Note: A necessary condition for symmetric completely mixed Nash-equilibria^{*}

Florian Herold[†] and Christoph Kuzmics[‡]

August 17, 2017

Abstract

We establish a necessary condition for an arbitrary finite symmetric two player game to have a symmetric completely mixed Nash equilibrium.

Keywords: mixed Nash-equilibria JEL-Code: C72

1 Definitions and Results

Consider an arbitrary finite symmetric two player game with $n \times n$ payoff matrix A. Let $x = (x_1, \ldots, x_n)^T \in \mathbb{R}^n_+$ with $\sum_{i=1}^n x_i = 1$ denote a mixed strategy. In a symmetric completely mixed Nash equilibrium of such a game all pure strategies must earn the same expected payoff. More precisely, a mixed

^{*}The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement PCIG11-GA-2012-322253. Florian Herold gratefully acknowledges this support. This work was also supported by the COLIBRI initiative of the Karl-Franzens University of Graz, Austria.

[†]Department of Economics and Social Sciences, University of Bamberg, Feldkirchenstr. 21, 96045 Bamberg, Germany, florian.herold@uni-bamberg.de

[‡]Universität Graz, christoph.kuzmics@uni-graz.at

strategy profile $x = (x_1, \ldots, x_n)^T \in \mathbb{R}^n_{\geq 0}$ with is a symmetric completely mixed Nash equilibrium if and only if $x_i > 0$ for $1 \leq i \leq n$, $\sum_{i=1}^n x_i = 1$, and

(1)
$$Ax = (c, c, \dots, c)^T,$$

for some constant $c \in \mathbb{R}$.

In order to rephrase this we need a few definitions. For any $m \times n$ matrix A, let D = D(A) denote A-induced payoff difference matrix given by the $(m-1) \times n$ matrix obtained from A as follows.¹ The k-th row of D is the difference between rows k and k + 1, for k = 1, 2, ..., n - 1. Further, denote by $\overline{D} = \overline{D}(A)$ the $m \times n$ matrix coincides with D for the first n - 1 rows and has the unit vector (vector of all ones) in row m and define $b = (0, 0, ..., 0, 1)^T \in \mathbb{R}^m$. Further, we write $x \ge 0$ iff $x_i \ge 0 \forall 0 \le i \le n$ and \exists i such that $x_i > 0$. We write x > 0 iff $x_i > 0 \forall 0 \le i \le n$.

A vector $x \in \mathbb{R}^n$ represents a completely mixed Nash equilibrium of the finite symmetric two player game with $n \times n$ payoff matrix A game if x > 0(that is each coordinate satisfies $x_i > 0$) and

$$\bar{D}x = b.$$

We can break down this characterization into two conditions:

Lemma 1. A vector $x \in \mathbb{R}^n$ represents a completely mixed Nash equilibrium of the finite symmetric two player game with $n \times n$ payoff matrix A if and only if the following two conditions hold:

- (1) Equal Payoff Condition $\bar{D}x = b \text{ and } x \ge 0.$
- (II): Full Support Condition

 $x_i > 0$ for $1 \le i \le n$.

The proof is obvious. The next lemma characterizes when there exists an solution x satisfying the Equal Payoff Condition (I) - generalized to an arbitrary $m \times n$ matrix A:

¹For the payoff matrix of a symmetric game m = n.

Lemma 2.

(3) $\exists x \in \mathbb{R}^n \text{ such that } \overline{D}x = b, x \ge 0 \Leftrightarrow \nexists w \in \mathbb{R}^{m-1} \text{ such that } w^T D < 0.$

Lemma 2 can equivalently be stated in the following form:²

Lemma 3.

(4) $\exists x \in \mathbb{R}^n$ such that $\overline{D}x = b, x \ge 0 \Leftrightarrow \nexists w \in \mathbb{R}^{m-1}$ such that $w^T D > 0$.

Proof of Lemma 2:

Farkas' lemma states that either $\bar{D}x = b, x \ge 0$ has a solution $x \in \mathbb{R}^n$ or $v^T \bar{D} \le 0, v^T b > 0$ has a solution $v = (v_1, v_2, ..., v_m)^T \in \mathbb{R}^m$, but not both.³

"Only if": By Farkas' lemma the existence of a solution to the Equal Payoff Condition (I) implies that there is no $v = (v_1, v_2, ..., v_m)^T \in \mathbb{R}^n$ with $v^T b > 0$ such that $v^T \overline{D} \le 0$. Note that the condition $v^T b > 0$ is satisfied if and only if $v_m > 0$. Let w = w(v) be the vector in $\mathbb{R}^{(m-1)}$ that consists of the first m-1 coordinates of v. Note that the condition $v^T \overline{D} \le 0$ is satisfied if and only if $w^T D \le -v_m$.

Thus, there exists a solution to the Equal Payoff Condition (I) only if there is no $(w_1, \ldots, w_{m-1}, v_m)$ such that $w^T D \leq -v_m$ with $v_m > 0$. This implies that there is no $w \in \mathbb{R}^{m-1}$ with $w^T D < 0$.

"If": Suppose $\nexists w \in \mathbb{R}^{m-1}$ such that $w^T D < 0$.

Then for all $v_m > 0$ there is no $w \in \mathbb{R}^{m-1}$ such that $w^T D \leq -v_m$. This implies that $\nexists v = (v_1, \ldots, v_{m-1}, v_m) \in \mathbb{R}^m$ such that $v^T \overline{D} \leq 0, v^T b > 0$. This implies by Farkas' lemma the Equal Payoff Condition (I). QED

A few more definitions are necessary. For an $m \times n$ matrix A let $\operatorname{col}(A)$ denote the set of column vectors of A. For any vector $a \in \mathbb{R}^m$ let $\operatorname{HS}(a)$ denote the *half space* induced by a, given by the set of all vectors $v \in \mathbb{R}^m$ such that $v^T a \leq 0$. For an $m \times n$ matrix A let $\operatorname{HS}(A) = \bigcup_{a \in \operatorname{col}(A)} \operatorname{HS}(a)$ denote the union of all half spaces of columns of A. Note that for every

²Just set w' = -w.

 $^{^3\}mathrm{See}$ Farkas (1901) or read e.g. Vohra (2005) for a modern textbook treatment of Farkas' lemma.

element $v \in HS(A)$ there is a $a \in col(A)$ such that $v^T a \leq 0$. In fact:

(5)
$$v \in HS(A) \Leftrightarrow \exists_{a \in col(A)} \text{ such that } v^T a \leq 0.$$

Now, we provide a necessary condition for the Equal Payoff Condition (I).

Lemma 4. Consider a finite symmetric two player normal form game with $n \times n$ payoff matrix A. The Equal Payoff Condition (I) has a solution $x \in \mathbb{R}^n$ only if $HS(D(A)) = \mathbb{R}^{n-1}$, i.e. the union of half-spaces induced by the set of columns of the payoff difference matrix D covers the whole set \mathbb{R}^{n-1} .

Proof: The existence of a solution x to the Equal Payoff Condition (I) implies, by Lemma 3 that for every $w \in \mathbb{R}^{n-1}$ there must also exist a vector $d' \in \operatorname{col}(D)$ such that $w^T d' \leq 0$. Thus, $w \in \operatorname{HS}(D)$. This implies $\operatorname{HS}(D) = \mathbb{R}^{(n-1)}$. QED

Our main results follow now immediately from Lemmata 1 and 4:

Proposition 1. Consider a finite symmetric two player normal form game with $n \times n$ payoff matrix A. If this game has a symmetric completely mixed Nash equilibrium then $HS(D(A)) = \mathbb{R}^{n-1}$, i.e. the union of half-spaces induced by the set of columns of the payoff difference matrix covers the whole set \mathbb{R}^{n-1} .

Proposition 1 and Lemma 2 turned out to be helpful to prove some results in a recent paper of ours (Herold and Kuzmics (2017)) and we hope they turn out to be useful for other game theorists as well.

References

- FARKAS, G. (1901): "Theorie der Einfachen Ungleichungen," J.Reine Angew. Math., 124, 1–27.
- HEROLD, F., AND C. KUZMICS (2017): "The evolution of taking roles," Mimeo.
- VOHRA, R. V. (2005): Advanced Mathematical Economics. Routledge, New York, NY.