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Abstract

Noldeke and Samuelson [Games Econ. Behav. 5 (1993) 425] investigate a stochastic evolutionary
model for extensive form games and show that even for games of perfect information with a unique
subgame perfect equilinm, non-subgame perfect equilibrium-strategies may well survive in the
long run even when mutation rates tend to zero. In a different model of evolution in the agent normal
form of these games Hart [Games Econ. Behav. 41 (2002) 227] shows that under suitable limit-
taking, where small mutation rates are accompanied by large population sizes in a particular way, the
unique prediction is again the subgame perfect equilib. This paper provides a proof of a similar
result for the model of N6éldeke and Samuelson.
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1. Introduction

The subgame perfect equilibrium in exteresform games of perfect information with
a unique subgame perfect equilibrium codes with the unique trembling hand perfect
equilibrium in these games. One might tkithat random mutations in evolutionary
models, as in Kandori et al. (1993) or Young (1993), serve the same purpose as
perturbations in the rational formulation, and lead to virtually all individuals playing their
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backward induction action. Noldeke and Samuelson (1993), however, show that this is
not generally the case. They construct an example where the stationary distribution of the
Markov chain induced by the mutation-setion dynamics puts positive probability on
non-subgame perfect Nash equilibria of the game even when the mutation rate is taken to
zero in the limit.

In deterministic models of evolution in extensive form games with perfect information,
Demichelis and Ritzberger (2000) showathif any Nash equilibrium component is
asymptotically stable then this must be the subgame perfect one (see also Demichelis
etal., 2002). In general, however, no componemNath equilibria is agyptotically stable.
Cressman and Schlag (1998) find that the subgame perfect component of the set of Nash
equilibria, for any such games, is contained in the unique minimal interior asymptotically
stable set (see also Swinkels, 1993). In general, however, other non-subgame perfect
components of Nash equilibria aa¢éso contained in this minial interior asymptotically
stable set, as Cressman and Schlag (1998) prove by example.

Hart (2002) investigates another stochastic model of mutation and selection for the agent
normal form of perfect information gamegth a uniqgue subgame perfect equilibrium.

He shows that in the limit where the mutation rate tends to zero while population sizes
tend to infinity in such a way that the product of mutation rate and population size
is bounded away from zero, the evolutionary process centers on the subgame perfect
equilibrium in the long-run. Hart’s model dérs from Noldeke’s and Samuelson’s in four
respects. First, in Hart's model, only one individual per population can change action at
any given period in time, whereas in Néldeke’s and Samuelson’s model every individual
may change strategy at any given time. Second, Hart’s individuals, in contrast to Noldeke’s
and Samuelson’s, do not hold conjectures about what other agents do in the game. Third,
Hart’s individuals, after learning, play a better reply, chosen from the set of currently used
actions, whereas individuals in the model of Néldeke and Samuelson play a best reply to
their conjecture. Fourth, Hart analyzes games in the agent normal form, with a different
population of individuals for each node of tharge, whereas Noéldeke and Samuelson
generally investigate games where players can control more than one node, but never more
than one along each possible path of play.

This paper shows that Hart's result, with slightly different limit-taking, can be extended
to the mutation-selection dynamics of Noldeke and Samuelson. | investigate the agent
normal form version of the model of Ndldeke and Samuelson and the invariant distribution
of the induced Markov chain. | show that the invariant distribution puts probability one
on any smalk-ball around the unique subgame-patfequilibrium in tle limit, where the
expected fraction of individuals mutating per period, the mutation rate, tends to zero, while
the expected number of mutations per period, which is given by the product of mutation
rate and population size, tends to infinity. Of course in this limit population sizes tend to
infinity as well, in contrast to the fixed population sizes of Néldeke and Samuelson.

Hence, while for finite population sizes in Hart's, as well as in Noldeke’'s and
Samuelson’s, model of evolution non-subgame perfect equilibria may well carry positive
weight in the long run even when mutation rates tend to zero, for large population sizes one
would expect this positive weight on non-subgaperfect equilibria to be small in both
models, provided that there is a sufficient number of mistakes per period.
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2. Themode€

The selection-mutation mechanism outlined in this section is the one due to N6ldeke and
Samuelson (1993). L4t be a finite generic extensive form game of perfect information
with a unique subgame-perfect equilibriumiadHart (2002). Note that this is a stronger
requirement than the assumption of a uniudgame perfect equilibrium “outcome.”

A unique subgame perfect equilibrium impithat applying backward-induction yields a
unique best choice at every node in the tree, even in those parts of the tree which are off the
equilibrium path. Note also that the assump of a unique subgame-perfect equilibrium

is a little weaker than the usual genericity assumption. In the usual genericity assumption
no player obtains the same utility at any two final nodes. However, a game may still have
a unique subgame perfect equilibrium in the presence of payoff-ties, provided there are
no “crucial” ties. The simplest example of a game which has a unique subgame perfect
equilibrium, but payoff-ties, is a decisigmoblem where the single player chooses among
three alternatives, A, B, and C, where A yields a payoff of 1, while both B and C yield
a payoff of 0. Even though there is a payt#; B and C give the same utility, there is a
unique optimal choice, A. The same decision problem with the only difference that payoffs
are multiplied by—1, however, does not have a unique subgame perfect equilibrium, and
is an example for a “crucial” payoff-tie.

Let N denote the set of nodes. For ale N let M (i) denote a finite population of
individuals at nodé, i.e. the dynamics are at work on the agent normal form, or as Hart
(2002) calls it, the gene normal formA player who ownsk > 2 information sets is
supposed to delegate the strategy decision problénirtdependent agents (agent normal
form) or to havek independent genes each of whiachntrol one information set. Let
m; = |M(i)| be the size of the population at nodandm = (m1, mp, ..., my) denote the
vector of population sizes. For dlle N let A(i) denote the finite set of possible actions
available to individuals at node | assume thattA(i)| > 2 for all i € N. The main results,
Theorems 1 and 2, will also hold if at some nodes only one action is available, while some
of the lemmas will not. Leb’ € A(i) denote the backward induction action at node

The game is played recurrently at discrete points in time by every possible combination
of agents in each population. Every agent iemvpopulation is characterized by a pure
action and a conjecture attributing a pure action to every other agent in the game. A state
w is a specification of a characteristic for every agent in every population. The state space
shall be denoted by.

In every period after the game has been played, every agent in every population
takes a draw from a Bernoulli distribution with outcomes “learn” and “don’t learn” with
probabilitiesc and 1— o, respectively. If the agent receives the learn draw she updates
her conjecture in a way such that it coincides with the actions which individuals at the
various nodes actually take, provided they are observable. Conjectures about actions at
nodes, which are not reached, will not change. She then chooses an action which is a best
reply to her conjecture. If there is more thane best reply she will choose one according
to some fixed probability distribution with fulupport over all best replies. If her current

1 sSee Section 5 for a discussion of the casewnplayers conttanore than one node.
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action is already a best reply she will not change her action. In the other case she changes
neither her conjecture nor her action.

After the learning phase every individualévery population receives a draw of another
Bernoulli variable with outcomes “mutl’ and “don’t mutate” with probabilitieg. and
1 — u, respectively. If the agent receives a mutate-draw she will choose an arbitrary
characteristic according to agqirability distribution with full support over all possible
characteristics for this agent (including the one she is holding at the moment). Note that
this implies that the agent after mutating is not necessarily playing a best reply to her
conjecture, as both her action and her conjectre arbitrary after mutation. In case the
agent does not receive a mutate-dra® dbes not change her characteristic.

The above mutation-selection mechanism constitutes a Markov chain on the state space
£ with transition probability matrix denoted b@j/, indicating that it is different for
different population sizes and different miida rates. The trartson probabilities also
vary with different learning probabilities. For the main part of this essay, howeweris
assumed to be fixed at a value strictly between 0 and 1.

Clearly, the Markov chain induced by the above selection-mutation dynamics is
aperiodic and irreducible. Hence, it has a unique stationary distribution, which shall be
denoted byr)?, and satisfies

Q) =7y (1)

3. An example

The three-player extensive form game given in Fig. 1 (see also Fig. 1.2 in Hart or Fig. 1
in Noldeke and Samuelson) has th@que subgame-perfect equilibriuiR, R, R). There
are other Nash equilibria, however, liké, L, L), which are not in the subgame-perfect
Nash equilibrium component. Noldeke andnfuelson show that for any fixed vector of
population sizes, both equilibria must capgsitive probability in the limiting invariant
distribution. The argument is the following. Suppose the system is in the state where every
individual in every population playR, and conjectures match these actions, i.e. the system
is in the subgame-perfect state. Then node 6t reached and evolutionary drift can
occur. Just by this drift the system will eventually be in the state where everyone at nodes
1 and 2 playskR and everyone conjectures as much, and where all individuals at node 3
play L while individuals at nodes 1 and 2 conjecture them to ptaySuppose now that

~1,5,-1 -1,-1,5

Fig. 1. The extensive game in the example.
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one mutation occurs at node 2, i.e. node 3 will suddenly be reached. Then, as Noldeke
and Samuelson argue, with positive probability all agents at node 2 learn before anyone
at node 3 learns. In fact, ignoring the small atiin probability for the moment, this will
happen with probabilityy"2(1 — o)™3. In the next period with positive probability, all
individuals at node 1 learn, update their conjectures, and plahis probability is given

by c™1. Hence, it takes only one mutation to get from the subgame perfect component
generated byR, R, R) to another Nash equilibrium component, generatediby’, L),

by learning only, which happens with positive probabilit§f2(1 — ¢)"3¢™1, and hence

(L, L, L) must be in the domain of the limiting invariant distribution. This probability,
however, tends to zero when population sizes go to inffifhis is to say that when
population sizes go to infinity, at the same time as mutation rates tend to zero, it is not
enough to count the number of mutations it takes to get from one absorbing state to another,
since these are not the only infinitesimal probability transitions. Any long chain of a lot of
people learning, such as a fraction of a population, will also only occur with infinitesimal
probability. Yet this argument does not tell us which states will carry positive weight or not
in the limiting invariant distribution wheboth mutation rates go to zero and population
sizes tend to infinity. It only illustrates that the analysis requires more than a mutation
counting exercise.

The claim | make in this paper is that onlylsgame-perfect equilibria will be in the
domain of the limiting invariant distribution, when the limit is taken with respect to the
mutation ratey going to zero and population sizes going to infinity, providedmn; u
tends to infinity as well. The precise claim is to be found in Section 4. In the following few
paragraphs | want to use the above exanglillustrate why my claim should be true.

Consider the population of individuals at node 2. Suppose for the momernr {(aditer
learning and updating conjectures) is the unique best-reply there, i.e. at least one individual
at node 1 playsk, and the population mix at node 3 is such that more th&h df the
population playR there. Under these circumstances individuals at node 2 will play
with some conjecture, only by mistake, i.e. by mutation. Suppose furthermore that all
individuals at node 2 playR at the moment and hold true conjectures about, the now
unreached, node 3. How many individuals at node 2 do we expect talpiayhe next
period? LetX denote the number of people mutating fréto L in one periodX is then
binomially distributed with parameteys, the mutation rate, ana,, the population size.

The expected number of mutationsitds given byE (X) = umy. In the limit, | consider,

this expected number of mutations towill tend to infinity. This means that even if an
action is currently not played at all and is not a best reply, in the next period a very large
number (tending to infinity) of individuals is expected to play it. If some more individuals
were playing this action already at the moment or if the action were a best reply, the
expected number of people playing this action in the next period would only be greater.
This shows that any action anywhere in the tree will essentially always be played by a very
large (essentially infinite) number of people from the corresponding population. Given that

2 In fact, the probability of a transition frorR, R, R) to (L, L, L) in a finite period of time is greater than
o™2(1—0)™M30™1. In any transition, however, a sufficient fraction of individuals at node 2 learns first, and then
all individuals at node 1 learn, all before too many individuals at node 3 do. Hence, this probability will tend to
zero.
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this is the case, all nodes will be reached atiafly all the time. Hence, whenever people
learn, their updated conjectures will match the truth, i.e. conjectures do not matter.

Given all this, consider individuals at node 3. This node will be reached essentially all
the time. Hence, the unique best-reply for individuals at node 3 is the backward induction
action R. Whenever people learn (with probabili#y) they will choose to play actio®.

Only by mutation will they adopL.. But the expected number of people who receive a
learn drawgmy is, in the limit, infinitely greater than the expected number of individuals
who mutate. Hence, in the long run, even though there will always be an infinite number
of individuals playingL, infinitely more will play R. Therefore, in the long-run, more than
any arbitrarily high fraction of the population at node 3 will play their backward induction
actionR.

Given that almost everyone at node 3 plasthe unique best-reply at node 2 is the
backward induction actio® as well. By the same argument as before, then, in the long
run, more than any arbitrary fraction of individuals at node 2 will pfayGiven that, the
same must be true for node 1. Hence, even though the system will virtually never be exactly
at the subgame perfect equilibrium, ittalways be arbitrarily close to it.

The proof of the main result in the paper is very much along the line of thought outlined
above. First, | establish a lemma saying that for any given action at any given node, the
probability that not a single individual plays this action, tends to zero in the above described
limit. Conjectures in the limit, therefore, must always coincide with the truth as every node
is reached. Second, | prove a lemma sayiray,tti an action is the unique best-reply with
probability going to one in the limit, it will be played by more than any fraction, arbitrarily
close to 1, of individuals at that node. Given these two lemmas | prove the main result, that
the whole system, in the limit, @rbitrarily close to the subgame perfect equilibrium of the
game, using a backward induction argument.

4. Results

Noéldeke and Samuelson show that non-subgame perfect equilibria, except for very
special classes of games, will be in thgport of the limiting distribution, where: is
fixed andu — 0.

Hart demonstrates for a different selection-mutation dynamics that in the limit where
u — 0 andm; — oo such thatm; u > § > 0 only anye-neighborhood of the backward
induction solution is in the support of the limigrdistribution (hence has probability 1).

This section shows that Hart's result can be extended to the mutation-selection dynamics
of Néldeke and Samuelson’s (1993) if the iiimg distribution is taken with respect to
u — 0 whilem; u — .

Leti € N be an arbitrary node and lete A(i) be an arbitrary action available to
individuals at nodeé. Let A;* denote the set of states in which the proportion of individuals
at nodei which is playing actionx is k/m;. Note that if this set contains a specific state
o it also contains every state which is only different franwith respect to conjectures.
For anyi € N and anyx € A(i) the collection of sets{;A};"}k’";'o is a partition of the state
spaces?, i.e. the system at any given time must be in exactly one of these sets. The proof
of the following lemma is in Appendix A.
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Lemma 1. Leti € N be an arbitrary node and x € A(i) an arbitrary action available to
individuals at node i. Let 1, denote the conditional probability that if an agent mutates
she does not mutate to a characteristic that involves playing action x. For all ¥ > 1 there
isa i suchthat for all u < & andfor all m;:

. 1— (- p(@— )™
it (4g )gl/(” ko (L— (L — )™ ) @)

An immediate corollary is that for any nodee N and anyx € A(i), n;j'(Afjx)
converges to zero under suitable limit-taking:

Corollary 1. Leti € N bean arbitrary nodeand x € A(i) an arbitrary action availableto
individualsat node:.
lim 7, (Ag") =0. 3)

u—0, m; u—00

Proof. To show thatnl’f(Agx) tends to zero in the case whegegoes to zero while
m;u tends to infinity, it is enough to prove thét — (1 — A,))™ goes to zero under
these circumstances. To see this note {Hat (1 — A;))™ can be written ag(1 —
w(l — a))Yr#mi  which tends to zero due to the fact that— (1 — 1,))Y# tends
to e 1-*) < 1 asy tends to zero. O

Another corollary follows immediately from the above lemma.

Corollary 2. Denote by ¥ the set of states, in which thereis a node such that at least one
action is not played by any individual at this node, i.e.

v=J U a5 @

ieN xeA(i)
Then

lim "W)=0. 5
n—0, mj u— 00 VieNnM( ) ( )

This is due to the fact that each set in the union has zero probability in the limit and that
¥ is a finite union of these sets.

The corollary states that for large population sizes, small mutation rates, and a large
expected number of mutations per peried £) the evolutionary system is almost always
in a state where every node in the game is reached. Nasleeached if there is at least
one person at every node between the rootiawtio plays the action that leads towards
nodei.

In this case conjectures after learning almedstays coincide with the actual actions.
Evolutionary pressure in the form of selectipressure, therefore, is present at all nodes
almost all the time. Hence, by backward induction arguments, we expect the system in the

limit to be close to all individuals playing their backward induction action.
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For any nodé € N denote byR (i) C N the set of predecessor nodes of nodeor any
nodei € N and for every nodg € R(i) let a;’ € A(j) denote the unique action at nogle
which (eventually) leads to node For any node, let S(i) denote the set of successor
nodes of node.

Let C;, be the set of states such tiéte A(i) is not the unique best reply for any agent

atnode’ given their conjectures after a potential learn draw.Blef, = Uk=a—-eym; A};’bl

Let Bé’ﬁn denote its complement i®2. Let generally for a sefd C §2, A denote its
£2-complement. ThesB. ,, =();cn B. ,, is the set of states, in which more than a fraction

€,m

of (1 — ¢) individuals in every population play their respective backward-induction action.
Lemma 2. Leti € N beafinal decision node. Then

. il
ci=J a5 (6)

JER(@)

This is due to the fact that' is the unique best reply for individuals at final nadié
and only if node is reached.

Lemma 3. Let i € N be an arbitrary non-final node. Then there is an € such that for all
€ € (0,¢) and for all m:

cye( U ap)u( U ala). ™

JER®)

This is due to the fact that is the unique best reply for individuals at intermediate
nodei if the node is reached and a sufficient fraction of individuals at successor nodes play
their backward induction action. An alternative presentation, in terms of set-complements
of Lemma 3, is given by

- A .
c;;;( U Aéa’) m( N Bg,,,,). ®)
JER() jeSs@)

An immediate corollary to Lemma 2 and Corollary 1 is the following.

Corollary 3. Let i € N beafinal decision node. Then

lim " (ci)=0. 9
u—0, mju—o0 VieN ”'( b’) ( )

The following lemma is proved in Appendix B.

Lemma4. Leti € N beanodesuchthat im0, m,u—oco vieN an(Ci,) = 0. Then for any
€€ (0,1):

[ m(gl )=1. 10
u—0, m; u—o00 VieNﬂM( 5,m) ( )
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This now enables me to prove the main result of this paper.

Theorem 1. For any ¢ € (0, 1),

lim x™(B =1 11
u—0, mjp—>o00 VieN M( em) (11)

Proof. Let F ¢ N denote the set of all final nodes. Lét(i) € N be the (unique)
immediate predecessor node to nade N. Let P(K) = {P(i) | i € K} be the set
of nodes which are an immediate predecessor to a nodk ion N. To show that
7 (Bem) — 1; 1 use a backward induction argument. liet . Then by Corollary 3;
M 0, m; o0 vien 7 (Ci;) = 0 and hence by Lemma 47 (B: ) — 1. Then by
Lemma 3 and Corollary h;f(clfj) — 0 for all j € P(F). Again by Lemma 4 it must

be true that:rl’f(Bg,m) — 1. This in turn, by Lemma 3 and Corollary 1, yields that

”;T(Czl;l) — 0 for all/ € P(P(F)). The result is then proved after a finite repetition of
the above argument.

The next theorem shows that it is not necessary to have an, in the limit, infinite number
of mutants to obtain subgame-perfection as the only stochastically stable outcome, if the
learning-rate also, albeit slowly, tends to zero in the limit. In order to distinguish this new
scenario from the above | emphasize the fact that the learning-rate is now also changing by
denoting the transition probability matrix i}/ , and the invariant distribution by,7 .

Theorem 2. For any € > 0,

lim 7 (Bem) = 1. (12)
%—)0, oc—0, mju>=8 VieN

The proof of Theorem 2 is available on request from the author. | here give a brief sketch
of the proof.

First, the appropriate variant of Lemma 1 holds, i.e. for any nadttie probability that
any actionx € A(i) is played by nobody in the relevant player population is of the order
of 0. Hence the appropriate variant of Corollary 1 holds, i.e. this probability tends to zero
wheno does, given the other limiting conditions.

To see why this would be the case consider a single player’s decision problem between
two alternativesA and B, whereB is the preferred choice. There are two forces at work
in the evolutionary dynamics. In every period a fractiowf A-players will learn to play
B, while a fraction of. . B-players will mutate to play, both in expectation. Suppose
a fraction(1 — ¢) of individuals playsB at the moment. But then roughlyg (1 — €)m;
individuals change action fron® to A, while approximatelyem; individuals change
action fromA to B. But the smaller, i.e. the closer the state to everyone playing the
backward induction action, the relatively more individuals switch away fBorather than
to B.

Under the limiting conditions of Lemma 1 and Theorem 1 we hatt — oo and
o fixed. Lemma 1 showed that the two forces were then “balanced” so as to make the
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event “everyone plays” probabilistically impossiblelt turns out that under the limiting
conditions investigated here, wham; > § ando — 0, we again obtain the same balance.

Given this the appropriate variants of Corollaries 1 and 2 hold without any further work.
Lemmas 2 and 3 are about the structure of the game and do not depend on the dynamics
and limits employed. Corollary 3, appropriately reformulated, also holds trivially.

The only remaining ingredient to be shown is then the appropriate version of Lemma 4.
The proof is now based, not on the one-period net increase, but on the multi-period net
increase ofb'-players. This is to do with the fact that the one-period net increase of
bi-players converges to zero at the same speed as the learning. idtmvever, if one
looks at the net increase ovet |1/0 | periods, then the number of learners (over that
period) is of the order of 1, while the number of mutants over that perigd és which
tends to zero under the limiting conditions. The rest follows from that.

5. Discussion

There are four differences between the stochastic evolutionary learning models of Hart
(2002) and of Noldeke and Samuelson (1993). First, whereas in Hart's model only one
person is drawn potentially to change laistion, a much larger number of individuals
(possibly everyone) is drawn to learn or to experiment in the model of Noldeke and
Samuelson. Second, in Néldeke and Samuelson’s model individuals hold conjectures over
other peoples’ actions in the game, which is not the case in Hart’'s model. Third, individuals
in the model of Néldeke and Samuelson play best-replies to their conjectures, once they
receive a learn draw, whereas individuals in Féarodel play better replies. Finally, while
in Hart's model every node is governed by a different population, Nldeke and Samuelson
generally allow populations to controlore than one node, but, at most one along each
possible path of play.

Theorems 1 and 2 prove that in the agent normal form version of the model of Noldeke
and Samuelson, only subgame-perfect equditare stochastically stable (in extensive
form games of perfect information with @nique subgame perfect equilibrium), under
two limiting scenarios. One is such that thneitation rate tends to zero, while population
sizes diverge to infinity in such a way thae expected number of mutants in each period
and populationum;, diverges to infinity as well. The learning-rateis fixed. The other
limit is such that the learning rate convergestro, the mutation rate converges to zero
faster than the learning rate, and population sizes diverge to infinity in such a way that the
expected number of mutants in each peii®tounded away from zero. Table 1 offers an
overview of various characteristics of thmiting conditions of Hart and this paper under
the simplifying assumption of equal population sizgs=m.

Clearly Hart’s limiting conditions are more geral than either of mine. However, under
his conditions Lemma 1 does not necessdnityd, i.e. nodes are not necessarily always
reached with probability 1 in the limit. But then the presence of conjectures complicates
things as they may well be quite different from the truth for many people in many periods
(even in the limit). It may still be the case, however, that Hart’s limiting result holds in the
model of Noldeke and Samuelson. This question is open for future research. | believe the
limiting conditions | make in this paper arélkvery useful precisely because Lemma 1
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Table 1
A comparison of characteristics of the limiting conditiarfsHart (2002), based on his model, and of this paper,
based on the model of Noldeke and Samuelson (1993)

Hart NaS 1 NasS 2
Number of mutations nm =38 m — 00 nm =38
Number of learn-draws om — 00 om — 0o om — 0o
Proportion of mutations nw—0 nw—0 nw—0
Proportion of learn-draws o fixed o fixed c—0
Number of mutations E_50 £ 50 £ 50

o o o

relative to learn-draws

Columns NaS 1 and NaS 2 state the various figures for the two limiting conditions employed in this paper for
the model of Noldeke and Samuelson, where NaS 1N&8 2 refer to the conditions used in Theorem 1 and
Theorem 2, respectively. For these two columns “numlibemndations,” etc., denotes the corresponding expected
number of mutations, etc., per period. To adjust for et that in Hart's model only one person per period
can change action, whereas potentially rallindividuals can change action in every period in Noldeke’s and
Samuelson’s model, the column for Hart's model gitles expected number of mutations, and so on, that occur
over a span ofz periods.

then holds. This lemma will still hold undenése conditions in much more general games

as long as the total number of pure strategies is finite. This suggests that similarly sharp
results can also be obtained in more general games including games of perfect information
with multiple subgame-perfect equilibria even imperfect information games.

Coming back to the differences between the models of Hart, and Noldeke and
Samuelson, it seems that the difference in the number of people who potentially change
their strategy each period between the twadeals is not crucial. The fact that individuals
hold conjectures complicates matters to a degree, hence the slightly weaker limiting
conditions than in Hart. The final difference in the learning dynamics is that individuals
in Hart's model play better replies, whereas in Noldeke and Samuelson’s model they
play best-replies. It is easy to see, however, that changing the model from best to better
replies will not affect the results. Even undeetter replies every node is still reached with
probability 1 in the limit. Now suppose there are 3 actioAs,B, and C, available to
individuals at a final node and thdt is strictly preferred toB, which in turn is strictly
preferred taC. As C can only be played by mistake, i.e. by mutation, we know that almost
everyone at this node will eventually play eithéror B. But then, if people who play
B learn, they will switch to playing actiod, since it is a better reply (to any probable
situation) than isB. A-players, however, will playB only by mutation. Hence, in the
long run almost everyone at this node will play This argument generalizes to any
finite number of actions available to players at final nodes. Then, by backward induction,
similarly, all individuals at all nodes will eventually learn to play their backward induction
action.

Throughout the paper | investigate the agent normal form version of the model of
Noldeke and Samuelson. Like Hart, | as®ithat there is a distinct population for each
node of the game tree. Néldeke and Samuelson in general allow populations to govern
more than one node as long as it is at most one node along each possible path of
play. However, individuals in their model adapt their strategy locally, i.e. after learning
individuals investigate each action segtaty, and for each node they control choose a
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best action given their updated conjectures. Also, individuals’ conjectures are not about
other individuals’ strategies, but about thactions at each node. In fact, when individuals
update they do so “to match the observed frequency of actions at all information sets that
were reached.” (N6ldeke and Samuelson, 1993, p. 430). Hence, Noldeke and Samuelson
do investigate the agent normal form as well.

This paper then demonstrates that in the model of N6ldeke and Samuelson, as in Hart,
evolution leads to subgame-perfect equiliioni play if, in contrast to the fixed population
assumption in Noldeke and Samuelson, population sizes are taken to infinity in a suitable
way.
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Appendix A. Proof of Lemma 1

Define D' as the set of states such that A(i) is not a best reply for any agent at node
i given their conjectures. l.e. these are states such that for every agent atthede is
another actiory € A (i), different fromx (and possibly different for different agents), such
thaty is a best reply and is better than

Given the property of the invariant distribution (1) any probabilit{ (w) can be
expressed as

@) = > 7 @) Q) e (A1)
' e

where(Q}})./« is the transition probability that the system moves fi@fito o.
Equivalently for any set of stated,,

T (A) = Z Z T @)ON) e (A.2)
weA W' e
Changing the order of summation yields
A (A) =Y 7 (@) Q%) A (A.3)
w' e
where(Qj)w a4 =2 pea(QiDww:
We are interested in the sat= Ag". Itis easy to show that for any € A, ",
=pwo Yo' €D,
(Qzl)u)’Agx { y

_ (A.4)
< pro otherwise
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where

k
pro= o/ (l-0)" (k> A T (1= @ = )™ ™ (A.5)
j=0 /
This is because there are many ways to move from a state Wwhoereof m; individuals at
nodei play x to a state where none do. Suppose the current stagen D. A possible
transition is that any < k individuals who are currently playinglearn and change their
action and the remaining— j agents mutate to play anything other thamvhile everyone
else does not change their actionxtopyo is then just the sum of all the probabilities of
these various possible transitions.
Careful inspection of Eq. (A.5) reveals that

k

o k . .
pro=(1-p@—20)" Y (j) (0(1- n1=20)) (A=) (pio)
j=0
= (1= n@—20)"  (uhs + 01— w)". (A.6)
Hence, for alk < m;,
Pk+1,0 _ phy +0o(l—p)

= , (A.7)
Pk0 1—pu@—2y)
which is less than 1 for small.
Using Egs. (A.3) and (A.4) yields
m;
J'L’Zl (AS’X) < Z JT;f (A;(’x)pko. (A.8)
k=0
Rearranging leads to
. 1 .
G A — kX_:l”L" (4¢") Pro (A-9)
and hence
. 1— M (ALY
ALY =0 T ma . A.10
7 (Ag") 1- poo k>1><{pko} (A.10)
Finally,
~ 1— poo
a™(ALY) 1/(1+ 7) All
v (45") max.>1{pko} (A1D)

By Eq. (A.7), max>1{pko} = p1o for u small enough. This confirms the intuition that
the easiest way to move ;" is coming fromA;™.
Now, by Egs. (A.6) and (A.7),
m; phy +o(1— )

pro=(1—pn@—1y)) T i)

(A.12)

Hence,
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Vm; Ve >1 3Jp: Vu<n
p1o<ko(l—p(l—i0))". (A.13)

Hence, for alln; and for allx > 1 there is au such that for allu < fx,

m i,x 1- (1_ H’(l_ )\x))mi
(A )gl/(1+ ool ) 0 (A14)

Appendix B. Proof of Lemma 4

Let {2 x £2, P} denote a probability spa@ewhere P is such thdt P(w, ') =
7 (@) Q). for all (w,0) € 2 x 2. DefineU : 2 x 2 — {0,1,...,m;} such that
U(w, »') is the number of individuals at populatid#i(i) who playb’ in statew. Similarly,
letV:2 x 2 —{0,1,...,m;} be arandom variable such thétw, ') is the number of
individuals at populatio/ (i) who playb’ in statew’. Note that

(0eR| U o)=k}={0 2|V o)=k} ="

LetZ:2 x 2 — {—-m;,—m; +1,...,—-1,0,1, ..., m;} denote a third random variable
such thatZ (w, ') is the “addition” ofb’ -players at populatioi (i) in the transition from
statew to »’. ObviouslyZ (v, w ) =V(w, o N —U(w, o).

Note thatP(U = k) = n,’f(A ) by definition. AlsoP(V =k) = nm(Ak ) To see
this let (-, o) = {(w, ') | € 2}. ThenP(-, ') =) co P(w, ') = Zwe.@” (w) x
(Q))o.w =7, (o) by definition of the invariant distribution. But the set of states where
V=kisjust _ (). Hence P(V =k) =} (AP,

Given this we héveE(U) = E(V) and, henceE(Z) = 0. The expectation af can be
written asE(E(Z | U)) by the law of iterated expectations. L&t = {(w, ') | w € C!,}.
ObviouslyP(C') = nl'f(C",.). Then

(22
mi) = e G

>+2n’" (ALY N\ CiE <—‘U k/\(C))

(B.1)
m (i S m lb £ /

e (E]e) (e
—an ’bmc’ (—‘U k/\(C)c) (B.2)

3 As the state space is finite, | omit the sigma-algebra, which can be taken as the set of all suf2sets2of
in the description of the probability space.
4 Given the axioms of a probability measure this is sufficient to uniquely défine
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Now,

<Z
E_
mi

as the greatest change hfrplayers can never exceed the total number of individuals at
M (). Similarly

<Z
El 2=
m;

We then have

U:k/\C/)>—l

U:k/\(C/)C> <1

m;

_ E n tb’
o- ()5 -2rpic g6

(Z
o =FE[ —
m;

Rearranging then yields

) (B.3)

Let

U=k/\(C’)c).

27 (CL) Zn (AL )a (B.4)

Letk, = L(l—e)mij ,where|x | denotes the largestinteger smaller thaBy Lemma 5
(see below), there is an> 0 such that for alk < k, o > & providedu is small enough.

Also o > oy, = —puy for all &, in particular also for alk > k..
Hence,
ks« mi
Zakn A' b Z ’ b Z i (A ’ 4 ) (B.5)
k=0 k=ks+1
>an! (BLS,) — uhyim)) (BL ) (B.6)
>an!(BLS,) — uhyi (1— 7t (BLS,)) (B.7)
> (O[ + [/L)\,br)ﬂm( é fn) [/L)\.bi . (B8)

Combining inequalities (B.4) and (B.8), we obtain
(@ + pudpi)y) (BE B¢ ) — puhy < Zakn <2 (C’ )- (B.9)

Takingu — 0 whilem; u tends to |nf|n|ty in inequality (B.9), we obtain
& lm  7(BL,)<0. (B.10)

u—0, m; u— 00

Hences (BL5,) — 0. O

Lemmab. Let k, = [ (1 — e)m;|. Thereisaa > 0 and a o > O such that for all k¥ < k.
oy = a provided u < 1. AlSO ag = oy, = — Ay, for all k.
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Proof. By definition,

a = iE(z |U=kA(C)).
mi

To calculate the ternkE(Z | U = k A (C")°) note thatZ can be written as the difference
of two random variablesX and Y (different from U and V), where X (w, ') is the
number of individuals atM (i) who, in the transition fromw to «’, switch strategy
from something other thah' to »', andY (w, ') is the number of individuals a¥/ (i)
who, in the transition fromw to ', switch strategy fromp’ to any other tharb'.
Conditional onlU (w, ") = k and(w, o) € (C")¢, bothX andY are binomially distributed,
i.e. X ~Bin(m; —k,o0(1 — ) + n(l — Ay)) andY ~ Bin(k, ux,i). Hence, the term
E(Z | U =k A (C)°) is the difference between the expectation of these two binomial
variables and given by

E(ZIU=kA(C))=(0c(1— )+ pn@d—xy))mi —k) —kphy.
The termyy is then negative if and only if

£>0(1_M)+H(1_kb')' (B.11)
mi o(l—p)+pn
In particular ifk = em;, o < O if
- o(l—p)+p@d—2y)
cl-w+pn
Itis easy to see that,, < 0. However, for an arbitrary > 0, > 0 forallk < (1—¢€)m;,
providedu is small enough. Indeed there igia> 0 and anx > 0 such that for aljx < &
we have thaty, > @ for all k < k.. Suppose, for the sake of simplicity, that— ¢)m; is an
integer. Theny, =€e(o (1 —p) + u(1—Ay)) — (1 —e)ur,i . One might, for instance, set
a = €0 /2. Also observe that for al we have thaty, > o, = —phpi. O

(B.12)
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