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Abstract

Individuals are randomly matched to play an ex-ante symmetric
hawk-dove game. Individuals assume one of a finite set of observable
labels and condition their action choice on their opponent’s label. We
study the evolutionary stability of chosen labels and their social in-
teraction structure. Evolutionarily stable social structures differ for
games in which a dove player prefers the opponent to play hawk (anti-
coordination games), and those in which everyone prefers their op-
ponent to play dove (conflict games). Non-trivial hierarchical social
structures can only emerge in anti-coordination games. Egalitarian
social structures can emerge in both, but are more fragile in conflict
games.
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1 Introduction

We study the endogenous evolution of social structures that govern who
does what in economically motivated human or animal interactions. Indi-
viduals in our model can freely adopt any publicly observable social role
(or label, as we call them in the model) before they interact. When they
interact, individuals can then choose more or less assertive or attractive
actions. Following the literature, we call the more assertive actions “hawk-
ish” and the less assertive actions “dovish” in our model. Individuals can
make this choice contingent on the social roles that they and the individuals
with whom they interact adopt. The more well-balanced the mix of actions
among the interacting group of individuals, the higher the joint economic
success they provide; those who choose the more assertive actions, however,
gain relatively more than those who do not.

A social structure combines two things: a distribution of adopted social
roles, and a convention describing how individuals behave as a function
of the adopted social roles. We study the question how non-trivial social
structures can evolve (be evolutionarily stable), even when all social roles
can be freely adopted, and, if they do, how efficient these could be.

We have a wide range of situations of human or animal interaction in
mind. Foremost, we think of social structures on a small scale. Consider, for
instance, the case of two (or more) animals competing over a resource, as in
Maynard Smith and Price (1973). Fighting is likely detrimental to all who
engage in it. If one animal is prepared to fight (i.e. act hawkishly) and the
other is not (i.e. act dovishly), they would (efficiently) resolve the conflict
without a fight. Or consider the case of animals hunting together in a pack
to hunt for bigger prey. Each pack member needs to perform a distinct
action to guarantee the overall success of the hunt. One would expect that
not all actions are equally attractive to each pack member; some actions
are probably riskier or require more energy than others. In both examples,
the question of which animal adopts which action is central to the conflict.
In either problem, would we expect a non-trivial social structure to evolve
among animals of equal ability (or strength)?

In the human world, these interactions could represent the internal task
allocation among members of a team (see, e.g., Forsyth (2016, Chapter 12)
for a textbook treatment of team dynamics). In particular Forsyth (2016,
p. 391) refers to a “task conflict” for such problems. See also Forsyth (2016,
p. 262-266) for the similar problem of who should adopt the leadership role
(provided one is required). Consider, for instance, two members of a team
discussing the best way to carry out a joint project. A team member who
acts more assertively than the other can profit by pushing the project in
his or her preferred direction. But if both members act very assertively, the
team spirit may suffer, which hurts both. Who takes on the leadership role
in such a discussion may depend on simple social cues, such as clothing,
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which are not directly relevant to the interaction except that they can in-
fluence social expectations. In some social environments, a convention may
develop suggesting that the person with the more formal dressing style is
expected to take on the leadership role. Presumably, in such a hierarchical
social structure, a formal dress code will become very popular. In other
social environments, a more complicated convention might develop in which
someone in formal clothes takes the lead when meeting someone in working
clothes; the person in working clothes takes the lead when meeting some-
one wearing sports clothes; but the person in sports clothes takes the lead
when interacting with someone in formal clothes. Such a social structure
would presumably result in a more equitable mix of outfits and leadership
positions. We want to understand which of these social structures are stable
under which circumstances and for which class of interactions.

On a larger scale, the results of our analysis may also shed some light on
social structures in entire societies. Specialization is a hallmark of economic
activity. Different societies have developed different social structures that
coordinate which role or specialization people take. Historically, such social
systems were often rather hierarchical. The Indian caste system “allowed”
people of higher castes to perform the more profitable (hawkish) tasks and
assigned members of lower castes the less profitable (dovish) tasks (see, e.g.,
Brown (1965, p. 107)). Similarly, the social hierarchy of “the three estates”
in medieval Europe prescribed different tasks to different estates: The first
estate (clergy) performed (the more hawkish) religious tasks including pre-
serving religious tradition by studying; the second estate (nobility) took
over the (also hawkish) tasks of governing and protecting the people; and
the third estate (peasants and the bourgeoisie with its social sub-structure of
different guilds) carried out their respective (relatively more dovish) tasks of
production. The successful overall production requires the right number of
people to perform each of these activities. But how efficiently did these hier-
archical social systems allocate human resources? Some societies developed
less hierarchical social systems. After the Enlightenment movement with its
call for egalité, for instance, some societies prospered economically under
more egalitarian social systems with checks and balances and a separation
of powers. Can an egalitarian social system enhance economic efficiency?

Our model is far too simplistic to do justice to any particular situation
or society, and we do not attempt to model each situation separately with
models closely tailored to the specific problem. This model, however, does
allow us to identify a key distinction that partitions the set of such interac-
tions into two categories and plays a key role in determining the likelihood
of the emergence (or evolution) of a non-trivial social structure and, if ap-
plicable, the kind of social structure we would be likely to see. This finding
allows us to provide a possible explanation for certain social structures (or
lack thereof) observed in animals and humans.

We model all these situations as simple 2-by-2 hawk-dove games, in which
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individuals can adopt either a more (H for hawkish) or a less (D for dove)
assertive action, with payoffs given as follows.1

H D
H c a
D b d

We assume that b > c and a > d in order to capture that H and D
are best responses to each other. Furthermore, we assume throughout that
a > b, capturing the conflict that H fares better than D in the asymmetric
equilibria.

The key distinction that we identify in this paper and that governs the
likelihood of the emergence of a non-trivial social structure is whether or not
d < b or d > b. When d < b then a D strategist prefers his or her opponent
to choose H. The (H,D) outcome is then Pareto-better than the (D,D)
outcome (and in all games better than the (H,H) outcome). We refer to such
situations as anti-coordination games and interpret these games as models
of task allocation and job specialization in joint production. The examples
of animals hunting in a pack as well as the examples from the human sphere
involve task allocation and are intended as examples of anti-coordination
games.

When d > b then a D strategist prefers his or her opponent to choose D.
We consider examples of animals competing for a resource as typically falling
into this category, as both animals playing D could often be interpreted as
sharing the resource; this would presumably be better than being the one
animal that, because of the opponent’s hawkish behavior, withdraws from
the conflict with nothing. We refer to such situations as conflict games.2

How can we model a social structure? First note that this class of games
is also the canonical example in the evolutionary game theory literature for
games, in which the evolutionarily stable strategies in the one-population
model differ greatly from those in the two-population model. In the one-
population model, both players playing the game are drawn from the same
population, and the unique evolutionarily stable strategy is the symmetric
mixed Nash equilibrium. In the two-population model, the mixed Nash
equilibrium is not even a neutrally stable (and thus neither evolutionarily
stable) strategy, and the only evolutionarily stable strategies are the two
asymmetric equilibria. The cause for this drastic difference in results is that
in the one-population model players cannot make their play contingent on

1As the game is symmetric only the row-player’s payoffs are given. The column players
payoffs can be obtained by taking the transpose of the payoff matrix.

2We are not completely satisfied with the somewhat generic term “conflict game” for
the class of hawk-dove games with d > b. Various names for such games have been used in
the literature, such as “hawk-dove” “snowdrift”, “chicken”, “brinkmanship” games or “war
of attrition”. No classification terminology seems to be universally accepted, especially
when it comes to the boundaries and overlaps between different such classes.
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their player-position and it is, thus, impossible to play an asymmetric mixed
strategy profile.

One interpretation of this finding is that evolutionary forces would prob-
ably induce players to exploit any noticeable differences between players to
play asymmetrically. But if this is so, one would expect players to try and
adopt (if possible) an appearance that allows them to play hawk against
dove in as many encounters as possible. One could call such an adopted
appearance a role, as it is consistent with the way social psychologists inter-
pret this term (see e.g., Brown (1965, Chapter 4)).3 Alternatively, one could
call it a type or, perhaps better, a label.4 One could imagine many models
of such role adoption. For instance, one model could exogenously provide
certain observable appearances; this is in essence dealt with in Selten (1980)
and addressed in more detail below. Some roles may also be easier or harder
to adopt by different degrees by different people, an idea that is based on
that of costly signalling as described by Spence (1973).

In this paper we study a benchmark model in which players can adopt
roles completely freely. We identify the kinds of role distributions that
could emerge together with the kinds of social (interaction) structures that
could emerge between these roles. To do so, we add an arbitrary fixed set
of (completely payoff-irrelevant) publicly observable types or labels to the
description of the game, assuming that any player must first adopt some
label and then choose an action-function that describes the action he or she
would choose in response to all possible labels an opponent might have.

Thus, while evolutionary competition is still evaluated across the entire
(single) population, both the actions that depend on labels and the dis-
tribution of labels evolve. We “solve” the “meta-game” of first choosing
a label and then an action in a hawk-dove base game using standard evo-
lutionary stability concepts.5 More precisely, we consider neutrally stable
strategies (NSS) and evolutionarily stable strategies (ESS) of this meta-
game, both refinements of symmetric Nash equilibrium.6 These notions of

3One key aspect of role theory in social psychology (see e.g., Brown (1965, Chapter 4)),
is that people generally behave differently in the different roles they may find themselves
in, such as when they act in the kinship role of a mother versus the occupational role of
a doctor.

4Note that types play a somewhat different role here as compared to that described in
the literature on the evolution of preferences under observability in which a type implies
some subjective preferences and, therefore, some particular strategic behavior (compare,
e.g., Dekel, Ely, and Yilankaya (2007) and Herold and Kuzmics (2009)). Here types (or
labels) are payoff-irrelevant.

5Thus, we implicitly make the standard assumption that individuals in this single
population are recurrently and randomly matched to play the meta-game.

6In Appendix A we investigate further evolutionary notions of stability as a robustness
check: evolutionarily stable sets introduced by Thomas (1985), CURB sets introduced by
Basu and Weibull (1991), limit-ESS introduced by Selten (1980), and its refinements of
uniform limit-ESS, and strict limit-ESS introduced by Heller (2014). The key insights do
not change.
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conflict general anti-coordination
H D

H 0 3
D 1 d=2

H D
H 0 3
D 1 d

H D
H 0 3
D 1 d=0

Table 1: Examples of hawk-dove games

evolutionary stability, introduced by Maynard Smith and Price (1973) and
Maynard Smith (1982), are elegant shortcuts that can be used to analyse
the long-term evolutionary outcome of behavior. See, e.g., Weibull (1995,
Propositions 3.10 and 3.12), who states that every ESS (NSS) is asymptoti-
cally (Lyapunov) stable under the replicator dynamics of Taylor and Jonker
(1978). The converse is not generally true. One can, thus, argue that an
ESS is evolutionarily stable in a strong sense. This comes at the cost of
some games not having an ESS. This is also reflected in our setting. We
identify an important class of games, however, in which we always find an
ESS, and thus an outcome that is evolutionarily stable in a strong sense.
But it is also true that not all our meta-games have an ESS. Nevertheless,
our meta-games always have a strategy that satisfies the slightly weaker NSS
notion of evolutionary stability, which is typically interpreted as stability in
the medium run of evolutionary dynamics.

1.1 Summary of Main Results

Our results are best summarized in the final Proposition 4 of this paper. To
best explain this here, consider the class of hawk-dove games parameterized
by only one parameter, the payoff d that is accrued by both players if both
choose D, with payoffs given in Table 1. The game on the left, with d = 2,
is a conflict game, the game on the right, with d = 0 is an anti-coordination
game.

There are two key kinds of social structure that can potentially emerge.
One is hierarchical, and labels are (socially) ordered. This means that when-
ever two players with different labels meet, where one label is higher ranked
than the other (in this social order), the player with the higher-ranked label
plays hawk and the player with the lower-ranked label plays dove. The other
structure is egalitarian (or approximately egalitarian when the number of
types is even). In such a social structure, each label7 plays hawk against
some labels and dove against others in such a way that the overall frequency
of hawk played by any type of label is the same. For three labels one can
imagine such a structure by considering three people sitting around a ta-
ble, with each one playing hawk against their right-hand neighbor and dove

7We will sometimes write “. . . a label plays . . . ” instead of “ . . . a player with a specific
label plays . . . ”.
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against their left-hand neighbor.
As an example, consider the case with three labels, denoted T , M , and

B. The hierarchical and egalitarian label structures, respectively, can be
represented in terms of the induced “label game” given by the following two
matrices, where u∗ = 3

4−d is the payoff in the symmetric mixed strategy
equilibrium of the hawk-dove game.

T M B
T u∗ 3 3
M 1 u∗ 3
B 1 1 u∗

T M B
T u∗ 3 1
M 1 u∗ 3
B 3 1 u∗

hierarchical egalitarian

For the hierarchical label structure, T is the “top” label in the social
hierarchy and plays H against all other labels. Label M is the “middle”
label, who plays D against label T and H against label B. Label B is the
“bottom” label, who plays D against all other labels. In the egalitarian
label structure, all labels play H against half of the other labels and D
against the remaining half of the other labels. Thus, they are all in equal or
“egalitarian” positions.

The evolutionary stability results, as well as their welfare consequences,
depend on d, and we now review them gradually taking d from +∞ to −∞
for this class of games. These results are generalized for all games considered
in this paper in Proposition 4.

Suppose first that d ≥ 3. This case is not considered in this paper as it
is a trivial case. Then action D is strictly dominant (weakly if d = 3) and,
in any equilibrium, every player plays D with probability 1.

If d is such that d̄ = 2.5 < d < 3 (conflict game), then any NSS has only
one label in its support and earns the expected payoff u∗ = 3

4−d . This is

efficient (among all pre-stable equilibria of the meta-game).8 No ESS exists
in this case.

If a+b
2 = 2 < d < d̄ (conflict game), then any NSS has only one label in its

support and earns the expected payoff u∗ = 3
4−d . This NSS is inefficient and

achieves the lowest payoff among all pre-stable equilibria of the meta-game.
No ESS exists in this case.

Suppose b = 1 ≤ d < a+b
2 = 2 (conflict game). Then multiple NSS exist

with distinct payoffs: there are at least two NSS when the label space has an
odd number of labels. The NSS with only one label in its support gives the

8The meta-game has many symmetric Nash equilibria. A symmetric Nash equilibrium
of the meta-game is pre-stable if, whenever two different labels meet, they anti-coordinate
with one label playing hawk and the other dove; when two players using the same label
meet, they play the mixed equilibrium of the hawk-dove game. There are many pre-stable
equilibria, and any NSS and ESS must be pre-stable, see Lemma 2.
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base game parameters single label NSS multiple-label NSS

conflict
d > d̄ = a2+b2−c(a+b)

a+b−2c
exists and efficient

do not exist
d ∈

(
a+b
2
, d̄
)

exists and inefficient
d ∈

(
b, a+b

2

)
exist, are ESS,
egalitarian efficientanti-coordination d < b does not exist

Table 2: Summary of key findings

minimum payoff among all pre-stable equilibria. If there is an odd number
of possible labels, then an egalitarian NSS (which is also ESS) exists that
gives the maximum possible expected payoff.

Finally, if d < b = 1 (anti-coordination game) multiple ESS (and thus
also multiple NSS) exist. An egalitarian (for an odd number of labels) and
approximately egalitarian (for an even number of labels) ESS are among
these, which yield the maximum possible expected payoff. Hierarchical ESS
also exist and are payoff-dominated by the egalitarian or approximately
egalitarian ESS.

In addition to this result, in Section 4.2 we discuss the robustness of
these results regarding the potential emergence of additional labels. In this
robustness discussion, we find that the results for anti-coordination games
are somewhat robust to the introduction of additional labels, while adding
more labels in conflict games can easily lead to the collapse of any (also
egalitarian) social structure (that could emerge in some conflict games, i.e.
when b = 1 ≤ d < a+b

2 = 2).
More generally, our results are roughly summarized in Table 2.

1.2 Related Literature

Hawk-dove games were among the first games analyzed in evolutionary game
theory, starting with the seminal work by Maynard Smith and Price (1973)
and Maynard Smith (1982). They analyzed these games in the single-
population setting and established the evolutionary stability of the only
symmetric (and mixed) equilibrium in these games. Selten (1980) demon-
strates that, if players have different roles, only the asymmetric pure strat-
egy equilibria are evolutionarily stable. See Oprea, Henwood, and Friedman
(2011) for an experiment that provides strong empirical support for these
findings. See also Benndorf, Martinez-Martinez, and Normann (2016) for an
exogenously fixed “in-between” model between a single and a double pop-
ulation evolutionary model and experiment. While in Selten (1980) these
different roles are given exogenously, we are interested here in examining
their endogenous evolution.

Evolutionary papers on cheap-talk games are most closely related to this
paper. We can redefine payoff irrelevant labels as cheap talk messages and
search for the NSS or ESS of these games. An early paper that describes
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an anti-coordination game with a specific type of cheap talk messages is
Farrell (1987). Farrell allows only for a specific type of communication that
corresponds to our hierarchical structure in anti-coordination games and
analyzes the corresponding Nash equilibria.

Most of this related cheap-talk literature, including Robson (1990), So-
bel (1993), Blume, Kim, and Sobel (1993), Schlag (1993), Wärneryd (1993),
Schlag (1995), Kim and Sobel (1995), Bhaskar (1998), Banerjee and Weibull
(2000), and Hurkens and Schlag (2003), focusses on coordination games
and investigates how far cheap talk does - or does not - support selec-
tion against inefficient equilibria. The most closely related formal setup
to our work is that described in Hurkens and Schlag (2003) and Banerjee
and Weibull (2000). While both papers focus on coordination games, the
work by Hurkens and Schlag (2003) also has a section on a task allocation
game which falls into our sub-class of anti-coordination games.

For this task-allocation game, they find necessary conditions for ESS that
correspond to our conditions (a), (b) and (d) in Lemma 2. Our lemma adds
to their necessary condition, beyond the added full generality, by providing
a full characterization of ESS. In their proofs of the lowest and highest pay-
offs in any ESS, they also use constructions corresponding to what we call
hierarchical label structure and, respectively, egalitarian or approximately
egalitarian label structures. They also conjecture that these results extend
to a larger class of anti-coordination games. Our Propositions 1, 2, and 3,
which also cover, among others, also all anti-coordination games, confirm
this conjecture. More importantly, in Propositions 1, 2, and 3 we ana-
lyze all 2 × 2 games with the best response structure of hawk-dove games.
These propositions cover conflict games as well as anti-coordination games,
and identify the key distinction between these two (mutually exclusive and
jointly exhaustive) subclasses of hawk-dove games, which has not been dis-
cussed in the literature before.

We return to the relation of our work to that of Farrell (1987), Banerjee
and Weibull (2000), and Hurkens and Schlag (2003) and describe it in more
detail in Section 4 after we have derived our results.

2 Model

This paper studies a special class of symmetric, two-player, two-strategy
games with a pre-game cheap-talk phase. We call the two-by-two game the
base game, and the base game plus the cheap-talk phase the meta-game as
in Banerjee and Weibull (2000).

2.1 The Base Game

The base game is a symmetric 2x2 game given by the payoff matrix
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H D
H c a
D b d

,

with the following restrictions.9 We assume throughout that a > b.
The key restrictions we impose on our base game are b > c and a > d.

These last two restrictions imply that the best response to H is D and to
D is H. This means we rule out dominant strategy games and coordination
games and this is all we rule out.10 We shall, thus, call the base games
we consider here (general 2× 2) hawk-dove base games or simply H-D base
games.

The results presented in this paper differ crucially for two (disjoint and
jointly exhaustive) subclasses of the class of H-D base games. The crucial
distinction is how b compares to d. When b ≤ d, a player always prefers
the opponent to play the dove strategy D, independently of his or her own
choice of action. We shall call such games conflict games. In contrast, when
b > d, a player who did commit to playing action D would actually prefer
the opponent to play action H. We call such games anti-coordination games.
The following lemma collects a few immediate and mostly well-known facts
about this class of games, which are useful for the further analysis of the
meta-game.

Lemma 1. An H-D base game (with parameters a, b, c, d satisfying a > b > c
and a > d) has the following properties.

1. There are exactly two pure strategy Nash equilibria. These are asym-
metric. One player plays H and the other D.

2. The game has a unique symmetric equilibrium which is in mixed strate-
gies with probability x∗ placed on H, where x∗ = a−d

a−d+b−c .

3. The expected payoff (to both players) in the symmetric (mixed strategy)
equilibrium is given by u∗ = ab−cd

a−d+b−c .

4. The payoff in the symmetric equilibrium, u∗, is lower than b, the low
payoff in the asymmetric equilibria, if and only if d < b (i.e. if and
only if the game is an anti-coordination game).

9Throughout the paper we ignore the possibilities of payoff-ties. Generically there are
no payoff-ties and this simplifies the exposition without affecting the main message.

10Symmetric 2x2 games are typically classified by the best responses into four categories:
two classes of dominant strategy games (efficient dominant strategy games and prisoners
dilemma games), coordination games, and hawk-dove (also chicken) games. Compare,
e.g., Weibull (1995) or Eshel, Samuelson, and Shaked (1998). Dominant strategy games
are of no interest for our purpose. In such games in our model, evolution will always favor
those who play the dominant action. Players may send messages but these will not impact
play. Coordination games are of interest in our context, but have already been subjected
to a thorough analysis by Banerjee and Weibull (2000) and Hurkens and Schlag (2003),
among others.
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5. There exists a strategy that limits the opponent’s expected payoff to
at most min{u∗, b}. In anti-coordination games, this is achieved by
playing x∗, in conflict games by playing H.

6. Given parameters a, b, c, the mixed equilibrium payoff u∗ strictly in-
creases in the parameter d, with limd→−∞ u

∗ = c and limd→a u
∗ = a.

7. Keeping a, b, c fixed, there is a unique cutoff value d̄ ∈ (a+b
2 , a) for

which u∗(d̄) = a+b
2 , specifically d̄ = a2+b2−c(a+b)

a+b−2c .
The payoff in the symmetric equilibrium u∗ is higher than the average
of the two payoffs in an asymmetric equilibrium 1

2(a + b) if and only
if d > d̄.

Points 1-3 of this Lemma are commonly known and their proofs omitted.
The remaining points are not usually emphasized. Their straightforward
proofs are given in Appendix B.1. In particular Point 4 is important for the
evolutionary analysis of the meta-game.

2.2 The meta-game

Let G = (A, u) be any two-player H-D base game (with a > b > c and
a > d). Before players play the base game they can freely, i.e. without
cost, adopt one of finitely many (commonly observable) labels. One could
also call these roles or types or (commonly distinguishable) messages. To
avoid confusion we only use the terms label or type of label throughout the
main Sections 2 and 3 of this paper. The finite set of labels is given by label
space Θ. Labels are, therefore, payoff-irrelevant, but perfectly observable
and players can condition their play on the opponent’s label θ′ ∈ Θ.

The formal setup is, thus, almost identical to that of Banerjee and
Weibull (2000) and Hurkens and Schlag (2003), except that we study the
entire class of H-D base-games and focus on the resulting social structures,
while their focus was on studying equilibrium selection in coordination games
and in an anti-coordination game.11

After adopting a label, a player chooses an action function f : Θ → A.
This function is a mapping from the set of labels to the set of actions; namely
f(θ′) is the action that a player using action function f chooses against an

11There is one formal, but non-substantive, difference between the way we define pure
strategies in the meta-game and the way this is done in Banerjee and Weibull (2000).
They allow players to condition on both their opponent’s as well as their own label. We
prefer to reduce the number of strategies, without losing anything, by allowing players to
condition only on their opponent’s label. We thus follow Schlag (1993), Schlag (1995) and
Hurkens and Schlag (2003), in this respect. For a discussion of this issue, see pages 11-12
in Banerjee and Weibull (2000). One advantage of using this reduced form approach is
that it helps to clarify when a failure of evolutionary but not neutral stability is simply
due to a large number of equivalent strategies or due to a more fundamental problem
intrinsic to the game under analysis.
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opponent of label θ′. Let F = {f : Θ→ A} the (finite) set of all such action
functions.

Define S = Θ×F as the (finite) set of pure strategies of the meta-game.
Correspondingly, let ∆(S) be the set of mixed strategies of the meta-game
and u the appropriately expanded payoff function. Thus Γ = (S, u) defines
the finite meta-game.

A mixed strategy σ ∈ ∆(S) induces both a probability distribution over
adopted labels as well as, for each adopted label, a probability distribution
over actions. For the purpose of stating (and proving) our results it is useful
to have formal expressions of these distributions.

We define σ(θ) ≡
∑

f∈F σ(θ, f), the marginal probability of a player,
using mixed strategy σ ∈ ∆(S), adopting label θ ∈ Θ. Furthermore we
denote the (conditional) probability that a player of label θ, given strategy
σ ∈ ∆(S) with σ(θ) > 0 plays H against an opponent of label θ′ by xθ(θ

′) =∑
f∈F,f(θ′)=H σ(θ,f)

σ(θ) .12

Note that any σ ∈ ∆(S) uniquely determines σ(θ) for every θ ∈ Θ and
xθ(θ

′) for all θ, θ′ ∈ Θ. The converse is not generally true.13 However, in
order to compute the expected payoff u(σ, σ̃) which a player with strategy
σ obtains against an opponent with strategy σ̃, it is sufficient to know σ(θ)
and σ̃(θ) for every θ ∈ Θ and xθ(θ

′) and x̃θ(θ
′) for all θ, θ′ ∈ Θ:14

u(σ, σ̃) =
∑

θ,θ′∈Θ σ(θ)σ̃(θ′)
[
xθ
(
θ′
)
x̃θ′ (θ) c

+xθ
(
θ′
)

(1− x̃θ′ (θ)) a
+
(
1− xθ

(
θ′
))
x̃θ′ (θ) b

+
(
1− xθ

(
θ′
))

(1− x̃θ′ (θ)) d
]
.

2.3 The Solution Concept

We can now use standard concepts such as Evolutionarily Stable Strategy
(ESS) and Neutrally Stable Strategy (NSS) from evolutionary game theory

12We should perhaps indicate the dependence of xθ(θ
′) on σ by writing xσθ (θ′). The

context should be sufficient for clarity. We shall, for instance, have σ and σ′ and then
correspondingly xθ(θ

′) and x′θ(θ
′).

13Consider for instance a meta-game with Θ = {T,B} and the corresponding set of
action functions F = {fHH , fHD, fDH , fDD}, where faT ,aB is the action function with
f(T ) = aT and f(B) = aB for aT , aB ∈ {H,D}. Then the two strategies σ = 1

2
(T, fHH)+

1
2
(T, fDD) and σ̃ = 1

2
(T, fHD) + 1

2
(T, fDH) which are different from each other but lead

to the same σ(θ) = σ̃(θ) for every θ ∈ Θ and xθ(θ
′) = x̃θ(θ

′) for all θ, θ′ ∈ Θ.
14We could, thus, call two strategies σ ∈ ∆(S) and σ̂ ∈ ∆(S) equivalent if σ(θ) =

σ̂(θ) for all θ ∈ Θ and xθ(θ
′) = x̂θ(θ

′) for all θ, θ′ ∈ Θ. We could then define the
corresponding equivalent classes. It turns out, however, that all strategies that satisfy
any of our necessary conditions for neutral stability or evolutionary stability are unique in
their equivalent class and we do not further need to worry about this issue for our results.
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and apply them to our meta-game.15 One way to define these concepts is
as follows.

Definition 1. A strategy of the meta-game σ ∈ ∆(S) is a neutrally stable
strategy (NSS) if and only if the following two conditions hold:

u(σ, σ) ≥ u(σ′, σ) ∀σ′ ∈ ∆(S)(1)

u(σ, σ) = u(σ′, σ) ⇒ u(σ, σ′) ≥ u(σ′, σ′) ∀σ′ 6= σ.(2)

Strategy σ ∈ ∆(S) is an evolutionarily stable strategy (ESS) if and only if
the same two conditions hold and the last inequality is strict.

We refer to condition (1) as the first-order condition or FOC and con-
dition (2) as the second-order condition or SOC. Note that any ESS is also
an NSS.

3 Results

3.1 Preliminary results that hold for all H-D base games

One additional definition is useful in our discussion of preliminary results.
We call a strategy σ ∈ ∆(S) a full-label-support NSS if σ is an NSS and
σ(θ) > 0 for all θ ∈ Θ. The following lemma provides a full characterization
of ESS and full-label-support NSS for any H-D base game.

Lemma 2. Let |Θ| ≥ 2. A strategy σ ∈ ∆(S) of the meta-game of any H-D
base game is an ESS if and only if conditions (a) to (e) are satisfied. It
is a full-label-support NSS if and only if conditions (a) to (d) and (e’) are
satisfied.

(a) For all θ ∈ Θ: xθ(θ) = x∗.

(b) For all θ, θ′ ∈ Θ, θ 6= θ′:
xθ(θ

′) = 1− xθ′(θ) ∈ {0, 1}.

(c) For all θ ∈ Θ: σ(θ) > 0 (all labels are played with positive probability).

(d) All strategies in the support of σ earn the same payoff: u(s, σ) =
u(σ, σ) ∀s ∈ Supp(σ).

(e) a+b
2 > d.

(e’) a+b
2 ≥ d.

15See, e.g. Chapter 2 of Weibull (1995) for a textbook treatment of these definitions
and concepts.
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The detailed proof of Lemma 2 is given in Appendix B.2. For a specific
anti-coordination game (task allocation game) Hurkens and Schlag (2003,
Lemma 2(ii)) provided corresponding necessary conditions for evolutionary
stability and showed that, in any ESS, all labels must be played with positive
probability.

The necessity of conditions (a) and (b) for an NSS and ESS implies that,
in any NSS and ESS of the meta-game, every two different labels which are
chosen with positive probability must anti-coordinate on {H,D} or {D,H}
when matched against each other. When matched with their own label, the
mixed symmetric equilibrium of the base game must be played. This part
of the result is in some sense well-known. We know from Maynard Smith
(1982) (see, e.g. Weibull (1995, pp. 40-41) for a textbook treatment) that
the only evolutionarily stable outcome is the symmetric mixed equilibrium in
the single-population case (i.e. here, whenever two individuals of the same
label meet). We known from Selten (1980) that the only evolutionarily
stable outcome must be a strict, and, hence, pure and possibly asymmet-
ric equilibrium in the multiple-population model (i.e. here, whenever two
individuals of different labels meet).

The intuition behind why condition (e), respectively condition (e’), is
necessary, is somewhat involved. Suppose we have a full-label-support equi-
librium σ, satisfying conditions (a) to (d). Conditions (a) and (b) then
imply that, for each label θ, there are actually two pure strategies in the
support of σ: They both prescribe the same behavior as the other against
all labels other than θ, but one prescribes action H and the other action D
against their own label θ. We could call them the hawk and dove varieties
of label θ (as used in σ). One can then identify a mutant strategy, let us
denote it by µ, which outperforms the incumbent strategy σ exactly when
a+b

2 < d. This mutant strategy µ is as follows: It puts the same probabil-
ity as σ does on all hawk varieties of all labels θ (as used in σ), and the
remaining probability µ places on the dove-variety of a single θ (as used in
σ). By condition (d) we have that u(µ, σ) = u(σ, σ), i.e. the first-order
condition for ESS (and NSS) holds with equality. For σ to be an ESS we,
thus, need that u(σ, µ) > u(µ, µ), i.e. we can focus on the second-order con-
dition for ESS. To see that this inequality is satisfied if and only if d < a+b

2 ,
we need a few steps. Note first that, conditional on σ and µ realizing in
any hawk variety of any label, both strategies σ and µ are identical and,
thus, provide the same payoff in this case. Perhaps a bit harder to see, but
nevertheless also true, conditional on the opponent strategy µ realizing in
any hawk-variety of any label and both strategies σ and µ realizing in a
dove-variety of some label, both µ and σ again yield the same payoff. The
potential success of the mutant strategy, thus, depends on how well it does
relative to the incumbent strategy against a mutant strategy in the case
when all these strategies realize in a dove-variety of some label. In this case,
as the mutant strategy places all (remaining) probability on one such label,
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it yields a payoff of d. The incumbent strategy, on the other hand, as it
attaches positive probability to dove varieties for all labels, yields a payoff
that is a convex combination of d - when the realized label in σ coincides
with the single mutant label (of a dove variety) - and a+b

2 - on average when
it uses a different label.

Note that Lemma 2, in its characterization of NSS, is mute about strate-
gies σ without full label-support. The next lemma gives a necessary condi-
tion for such a strategy to be an NSS as well as a sufficient condition for the
existence of such an NSS with certain given properties.

Lemma 3. Consider a meta-game of any H-D base game with set of la-
bels Θ. For any strategy σ of this game let ΘS denote the set of labels
θ ∈ Θ with σ(θ) > 0. Let σ|ΘS denote the strategy σ restricted to the set of
labels ΘS.

(a) If σ is an NSS of the meta-game with set of labels Θ, then σ|ΘS is
a (full-label-support) NSS of the meta-game with the same H-D base
game with the set of labels ΘS and except for the knife-edge case of
a+b

2 = d it is even an ESS of that game.

(b) Let σ̃ be a strategy of the meta-game with set of labels Θ with support
only on Θ̃ ⊂ Θ, with |Θ̃| ≥ 2, and σ̃|Θ̃ is a (full-label-support) NSS of
the game restricted to set of labels Θ̃. Then there exists a strategy σ
that is an NSS of the meta-game with the same H-D base game with
σ(θ) = 0 for all θ /∈ Θ̃, σ(θ) = σ̃|Θ̃(θ) for all θ ∈ Θ̃ and identical
xθ(θ

′) for all θ, θ′ ∈ Θ̃.

Lemma 2 is the key result that enables us to identify all full-label-support
evolutionarily and neutrally stable strategies. Note that there are no ESS
without full label-support. The only remaining cases are NSS without full
label-support. The analysis of such strategies, by force of Lemma 3, can be
reduced to identifying full-label-support NSS (which are then typically also
ESS) in a restricted meta-game, where unused labels were removed, which
then is already covered by Lemma 2.

Note that Lemmas 2 and 3 are silent regarding the distribution of labels
in Θ in an NSS. Understanding this is where the main contribution of this
paper lies and this is what we investigate in Section 3.2. To do so the
following definition is helpful.

Definition 2. Consider a meta-game with an H-D base game and a set of
labels Θ. Given a meta-game strategy σ ∈ ∆(S), we call the induced label-
type behavior x, with xθ(θ

′) ∈ ∆(A) the behavior of label θ when meeting
label θ′ as defined in Section 2.2, the induced label structure.

(i) A pre-stable label structure is a label structure that satisfies the fol-
lowing conditions:
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(a) For all θ ∈ Θ: xθ(θ) = x∗.

(b) For all θ, θ′ ∈ Θ, θ 6= θ′: xθ(θ
′) = 1− xθ′(θ) ∈ {0, 1}.

(ii) The induced label game of a pre-stable label structure is a 2-player
normal-form game with |Θ| × |Θ| payoff-matrix T defined by Tθθ ≡ u∗
for all θ ∈ |Θ| and for all θ′ 6= θ: Tθθ′ = a if xθ(θ

′) = 1 and Tθθ′ = b
if xθ(θ

′) = 0.

For any given pre-stable label structure we can now investigate how
the composition of labels evolves in the corresponding reduced form “label
game.” First, we investigate which distribution of labels leads to a Nash
equilibrium in this label game. Then it is straightforward to check whether
the corresponding strategies are evolutionarily stable in the meta-game. The
relationship is summarized in the following lemma:

Lemma 4. Consider the meta-game of any H-D base game with finite set
of labels Θ with |Θ| ≥ 2.

(a) An ESS σ ∈ ∆(S) of the meta-game with a given label structure exists,
if and only if this label structure is pre-stable, the corresponding label
game has a full support Nash equilibrium, and a+b

2 > d.16

(b) A full-label-support NSS σ ∈ ∆(S) of the meta-game with a given label
structure and σ(θ) > 0 for all θ ∈ Θ exists, if and only if this label
structure is pre-stable, the corresponding label game has a full support
Nash equilibrium, and a+b

2 ≥ d.

This result follows immediately from Lemma 2. Furthermore, if σ is
an ESS of the meta-game, then it must be the unique ESS with this label
structure. To see this note that, if σ is an ESS of the meta-game, then
the corresponding strategy must also be an ESS of the corresponding label
game. In the label game, it is a full support ESS and must, therefore, be
unique.17 But then no other strategy of the meta-game with the same label
game can form an ESS.

To check whether NSS of the meta-game with a given pre-stable label
structure without full label-support exist, we can look at the Nash equilibria
of the label game (without full support), yet we need to check that all best
responses in the meta-game perform weakly worse against themselves than
the NSS strategy performs against this mutant strategy.

16Within the label game the ESS condition is only a+b
2

> u∗. Still, for evolutionary
stability in the meta-game, we need the more restrictive condition a+b

2
> d: H-D base-

games exist with a+b
2

< d < d̄ for which egalitarian structures (defined later) form no
NSS, for example a = 3, b = 1, c = 0, and d = 2.2. Then a+b

2
= 2, d̄ = 2, 5, x∗ = 4

9
,

and σ = 1
27

(4, 4, 4, 5, 5, 5) (where we restrict σ to the mixtures of pure best responses, and
write first the three optimal pure strategies playing H against its own label, and then the
three optimal pure strategies playing D against its own label). Then, e.g., the mutant
strategy µ = 1

27
(4, 4, 4, 15, 0, 0) violates the SOC of NSS (and thus also for ESS).

17See, e.g. Weibull (1995, p. 41).
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3.2 Main Results

The following definitions prove useful for our further analysis.

Definition 3. For any H-D base game, consider a meta-game strategy σ ∈
∆(S) and an induced pre-stable label structure.

(a) If there is an order of labels � such that xθ(θ
′) = 1 (plays H) if θ � θ′

and xθ(θ
′) = 0 (plays D) if θ′ � θ, then x is called a hierarchical label

structure. Given a hierarchical label structure, we call the unique label
θ ∈ Θ that satisfies xθ(θ

′) = 1 (plays H) for all labels θ′ ∈ Θ, θ′ 6= θ
the top label.

(b) Suppose |Θ| is odd. If, for every label θ, xθ(θ
′) = 1 (plays H) for

exactly half of all labels θ′ 6= θ and xθ(θ
′) = 0 (plays D) for the other

half of all labels θ′ 6= θ, then x is called an egalitarian label structure.

(c) Suppose |Θ| ≥ 4 is even, i.e. there is a natural number k > 1 such that
|Θ| = 2k. If for exactly k labels xθ(θ

′) = 1 (plays H) for exactly half
of all labels θ′ 6= θ and xθ(θ

′) = 0 (plays D) for the other k − 1 of all
labels θ′ 6= θ, and if for the remaining k labels xθ(θ

′) = 1 (plays H) for
exactly k− 1 of all labels θ′ 6= θ and xθ(θ

′) = 0 (plays D) for the other
k of all labels θ′ 6= θ (and if the resulting label game has a full support
Nash equilibrium), then x is called an approximately egalitarian label
structure.

Note that these definitions are not empty, meaning that we can construct
a strategy σ ∈ ∆(S) with a hierarchical label structure and also construct
one with an egalitarian label structure, provided the number of labels in Θ
is odd.18 If the number of labels in Θ is even, we can construct a strategy
σ ∈ ∆(S) with an approximately egalitarian label structure.19 See the
Introduction for examples of hierarchical and egalitarian label structures for
the case of three types, i.e. |Θ| = 3.

The next two propositions investigate the evolutionary stability prop-
erties of hierarchical and egalitarian label structures in our two classes of
games, games of anti-coordination and conflict games.

Proposition 1. Let |Θ| ≥ 2.

(a) An ESS of the meta-game with a hierarchical label structure exists if
and only if the base game is an anti-coordination game, i.e. d < b.

18An egalitarian label structure can be visualized in several ways. For instance, one
could arrange labels in Θ on a circle such that each label θ plays H against the (n− 1)/2
labels located clockwise from θ and plays D against all other labels.

19One construction can again be visualized by arranging labels in Θ on a circle such
that the first k of the 2k types θ plays H against the k labels located clockwise from θ
and plays D against the other labels. Each label θ′ from the remaining k+ 1 to 2k labels
plays H against the k − 1 labels located clockwise from θ′ and D against the others.
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This ESS is the unique, up to a permutation of labels, symmetric full-
label-support equilibrium with hierarchical label structure.

(b) An NSS of the meta-game with a hierarchical label structure exists
for all H-D base-games. For anti-coordination games this NSS is the
unique, up to a permutation of labels, ESS with hierarchical label struc-
ture with full label-support as in (a). For conflict games this hierar-
chical NSS has only the top label in its support.

For conflict games, the unique symmetric Nash equilibrium of the hier-
archical label game puts all weight on the top label strategy. The corre-
sponding strategy cannot be an ESS of the meta-game but is still an NSS.

Proposition 2. Let n ≡ |Θ| ≥ 3 be an odd number. For any H-D base-game,
a strategy of the meta-game exists that induces a symmetric equilibrium with
an egalitarian label structure and has full label-support. In this egalitarian
equilibrium each strategy receives an average payoff of

(3) vn ≡
u∗

n
+
n− 1

n

a+ b

2
.

(a) If d < a+b
2 (i.e. all anti-coordination games and some conflict games)

then such a strategy inducing an egalitarian label structure forms an
ESS (and thus also an NSS) of the meta-game.

(b) If d > a+b
2 (i.e. the game must be conflict game) then such a strategy

inducing an egalitarian label structure is not an NSS (and thus also
not an ESS) of the meta-game.

Note that the condition d > a+b
2 in Proposition 2.b implies that the

game at hand is a conflict game (as d > b) and that such conflict games
(with d > a+b

2 ) do not have an egalitarian ESS or NSS, while the condition

d < a+b
2 in Proposition 2.a covers all anti-coordination games (d < b) and

some conflict games (with b < d < a+b
2 ) and states that all these have an

egalitarian ESS.
The proofs of Proposition 1 and 2 are relegated to Appendices B.5 and

B.6. They both follow the same steps. First, we compute the unique sym-
metric full-label-support equilibrium (if it exists). Evolutionary stability -
or instability - then follows from Lemma 2.

Note that, the egalitarian equilibrium payoff vn lies strictly between u∗

and a+b
2 . It tends to a+b

2 as n tends to infinity - from below if u∗ < a+b
2 .

In case of a base game with u∗ > a+b
2 , vn approaches a+b

2 from above, but

note that by Lemma 1, point 7, we know that in this case d > d̄ > a+b
2 and

hence, by Lemma 2, this full-label-support egalitarian equilibrium cannot
be an NSS.
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Proposition 3. Let n ≡ |Θ| ≥ 4 be an even number. If d < b (i.e. anti-
coordination base game), then an ESS of the meta-game of any H-D base-
game exists that induces an approximately egalitarian label structure and has
full label-support.

For relative small numbers of labels (we consider |Θ| ≤ 6) we can derive
all ESS for conflict games explicitly:

Remark 1. Consider a base game of conflict with d ∈ (b, a+b
2 ):

|Θ| = 2: No ESS of the meta-game exists.

|Θ| = 3: The egalitarian structure is the unique (modulo relabeling) ESS
of the meta-game.

|Θ| = 4: No ESS of the meta-game exists.

|Θ| = 5: The meta-game has exactly two ESS (modulo relabeling). One is
the egalitarian one, the other contains an egalitarian subgroup of three
labels. This subgroup forms a rock-scissors-paper like structure with
the remaining two labels (for details see Appendix D.2).

|Θ| = 6: For some parameters no ESS of the meta-game exists. For other
parameters there exists an (approximately egalitarian) ESS (for details
see Appendix D.3).

In Appendices D.1 and D.3 we explain these results for |Θ| ∈ {4, 5, 6}
in more detail. For a larger number of labels complex structures and sub-
structures can emerge that we cannot fully describe. For the case of a
subset of labels that is treated equally by all other labels in a pre-stable
label structure, we provide some further interesting condition for ESS and
NSS (See Appendix D).20

3.3 Welfare

Lemma 5. Consider the average payoff in a label game induced by a pre-
stable label structure.

(a) If u∗ < a+b
2 , then the average payoff is maximized by an equal distri-

bution over all types and minimized by having all weight on one label
only.

(b) If u∗ > a+b
2 , then the average payoff is maximized by a distribution

that has only one label in its support and is minimized by an equal
distribution over all labels.

20For example, the different guilds of the third estate in medieval Europe might be
considered as such a sub-group.
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The next proposition characterizes which NSS and which ESS (if they
exist) are efficient among all possible distributions over pre-stable structures
(we call this pre-stable efficient) and which are at least Pareto dominating
any other NSS. Note that in our setting at least one NSS always exists, and
that a > d̄ > a+b

2 > b is always guaranteed by Lemma 1.

Proposition 4. Welfare properties of NSS and ESS:

(a) Assume d > d̄: any NSS has only one label in its support and earns
the expected payoff u∗, which is pre-stable efficient (since u∗ > a+b

2 ).
No ESS exists.

(b) Assume d̄ > d > a+b
2 : any NSS has only one label in its support and

earns the expected payoff u∗. This NSS is inefficient (since u∗ < a+b
2 )

and achieves the lowest payoff in any pre-stable equilibrium. Note that
u∗ ∈ (b, a+b

2 ). No ESS exists.

(c) Assume a+b
2 > d ≥ b: For odd |Θ| ≥ 3, multiple (at least two) NSS

with distinct payoffs exist. The NSS with only one label in its support
gives the minimum payoff among pre-stable equilibria. The egalitarian
NSS (which is also ESS) gives the maximum expected payoff. Note
that the payoff is in [u∗, vn] ⊂ [b, a+b

2 ).

(d) Assume d < b: In these anti-coordination games, multiple ESS (and
thus also multiple NSS) exist: Egalitarian ESS (which exist for odd
|Θ|) give the maximum expected payoff. For even |Θ|, approximately
egalitarian ESS exist. Hierarchical ESS also exist and are payoff dom-
inated by the egalitarian or approximately egalitarian ESS.

4 Discussion

4.1 Relation and contribution to the cheap talk literature

4.1.1 Cluster points in payoff space

Banerjee and Weibull (2000) study NSS of the meta-game when the base
game is a coordination game. Denote by Un the set of ex-ante expected
payoffs in an NSS of the meta-game when the set of labels has n elements.
Banerjee and Weibull (2000) show that the union of all these payoffs sets⋃∞
n=0 Un has a unique cluster point, which is the Pareto efficient Nash equi-

librium payoff.
In contrast, for anti-coordination games, we can show that the set of

possible NSS payoffs has multiple cluster points. For instance, as every
meta-game has a hierarchical NSS by Proposition 1, there is a cluster point
at b (the lower payoff in the asymmetric pure strategy equilibrium of the
base game). This follows immediately from Lemma 7.
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However, every anti-coordination meta-game with an odd number of
labels has also an egalitarian NSS by Proposition 2, which implies that
there is another cluster point at a+b

2 .

Also, for conflict games with d < a+b
2 , we have at least two cluster points.

One cluster point at a+b
2 , by Proposition 2, and a cluster point at u∗, since

we always have a single label NSS in this case.

4.1.2 Connection with Farrell, 1987

Farrell (1987) was, as far as we know, the first to study a model in which
there is cheap talk before a game of anti-coordination is played. In his model,
players engage in T ≥ 1 rounds of communication. At each stage t ≤ T ,
both players simultaneously and independently of each other send one of
two messages, labelled H and D. Farrell (1987) investigates equilibria of
this game, in which play after communication is given by the following rule.
The player who sent message H at the first point in time at which both
players sent different messages (if there is such a time) then plays action
H in the anti-coordination game. The other player then plays action D.
If both players send identical messages in every round, then they play the
symmetric equilibrium x∗ in the anti-coordination game.

More formally, let θ = (θt)
T
t=1 be a vector of messages, one message for

each point in time. Let Θ be the set of all such vectors. In the language
used in this paper, this is a set of labels. For each pair of labels θ, θ′ ∈ Θ let
t∗(θ, θ′) = mint{θt 6= θ′t}. If θt = θ′t for all t let t∗(θ, θ′) =∞.

In the language used in this paper, Farrell (1987) investigates equilibria
of the meta-game that satisfy

(4) xθ(θ
′) =


x∗ if t∗(θ, θ′) =∞
1 if t∗(θ, θ′) <∞ and θt∗(θ,θ′) = H

0 if t∗(θ, θ′) <∞ and θt∗(θ,θ′) = D

It is straightforward to see that this corresponds to what we call the
“hierarchical” label structure. We can reproduce Farrell’s (1987) result by
noting that every meta-game with a finite number of labels has a (unique
- up to relabelling) hierarchical NSS. The ex-ante expected payoff in this
NSS is bounded from above by b (the lower payoff in the asymmetric pure
strategy equilibrium of the anti-coordination game). As T tends to infinity,
the payoff in this NSS tends to b and is, thus, even in this limit, far away
from the efficient payoff of a+b

2 . Note that all this requires that the game is
one of anti-coordination.

For conflict games, we know that no hierarchical NSS (or even Nash equi-
librium) exists. Imposing the hierarchical structure in these games would
yield the result that every hierarchical NSS places probability 1 on a single
label. We also know now, however, that other NSS exist, e.g., one based on
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the egalitarian structure.
For a final example, to see how the egalitarian structure could be im-

plemented in Farrell’s (1987) model, consider the case T = 2. We then
have four “labels” given by (H,H), (H,D), (D,H), (D,D). The egalitarian
structure could then be imposed as follows.

(H,H) (H,D) (D,H) (D,D)
(H,H) u∗ a b a
(H,D) b u∗ a a
(D,H) a b u∗ a
(D,D) b b b u∗

This label game has an NSS (provided u∗ < a+b
2 ), in which the first three

labels are used with a probability of 1
3 each, while label (D,D) is not used.

4.1.3 Connection with Hurkens and Schlag (2003)

Hurkens and Schlag (2003) consider the effects of cheap talk messages on
equilibrium in coordination games and - more closely related to our paper
- a task allocation game which is a specific anti-coordination game in our
terminology. They also conjecture that their results hold for a class of games
that corresponds to anti-coordination games, a conjecture that our analysis
confirms. Specifically, they are interested in the effect of an option not to
take part in cheap talk communication, which they model as a special cheap
talk message “stay away from cheap talk” which commits the sender to play
one action in the base game without conditioning on the opponent’s mes-
sage. Regarding coordination games, Hurkens and Schlag (2003) find that
an inefficient ESS exists if the option to stay away from cheap talk is not
available, but, if this option is available, the set of strategies resulting in the
efficient outcome is the unique evolutionarily stable set. Most closely related
to our work is their analysis of the task allocation game without the option
to stay away (Section 4.1): We originally worked only with NSS until we
became aware of the connection to their results. The necessary conditions
for ESS that they established in their Lemma 2 inspired our characteri-
zation of ESS (Lemma 2 in our paper). In their proof of Proposition 3,
they construct evolutionarily stable strategies for their task allocation game
that correspond to our hierarchical label structure and to our egalitarian or
approximately egalitarian label structure, respectively. They continue their
analysis of the task allocation game by adding the option again to stay away
from communication (Section 4.2) and show that while (in our terminology)
the hierarchical label structure equilibrium remains evolutionarily stable, all
evolutionarily stable strategies are bounded away from the efficient outcome
(and, hence, the egalitarian label structure is not evolutionarily stable any-
more). While the option to stay away from pre-play communication seems
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plausible in the cheap talk context, in our context where players meet au-
tomatically and can condition their play on visible features (labels) of the
opponent, it seems difficult to visibly commit not to do so.

4.2 Adding one more label

Throughout this paper so far, we always focused on a finite set of possible
labels. This means, for full-label-support NSS in particular, that there are
no unused labels. But this restriction to a fixed set of labels seems some-
what arbitrary. In this section, we discuss the possible ways one can think
about what could happen if one additional, “radically new” label suddenly
appeared. Suppose we have a finite set of labels Θ and evolution has pro-
gressed to the point that an NSS of the meta-game has established itself.
Now suppose a previously unheard of label θ∗ 6∈ Θ appears.

One could think about what could happen next in many ways, but we feel
it reasonable to assume that the presence of this new label, now available to
be adopted by individuals, will not upset the label structure of the incumbent
labels. Suppose, for instance, the NSS of the original game (without label
θ∗) has a full egalitarian structure. Let us assume that the introduction of
the new label does not change that. Having assumed that, we now have to
think about what behavior the old labels will display when they meet the
new label and, conversely, what behavior the new label will display when
meeting other labels.

One way to think about this is to assume simply that evolution will now
lead to some new NSS, in which the old labels interact with each other as
they did before, but any evolutionarily stable behavior between the new and
old labels can emerge. If this is our view, an even sharper distinction can
be drawn between anti-coordination games and conflict games.

In anti-coordination games, the new NSS (with the given restriction)
may possibly look quite different from the old NSS, but we know that any
new NSS must still have at least two labels in its support. So the multiplicity
of labels is, in this sense, stable or robust to the introduction of a radically
new label.

This is not true for conflict games (and here it does not matter whether
u∗ < a+b

2 or not). For conflict games, the new label can evolve such that
it plays H against all other labels and they play D against it. In this case,
however, this new label dominates all other labels, and the only NSS with
this label structure is the one in which the new label receives probability
weight one. In this sense, the possible multiplicity of labels in conflict games
is not stable or robust to the introduction of a radically new label.

Returning to anti-coordination games, it is interesting to note that, while
the multiplicity of labels is robust, the NSS can, nevertheless, change dra-
matically from before to after the introduction of the new label. To see this,
consider the three-label hierarchical structure with one added label X as
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given below

T M B X
T u∗ a a b
M b u∗ a a
B b b u∗ b
X a b a u∗

The label game without label X has a unique NSS, and that NSS has
full label-support for anti-coordination base games. The meta-game with
label X has a NSS with equal support on T,M, and X and an egalitarian
structure among these three labels, while B is not in its support. This is
true for conflict games (provided u∗ < a+b

2 ) but more importantly also for
anti-coordination games as long as 1

3 (u∗ + a+ b) > b. This is, for instance,
true when c = d = 0 and b = 1 and a = 3.

5 Conclusion

This may explain why animals, when they compete over food, typically do
not adopt a social structure based on costless signals, but instead use costly
signalling (such as showing strength). Humans may sometimes sustain more
complex egalitarian social systems, which are then highly prosperous for
some time. But in conflict games, the stability of egalitarian social structures
is vulnerable to the emergence of new dominating label-types, such as a new
conquering elite.

On the other hand, in anti-coordination games, we always expect a non-
trivial social structure to emerge, even if it is based only on costless signals.
Moreover, societies lucky enough to evolve an egalitarian structure achieve
higher overall welfare than those that evolve a hierarchical structure.

Finally, the insights provided by our model may even be helpful if we,
acting as social scientists or historians, observe a social structure that seem-
ingly contradicts the findings in this paper, for instance, a hierarchical social
structures with conflict games. Arguably, in the medieval Western-European
social hierarchy, the social interaction between the warrior nobility and their
peasant vassals, for instance, corresponded more typically to a conflict game
situation than to a pure anti-coordination game. Then the logic of our anal-
ysis suggests that there must be some mechanism that prevents the free
choice of labels. Indeed, hierarchical societies usually restrict the choice of
adapting a higher-ranked role: Members of the nobility in Europe or the
caste in India were determined by birth and not by free choice. Marriages
across estates or castes were typically not accepted. Catholic clergy members
could not have legitimate offspring and usually vowed poverty (especially if
they were of lower status). In fact, the logic underlying our analysis sug-
gests that, even for anti-coordination games, prosperity may increase under
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a hierarchical social structure if the adoption of high labels becomes more
costly, at least for some, although inequality may also increase. Such a hi-
erarchical structure, which is based on the lack of movement between social
groups, may be more efficient than a hierarchical structure with free move-
ment across social groups. Still, the most efficient social structure, at least
in our simplified model that abstracts away from many things, would be an
egalitarian structure with free movement across social groups. Our analy-
sis also suggests an explanation for why we do not always observe these in
the real world, based on evolutionary stability and the distinction between
anti-coordination and conflict games.

Appendix

A Further notions of evolutionary stability

A.1 Evolutionarily stable sets

An evolutionarily stable set (ES set) of strategies X ⊂ ∆(S), as defined by
Thomas (1985) - see also Weibull (1995, p. 51, Definition 2.6 and Proposition
2.10), is a non-empty and closed set such that, for each σ ∈ X, there is a
neighborhood U such that u(σ, σ′) ≥ u(σ′, σ′) for all σ′ ∈ U with strict
inequality if σ′ 6∈ X.

If we apply this concept in our setting, we obtain the following proposi-
tion. We omit the discussion of the knife-edge case of a+b

2 = d.

Proposition 5. Let a+b
2 6= d. A set of strategy profiles X ⊂ ∆(S) is an

ES set of the meta-game if and only if it consists exclusively of ESS of that
meta-game.

Proof: By the result in Thomas (1985), see also Weibull (1995, Propo-
sition 2.11), any union of ESS is an ES set. To see that an ES set cannot
include any strategy other than ESS in our setting, let X be an ES set and
let σ ∈ X with induced action matrix x. By Weibull (1995, Proposition
2.7) σ must be an NSS. Suppose it is not an ESS. Then, by Lemma 2,
it cannot have full label-support. Thus, there is a label θ ∈ Θ such that
σ(θ) = 0. Define strategy σ′ ∈ ∆(S) such that σ′(θ′) = σ(θ′) and such that
its induced action matrix x′ coincides with x for all labels other than θ. I.e.
x′θ′(θ

′′) = xθ′(θ
′′) for all θ′, θ′′ 6= θ. Finally, let x′θ(θ

′) = 1 (plays H) and
x′θ′(θ) = 0 (plays D). Then let σε = εσ′ + (1− ε)σ. For ε > 0 small enough,
σε ∈ U and by construction u(σε, σε) = u(σ, σε). Thus, by definition of an
ES set, σε ∈ X as well. By the closedness of X, there is a maximum ε such
that σε ∈ X. Denote this maximum ε by ε∗. Suppose now that ε∗ < 1. The
argument above can be repeated in that a (proper) convex combination of
σε
∗

and σ′ is again in a neighborhood of X. This finally implies that σ′ must

25



be in X as well. But σ′ is not even a Nash equilibrium of the meta-game
(the best response is a strategy that places all probability on label θ), cannot
be an NSS and, thus, cannot be in X. QED

Another setwise notion that has evolutionary appeal is that of CURB
(closed under rational behavior) sets proposed by Basu and Weibull (1991).
See e.g., Ritzberger and Weibull (1996) and Balkenborg, Hofbauer, and
Kuzmics (2013). A (symmetric) CURB set is a subset B of the set of pure
strategies S such that if s ∈ S is a best response to some (mixed) strategy
σ ∈ ∆(B) then s ∈ B.

Proposition 6. The only CURB set of the meta-game is the set of all pure
strategies S.

Proof: Consider a CURB set B ⊂ S and consider any pure strategy
s ∈ B. As it is a pure strategy, there is a label θ ∈ Θ such that s(θ) = 1.
Consider first the case that xθ(θ) = 1 (plays H). The case of xθ(θ) = 0
(plays D) is analogous. Then every strategy s′ ∈ S with s′(θ) = 1 and
x′θ(θ) = 0 (plays D) is a best response to s and, therefore, all such s′ ∈ B.
By an analogous argument, any pure strategy s′′ ∈ S with s′′(θ) = 1 and
x′′θ(θ) = 1 (plays H) is a best reply against such a strategy s′ and, therefore,
all such s′′ ∈ B as well. Now consider an arbitrary θ′ ∈ Θ with θ′ 6= θ.
Then by the above argument there is a strategy s′ ∈ B with s′(θ) = 1 and
x′θ(θ

′) = 0 (plays D). Then any strategy s′′′ ∈ S with s′′′(θ′) = 1 and
x′′′θ′(θ) = 1 (plays H) is a best response to s′ and thus s′′′ ∈ B as well. A
repetition of the first argument completes the proof. QED

A.2 Uniform limit ESS

The games we study here can be viewed as extensive form games in which
players first choose a label and then after observing all chosen labels choose
an action. Because of the possibility of unreached subgames, extensive form
games typically have many strategies that are equivalent for a range of
strategies of the opponents. An ESS may, therefore, not exist simply for the
trivial reason that there is a strategy that is equivalent on the path of play.
On the other hand being an NSS is often considered a very weak evolution-
ary stability property. It does, for instance, not generally rule out weakly
dominated strategies. This concern led Selten (1983) to consider limit ESS
as a refinement of NSS that is intended to capture something of the stronger
evolutionary stability property of an ESS. As in Selten’s (1975) notion of
trembling hand perfection, Selten (1983) considers a sequence of slightly per-
turbed games, in which each strategy has to be used by a strategy-specific
minimal probability. A strategy is then a limit ESS if there is a sequence
of such perturbed games, there is an ESS in each of the perturbed games in
this sequence, and the given strategy is the limit of this sequence of ESSs.
Recently, Heller (2014) showed that not every limit ESS is actually also an
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NSS. This led Heller (2014) to define the concept of a uniform limit ESS that
is indeed a proper refinement of NSS. Thus, every ESS is a uniform limit
ESS, and every limit ESS is an NSS. One can show that the key NSS in
our analysis that is not simultaneously an ESS, i.e. the NSS for all conflict
games (d > b) with the hierarchical label structure and single label support
only on the top label, is a uniform limit ESS. To do so we need to consider
a sequence of perturbed games in which the strategy-specific minimal prob-
abilities are sufficiently larger for those non-top label strategies that play D
against the top label than for those that play H against the top label. This
argument can, in fact, be extended to show that every non-full-label-support
NSS of every meta-game (at least for the most relevant case of d < a+b

2 ) is
a uniform limit ESS. Heller (2015) also introduces another, much stronger,
refinement of NSS in his concept of a strict limit ESS. This is defined, anal-
ogously to a strict trembling hand perfect equilibrium as in Okada (1981),
by requiring that the strategy in question is a limit point of such a sequence
of ESS’s for every sequence of perturbed games. One can show that any
non-full-label-support NSS in our analysis is not a strict limit ESS.

B Proofs of the main results

B.1 Proof of Lemma 1

The payoff u of Player 1 in the base game, if he or she plays H with prob-
ability x ∈ [0, 1], and Player 2 plays H with probability y ∈ [0, 1] is given
by

u(x, y) = xyc+ x(1− y)a+ (1− x)yb+ (1− x)(1− y)d

= d+ y(b− d) + x [a− d− y (a− d+ b− c)] .(5)

If the opponent plays y∗ = a−d
a−d+b−c then the term in square brackets is zero,

Player 1’s expected payoff is u∗ = d + y∗(b − d) = ab−cd
a−d+b−c , independent

of his or her own action. Player 1 is thus willing to mix, and (x∗, x∗) is
the mixed equilibrium. If y > a−d

a−d+b−c , then the term in square brackets is

negative, and x = 0 is the unique best response. If y < a−d
a−d+b−c , then the

term in square brackets is positive, and x = 1 is the unique best response.
Hence, in addition to the mixed equilibrium there are exactly two more Nash
equilibria: (x = 0, y = 1) and (x = 1, y = 0). This proves the first three
points.
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To prove point 4 consider the equivalence of the following inequalities.

ab− cd
a− d+ b− c

< b,

⇔ −cd < −bd+ b2 − cb,
⇔ d(b− c) < b(b− c),
⇔ d < b.

Now we prove point 5: For conflict games (b ≤ d), we know from the previous
point that b ≤ u∗ and, hence, b = min{b, u∗}. The opponent can limit the
payoff of a player to b by playing H. (Each player can also guarantee himself
a payoff of at least b by playing strategy D. Hence, a player’s minmax value
is indeed b for conflict games.)

For anti-coordination games (d < b), we know from the previous point
that b > u∗ and, hence, u∗ = min{b, u∗}. The opponent can limit the
expected payoff of a player to u∗ by playing x∗.

To prove point 6, consider the function u∗ : (−∞, a) → R defined by
u∗(d) = ab−cd

a−c+b−d for fixed parameter values a, b, c. Then the first derivative
of this function is strictly positive:

(u∗ (d))′ =
(−c) (a− d+ b− c)− (ab− cd) (−1)

(a− d+ b− c)2 =
(a− c) (b− c)

(a− d+ b− c)2 > 0.

Hence, u∗ strictly increases in d. Furthermore,

(6) lim
d→−∞

u∗(d) = lim
d→−∞

ab

a+ b− c− d
− c 1

a+b−c
d − 1

= 0 + (−c) 1

0− 1
= c,

and, by continuity of u∗,

(7) lim
d→a

u∗(d) = u∗(d = a) =
ab− ca

a− a+ b− c
=
a (b− c)
b− c

= a.

To prove point 7, note that

u∗ =
ab− cd

a− d+ b− c
>
a+ b

2
⇔ 2(ab− cd) > (a+ b)(a− d+ b− c)
⇔ da+ db− 2dc > a2 + b2 − ac− bc

⇔ d >
a2 + b2 − c(a+ b)

a+ b− 2c
.

We arrive at

(8) d̄ =
a2 + b2 − c (a+ b)

a+ b− 2c
.
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Next, we show d̄ ∈ (a+b
2 , a):

d̄ >
a+ b

2
(9)

⇔ a2+b2−c(a+b)
a+b−2c >

a+ b

2
⇔ 2

(
a2 + b2 − ac− bc

)
> (a+ b) (a+ b− 2c)

⇔ 2a2 + 2b2 − 2ac− 2bc > a2 + b2 + 2ab− 2ac− 2bc

⇔ a2 + b2 > 2ab

⇔ (a− b)2 > 0.

The last inequality is obviously true, which implies the first inequality.
Furthermore, by assumption, we have a > b and b > c, which implies

a(b− c) > b(b− c)
⇔ 0 > b2 + ac− cb− ab
⇔ a2 + ab− 2ac > a2 + b2 − ca− cb

⇔ a >
a2 + b2 − c(a+ b)

a+ b− 2c

⇔ a > d̄.

This completes the proof of point 7. QED

B.2 Proof of Lemma 2

First, we prove that having a full-label-support NSS is a necessary condition
for having an ESS of the meta-game. Since ESS always implies NSS (see,
e.g. Weibull (1995)), it is sufficient to show that σ can only be an ESS if all
labels are played with positive probability (Condition (c)). Suppose to the
contrary that a label θ̂ ∈ Θ exists with σ(θ̂) = 0. Then consider a strategy
σ′, which is identical to σ except when playing against the label θ̂. That is,
there is a label θ with σ(θ) > 0 such that strategy σ′ describes a different
action distribution for this label θ against label θ̂ than σ does. Clearly, such
a strategy exists. But then u(σ′, σ) = u(σ, σ) = u(σ′, σ′) = u(σ, σ′) and,
hence, σ is not an ESS.

Second, we prove that conditions (a) to (d) are necessary conditions for
having a full-label-support NSS (and, therefore, also for ESS) of the meta-
game.

To prove that Condition (a) is necessary for NSS, consider a σ ∈ ∆(S)
such that a θ ∈ Θ exists with σ(θ) > 0 and xθ(θ) > x∗ (the case xθ(θ) < x∗

can be proven analogously), where x∗ is the symmetric equilibrium prob-
ability of H in the base game (see Lemma 1.2). Now consider a strat-
egy σ′ ∈ ∆(S) with the property that σ′(θ′) = σ(θ′) for all θ′ ∈ Θ and
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x′θ′(θ
′′) = xθ′(θ

′′) for all θ′, θ′′ ∈ Θ such that at least one of θ′, θ′′ is not equal
to θ, and finally xθ(θ) = 0. In other words, strategy σ′ mimics strategy σ in
all respects except that, when adopting label θ and meeting label θ, it plays
D.21 Strategy σ′ thus generates different payoff than strategy σ against σ
only when both strategies adopt label θ (which happens with positive prob-
ability). Then, however, strategy σ′ describes the unique best response and,
thus, generates a higher payoff than strategy σ does (as σ does not prescribe
this best response in this case). This violates the FOC of neutral stability
and proves that Condition (a) is necessary for NSS and, therefore, also for
full-label-support NSS and ESS.

To prove that Condition (b) is necessary for NSS, consider a strategy
σ ∈ ∆(S) such that there are θ, θ′ ∈ Θ with σ(θ) > 0 and σ(θ′) > 0. An
argument similar to the one above that proves part (a) implies that each
of the two labels must play a best response to the other label or the FOC
of neutral stability will be violated. It remains to be shown that the two
labels playing the symmetric equilibrium of the base game against each other
cannot be part of an NSS either. Thus, suppose xθ(θ

′) = xθ′(θ) = x∗. Then
consider strategy σ′ ∈ ∆(S) such that σ′ mimics σ in all respects except in
its prescription for x′θ(θ

′) and x′θ′(θ). In fact, let x′θ(θ
′) = 1 and x′θ′(θ) = 0.

It is easy to see that u(σ′, σ) = u(σ, σ), as the only difference that could
occur is when labels θ and θ′ are employed and then, as σ prescribes the
mixed strategy equilibrium strategy x∗, both pure actions of the base game
H and D prove an equal payoff against x∗. Thus, the FOC for neutral
stability is satisfied with equality. We then need to check the SOC and
compare u(σ′, σ′) with u(σ, σ′). We find that the following inequalities are
equivalent

u(σ′, σ′) > u(σ, σ′)

σ(θ)σ(θ′)a+ σ(θ′)σ(θ)b > σ(θ)σ(θ′) (ax∗ + d(1− x∗)) +

+σ(θ′)σ(θ) (cx∗ + b(1− x∗))
σ(θ)σ(θ′) [a+ b] > σ(θ)σ(θ′) [(c+ a)x∗ + (b+ d)(1− x∗)]

a+ b > (c+ a)x∗ + (b+ d)(1− x∗)

a+ b >
(c+ a)(a− d)

a− d+ b− c
+

(b+ d)(b− c)
a− d+ b− c

a(b− c) + b(a− d) > c(a− d) + d(b− c),

where the final inequality is true for all hawk-dove games as, by assumption,
a > d and b > c. Thus, the SOC for neutral stability is not satisfied, and we
arrive at a contradiction, proving that Condition (b) is necessary for NSS
and, therefore, also for full-label-support NSS and for ESS.

Condition (c) is obviously necessary for full-label-support NSS and, thus,

21It is easy to see that such a strategy exists. It may not be unique. See footnote 13.
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also for ESS. The necessity of Condition (d) follows directly from the first-
order condition of the definition of an ESS. Otherwise σ could not even form
a Nash equilibrium with itself.

Third, in order to prove that the conditions in Lemma 2 are sufficient,
we will show that conditions (a), (b), and (d) jointly imply a quasi-strict
symmetric Nash equilibrium. This fact then allows us to use Lemma 6 below
that characterizes NSS, or respectively ESS, for quasi-strict symmetric Nash
equilibria. A symmetric Nash equilibrium (σ, σ) is called quasi-strict if σ
has all pure best responses to σ in its support. First note that, under
conditions (a) and (b), if σ(θ) is specified for all θ ∈ Θ and xθ(θ

′) ∈ {0, 1}
for all θ′ 6= θ ∈ Θ, then σ is uniquely determined. In particular, no further
equivalent strategy exists, since a pure (contingent) strategy is played for
any match of different labels. Note that there are 2|Θ| pure best responses to
any σ that satisfies conditions (a)-(d), and that these are all in the support
of such a σ: For each label θ ∈ Θ, there are two corresponding pure best
replies to σ: Select label θ, play against other labels θ′ 6= θ whatever xθ(θ

′)
the strategy σ prescribes, and play against your own label θ either “H” or
“D”.

For a quasi-strict Nash equilibrium (σ, σ), strategy σ is an ESS if and
only if the payoff matrix is negative definite with respect to the support of
σ (see van Damme (1991), Theorem 9.2.7, and the preceding text on pages
220/221).22 This corresponds to part (a) of the following lemma. In part(b)
of the lemma we adapt this characterization for NSS.

Lemma 6. Let (σ, σ) be a quasi-strict Nash equilibrium, i.e. the set of
pure best responses B(σ) corresponds to the support of σ, supp(σ). Define
K ≡ |supp(σ)| = |B(σ)| and let M denote the K ×K matrix corresponding
to the restriction of the full payoff matrix to pure strategies in supp(σ).

(a) Then σ is an ESS if and only if M is negative definite (with respect
to the support of σ), i.e.

(10) yTMy < 0 for all y ∈ RK with y 6= 0,
K∑
i=1

yi = 0.

(b) Then σ is an NSS if and only if

(11) yTMy ≤ 0 for all y ∈ RK with

K∑
i=1

yi = 0.

We relegate the proof of Lemma 6 to the end of this subsection.

22Van Damme attributes Theorem 9.2.7 to Haigh (1975) and Abakus (1980). Similar
arguments are used in the proofs of Hurkens and Schlag (2003) and inspired our strategy
of proof.
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Let M be the 2|Θ| × 2|Θ| payoff matrix when we restrict the set of pure
strategies to the pure best responses to σ. Let the first |Θ| pure strategies
be those in which “H” is played against an opponent with the same label,
and strategies from |Θ|+ 1 to 2|Θ| be those in which “D” is played against
an opponent with the same label. On the diagonal, this matrix M has then
first |Θ| times the entry c and then |Θ| times the entry d. Off the diagonal, it
has half of the entries a and half of the entries b, such that Mij+Mji = a+b

for all i 6= j. Hence, for any y ∈ R2|Θ| with y 6= 0,
∑2|Θ|

i=1 yi = 0 we have

yTMy = c

|Θ|∑
i=1

y2
i + d

2|Θ|∑
i=|Θ|+1

y2
i +

a+ b

2

2|Θ|∑
i=1

2|Θ|∑
j=1,j 6=i

yiyj

=

(
c− a+ b

2

) |Θ|∑
i=1

y2
i +

(
d− a+ b

2

) 2|Θ|∑
i=|Θ|+1

y2
i ,(12)

where we used
∑

i

∑
j 6=i yiyj =

∑
i yi

(∑
j 6=i yj

)
=
∑

i yi(−yi) = −
∑

i y
2
i to

obtain the last line. The first term is always negative because a > b > c.
To show that conditions (a) to (e) of Lemma 2 imply ESS, note that the
second term is negative for a+b

2 > d, which then implies yTMy < 0 for any

y ∈ R2|Θ| with y 6= 0,
∑2|Θ|

i=1 yi = 0. This implies that the payoff matrix is
negative definite with respect to its carrier and, together with the fact that
(σ, σ) is quasi-strict, it implies that σ is an ESS.

To show that conditions (a) to (d) and (e’) of Lemma 2 imply NSS
note that the second term is non-positive for a+b

2 ≥ d, which then implies

yTMy ≤ 0 for any y ∈ R2|Θ| with
∑2|Θ|

i=1 yi = 0. Together with the fact that
(σ, σ) is quasi-strict, Lemma 6 implies that σ is an NSS.

Condition (e′) of Lemma 2 is also necessary to have an NSS: If, in con-
trast, a+b

2 < d then, for |Θ| ≥ 2, we can choose a vector y ∈ R2|Θ| that
has zeros in the first |Θ| entries and some non-zero entries in the remaining
entries. Then yTMy > 0 and the corresponding σ cannot be an NSS.

Finally, we prove that a+b
2 > d is also a necessary condition for ESS. If,

in contrast, a+b
2 ≤ d, we can then choose a vector y ∈ R2|Θ| that has zeros

in the first |Θ| entries and some non-zero entries in the remaining entries.
Then yTMy ≥ 0 and the corresponding σ cannot be an ESS.

The following proof of Lemma 6 then finalizes the proof of Lemma 2.
Proof of Lemma 6: Part (b): Now, we show for quasi-strict (σ, σ) that

σ NSS implies Condition 11. Let σ be the K-dimensional restriction of σ to
the pure strategies in its support. Quasi-strictness of (σ, σ) implies for all
µ ∈ ∆(supp(σ)): µTMσ = σTMσ. Furthermore, since the FOC holds with
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equality, the SOC for NSS implies for all µ ∈ ∆(supp(σ)):

µTMµ ≤ σTMµ

⇔ µTMµ− µTMσ + σTMσ ≤ σTMµ

⇔ (µ− σ)T M (µ− σ) ≤ 0.(13)

Now suppose, with the aim to construct a contradiction, that ∃y ∈ RK with∑
i yi = 0 such that

(14) yTMy > 0.

Then we can construct a µ ∈ ∆(supp(σ)) that violates Inequality 13 in
the following way: First, define ε ≡ min{(mini σi), (mini(1 − σi))}, and
ymax ≡ maxi |yi| and then set ỹi ≡ ε

ymax
yi. Then

∑
i ỹi = 0 and ỹTM ỹ > 0.

If we set µi ≡ ỹi +σi then µi ∈ [0, 1] and
∑

i µi = 1, hence, µ ∈ ∆(supp(σ)),

and, furthermore, (µ− σ)T M (µ− σ) > 0, which contradicts Inequality 13.
Now we show that Condition 13 implies for any σ that forms a quasi-

strict Nash equilibrium against itself, that σ is NSS. First, consider the case
of a mutant strategy µ ∈ ∆(supp(σ)). For any such µ Condition 13 implies
with y ≡ µ− σ

(µ− σ)TM(µ− σ) ≤ 0,

⇒ µTMµ− µTMσ + σTMσ − σTMσ ≤ 0,

⇒ µTMµ ≤ σTMσ,(15)

where we used that µTMσ = σTMσ for µ ∈ ∆(supp(σ)) if (σ, σ) is a quasi-
strict Nash equilibrium. Hence, for µ ∈ ∆(supp(σ)) the FOC for NSS is
satisfied with equality and the SOC is satisfied by Inequality 15. In order
to complete the proof that σ is an NSS, note that for any mutant strategy
µ /∈ ∆(supp(σ)) it follows from the assumption that (σ, σ) is a quasi-strict
Nash equilibrium, that µTMσ < σTMσ. Hence, the FOC for NSS is strictly
satisfied and the SOC, therefore, is irrelevant. This completes the proof of
part (b) of Lemma 6. The proof of part (a) is very similar and can be found
in van Damme (1991), Theorem 9.2.7, and the preceding text on pages
220/221. QED

B.3 Proof of Lemma 3

We first prove part (a). Suppose the statement is not true. Then a mutant
strategy µ|ΘS exists in the restricted meta-game such either the FOC or the
SOC of NSS are violated in the restricted meta-game. The same strategy
extended to the full meta-game with full set of labels Θ must violate the
same NSS condition in the meta-game, since all extra labels are played with
probability 0 and do not change the expected payoffs. Hence, any NSS of
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the meta-game, must also form an NSS in the meta-game restricted to labels
in the support of its strategy, which proves part (a) of Lemma 3. By Lemma
2, unless a+b

2 = d, it is also an ESS of that restricted game.
We now turn to proving part (b). A strategy that supports the NSS in

the meta-game with the larger set of labels Θ is a straightforward extension
of the full-label-support NSS strategy from the meta-game with a smaller
set of labels ΘS by specifying that xθ(θ

′) corresponds to the strategy of the
base game that gives the opponent only his or her minmax value: min{u∗, b}.
Note that the expected payoff (call it v) of any strategy in the support of
an NSS with |ΘS | ≥ 2 is strictly above this minmax value: For u∗ 6= b and
any θ ∈ ΘS : v ≥ σ(θ)u∗ + (1− σ(θ))b > min{u∗, b}. For u∗ = b, no label in
the support of an NSS strategy can always play D against all other labels in
the support (otherwise it is dominated by any of the other strategies in the
support, as these sometimes obtain a > b and never fall below b). Hence,
a label θ′ with σ(θ′) > 0 exists such that v ≥ σ(θ′)a + (1 − σ(θ′))b > b =
min{u∗, b}. This proves part (b) of Lemma 3. QED

B.4 Proof of Lemma 4

The proof follows immediately from Lemma 2.

B.5 Proof of Proposition 1

The following lemma, in conjunction with Lemma 4, immediately proves
part (a) of Proposition 1.

Lemma 7. Let n ≡ |Θ| ≥ 2. A full support Nash equilibrium (σ∗, σ∗) of
the label game of the (pre-stable) hierarchical label structure exists if and
only if the base game is an anti-coordination game (u∗ < b). If the labels
θ1, θ2, . . . , θn are ordered according to the hierarchical structure (with θ1 top
label), then for i ∈ {2, . . . , n}:

σ∗(θi) = σ∗(θi−1)

(
b− u∗

a− u∗

)
= σ∗(θ1)

(
b− u∗

a− u∗

)i−1

=

 1−
(
b−u∗
a−u∗

)
1−

(
b−u∗
a−u∗

)n
( b− u∗

a− u∗

)i−1

,(16)

and each label earning the average payoff

hn ≡ σ∗(θ1)u∗ + (1− σ∗ (θ1)) a

=

 1−
(
b−u∗
a−u∗

)
1−

(
b−u∗
a−u∗

)n
u∗ +


(
b−u∗
a−u∗

)
−
(
b−u∗
a−u∗

)n
1−

(
b−u∗
a−u∗

)n
 a(17)
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Equivalently,

hn = σ∗(θn)u∗ + (1− σ∗ (θn)) b

=

 1−
(
b−u∗
a−u∗

)
1−

(
b−u∗
a−u∗

)n
( b− u∗

a− u∗

)n−1

u∗ +

+

1−

 1−
(
b−u∗
a−u∗

)
1−

(
b−u∗
a−u∗

)n
( b− u∗

a− u∗

)n−1
 b

=

 1−
(
b−u∗
a−u∗

)
1−

(
b−u∗
a−u∗

)n
( b− u∗

a− u∗

)n−1

u∗ +

1−
(
b−u∗
a−u∗

)n−1

1−
(
b−u∗
a−u∗

)n
 b

Note that (for anti-coordination games) hn < b and limn→∞ hn = b.

Proof of Lemma 7: For convenience, let Θ = {1, 2, ..., n} (with label 1 top
label) and, for any mixed strategy σ ∈ ∆(S), let αk ≡ σ(k). Let α ∈ ∆(S)
denote the full support symmetric Nash equilibrium. Given α, every label k
(fixing the hierarchical label structure) must yield the same expected payoff.
The payoff to label k is given by Ak =

∑k−1
l=1 αlb + αku

∗ +
∑n

l=k+1 αla.
Equating Ak and Ak+1 yields αku

∗ + αk+1a = αkb+ αk+1u
∗. This, in turn

yields
αk+1

αk
= b−u∗

a−u∗ , which must be true for all k ∈ {1, ..., n − 1}. This
corresponds to the first equality. This is only possible with full support if
b > u∗ and, hence,the base game must be an anti-coordination game. For
anti-coordination games, this ratio is a number strictly between 0 and 1.
The second equality follows by induction and the third equality from the

requirement 1 =
∑n

i=1 αi = α1
∑n

i=1

(
b−u∗
a−u∗

)i−1
= α1

(
1−
(
b−u∗
a−u∗

)n
1− b−u∗

a−u∗

)
, where

the last step follows from the well-known equality
∑N

i=0 δ
i = 1−δN+1

1−δ , which
is easily proved by induction over N . This proves Lemma 7. QED

To prove part (b) of Proposition 1, note first that part (b) follows directly
from part (a) for anti-coordination games, since every ESS is also NSS. For
conflict games, the argument in the proof of Lemma 7 shows that any NSS
with a hierarchical label structure must have all weight on the top label.
It remains only to be shown that this is indeed an NSS of the meta-game:
Any strategy playing any other label with positive probability earns b or less
against the incumbent top label population, while incumbents earn u∗ ≥ b.
In games with u∗ > b, the mutant earns strictly less in the FOC. In the knife-
edge case of a base game with u∗ = b the FOC is satisfied with equality if
D is played against the top label with certainty, but then the incumbents
earn a against the mutants, while mutants earn strictly less than a against
themselves. QED
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B.6 Proof of Proposition 2

In an egalitarian label structure, each label plays H against half of all other
labels and D against the other half. It is easy to see that, for odd |Θ| (then
we can find a natural number l such that |Θ| = 2l + 1), such egalitarian
pre-stable structures exist, i.e. it is a well-defined structure. We can, for
instance, locate the 2l+ 1 labels on a circle, and each label plays H against
the next l labels located clockwise and D against the next l labels located
anti-clockwise.

For convenience, let Θ = {1, 2, ..., n}. Let α ∈ ∆(Θ) denote the full
support symmetric Nash equilibrium of the label game given by αk = 1

n for
all k ∈ {1, ..., n}.

The expected expected payoff of each strategy in the label game against
α is given by:

(18) vn ≡
u∗

n
+
n− 1

n

a+ b

2
.

It follows immediately from Lemma 4 that for d < a+b
2 the corresponding

strategy of the meta-game forms an ESS, and that for d > a+b
2 it cannot

form an NSS. QED

B.7 Proof of Proposition 3

If |Θ| ≥ 4 is an even number, we can find a natural number l ≥ 2 such that
|Θ| = 2l. For anti-coordination games, we now construct an approximately
egalitarian pre-stable label structure with a full support Nash equilibrium in
the label game. (For their task allocation game, Hurkens and Schlag (2003)
have a similar construction in the proof of their Prop. 3). Imagine that
the 2l labels are placed on a circle. Labels i ∈ {1, . . . , l} play H against
the l next labels located clockwise and D against the l − 1 labels located
anti-clockwise. Label-types i ∈ {l+ 1, . . . , 2l} play H against the l− 1 next
labels located clockwise and D against the l labels located anti-clockwise.
This forms an pre-stable structure if all labels play also x∗ against their own
label.

Consider now the corresponding label game. This has a full support Nash
equilibrium if and only if a full support mixed strategy α = (α1, . . . α2l) ∈
∆(Θ) exists in the label game such that all labels earn the same expected
payoff. Hence, the difference between the payoff of any label θi and the
payoff of the clockwise next label θi+1(mod 2l) must be zero:
For 1 ≤ i < l:

(19) αi (u∗ − b) + αi+1 (a− u∗) + αi+l+1 (b− a) = 0,
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for i = l:

(20) αl (u
∗ − b) + αl+1 (a− u∗) = 0,

for l + 1 ≤ i ≤ 2l − 1:

(21) αi (u∗ − b) + αi+1 (a− u∗) + αi−l (b− a) = 0.

Note first that for conflict games (u∗ ≥ b) the equation

αl (u
∗ − b) + αl+1 (a− u∗) = 0

has no solution (with αl, αl+1 ≥ 0). For |Θ| = 4, it is straightforward to
show that all approximately egalitarian structures have the structure above
and, thus, no approximately egalitarian structure can be part of an ESS of
the meta-game in this case.

Now we prove that an ESS of the meta-game under the approximately
egalitarian label structure exists when the base game is an anti-coordination
game. We proceed by first establishing a lemma that provides a necessary
condition for an arbitrary finite, symmetric, two-player game to have a sym-
metric completely mixed Nash equilibrium.

A few definitions are necessary. For a symmetric finite two player game
with n × n payoff matrix G, let D = D(G) denote the G-induced payoff
difference matrix that is given by the n × n − 1 matrix obtained from G
as follows. The l-th row of D is the difference between rows l and l + 1,
for l = 1, 2, ..., n − 1. Finally, denote by D̄ = D̄(G) the n × n matrix that
coincides with D for the first n− 1 rows and has the unit vector (vector of
all ones) in row n. Let h ∈ IRn denote the vector that is equal to the zero
vector except that hn = 1.

A vector x ∈ IRn represents a completely mixed Nash equilibrium of the
finite, symmetric, two-player game with n × n payoff matrix G if and only
if the following two conditions hold:23

(I) Equal Payoff Condition
x ≥ 0 (that is xi ≥ 0 ∀ 0 ≤ i ≤ n and ∃ i such that xi > 0) and
D̄x = h.

(II): Full Support Condition
xi > 0 for 1 ≤ i ≤ n.

Consider the label game with an approximately egalitarian structure as
described above with an even number of labels n = 2l, for any l = 1, 2, ....
The payoff difference matrix D induced by this game is as follows. Column
1 has two non-zero entries, the first in row 1 given by u∗− b, and the second

23This characterization and the characterization of the Equal Payoff Condition (I) below
are taken from our note Herold and Kuzmics (2017).
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in row l+ 1 given by b− a. Column i with 2 ≤ i ≤ l− 1 has three non-zero
entries at row i − 1 given by a − u∗, at row i given by u∗ − b, and at row
l+ i given by b− a. Column l has two non-zero entries at row l− 1 given by
a− u∗ and at row l given by u∗ − b. Column l + 1 has two non-zero entries
at row l given by a − u∗ and at row l + 1 given by u∗ − b. Column i with
l+ 2 ≤ i ≤ 2l− 1 has three non-zero entries at row i− (l+ 1) given by b−a,
at row i− 1 given by a− u∗, and at row i given by u∗ − b. Finally, column
2l has two-non-zero entries, one at row l − 1 given by b− a and one at row
2l − 1 given by a− u∗.

We will now use a result from our note Herold and Kuzmics (2017)
(compare with Lemma 2 and the sentence directly after Lemma 2): The
Equal Payoff Condition (I), has a solution if and only if

(22) @ w ∈ IRn−1 such that wTD > 0.

Let di denote the i-th column of this matrix D. To establish the Equal
Payoff Condition (I) we need to show that there is no vector v ∈ IRn−1 such
that vTdi > 0 for all i. The proof is by contradiction. Thus, suppose there
is such a v ∈ IRn−1 with vTdi > 0 for all i. Let d∗ denote the sum of all
columns 1 to n. Then d∗ has only one non-zero coordinate, which is at row
l and is given by a− b. As vTdi > 0 for all i we have that vTd∗ > 0 and, as
a− b > 0, we have vl > 0.

By vTdl > 0, we then obtain that (a − u∗)vl−1 + (u∗ − b)vl > 0. Given
that vl > 0 and a− u∗ > 0 and u∗ − b < 0, we have vl−1 > 0. By vTd2l > 0,
we obtain that (b − a)vl−1 + (a − u∗)v2l−1 > 0, which, given the results so
far, implies that v2l−1 > 0. Next, consider vTdl−1 > 0. This implies that
(a− u∗)vl−2 + (u∗ − b)vl−1 + (b− a)v2l−1 > 0. Given the results so far, this
implies that vl−2 > 0. Going through all columns of D in this way, except
column 1, we obtain the result that vi > 0 for all i. But then we obtain
vTd1 < 0 which provides a contradiction to our supposition. We thus have
established the Equal Payoff Condition (I).

Next, we need to show that this mixed strategy which satisfies the Equal
Payoff Condition (I) must be completely mixed, i.e. satisfy the Full Support
Condition (II). Suppose it does not. Suppose x ≥ 0 and there is a coordi-
nate i such that xi = 0 and, nevertheless, Dx = 0. Note that each row i
of D has exactly one strictly positive entry di(i+1) = (a − u∗) at column
position i+ 1. Note that the other non-zero entries are negative: (b−a) < 0
and dii = (u∗ − b) < 0 for anti-coordination games.

Suppose x1 = 0. If we add together all rows of D we obtain r∗ ≡
((u∗ − a), 0, . . . , 0, (a− b), (a− b), 0, . . . , 0, (b− u∗)). We must have r∗x = 0
(which corresponds to the payoff difference between the last and first label).
In particular, x2l = 0 (otherwise r∗x would be positive if x1 = 0). But if
any xi+1 = 0 then from row i we see that xi = 0 and thus all xi = 0, which
contradicts

∑
i xi = 1.
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Thus, we must have x1 > 0. Still, if xi > 0 for any 1 ≤ i ≤ 2l− 1. Then
also xi+1 > 0 (otherwise row i would stay strictly negative. Thus, xi > 0
for all 1 ≤ i ≤ 2l (by induction), and we are done.24 By Lemma 2 this is an
ESS. QED

B.8 Proof of Lemma 5

The average payoff in any label game induced by a pre-stable structure is
given by∑
θ,θ′∈Θ

σ(θ)Tθ,θ′σ(θ′) = u∗
∑
θ∈Θ

(σ (θ))2 +
a+ b

2

∑
θ 6=θ′

σ(θ)σ(θ′)

= u∗

(∑
θ∈Θ

(σ (θ))2

)
+
a+ b

2

(
1−

(∑
θ∈Θ

(σ (θ))2

))
.(23)

Note that
(∑

θ∈Θ (σ (θ))2
)
∈ [ 1
|Θ|2 , 1], under the constraint

∑
θ∈Θ σ(θ) = 1,

is minimized by σ with σ(θ) = 1
|Θ| for all θ ∈ Θ and is maximized by a σ

with σ(θT ) = 1 for one label θT ∈ Θ and with σ(θ) = 0 for all remaining
labels θ 6= θT . Thus, the average payoff is a weighted average of u∗ and
a+b

2 and is maximized by putting as much weight as possible on the higher
number of the two. QED

B.9 Proof of Proposition 4

We know from Lemma 2 that for d > a+b
2 (i.e. for cases (a) and (b)) no ESS

and no NSS with full label-support can exist for |Θ| ≥ 2. Now if any NSS
with more than two labels in its support would exist, then, by Lemma 3,
it would also be an NSS in the game restricted to the set of labels in the
support ΘS . But in this restricted meta-game, it would be a full support
equilibrium, a contradiction.

Parts (a) and (b) follow directly from this argument.

(c) Follows directly from Proposition 1, Proposition 2, and Lemma 5.

(d) Follows directly from Proposition 1, Proposition 2, Proposition 3, and
Lemma 5.

QED

24Note that equilibria do exist with no full label-support, e.g. xl+1 = 0 and equal weight
on all other xi, i 6= l+ 1 corresponds to the egalitarian equilibrium with 2l−1 labels. But
these equilibria without full label-support do not satisfy the Equal Payoff Condition (I)
and, thus, one with full label-support must satisfy the Equal Payoff Condition (I).
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C The meta-game with four labels

Next consider the case |Θ| = 4. With four labels, the hierarchical structure
emerges again. Since the number of labels is even, there is no egalitarian
structure, but there is a circular structure that is approximately egalitarian.

L1 L2 L3 L4

L1 u∗ a a a
L2 b u∗ a a
L3 b b u∗ a
L4 b b b u∗

L1 L2 L3 L4

L1 u∗ a a b
L2 b u∗ a a
L3 b b u∗ a
L4 a b b u∗

hierarchical approximately egalitarian

It will turn out to be useful to consider a further reduced form label
game in which some labels are summarized in sub-groups, which are treated
equally by all other labels. For instance:

G12 L3 L4

G12 h2 a a
L3 b u∗ a
L4 b b u∗

L1 G23 L4

L1 u∗ a b
G23 b h2 a
L4 a b u∗

hierarchical approximately egalitarian

For both label structures, full-label-support equilibria exist only for anti-
coordination games, but not for conflict games.

Furthermore, for |Θ| ≥ 4, structures with a partial hierarchy among
some intra-egalitarian groups exist. Consider the case |Θ| = 4:

L1 L2 L3 L4

L1 u∗ a a a
L2 b u∗ a b
L3 b b u∗ a
L4 b a b u∗

L1 L2 L3 L4

L1 u∗ a b a
L2 b u∗ a a
L3 a b u∗ a
L4 b b b u∗

Top label and egalitarian group Egalitarian group - bottom label

Considering the labels L2-L4 in the first label game as one egalitarian
sub-group GB, and the labels L1-L3 in the second label game as one sub-
group GT , a further reduction of the label structures is given by

T GB
T u∗ a
GB b v3

GT B
GT v3 a
B b u∗

Top label and egalitarian group Egalitarian group - bottom label

40



Analogous pre-stable label structures with a hierarchy between a single
label and an egalitarian group of k ≡ |Θ| − 1 labels exist, of course, for any
even number of labels |Θ| and lead to the correspondingly further reduced
label structure:

T GB
T u∗ a
GB b vk

GT B
GT vk a
B b u∗

Top label and egalitarian-group Egalitarian-group - bottom label

Remember that vk ∈ [u∗, a+b
2 ] or [a+b

2 , u∗]. In conflict games with u∗ ≥ b,
it follows for all k ≥ 3 that vk > b. Hence, the top-label (or the labels of
the top egalitarian group in the second reduced label-game) dominates the
labels of the bottom egalitarian group (or the bottom label, respectively).
In equilibrium all probability weight must, therefore, be on the top-label or,
respectively, on the labels of the top egalitarian group. In anti-coordination
games with u∗ < b, in the first game there is a full label-support equilibrium
with a top label and an egalitarian group at the bottom of the hierarchy.
In the second game it depends: For sufficiently small k, the expected payoff
within the egalitarian group vk is still smaller than b, and there is a full-
label-support equilibrium, yet there must be a k̄ such that, for all k ≥ k̄
the payoff vk ≥ b, the payoff of the top-group dominates the payoff of the
bottom label payoff and the bottom label cannot be played in equilibrium.

D Group sub-structures

These arguments can be generalized for more hierarchies among groups with
different sub-structures.

Definition 4. Group sub-structures:

(a) A pre-stable label structure has a group sub-structure if the set of
labels Θ can be partitioned into non-empty sets Θ1, ...,ΘM with M <
|Θ| such that for all i, j ∈ {1, . . . ,M} holds xθi(θj) = xθ′i(θ

′
j) for all

θi, θ
′
i ∈ Θi and θj , θ

′
j ∈ Θj.

(b) A pre-stable structure has a hierarchy among groups if Θ can be
partitioned into two nonempty sets ΘT and ΘB such that xθ(θ

′) = 1
for all θ ∈ ΘT and θ′ ∈ ΘB.

(c) In a pre-stable label structure, a label θT is called a top label if
xθT (θ) = 1 for all θ ∈ Θ \ {θT } and a top label within subgroup
Θg if xθT (θ) = 1 for all θ ∈ Θg \ {θT }.
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(c) In a pre-stable label structure, a label θB is called a bottom label
if xθB (θ) = 0 for all θ ∈ Θ \ {θB} and a bottom label within
subgroup Θg if xθB (θ) = 0 for all θ ∈ Θg \ {θB}.

Consider the label game of a pre-stable structure with a group sub-
structure. A full-support strategy in this label game can only be an equilib-
rium if the payoffs are equilibrated within each group. More precisely, for
any subset of labels Θj ⊂ Θ, let for all θ ∈ Θj

(24) σ|Θj (θ) =
σ(θ)∑

θ′∈Θj
σ(θ′)

.

Definition 5. Consider the label game of a pre-stable structure with a set
of labels Θ and with a group sub-structure (Θ1, . . . ,ΘM ).

(a) Let for each Θj the sub-group label game GΘj denote the |Θj | ×
|Θj | game derived from the full label game by eliminating all rows and
all columns for labels θk /∈ Θj.

(b) A full support strategy σ of the label game with full set of labels Θ
is called equilibrated within group Θj if under σ|Θj every label
θ ∈ Θj obtains exactly the same expected payoff wj in the sub-group
label game GΘj .

(c) A full support strategy of the label game with full set of labels Θ =⊎M
j=1 Θj is called within sub-group equilibrated if, for every Θj

with j ∈ {1, . . . ,M}, it is equilibrated within group Θj.

For a strategy of the meta-game σ that induces a pre-stable label struc-
ture that is within sub-group equilibrated, we can now introduce a fur-
ther reduced inter-group label game that has one pure strategy ϑj ,
j ∈ {1, . . .M} for every sub-group and a M×M payoff matrix with payoff wj
on the diagonal and payoffs a and b as induced by the original label game.
Also note that a strategy σ of the original meta-game induces a strategy σ̂
in the inter-group label game via

(25) σ̂(ϑj) =
∑
θ′∈Θj

σ(θ′).

Definition 6. Consider a full label-support strategy of the meta-game with
a set of labels Θ inducing a label game of a pre-stable structure with a group
sub-structure (Θ1, . . . ,ΘM ) that is within sub-group equilibrated. The in-
duced full support strategy σ of the label game with full set of labels Θ is called
inter-group equilibrated if every induced strategy in the inter-group label
game earns the same expected payoff.
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Definition 7. A full support strategy σ of the label game induced by a pre-
stable structure is called equilibrated if every pure strategy in the label
game earns the same expected payoff under σ.

Lemma 8. Consider a pre-stable label structure with a group sub-structure
Θ1, ...,ΘM . A full-label-support strategy σ of the label game with a set of
labels Θ =

⊎M
j=1 Θj is equilibrated if and only if

• it is within sub-group equilibrated, and

• it is inter-group equilibrated.

Proof: Note that the expected payoff of any label θi, i ∈ {1, . . . , |Θ|}, in
some group of labels Θj , j ∈ {1, . . . ,M}, can be decomposed in the prob-
ability of playing against a label in its own group Θj times the conditional
expected payoff wj in that case, and the probability of playing against any
label not in the group and the conditional expectation in that case.

Consider a full support strategy σ of the label game induced by a pre-
stable structure.

Proof of “only if” statement: Suppose there is a group Θj which is not
within subgroup equilibrated. Then there are at least two labels which earn
a different expected payoff conditional on playing in that group. But since
all labels outside the group play identically against both labels, this implies
that they also earn different expected payoffs overall and, thus, the full
support strategy of the full label game cannot be equilibrated. This means
that being within sub-group equilibrated is a necessary condition for σ to
be equilibrated. Next we show that σ can only be equilibrated if it is inter-
group equilibrated. Suppose it is not. Then pick two labels from different
groups Θi and Θj . Then both labels earn different payoffs, contradicting
the supposition that σ is equilibrated.

Proof of the “if” statement: Suppose the full-label-support strategy σ
is within sub-group equilibrated and inter-group equilibrated. Then, due
to within-subgroup equilibration, every label θiinΘj earns the same ex-
pected payoff as Θj in the inter-group label game. Furthermore, all Θj ,
j ∈ {1, . . . ,M} earn the same expected payoff (since σ is inter-group equi-
librated), all labels earn the same expected payoff and σ is equilibrated.
QED

Note that a full support strategy σ of the label game is equilibrated if and
only if it is a Nash equilibrium of the label game. Lemma 8, in conjunction
with Lemma 4, therefore, gives us a clear picture when a full-label-support
NSS or ESS exists for a pre-stable structure with sub-group structure.

The following Proposition 7 helps us to exclude some pre-stable label
structures if we are searching for full-label-support NSS in situations with
conflict base-games.
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Proposition 7. Consider any conflict base-game. For the corresponding
meta-game with |Θ| ≥ 2 in any full-label-support NSS (and thus in any
ESS), there

(a) can not exist a top label,

(b) can not exist a bottom label,

(c) can not exist a hierarchy among groups,

(d) can not exist a group sub-structure in which one group with more than
one label has has a top player (within that group),

(e) can not exist a group sub-structure in which one group with more than
one label has has a bottom player(within that group).

Proof:

(a) Since u∗ ≥ b for conflict games, the top label (who plays hawk and
earns the largest possible payoff a against all other labels) is a (at
least weakly) dominant strategy in the label game and would earn
strictly more than any other strategy of the label game under full
label-support.

(b) Since u∗ ≥ b for conflict games, a bottom label (who plays dove against
all other labels) is weakly dominated by all other strategies and cannot
be part of any full support equilibrium of the label game.

(c) The same argument as (a) now applies to the top group in the inter-
group label game.

(d) The same argument as in (a) now applies to the sub-group label game
GΘj of such a sub-group Θj with a top label.

(e) The same argument as in (b) now applies to the sub-group label game
GΘj of such a sub-group Θj with a bottom label.

QED

D.1 There is no ESS when |Θ| = 4 in the conflict case

Suppose the base game is one of conflict (i.e. d > b) and |Θ| = 4. We now
show that this meta-game has no ESS. By Lemma 2, any ESS must have
full support on all four labels. We then show that any candidate ESS that
satisfies properties a and b of Lemma 2 necessarily has a dominated label,
and, thus, cannot have full support, violating property (c) of Lemma 2.

We have to go through a series of cases. First, suppose that one label
plays H against all other labels. This label dominates all other labels, and
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we arrive at a contradiction. Second, suppose that one label plays D against
all other labels. This label is dominated by all other labels, and again we
reach a contradiction. The only case remaining is such that all labels play H
against at least one other label and at most two other labels. This leads to
a unique label structure (subject to relabeling), the unique, approximately
egalitarian structure (subject to relabeling) given by the following matrix.

L1 L2 L3 L4

L1 u∗ a a b
L2 b u∗ a a
L3 b b u∗ a
L4 a b b u∗

Given d > b and thus u∗ > b, label L3 is dominated by label L2.

D.2 There are only two ESS when |Θ| = 5 in the conflict case

Suppose the base game is one of conflict with a+b
2 > d > b and |Θ| = 5. Then

u∗ > b. This game has exactly two ESS (modulo relabeling). One is the
egalitarian one. Only one other pre-stable structure can exist that forms an
ESS: In any pre-stable label structure, overall half of the off-diagonal entries
are a and the other half are b. In the egalitarian pre-stable structure, each
label has exactly two a entries and two b entries. In any non-egalitarian
label structure, at least one label, denote it L1, must have three a entries,
but it cannot have four because it would dominate all other labels. Denote
by L2 the unique label against which L1 has an entry of b. Now note that
the remaining three labels L3 − L5 must all obtain a if matched against
label L2, otherwise they would be dominated by L1. Thus, L3 − L5 form a
sub-group of labels, and we know from the results for |Θ| = 3 that it can
only have the egalitarian structure. Thus, any non-egalitarian ESS must
have the following pre-stable structure (modulo relabeling)

L1 L2 L3 L4 L5

L1 u∗ b a a a
L2 a u∗ b b b
L3 b a u∗ a b
L4 b a b u∗ a
L5 b a a b u∗

with the labels L3, L4, and L5 receiving equal probability weight and
the other two also receiving positive probability weight. To verify that
such an ESS exists, we have to show that a full-label-support distribution
exists that satisfies the equal payoff condition. Note that labels L3−L5 are
treated equally by L1 and L2 and, thus, form an egalitarian sub-group, call it
G3. Each label within this subgroup does equally well, and the conditional
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expected payoff when two labels of G3 meet is v3 = u∗+a+b
3 , where a >

v3 > u∗ > b. The resulting symmetric two-player label-game must have a
symmetric Nash equilibrium (see, e.g. (Weibull 1995), p.27). It is easy to
see that this symmetric Nash equilibrium must have full (label) support:
First, no label is best responding to itself. Second, if one label would have
zero probability weight, one of the remaining labels always dominates the
other. Thus, we have a full-label-support equilibrium which by Lemma 2 is
an ESS.

D.3 On ESS when |Θ| = 6 in the conflict case

Suppose the base game is one of conflict with d > b (hence, a > u∗ > b) and
|Θ| = 6. We now show that this meta-game has no ESS for some parameters
and only an approximately egalitarian ESS for other parameters. By Lemma
2, any ESS must have full support on all six labels. We then show for
some parameters that any candidate ESS that satisfies properties a and b of
Lemma 2 either has a dominated label or has label-game equilibrium that
does not have full support. In either case, it then follows that the label
game cannot have a full support ESS. This is immediately obvious in the
dominated label case and true in the other case because a full support ESS is
necessarily the unique Nash equilibrium of a game (see, e.g. Weibull (1995,
Proposition 2.2)).

There are a series of cases to consider. First, consider the case that one
label plays H against all other labels. Then this label dominates all other
labels, and we arrive at a contradiction. Second, suppose one label plays
D against all other labels. Then this label is dominated by all other labels,
and again we arrive at a contradiction.

Third, consider the case that one label plays H against all but one other
label. Then, if we want to avoid having dominated labels, the label game
must have the following sub-structure (otherwise L1 would dominate at least
one of the labels L3 to L6):

L1 L2 L3 L4 L5 L6

L1 u∗ b a a a a
L2 a u∗ b b b b
L3 b a u∗

L4 b a u∗

L5 b a u∗

L6 b a u∗

Note that the four labels L3 to L6 are all treated equally by labels L1

and L2. They can only differ in how they play against each other. The
problem, thus, is reduced to considering only these four labels and, by the
argument above (case |Θ| = 4), no label structure with four labels exists in
which there is no dominated label in conflict games.
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Fourth, a similar argument can be made when we consider the case that
one label plays D against all but one other label. This also leads to the
existence of a dominated label in much the same way as in the previous
case.

In all remaining cases, every label plays H against at least two and at
most three opponents. Given the fact that the total number of H plays in
the matrix must be 15, we need exactly three labels to play H against two
opponent labels and exactly three labels to play H against three opponent
labels. Let us call the first group the 2H-group and the latter the 3H-group.
There are now, without loss of generality, four cases. Each group (of three
labels each) can only be either egalitarian or hierarchical among themselves .
Each case leads to a different label structure, all of which are approximately
egalitarian.

Case1: If both groups are hierarchical among themselves, this leads to
a structure in which the lowest label in the 3H-group internal hierarchy
(call it L3), dominates the label (call it L4) that is highest in the 2H-group
internal hierarchy.

L1 L2 L3 L4 L5 L6

L1 u∗ a a
L2 b u∗ a
L3 b b u∗ a a a
L4 b b b u∗ a a
L5 b u∗ a
L6 b b u∗

Case 2: If the 3H-group is egalitarian and the 2H-group is hierarchical
then let us denote the medium label of the internal 2H-group hierarchy by
L5 and let L1 denote the unique label from the 3H-group against which L5

plays H. Then the following label structure is implied:

L1 L2 L3 L4 L5 L6

L1 u∗ a b a b a
L2 b u∗ a a a b
L3 a b u∗ a a b
L4 b b b u∗ a a
L5 a b b b u∗ a
L6 b a a b b u∗

If we set x4 = 0 (no weight on label L4), then the remaining five labels form
an egalitarian sub-structure. If we put equal weight on the remaining five
labels x1 = x2 = x3 = x5 = x6 = 1

5 , they form a Nash equilibrium and

obtain equilibrium payoff 2a+2b+u∗

5 . Label L4 would earn only the smaller

payoff 2a+2b+b
5 in this equilibrium. Hence, this forms a partial support Nash
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equilibrium of the label game. But this contradicts the existence of a full-
support ESS (by Weibull (1995, Proposition 2.2)).

Case 3: If both groups are egalitarian, then let L1 be an arbitrary label
from the 3H-group and denote by L2 the label from the 3H-group against
which L1 plays H and denote by L3 the label against which L1 plays D.
Then call L6 the unique label from the 2H-group against which L1 plays D.
Then the label structure must be one of the following two:

L1 L2 L3 L4 L5 L6

L1 u∗ a b a a b
L2 b u∗ a b a a
L3 a b u∗ a b a
L4 b a b u∗ a b
L5 b b a b u∗ a
L6 a b b a b u∗

L1 L2 L3 L4 L5 L6

L1 u∗ a b a a b
L2 b u∗ a a b a
L3 a b u∗ b a a
L4 b b a u∗ a b
L5 b a b b u∗ a
L6 a b b a b u∗

label structure 1 label structure 2

In label structure 1 label L1 dominates label L4 and, thus, cannot form an
ESS. In label structure 2 the distribution x1 = x2 = x3 = 1

3 and x4 = x5 =
x6 = 0 forms a partial-support Nash equilibrium with equilibrium payoff
a+b+u∗

3 for L1, L2, and L3. Labels L4, L5, and L6 would earn only the lower

payoff of a+b+b
3 in the equilibrium. Again this contradicts the existence of a

full-support ESS (by Weibull (1995, Proposition 2.2)).
Case 4: If the 3H-group is hierarchical and the 2H-group is egalitarian,

then let L1 denote the top label of the internal 3H-group hierarchy and let
L4 denote the unique label from the 2H-group against which L1 plays H.
Then the following label structure is implied:

L1 L2 L3 L4 L5 L6

L1 u∗ a a a b b
L2 b u∗ a b a a
L3 b b u∗ a a a
L4 b a b u∗ a b
L5 a b b b u∗ a
L6 a b b a b u∗

If we set x6 = 0 (no weight on label L6), the remaining labels form an in-
duced label structure that is the non-egalitarian Nash equilibrium with five
labels described above. If the expected payoff of label L6 is below the equi-
librium payoff of the other five labels, this constitutes a Nash equilibrium,
which contradicts the existence of a full-support ESS (by Weibull (1995,
Proposition 2.2)).

By using the LinearSolve command in Mathematica and by solving for
the equilibrium using the corresponding payoff-difference matrix with five
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labels we could show that there exists a v0 ≈ 0.3611 such that for all u
∗−b
a−b >

v0 this is indeed the case, and there cannot exist an ESS for |Θ| = 6.
For sufficiently small u∗−b

a−b > 0 however, we could show, by using the
LinearSolve command in Mathematica, and by solving for the equilibrium
using the corresponding payoff-difference matrix with six labels, that a full-
support equilibrium exists which is then also an ESS. Indeed, we found such
an equilibrium with six labels for all numerical values of u∗−b

a−b < v0 that we
checked.

References

Abakus, A. (1980): “Conditions for evolutionary stable strategies,” Jour-
nal of Applied Probability, 17, 559–562.

Balkenborg, D., J. Hofbauer, and C. Kuzmics (2013): “Refined best
reply correspondence and dynamics,” Theoretical Economics, 8(1), 165–
192.

Banerjee, A., and J. W. Weibull (2000): “Neutrally stable outcomes
in cheap-talk coordination games,” Games and Economic Behavior, 32,
1–24.

Basu, K., and J. W. Weibull (1991): “Strategy subsets closed under
rational behavior,” Economics Letters, 36, 141–46.

Benndorf, V., I. Martinez-Martinez, and H.-T. Normann (2016):
“Equilibrium selection with coupled populations in hawk–dove games:
Theory and experiment in continuous time,” Journal of Economic Theory,
165, 472–486.

Bhaskar, V. (1998): “Noisy communication and the evolution of cooper-
ation,” Journal of Economic Theory, 82, 110–31.

Blume, A., Y.-G. Kim, and J. Sobel (1993): “Evolutionary stability in
games of communication,” Games and Economic Behavior, 5, 547–575.

Brown, R. (1965): Social Psychology. The Free Press, New York.

Dekel, E., J. C. Ely, and O. Yilankaya (2007): “Evolution of prefer-
ences,” Review of Economic Studies, 74, 685–704.

Eshel, I., L. Samuelson, and S. Shaked (1998): “Altruists, egoists, and
hooligans in a local interaction model,” American Economic Review, 88.1,
157–179.

Farrell, J. (1987): “Cheap talk, coordination, and entry,” The RAND
Journal of Economics, 18.1, 34–39.

49



Forsyth, D. R. (2016): Group Dynamics, 5th edition. Wadsworth.

Haigh, J. (1975): “Game theory and evolution,” Advances in Applied Prob-
ability, 7, 8–11.

Heller, Y. (2014): “Stability and trembles in extensive-form games,”
Games and Economic Behavior, 84, 132–136.

(2015): “Three steps ahead,” Theoretical Economics, 10(1), 203–
241.

Herold, F., and C. Kuzmics (2009): “Evolutionary stability of discrimi-
nation under observability,” Games and Economic Behavior, 67, 542–551.

(2017): “Note: A necessary condition for symmetric completely
mixed Nash-equilibria,” Mimeo.

Hurkens, S., and K. Schlag (2003): “Evolutionary insights on the will-
ingness to communicate,” International Journal of Game Theory, 31, 511–
526.

Kim, Y.-G., and J. Sobel (1995): “An evolutionary approach to pre-play
communication,” Econometrica, 63, 1181–93.

Maynard Smith, J. (1982): Evolution and the Theory of Games. Cam-
bridge University Press, Cambridge.

Maynard Smith, J., and G. R. Price (1973): “The logic of animal
conflict,” Nature, 246, 15–18.

Okada, A. (1981): “On stability of perfect equilibrium points,” Interna-
tional Journal of Game Theory, 10, 67–73.

Oprea, R., K. Henwood, and D. Friedman (2011): “Separating
the Hawks from the Doves: Evidence from continuous time laboratory
games,” Journal of Economic Theory, 146(6), 2206–2225.

Ritzberger, K., and J. W. Weibull (1996): “Evolutionary selection in
normal form games,” Econometrica, 63, 1371–1399.

Robson, A. J. (1990): “Efficiency in evolutionary games: Darwin, Nash
and the secret handshake,” Journal of Theoretical Biology, 144, 379–96.

Schlag, K. (1995): “When does Evolution Lead to Efficiency in Commu-
nication Games,” Mimeo.

Schlag, K. H. (1993): “Cheap talk and evolutionary dynamics,” Bonn
University Economics Department Disc. Paper B-242.

50



Selten, R. (1975): “Re-examination of the perfectness concept for equilib-
rium points in extensive games,” International Journal of Game Theory,
4, 25–55.

Selten, R. (1980): “A Note on Evolutionary Stable Strategies in Asym-
metric Animal Conflicts,” Journal of Theoretical Biology, 84, 93–101.

(1983): “Evolutionary stability in extensive two-person games,”
Mathematical Social Sciences, 5(3), 269–363.

Sobel, J. (1993): “Evolutionary Stability and Efficiency,” Economic Let-
ters, 42, 301–312.

Spence, M. (1973): “Job market signaling,” Quarterly Journal of Eco-
nomics, 87(3), 355–374.

Taylor, P., and L. Jonker (1978): “Evolutionary stable strategies and
game dynamics,” Mathematical Biosciences, 40, 145–56.

Thomas, B. (1985): “On evolutionarily stable sets,” Journal of Mathemat-
ical Biology, 22(1), 105–115.

van Damme, E. E. C. (1991): Stability and Perfection of Nash Equilibria.
Springer-Verlag, Berlin, Heidelberg.

Wärneryd, K. (1993): “Cheap talk, coordination, and evolutionary sta-
bility,” Games and Economic Behavior, 5, 532–46.

Weibull, J. W. (1995): Evolutionary Game Theory. MIT Press, Cam-
bridge, Mass.

51


