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A stochastic myopic best-reply dynamics is said to have property (W), for a given number
of players n, if every pure weakly dominated strategy in every n-player game is eliminated
in the long-run distribution of play induced by the dynamics. In this paper I give a
necessary and sufficient condition that a dynamics has to satisfy in order for it to have
property (W). The key determinant is found to be the sensitivity of the learning-rate to
small payoff differences, inherent in the dynamics. If this sensitivity is higher than a certain
cut-off, which depends on the number of players, then the dynamics satisfies property (W).
If it is equal to or below that cut-off, then the dynamics does not satisfy property (W).
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1. Introduction

1.1. What this paper does

In this paper I seek to answer the following question. Are there evolutionary dynamics which guarantee the elimination
of weakly dominated strategies in all finite normal form games? I make this quest more specific by restricting attention to a
class of stochastic myopic best-reply dynamics in the spirit of Kandori et al. (1993) and more specifically Samuelson (1994),
inspired by Foster and Young (1990).

Stochastic myopic best-reply dynamics are defined as follows. For a given n-player game, for each player position, there
is a finite population of individuals. Individuals, when given an opportunity to learn, play a best-reply to the empirical
distribution of play of individuals in the other player positions. Dynamics differ in the learning rate, the probability with
which individuals learn. I restrict attention to dynamics in which this learning-rate is a power-function of the payoff-
difference between their current strategy and the best reply. The reciprocal of this power is the individuals’ sensitivity to
payoff-differences. Individuals also experiment or make mistakes.

I investigate the distribution of play, under such dynamics, in the invariant (long-run) distribution of the induced Markov
chain, in the limit in which the experimentation-rate tends to zero, population sizes tend to infinity, while their product
(the expected number of experiments in any given period) tends to infinity as well.
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A dynamics is then said to have property (W), for a given number of players n, if every weakly dominated strategy in
every n-player game is eliminated in the limiting long-run distribution of play induced by the dynamics.

In the main Theorems 4 and 5 of this paper I provide a necessary and sufficient condition for a stochastic myopic best-
reply dynamics to have property (W). This condition is in terms of the sensitivity of the learning-rate to payoff differences.
If this sensitivity is greater than a certain threshold, which depends on the number of player positions, then all weakly
dominated strategies are eliminated. If it is equal to or below that threshold then there is a game with the given number
of player positions and a weakly dominated strategy which survives evolution.

1.2. Motivation and related literature

While it is possible to argue that a rational player will not use weakly dominated strategies2 (see e.g. Dekel and Fu-
denberg, 1990; Brandenburger, 1992; Börgers, 1994; Gul, 1996; and Ben Porath, 1997), evolutionary models have, so far,
mostly failed to support the elimination of weakly dominated strategies. The beginning was very promising, however. An
evolutionary stable strategy (ESS), as defined by Maynard Smith and Price (1973), for symmetric 2-player games only, does
not contain a weakly dominated strategy. In fact, van Damme (1991) shows that an ESS must be a proper equilibrium, as
defined by Myerson (1978). Thus, ESS is a very strong refinement of Nash equilibrium, at the heart of which is not least
the elimination of weakly dominated strategies. Thus, it was hoped that evolution could provide a strong tool which would
help an applied researcher to pinpoint much more accurately the plausible equilibria of any given game. The concept of
an ESS had only two shortcomings. First, it was only defined for symmetric 2-player games, and second, existence of an
ESS is not guaranteed in all games. Also the concept of an ESS, being a static one, does not explicitly model the dynamic
process of evolutionary selection. In essentially any model in which the dynamic process of selection was modeled directly,
evolution failed to generally eliminate weakly dominated strategies. An example of this is given in Nachbar (1990) and a
full discussion is provided in Samuelson (1993, 1994).

Samuelson (1993) shows that weakly dominated strategies can survive evolution in deterministic dynamic models such
as the replicator dynamics of Taylor and Jonker (1978). Samuelson (1994) in his Theorem 3 shows that they can survive
evolution in stochastic models such as that of Kandori et al. (1993), which is inspired by Foster and Young (1990). This is
somewhat surprising, as evolutionary models directly, through low-probability mutations in stochastic models, or indirectly,
by appealing to notions of stability to perturbations in deterministic models, allow for random mutation or experimentation,
which should serve a similar purpose to trembles in strategic refinements. Yet, this is not so.

In deterministic models weakly dominated strategies can survive evolution when all opponents’ strategies, against which
the weakly dominated strategy performs poorly, vanish much faster than the weakly dominated strategy does (see e.g.
Example 3.4 in Weibull, 1995).

In a stochastic finite-population model a la Kandori et al. (1993), weakly dominated strategies may feature in the sup-
port of the limiting invariant distribution of play because of the possibility of “evolutionary drift” (see Samuelson, 1994,
Theorem 3). Suppose play is currently in a state in which the following is true. First, a given weakly dominated strategy is
not played by anyone in the relevant player population. Second, this weakly dominated strategy is, however, a best-reply to
the aggregate strategy profile of the opponents in the current state. Thus, the weakly dominated strategy is an alternative
best reply in the given state, and if employed by one individual in the relevant population by mutation, there is no evolu-
tionary pressure to remove it. In fact one could have a series of single mutations in this population toward more and more
individuals playing the weakly dominated strategy. If nothing else changes, i.e. no other individual in any other population
changes strategy, evolutionary pressure does not bear on individuals using the weakly dominated strategy, as it continues
to be an alternative best reply in these circumstances.

Thus, Samuelson (1994) demonstrates that it is impossible for a stochastic best-reply model of evolution to eliminate
weakly dominated strategies in all games if population sizes are fixed and finite. This implies, in turn, that a necessary
condition for a stochastic evolutionary process to eliminate weakly dominated strategies in all games is that population
sizes are large (i.e. are taken to infinity). Loosely speaking, large populations have the effect that “evolutionary drift” is
less likely. Indeed, in his Theorem 5 Samuelson (1994) then shows that, for a particular 2-player game, a weakly dominated
strategy, which is not eliminated under the finite population model, is eliminated in the limit in which population sizes tend
to infinity.3 While taking population sizes to infinity (without further qualification) is sufficient for evolution to eliminate the
weakly dominated strategy in that particular game, it is, however, not generally sufficient for the elimination of all weakly

2 The elimination of weakly dominated strategies is also at the heart of virtually every Nash equilibrium refinement based on strategic considerations.
Selten’s (1975) trembling hand perfect equilibrium and Myerson’s (1978) proper equilibrium are examples for this. Kohlberg and Mertens (1986) even made
it a requirement for a solution concept to be called strategically stable that it does not contain weakly dominated strategies.

3 In the special context of generic extensive form games, Nöldeke and Samuelson (1993) show that similar stochastic models of evolution do not nec-
essarily lead to subgame perfect (i.e. undominated) equilibrium play if population sizes are finite. Hart (2002), in a slightly more biologically flavored
stochastic model of evolution, shows that large populations (tending to infinity), while the product of mutation and population size is bounded from be-
low, lead to the evolution of subgame perfect equilibrium play. Kuzmics (2004) shows that the same result can be obtained in the model of Nöldeke and
Samuelson (1993) if population sizes are taken to infinity, while the product of experimentation probability and population sizes tend to infinity as well.
Thus, both Hart (2002) and Kuzmics (2004) provide sufficient conditions for the evolutionary elimination of weakly dominated strategies in some contexts.
They do not cover all normal form games and, as they do not discuss the player’s sensitivity to payoff-differences when learning, do not provide necessary
conditions for the elimination of weakly dominated strategies.
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dominated strategies in all games. I show this by using another example, matching pennies with a weakly dominated
strategy. In this game it is necessary to take the limit in which population sizes tend to infinity and the experimentation
probability to zero in such a way that the expected number of experiments, which is the product of population size and
the probability of experimentation, also tends to infinity. Given this pre-condition, I then move on to show that the crucial
determinant for a stochastic best-reply model of evolution to eliminate all weakly dominated strategies in all games with a
given number of player positions is that the individuals’ sensitivity to payoff-differences (as verbally defined in the previous
subsection and formally in Section 2), when learning to play a best reply, is above or below a certain threshold that
depends on the number of player positions. If this sensitivity is above the given threshold then evolution eliminates all
weakly dominated strategies in all games with the given number of player positions. If it is below that threshold then there
is a game with the given number of player positions and a weakly dominated strategy in that game which is not eliminated
by evolution.

The structure of this paper is as follows. Section 2 states the model. Section 3 discusses Samuelson’s (1994) Theorem 5
as well as the conceptual difficulties involved in proving the main theorems of this paper by means of three examples. Some
preliminary results are given in Section 4. Section 5 proves the elimination of strictly dominated strategies in Theorems 1
and 2 before Section 6 provides the main results on the evolutionary elimination of weakly dominated strategies, Theo-
rems 3, 4, and 5, as well as an intuitive sketch of their proofs. Finally, Section 7 provides Theorem 6 showing that provided
evolution eliminates all weakly dominated strategies it will then also eliminate all strategies which are not rationalizable
(Bernheim, 1984 and Pearce, 1984) in the game obtained from the original game by removing all weakly dominated strate-
gies. That is Theorem 6 provides some evolutionary support for the so-called S∞W -procedure of Dekel and Fudenberg
(1990) in the sense that strategies which are eliminated under the S∞W -procedure are also eliminated by evolution under
the assumptions stated in Theorem 6. Most proofs are relegated to Appendices A–F.

2. Model

For finite population sizes (mi , see below) the following model is essentially the same as the stochastic4 best-reply model
of Samuelson (1994) and a special case of the evolutionary model of Kandori et al. (1993). The important difference to the
model of Samuelson (1994) is that I will assume that any individual’s learning rate depends on the difference between
the payoff of the strategy currently used by the individual and the largest payoff this individual could obtain in the given
situation. This is important when analyzing the limit in which population sizes tend to infinity.

The object of analysis in this paper is a (game/dynamics) pair 〈Γ, D〉, where Γ = (N, S, u) is a finite normal form game,
and D = ( f , λ, κ) is a stochastic best-reply dynamics on Γ . The normal form game Γ = (N, S, u) is characterized by the set
of n players N = {1, . . . ,n}, the finite set of pure strategy profiles S =×i∈N Si (Si is player i’s set of pure strategies), and
the vector of payoff functions u = (u1, . . . , un), where ui : S → R. The dynamics D = ( f , λ, κ) is characterized by the vector
f = ( f1, . . . , fn) of best-reply learning functions (to be specified below), one for each player, the vector λ = (λ1, . . . , λn)

of conditional experimentation probabilities (to be specified below), and the vector κ = (κ1, . . . , κn) of conditional learning
probabilities (in case of 2 or more alternative best replies, again to be specified below).

In the remainder of this section I will specify the details of the dynamics D = ( f , λ, κ). Let each player i be replaced by
a population of individuals M(i) with population size mi = |M(i)|. Individuals are characterized by the pure strategy they
are playing. A state is a characterization for each individual in each population. Let the state space be denoted by Ω .

Individuals in every period t play against every possible configuration of opponents. Between times t and t + 1 each
individual in each population first receives a draw from a Bernoulli random variable either to learn with probability σ or
not to learn, and then, regardless of the outcome of the first Bernoulli draw, receives a second draw from an independent
Bernoulli variable either to experiment with probability μ or not to experiment.

While μ is assumed to be a constant, the learning rate σ is assumed to be dependent on the payoffs obtainable by
the various strategies. Suppose the current state is some ω ∈ Ω . Suppose a given agent in population M(i) plays strategy
s ∈ Si in this state ω. The probability that this agent will learn shall now depend on the payoff-difference between the
payoff the agent could get when playing a best-reply (against state ω), and the payoff the agent receives currently. Slightly
abusing notation, let the payoff function ui be extended to the domain Si × Ω as follows. For a given state ω ∈ Ω let
P i,s(ω) denote the proportion of individuals in player position i who play pure strategy s ∈ Si . Let Pi(ω) be the vector
of these proportions for player position i ∈ N and let P−i(ω) =×j∈N, j �=i P j(ω). Then define ui(s,ω) = ui(s, P−i(ω)). Let,
furthermore, u∗

i (ω) = maxs′∈Si ui(s′,ω) denote the maximal payoff an individual in player position i could have achieved
given state ω. Then the probability that an agent (currently playing s) switches to a best-reply given state ω is given by
σ(s,ω) = f i(u∗

i (ω) − ui(s,ω)), where f i : R+ → [0,1].
If an agent learns, the agent chooses a best reply to the aggregate behavior of individuals at time t . If there are multiple

best replies the agent chooses one according to the vector of conditional learning probabilities κ = (κ1, . . . , κn), with κi =
{κi,Ti }Ti⊂Si a family of probability distributions such that κi,Ti : Ti → R+ with κi,Ti (s) > 0 for all s ∈ Ti (full support) and∑

s∈Ti
κi,Ti (s) = 1 for all Ti ⊂ Si and all i ∈ N . If at state ω the set of best-responses for players in position i is given by

4 This type of stochastic evolutionary model originated in Foster and Young (1990).
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Ti ⊂ Si then an individual, conditional on switching to a best reply, switches to strategy s ∈ Ti with probability κi,Ti (s). If
she does not learn, the agent continues to play her old strategy.

If the agent receives an experimentation-draw she chooses an arbitrary strategy according to the vector of conditional
experimentation probabilities λ = (λ1, . . . , λn) with λi(s) > 0 for all s ∈ Si (full support) and

∑
s∈Si

λi(s) = 1 for all i ∈ N .
That is, conditional on experimenting, an individual in player position i switches to strategy s ∈ Si with probability λi(s).
In the absence of an experimentation-draw the agent does not change her strategy. This completes the description of the
stochastic dynamics D = ( f , λ, κ).

Throughout the paper I restrict attention to a subclass of all such pairs 〈Γ, D〉 of a game and a dynamics. I assume
that f i , a function from the non-negative part of the real line into the unit interval, satisfies f i(0) = 0, f i(x) > 0 for all
x > 0, and that f i is weakly increasing. Typical functions for f i shall be a step function for which f i(x) = σ (constant) for
all x > 0, a scaled identity function f i(x) = αx for some α that guarantees f i(x) ∈ [0,1] for all relevant x, or generally any
power function f i(x) = αxβ , again with α such that f i(x) ∈ [0,1] for all relevant x. Note that f i(0) = 0 implies that when a
learning agent already plays a best reply she is assumed to continue playing it. This assumption, however, is not important
for the results of this paper.

For the learning-rate given by a power function f i(x) = αxβ , I call 1
β

the sensitivity individuals display towards payoff-
differences. It is e.g. 1 if the function is linear, 2 if the function is proportional to the square-root function, and infinite if
the function is discontinuous at 0.

A given game/dynamics pair, for a given experimentation probability μ and a given vector of population sizes m =
(m1, . . . ,mn), gives rise to a Markov chain on the state space Ω with transition probability matrix denoted by Q m

μ . The
transition probabilities also vary with different choices of f , λ, and κ . However, as I will study the limit of this process for
any fixed f , λ, and κ , but taking μ to zero and mi to infinity, I suppress f , λ, and κ in the notation.

The Markov chain induced by the above selection–mutation dynamics is aperiodic and irreducible. Hence, it has a unique
stationary distribution, which shall be denoted by πm

μ , and satisfies

πm
μ Q m

μ = πm
μ . (1)

3. Motivating examples

A dynamics D is said to have property (W) for a given number of players n, if every pure weakly dominated strategy in
every n-player game is eliminated in the long-run distribution of play induced by the dynamics. In this section I use a series
of three examples of increasing complexity to demonstrate the conceptual difficulties in finding necessary and sufficient
conditions for a dynamics to exhibit property (W). In some of the statements in the discussion I appeal to theorems from
later sections.

The first example is a simple 2 × 2 game with a weakly dominated strategy that will be eliminated under any of the
stochastic best reply models of this paper as long as the experimentation probability tends to zero, even if population sizes
are finite. Thus, it demonstrates that while it may be difficult for evolution to eliminate weakly dominated strategies in all
games, there are games in which the elimination of weakly dominated strategies is easily achieved by any reasonable model
of evolution. The second example is Game G1 of Samuelson (1994), also called Game G1 in this paper. Samuelson’s (1994)
findings imply that, provided population sizes are finite, the single weakly dominated strategy in that game is not removed
by any stochastic best-reply model of evolution. In Theorem 5 Samuelson (1994), furthermore, shows that for any stochastic
best-reply model of evolution, if population sizes tend to infinity at the same time as experimentation probabilities tend
to zero, the single weakly dominated strategy is eliminated. In the third example, Game G2, finally, I demonstrate that this
result is not generally true in all games. Game G2 has a weakly dominated strategy that, under the conditions of Samuelson’s
(1994) Theorem 5 is not generally eliminated. It turns out, as discussed below, that, in order to obtain conditions under
which property (W) holds, conditions need to be placed on the relative speed with which the experimentation probability
tends to zero in relation to the speed with which population sizes tend to infinity. I demonstrate that it is essentially
necessary to take this limit in such a way that the product of experimentation probability and population size, which
corresponds to the expected number of experimentation draws in a population, needs to tend to infinity as well. This
discussion, thus, leads me to conclude that in order to obtain necessary and sufficient conditions for a dynamics to satisfy
property (W) I need to investigate exactly this limit.

3.1. A simple game

Consider, first, the following 2-player game, denoted Game G0. This game has a weakly dominated strategy, which is
eliminated under any of the learning dynamics in this paper as long as the experimentation probability tends to zero, even
if population sizes are fixed and finite.

A S

B 1,1 1,0

W 0,1 1,0
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Note that S is strictly dominated for player 2. Thus, under any learning dynamics D, by Theorem 2, we have that the
expected proportion of S-players tends to 0, in any limit in which μ → 0. But then W is actually strictly worse than B for
players in player position 1. Thus, by the same argument (see also Theorem 6), the expected proportion of W -players tends
to 0 as well, as long as μ → 0. This is true whether or not μmi tends to infinity or some positive number or even to 0.

3.2. Another simple example

Consider the following 2-player game (G1 in Samuelson, 1994), also denoted Game G1 here.

A S

B 1,1 1,0

W 1,1 0,0

Player 2’s strategy S is strictly dominated, while player 1’s strategy W is weakly dominated. Compared to the previous
example, in this example it is harder for evolution to eliminate the weakly dominated strategy W , as this strategy in the
limit will be essentially equally good in terms of payoff as the best strategy. In fact, Samuelson’s (1994) results imply that,
for this game and under any learning dynamics in this paper, weakly dominated strategy W survives evolution if population
sizes are taken to be fixed and finite.

Now consider the following (extreme) best-reply dynamics. For i = 1,2 let f i(x) = 0 if x = 0 and f i(x) = σ > 0 if x > 0.
Samuelson (1994) in his Theorem 5 shows that the weakly dominated strategy W is eliminated by this dynamics under
any limit in which the experimentation-rate (μ) tends to zero and population sizes (mi) tend to infinity. Thus, this is true
regardless of the limiting behavior of the product of the two (μmi).

Thus, so far it seems that μmi → ∞ is not necessary to guarantee the elimination of weakly dominated strategies. Note,
however, that this is due partly to the fact that even in the case when W is a best reply, individuals who do not play it,
i.e. who play B , will not learn to play W , as they are already playing a best reply. If we changed the model to allow for
arbitrary switches between alternative best replies even when individuals already play a best reply, this result would no
longer hold. In that case we would need μmi → ∞ in order to prevent W to essentially ever be a best reply. The next
example demonstrates that there are games in which μmi → ∞ is necessary even if we do not change the model.

3.3. Matching pennies with a weakly dominated strategy

Consider the following 2-player game G2 (matching pennies with a weakly dominated strategy).

H2 T2

H1 1,−1 −1,1

T1 −1,1 1,−1

W −2,1 1,−1

Player 1’s strategy W is weakly dominated. Note that player 2 is indifferent between player 1’s strategies T1 and W .
Consider the following best reply dynamics with λH2 = λT2 = λH1 = 1

2 , λT1 = λW = 1
4 . Also f i(0) = 0 and f i(x) = 1 if x > 0

for i = 1,2. Furthermore, when there are multiple best replies assume that individuals uniformly randomize between them
when learning. For all s ∈ Si and all i ∈ N let P i,s

μ,m : Ω → R+ denote the random variable that assigns to states ω ∈ Ω the
proportion of individuals in population M(i) who play strategy s. For convenience assume that m1,m2 are odd numbers. Let
the state space be partitioned into four sets. Let

NW =
{
ω ∈ Ω

∣∣∣ P 1,H1
μ,m (ω) >

1

2
∧ P 2,H2

μ,m (ω) >
1

2

}
,

N E =
{
ω ∈ Ω

∣∣∣ P 1,H1
μ,m (ω) >

1

2
∧ P 2,H2

μ,m (ω) <
1

2

}
,

S E =
{
ω ∈ Ω

∣∣∣ P 1,H1
μ,m (ω) <

1

2
∧ P 2,H2

μ,m (ω) <
1

2

}
,

and

SW =
{
ω ∈ Ω

∣∣∣ P 1,H1
μ,m (ω) <

1

2
∧ P 2,H2

μ,m (ω) >
1

2

}
.

Given the symmetry in this game we must have πμ,m(NW ) = πμ,m(N E) = πμ,m(S E) = πμ,m(SW ) = 1
4 , for all μ and all

(odd) m1,m2.
Now consider the following state, denoted ω∗ , in which all individuals in population 1 play H1 and all individuals in

population 2 play T2. Similarly, let ω̃ be the state in which all individuals in population 1 play T1 and all individuals in
population 2 play T2.
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Lemma 1. For the game G2 and dynamics such that fi(0) = 0 and fi(x) = 1 for x > 0 for both i = 1,2 we have πm
μ (ω∗) � (1 −

1
2 μ)m1 (1 − 1

2 μ)m2 1
4 and πm

μ (ω̃) � (1 − 1
2 μ)m1 (1 − 1

2 μ)m2 1
4 .

Proof. Note that for all ω ∈ NW we have Q m
μ (ω → ω∗) = (1 − 1

2 μ)m1 (1 − 1
2 μ)m2 , which converges to some positive γ in

the limit, when μ → 0, while μmi → δi ∈ (0,∞). Then

πm
μ

(
ω∗) =

∑
ω∈Ω

πm
μ (ω)Q m

μ

(
ω → ω∗)

�
∑

ω∈NW

πm
μ (ω)Q m

μ

(
ω → ω∗)

�
(

1 − 1

2
μ

)m1(
1 − 1

2
μ

)m2 ∑
ω∈NW

πm
μ (ω)

�
(

1 − 1

2
μ

)m1(
1 − 1

2
μ

)m2 1

4
.

The proof that πm
μ (ω̃) � (1 − 1

2 μ)m1 (1 − 1
2 μ)m2 1

4 is completely analogous. �
Proposition 1. For the game G2 and dynamics such that fi(0) = 0 and fi(x) = 1 for x > 0 for both i = 1,2 we have
limμ→0,μmi→δi E[P 1,W

μ,m ] > 0 if δi ∈ (0,∞).

Proof. By the law of iterated expectation we have

E
[(

P 1,W
μ,m

)
t+1

] = E
[
E

[(
P 1,W

μ,m

)
t + dP 1,W

μ,m

∣∣ωt
]]

� πm
μ (ω̃)E

[(
P 1,W

μ,m

)
t + dP 1,W

μ,m

∣∣ωt = ω̃
] + πm

μ

(
ω∗)

E
[(

P 1,W
μ,m

)
t + dP 1,W

μ,m

∣∣ωt = ω∗]
� πm

μ (ω̃)E
[
dP 1,W

μ,m

∣∣ωt = ω̃
] + πm

μ

(
ω∗)

E
[
dP 1,W

μ,m

∣∣ωt = ω∗]

�
(

1 − 1

2
μ

)m1(
1 − 1

2
μ

)m2 1

2

(
1

2

(
1 − μ(1 − λW )

))
,

which tends to 1
4 γ for some γ > 0 as μ → 0 and μmi → δi , and where the last inequality follows from Lemma 1 and the

observation that E[dP 1,W
μ,m |ωt = ω∗] = E[dP 1,W

μ,m |ωt = ω̃] = 1
2 (1 − μ(1 − λW )) by an analogous argument as in the proof of

Theorem 1. �
Thus, Game G2 has a weakly dominated strategies, which is eliminated under the given dynamics in the limit in which

μmi → ∞ (by Theorem 4), but not in the limit in which μmi → δ < ∞ (by Proposition 1). The dynamics is as in Samuelson
(1994). Thus, this example demonstrates that Samuelson’s (1994) Theorem 5 does not extend to all games. That is, it is not
enough to look at the limit in which μ → 0 while mi → ∞ without specifying the limiting behavior of the product μmi . In
fact, this implies that taking μ → 0 and mi → ∞ together is not sufficient to yield a well-defined limit in general games,
i.e. the limit inferior and limit superior are not equal. In the main part of the paper I, thus, focus attention on the limiting
case in which the experimentation probability μ tends to zero, while the expected number of experimentation draws μmi
in any given period tends to infinity. This provides a well-defined limit in all cases I consider.

4. Preliminary results

This section provides some preliminary results needed for the analysis, and, before that, some additional notation. Let
i ∈ N and s ∈ Si . Let Λ

i,s
k denote the set of states in which the proportion of individuals at population M(i) playing strategy

s is k
mi

. Let Φ
i,s
τ = ⋃

k�τmi
Λ

i,s
k denote the set of states in which not more than a proportion of τ individuals play s at player

population M(i). Let P i,s
μ,m : Ω → R denote a random variable (given probability space (Ω,πm

μ )) such that P i,s
μ,m(ω) denotes

the proportion of s-players in population M(i) given state ω. Thus P i,s
μ,m(ω) = k

mi
if ω ∈ Λ

i,s
k .

Note that πm
μ (P i,s

μ,m � ε) = πm
μ (Φ

i,s
ε ). Throughout this section the conditional mutation-probability vector, λ is arbitrary.

Hence, the results hold for any such λ. Then λs shall denote the probability λ puts on pure strategy s ∈ Si .
Let ρm

μ = (μ, 1
m1μ

, . . . , 1
mnμ

) and let ρm
μ → 0 mean that each component of ρm

μ tends to zero.

Lemma 2. Let 〈Γ, D〉 be an arbitrary game/dynamics pair. Let s ∈ Si be an arbitrary pure strategy of player i in the game. Then

1. πm
μ (Λ

i,s
) � (1 − λsμ)mi ;
0
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2. this bound is tight (achieved by some 〈Γ, D〉);
3. and limρm

μ→0 πm
μ (Λ

i,s
0 ) = 0.

Proof. Points (1) and (2) follow from Lemma 3 in Appendix A. From (1) it follows that limρm
μ→0 πm

μ (Λ
i,s
0 ) � limρm

μ→0(1 −
λsμ)mi , which is equal to zero. This proves point (3). �

Note that the limit I am considering here is the only limit in which I can guarantee for any finite normal form game
and for any choice of learning functions f = ( f1, . . . , fn), that every pure strategy is played by at least one person in the
game. To see this, suppose that μ → 0 and μmi → δ < ∞. But then from point (2) of Lemma 2 it follows that for some
game, dynamics, and pure strategy s it is true that lim(1 − λsμ)mi = lim(1 − λs

δ
mi

)mi = e−λsδ > 0. Hence, under this limit,
one cannot guarantee that a strictly dominated strategy s is always played by at least 1 person. The following corollary is
immediate from Lemma 2.

Corollary 1. Let 〈Γ, D〉 be an arbitrary game/dynamics pair. Denote by Ψ the set of states, in which there is a population such that at
least one strategy is not played by any individual at this population, i.e.

Ψ =
n⋃

i=1

⋃
x∈Si

Λ
i,x
0 . (2)

Then

lim
ρm

μ→0
πm

μ (Ψ ) = 0. (3)

5. Strictly dominated strategies

So far we know that, in the limit considered here, every strictly dominated strategy will be played by at least one person.
In this section I am interested in the expected number and proportion of people who play any given strictly dominated
strategy. Recall that P i,s

μ,m(ω) denotes the proportion of s-players in population M(i) given state ω.
Let s ∈ Si be a strictly dominated strategy. Then the difference between the payoff derived from using strategy s and

the maximal obtainable payoff in a given state ω must be positive. That is, u∗
i (ω) − ui(s,ω) > 0. In fact we must have that

minω∈Ω(u∗
i (ω) − ui(s,ω)) = a > 0. But then under the assumptions about f i we must have that there is a σ̃ > 0 such that

σ(s,ω) = f i(u∗
i (ω) − ui(s,ω)) � σ̃ for all ω ∈ Ω . On the other hand, we, of course, have that σ(s,ω) � 1 for all ω ∈ Ω . In

the following the expectation E is always understood to be the expectation given the invariant distribution πm
μ . Most proofs

are in Appendices A–F.

Theorem 1. Let s ∈ Si be a strictly dominated strategy.5 Then

μλs � E
[

P i,s
μ,m

]
� μλs

σ̃ (1 − μ) + μ
.

Note that the expectation in Theorem 1 does not depend on the population size. Hence, in any limit in which μ tends
to zero, regardless of the limiting behavior of population sizes mi , we must have that the expected proportion of s-players
tends to zero. In the case of fixed population sizes this implies that not only the expected proportion, but also the expected
number of s-players tends to zero. In fact this also implies that in this limit (with fixed mi) the event that no individual
plays s has probability 1.

Theorem 1 has the following corollary, which I will also call a theorem, which is somewhat of an analogue to Propo-
sition 5.6 in Weibull (1995), due to Samuelson and Zhang (1992), which proves the same in the context of deterministic
payoff-monotonic dynamics.

Theorem 2. Let s ∈ Si be a strictly dominated strategy. Then

lim
μ→0

E
[

P i,s
μ,m

] = 0.

5 In fact this theorem extends to any pure strategy which is never a best-reply. In 2-player games a strategy is strictly dominated if and only if it is a
never best-reply. In more than 2 player games every strictly dominated strategy is obviously never a best reply, while there may be a strategy which is
never a best reply yet not strictly dominated (see e.g. Ritzberger, 2002, Example 5.7).
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Proof. Immediate from Theorem 1. �
Theorem 1, thus, implies, for the limit I consider in this paper, where μ tends to zero while μmi tends to infinity, that

the expected number of s-players tends to infinity, while the expected proportion tends to zero.

6. Weakly dominated strategies

Let w ∈ Si be a weakly dominated strategy which is not strictly dominated. Let w be in fact weakly dominated by some
mixed strategy x ∈ �(Si). We then have that u∗

i (ω) − ui(w,ω) � ui(x,ω) − ui(w,ω) � 0, where u∗
i (ω) is, as previously

defined, the maximal payoff a player in player position i could achieve, by playing a best-reply, given state ω. Let S−i =×j �=i S j . Now, by definition, for any x ∈ �(Si),

ui(x,ω) =
∑

s−i∈S−i

ui(x, s−i)P
−i,s−i
μ,m (ω),

where P
−i,s−i
μ,m (ω) = ∏

j �=i P
j,s j
μ,m(ω), where s j is player j’s part of the strategy combination s−i . Given that we have that

ui(x,ω) − ui(w,ω) =
∑

s−i∈S−i

(
ui(x, s−i) − ui(w, s−i)

)
P

−i,s−i
μ,m (ω),

and, given that all elements in the sum are non-negative,

u∗
i (ω) − ui(w,ω) �

(
ui(x, s−i) − ui(w, s−i)

)
P

−i,s−i
μ,m (ω) (4)

for any s−i ∈ S−i .
By definition of a weakly dominated strategy we know that there must be at least one strategy combination s−i such

that ui(x, s−i) > ui(w, s−i). The prevalence of these strategy combinations will then be the determinant as to whether this
weakly dominated strategy will or will not survive evolution as modeled in this paper. For the given weakly dominated
strategy w ∈ Si let A−i(w) ⊂ S−i be the set of all these strategy combinations against which x does strictly better than w ,

i.e. A−i = {s−i ∈ S−i | ui(x, s−i) > ui(w, s−i)}. Let P
−i,A−i
μ,m (ω) = ∑

s−i∈A−i
P

−i,s−i
μ,m (ω). The following theorem is somewhat of

an analogue to Proposition 5.8 in Weibull (1995), which proves the same in the context of 2-player games and deterministic
payoff-linear dynamics.

Theorem 3. Let 〈Γ, D〉 be an arbitrary game/dynamics pair. Let w ∈ Si be weakly dominated. Then limρm
μ→0 E[P i,w

μ,m P
−i,A−i
μ,m ] = 0.

Theorem 4. Let Γ = (N, S, u) be an n-player game, i.e. |N| = n. Let the learning function fi for player i be fi(x) = αxβ for some α > 0.
Let w ∈ Si be a weakly dominated strategy. If the sensitivity to payoff-differences satisfies 1

β
> n − 1 then limρm

μ→0 E[P i,w
μ,m] = 0.

Theorem 4 provides sufficient conditions on the learning function f i under which any weakly dominated strategy in any
finite n-player normal form game is eliminated in the course of evolution. In fact this condition is also necessary in the
following sense.

Theorem 5. Let f i(x) = xβ such that the sensitivity to payoff-differences satisfies 1
β

� n − 1. Then there is a finite n-player normal

form game, a set of learning functions { f j} j �=i , and a weakly dominated strategy w for player i such that limρm
μ→0 E[P i,w

μ,m] > 0.

The proofs of Theorems 4 and 5 are given in Appendices E and F through a series of lemmas leading to the two proofs.
While making sure that every detail works out is somewhat tedious, the intuition behind these results is relatively straight-
forward, and shall be given here.

Consider an n-player game in which player i has a pure weakly dominated strategy w , weakly dominated by another
strategy x, which is always best. Suppose that there is only one pure strategy combination s−i =×j �=i s j of the opponents
against which any player i’s pure strategy w is actually strictly worse than x. Suppose, furthermore, that all opponents of
player i find their pure strategy s j strictly dominated. Suppose, finally, that all individuals in opponent-populations use an
extreme learning function f j(x) = 1 if x > 0 and f (0) = 0. This creates the environment that makes the survival of weakly
dominated strategy w most likely.6

6 I actually do not prove this statement, although I conjecture it is true. I find it sufficient to prove that this is the environment that makes the survival
of any strictly dominated strategy s j of the opponents least likely. This is made precise in Lemma 3 and then has consequences for the survival/elimination
of the weakly dominated strategy w as eventually used in Lemma 7.
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Then by Theorem 1 the expected proportion of individuals playing s j is of the order of μ. The expected frequency with
which a player i encounters opponent profile s−i is then of the order of μn−1. Given, the above assumptions, the frequency
of opponent profile s−i is also the payoff-difference for players i between using x and w . Thus a player-i individual, currently
playing w will learn to use something else with probability given by f i evaluated at the frequency of s−i . In expectation
this frequency is of the order of μn−1. Applying f i(x) = αxβ , the expected learning rate away from w is of the order of
μβ(n−1) . This is so, because the variance of this frequency is an order of magnitude smaller than the expectation. This
is demonstrated in Lemma 4 and is only true under the limiting condition μmi → ∞. This is important in the proof, as
otherwise, by Jensen’s inequality the expected learning rate could be well below the learning rate evaluated at the expected
payoff-difference. The exact consequences of Lemma 4 which are used in the eventual proof of Theorem 4, and are derived
from Chebyshev’s inequality, are given in Lemmas 5 and 6.

Given all this, we thus have an evolutionary force away from w given roughly by this probability of the order of μβ(n−1) .
Of course, through mutations we also have an evolutionary force towards w , which is roughly given by a probability of
the order of μ. Thus, finally, if β(n − 1) < 1 the evolutionary force away from w is stronger than the one towards. This
leads to the elimination of the weakly dominated strategy. This is made precise in the proof of Theorem 4. On the other
hand, if β(n − 1) � 1 the two forces are at best equivalent or the force towards w might even be stronger. Then, the weakly
dominated strategy w cannot be eliminated by evolution. This is made precise in the proof of Theorem 5.

Note that Theorems 4 and 5, for the special case of 2-player games, imply the following. If the learning-rate depends
on the payoff differences in a linear fashion evolution does not necessarily eliminate weakly dominated strategies. If this
learning function, however, is a power function with any power less than 1, evolution does eliminate all weakly dominated
strategies. The learning rate, thus, does not need to be discontinuous, but needs to have infinite slope at a payoff-difference
of 0.

7. S∞W -procedure

I now turn to a brief discussion about which other strategies will have to be eliminated by evolution as modeled in this
paper, supposing evolution eliminates all weakly dominated strategies. In the previous section I investigated under what
circumstances, for a given strategy w ∈ Si , does E[P i,w

μ,m] tend to zero as ρm
μ tends to 0. It is immediate that whenever

limρm
μ→0 E[P i,w

μ,m] = 0 then it must be true that, for any ε ∈ (0,1) we have πm
μ (P i,x

μ,m � ε) = πm
μ (Φ

i,x
ε ) tends to 1 in the

limit. This means that with probability 1 the proportion of individuals playing this strategy w is below any ε > 0. Given
this, however, it must be true that strategies which are strictly dominated once all weakly dominated strategies are thus
eliminated, must also be eliminated in the course of evolution.

Let Γ 1 denote the game which remains when all such weakly dominated strategies are eliminated. That is, Γ 1 is derived
from Γ by reducing each player’s pure strategy set by all weakly dominated strategies, while the payoff function is the same
(with restricted domain). Let S1

i denote the restricted strategy set for player i. If indeed all weakly dominated strategies are
eliminated, then strategies which are strictly dominated in Γ 1 must also disappear in the limit I consider. In fact, this
argument can be iterated any finite number of times. A strategy which survives the iterated deletion of never best replies
is called rationalizable (Bernheim, 1984 and Pearce, 1984). Let a strategy which is rationalizable in the game obtained from
the original by deletion of all weakly dominated strategies be termed strongly rationalizable. We then have the following

Theorem 6. For i ∈ N, let s ∈ Si be a strategy which is not strongly rationalizable. Whenever limρm
μ→0 E(P j,w

μ,m) = 0 for every weakly
dominated strategy w ∈ S j for every player j, then

lim
ρm

μ→0
E

(
P i,s

μ,m

) = 0. (5)

Proof. Note that in Γ 1 there is a payoff-wedge between strategy s and the strategy by which it is strictly dominated. But
as all the strategies which are available only on Γ but not Γ1 are played by a vanishing fraction in the limit, this payoff-
wedge is present with probability 1. But then a straightforward adaptation of the proof of Theorem 1 yields the result. This
argument can be iterated any finite number of times. �

While epistemic conditions for the use of what has been termed the S∞W -procedure, which stands for the deletion of
first all weakly dominated strategies and then iteratively all strictly dominated strategies, have been identified by Dekel and
Fudenberg (1990), Brandenburger (1992), Börgers (1994), Gul (1996), and Ben Porath (1997), the above theorem provides an
evolutionary justification for its use in the sense that every strategy which is eliminated by the S∞W -procedure will also be
eliminated by evolution under the stated assumptions. The plausibility of this justification depends only on the plausibility
of the degree of sensitivity in payoff differences required to eliminate all weakly dominated strategies.
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Appendix A. Lemma needed to prove Lemma 2

The following result states that the distribution of the proportion with which any given strategy is played for any given
game/dynamics pair under the invariant distribution first order stochastically dominates the distribution of the proportion
of a strictly dominated strategy under the most extreme dynamics.

Lemma 3. Let 〈Γ, D〉 with Γ = (N, S, u) and D = ( f , λ, κ) be an arbitrary game/dynamics pair. Let 〈Γ̂ , D̂〉 with Γ̂ = (N, S, û) and
D̂ = ( f̂ , λ, κ) be another game/dynamics pair with the properties that û′

j = û j for all j �= i, ûi(s′, ·) = ui(s′, ·) for all s′ ∈ Si with

s′ �= s, and ûi(s, ·) = ui(s, ·) − A, where A is large enough to make s strictly dominated in Γ̂ . Let furthermore f̂ j = f j for all j �= i and

f̂ i(0) = 0 and f̂ i(x) = 1 if x > 0. Let πm
μ and π̂m

μ denote the invariant distributions induced by the two processes respectively. Then

πm
μ (P i,s

μ,m � j
mi

) � π̂m
μ (P i,s

μ,m � j
mi

) for all j ∈ {0, . . . ,mi}.

Proof. Let A j = {ω ∈ Ω | P i,s
μ,m(ω) � j

mi
}. Then Q̂ (ω, A j) = ∑

k� j(λsμ)k(1 − λsμ)mi−k
(mi

k

)
, which is independent of ω. Thus

we can denote this expression by Q̂ (A j). Furthermore we clearly have that Q (ω, A j) � Q̂ (A j) for all ω. Then, πm
μ (P i,s

μ,m �
j

mi
) = ∑

ω∈Ω πm
μ (ω)Q (ω, A j) �

∑
ω∈Ω πm

μ (ω)Q̂ (A j) = Q̂ (A j) = π̂m
μ (P i,s

μ,m � j
mi

). �
Appendix B. Proof of Theorem 1

Let {Ω × Ω,Pr}7 denote a probability space, where Pr is such that8 Pr(ω,ω′) = πm
μ (ω)(Q m

μ )ω,ω′ for all (ω,ω′) ∈ Ω × Ω .

Let (P i,s
μ,m)t denote the proportion of s-players in population M(i) at time t . Let dP i,s

μ,m denote the change in proportion
of s-players in population M(i) between times t and t + 1. That is,

(
P i,s

μ,m

)
t+1 = (

P i,s
μ,m

)
t + dP i,s

μ,m. (6)

If (P i,s
μ,m)t is distributed according to the invariant distribution πm

μ then so is (P i,s
μ,m)t+1 and, hence, the expected value

E[dP i,s
μ,m] = 0. Also all these three random variables are measurable given the above stated probability space.

By the law of iterated expectations the last expectation can be written as E[dP i,s
μ,m] = E[EdP i,s

μ,m|(P i,s
μ,m)t], and hence

0 = E
[
dP i,s

μ,m

] =
mi∑

k=0

πm
μ

(
Λ

i,s
k

)
E

(
dP i,s

μ,m

∣∣(P i,s
μ,m

)
t = k

mi

)
. (7)

Conditional on (P i,s
μ,m)t = k

mi
, the change dP i,s

μ,m can be viewed as the difference of two random variables Y
mi

and X
mi

, again
both measurable given our specification of the probability space above, where X(ω,ω′) is the number of individuals at
M(i) who, in the transition from ω to ω′ , switch strategy from something other than s to s, and Y (ω,ω′) is the number
of individuals at M(i) who, in the transition from ω to ω′ , switch strategy from s to anything other than s. Conditional
on (P i,s

μ,m)t = k
mi

, X and Y are binomially distributed, i.e. X ∼ Bin(mi − k,μλs) and Y ∼ Bin(k, σ (s,ω)(1 − μ) + μ(1 − λs)).
Given that s is a strictly dominated strategy we know that σ̃ � σ(s,ω) � 1. Given all this, the term

E

(
dP i,s

μ,m

∣∣(P i,s
μ,m

)
t = k

mi

)

is the difference between the expectation of these two binomial variables, divided by mi , and bounded from above by

E

(
dP i,s

μ,m

∣∣(P i,s
μ,m

)
t = k

mi

)
� μλs − k

mi

(
σ̃ (1 − μ) + μ

)

and from below by

E

(
dP i,s

μ,m

∣∣(P i,s
μ,m

)
t = k

mi

)
� μλs − k

mi
.

Plugging the lower bound back into Eq. (7) we obtain

0 �
[
σ̃ (1 − μ) + μ

] mi∑
k=0

k

mi
πm

μ

(
Λ

i,s
k

) − μλs, (8)

7 As the state space is finite I omit the sigma-algebra, which can be taken as the set of all subsets of Ω × Ω , in the description of the probability space.
8 Given the axioms of a probability measure this is sufficient to uniquely define Pr.
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which by the assumptions of the lemma and by the fact that
∑mi

k=0
k

mi
πm

μ (Λ
i,s
k ) = E(P i,s

μ,m) yields E(P i,s
μ,m) � μλs

σ̃ (1−μ)+μ
.

Doing the same with the upper bound yields E(P i,s
μ,m) � μλs . �

Appendix C. Proof of Theorem 3

I shall prove the statement here under the assumption that limρm
μ→0 EP

−i,A−i
μ,m > 0. Note that if limρm

μ→0 EP
−i,A−i
μ,m = 0

then limρm
μ→0 E[P i,w

μ,m P
−i,A−i
μ,m ] � limρm

μ→0 E[P
−i,A−i
μ,m ] = 0 directly.

Reconsider Eq. (6), now for strategy w , (P i,w
μ,m)t+1 = (P i,w

μ,m)t + dP i,w
μ,m . Let B w ⊂ Ω denote the set of states in which w

is a best reply for individuals at population M(i). The expectation E[dP i,w
μ,m], which as in the proof of Theorem 1 must be

zero, using the law of iterated expectations, can be written as

E
[
dP i,w

μ,m

] = πm
μ

(
B w)

E
[
dP i,w

μ,m

∣∣B w] + (
1 − πm

μ

(
B w))

E
[
dP i,w

μ,m

∣∣B w,c], (9)

where B w,c is the complement of B w in Ω . Much like in the proof of Theorem 1 the expectation E[dP i,w
μ,m|B w,c] can be

rewritten with the recurrent use of the law of iterated expectations as

E
[
E

[
dP i,w

μ,m

∣∣B w,c ∧ (
P i,w

μ,m

)
t ∧ (

P
−i,A−i
μ,m

)
t

]]
.

Given B w,c w is not a best reply and we can, again as in Theorem 1, write this conditional expectation as the expectation of
the difference between two random variables Y

mi
and X

mi
, with the same interpretation as in Theorem 1. Given P i,w

μ,m = k
mi

we
still have X ∼ Bin(mi −k,μλw) as well as Y ∼ Bin(k, σ (w,ω)(1−μ)+μ(1−λw)). Of course, σ(w,ω) = f i(u∗

i (ω)−ui(w,ω))

by the model assumptions. Given the definition of A−i(w) we have that mins−i∈S−i ui(x, s−i) − ui(w, s−i) = a > 0. Using

inequality (4), and the fact that f i is weakly increasing, we obtain that σ(w,ω) � f i(aP
−i,A−i
μ,m (ω)). Putting all this together

we obtain

E
[
E

[
dP i,w

μ,m

∣∣B w,c ∧ (
P i,w

μ,m

)
t ∧ (

P
−i,A−i
μ,m

)
t

]]
� E

[
P i,w

μ,m

(
f i
(
aP

−i,A−i
μ,m

)
(1 − μ) + μ

) − μλw
]
. (10)

By the fact that w is weakly dominated we have that B w ⊂ Ψ , and, hence, by Corollary 1 we have that limρm
μ→0 πm

μ (B w)

= 0. Hence, from Eq. (9) we have that limρm
μ→0 E[dP i,w

μ,m|B w,c] = 0. But then, by inequality (10), we have that

lim
ρm

μ→0
E

[
P i,w

μ,m

(
f i
(
aP

−i,A−i
μ,m

)
(1 − μ) + μ

) − μλw
]
� 0,

which, given the assumption that limρm
μ→0 EP

−i,A−i
μ,m > 0 and, hence, that limρm

μ→0 E f i(aP
−i,A−i
μ,m ) > 0 implies that

lim
ρm

μ→0
E

[
P i,w

μ,m fi
(
aP

−i,A−i
μ,m

)]
� 0. (11)

In fact, given both random variables P i,w
μ,m and f i(aP

−i,A−i
μ,m ) are strictly non-negative, we must have that

lim
ρm

μ→0
E

[
P i,w

μ,m fi
(
aP

−i,A−i
μ,m

)] = 0.

Given the assumption that any f i(x) > 0 for all x > 0 and that E[P
−i,A−i
μ,m ] > 0 this implies that limρm

μ→0 E[P i,w
μ,m P

−i,A−i
μ,m ]

= 0. �
Appendix D. Lemmas needed to prove Theorem 4

The following result about the variance of P i,s
μ,m when s ∈ Si is a strictly dominated strategy is used in the proof of

Lemma 5 below, which in turn is used in Lemma 6, which in turn is used in the proof of Lemma 7, which finally is used to
prove Theorem 4.

Lemma 4. Let s ∈ Si be strictly dominated and let f i be such that fi(0) = 0 and fi(x) = 1 for all x �= 0. Then V (P i,s
μ,m) = μλs(1−μλs)

2mi
.

Proof. From Eq. (6) we obtain

V
[(

P i,s
μ,m

)
t+1

] = V
[(

P i,s
μ,m

)
t

] + 2 Cov
[(

P i,s
μ,m

)
t,dP i,s

μ,m

] + V
[
dP i,s

μ,m

]
.

As we assume that at time t behavior is governed by the stationary invariant distribution, we then have that

2 Cov
[(

P i,s
μ,m

)
,dP i,s

μ,m

] + V
[
dP i,s

μ,m

] = 0. (12)
t
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By definition

Cov
[(

P i,s
μ,m

)
t,dP i,s

μ,m

] = E
[(

P i,s
μ,m

)
t dP i,s

μ,m

] − E
[(

P i,s
μ,m

)
t

]
E

[
dP i,s

μ,m

]
.

Given the assumption that time t behavior is governed by the stationary invariant distribution we have that E[dP i,s
μ,m] = 0.

Hence,

Cov
[(

P i,s
μ,m

)
t,dP i,s

μ,m

] = E
[(

P i,s
μ,m

)
t dP i,s

μ,m

]
.

By the law of iterated expectation we have

E
[(

P i,s
μ,m

)
t dP i,s

μ,m

] = E
[(

P i,s
μ,m

)
tE

[
dP i,s

μ,m

∣∣(P i,s
μ,m

)
t

]]
.

Recall the argument given in the proof of Theorem 1 that dP i,s
μ,m conditional on (P i,s

μ,m)t = k
mi

can be written as the difference

between two random variables Y
mi

and X
mi

(given there). Under the additional assumption about f i this yields the result that

E[dP i,s
μ,m|(P i,s

μ,m)t = k
mi

] = μλs − k
mi

and, hence E[(P i,s
μ,m)tE[dP i,s

μ,m|(P i,s
μ,m)t ]] = μλsE[(P i,s

μ,m)t] − E[(P i,s
μ,m)2

t ]. By Theorem 1

and the given assumption about f i we have that E[(P i,s
μ,m)t] = μλs , and, thus, finally

Cov
[(

P i,s
μ,m

)
t,dP i,s

μ,m

] = E
[(

P i,s
μ,m

)
t

]2 − E
[(

P i,s
μ,m

)2
t

] = −V
[(

P i,s
μ,m

)
t

]
.

Turning to the second term in Eq. (12) note that

V
[
dP i,s

μ,m

] = E
[
V

[
dP i,s

μ,m

∣∣(P i,s
μ,m

)
t

]]
,

again, by the law of iterated expectation. Recall again that dP i,s
μ,m conditional on (P i,s

μ,m)t = k
mi

can be written as the differ-

ence between two random variables Y
mi

and X
mi

as given in the proof of Theorem 1. These are independent of each other,

conditional on (P i,s
μ,m)t = k

mi
, and hence, the variance of their difference is the sum of their variances. Given the fact that

Y is a binomial random variable, the variance of Y
mi

is given by k
m2

i
(1 − μλs)μλs . Similarly, the variance of X

mi
is given by

mi−k
m2

i
(1 − μλs)μλs . The sum of the two variances is then given by 1

mi
(1 − μλs)μλs regardless of the value of k. This then

finally yields that

V
[
dP i,s

μ,m

] = 1

mi
(1 − μλs)μλs. (13)

Using both intermediate results in Eq. (12) we obtain the desired result. �
The next lemma is used in the proof of Lemma 6, which in turn is used in the proof of Lemma 7, which in turn is used

in the proof of Theorem 4.

Lemma 5. Let s ∈ Si be strictly dominated and let f i be such that fi(0) = 0 and fi(x) = 1 for all x �= 0. Then it is true that

πm
μ

(
P i,s

μ,m � μλs

2

)
� 2

μλsmi
.

Proof. The proof uses Chebyshev’s inequality and Theorem 1 and Lemma 4. A version of Chebyshev’s inequality can be
given as follows. If X is a random variable with mean E and variance V , then P (|X − E| � k) � V

k2 . Here, X = P i,s
μ,m with

mean μλs (given Theorem 1 and the assumption about f i ) and variance V = μλs(1−μλs)
2mi

(by Lemma 4). And P = πm
μ . Then

πm
μ

(
P i,s

μ,m � μλs

2

)
= πm

μ

(
P i,s

μ,m − μλs � −μλs

2

)

� πm
μ

(∣∣P i,s
μ,m − μλs

∣∣ � μλs

2

)

� 4
μλs(1 − μλs)

2mi

1

μ2λ2
s

= 2(1 − μλs)

μλsmi

� 2

μλsmi
,

where Chebyshev’s inequality is used between the third and the fourth line. �
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Lemma 5 together with Lemma 3 implies the following lemma, which is used in the proof of Lemma 7, which in turn is
used in the proof of Theorem 4.

Lemma 6. Let s ∈ Si be strictly dominated and let f i be any learning function. Then it is true that

πm
μ

(
P i,s

μ,m � μλs

2

)
� 2

μλsmi
.

Proof. Immediate from Lemmas 6 and 3. �
The following lemma is used in the proof of Theorem 4.

Lemma 7. Let w ∈ Si be a weakly dominated strategy for player i. Let f be arbitrary learning functions. Let s−i ∈ A−i(w) be such that
for every j �= i player j’s component of s−i , s j , is strictly dominated for player j. Then, for β ∈ R,

E

[
P i,w

μ,m

(∏
j �=i

P
j,s j
μ,m

)β]
�

(∏
j �=i

μλs j

2

)β(
E

[
P i,w

μ,m

] −
∑
j �=i

2

μλs j m j

)
.

Proof. Let 1(·) denote the indicator function, equal to 1 when the expression in the subscript (·) is true and zero otherwise.
Then

E

[
P i,w

μ,m

(∏
j �=i

P
j,s j
μ,m

)β]
� E

[
P i,w

μ,m

(∏
j �=i

P
j,s j
μ,m

)β ∏
j �=i

1
(P

j,s j
μ,m�

μλs j
2 )

]

�
(∏

j �=i

μλs j

2

)β

E

[
P i,w

μ,m

∏
j �=i

1
(P

j,s j
μ,m�

μλs j
2 )

]

�
(∏

j �=i

μλs j

2

)β{
E

[
P i,w

μ,m

] − E

[
P i,w

μ,m

(
1 −

∏
j �=i

1
(P

j,s j
μ,m�

μλs j
2 )

)]}

�
(∏

j �=i

μλs j

2

)β{
E

[
P i,w

μ,m

] − E

[(
1 −

∏
j �=i

1
(P

j,s j
μ,m�

μλs j
2 )

)]}

�
(∏

j �=i

μλs j

2

)β{
E

[
P i,w

μ,m

] −
∑
j �=i

πm
μ

(
P

j,s j
μ,m �

μλs j

2

)}
,

which, given Lemma 6, yields the result. �
Appendix E. Proof of Theorem 4

Eq. (9), in the proof of Theorem 3, still applies here. That is,

0 = E
[
dP i,w

μ,m

] = πm
μ

(
B w)

E
[
dP i,w

μ,m

∣∣B w] + (
1 − πm

μ

(
B w))

E
[
dP i,w

μ,m

∣∣B w,c],
where the notation is the same as in the proof of Theorem 3. By Lemma 2, point (2), and the fact that B w ⊂ Ψ (defined
in Corollary 1) we have that πm

μ (B w) � c(1 − τμ)mi for some constant c > 0 and some τ ∈ (0,1). By the fact that dP i,w
μ,m ∈

[−1,1] we then have that πm
μ (B w)E[dP i,w

μ,m|B w ] � −c(1 − τμ)mi . Hence,

0 � −c(1 − τμ)mi + (
1 − c(1 − τμ)mi

)
E

[
dP i,w

μ,m

∣∣B w,c]. (14)

Again, as in the proof of Theorem 3, by definition σ(w,ω) = f i(u∗
i (ω) − ui(w,ω)). Given the definition of A−i(w) we

have that mins−i∈S−i ui(x, s−i) − ui(w, s−i) = a > 0. Using inequality (4), and the fact that f i(x) = αxβ , we obtain that

σ(w,ω) � αaβ(
∏

j �=i P
j,s j
μ,m(ω))β , where s j ∈ S j is player j’s part of some s−i ∈ A−i . Similarly to inequality (10), we here

obtain

E
[
dP i,w

μ,m

∣∣B w,c] = E
[
E

[
dP i,w

μ,m

∣∣B w,c ∧ (
P i,w

μ,m

)
t ∧ (

P
−i,A−i
μ,m

)
t

]]

� E

[
P i,w

μ,m

(
αaβ

(∏
P

j,s j
μ,m

)β

(1 − μ) + μ

)
− μλw

]

j �=i
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= αaβ(1 − μ)E

[
P i,w

μ,m

(∏
j �=i

P
j,s j
μ,m

)β]
+ μE

[
P i,w

μ,m

] − μλw . (15)

Using this in inequality (14) we obtain

c(1 − τμ)mi �
(
1 − c(1 − τμ)mi

)
αaβ(1 − μ)E

[
P i,w

μ,m

(∏
j �=i

P
j,s j
μ,m

)β]

+ (
1 − c(1 − τμ)mi

)(
μE

[
P i,w

μ,m

] − μλw
)
.

Now using Lemma 7 we obtain

c(1 − τμ)mi �
(
1 − c(1 − τμ)mi

)
αaβ(1 − μ)

(∏
j �=i

μλs j

2

)β

E
[

P i,w
μ,m

]

− (
1 − c(1 − τμ)mi

)
αaβ(1 − μ)

(∏
j �=i

μλs j

2

)β ∑
j �=i

2

μλs j m j

+ (
1 − c(1 − τμ)mi

)(
μE

[
P i,w

μ,m

] − μλw
)
.

Rearranging and letting d = αaβ(
∏

j �=i
λs j
2 )β > 0, we obtain that

E
[

P i,w
μ,m

]
�

c(1 − τμ)mi + (1 − c(1 − τμ)mi )
(
d(1 − μ)μ(n−1)β

∑
j �=i

2
μλs j m j

+ μλw
)

d(1 − μ)μ(n−1)β + μ
,

or alternatively

c(1−τμ)mi

μ(n−1)β + (1 − c(1 − τμ)mi )
(
d(1 − μ)

∑
j �=i

2
μλs j m j

+ μλw

μ(n−1)β

)
d(1 − μ) + μ

μ(n−1)β

.

Now as ρm
μ tends to 0, and under the assumption that β < 1

n−1 , the denominator tends to d, while the numerator tends to 0.

To see that the numerator indeed tends to 0, note that under this limit, (1 − τμ)mi tends to 0 at a faster rate than μ(n−1)β ,
(1 − c(1 − τμ)mi ) tends to 1, and both

∑
j �=i

2
μλs j m j

as well as μλw

μ(n−1)β tend to zero (the last because (n − 1)β < 1). �
Appendix F. Proof of Theorem 5

Let Γ = (N, S, u) be such that |N| = n, S j = {A j, B j} for all j ∈ N , ui(Ai, s−i) = 1 for all s−i ∈ S−i , ui(Bi, B−i) = 0 where
B−i is the strategy combination where each player j �= i plays B j , ui(Bi, s−i) = 1 for all s−i �= B−i , u j(A j, s− j) = 1 for all
s− j ∈ S− j for all j �= i, u j(B j, s− j) = 0 for all s− j ∈ S− j for all j �= i, f j(0) = 0 for all j �= i, and f j(x) = 1 for all x > 0 for
all j �= i. Then w = Bi is weakly dominated by Ai for player i, while B j is strictly dominated by A j for all j. We will show

that the theorem holds for β = 1
n−1 . Given that xβ � x

1
n−1 for all x ∈ [0,1] for all β > 1

n−1 the theorem must then also be

true for all β > 1
n−1 .

Eq. (9) still applies here:

0 = E
[
dP i,w

μ,m

] = πm
μ

(
B w)

E
[
dP i,w

μ,m

∣∣B w] + (
1 − πm

μ

(
B w))

E
[
dP i,w

μ,m

∣∣B w,c],
where the notation is as in the proof of Theorem 3. By Lemma 2, point (2), and the fact that B w ⊂ Ψ (defined in Corollary 1)
we have that πm

μ (B w) � c(1 − τμ)mi for some constant c > 0 and some τ ∈ (0,1). By the fact that dP i,w
μ,m ∈ [−1,1] we then

have that πm
μ (B w)E[dP i,w

μ,m|B w ] � c(1 − τμ)mi . Hence,

0 � c(1 − τμ)mi + (
1 − c(1 − τμ)mi

)
E

[
dP i,w

μ,m

∣∣B w,c]. (16)

Inequality (15) here holds as an equality,

E
[
dP i,w

μ,m

∣∣B w,c] = (1 − μ)E

[
P i,w

μ,m

(∏
j �=i

P
j,B j
μ,m

)β]
+ μE

[
P i,w

μ,m

] − μλw . (17)

As the covariance between P i,w
μ,m and

∏
j �=i P

j,B j
μ,m must be non-positive, we have that
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E

[
P i,w

μ,m

(∏
j �=i

P
j,B j
μ,m

)β]
� E

[
P i,w

μ,m

]
E

[(∏
j �=i

P
j,B j
μ,m

)β]
.

By the obvious independence of the P
j,B j
μ,m for all j �= i, we have that

E

[(∏
j �=i

P
j,B j
μ,m

)β]
=

∏
j �=i

E
[(

P
j,B j
μ,m

)β]
.

Jensen’s inequality (given β = 1
n−1 � 1) then implies that

E
[(

P
j,B j
μ,m

)β]
�

(
E

[
P

j,B j
μ,m

])β
.

Given the particular choice of f j ’s here, by Theorem 1 we have that E[P
j,B j
μ,m ] = μλB j . Putting all this together into inequal-

ity (16), we have

0 � c(1 − τμ)mi + (
1 − c(1 − τμ)mi

)(
(1 − μ)E

[
P i,w

μ,m

]∏
j �=i

(μλB j )
β + μE

[
P i,w

μ,m

] − μλw

)
.

Rearranging leads to

E
[

P i,w
μ,m

]
� (1 − c(1 − τμ)mi )μλw − c(1 − τμ)mi

(1 − c(1 − τμ)mi )((1 − μ)μ(n−1)β
∏

j �=i(λB j )
β + μ)

,

or equivalently

E
[

P i,w
μ,m

]
�

(1 − c(1 − τμ)mi )λw − c (1−τμ)mi

μ

(1 − c(1 − τμ)mi )((1 − μ)
μ(n−1)β

μ

∏
j �=i(λB j )

β + 1)
.

Given β = 1
n−1 the right-hand side of the last inequality converges to λw∏

j �=i(λB j )
β+1

> 0. �
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