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Abstract

In non-Abelian gauge theories it is necessary to fix a gauge in order to calculate
gauge dependant quantities. Beyond perturbation theory this is however no
longer possible since gauge conditions do not possess unique solutions. From
this stems the Gribov-Singer ambiguity. A possible way to resolve this, is to
restrict to field configuration lying within the first Gribov region where the
Faddeev-Popov operator is positive semi-definite. In principle it should also be
possible to average over all independent solutions, however this leads to signif-
icant cancellations. One therefore hopes to shed more light on the behaviour
of the Faddeev-Popov operator beyond the first Gribov region. This thesis at-
tempts to solve this problem by using Supersymmetry. After introducing the
necessary mathematical tools of Supersymmetry, the supersymmetric partner
potentials to the Faddeev-Popov operator in an instanton field configuration
is calculated. From there certain approximations in conjunction with a power
series Ansatz are used to find a possible solution. A closed form to each of the
potential terms is found and some considerations are given as to how a further
approach would look like.

1



Contents

1 Introduction 3
1.1 Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Gauge Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Gribov Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Faddeev-Popov Operator . . . . . . . . . . . . . . . . . . . . . . 7

2 The Supersymmetric Approach 8
2.1 Results for ϕ 1

2 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Results for ϕ18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Finding approximate solutions . . . . . . . . . . . . . . . . . . . 13

3 Further Calculations 16
3.1 Determining the correct Ansatz . . . . . . . . . . . . . . . . . . . 16
3.2 Results for H1(ϕ 1

2 4
) . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Modifying the Ansatz . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Results for H2(ϕ 1

2 4
) . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Results for H1(ϕ18) . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Results for H2(ϕ18) . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Conclusion 31

2



1 Introduction

The aim of this thesis will be to use Supersymmetry on the Zero mode solutions
of the Faddeev-Popov operator in an instanton field configuration. This is done
to find a way for resolving the Gribov-Singer ambiguity. If the behaviour of the
supersymmetric operator is simple enough, one could determine its spectrum
and expand this knowledge to a method for handling negative Eigenvalues of the
initial Faddeev-Popov operator. First an introduction to the necessary tools of
Supersymmetry will be given. Then we find a general approach to gauge theories
which will connect us to the Gribov problem and the aforementioned Faddeev-
Popov operator. Sections 2 and 3 then deal with the concrete calculations.
1

1.1 Supersymmetry

Supersymmetry is in some sense a generalization of the physical notion of sym-
metry. Since symmetry is omnipresent not only in our physical theories but
also in the phenomenological description of the world around us, it is no won-
der a more complex mathematical construct such as Supersymmetry has huge
potential in shedding light on current and also future questions physics and
mathematics might have to offer. The following introduction is aimed at under-
standing the core concepts of Supersymmetry in context to this thesis.

As mentioned before, symmetric principles usually allow us a more clear
mathematical description of a physical system. In general this is achieved
through the correlation between

Symmetry - Conservation law - Degeneracy.

Supersymmetry works similar and thus predicts new kind of particles called
SUSY particles. [5] The first approach to Supersymmetry came through Quan-
tum field theory in order to better understand the relation between fermions
and bosons as will be shown below. Later this was expanded to Quantum and
also Classical mechanics. [5]

Since Supersymmetry as a model must contain fermions and bosons, the
most simple application is the product space spanned by

|nBnF ⟩ = |nB⟩ |nF ⟩ ; where nB = 0, 1, ...,∞ and nF = 0, 1

where nB is the number of bosons and nF the number of fermions. It is now
necessary to introduce Operators which change between these states. [1]

Q+ |nBnF ⟩ ∝ |nB − 1, nF + 1⟩
Q− |nBnF ⟩ ∝ |nB + 1, nF − 1⟩

(1)

Where the normalisation factor is left out. For a theory to be supersymmetric
its Hamilton Operator H must be invariant under transformation with these

1In this thesis we work with natural units ℏ = c = 1
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Operators
[H,Q±] = 0 (2)

Thus in accordance with (1) Q± can be defined as

Q+ = ab†

Q− = a†b
(3)

Where a is the bosonic and b the fermionic creation operator. The fermionic
operators possess nilpotency

b†b† = bb = 0

From (3) it follows directly that Q± inherit this nilpotency which is a very
important aspect of Supersymmetry and the key to calculate the supersymmet-
ric Hamilton Operator as will be shown below.[5]

To obtain a non trivial theory we have to generalize (3)

Q+ = Ab†

Q− = A†b
(4)

Where the operators A and A† are arbitrary bosonic functions of the original
operators a and a†[1]
It can be shown that the Ansatz H = {Q+, Q−} fulfills our necessary condition
in (2). Now with our more general definition in (4) it no longer holds, that
[H,NB ] = 0, while it is still true that [H,NF ] = 0. Thus we must characterize
our state solely by the quantum number nF and it follows that

H |EnF ⟩ = E |EnF ⟩
NF |EnF ⟩ = nF |EnF ⟩

Since there are only two states for nF (0 and 1) we can rewrite these states as
two dimensional vectors [5]

|EnF ⟩ =
[

|E0⟩
|E1⟩

]
⇔

[
Boson
Fermion

]
As a consequence any supersymmetric Hamilton operator has to be diagonal in
this basis and takes the form [1]

H =

(
A†A 0
0 AA†

)
:=

(
H1 0
0 H2

)
(5)

Which can also be written as

H =
1

2
{A,A†}σ0 −

1

2
[A,A†]σ3 (6)
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where

σ0 =

(
1 0
0 1

)
, σ3 =

(
1 0
0 −1

)
We now define A and A† more specifically in accordance to a and a† which read
as

a =

√
m

2
(q + i

p

m
)

a† =

√
m

2
(q − i

p

m
)

where we define W (q) as the superpotential

A =

√
m

2
(W (q) + i

p

m
)

A† =

√
m

2
(W (q)− i

p

m
)

Note thatW (q) is not strictly speaking a potential in the sense that its dimension
is not that of energy. [1]
Using (6) it can be shown that H now reads as

H =
1

2
(
p2

m
+W (q)2)σ0 −

1

2
√
m

dW (q)

dq
σ3 (7)

We are interested in how H acts on the ground state wave function ψ0 where the
Energy E = 0 forH1. Through some calculation a formula for the superpotential
W (q) can be derived with the before defined framework. It is given by

W (q) = − 1√
m

d

dx
ln(ψ0) (8)

Using equations (7) and (8) will be the main focus of this thesis.
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1.2 Gauge Theories

To describe elementary particle physics the most important quantum field the-
ories are gauge theories. The classical example being the theory of electro-
magnetism. So to start we remind the reader of the Maxwell equations of
electrodynamics in four-vector notation. [6]

∂Fµν

∂xν
= µ0J

µ;
∂Gµν

∂xν
= 0 (9)

Where F is the field strength tensor defined by

Fµν = ∂µAν − ∂νAµ

Gαβ =
1

2
ϵαβγδFγδ

Here ϵαβγδ is the Levi-Civita tensor in four dimensions and A the four vector
potential. A gauge transformation is then given by

Aµ ⇒ A
′µ = Aµ − ∂µχ

where χ is an arbitrary function. It now follows directly that under this trans-
formation the field strength tensor remains unchanged.

F
′µν = ∂µA

′ν − ∂νA
′µ = Fµν

Fµν is called gauge invariant.[2]
In this sense one can define the term gauge invariance as the property of a

class of vector potentials {A(k), k ∈ N}, related by these gauge transformations
which describe the same electric and magnetic fields.[7] Applying this principle
in a general sense, it turns out that, when a given global invariance is generalized
to a local one (here, the electromagnetic gauge invariance) a resulting field is
a necessity. This insight gave rise to Gauge Theories, with one of the most
prevalent ones being Yang Mills theory which will be briefly discussed below.
[2]

Electrodynamics is an example of an abelian gauge theory. Yang-Mills the-
ory, also known as non-abelian gauge theory is primarily used to describe the
electroweak as well as the strong nuclear force. [6] In fact the entire standard
model of particle physics is described using Yang-Mills theory. The Lagrangian
of Yang-Mills theory reads as

L = −1

4
F a
µνF

µν
a (10)

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν (11)

Where Aa
µ are the gauge fields, and the parameters of the Lagrangian are the

coupling constant g and the structure constants fabc of the associated gauge
algebra. [4] Since we will be working in SU(2) Yang Mills theory the structure
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constants will take the form of the Levi-Civita tensor ϵabc.
The Lagrangian (10) is invariant under local gauge transformations, which take
the infinitesimal form

Aa
µ → Aa

µ +Dab
µ ϕb

Dab
µ = δab∂µ + gfabcAc

µ

where ϕb are arbitrary functions. [4]

1.3 Gribov Problem

This section follows closely [4]
To calculate gauge dependant quantities it is necessary to fix a gauge. How-

ever this is not possible beyond perturbation theory since gauge conditions like
the Landau gauge

∂µA
a
µ = 0 (12)

do no longer possess a unique solution for a given configuration. The resulting
independent solutions are called Gribov copies while the associated ambiguity of
the gauge condition is named Gribov-Singer ambiguity. To obtain a well-defined
gauge non-perturbatively, it is now necessary to apply further constraints in
addition to (12). Thus there will be a remaining set of Gribov copies called the
residual gauge orbit. A way to resolve the Gribov ambiguity is to restrict the
residual gauge orbit to the first Gribov region, which is defined by the region
the Faddeev-Popov operator

Mab = −∂µDab
µ (13)

is strictly positive semi-definite. This region is convex-bounded and has zero
eigenvalues only on its boundary the so called Gribov horizon.

1.4 Faddeev-Popov Operator

Stated here again in Euclidean space the Faddeev-Popov operator reads as

Mab = −∂µ(∂µδab + gfabcAc
µ) (14)

The Faddeev-Popov operator has been studied mostly in its behaviour around
the first Gribov region where its eigenvalues remain positive up to its boundary.
Beyond the first Gribov region the remainder of the residual gauge orbit is
a set of additional Gribov regions, seperated by concentric Gribov horizons,
having successively more negative eigenvalues. The number of these negative
eigenvalues increases by one for each horizon. To resolve the Gribov-Singer
ambiguity it should in principle also be possible to average over all Gribov
copies, however because of the aforementioned behavior of (14) it comes to
significant cancellation during this process. Therefore one hopes to shed light on
the behaviour of (14) beyond the first Gribov horizon and its negative eigenvalue
solutions.[4]
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2 The Supersymmetric Approach

The topological field configuration of an instanton is given by the algebra ele-
ments

Aµ =
2

r2 + λ2
τµνrν

τµν =
1

4i
(τµτ̄ν − τν τ̄µ)

τµ = (iτ , 1)

τ̄µ = (−iτ , 1)

(15)

With τ i the Pauli matrices and where λ characterizes the size of the instanton.
The corresponding gauge fields are given by

Aa
µ =

1

g

2

r2 + λ2
rνζ

a
νµ (16)

With ζa being the t’Hooft tensors. [3]
With that the eigenvalue equation can be written as

∂2ϕa + fabc
2

r2 + λ2
rµζ

b
µν∂νϕ

c = −ω2ϕa (17)

The zero modes to (17) apart from the trivial ones are taken from [3] and will
be stated below.

ϕ 1
2 4
(r) =

− r2

λ2 + (1 + r2

λ2 ) ln(1 +
r2

λ2 )
r3

λ3

(18)

ϕ18(r) =
r4

λ4 + 2 r2

λ2 − 2(1 + r2

λ2 ) ln(1 +
r2

λ2 )
r4

λ4

(19)

Note that ϕ 1
2 4
(r) has multiplicity two while ϕ18(r) has multiplicity one, leav-

ing three trivial solutions of constant nature which will not be discussed further.

With these solutions given we now find the corresponding superpotential
which is given by equation (8). To achieve this we first make the following
substitution.

r

λ
= r̃

⇒ ∂f(r̃)

∂r
=
∂f(r̃)

∂r̃

∂r̃

∂r
=

1

λ

∂f(r̃)

∂r̃

Thus W is now given by

W = − 1√
mλ

d

dr̃
ln(ϕ(r̃))

The supersymmetric Operator H is then given by equation (7).
We seperate our calculations for each of the zero modes.
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2.1 Results for ϕ 1
2
4

For W 1
2 4
(r̃) we find:

W 1
2 4
(r̃) =

1√
mλ

(3 + r̃2) ln(1 + r̃2)− 3r̃2

(r̃ + r̃3) ln(1 + r̃2)− r̃3
(20)

For simplification we define Ŵ 1
2 4
(r̃) as

Ŵ 1
2 4
(r̃) =

(3 + r̃2) ln(1 + r̃2)− 3r̃2

(r̃ + r̃3) ln(1 + r̃2)− r̃3

⇒W 1
2 4
(r̃) =

1√
mλ

Ŵ 1
2 4
(r̃)

Thus the equations for H1 and H2 become

H1 =
1

2mλ2
(p2λ2 + Ŵ (r̃)2 − dŴ (r̃)

dr̃
) (21)

H2 =
1

2mλ2
(p2λ2 + Ŵ (r̃)2 +

dŴ (r̃)

dr̃
) (22)

With (21) and (22) we find

H1 =
1

2mλ2

(
p2λ2 +

2(1 + 6
r̃2 − 3r̃2

−r̃2+(1+r̃2) ln(1+r̃2) )

1 + r̃2

)
(23)

H2 =
1

2mλ2

(
p2λ2 +

2r̃4(3 + 5r̃2)

(1 + r̃2)(r̃3 − (r̃ + r̃3) ln(1 + r̃2))2
−

2(1 + r̃2) ln(1 + r̃2)(r̃2(6 + r̃2) + (−3 + r̃2) ln(1 + r̃2))

(1 + r̃2)(r̃3 − (r̃ + r̃3) ln(1 + r̃2))2

) (24)

For better illustration the potential terms in (23) and (24) are visualized below.
Note that the graph around zero is not accurate due to the occurring singularity.
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Figure 1: Potential of (23)

Figure 2: Potential of (24)
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2.2 Results for ϕ18

For W18(r̃) we find:

W18(r̃) =
1√
mλ

8r̃2 − 4(2 + r̃2) ln(1 + r̃2)

r̃3(2 + r̃2)− 2(r̃ + r̃3) ln(1 + r̃2)
(25)

Similar to before we define Ŵ18 as

Ŵ18 =
8r̃2 − 4(2 + r̃2) ln(1 + r̃2)

r̃3(2 + r̃2)− 2(r̃ + r̃3) ln(1 + r̃2)

and thus

W18 =
1√
mλ

Ŵ18

Now we can again use equations (21) and (22) to find

H1 =
1

2mλ2

(
p2λ2 +

8r̃2(5 + 4r̃2)− 4(1 + r̃2)(10 + 3r̃2) ln(1 + r̃2)

r̃4(1 + r̃2)(2 + r̃2)− 2(r̃ + r̃3)2 ln(1 + r̃2)

)
(26)

H2 =
1

2mλ2

(
p2λ2 +

8r̃4(6 + 3r̃2 − 4r̃4)

(1 + r̃2)(r̃3(2 + r̃2)− 2(r̃ + r̃3) ln(1 + r̃2))2
+

4(1 + r̃2) ln(1 + r̃2)
(
3r̃2(r̃4 − 8) + 2(6 + 3r̃2 + r̃4) ln(1 + r̃2)

)
(1 + r̃2)(r̃3(2 + r̃2)− 2(r̃ + r̃3) ln(1 + r̃2))2

) (27)

Below the potential terms of (26) and (27) are again shown.
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Figure 3: Potential of (26)

Figure 4: Potential of (27)
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2.3 Finding approximate solutions

We can express the solutions we found in the following form.

H =
1

2mλ2
(p2λ2 + V ) (28)

Where V is the potential of the Hamilton Operator. To understand these results
better we now develop this Potential V in a Maclaurin series. The first terms
are given below up to order r̃6.

ϕ 1
2 4
(r̃)

VH1 = −2 +
8r̃2

3
− 134

45
r̃4 +

427

135
r̃6...

VH2 =
2

r̃2
− 2

3
+

58

135
r̃4 − 301

405
r̃6...

ϕ18(r̃)

VH1 =
2

r̃2
− 5 +

59

10
r̃2 − 127

20
r̃4 +

9277

1400
r̃6...

VH2 =
6

r̃2
− 3 +

17

10
r̃2 − 17

20
r̃4 +

303

1400
r̃6...

The leading term in these solutions is either r̃2 or 1
r̃2 . If we make an approxi-

mation for small r̃ and discard terms of higher order the following observations
can be made. The Hamilton Operator is now one of two forms.

H =
1

2mλ2
(p2λ2 + αr̃2) (29)

H =
1

2mλ2
(p2λ2 +

α

r̃2
) (30)

Where α is an arbitrary constant.
Equation (29) just describes the system of an harmonic oscillator. This will be
discussed afterwards. The case of (30) will be discussed below.
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We can rewrite (30) as

H =
p2

2m
+

c

r̃2
, c =

α

2mλ2

Thus writing out the time independent Schrödinger equation we get

Hψ = Eψ

⇔ p2

2m
ψ(r̃) +

c

r̃2
ψ(r̃) = Eψ(r̃)

⇔ 1

2m
ψ

′′
(r̃) + (

c

r̃2
− E)ψ(r̃) = 0

This equation has the following general solution.

ψ(r̃) = C1

√
r̃J(

1

2

√
1− 8mc,−i

√
2Emr̃) + C2

√
r̃Y (

1

2

√
1− 8mc,−i

√
2Emr̃)

(31)
Where J and Y are the Bessel functions of first and second kind and C1, C2

are arbitrary constants. Note that the argument inside of either Bessel function
becomes real if we assume 2E < 0

We now look at the Schrödinger Equation for H in (29). Similarly to above
this becomes

1

2m
ψ

′′
(r̃) + (cr̃2 − E)ψ(r̃) = 0

Which, as mentioned is the Schrödinger Equation for the harmonic oscillator.
The general solution at ground state energy is of the form

ψ(r̃) = Aekr̃
2

with
A, k ∈ R
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To determine a possible Ansatz for ψ(r̃) we now also want to understand our
solutions for large r̃. We therefore first make the substitution r̃ = 1

x and again
develop the solution in a Maclaurin Series. The results for ϕ 1

2 4
(r̃) are shown

below.

VH1(x) =
2(1 + 6x2 − 3

−1+(1+x2) ln(1+ 1
x2 )

)

1 + 1
x2

(32)

VH2(x) =
2x2

(1 + x2)(−1 + (1 + x2) ln(1 + 1
x2 )

(
5 + 3x2+

ln(1 +
1

x2
)
(
−1− 7x2 − 6x4 + x2(−1 + 2x2 + 3x4) ln(1 +

1

x2
)
)) (33)

Developing this in a Maclaurin series we get

VH1 =
2(−4 + ln( 1

x2 ))

−1 + ln( 1
x2 )

x2 +
2(5− 4 ln( 1

x2 ) + 5 ln( 1
x2 )

2)

(−1 + ln( 1
x2 ))2

x4 + ...

VH2 = −
2(−5 + ln( 1

x2 )

(−1 + ln( 1
x2 )2

x2 −
2(7 + 5 ln( 1

x2 ) + 3 ln( 1
x2 )

2 + ln( 1
x2 )

3)

(−1 + ln( 1
x2 ))3

x4 − ...

We now resubstitute r̃ = 1
x and cancel after the first term in our series. Thus

we arrive at

VH1
∼=

4(−2 + ln(r̃))

r̃2(−1 + 2 ln(r̃))

VH2
∼= − 2(−5 + 2 ln(r̃))

r̃2(−1 + 2 ln(r̃))2

If we repeat the same calculations for ϕ18 we find

VH1
∼= −8(−4 + 3 ln(r̃))

r̃4

VH2
∼=

8(−4 + 3 ln(r̃))

r̃4

Note that for large r̃ these results all tend towards 0.
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3 Further Calculations

In the following calculations the before made substitution r̃ = r
λ still holds but

for readability r now means r̃.

3.1 Determining the correct Ansatz

With our results from section 2 we now try to find a possible approximate
solution to (28) which is split into four different equations depending on V . It
is now convenient to look at the before found solutions for very large r as well
as very small r.
For VH1(ϕ 1

2 4
) we in both cases have a solution of the form e−kr2 . We combine

this observation with the general power series Ansatz

u(r) =
∑
j

bjr
j (34)

And obtain the following Ansatz for ψ(r)

ψ(r) = e−kr2u(r) (35)

Combining this Ansatz with the Schrödinger-Equation yields.

(
1

2m
p2 +

1

2mλ2
V (r))ψ(r) = Eψ(r) (36)

Since in our case V (r) is always a fraction it is convenient to write it in the form

V (r) =
f(r)

g(r)

Thus (36) becomes

ψ
′′
(r) + (

1

λ2
f(r)

g(r)
− 2mE)ψ(r) = 0 (37)

Now all that remains is following the Ansatz (35) in the above equation (37)
which yields

g(r)e−kr2u”(r)− g(r)e−kr24kru
′
(r)

+ e−kr2
(
g(r)

(
4k2r2 − 2k − 2mE

)
+

1

λ2
f(r)

)
u(r) = 0

Let Ω := 2k + 2mE. Thus after some simplification the above equation
becomes

g(r)
(
u(r)” − 4kru

′
(r) +

(
4k2r2 − Ω

)
u(r)

)
+

1

λ2
f(r)u(r) = 0 (38)
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3.2 Results for H1(ϕ 1
2
4)

We find for VH1

f(r) = (2r2 + 12)
(
(1 + r2) ln(1 + r2)− r2

)
− 6r4

g(r) = r2
(
(1 + r2) ln(1 + r2)− r2

)
(1 + r2)

(39)

For u(r) it is true that

u”(r) =
∑
j

(j + 2)(j + 1)bj+2r
j ; u

′
(r) =

∑
j

(j + 1)bj+1r
j (40)

Thus using (39) and (40) with (38) yields

r2
(
(1 + r2) ln(1 + r2)− r2

)
(1 + r2)

(∑
j

(j + 2)(j + 1)bj+2r
j

− 4kr
∑
j

(j + 1)bj+1r
j + (4k2r2 − Ω)

∑
j

bjr
j
)

+
1

λ2

(
(2r2 + 12)

(
(1 + r2) ln(1 + r2)− r2

)
− 6r4

)∑
j

bjr
j = 0

If we assume r < 1 we can replace the natural logarithm with its power
series

ln(1 + r2) =

∞∑
n=0

(−1)n+1

n
r2n :=

∞∑
n=0

anr
2n (41)

Inserting this into the above equation and doing some simple calculation yields

r2(1 + r2)2
∑
n

anr
2n

∑
j

(
(j + 2)(j + 1)bj+2r

j − 4kjbjr
j + 4k2bj−2r

j − Ωbjr
j
)

− r4(1 + r2)
∑
j

(
(j + 2)(j + 1)bj+2r

j − 4kjbjr
j + 4k2bj−2r

j − Ωbjr
j
)

+
1

λ2

(
(2r2 + 12)

(
(1 + r2)

∑
n

anr
2n − r2

)
− 6r4

)∑
j

bjr
j = 0

To make further calculations simpler we introduce some abbreviations. We get

c
∑
n

anr
2n

∑
j

Πjr
j − d

∑
j

Πjr
j+

1

λ2

(
e
(
f
∑
n

anr
2n − r2

)
− 6r4

)∑
j

bjr
j = 0

17



where

c = r2(1 + r2)2; d = r4(1 + r2); e = (2r2 + 12); f = (1 + r2)

Πj = (j + 2)(j + 1)bj+2 − 4kjbj + 4k2bj−2 − Ωbj

We expand the second part of this equation.

c
∑
n

anr
2n

∑
j

Πjr
j − d

∑
j

Πjr
j+

1

λ2
ef

∑
j

∑
n

bjanr
j+2n − 1

λ2
(er2 + 6r4)

∑
j

bjr
j = 0

To make further calculations simpler we split this into three separate sums such
that

σ1 + σ2 + σ3 = 0

where

σ1 = c
∑
j

∑
n

Πjanr
j+2n

σ2 =
1

λ2
ef

∑
j

∑
n

bjanr
j+2n

σ3 = −d
∑
j

Πjr
j − 1

λ2
(er2 + 6r4)

∑
j

bjr
j

To continue we first show that∑
j

∑
n

ajbnr
j+2n =

∑
k

∑
n

ak−2nbnr
k (42)

Proof: For a given k we look for all coefficients ajbn such that:

j + 2n = k ⇒ j = k − 2n

Assuming n ∈ N, ax = 0 ∀x < 0

⇒ ak−2nbn is coefficient for rk

⇔ ∀n ∈ N : ak−2nbnis coefficient for rk
(43)

It follows that for a given k: ∑
n

ak−2nbn

Is the sum of all coefficients for rk And since

∀j ∃k, n : j = k − 2n

18



It follows that: ∑
j

∑
n

ajbnr
j+2n =

∑
k

∑
n

ak−2nbnr
k

□
Using (42) σ1 and σ2 become

σ1 = c
∑
l

∑
n

Πl−2nanr
l = c

∑
l

αlr
l

σ2 =
1

λ2
ef

∑
l

∑
n

bl−2nanr
l =

1

λ2
ef

∑
l

βlr
l

where

αl =
∑
n

Πl−2nan

=
∑
n

(
(l − 2n+ 2)(l − 2n+ 1)bl−2n+2 − 4k(l − 2n)bl − 2n+ 4k2bl−2n−2 − Ωbl − 2n

)
an

βl =
∑
n

βl−2nan

If we resubstitute the before made abbreviations and use index shifting we find
for these sums respectively

σ1 =
∑
l

(αl−2 + 2αl−4 + αl−6)r
l :=

∑
j

µjr
j

σ2 =
∑
l

(2βl−4 + 14βl−2 + 12βl)r
l :=

∑
j

ξjr
j

where we defined µj and ξj as the prefactors.
Similarly σ3 becomes

σ3 =
∑
j

(
−Πj−6 −Πj−4 −

1

λ2
(8bj−4 + 12bj−2)

)
rj :=

∑
j

νjr
j

where we again defined νj as the prefactor.

Thus our equation finally can be written down as∑
j

(ξj + µj + νj)r
j = 0 (44)
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3.3 Modifying the Ansatz

For VH2(ϕ 1
2 4
), VH1(ϕ18) and VH2(ϕ18) we follow the same logic as before but

must modify our Ansatz in the following way.
Since for small r we found (31) we notice that this approaches a solution of the
form

√
rc1 where c1 is an arbitrary constant. For large r the solution is of the

form c2e
−kr. Thus our Ansatz becomes

ψ(r) =
√
re−kru(r). (45)

Where u(r) =
∑

j bjr
j swallows the constants c1 and c2. Inserting this into

(37) we get

g(r)ψ” + (
1

λ2
f(r)− 2mg(r)E)ψ(r) = 0

ψ
′′
(r) =

1

4r
3
2

(e−kr(4r2u
′′
(r) + (4r − 8kr2)u

′
+ (4k2r2 − 4kr − 1)u(r))

⇒ g(r)

4r
3
2

(e−kr(4r2u
′′
(r) + (4r − 8kr2)u

′
+ (4k2r2 − 4kr − 1)u(r))

+ (
1

λ2
f(r)− 2mg(r)E)

√
re−kru(r) = 0

After short calculation this becomes.

g(r)
(√

ru”(r) + (
1√
r
− 2k

√
r)u

′
(r) + ((k2

√
r − k√

r
− 1

4r
3
2

)− 2mE
√
r)u(r)

)
+ f(r)

( 1

λ2
√
ru(r)

)
= 0

(46)

Now all that is left to do is insert the specific Potential V (r) = f(r)
g(r) into eq.

(46) as it is done in the following calculations.

3.4 Results for H2(ϕ 1
2
4)

f(r) = 2r4(3 + 5r2)− 2(1 + r2) ln(1 + r2)
(
r2(6 + r2) + (r2 − 3) ln(1 + r2)

)
g(r) = (1 + r2)

(
r3 − (r + r3) ln(1 + r2)

)2
Using (41) and (40) and inserting f(r), g(r) into (46) we get

(1 + r2)
(
r3 − (r + r3)

∑
n

anr
2n
)2(√

r
∑
j

(j + 2)(j + 1)bj+2r
j

+ (
1√
r
− 2k

√
r)

∑
j

(j + 1)bj+1r
j +

(
(k2

√
r − k√

r
− 1

4r
3
2

)− 2mE
√
r
)∑

j

bjr
j
)

+
(
2r4(3 + 5r2)− 2(1 + r2)

∑
n

anr
2n
(
r2(6 + r2) + (r2 − 3)

∑
n

anr
2n
))( 1

λ2
√
r
∑
j

bjr
j
)
= 0
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We split this sum into two parts such that

σ1 + σ2 = 0

where

σ1 = (1 + r2)
(
r3 − (r + r3)

∑
n

anr
2n
)2(√

r
∑
j

(j + 2)(j + 1)bj+2r
j

+ (
1√
r
− 2k

√
r)

∑
j

(j + 1)bj+1r
j +

(
(k2

√
r − k√

r
− 1

4r
3
2

)− 2mE
√
r
)∑

j

bjr
j
)

σ2 =
(
2r4(3 + 5r2)− 2(1 + r2)

∑
n

anr
2n
(
r2(6 + r2) + (r2 − 3)

∑
n

anr
2n
))( 1

λ2
√
r
∑
j

bjr
j
)

To continue we first determine (
∑

n anr
2n)2

=
∑
n

anr
2n

∑
k

akr
2k =

∑
n,k

anakr
2(n+k)

let n+ k = η

=
∑
n

∑
k

aη−kakr
2η =

∑
η

ãηr
2η

where ãη =
∑
k

aη−kak

(47)

After some calculation and using (47) σ1 becomes:

σ1 = (1 + r2)
(
r6 − 2(r4 + r6)

∑
n

anr
2n + (r2 + 2r4 + r6)

∑
η

ãηr
2η
)

(√
r
∑
j

(j + 2)(j + 1)bj+2r
j + (

1√
r
− 2k

√
r)

∑
j

(j + 1)bj+1r
j

+
(
(k2

√
r − k√

r
− 1

4r
3
2

)− 2mE
√
r
)∑

j

bjr
j
)

Defining some abbreviations we can simplify this in the following way

σ1 = (1 + r2)
(
a− b

∑
n

anr
2n + c

∑
η

ãηr
2η
)

(√
r
∑
j

(j + 2)(j + 1)bj+2r
j +A

∑
j

(j + 1)bj+1r
j +B

∑
j

bjr
j
)

where

a = r6; b = 2(r4 + r6); c = (r2 + 2r4 + r6)

A = (
1√
r
− 2k

√
r); B =

(
(k2

√
r − k√

r
− 1

4r
3
2

)− 2mE
√
r
)
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Multiplying this out we get

σ1 = (1 + r2)
(
a
√
r
∑
j

(j + 2)(j + 1)bj+2r
j + aA

∑
j

(j + 1)bj+1r
j

+ aB
∑
j

bjr
j − b

√
r
∑
n

∑
j

an(j + 2)(j + 1)bj+2r
j+2n − bA

∑
n

∑
j

an(j + 1)bj+1r
j+2n

− bB
∑
n

∑
j

anbjr
j+2n + c

√
r
∑
η

∑
j

ãη(j + 2)(j + 1)bj+2r
j+2η

+ cA
∑
η

∑
j

ãη(j + 1)bj+1r
j+2η + cB

∑
η

∑
j

ãηbjr
j+2η

)
If we introduce l = j + 2n and m = j + 2η and use (42) we can write this as:

σ1 = (1 + r2)
(
a
√
r
∑
j

(j + 2)(j + 1)bj+2r
j + aA

∑
j

(j + 1)bj+1r
j + aB

∑
j

bjr
j

− b
√
r
∑
l

αlr
l − bA

∑
l

βlr
l − bB

∑
l

γlr
l

+ c
√
r
∑
m

α̃mr
m + cA

∑
m

β̃mr
m + cB

∑
m

γ̃mr
m
)

where

αl =
∑
n

an(l − 2n+ 2)(l − 2n+ 1)bl−2n+2

βl =
∑
n

an(l − 2n+ 1)bl−2n+1

γl =
∑
n

anbl−2n

α̃m =
∑
η

aη(m− 2η + 2)(m− 2η + 1)bm−2η+2

β̃m =
∑
η

aη(m− 2η + 1)bm−2η+1

γ̃m =
∑
η

aηbm−2η

Thus if we use the same summation index and take the sum out we can also
write this as

σ1 = (1 + r2)
∑
j

(
a
√
r(j + 2)(j + 1)bj+2 + aAj(j + 1)bj+1 + aBbj

− b
√
rαj − bAβj − bBγj + c

√
rα̃j + cAβ̃j + cBγ̃j

)
rj
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If we resubstitute our before defined abbreviations and use index-shifting this
sum becomes after some calculation

σ1 =
∑
j

((
(j − 4)(j − 5) + (j − 4)− 1

4

)
bj−4 −

(
2k(j − 5) + k)bj−5 + k2bj−6

− 2
(
αj−4 + αj−6 + βj−3 − 2kβj−4 + βj−5 − 2kβj−6 −

1

4
γj−2 − kγj−3

+ (k2 − 1

4
)γj−4 − kγj−5 + k2γj−6

)
+ α̃j−2 + 2α̃j−4 + α̃j−6 + β̃j−1

− 2kβ̃j−2 + 2β̃j−3 − 4kβ̃j−4 + β̃j−5 − 2kβ̃j−6 −
1

4
γ̃j − kγ̃j−1 + (k2 − 1

4
)γ̃j−2

− kγ̃j−3 + (2k2 − 1

4
)γ̃j−4 − kγ̃j−5 + k2γ̃j−6

)√
r(1 + r2)rj

If we define the prefactor as ξj this sum can be expressed as:

σ1 =
∑
j

ξj
√
r(1 + r2)rj =

∑
j

(ξj + ξj−2)
√
rrj

We now try to bring σ2 into a similar form. Written out σ2 becomes

σ2 = 2r4(3 + 5r2)
( 1

λ2
√
r
∑
j

bjr
j
)
− 2(1 + r2)

(∑
n

an(6r
2n+2 + r2n+4)

+ (r2 − 3)(
∑
n

anr
2n)2

)( 1

λ2
√
r
∑
j

bjr
j
)

= 2r4(3 + 5r2)
( 1

λ2
√
r
∑
j

bjr
j
)
− 2(1 + r2)

1

λ2
√
r
(∑

n

∑
j

anbj(6r
j+2n+2 + rj+2n+4)

+ (r2 − 3)
∑
η

∑
j

ãηbjr
j+2η

)
; (using (47))

=
1

λ2
√
r
(
2r4(3 + 5r2)

∑
j

bjr
j − 2(1 + r2)

(∑
k

αk6r
k +

∑
l

βlr
l + (r2 − 3)

∑
m

γmr
m
))

Where we used the index-shift k = j + 2n+ 2; l = j + 2n+ 4; m = j + 2η
in conjunction with (42) as well as

αk =
∑
n

anbk−2n−2

βl =
∑
n

anbl−2n−4

γm =
∑
η

ãηbm

Summing over the same index this becomes, after some calculation

=
1

λ2
√
r
∑
j

(
6bj−4 + 10bj−6 − 18αj − 12αj−2 − 3βj − 2βj−2 + 9γj + 3γj−2 − 2γj−4

)
rj
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If we define the prefactor as µj this sum can be expressed as

σ2 =
∑
j

µj

√
rrj

Combining σ1 and σ2 we thus arrive at the equation∑
j

(
ξj + ξj−2 + µj)

√
rrj = 0 (48)
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3.5 Results for H1(ϕ18)

f(r) = 8r2(5 + 4r2)− 4(1 + r2)(10 + 3r2) ln(1 + r2)

g(r) = r4(1 + r2)(2 + r2)− 2(r + r3)2 ln(1 + r2)

Using (41) and (40) and inserting f(r), g(r) into (46) we get(
r4(1 + r2)(2 + r2)− 2(r + r3)2

∑
n

anr
2n
)(√

r
∑
j

(j + 2)(j + 1)bj+2r
j

+ (
1√
r
− 2k

√
r)

∑
j

(j + 1)bj+1r
j +

(
(k2

√
r − k√

r
− 1

4r
3
2

)− 2mE
√
r
)∑

j

bjr
j
)

+
(
8r2(5 + 4r2)− 4(1 + r2)(10 + 3r2)

∑
n

anr
2n
)( 1

λ2
√
r
∑
j

bjr
j
)
= 0

We again define certain abbreviations and simplify this expression.

⇔
(
a− b

∑
n

anr
2n
)(√

r
∑
j

(j + 2)(j + 1)bj+2r
j +A

∑
j

(j + 1)bj+1r
j +B

∑
j

bjr
j
)

+
(
c− d

∑
n

anr
2n
)( 1

λ2
√
r
∑
j

bjr
j
)
= 0

here

a = r4(1 + r2)(2 + r2); b = 2(r + r3)2;

c = 8r2(5 + 4r2); d = 4(1 + r2)(10 + 3r2)

A = (
1√
r
− 2k

√
r); B =

(
(k2

√
r − k√

r
− 1

4r
3
2

)− 2mE
√
r
) (49)

We can split this into two sums σ1, σ2 such that

σ1 + σ2 = 0

where

σ1 =
∑
j

(
a
√
r(j + 2)(j + 1)bj+2 + aA(j + 1)bj+1 + aBbj + c

1

λ2
√
rbj

)
rj

σ2 =
∑
j

∑
n

(
(−ban

√
r(j + 2)(j + 1)bj+2)− banA(j + 1)bj+1 − banBbj − dan

1

λ2
√
rbj

)
rj+2n

Using l = j − 2n with (42) σ2 becomes

σ2 =
∑
l

∑
n

(
(−ban

√
r(l − 2n+ 2)(l − 2n+ 1)bl−2n+2 − banA(l − 2n+ 1)bl−2n+1

− banBbl−2n − dan
1

λ2
√
rbl−2n

)
rl
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If we introduce one more simplification this can be written as:

σ2 =
∑
l

(
−
√
rbαl − bAβl − bBγl − d

√
rδl

)
rl

where

αl =
∑
n

an(l − 2n+ 2)(l − 2n+ 1)bl−2n+2

βl =
∑
n

an(l − 2n+ 1)bl−2n+1

γl =
∑
n

anbl−2n

δl =
∑
n

an
1

λ2
bl−2n

Thus if we resubstitute our parameters and use some index shifting this
becomes∑
l

(
−2αl−2 − 4αl−4 − 2αl−6 + 4kβl−2 − 4βl−3 + 8kβl−4 − 2βl−5 + 4kβl−6

+
1

2
γl + 2kγl−1 − (2(k2 − 2mE)− 1)γl−2 + 4kγl−3 − (4(k2 − 2mE)− 1

2
)γl−4

+ 2kγl−5 − 2(k2 − 2mE)γl−6 − 40δl − 52δl−2 − 12δl−4

)√
rrl

We define this sum as
σ2 :=

∑
l

ξl
√
rrl

Similarly σ1 takes after some calculation the following form:

σ1 =
∑
j

((
2(j − 2)(j − 3) + 2(j − 2)− 1

2
+

40

λ2
)
bj−2 −

(
4k(j − 3) + 2k

)
bj−3

+
(
3(j − 4)(j − 5) + 3(j − 4) + (2k2 − 3

4
− 4mE)

)
bj−4

+
(
(j − 6)(j − 7)− 6k(j − 5)− 3k

)
bj−5 +

(
(j − 6) + (3k2 − 6mE)

)
bj−6

−
(
2k(j − 7) + k

)
bj−7 +

(
k2 − 1

4
− 2mE

)
bj−8

)√
rrj

Which we define as
σ1 :=

∑
j

µj

√
rrj

Combining these two sums we now arrive at the equation∑
j

(
µj + ξj)

√
rrj = 0 (50)
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3.6 Results for H2(ϕ18)

f(r) = 8r4(6+3r2−4r4)+4(1+r2) ln(1+r2)
(
3r2(r4−8)+2(6+3r2+r4) ln(1+r2)

)
g(r) = (1 + r2)

(
r3(2 + r2)− 2(r + r3) ln(1 + r2)

)2

Using (41) and (40) and inserting f(r), g(r) into (46) we arrive at(
(1 + r2)

(
r3(2 + r2)− 2(r + r3)

∑
n

anr
2n
)2)(√

r
∑
j

(j + 2)(j + 1)bj+2r
j

+ (
1√
r
− 2k

√
r)

∑
j

(j + 1)bj+1r
j +

(
(k2

√
r − k√

r
− 1

4r
3
2

)− 2mE
√
r
)∑

j

bjr
j
)

+
(
8r4(6 + 3r2 − 4r4) + 4(1 + r2)(

∞∑
n=0

anr
2n)(3r2(r4 − 8) + 2(6 + 3r2 + r4)

∞∑
n=0

anr
2n
))

( 1

λ2
√
r
∑
j

bjr
j
)
= 0

We simplify this by introducing some abbreviations in the following way

⇔
(
a
(
b− c

∑
n

anr
2n
)2)(√

r
∑
j

(j + 2)(j + 1)bj+2r
j +A

∑
j

(j + 1)bj+1r
j +B

∑
j

bjr
j
)

+
(
d+ e

∞∑
n=0

anr
2n
(
f + g

∞∑
n=0

anr
2n
))( 1

λ2
√
r
∑
j

bjr
j
)
= 0

where

a = (1 + r2); b = r3(2 + r2); c = 2(r + r3)

d = 8r4(63r2 − 4r4); e = 4(1 + r2)

f = 3r2(r4 − 8); g = 2(6 + 3r2 + r4)

A = (
1√
r
− 2k

√
r); B =

(
(k2

√
r − k√

r
− 1

4r
3
2

)− 2mE
√
r
) (51)

Using (47) and after some calculation the above equation becomes∑
j

(
ab2

(√
r(j + 2)(j + 1)bj+2 +A(j + 1)bj+1 +Bbj

)
+ df

1

λ2
√
rbj

)
rj

+
∑
j

(
(−2abc

∑
n

an)
(√
r(j + 2)(j + 1)bj+2 +A(j + 1)bj+1 +Bbj

)
+ (dg + ef)

∑
n

an
( 1

λ2
√
rbj

))
rj+2n

+
∑
j

(
ac2

∑
η

ãη
(√
r(j + 2)(j + 1)bj+2 +A(j + 1)bj+1 +Bbj

)
+ eg

∑
η

ãη
( 1

λ2
√
rbj

))
rj+2η = 0

(52)
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For further calculations we distinguish between the three sums such that

σ1 + σ2 + σ3 = 0

To further simplify σ2 we first define l = j + 2n ⇒ j = l − 2n With this we
can use (42). Thus σ2 becomes

σ2 =
∑
l

∑
n

(
an(−2abc)

(√
r(l − 2n+ 2)(l − 2n+ 1)bl−2n+2

+A(l − 2n+ 1)bl−2n+1 +Bbl−2n

)
+ (dg + ef)an

( 1

λ2
√
rbl−2n

))
rl

We can further simplify this by introducing certain parameters.

=
∑
l

(
(−2abc)

(√
rασ2

l +Aβσ2

l +Bγσ2

l

)
+ (dg + ef)

√
rδσ2

l

)
rl

where

ασ2

l =
∑
n

an(l − 2n+ 2)(l − 2n+ 1)bl−2n+2

βσ2

l =
∑
n

an(l − 2n+ 1)bl−2n+1

γσ2

l =
∑
n

anbl−2n

δσ2

l =
∑
n

an
1

λ2
bl−2n

Similarly σ3 becomes∑
l

(
ac2

(√
rασ3

l +Aβσ3

l +Bγσ3

l

)
+ eg

√
rδσ3

l

)
rl

where

ασ3

l =
∑
η

ãη(l − 2η + 2)(l − 2η + 1)bl−2η+2

βσ3

l =
∑
η

ãη(l − 2η + 1)bl−2η+1

γσ3

l =
∑
η

ãηbl−2η

δσ3

l =
∑
η

ãη
1

λ2
bl−2η

Now we can resubstitute our before defined abbreviations.
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With that σ1 becomes

σ1 =
∑
j

(
(4r6 + 8r8 + 5r10 + r12)

√
r(j + 2)(j + 1)bj+2

+
√
r(4r5 − 8kr6 + 8r7 − 16kr8 + 5r9 − 10kr10 + r11)(j + 1)bj+1

+
√
r(−r4 − 4kr5 + (4k2 − 2− 8mE)r6 − 8kr7 + (8k2 − 5

4
− 16mE)r8 − 5kr9

+ (5k2 − 1

4
− 10mE)r10 − kr11 + (k2 − 2mE)r12)bj

+
√
r(−1152r6 − 576r8 + 912r10 + 72r12 − 96r14)

1

λ2
bj

)
rj

Using index shifting and collecting the same prefactors this becomes

σ1 =
∑
j

(
(4(j − 4)(j − 5) + 4(j − 4)− 1)bj−4 + (−8k(j − 5)− 4k)bj−5

+ (8(j − 6)(j − 7) + 8(j − 6) + (4k2 − 2− 8mE)− 1152
1

λ2
)bj−6

+ (−16k(j − 7)− 8k)bj−7 + (5(j − 8)(j − 9) + 5(j − 8) + (8k2 − 5

4
− 16mE)− 576

1

λ2
)bj−8

+ (−10k(j − 9)− 5k)bj−9 + ((j − 10)(j − 11) + (j − 10) + (5k2 − 1

4
− 10mE) + 912

1

λ2
)bj−10

− kbj−11 + ((k2 − 2mE) +
72

λ2
)bj−12 −

96

λ2
bj−14

)√
rrj

Similarly σ2 becomes:

σ2 =
∑
l

(
−8ασ2

l−4 − 20ασ2

l−6 − 16ασ2

l−8 − 4ασ2

l−10 − 8βσ2

l−3 + 16kβσ2

l−4

− 20βσ2

l−5 + 40kβσ2

l−6 − 16βσ2

l−7 + 32kβσ2

l−8 − 4βσ2

l−9 + 8kβσ2

l−10

+ 2γσ2

l−2 + 8kγσ2

l−3 − (8k2 − 5− 16mE)γσ2

l−4 + 20kγσ2

l−5 + 4γσ2

l−6

− (20k2 − 40mE)γσ2

l−6 + 16kγσ2

l−7 − (16k2 − 1− 32mE)γσ2

l−8 + 4kγσ2

l−9

− (4k2 − 8mE)γσ2

l−10 − 96δσ2

l−2 + 480δσ2

l−4 + 588δσ2

l−6 − 132δσ2

l−8 − 144δσ2

l−10 − 64δσ2

l−12

)√
rrl

And σ3 becomes:

σ3 =
∑
l

(
4ασ3

l−2 + 12ασ3

l−4 + 12ασ3

l−6 + 4ασ3

l−8

+ 4βσ3

l−1 − 8kβσ3

l−2 + 12βσ3

l−3 − 24kβσ3

l−4 + 12βσ3

l−5

− 24kβσ3

l−6 − 4βσ3

l−7 − 8kβσ3

l−8 − γσ3

l − 4kγσ3

l−1 + (4k2 − 3− 8mE)γσ3

l−2

− 12kγσ3

l−3 + (12k2 − 3− 24mE)γσ3

l−4 − 12kγσ3

l−5 + (12k2 − 1− 24mE)γσ3

l−6

− 4kγσ3

l−7 + (4k2 − 8mE)γσ3

l−8 + 48δσ3

l + 72δσ3

l−2 + 32δσ3

l−4 + 8δσ3

l−6

)√
rrl
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If we define the above sums as follows:

σ1 :=
∑
j

ξj
√
rrj

σ2 :=
∑
j

µj

√
rrj

σ3 :=
∑
j

νj
√
rrj

(53)

We arrive at the equation∑
j

(ξj + µj + νj)
√
rrj = 0 (54)
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4 Conclusion

We presented a supersymmetric approach to the zero modes of the
Faddeev-Popov operator in order to understand whether a more simple
solution can be found, which in turn could lead to a better understanding of
the Gribov-Singer ambiguity. This was done within an instanton field
configuration through calculating the supersymmetric partner potentials. Our
results brought no direct improvement in solvability, however to each potential
term in (28) an approximate solution for the wavefunction either of the form∑

j

χj

√
rrj = 0 (55)

or of the form ∑
j

χjr
j = 0 (56)

has been found. To now further check for solvability it must be noted, that in
each case the prefactor χj has to be zero for all j. As shown in section 3, χj is
of the general form

χj =
∑
i

αijbi = 0 (57)

where bi are the initial coefficients we are interested in. Equation (57) is a
matrix equation which can also be expressed as

χ = Ab (58)

One now would have to try to calculate the determinant of A in order to check
for solvability and possibly find the solutions depending on the structure of A.
However this would be beyond the scope of this thesis so we will end here.
As is evident, further research is necessary to build upon the findings
presented in this thesis.
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