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1. The setting

Consider a finitely repeated game with discounting and perfect monitoring, in which the stage game is a symmetric 2 x 2
coordination game with a conflict of interest, i.e. a version of the well-known Battle-of-the-Sexes. For the purpose of this
comment, it suffices to focus attention on the stage game with payoffs described by

o B
« [0,0] 0,1
g [1,0[=1, =1

In a thought-provoking paper, Bhaskar (2000) studies the properties of symmetric equilibria of such a game. The main
finding (Proposition 1 for the twice repeated version; Proposition 2 for any number of repetitions) is that in any optimal
symmetric equilibrium it must be that payoffs are as egalitarian as possible. To understand this, note that in any symmetric
strategy profile, in the first stage, both players must use the same distribution over actions o and . If both players’
realized actions are the same, then the symmetry of their repeated game strategies implies that in the next stage they again
both use the same distribution over actions,! causing delay in successful coordination. If, however, the realized actions
are different (Bhaskar, 2000 calls this event the “breaking” of symmetries), future play is essentially unrestricted by the
symmetry requirement. That is, any continuation of the subgame is feasible. Bhaskar’s (2000) Propositions 1 and 2 state
that any optimal symmetric subgame perfect equilibrium must have the feature that continuation payoffs after the event
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that symmetries are broken are as close as possible to being equal across players. Suppose the continuation payoffs are
exactly equal. Then both players have an incentive to randomize optimally in the first stage, i.e. attach probability % to
both actions. This results in the fastest possible breaking of symmetries. Suppose, on the other hand, that the continuation
payoffs are asymmetric. For instance, the person whose realized action is « continues to play «, while her opponent, with
realized action 8 continues to play g for the remainder of the game. This is part of a subgame perfect equilibrium, but it is
not the optimal one. In this case, both players prefer to be the one whose realized action is 8 when symmetries are broken.
Thus, in equilibrium, both players attach too much probability (more than the optimal %) on B in rounds before symmetries
are broken, resulting in costly delay of the breaking of symmetries.

This result of Bhaskar (2000) (Propositions 1 and 2) is perfectly sound. Bhaskar (2000) then turns to the question of
what might constitute an optimal continuation play. That is, how should players play after symmetries are broken in order
to achieve the highest degree of egalitarianism in the finitely (or infinitely) repeated game with discounting??

2. The error

We first introduce a bit of notation. With continuation play, in this note, we always refer to the part of a strategy profile
that describes play (on the equilibrium path) after a given history of some finite length t with the property that symmetries
are broken at this time t. We shall focus on conditionally efficient continuation play. A continuation play is conditionally
efficient if, in any stage after symmetries are broken, with probability one play is either («, 8) or (8, @). It is easy to see
that a strategy profile needs to prescribe conditionally efficient continuation play after every history in which symmetries
are broken in order to be efficient.> However, as Bhaskar (2000) notes (in his Propositions 1 and 2) and as discussed above,
not every equilibrium with conditionally efficient continuation play is also efficient.

Now fix a particular finite history at the end of which symmetries are first broken. Let T denote the number of periods
remaining in the repeated game at the stage when symmetries are broken. We renormalize time such that the stage at
which symmetries are broken is time 1. A conditionally efficient continuation play can then be fully described by a sequence
z= (zS)ST:l, where z; = 1 if the continuation play at stage s is (8, «) and z; = —1 if it is (c, 8). Without loss of generality
we take z1 =1.

We now define the difference in payoffs between the two players as

T

Az, T) = Zas”zs.

s=1

The appropriate measure* of asymmetry in payoffs (i.e. of anti-egalitarianism) associated with the continuation play de-
scribed by z is defined by |A%(z, T)|. For all continuations of length T € {1,2,...,00} and all discount rates § € (0, 1]
(except the combination T = oo and § = 1), define Z*(8, T) to be the set of sequences that minimizes |A®(z, T)|. This is the
set of Bhaskar’s (2000) egalitarian conventions.

Bhaskar (2000) makes use of the following construction. Define an infinite sequence z = (23);’21 by the following recur-
sive formula. Set 2; = 1. Set 2, =1 if A%(Z,s —1) <0, and 2z; = —1 otherwise. Obviously, 2 depends on §. This construction
can be thought of as the continuation play that, at every period, awards the high payoff to the player whose current cumu-
lative discounted payoff in the repeated game is lower. Denote by 27 the truncation of 2 to length T.

Proposition 4 of Bhaskar (2000) makes, in part, the following claim: For any T < oo and for any 8 < 1, 2T € Z*(5, T).>
That is, the convention of awarding the high payoff to the currently disadvantaged player results in a maximally egalitarian
outcome. This statement is not correct. In fact it is not easy to state a less general correction as the following Proposition
proves.

Proposition 1. Let T be either odd and at least 5, or two times such a number. Then there is a § < 1 such that for all § > § the sequence
2T is not an egalitarian convention, i.e. 2T ¢ Z*(8, T).

Proof. First, consider the case T =5 and § > 0.62. Then 2° = (1,—1,—1, 1, —1). This can readily be verified to be less
egalitarian than the sequence z°> = (1,1, —1, —1, —1). That is |A%(Z, 5)| < |A%(Z>, 5)] for all § > 0.62. The reason is simple:
one player must be awarded the prize fewer times than the other; when § is sufficiently large, to best equalize payoffs
this player should be compensated by having his wins as early as possible. The same logic applies, for § close enough to
1, to all odd T > 5. The sequence 27 must coincide with 2> for the first 5 periods. Yet, it is most egalitarian (provided

2 In the case of no discounting, this is a less interesting question.

3 Note that different histories can, of course, lead to different conditionally efficient continuation play. Suppose symmetries are broken in stage 2. There
are two histories with that property. One in which in the first stage both players played «, and one in which both played B. The continuation could, in
principle, depend on which of the two histories realized. For example, it could prescribe always («, 8) after the first and (8, «) after the second history.

4 This is the quantity that governs mixing incentives in the stages prior to symmetries being broken.

5 The remainder of Bhaskar’s (2000) Proposition 4 is incorrect if the first claim is incorrect, as it states that, generically, Z*(8, T) = {27}, i.e. that 27 is
the unique egalitarian convention.
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8 is large enough) that the player who gets the fewer prizes should receive them in the first % periods. This logic is
not restricted to odd T. Let T =10 and & > 0.79. Then 2!° is now extended to produce (1,-1,-1,1,-1,1,1,-1,-1,1).
Imagine pairing adjacent periods together, so that 21 = ((1, —1), (-1, 1), (=1, 1), (1, —=1), (—1, 1)). Each of these two-period
pairs can be thought of as awarding a single prize (of value 1 —§) to the first (second) player if the first (second) element in
the pair is positive. The effective discount rate across these two-period prizes is then §2. We can then view this example as
exactly equivalent to the previous five-period example with a discount rate of §2. This argument demonstrates that a more
egalitarian® sequence is ((1, —1), (1, =1), (=1, 1), (=1, 1), (=1, 1)). This argument readily generalizes to all T that are two
times an odd number that is at least 5. O

There are more instances of pairs of T and §, not covered by Proposition 1, in which it is also true that 27 is not an
egalitarian convention, i.e. not in Z*(8, T). We shall not discuss this here. Proposition 1 suffices to make the argument that
not only is Bhaskar’s (2000) Proposition 4 incorrect, it is also not really possible to prove a similar statement under more
stringent conditions.

The error in logic from the proof in Bhaskar (2000) is that the optimization of the egalitarian objective is done, at any
period, conditional on the partial sequence already generated before that period. In other words, it is indeed true that,
conditional on the sequence 27!, the play in the subsequent period that results in the most egalitarian payoffs after one
more period of play is described by zr. But the optimization problem of finding a sequence in Z*(8, T) is a global one, and
may well involve a sequence that bears no resemblance to 27.
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6 However, not necessarily most egalitarian!
7 It is true, however, that for almost all values of § > % there is a unique most egalitarian convention. We are grateful to an anonymous referee for
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