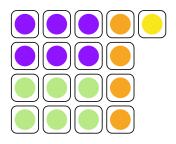
A manifestly gauge-invariant treatment of the Minimal Supersymmetric Standard Model

Philipp Schreiner

Institute of Physics, University of Graz Supervisor: Axel Maas

September 28, 2022


supported by Paul-Urban-Stiftung

Gauge Theories

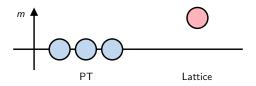
- Well established construction principle for fundamental theories in particle physics (e.g. Standard Model)
- Elegant mathematical framework
- Introduction of redundant degrees of freedom

Important Question

What are the physical degrees of freedom?

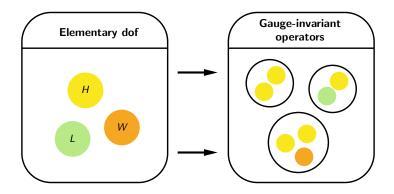
Gauge Theories

- Well established construction principle for fundamental theories in particle physics (e.g. Standard Model)
- Elegant mathematical framework
- Introduction of redundant degrees of freedom

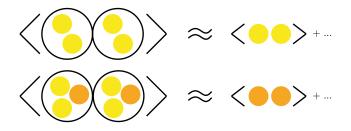

- Gauge-Fixing (c.f. Coulomb Gauge)
- BRST Construction (extract physical states)

Beyond Perturbation Theory

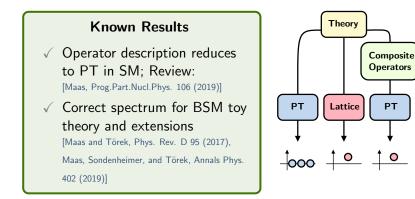
- Non-perturbative methods for large coupling, bound states
- Examples: Lattice Field Theory, Functional Methods


Subtleties and Problems

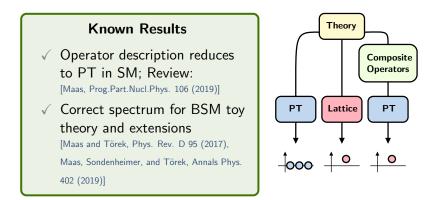
- Fixing gauge uniquely in general not possible (locally) [Gribov, Nucl. Phys. B 139 (1978), Singer, Commun. Math. Phys. 60 (1978)]
- Perturbative BRST construction fails in general [Neuberger, Phys. Lett. B 183 (1987)]
- Non-perturbative **physical** states might differ from PT [Maas and Törek, Phys. Rev. D 95 (2017)]


A shift of view

- Introduce inherently gauge-invariant (physical) objects
- Spin, Parity, etc. carried by composite operators
- Do PT with those objects (in a special sense)


The FMS Mechanism

- In theories with Brout-Englert-Higgs effect
- Expand Higgs field; $H(x) = v + \varphi(x)$



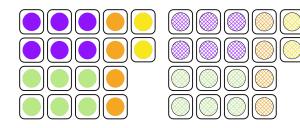
 Propagation of elementary fields ↔ propagation of gauge-invariant operators with identical quantum numbers (Augmented Perturbation Theory)

Augmented Perturbation Theory

Augmented Perturbation Theory

Conclusion

Especially when studying BSM theories one should investigate whether the spectrum predicted by standard PT is even physical!


The Minimal Supersymmetric Standard Model (MSSM)

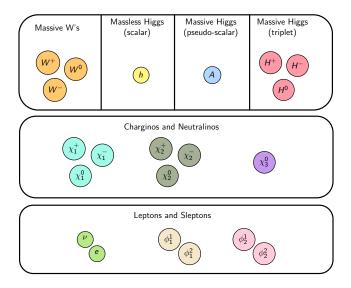
Motivations

- Fine-tuning problem
- Gauge-couplingunification
- Supergravity
- Rich Phenomenology (Dark Matter)

The MSSM

- Every SM particle gets superpartner
- Additional Higgs (2HDM)
- Soft-breaking necessary
- Keep SU(2)_{cust}

Gauge-invariant description of the MSSM


Proceeds in three steps

- 1. Find perturbative mass eigenstates
- 2. Build gauge-invariant operators
- 3. Apply FMS mechanism

For simplicity: Keep custodial symmetry intact for now and consider only weak-Higgs sector as well as one lepton generation.

Gauge-invariant description of the MSSM

1. Mass eigenstates predicted by PT

Gauge-invariant description of the MSSM

2. Inherently gauge-invariant composite operators

Operator	Spin	$SU(2)_{cust}$	
tr H [†] H	0	1	
Im det H	0	1	
tr $H^{\dagger}H\sigma^{A}$	0	3	
tr $H^{\dagger}D_{\mu}H\sigma^{A}$	1	3	
tr $H^{\dagger}\tilde{H}$	1/2	1	
tr $H^{\dagger}\tilde{H}\sigma^{A}$	1/2	3	
tr $H^{\dagger}\sigma^{a}H ilde{W}_{a}$	1/2	3	

Gauge-invariant description of the MSSM 3. FMS Mechanism

_

Operator	Spin	$SU(2)_{cust}$	Expansion
tr H [†] H	0	1	h
Im det H	0	1	A
tr $H^{\dagger}H\sigma^{A}$	0	3	
tr $H^{\dagger}D_{\mu}H\sigma^{A}$	1	3	W ⁰ W ⁺ W ⁻
tr $H^{\dagger} \tilde{H}$	1/2	1	χ_3^0
tr $H^{\dagger} \tilde{H} \sigma^A$	1/2	3	$\begin{pmatrix} \chi_1^0 \\ \chi_1^+ \end{pmatrix} \begin{pmatrix} \chi_1^- \end{pmatrix}$
tr $H^{\dagger}\sigma^{a}H ilde{W}_{a}$	1/2	3	χ_2^0 χ_2^+ χ_2^-

Remarks and Summary

Further Results

- Broken symmetry: multiplets split, mapping still works
- Can be extended to entire MSSM

Conclusion

- Perturbative mass spectrum of MSSM can be augmented by inherently gauge-invariant description
- No qualitative difference expected to usual PT results