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Abstract

Nöldeke and Samuelson [Games Econ. Behav. 5 (1993) 425] investigate a stochastic evolu
model for extensive form games and show that even for games of perfect information with a
subgame perfect equilibrium, non-subgame perfect equilibrium-strategies may well survive in
long run even when mutation rates tend to zero. In a different model of evolution in the agent n
form of these games Hart [Games Econ. Behav. 41 (2002) 227] shows that under suitabl
taking, where small mutation rates are accompanied by large population sizes in a particular w
unique prediction is again the subgame perfect equilibrium. This paper provides a proof of a simil
result for the model of Nöldeke and Samuelson.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The subgame perfect equilibrium in extensive form games of perfect information wit
a unique subgame perfect equilibrium coincides with the unique trembling hand perfe
equilibrium in these games. One might think that random mutations in evolutiona
models, as in Kandori et al. (1993) or Young (1993), serve the same purpo
perturbations in the rational formulation, and lead to virtually all individuals playing t
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backward induction action. Nöldeke and Samuelson (1993), however, show that
not generally the case. They construct an example where the stationary distribution
Markov chain induced by the mutation-selection dynamics puts positive probability o
non-subgame perfect Nash equilibria of the game even when the mutation rate is ta
zero in the limit.

In deterministic models of evolution in extensive form games with perfect informa
Demichelis and Ritzberger (2000) show that if any Nash equilibrium component
asymptotically stable then this must be the subgame perfect one (see also Dem
et al., 2002). In general, however, no component ofNash equilibria is asymptotically stable.
Cressman and Schlag (1998) find that the subgame perfect component of the set
equilibria, for any such games, is contained in the unique minimal interior asymptot
stable set (see also Swinkels, 1993). In general, however, other non-subgame
components of Nash equilibria arealso contained in this minimal interior asymptotically
stable set, as Cressman and Schlag (1998) prove by example.

Hart (2002) investigates another stochastic model of mutation and selection for the
normal form of perfect information gameswith a unique subgame perfect equilibriu
He shows that in the limit where the mutation rate tends to zero while population
tend to infinity in such a way that the product of mutation rate and population
is bounded away from zero, the evolutionary process centers on the subgame
equilibrium in the long-run. Hart’s model differs from Nöldeke’s and Samuelson’s in fo
respects. First, in Hart’s model, only one individual per population can change act
any given period in time, whereas in Nöldeke’s and Samuelson’s model every indiv
may change strategy at any given time. Second, Hart’s individuals, in contrast to Nöl
and Samuelson’s, do not hold conjectures about what other agents do in the game
Hart’s individuals, after learning, play a better reply, chosen from the set of currently
actions, whereas individuals in the model of Nöldeke and Samuelson play a best r
their conjecture. Fourth, Hart analyzes games in the agent normal form, with a dif
population of individuals for each node of the game, whereas Nöldeke and Samuel
generally investigate games where players can control more than one node, but nev
than one along each possible path of play.

This paper shows that Hart’s result, with slightly different limit-taking, can be exte
to the mutation-selection dynamics of Nöldeke and Samuelson. I investigate the
normal form version of the model of Nöldeke and Samuelson and the invariant distrib
of the induced Markov chain. I show that the invariant distribution puts probability
on any smallε-ball around the unique subgame-perfect equilibrium in the limit, where the
expected fraction of individuals mutating per period, the mutation rate, tends to zero,
the expected number of mutations per period, which is given by the product of mu
rate and population size, tends to infinity. Of course in this limit population sizes te
infinity as well, in contrast to the fixed population sizes of Nöldeke and Samuelson.

Hence, while for finite population sizes in Hart’s, as well as in Nöldeke’s
Samuelson’s, model of evolution non-subgame perfect equilibria may well carry po
weight in the long run even when mutation rates tend to zero, for large population siz
would expect this positive weight on non-subgame perfect equilibria to be small in bo
models, provided that there is a sufficient number of mistakes per period.
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2. The model

The selection-mutation mechanism outlined in this section is the one due to Nölde
Samuelson (1993). LetΓ be a finite generic extensive form game of perfect informa
with a unique subgame-perfect equilibrium asin Hart (2002). Note that this is a strong
requirement than the assumption of a uniquesubgame perfect equilibrium “outcome
A unique subgame perfect equilibrium implies that applying backward-induction yields
unique best choice at every node in the tree, even in those parts of the tree which are
equilibrium path. Note also that the assumption of a unique subgame-perfect equilibriu
is a little weaker than the usual genericity assumption. In the usual genericity assum
no player obtains the same utility at any two final nodes. However, a game may stil
a unique subgame perfect equilibrium in the presence of payoff-ties, provided the
no “crucial” ties. The simplest example of a game which has a unique subgame p
equilibrium, but payoff-ties, is a decisionproblem where the single player chooses am
three alternatives, A, B, and C, where A yields a payoff of 1, while both B and C
a payoff of 0. Even though there is a payoff-tie, B and C give the same utility, there is
unique optimal choice, A. The same decision problem with the only difference that pa
are multiplied by−1, however, does not have a unique subgame perfect equilibrium
is an example for a “crucial” payoff-tie.

Let N denote the set of nodes. For alli ∈ N let M(i) denote a finite population o
individuals at nodei, i.e. the dynamics are at work on the agent normal form, or as
(2002) calls it, the gene normal form.1 A player who ownsk � 2 information sets is
supposed to delegate the strategy decision problem tok independent agents (agent norm
form) or to havek independent genes each of which control one information set. Le
mi = |M(i)| be the size of the population at nodei andm = (m1,m2, . . . ,mN) denote the
vector of population sizes. For alli ∈ N let A(i) denote the finite set of possible actio
available to individuals at nodei. I assume that|A(i)| � 2 for all i ∈ N . The main results
Theorems 1 and 2, will also hold if at some nodes only one action is available, while
of the lemmas will not. Letbi ∈ A(i) denote the backward induction action at nodei.

The game is played recurrently at discrete points in time by every possible combi
of agents in each population. Every agent in every population is characterized by a pu
action and a conjecture attributing a pure action to every other agent in the game.
ω is a specification of a characteristic for every agent in every population. The state
shall be denoted byΩ .

In every period after the game has been played, every agent in every popu
takes a draw from a Bernoulli distribution with outcomes “learn” and “don’t learn” w
probabilitiesσ and 1− σ , respectively. If the agent receives the learn draw she upd
her conjecture in a way such that it coincides with the actions which individuals a
various nodes actually take, provided they are observable. Conjectures about ac
nodes, which are not reached, will not change. She then chooses an action which i
reply to her conjecture. If there is more than one best reply she will choose one accord
to some fixed probability distribution with fullsupport over all best replies. If her curre

1 See Section 5 for a discussion of the case when players control more than one node.
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action is already a best reply she will not change her action. In the other case she c
neither her conjecture nor her action.

After the learning phase every individual in every population receives a draw of anot
Bernoulli variable with outcomes “mutate” and “don’t mutate” with probabilitiesµ and
1 − µ, respectively. If the agent receives a mutate-draw she will choose an arb
characteristic according to a probability distribution with full support over all possib
characteristics for this agent (including the one she is holding at the moment). No
this implies that the agent after mutating is not necessarily playing a best reply
conjecture, as both her action and her conjecture are arbitrary after mutation. In case t
agent does not receive a mutate-draw she does not change her characteristic.

The above mutation-selection mechanism constitutes a Markov chain on the state
Ω with transition probability matrix denoted byQm

µ , indicating that it is different for
different population sizes and different mutation rates. The transition probabilities also
vary with different learning probabilitiesσ . For the main part of this essay, however,σ is
assumed to be fixed at a value strictly between 0 and 1.

Clearly, the Markov chain induced by the above selection-mutation dynami
aperiodic and irreducible. Hence, it has a unique stationary distribution, which sh
denoted byπm

µ , and satisfies

πm
µ Qm

µ = πm
µ . (1)

3. An example

The three-player extensive form game given in Fig. 1 (see also Fig. 1.2 in Hart or
in Nöldeke and Samuelson) has theunique subgame-perfect equilibrium(R,R,R). There
are other Nash equilibria, however, like(L,L,L), which are not in the subgame-perfe
Nash equilibrium component. Nöldeke and Samuelson show that for any fixed vector
population sizes, both equilibria must carrypositive probability in the limiting invarian
distribution. The argument is the following. Suppose the system is in the state where
individual in every population playsR, and conjectures match these actions, i.e. the sy
is in the subgame-perfect state. Then node 3 is not reached and evolutionary drift c
occur. Just by this drift the system will eventually be in the state where everyone at
1 and 2 playsR and everyone conjectures as much, and where all individuals at n
play L while individuals at nodes 1 and 2 conjecture them to playR. Suppose now tha

Fig. 1. The extensive game in the example.
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one mutation occurs at node 2, i.e. node 3 will suddenly be reached. Then, as N
and Samuelson argue, with positive probability all agents at node 2 learn before a
at node 3 learns. In fact, ignoring the small mutation probability for the moment, this wi
happen with probabilityσm2(1 − σ)m3. In the next period with positive probability, a
individuals at node 1 learn, update their conjectures, and playL. This probability is given
by σm1. Hence, it takes only one mutation to get from the subgame perfect comp
generated by(R,R,R) to another Nash equilibrium component, generated by(L,L,L),
by learning only, which happens with positive probabilityσm2(1 − σ)m3σm1, and hence
(L,L,L) must be in the domain of the limiting invariant distribution. This probabi
however, tends to zero when population sizes go to infinity.2 This is to say that when
population sizes go to infinity, at the same time as mutation rates tend to zero, it
enough to count the number of mutations it takes to get from one absorbing state to a
since these are not the only infinitesimal probability transitions. Any long chain of a
people learning, such as a fraction of a population, will also only occur with infinites
probability. Yet this argument does not tell us which states will carry positive weight o
in the limiting invariant distribution whenboth mutation rates go to zero and populat
sizes tend to infinity. It only illustrates that the analysis requires more than a mu
counting exercise.

The claim I make in this paper is that only subgame-perfect equilibria will be in th
domain of the limiting invariant distribution, when the limit is taken with respect to
mutation rateµ going to zero and population sizesmi going to infinity, providedmiµ

tends to infinity as well. The precise claim is to be found in Section 4. In the following
paragraphs I want to use the above example to illustrate why my claim should be true.

Consider the population of individuals at node 2. Suppose for the moment thatR (after
learning and updating conjectures) is the unique best-reply there, i.e. at least one ind
at node 1 playsR, and the population mix at node 3 is such that more than 2/3 of the
population playR there. Under these circumstances individuals at node 2 will plaL,
with some conjecture, only by mistake, i.e. by mutation. Suppose furthermore th
individuals at node 2 playR at the moment and hold true conjectures about, the
unreached, node 3. How many individuals at node 2 do we expect to playL in the next
period? LetX denote the number of people mutating fromR to L in one period.X is then
binomially distributed with parametersµ, the mutation rate, andm2, the population size
The expected number of mutations toL is given byE(X) = µm2. In the limit, I consider,
this expected number of mutations toL will tend to infinity. This means that even if a
action is currently not played at all and is not a best reply, in the next period a very
number (tending to infinity) of individuals is expected to play it. If some more individ
were playing this action already at the moment or if the action were a best repl
expected number of people playing this action in the next period would only be gr
This shows that any action anywhere in the tree will essentially always be played by
large (essentially infinite) number of people from the corresponding population. Give

2 In fact, the probability of a transition from(R,R,R) to (L,L,L) in a finite period of time is greater tha
σm2(1− σ)m3σm1. In any transition, however, a sufficient fraction of individuals at node 2 learns first, and
all individuals at node 1 learn, all before too many individuals at node 3 do. Hence, this probability will te
zero.
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proof
this is the case, all nodes will be reached essentially all the time. Hence, whenever peop
learn, their updated conjectures will match the truth, i.e. conjectures do not matter.

Given all this, consider individuals at node 3. This node will be reached essentia
the time. Hence, the unique best-reply for individuals at node 3 is the backward ind
actionR. Whenever people learn (with probabilityσ ) they will choose to play actionR.
Only by mutation will they adoptL. But the expected number of people who receiv
learn draw,σm2 is, in the limit, infinitely greater than the expected number of individu
who mutate. Hence, in the long run, even though there will always be an infinite nu
of individuals playingL, infinitely more will playR. Therefore, in the long-run, more tha
any arbitrarily high fraction of the population at node 3 will play their backward induc
actionR.

Given that almost everyone at node 3 playsR, the unique best-reply at node 2 is t
backward induction actionR as well. By the same argument as before, then, in the
run, more than any arbitrary fraction of individuals at node 2 will playR. Given that, the
same must be true for node 1. Hence, even though the system will virtually never be e
at the subgame perfect equilibrium, it will always be arbitrarily close to it.

The proof of the main result in the paper is very much along the line of thought ou
above. First, I establish a lemma saying that for any given action at any given nod
probability that not a single individual plays this action, tends to zero in the above des
limit. Conjectures in the limit, therefore, must always coincide with the truth as every
is reached. Second, I prove a lemma saying that, if an action is the unique best-reply wi
probability going to one in the limit, it will be played by more than any fraction, arbitra
close to 1, of individuals at that node. Given these two lemmas I prove the main resu
the whole system, in the limit, isarbitrarily close to the subgame perfect equilibrium of
game, using a backward induction argument.

4. Results

Nöldeke and Samuelson show that non-subgame perfect equilibria, except fo
special classes of games, will be in the support of the limiting distribution, wherem is
fixed andµ → 0.

Hart demonstrates for a different selection-mutation dynamics that in the limit w
µ → 0 andmi → ∞ such thatmiµ � δ > 0 only anyε-neighborhood of the backwar
induction solution is in the support of the limiting distribution (hence has probability 1).

This section shows that Hart’s result can be extended to the mutation-selection dy
of Nöldeke and Samuelson’s (1993) if the limiting distribution is taken with respect t
µ → 0 whilemiµ → ∞.

Let i ∈ N be an arbitrary node and letx ∈ A(i) be an arbitrary action available
individuals at nodei. LetΛi,x

k denote the set of states in which the proportion of individu
at nodei which is playing actionx is k/mi . Note that if this set contains a specific st
ω it also contains every state which is only different fromω with respect to conjecture
For anyi ∈ N and anyx ∈ A(i) the collection of sets{Λi,x

k }mi

k=0 is a partition of the state
spaceΩ , i.e. the system at any given time must be in exactly one of these sets. The
of the following lemma is in Appendix A.
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Lemma 1. Let i ∈ N be an arbitrary node and x ∈ A(i) an arbitrary action available to
individuals at node i . Let λx denote the conditional probability that if an agent mutates
she does not mutate to a characteristic that involves playing action x . For all κ > 1 there
is a µ̄ such that for all µ < µ̄ and for all mi :

πm
µ

(
Λ

i,x
0

)
� 1

/(
1+ 1− (1− µ(1− λx))mi

κσ (1− µ(1− λx))mi

)
. (2)

An immediate corollary is that for any nodei ∈ N and anyx ∈ A(i), πm
µ (Λ

i,x
0 )

converges to zero under suitable limit-taking:

Corollary 1. Let i ∈ N be an arbitrary node and x ∈ A(i) an arbitrary action available to
individuals at node i .

lim
µ→0, miµ→∞πm

µ

(
Λ

i,x
0

) = 0. (3)

Proof. To show thatπm
µ (Λ

i,x
0 ) tends to zero in the case whereµ goes to zero while

miµ tends to infinity, it is enough to prove that(1 − µ(1 − λx))
mi goes to zero unde

these circumstances. To see this note that(1 − µ(1 − λx))mi can be written as[(1 −
µ(1 − λx))1/µ]µmi , which tends to zero due to the fact that(1 − µ(1 − λx))1/µ tends
to e−(1−λx) < 1 asµ tends to zero. �

Another corollary follows immediately from the above lemma.

Corollary 2. Denote by Ψ the set of states, in which there is a node such that at least one
action is not played by any individual at this node, i.e.

Ψ =
⋃
i∈N

⋃
x∈A(i)

Λ
i,x
0 . (4)

Then

lim
µ→0, miµ→∞ ∀i∈N

πm
µ (Ψ ) = 0. (5)

This is due to the fact that each set in the union has zero probability in the limit an
Ψ is a finite union of these sets.

The corollary states that for large population sizes, small mutation rates, and a
expected number of mutations per period (miµ) the evolutionary system is almost alwa
in a state where every node in the game is reached. Nodei is reached if there is at lea
one person at every node between the root andi who plays the action that leads towar
nodei.

In this case conjectures after learning almostalways coincide with the actual actions.
Evolutionary pressure in the form of selection pressure, therefore, is present at all no

almost all the time. Hence, by backward induction arguments, we expect the system
limit to be close to all individuals playing their backward induction action.
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For any nodei ∈ N denote byR(i) ⊂ N the set of predecessor nodes of nodei. For any
nodei ∈ N and for every nodej ∈ R(i) let a

j
i ∈ A(j) denote the unique action at nodej

which (eventually) leads to nodei. For any nodei, let S(i) denote the set of success
nodes of nodei.

Let Ci
bi be the set of states such thatbi ∈ A(i) is not the unique best reply for any age

at nodei given their conjectures after a potential learn draw. LetBi
ε,m = ⋃

k�(1−ε)mi
Λ

i,bi

k .

Let B
i,c
ε,m denote its complement inΩ . Let generally for a setA ⊂ Ω , Ac denote its

Ω-complement. ThenBε,m = ⋂
i∈N Bi

ε,m is the set of states, in which more than a fract
of (1− ε) individuals in every population play their respective backward-induction ac

Lemma 2. Let i ∈ N be a final decision node. Then

Ci
bi =

⋃
j∈R(i)

Λ
j,a

j
i

0 . (6)

This is due to the fact thatbi is the unique best reply for individuals at final nodei if
and only if nodei is reached.

Lemma 3. Let i ∈ N be an arbitrary non-final node. Then there is an ε̄ such that for all
ε ∈ (0, ε̄) and for all m:

Ci
bi ⊂

( ⋃
j∈R(i)

Λ
j,a

j
i

0

)
∪

( ⋃
j∈S(i)

B
j,c
ε,m

)
. (7)

This is due to the fact thatbi is the unique best reply for individuals at intermedi
nodei if the node is reached and a sufficient fraction of individuals at successor node
their backward induction action. An alternative presentation, in terms of set-comple
of Lemma 3, is given by

C
i,c

bi ⊃
( ⋃

j∈R(i)

Λ
j,a

j
i

0

)c

∩
( ⋂

j∈S(i)

B
j
ε,m

)
. (8)

An immediate corollary to Lemma 2 and Corollary 1 is the following.

Corollary 3. Let i ∈ N be a final decision node. Then

lim
µ→0, miµ→∞ ∀i∈N

πm
µ

(
Ci

bi

) = 0. (9)

The following lemma is proved in Appendix B.

Lemma 4. Let i ∈ N be a node such that limµ→0, miµ→∞ ∀i∈N πm
µ (Ci

bi ) = 0. Then for any
ε ∈ (0,1):

lim
µ→0, miµ→∞ ∀i∈N

πm
µ

(
Bi

ε,m

) = 1. (10)
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This now enables me to prove the main result of this paper.

Theorem 1. For any ε ∈ (0,1),

lim
µ→0, miµ→∞ ∀i∈N

πm
µ (Bε,m) = 1. (11)

Proof. Let F ⊂ N denote the set of all final nodes. LetP(i) ∈ N be the (unique
immediate predecessor node to nodei ∈ N . Let P(K) = {P(i) | i ∈ K} be the set
of nodes which are an immediate predecessor to a node inK ⊂ N . To show that
πm

µ (Bε,m) → 1; I use a backward induction argument. Leti ∈ F . Then by Corollary 3;

limµ→0, miµ→∞ ∀i∈N πm
µ (Ci

bi ) = 0 and hence by Lemma 4;πm
µ (Bi

ε,m) → 1. Then by

Lemma 3 and Corollary 1;πm
µ (C

j

bj ) → 0 for all j ∈ P(F). Again by Lemma 4 it mus

be true thatπm
µ (B

j
ε,m) → 1. This in turn, by Lemma 3 and Corollary 1, yields th

πm
µ (Cl

bl ) → 0 for all l ∈ P(P(F )). The result is then proved after a finite repetition
the above argument.�

The next theorem shows that it is not necessary to have an, in the limit, infinite nu
of mutants to obtain subgame-perfection as the only stochastically stable outcome
learning-rate also, albeit slowly, tends to zero in the limit. In order to distinguish this
scenario from the above I emphasize the fact that the learning-rate is now also chan
denoting the transition probability matrix byQm

µ,σ and the invariant distribution byπm
µ,σ .

Theorem 2. For any ε > 0,

lim
µ
σ

→0, σ→0, miµ�δ ∀i∈N
πm

µ,σ (Bε,m) = 1. (12)

The proof of Theorem 2 is available on request from the author. I here give a brief s
of the proof.

First, the appropriate variant of Lemma 1 holds, i.e. for any nodei the probability that
any actionx ∈ A(i) is played by nobody in the relevant player population is of the o
of σ . Hence the appropriate variant of Corollary 1 holds, i.e. this probability tends to
whenσ does, given the other limiting conditions.

To see why this would be the case consider a single player’s decision problem be
two alternatives,A andB, whereB is the preferred choice. There are two forces at w
in the evolutionary dynamics. In every period a fractionσ of A-players will learn to play
B, while a fraction ofλBµ B-players will mutate to playA, both in expectation. Suppos
a fraction(1 − ε) of individuals playsB at the moment. But then roughlyλBµ(1− ε)mi

individuals change action fromB to A, while approximatelyσεmi individuals change
action fromA to B. But the smallerε, i.e. the closer the state to everyone playing
backward induction action, the relatively more individuals switch away fromB rather than
to B.

Under the limiting conditions of Lemma 1 and Theorem 1 we hadµmi → ∞ and
σ fixed. Lemma 1 showed that the two forces were then “balanced” so as to ma
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event “everyone playsB” probabilistically impossible.It turns out that under the limiting
conditions investigated here, whenµmi � δ andσ → 0, we again obtain the same balan

Given this the appropriate variants of Corollaries 1 and 2 hold without any further w
Lemmas 2 and 3 are about the structure of the game and do not depend on the dy
and limits employed. Corollary 3, appropriately reformulated, also holds trivially.

The only remaining ingredient to be shown is then the appropriate version of Lem
The proof is now based, not on the one-period net increase, but on the multi-peri
increase ofbi -players. This is to do with the fact that the one-period net increas
bi-players converges to zero at the same speed as the learning rateσ . However, if one
looks at the net increase overl = 	1/σ
 periods, then the number of learners (over t
period) is of the order of 1, while the number of mutants over that period isµ/σ which
tends to zero under the limiting conditions. The rest follows from that.

5. Discussion

There are four differences between the stochastic evolutionary learning models o
(2002) and of Nöldeke and Samuelson (1993). First, whereas in Hart’s model on
person is drawn potentially to change hisaction, a much larger number of individua
(possibly everyone) is drawn to learn or to experiment in the model of Nöldeke
Samuelson. Second, in Nöldeke and Samuelson’s model individuals hold conjectur
other peoples’ actions in the game, which is not the case in Hart’s model. Third, indiv
in the model of Nöldeke and Samuelson play best-replies to their conjectures, onc
receive a learn draw, whereas individuals in Hart’s model play better replies. Finally, whil
in Hart’s model every node is governed by a different population, Nöldeke and Samu
generally allow populations to control more than one node, but, at most one along e
possible path of play.

Theorems 1 and 2 prove that in the agent normal form version of the model of Nö
and Samuelson, only subgame-perfect equilibria are stochastically stable (in extens
form games of perfect information with aunique subgame perfect equilibrium), und
two limiting scenarios. One is such that themutation rate tends to zero, while populati
sizes diverge to infinity in such a way thatthe expected number of mutants in each per
and population,µmi , diverges to infinity as well. The learning-rateσ is fixed. The other
limit is such that the learning rate converges to zero, the mutation rate converges to z
faster than the learning rate, and population sizes diverge to infinity in such a way th
expected number of mutants in each periodis bounded away from zero. Table 1 offers
overview of various characteristics of thelimiting conditions of Hart and this paper und
the simplifying assumption of equal population sizesmi = m.

Clearly Hart’s limiting conditions are more general than either of mine. However, und
his conditions Lemma 1 does not necessarilyhold, i.e. nodes are not necessarily alwa
reached with probability 1 in the limit. But then the presence of conjectures compl
things as they may well be quite different from the truth for many people in many pe
(even in the limit). It may still be the case, however, that Hart’s limiting result holds in
model of Nöldeke and Samuelson. This question is open for future research. I belie
limiting conditions I make in this paper are still very useful precisely because Lemma
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Table 1
A comparison of characteristics of the limiting conditionsof Hart (2002), based on his model, and of this pap
based on the model of Nöldeke and Samuelson (1993)

Hart NaS 1 NaS 2

Number of mutations µm � δ µm → ∞ µm � δ

Number of learn-draws σm → ∞ σm → ∞ σm → ∞
Proportion of mutations µ → 0 µ → 0 µ → 0
Proportion of learn-draws σ fixed σ fixed σ → 0
Number of mutations µ

σ → 0 µ
σ → 0 µ

σ → 0
relative to learn-draws

Columns NaS 1 and NaS 2 state the various figures for the two limiting conditions employed in this pa
the model of Nöldeke and Samuelson, where NaS 1 andNaS 2 refer to the conditions used in Theorem 1 a
Theorem 2, respectively. For these two columns “number of mutations,” etc., denotes the corresponding expec
number of mutations, etc., per period. To adjust for thefact that in Hart’s model only one person per peri
can change action, whereas potentially allm individuals can change action in every period in Nöldeke’s
Samuelson’s model, the column for Hart’s model givesthe expected number of mutations, and so on, that o
over a span ofm periods.

then holds. This lemma will still hold under these conditions in much more general gam
as long as the total number of pure strategies is finite. This suggests that similarly
results can also be obtained in more general games including games of perfect infor
with multiple subgame-perfect equilibria or even imperfect information games.

Coming back to the differences between the models of Hart, and Nöldeke
Samuelson, it seems that the difference in the number of people who potentially c
their strategy each period between the two models is not crucial. The fact that individua
hold conjectures complicates matters to a degree, hence the slightly weaker li
conditions than in Hart. The final difference in the learning dynamics is that individ
in Hart’s model play better replies, whereas in Nöldeke and Samuelson’s mode
play best-replies. It is easy to see, however, that changing the model from best to
replies will not affect the results. Even under better replies every node is still reached w
probability 1 in the limit. Now suppose there are 3 actions,A, B, andC, available to
individuals at a final node and thatA is strictly preferred toB, which in turn is strictly
preferred toC. As C can only be played by mistake, i.e. by mutation, we know that alm
everyone at this node will eventually play eitherA or B. But then, if people who play
B learn, they will switch to playing actionA, since it is a better reply (to any probab
situation) than isB. A-players, however, will playB only by mutation. Hence, in th
long run almost everyone at this node will playA. This argument generalizes to a
finite number of actions available to players at final nodes. Then, by backward indu
similarly, all individuals at all nodes will eventually learn to play their backward induc
action.

Throughout the paper I investigate the agent normal form version of the mod
Nöldeke and Samuelson. Like Hart, I assume that there is a distinct population for ea
node of the game tree. Nöldeke and Samuelson in general allow populations to
more than one node as long as it is at most one node along each possible p
play. However, individuals in their model adapt their strategy locally, i.e. after lear
individuals investigate each action separately, and for each node they control choos
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best action given their updated conjectures. Also, individuals’ conjectures are not
other individuals’ strategies, but about their actions at each node. In fact, when individu
update they do so “to match the observed frequency of actions at all information se
were reached. . .” (Nöldeke and Samuelson, 1993, p. 430). Hence, Nöldeke and Samu
do investigate the agent normal form as well.

This paper then demonstrates that in the model of Nöldeke and Samuelson, as i
evolution leads to subgame-perfect equilibrium play if, in contrast to the fixed populatio
assumption in Nöldeke and Samuelson, population sizes are taken to infinity in a s
way.
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Appendix A. Proof of Lemma 1

DefineDi
x as the set of states such thatx ∈ A(i) is not a best reply for any agent at no

i given their conjectures. I.e. these are states such that for every agent at nodei there is
another actiony ∈ A(i), different fromx (and possibly different for different agents), su
thaty is a best reply and is better thanx.

Given the property of the invariant distribution (1) any probabilityπm
µ (ω) can be

expressed as

πm
µ (ω) =

∑
ω′∈Ω

πm
µ (ω′)

(
Qm

µ

)
ω′ω, (A.1)

where(Qm
µ)ω′ω is the transition probability that the system moves fromω′ to ω.

Equivalently for any set of states,Λ,

πm
µ (Λ) =

∑
ω∈Λ

∑
ω′∈Ω

πm
µ (ω′)

(
Qm

µ

)
ω′ω. (A.2)

Changing the order of summation yields

πm
µ (Λ) =

∑
ω′∈Ω

πm
µ (ω′)

(
Qm

µ

)
ω′Λ, (A.3)

where(Qm
µ)ω′Λ = ∑

ω∈Λ(Qm
µ)ω′ω.

We are interested in the setΛ = Λ
i,x
0 . It is easy to show that for anyω′ ∈ Λ

i,x
k ,

(
Qm

µ

)
ω′Λi,x

0

{= pk0 ∀ ω′ ∈ Di
x,

(A.4)

� pk0 otherwise,
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where

pk0 =
k∑

j=0

σj (1− σ)k−j

(
k

j

)
(µλx)k−j

(
1− µ(1− λx)

)mi−k+j
. (A.5)

This is because there are many ways to move from a state wherek out ofmi individuals at
nodei play x to a state where none do. Suppose the current stateω is in Di

x . A possible
transition is that anyj � k individuals who are currently playingx learn and change the
action and the remainingk − j agents mutate to play anything other thanx, while everyone
else does not change their action tox. pk0 is then just the sum of all the probabilities
these various possible transitions.

Careful inspection of Eq. (A.5) reveals that

pk0 = (
1− µ(1− λx)

)mi−k
k∑

j=0

(
k

j

)(
σ
(
1− µ(1− λx)

))j (
(1− σ)(µλx)

)k−j

= (
1− µ(1− λx)

)mi−k(
µλx + σ(1− µ)

)k
. (A.6)

Hence, for allk < mi ,

pk+1,0

pk0
= µλx + σ(1− µ)

1− µ(1− λx)
, (A.7)

which is less than 1 for smallµ.
Using Eqs. (A.3) and (A.4) yields

πm
µ

(
Λ

i,x
0

)
�

mi∑
k=0

πm
µ

(
Λ

i,x
k

)
pk0. (A.8)

Rearranging leads to

πm
µ

(
Λ

i,x
0

)
� 1

1− p00

mi∑
k=1

πm
µ

(
Λ

i,x
k

)
pk0 (A.9)

and hence

πm
µ

(
Λ

i,x
0

)
�

1− πm
µ (Λ

i,x
0 )

1− p00
max
k�1

{pk0}. (A.10)

Finally,

πm
µ

(
Λ

i,x
0

)
� 1

/(
1+ 1− p00

maxk�1{pk0}
)

. (A.11)

By Eq. (A.7), maxk�1{pk0} = p10 for µ small enough. This confirms the intuition th
the easiest way to move toΛi,x

0 is coming fromΛ
i,x
1 .

Now, by Eqs. (A.6) and (A.7),

p10 = (
1− µ(1− λx)

)mi µλx + σ(1− µ)

1− µ(1− λx)
. (A.12)

Hence,
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ere
∀mi ∀κ > 1 ∃µ̄: ∀µ � µ̄

p10 � κσ
(
1− µ(1− λx)

)mi . (A.13)

Hence, for allmi and for allκ > 1 there is aµ̄ such that for allµ < µ̄,

πm
µ

(
Λ

i,x
0

)
� 1

/(
1+ 1− (1− µ(1− λx))mi

κσ (1− µ(1− λx))mi

)
. � (A.14)

Appendix B. Proof of Lemma 4

Let {Ω × Ω,P } denote a probability space,3 where P is such that4 P(ω,ω′) =
πm

µ (ω)(Qm
µ)ω,ω′ for all (ω,ω′) ∈ Ω × Ω . DefineU :Ω × Ω → {0,1, . . . ,mi} such that

U(ω,ω′) is the number of individuals at populationM(i) who playbi in stateω. Similarly,
let V :Ω × Ω → {0,1, . . . ,mi} be a random variable such thatV (ω,ω′) is the number of
individuals at populationM(i) who playbi in stateω′. Note that

{
ω ∈ Ω | U(ω,ω′) = k

} = {
ω′ ∈ Ω | V (ω,ω′) = k

} = Λ
i,bi

k .

Let Z :Ω × Ω → {−mi,−mi + 1, . . . ,−1,0,1, . . . ,mi} denote a third random variab
such thatZ(ω,ω′) is the “addition” ofbi -players at populationM(i) in the transition from
stateω to ω′. ObviouslyZ(ω,ω′) = V (ω,ω′) − U(ω,ω′).

Note thatP(U = k) = πm
µ (Λ

i,bi

k ) by definition. AlsoP(V = k) = πm
µ (Λ

i,bi

k ). To see
this let (·,ω′) = {(ω,ω′) | ω ∈ Ω}. ThenP(·,ω′) = ∑

ω∈Ω P(ω,ω′) = ∑
ω∈Ω πm

µ (ω) ×
(Qm

µ)ω,ω′ = πm
µ (ω′) by definition of the invariant distribution. But the set of states wh

V = k is just
⋃

ω′∈Λ
i,bi

k

(·,ω′). Hence,P(V = k) = πm
µ (Λ

i,bi

k ).

Given this we haveE(U) = E(V ) and, hence,E(Z) = 0. The expectation ofZ can be
written asE(E(Z | U)) by the law of iterated expectations. LetC′ = {(ω,ω′) | ω ∈ Ci

bi }.
ObviouslyP(C′) = πm

µ (Ci
bi ). Then

E

(
Z

mi

)
= πm

µ

(
Ci

bi

)
E

(
Z

mi

∣∣∣ C′
)

+
mi∑
k=0

πm
µ

(
Λ

i,bi

k \ Ci
bi

)
E

(
Z

mi

∣∣∣ U = k ∧ (C′)c
)

.

(B.1)

= πm
µ

(
Ci

bi

)
E

(
Z

mi

∣∣∣ C′
)

+
mi∑
k=0

πm
µ

(
Λ

i,bi

k

)
E

(
Z

mi

∣∣∣ U = k ∧ (C′)c
)

−
mi∑
k=0

πm
µ

(
Λ

i,bi

k ∩ Ci
bi

)
E

(
Z

mi

∣∣∣ U = k ∧ (C′)c
)

. (B.2)

3 As the state space is finite, I omit the sigma-algebra, which can be taken as the set of all subsets ofΩ × Ω ,
in the description of the probability space.

4 Given the axioms of a probability measure this is sufficient to uniquely defineP .
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ls at

.

Now,

E

(
Z

mi

∣∣∣ U = k ∧ C′
)

� −1

as the greatest change inbi-players can never exceed the total number of individua
M(i). Similarly

E

(
Z

mi

∣∣∣ U = k ∧ (C′)c
)

� 1.

We then have

0 = E

(
Z

mi

)
� −2πm

µ

(
Ci

bi

) +
mi∑
k=0

πm
µ

(
Λ

i,bi

k

)
E

(
Z

mi

∣∣∣ U = k ∧ (C′)c
)

. (B.3)

Let

αk = E

(
Z

mi

∣∣∣ U = k ∧ (C′)c
)

.

Rearranging then yields

2πm
µ

(
Ci

bi

)
�

mi∑
k=0

πm
µ

(
Λ

i,bi

k

)
αk. (B.4)

Letk∗ = 	(1−ε)mi
, where	x
 denotes the largest integer smaller thanx. By Lemma 5
(see below), there is an̄α > 0 such that for allk < k∗ αk � ᾱ providedµ is small enough
Also αk � αmi = −µλbi for all k, in particular also for allk � k∗.

Hence,

mi∑
k=0

αkπ
m
µ

(
Λ

i,bi

k

)
�

k∗∑
k=0

ᾱπm
µ

(
Λ

i,bi

k

) −
mi∑

k=k∗+1

µλbi πm
µ

(
Λ

i,bi

k

)
(B.5)

� ᾱπm
µ

(
Bi,c

ε,m

) − µλbiπ
m
µ

(
Bi

ε,m

)
(B.6)

� ᾱπm
µ

(
Bi,c

ε,m

) − µλbi

(
1− πm

µ

(
Bi,c

ε,m

))
(B.7)

� (ᾱ + µλbi )πm
µ

(
Bi,c

ε,m

) − µλbi . (B.8)

Combining inequalities (B.4) and (B.8), we obtain

(ᾱ + µλbi )πm
µ

(
Bi,c

ε,m

) − µλbi �
mi∑
k=0

αkπ
m
µ

(
Λ

i,bi

k

)
� 2πm

µ

(
Ci

bi

)
. (B.9)

Takingµ → 0 whilemiµ tends to infinity in inequality (B.9), we obtain

ᾱ lim
µ→0, miµ→∞ πm

µ

(
Bi,c

ε,m

)
� 0. (B.10)

Hence,πm
µ (B

i,c
ε,m) → 0. �

Lemma 5. Let k∗ = 	(1 − ε)mi
. There is a ᾱ > 0 and a µ̄ > 0 such that for all k < k∗
αk � ᾱ provided µ < µ̄. Also αk � αmi = −µλbi for all k.
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Proof. By definition,

αk = 1

mi

E
(
Z | U = k ∧ (C′)c

)
.

To calculate the termE(Z | U = k ∧ (C′)c) note thatZ can be written as the differenc
of two random variablesX and Y (different from U and V ), whereX(ω,ω′) is the
number of individuals atM(i) who, in the transition fromω to ω′, switch strategy
from something other thanbi to bi , andY (ω,ω′) is the number of individuals atM(i)

who, in the transition fromω to ω′, switch strategy frombi to any other thanbi .
Conditional onU(ω,ω′) = k and(ω,ω′) ∈ (C′)c , bothX andY are binomially distributed
i.e. X ∼ Bin(mi − k,σ (1 − µ) + µ(1 − λbi )) and Y ∼ Bin(k,µλbi ). Hence, the term
E(Z | U = k ∧ (C′)c) is the difference between the expectation of these two bino
variables and given by

E
(
Z | U = k ∧ (C′)c

) = (
σ(1− µ) + µ(1− λbi )

)
(mi − k) − kµλbi .

The termαk is then negative if and only if

k

mi

>
σ(1− µ) + µ(1− λbi )

σ (1− µ) + µ
. (B.11)

In particular ifk = εmi , αk < 0 if

ε >
σ(1− µ) + µ(1− λbi )

σ (1− µ) + µ
. (B.12)

It is easy to see thatαmi < 0. However, for an arbitraryε > 0,αk > 0 for all k < (1− ε)mi ,
providedµ is small enough. Indeed there is aµ̄ > 0 and anᾱ > 0 such that for allµ � µ̄

we have thatαk � ᾱ for all k � k∗. Suppose, for the sake of simplicity, that(1− ε)mi is an
integer. Thenαk∗ = ε(σ (1− µ) + µ(1− λbi )) − (1− ε)µλbi . One might, for instance, se
ᾱ = εσ/2. Also observe that for allk we have thatαk � αmi = −µλbi . �
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