
242
         #Define differential equation
243
         #y[1] = m_OM
                          y[0] = p_0M
                                           y[3] = m_DM
                                                            y[2] = p_DM
244
        def func(t,y):
245
```

```
dvdr = (y[1] + y[3] + 4 * np.pi*t**3*(y[0] + y[2])) /
246
             \rightarrow (t*(t-2*(y[1] + y[3])))
            return np.array( [-(y[0] + EoS(y[0]))*dvdr
                                                                  4 *
247
             \rightarrow np.pi * t**2 * EoS(y[0]) , -(y[2] +
                EoS_DM(y[2]))*dvdr , 4 * np.pi * t**2 *
             \hookrightarrow
             \rightarrow EoS_DM(y[2])
                               , -1/t*(y[4]**2
             \rightarrow +y[4]*F(t,y[0],y[2],y[1],y[3]) +
             \rightarrow t**2*Q(t,y[0],y[2],y[1],y[3])))
248
249
        small_initial_radius = 1e-3
250
        N = 100 # Number of data points per set off parameters.
251
        path = r"/Users/kevin/Desktop/Studium/Bachelorarbeit/Finale
252
         \rightarrow Berechnungen/New_EoS_OM_DM_r=1_data/"
        filename_start = "final_calculations_testfile"
253
254
255
        with open(path+"README"+".txt","w") as f:
256
             print('initial_pressure_OM dimensionless
257
             → initial_pressure_DM dimensionless radius_OM in km
             \leftrightarrow radius_DM in km mass_OM in sun masses mass_DM in
                              compactness second_love_num tidal
             \hookrightarrow sun masses
             → deformability',file = f)
258
259
260
261
262
         ц #-----
         #creating the List of parameters which should be calculated
263
264
         #starting parameters: r=1 M=1 GeV
265
        parameters = []
                          #(r,M) M in GeV
266
        power = 0
267
        ratios = []
268
        for i in range(-power,power+1):
269
            ratios.append(2**i)
270
271
         #carteasian product
272
        for i1 in ratios:
273
             for i2 in ratios:
274
                 parameters.append((i1,i2))
275
276
        def delete_parameters(parameters, cur_power):
                                                               # delete
277
         \rightarrow already calculated parameters
             delete_list=[]
278
```

```
for par in parameters:
279
                  if not(par[0]==2**cur_power or par[1]==2**cur_power
280
                      or par[0] == 2**(-cur_power) or
                  \hookrightarrow
                      par[1] == 2**(-cur_power)):
                  \hookrightarrow
                      delete_list.append(par)
281
             for par in delete_list:
282
                  parameters.remove(par)
283
             return parameters
284
285
         #parameters = delete_parameters(parameters,2)
286
         print(ratios)
287
         parameters = [(1,0.5),(1,1),(1,2)]
288
         print(parameters)
289
290
291
292
             #_____
                                                     293
294
         for ratio,M_DM in parameters:
                                                # Main loop over the
295
             different parameters
         \hookrightarrow
             filename = path + filename_start + f"_r_{ratio}" +
296
              297
             hbarc = 197.3  #MeV fm
298
             E_N = 1000 * M_DM #939.565
                                            #Mev/c^2
299
             m_f = E_N / (5.609586167219 * 10**29)
300
             p_0 = E_N * * 4 / hbarc * * 3
301
             m_0 = m_{p**3/m_f**2}
302
             r_0 = l_p * m_p * * 2/m_f * * 2
303
304
             energy_density_dimless = energy_density / p_0
305
             pressure_dimless = pressure / p_0
306
             EoS = scipy.interpolate.interp1d(pressure_dimless,
307
                energy_density_dimless,fill_value='extrapolate')
              \hookrightarrow
308
309
             for i, initial_pressure_OM in
310
                 enumerate(np.logspace(-7,-1,N)):
                                                             #loop over
               \rightarrow 
                 different central pressures and calculating all
              \hookrightarrow
                 relevant quantities
               \rightarrow 
311
                  initial_pressure_DM = initial_pressure_OM * ratio
312
                  initial_mass_OM = 4*np.pi/3 * small_initial_radius**3
313
                  → * EoS(initial_pressure_OM)
```

314	<pre>initial_mass_DM = 4*np.pi/3 * small_initial_radius**3</pre>
015	
316	<pre>y0 = np.array([initial_pressure_OM,initial_mass_OM,</pre>
915	
317	$r_{\rm W}$ r termination - DKA(func anall initial radius WO
318	r,y,r_termination - KK4(runc,small_initial_radius,yo,
	$\Rightarrow \text{ small_initial_radius*ieo, small_initial_radius*5, A, B, C}$
319	$#y[1] = m_0 m y[0] = p_0 m y[3]$
	$ \rightarrow = m_{DM} y[2] = p_{DM} $
	$\leftrightarrow y[4]=y_tidaldef$
320	
321	y_tidaldef=y[4,-1]
322	$C_{tidaldef} = (y[1,-1] + y[3,-1]) /$
	\rightarrow max(r_termination[0],r_termination[1])
323	<pre>second_love_number = 8*C_tidaldef**5 / 5 *</pre>
	\rightarrow (1-2*C_tidaldef)**2 *
	\rightarrow (2+2*C_tidaldef*(y_tidaldef-1)-y_tidaldef)*
	\rightarrow (2*C_tidaldef*(6-3*y_tidaldef+3*C_tidaldef*(5*y_tidaldef-8))
	\rightarrow + 4*C_tidaldef**3*(13-11*y_tidaldef +
	\rightarrow C_tidaldef*(3*y_tidaldef-2) +
	\rightarrow 2*C_tidaldef**2*(1+y_tidaldef)) +
	\rightarrow 3*(1-2*C_tidaldef)**2 *
	\rightarrow (2-y_tidaldef+2*C_tidaldef*(y_tidaldef-1))*np.log(1-2*C_tidaldef))**(-1)
324	gamma_tidaldef = 2/3 * (y[1,-1] + y[3,-1])**(-5) *
	\rightarrow max(r_termination[0],r_termination[1])**(5) *
	\rightarrow second_love_number $#*(G**(-5)*c**(10))$
325	
326	$print(f"OM-Mass = \{y[1,-1]\}, DM-Mass = \{y[3,-1]\} and$
	\rightarrow Radius = {r_termination}")
327	$print(f"OM-Mass in sun masses = \{v[1,-1]*m_0 / M\},$
	\rightarrow DM-Mass in sun masses= {v[3,-1]*m 0 / M}.
	\rightarrow OM-Radius in km = {r termination[0] * r 0 /1000}
	\rightarrow and DM-Radius in km = {r termination[1] * r 0
	→ /1000}")
220	-, , 1000j ,
320	with open(filename "a") as f:
329	with open (filtename, a) as i.
330	finitial processor DM fr tormination[0]*
	$\Rightarrow (\text{Initial_pressure_DM}) (\text{I_termination[0]}^*)$
	$\hookrightarrow \mathbf{r}_{U} \wedge \mathbf{r}_{U} $
	$ \rightarrow \forall y [1, -1] * m_U / m_J \forall y [0, -1] * m_U / m_J $
	$ \rightarrow \{ \bigcup_{\tau \in \mathbb{R}^{n}} \{ second_toVe_number \} $
	<pre></pre>
331	

References

- B. P. Abbott andothers. "GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral". in *Physical Review Letters*: 119.16 (october 2017). ISSN: 1079-7114. DOI: 10.1103/physrevlett.119.161101. URL: http://dx.doi.org/10.1103/PhysRevLett.119.161101.
- Yannick Dengler, Jürgen Schaffner-Bielich and Laura Tolos. "Second Love number of dark compact planets and neutron stars with dark matter". in *Physical Review D*: 105.4 (february 2022). DOI: 10.1103/physrevd. 105.043013. URL: https://doi.org/10.1103%2Fphysrevd.105.043013.
- [3] Norman K. Glendenning. Compact Stars. Springer, 2000.
- [4] Ouraman Hajizadeh and Axel Maas. "Constructing a neutron star from the lattice in G2-QCD". in *The European Physical Journal A*: 53.10 (october 2017). DOI: 10.1140/epja/i2017-12398-x. URL: https://doi.org/10. 1140%2Fepja%2Fi2017-12398-x.
- [5] Aleksi Kurkela andothers. "CONSTRAINING NEUTRON STAR MATTER WITH QUANTUM CHROMODYNAMICS". in *The Astrophysical Journal*: 789.2 (june 2014), page 127. DOI: 10.1088/0004-637x/789/2/127. URL: https://doi.org/10.1088%2F0004-637x%2F789%2F2%2F127.
- [6] Irina Sagert andothers. "Compact stars for undergraduates". in European Journal of Physics: 27.3 (april 2006), pages 577-610. ISSN: 1361-6404.
 DOI: 10.1088/0143-0807/27/3/012. URL: http://dx.doi.org/10.1088/ 0143-0807/27/3/012.
- [7] Saul A. Teukolsky Stuart L. Shapiro. Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects. John Wiley Sons, 1983.