Note: A necessary condition for symmetric completely mixed Nash-equilibria*

Florian Herold ${ }^{\dagger}$ and Christoph Kuzmics ${ }^{\ddagger}$

August 17, 2017

Abstract

We establish a necessary condition for an arbitrary finite symmetric two player game to have a symmetric completely mixed Nash equilibrium.

Keywords: mixed Nash-equilibria
JEL-Code: C72

1 Definitions and Results

Consider an arbitrary finite symmetric two player game with $n \times n$ payoff ma$\operatorname{trix} A$. Let $x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbb{R}_{+}^{n}$ with $\sum_{i=1}^{n} x_{i}=1$ denote a mixed strategy. In a symmetric completely mixed Nash equilibrium of such a game all pure strategies must earn the same expected payoff. More precisely, a mixed

[^0]strategy profile $x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbb{R}_{\geq 0}^{n}$ with is a symmetric completely mixed Nash equilibrium if and only if $x_{i}>0$ for $1 \leq i \leq n, \sum_{i=1}^{n} x_{i}=1$, and
\[

$$
\begin{equation*}
A x=(c, c, \ldots, c)^{T}, \tag{1}
\end{equation*}
$$

\]

for some constant $c \in \mathbb{R}$.
In order to rephrase this we need a few definitions. For any $m \times n$ matrix A, let $D=D(A)$ denote A-induced payoff difference matrix given by the $(m-1) \times n$ matrix obtained from A as follows ${ }^{1}$ The k-th row of D is the difference between rows k and $k+1$, for $k=1,2, \ldots, n-1$. Further, denote by $\bar{D}=\bar{D}(A)$ the $m \times n$ matrix coincides with D for the first $n-1$ rows and has the unit vector (vector of all ones) in row m and define $b=$ $(0,0, \ldots, 0,1)^{T} \in \mathbb{R}^{m}$. Further, we write $x \geq 0$ iff $x_{i} \geq 0 \forall 0 \leq i \leq n$ and \exists i such that $x_{i}>0$. We write $x>0$ iff $x_{i}>0 \forall 0 \leq i \leq n$.

A vector $x \in \mathbb{R}^{n}$ represents a completely mixed Nash equilibrium of the finite symmetric two player game with $n \times n$ payoff matrix A game if $x>0$ (that is each coordinate satisfies $x_{i}>0$) and

$$
\begin{equation*}
\bar{D} x=b . \tag{2}
\end{equation*}
$$

We can break down this characterization into two conditions:
Lemma 1. A vector $x \in \mathbb{R}^{n}$ represents a completely mixed Nash equilibrium of the finite symmetric two player game with $n \times n$ payoff matrix A if and only if the following two conditions hold:

(I) Equal Payoff Condition

$\bar{D} x=b$ and $x \geq 0$.

(II): Full Support Condition

$x_{i}>0$ for $1 \leq i \leq n$.
The proof is obvious. The next lemma characterizes when there exists an solution x satisfying the Equal Payoff Condition (I) - generalized to an arbitrary $m \times n$ matrix A:

[^1]
Lemma 2.

(3) $\exists x \in \mathbb{R}^{n}$ such that $\bar{D} x=b, x \geq 0 \Leftrightarrow \nexists w \in \mathbb{R}^{m-1}$ such that $w^{T} D<0$.

Lemma 2 can equivalently be stated in the following form 2^{2}

Lemma 3.

(4) $\exists x \in \mathbb{R}^{n}$ such that $\bar{D} x=b, x \geq 0 \Leftrightarrow \nexists w \in \mathbb{R}^{m-1}$ such that $w^{T} D>0$.

Proof of Lemma 2:
Farkas' lemma states that either $\bar{D} x=b, x \geq 0$ has a solution $x \in \mathbb{R}^{n}$ or $v^{T} \bar{D} \leq 0, v^{T} b>0$ has a solution $v=\left(v_{1}, v_{2}, \ldots, v_{m}\right)^{T} \in \mathbb{R}^{m}$, but not both $]^{3}$
"Only if": By Farkas' lemma the existence of a solution to the Equal Payoff Condition (I) implies that there is no $v=\left(v_{1}, v_{2}, \ldots, v_{m}\right)^{T} \in \mathbb{R}^{n}$ with $v^{T} b>0$ such that $v^{T} \bar{D} \leq 0$. Note that the condition $v^{T} b>0$ is satisfied if and only if $v_{m}>0$. Let $w=w(v)$ be the vector in $\mathbb{R}^{(m-1)}$ that consists of the first $m-1$ coordinates of v. Note that the condition $v^{T} \bar{D} \leq 0$ is satisfied if and only if $w^{T} D \leq-v_{m}$.

Thus, there exists a solution to the Equal Payoff Condition (I) only if there is no $\left(w_{1}, \ldots, w_{m-1}, v_{m}\right)$ such that $w^{T} D \leq-v_{m}$ with $v_{m}>0$. This implies that there is no $w \in \mathbb{R}^{m-1}$ with $w^{T} D<0$.
"If": Suppose $\nexists w \in \mathbb{R}^{m-1}$ such that $w^{T} D<0$.
Then for all $v_{m}>0$ there is no $w \in \mathbb{R}^{m-1}$ such that $w^{T} D \leq-v_{m}$. This implies that $\nexists v=\left(v_{1}, \ldots, v_{m-1}, v_{m}\right) \in \mathbb{R}^{m}$ such that $v^{T} \bar{D} \leq 0, v^{T} b>0$. This implies by Farkas' lemma the Equal Payoff Condition (I).

QED
A few more definitions are necessary. For an $m \times n$ matrix A let $\operatorname{col}(A)$ denote the set of column vectors of A. For any vector $a \in \mathbb{R}^{m}$ let $\operatorname{HS}(a)$ denote the half space induced by a, given by the set of all vectors $v \in \mathbb{R}^{m}$ such that $v^{T} a \leq 0$. For an $m \times n$ matrix A let $\operatorname{HS}(A)=\bigcup_{a \in \operatorname{col}(A)} \operatorname{HS}(a)$ denote the union of all half spaces of columns of A. Note that for every

[^2]element $v \in \operatorname{HS}(A)$ there is a $a \in \operatorname{col}(A)$ such that $v^{T} a \leq 0$. In fact:
\[

$$
\begin{equation*}
v \in H S(A) \Leftrightarrow \exists_{a \in \operatorname{col}(A)} \text { such that } v^{T} a \leq 0 . \tag{5}
\end{equation*}
$$

\]

Now, we provide a necessary condition for the Equal Payoff Condition (I).
Lemma 4. Consider a finite symmetric two player normal form game with $n \times n$ payoff matrix A. The Equal Payoff Condition (I) has a solution $x \in \mathbb{R}^{n}$ only if $H S(D(A))=\mathbb{R}^{n-1}$, i.e. the union of half-spaces induced by the set of columns of the payoff difference matrix D covers the whole set \mathbb{R}^{n-1}.

Proof: The existence of a solution x to the Equal Payoff Condition (I) implies, by Lemma 3 that for every $w \in \mathbb{R}^{n-1}$ there must also exist a vector $d^{\prime} \in \operatorname{col}(D)$ such that $w^{T} d^{\prime} \leq 0$. Thus, $w \in \operatorname{HS}(D)$. This implies $\operatorname{HS}(D)=$ $\mathbb{R}^{(n-1)}$.

QED
Our main results follow now immediately from Lemmata 1 and 4 :
Proposition 1. Consider a finite symmetric two player normal form game with $n \times n$ payoff matrix A. If this game has a symmetric completely mixed Nash equilibrium then $H S(D(A))=\mathbb{R}^{n-1}$, i.e. the union of half-spaces induced by the set of columns of the payoff difference matrix covers the whole set \mathbb{R}^{n-1}.

Proposition 1 and Lemma 2 turned out to be helpful to prove some results in a recent paper of ours (Herold and Kuzmics (2017)) and we hope they turn out to be useful for other game theorists as well.

References

Farkas, G. (1901): "Theorie der Einfachen Ungleichungen," J.Reine Angew. Math., 124, 1-27.

Herold, F., and C. Kuzmics (2017): "The evolution of taking roles," Mimeo.

Vohra, R. V. (2005): Advanced Mathematical Economics. Routledge, New York, NY.

[^0]: *The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement PCIG11-GA-2012-322253. Florian Herold gratefully acknowledges this support. This work was also supported by the COLIBRI initiative of the Karl-Franzens University of Graz, Austria.
 ${ }^{\dagger}$ Department of Economics and Social Sciences, University of Bamberg, Feldkirchenstr. 21, 96045 Bamberg, Germany, florian.herold@uni-bamberg.de
 \ddagger Universität Graz, christoph.kuzmics@uni-graz.at

[^1]: ${ }^{1}$ For the payoff matrix of a symmetric game $m=n$.

[^2]: ${ }^{2}$ Just set $w^{\prime}=-w$.
 ${ }^{3}$ See Farkas (1901) or read e.g. Vohra (2005) for a modern textbook treatment of Farkas' lemma.

