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We study the evolution of preferences under perfect and almost perfect observability in
symmetric 2-player games. We demonstrate that if nature can choose from a sufficiently
general preference space, which includes preferences over outcomes that may depend
on the opponent’s preference-type, then, in most games, only discriminating preferences
(treating different types of opponents differently in the same situation) can be evolutionary
stable and some discriminating types are stable in a very strong sense in all games. We use
these discriminating types to show that any symmetric outcome which gives players more
than their minmax value in material payoffs (fitness) can be seen as equilibrium play of a
player population with such strongly stable preferences.
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1. Introduction

The literature on the evolution of preferences following the “indirect evolutionary approach” by Güth and Yaari (1992)
and Güth (1995), finds, under the assumption of at least partial observability, evolutionary rationales for certain non-
materialistic preferences such as altruistic, spiteful, or reciprocal preferences.1 Dekel et al. (2007) highlight the role of
restricting nature’s choices to certain subsets of preferences in these models and show that only efficient outcomes can be
supported by evolutionary stable preferences if nature can choose among all possible preferences over outcomes. It is thus
key for an evolutionary analysis of preferences to allow for all possible preferences unless we have good reason, e.g. due to
some biological constraints, to restrict preferences in a certain way. However, preferences over outcomes do not encompass
all preferences that are relevant in economics. Recent experiments2 suggest that individuals when playing a game do not

✩ There is a more comprehensive working paper version of this paper, which we will refer to repeatedly in the text as Herold and Kuzmics (2008).
An older version of this paper has previously been circulated under the title of “Evolution of preferences under perfect observability: Almost anything is
stable”. We thank an anonymous advisory editor, two anonymous referees, Eddie Dekel, Jeff Ely, Okan Yilankaya, and participants at the workshop ‘The
Biological Basis of Economics’, at ‘Games 2008’, and at ‘ESEM 2008’ for helpful comments and suggestions.

* Corresponding author.
E-mail addresses: f-herold@kellogg.northwestern.edu (F. Herold), c-kuzmics@kellogg.northwestern.edu (C. Kuzmics).

1 For results of this nature see, e.g., Bester and Güth (1998), Koçkesen et al. (2000b), Koçkesen et al. (2000a), and Heifetz et al. (2007). If opponents’
preferences are not observable (and players are selected randomly from a large population) evolutionary forces favor preferences, which coincide with the
material payoff (evolutionary fitness) (see, e.g., Ok and Vega-Redondo, 2001) or at least lead to equilibrium play “as if” players were purely motivated by
their fitness (see, e.g., Ely and Yilankaya, 2001).

2 Charness and Levine (2007), in a lab-experiment, study “worker” responses to wages, where offered wages are composed of an intended wage choice by
the “firm” and a random component. They show that workers react to the same wage offer differently if that wage is the sum of an observed low intended
wage choice by the firm and a lucky random draw on the one hand or the sum of an observed high intended wage choice by the firm and an unlucky
random draw on the other. Falk et al. (2003), study subjects’ responses to offers in different ultimatum games where the games differ in the commonly
known set of offers available to the proposers. They show that responders’ responses to the same offer are typically highly sensitive to the proposers’ set
of available offers.
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only care about (the distribution over) outcomes. They seem to care about their opponent’s intentions (i.e. preferences) and
discriminate between different types of opponents.3 Also some important models of interdependent preferences consider
preferences that depend on one’s opponent’s preferences. Levine (1998) introduces a class of such preferences, which are
such that one individual’s degree of altruism and spitefulness towards an opponent depends on the degree of altruism and
spitefulness of this opponent. Levine (1998) models these preferences in a well-defined manner and finds that this specifica-
tion is consistent with non-materialistic behavior in several experiments. How generally to model such truly interdependent
preferences is discussed in Gul and Pesendorfer (2007). Sethi and Somanathan (2001) then subject a modified class of the
preferences given in Levine (1998) to an evolutionary analysis. They provide conditions under which purely selfish pref-
erences are not evolutionary stable, as well as conditions under which specific reciprocal types of preferences are stable.
Thus preferences which depend on one’s opponent’s preference type are important from an experimental as well as from a
theoretical perspective.

Once preferences that depend on the opponent’s preferences are introduced, and for good reasons given the above quoted
evidence, it is natural and important to consider all such preferences. In this paper we consider the evolution of preferences
in normal form games under perfect and almost perfect observability, where nature can choose from any sufficiently general
class of such preferences. Results change dramatically. We argue that not only selfish (or materialistic) preferences are not
stable but also general non-discriminating preferences are typically not evolutionary stable except perhaps in a very weak
form, while certain preferences which exhibit discrimination are always (in all games) evolutionary stable in a very strong
sense. Discrimination is thus the key force in the evolution of preferences under observability, and an analysis of preference
evolution needs to consider these discriminating preference types. This result is true for all sets of preference types4 nature
can choose from as long as certain specific (and simple) types are available to nature.

While we thus find a strong case for evolution to lead to discriminating behavior, the indirect evolutionary approach will
not allow to predict the actual outcome of play under observability. In fact, under perfect and almost perfect observability
any symmetric outcome with individuals obtaining more than their minmax fitness can be seen as equilibrium play of
a population with strongly stable preferences. Thus the existing results in the literature on the evolution of preferences
under observability change drastically if we extend the space of possible preferences by allowing also for discriminating
preferences.5 Also, there is no additional extension of the space of preferences that could override our results. To make our
point as clearly as possible, we use the model of preference evolution almost exactly as in Dekel et al. (2007) with the
single change that nature can choose preferences which directly depend on opponents’ types. This and only this accounts
for the difference in results.

The intuition behind the difference between the two results can be explained using Robson’s (1990) metaphor of a secret
hand-shake. Consider a population of incumbents who are all of the same preference type playing some inefficient outcome.
Add a small fraction of mutants entering this population. These mutants come with a new “signal”, the secret handshake,
which helps mutants to identify each other but goes unnoticed by the incumbent. When two mutants meet they recognize
each other by means of their secret hand-shake and can play a high-payoff strategy. When an entrant meets an incumbent
the entrant tries her secret hand-shake, but does not receive one back. The incumbent does not realize she is facing an
entrant and does not change her behavior. The entrant does recognize the incumbent and now behaves as an incumbent as
well. Thus the entrant receives a higher payoff and successfully invades.

The argument in Dekel et al. (2007) is similar, although the hand-shake is not really secret. While the incumbent does
realize when she is facing an entrant (given the almost perfect observability of preferences), she does not change her
behavior (much) in the relevant equilibrium, because she has preferences only over outcomes. In our setting, in contrast,
preferences can be dependent on the opponent’s type, and, because of the almost perfect observability of preferences (the
hand-shake is actually not secret) the incumbent’s behavior can change drastically when she faces an entrant. In particular,
the incumbent can play spitefully against entrants and keep their fitness arbitrarily close to their minmax value. Thus a
highly discriminating type, in an environment of almost perfect observability of preferences, can be stable even if that type
does play an inefficient outcome.

To understand the gist of our argument consider the prisoners’ dilemma, in which the efficient material outcome is
mutual cooperation, while individually each player would maximize his fitness by playing defection. Consider a monomor-
phic population of incumbents who play an inefficient strictly mixed strategy against each other. In Dekel et al. (2007)
these must be induced by some preferences over outcomes only. Suppose a small fraction of mutants enters this popula-
tion. Suppose further that these mutants have coordination game preferences, such that they are just indifferent against the
mixed strategy the incumbents play against each other. Thus these mutants when meeting an incumbent may play the same

3 This is not the only “explanation” of the behavior in these experiments. For instance, it could be due to subjects punishing what they perceive as
non-cooperative behavior. In a repeated version of the game this could be supported as equilibrium behavior and subjects might (mistakenly) act in the
one shot game in the lab as if they were playing in a repeated game.

4 In Herold and Kuzmics (2008) we demonstrate that these sets of preference types nature can choose from can be taken to be “valid” in the sense of
Gul and Pesendorfer (2007). This means they can be taken to be isomorphic to a component of Gul and Pesendorfer’s (2007) “canonical space of behavioral
types” by their Theorem 2.

5 Notice though, that our paper does reinforce the message of Dekel et al. (2007)’s methodological contributions: the results in the literature on the
evolution of preferences depend crucially on the assumptions made on the degree of observability and on restricting attention to a subset of possible
preferences.
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mixed strategy as the incumbents do, but may cooperate against each other. Given that the incumbents’ preferences are over
outcomes only, it is one equilibrium behavior for incumbents, when meeting an entrant, to continue playing their mixed
strategy. Thus, if incumbents play something (materially) inefficient, and have preferences over outcomes only, entrants can
obtain higher material payoffs than incumbents and can successfully invade.

In this paper incumbents’ preferences can depend on their opponents’ preferences. One possible incumbent type is thus
one who behaves in the same way as the incumbents above when meeting another incumbent, but plays defect against any
non-incumbent, driven by the preference to minimize the material payoff of any mutant preference type. Upon entry, any
mutant will thus receive a very low material payoff, arbitrarily close to his minmax payoff, while the expected payoff to
incumbents hardly changes from the payoff he receives against his own type, which is strictly above the minmax value. Any
mutant will thus quickly be driven to extinction. We thus obtain the very different result that every (symmetric) individually
rational outcome6 can be sustained by evolutionary stable (discriminating) preferences.7

Further literature. Discrimination, the driving force in this paper, also plays a role in Banerjee and Weibull (2000)’s analysis8

of neutrally stable strategies in symmetric 2-player games in which players before playing the game send payoff-irrelevant
messages, which can be interpreted as observable traits. Their neutrally stable outcomes, however, must lie in the convex
hull of the base game Nash equilibrium payoffs, which is typically a much smaller set than the set of individually rational
outcomes.

Finally, our argument has an interesting connection to the commitment-device folk theorem by Kalai et al. (2007).9

In their model players can choose a commitment device that can condition on the commitment device chosen by their
opponent. They find a commitment device folk theorem: every individually rational (correlated) strategy in a basic two
player game G can be obtained as a (Nash equilibrium) of an extended commitment game. In essence this equilibrium
of the commitment device game takes the following form: in equilibrium every player is supposed to choose a particular
commitment device that plays the equilibrium strategy if everybody did choose his ‘assigned’ commitment device and
minmaxes a player otherwise.

2. The model

The environment. We will use notation as closely as possible to that in Dekel et al. (2007), hereafter DEY, to facilitate
a comparison. Let G be a symmetric 2-player game with finite action set A = {a1, . . . ,an} and (material) payoff function
π : A × A → R, which can be extended (by taking expectations) to the set of all mixed strategies Δ. Without loss of
generality we will assume that payoffs π are between 0 and 1. Sometimes we use matrix notation. Let M denote the
matrix of material payoffs, with entries all in [0,1]. I.e. for all σ ,τ ∈ Δ we have that π(σ , τ ) = σ Mτ . These material
payoffs π represent fitness or evolutionary success and regulate the future occurrence of each preference type. Players can
differ in their (subjective) preferences over outcomes. In particular, subjective preferences may differ from the material
payoffs. Preferences determine players’ strategies, strategies in turn determine outcomes, the material payoffs of each type,
and thereby the evolutionary success.

A preference type in DEY is a function over outcomes in A × A into the real line. The set of all such preference types can
be represented by the set [0,1]n2

(modulus affine transformations). Here we make our key departure from DEY. We extend
their set of preference types and allow preferences to depend additionally on the opponent’s preference type. The following
approach of modeling preferences that condition on the opponent’s preferences avoids any potential inconsistencies.10

Let Θ be a set of types. At this point this can be anything, later we will see that each type θ ∈ Θ corresponds to a
certain preference type. Now consider a function u :Θ × Θ × A × A → [0,1]. Again, at this point this can be any function.
This function u induces a function uθ :Θ × A × A → [0,1] for every θ ∈ Θ . We interpret uθ as the preference-function of
a type θ . Note that by assuming uθ is constant in its first argument we could replicate all preference types of DEY. By
allowing uθ to vary also in its first argument, we permit that an individual’s preferences over outcomes can depend on the
type of the opponent.

6 The original realm of this type of folk theorems are infinitely repeated games with very patient players. Some papers, e.g. Fudenberg and Maskin (1990)
and Binmore and Samuelson (1992), employ concepts of evolutionary stability to refine the set of equilibria. Notice that the setting as well as the purpose
of these papers is very different from ours.

7 While we assume that (almost) perfect observability means that when an incumbent faces a mutant there is probability close to 1 that she in fact
recognizes the exact type of her opponent, this is not always necessary for our result to go through. In the prisoners’ dilemma, for instance, as long as the
incumbent knows that the opponent is of any non-incumbent type, even though she may not know which, she can always simply play defect against such
an opponent. This makes it impossible for the entrant to do well, which in turn makes it possible to stabilize essentially any outcome.

8 The title of their original working paper, Banerjee and Weibull (1993), makes this explicit: ‘Evolutionary selection with discriminating players’.
9 In fact, our definition of a preference space, which guarantees the consistency of the interdependent preferences, was originally inspired by their

definition of a device space.
10 A ‘naive’ approach, in which the utility of a player can depend directly on the opponent’s utility without further restrictions, could lead to circular

statements and ill-defined preferences. Consider, for example, one player who is spiteful towards a second player and receives a utility of +1 if his
counterpart receives a negative utility and −1 if his counterpart receives a nonnegative utility. The second player is altruistic and receives a positive utility
of +1 if and only if his counterpart receives a positive utility. Then the spiteful player 1 is happy only if he is unhappy. Note that our definitions of a
preference space makes sure that such problems cannot arise.
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Let U = {uθ :Θ × A × A → [0,1]} denote the set of all preferences induced by u. If we assume, without loss of generality,
that uθ �= uθ ′ for any θ, θ ′ ∈ Θ , we then have a bijection between Θ and U . Hence, Θ can again be thought of as the set
of all preference types. Note that we could also assume, as in von Widekind (2004), that preferences are not necessarily of
expected utility form, i.e. we could have u :Θ ×Θ ×Δ×Δ → [0,1]. This would generate even more preferences, but would
not change our main results (see Herold and Kuzmics, 2008).

Definition 1 (Preference space). A space of preferences of G is a pair (Θ, u : Θ ×Θ × A × A → [0,1]). Θ is a nonempty set of
possible preference types. We interpret uθ1 (θ2,a1,a2) ≡ u(θ1, θ2,a1,a2) ∈ [0,1] as the subjective utility of a player of type
θ1 playing a1 if he plays against an opponent of type θ2 who plays a2.

As in DEY, individuals observe the opponent’s type (perfectly) with probability p ∈ [0,1], while with remaining probabil-
ity 1 − p an individual observes the uninformative signal φ.

The solution concept. The main point of this paper is to show that with a rich enough set of preference types any symmetric
outcome above the minmax material payoff is stable. Hence, using a more demanding stability concept strengthens our
results. We use an extremely demanding stability concept, that we call strong stability. In particular, strong stability of an
outcome (as defined below) implies stability of that outcome according to the definition of DEY. Conveniently, many things
will simplify.

Let P (Θ) denote the set of all finite support probability distributions on Θ .11 Let μ ∈ P (Θ). Let, as in DEY, Γp(μ)

denote the Bayesian game in which nature first draws two types independently according to μ and then each individual
independently observes the other’s type with probability p ∈ [0,1], while with probability 1 − p a player observes the
uninformative signal φ. Let Γ (μ) denote the complete information game corresponding to p = 1.

A strategy for preference type θ is a function bθ : C(μ)∪{φ} → Δ, where C(μ) denotes the support of μ. Let uθ (θ
′, σ , τ )

denote the expected subjective utility a player with preference type θ receives when playing mixed strategy σ ∈ Δ against
the observed type θ ′ who plays τ ∈ Δ. Let b denote the profile of all bθ -functions. The profile b is an equilibrium profile if,
for every θ, θ ′ ∈ C(μ):

bθ (θ
′) ∈ arg max

σ∈Δ

(
puθ

(
θ ′, σ ,bθ ′ (θ)

) + (1 − p)uθ

(
θ ′, σ ,bθ ′ (φ)

))
,

and

bθ (φ) ∈ arg max
σ∈Δ

Eθ ′∼μ

[
puθ

(
θ ′, σ ,bθ ′ (θ)

) + (1 − p)uθ

(
θ ′, σ ,bθ ′ (φ)

)]
.

Let B p(μ) denote the set of all such equilibrium profiles in Γp(μ). Let Πθ(μ|b) denote the expected material fitness of
preference type θ ∈ C(μ) given the distribution of types μ and the equilibrium profile b ∈ B p(μ), i.e. as in DEY,

Πθ(μ|b) =
∑

θ ′∈C(μ)

[
p2π

(
bθ (θ

′),bθ ′ (θ)
) + p(1 − p)π

(
bθ (θ

′),bθ ′ (φ)
)

+ p(1 − p)π
(
bθ (φ),bθ ′ (θ)

) + (1 − p)2π
(
bθ (φ),bθ ′ (φ)

)]
μ(θ ′), (1)

or in matrix notation

Πθ(μ|b) =
∑

θ ′∈C(μ)

[
p2bθ (θ

′)Mbθ ′ (θ) + p(1 − p)bθ (θ
′)Mbθ ′ (φ)

+ p(1 − p)bθ (φ)Mbθ ′ (θ) + (1 − p)2bθ (φ)Mbθ ′ (φ)
]
μ(θ ′).

For a configuration (μ,b) let x(μ,b) be the induced probability distribution over actions A × A. Let μ ∈ P (Θ) be the
incumbent preference distribution. Let μ′ ∈ P (Θ) be a distribution over entering mutant preferences. Suppose that alto-
gether this μ′ distribution invades with a small fraction ε > 0. The post-entry distribution of preferences is then given
by μ̃ε = (1 − ε)μ + εμ′ . For a given configuration (μ,b), a parameter δ, and a post-entry population μ̃ the set of nearby
equilibria is given by

Bδ
p(μ̃|b) = {

b̃ ∈ B p(μ̃):
∣∣x(b̃, μ̃) − x(b,μ)

∣∣ < δ
}
.

Definition 2 (Strong stability). A configuration (μ,b) is strongly stable if there exists a preference type θ ∈ Θ such that:

1. μ = μθ , where μθ is the Dirac distribution on θ , and b is the unique equilibrium of Γp(μθ ), i.e. B p(μθ ) = {b}.
2. for every δ > 0 there is an ε̄ > 0 such that for every ε ∈ (0, ε̄) and for every μ′ ∈ P (Θ) we have B p(μ̃ε) = Bδ

p(μ̃ε |b) �= ∅
and Πθ(μ̃ε |b′) > Πθ ′ (μ̃ε |b′) for every θ ′ �= θ with θ ′ ∈ C(μ′) and for every b′ ∈ B p(μ̃ε), where μ̃ε = (1 − ε)μθ + εμ′ .

11 We conjecture that it is not necessary to restrict attention to distributions over types with finite support.
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An outcome x is strongly stable if there exists a strongly stable configuration with that outcome, i.e. there exists a strongly
stable (μ,b) with x = x(μ,b).

In other words, we call an outcome and its supporting configuration strongly stable if and only if (1) it is induced by
a configuration which consists of a single incumbent preference-type, (2) with a strategy which is the unique equilibrium
given the game induced by this single type, (3) such that for any small fraction of entering mutant preference types there
always exists an equilibrium, (4) while all resulting equilibria remain nearby, (5) and in all these equilibria the incumbent
preference-type receives a strictly higher material payoff than any other type in the post-entry configuration. This definition
may seem too demanding. Yet we can prove our main result for strong stability. As strong stability of an outcome implies
stability of an outcome in the sense of DEY12 this only strengthens our results.

3. On the (in-)stability of non-discriminating preferences

In this section we argue that a configuration supported only by non-discriminating preferences is not stable against the
invasion of discriminating preference types except perhaps in a very weak sense. An evolutionary analysis of preferences,
thus, needs to consider discriminating preferences lest it ignores an important evolutionary force.

Firstly, in any game there is certainly no non-discriminating preference type which supports a strongly stable configu-
ration. Consider any non-discriminating incumbent type and a discriminating preference type whose utility over outcomes
is identical to the incumbent type’s whenever faced with either the incumbent type or his own type but whose utilities
over outcomes differ when facing a third preference type that is not yet present in the support of the population. This
discriminating type does equally well as the incumbent in contradiction to strong stability. While we will show that every
outcome with individually rational material payoffs is strongly stable (supported by discriminating preferences) there are,
thus, no non-discriminating preferences that support any outcome as strongly stable, if embedded in the richer space of
possibly discriminating preferences.

Strong stability is a very demanding stability concept. This strengthens our existence results in the next section but
makes the above non-existence of strongly stable non-discriminating preferences a weak result. In an effort to strengthen
this result we provide an argument that for a broad class of games non-discriminating preferences are not immune to
“evolutionary drift”,13 which will ultimately lead far away from these preferences (while there is no such drift back to
these preferences). More precisely, let Θ be a sufficiently large preference type space, e.g. the canonical one of Gul and
Pesendorfer (2007). Let μ ∈ P (Θ) be a given probability distribution over types with finite support with the interpretation
that μ is a vector of proportions of preference types in Θ . Let the support of μ be denoted by Θμ = C(μ).

We call a configuration (μ,b) not robust to drift if it is either not stable in the sense of DEY or if there is a finite set
of types Θ̂ ⊂ Θ with Θμ ⊂ Θ̂ such that for all δ > 0 there is a pair of functions f : [0,1] → P (Θ̂), with f (0) = μ and
f continuous, and g : [0,1] → Δ|Θ̂| , with g(0) = b and g(t) ∈ Bδ

p( f (t)|b) for all t ∈ [0,1], such that ( f (t), g(t)) is balanced
(see Dekel et al. (2007); i.e. all types in the support of f (t) obtain the exact same material payoff given behavior g(t)), and
finally f (1) is not DEY-stable. Thus, a configuration is not robust to drift if there are mutant preference types which can
gradually and persistently enter the population until eventually a configuration is reached which is not DEY-stable, while
on this gradual path the mutants always earn the same fitness as the incumbents.

We here focus on games in which there is a single highest material payoff, which is strictly above the efficient outcome.
To make this more precise consider any (symmetric 2-player) game G with action space A, mixed action space Δ, and
material payoffs π . Define π e(G) = maxσ∈Δ π(σ ,σ ) as the efficient payoff, and π∗(G) = maxσ ,τ∈Δ π(σ , τ ) as the highest
possible payoff. Let G then be the class of games G for which π e(G) < π∗(G). Note that by definition we must have
π e(G) � π∗(G). Thus we are only ruling out games in which π e(G) = π∗(G) such as coordination games. Thus, this broad
class of games includes, in particular, any game in which the efficient outcome is not a Nash equilibrium (in material
payoffs), such as the prisoners’ dilemma. Also we construct just one (very simple) path evolutionary drift can take to
illustrate our point. Often other paths would serve the same purpose.

If the game is such that there are no DEY-stable non-discriminating preferences, then our point is already made. Con-
sider, thus, a game G ∈ G and a DEY-stable configuration (μ,b) with finite support of μ given by Θμ and all types θ ∈ Θμ

have preferences over outcomes only. Then, we know from Dekel et al. (2007) that under observability efficiency of the in-
duced outcome is a necessary condition for DEY-stability within the space of non-discriminating preferences over outcomes.
Thus, efficiency of the induced outcome must also be necessary for the stability of non-discriminating preferences if we
enlarge the space of potential entrants to include discriminating preference types. In such a configuration incumbents earn
a material payoff of π e(G). Now we construct a continuous path along which entrants earn the same payoff as incumbents
and which is such that it leads to a configuration in which a new entrant earns strictly more than all incumbents. Say there
are k types in Θμ . Then let Θ̂ consist of 2k + 1 preference types, all types in Θμ plus another k + 1 types. In fact, let us
write Θ̂ = Θμ ∪ Θμ,∗ ∪ {θ∗} as follows. For every θ ∈ Θμ let there be a θ ′ ∈ Θμ,∗ with the property that θ ′ shares the
same preferences as θ when facing any type in Θμ ∪ Θμ,∗ , yet θ ′ “loves” preference type θ∗ , where “love” means that her

12 See Herold and Kuzmics (2008) for details.
13 See, e.g., Binmore and Samuelson (1999) for a discussion of evolutionary drift and its consequences.
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preferences over outcomes are her opponent’s material payoffs. Let type θ ′ , thus derived from type θ , be called the discrim-
inating type corresponding to type θ . Let Θμ,∗ be the minimal such set, i.e. it has exactly k elements. Finally, let preference
type θ∗ have some arbitrary preferences when meeting her own type, material preferences when meeting any type in
Θμ,∗ , and preferences to minimize the opponent’s material payoff against all other types. Let f (0) = μ and f (1) = μ′ with
μ′(θ ′) = μ(θ), where θ ′ ∈ Θμ,∗ is the discriminating type that corresponds to type θ ∈ Θμ . We can then easily construct
a continuous function f (t) from f (0) and f (1), which can be interpreted as a process of gradual replacement of all types
θ ∈ Θμ by their corresponding discriminating types θ ′ ∈ Θμ,∗ . Then, by construction, a function g(t) ∈ Bδ

p( f (t)|b) can be
found for any δ > 0. In fact aggregate behavior along the path g(t) can be taken to be identical to behavior g(0) = b. Finally,
the configuration ( f (1), g(1)) is not DEY-stable as type θ∗ , now “loved” by everyone, can successfully invade, because her
material payoff is arbitrarily close to π∗(G), whereas incumbents’ payoffs are arbitrarily close to the strictly smaller pay-
off π e(G). Thus the original configuration (μ,b), consisting of purely non-discriminating preference types, is not robust to
drift.

4. Stable outcomes and discriminating preferences

We now turn to the question as to which outcomes can and cannot be sustained with strongly stable discriminating
preferences. Let π̄ denote the expected material payoff each of the two players could guarantee for him- or herself, i.e. π̄ =
maxσ∈Δ minτ∈Δ σ Mτ . First, an outcome with material payoff below the material minmax value of π̄ cannot be sustained
in even a DEY-stable configuration, and, hence, can also not be sustained in a strongly stable configuration. The intuition
behind this result is that a mutant whose preferences coincide with the material payoffs will always do at least as well as
the minmax payoff and, hence, is able to invade successfully. The formal statement and proof of this result is in Herold and
Kuzmics (2008).

In order to prove our main results the following definitions and lemma are useful. For any y ∈ int(Δ), with all yi > 0,
consider the following subjective payoff matrix

A y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 1
c(y)yn

1
c(y)y1

0 0 · · · 0 0

0 1
c(y)y2

0 · · · 0 0

0 0
. . .

. . .
.
.
. 0

.

.

.
.
.
.

. . .
. . . 0

.

.

.

0 0 · · · 0 1
c(y)yn−1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where c(y) = ∑n
i=1

1
yi

. This payoff matrix is such that whatever the opponent plays the other player always strictly prefers
to play one strategy higher, except if the opponent plays the last strategy, then the other player strictly prefers to play the
first strategy. If both players share this payoff matrix then the resulting game has a unique symmetric Nash equilibrium
which is given by exactly y. If n = 2 this game is the Hawk–Dove game. For n � 3 one might call this a generalized Hawk–
Dove game.

For y /∈ int(Δ), i.e. yi = 0 for some i ∈ A, we have to modify the definition of A y somewhat. Intuitively we just define
A y as before but only for those rows and columns i which are such that yi > 0. The rest of the matrix is then filled
with zeros and occasional 1’s. To be more precise there are two cases which need separate treatment. First, let y ∈ Δ

be such that yi = 1 for some i ∈ A. Then A y is such that A y
ij = 1 for all j for i such that yi = 1 and all other A y

ij ’s are

equal to 0 (action i is a dominant strategy). Second, and without loss of generality,14 let y ∈ Δ be such that yi = 0 for all
i � l and yi > 0 for all i > l for some l � n − 2. Let c̄(y) = ∑

i: yi>0
1
yi

, i.e. c̄(y) = ∑n
i=l+1

1
yi

. Then for rows and columns
l + 1 and above define A y just as above, but replacing c(y) with c̄(y). All other rows, the first l, shall be zeros only. To
then ensure uniqueness of the symmetric equilibrium y in this case we need to have at least one positive element in

14 Alternatively, one could define A y for such y, with yi = 0 for some i and yi < 1 for all i, as follows: Let i′ = min{ j: y j > 0} and let i′′ = max{ j: y j > 0}.
Then A y

i′ i′′ = 1
c̄(y)yi′′

. Furthermore A y
ij = 1

c̄(y)yi
if yi > 0 and j = max{ j′: j′ < i ∧ y j′ > 0}. Finally A y

ji = 1 for j = min{ j′ > i: y j′ > 0} when i is such that

yi = 0 and all remaining A y
ij ’s are equal to 0.
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every one of the first l columns. Let, in fact A y
ni = 1 for all 1 � i � l. The matrix A y , in this case, can then be written as

follows:

A y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0 · · · · · · · · · · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 · · · 0 0 · · · · · · · · · · · · 0

0 · · · 0 0 0 0 · · · 0 1
c̄(y)yn

.

.

. · · · .
.
. 1

c̄(y)yl+1
0 0 · · · 0 0

.

.

. · · · .
.
. 0 1

c̄(y)yl+2
0 · · · 0 0

.

.

. · · · .
.
. 0 0

. . .
. . .

.

.

. 0

0 · · · 0
.
.
.

.

.

.
. . .

. . . 0
.
.
.

1 · · · 1 0 0 · · · 0 1
c̄(y)yn−1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This defines A y for all y ∈ Δ. The following result is about the game induced by these generalized Hawk–Dove preferences
and shows that the game has a unique symmetric Nash equilibrium.

Lemma 1. The symmetric 2-player game with payoff-matrix A y , with y ∈ Δ, has a unique symmetric Nash equilibrium, which is y.

Proof. We will do the proof for the case y ∈ int(Δ) only. The proof extends to all y ∈ Δ straightforwardly. Let y ∈ int(Δ)

and let A y be defined as above. Then y is obviously the only symmetric Nash equilibrium with full support as it is the only
vector which equalizes the payoff for all strategies of the opponent. Suppose there is a symmetric NE z ∈ Δ with non-full
support. I.e. let z j = 0 for some j ∈ {1, . . . ,n}. Suppose first that j = n. Then strategy a1, being good only against an , is
strictly dominated by any mixture with full support in A \ {an}, and, hence, we must have z1 = 0. Suppose now that j < n,
the only other case. But then strategy a j+1 is strictly dominated by any mixture with full support in A \ {a j}, and, hence, we
must have z j+1 = 0. Iterating this argument provides us with zi = 0 for all i ∈ {1, . . . ,n}, which provides a contradiction. �

Let Mt denote the transpose of matrix M , the matrix of material payoffs.

Definition 3. A fully discriminating preference type, indexed by y ∈ Δ, denoted by θ y , is such that uθ y (θ y, σ , τ ) = σ A yτ and
uθ y (θ,σ , τ ) = σ(In − Mt)τ for all θ ∈ Θ , θ �= θ y , where In denotes the n × n-matrix of all 1’s.

The fully discriminating preference type with index y, therefore, has the following preferences over outcomes. When
facing her own type θ y her preferences are of the generalized Hawk–Dove variety with subjective payoff matrix A y as
described above, and when facing any other type her preferences are spiteful with subjective payoff matrix In − Mt, implying
that she will seek to minimize her opponent’s material payoff in this case. Now we can state our main result.

Proposition 1. Let Θ be an arbitrary preference space, except that it contains the fully discriminating preference type θ y , as defined
in Definition 3, for some y ∈ Δ with π(y, y) > π̄ . Then, there exists a p̄ ∈ (0,1) such that for all degrees of observability p with
p̄ � p � 1 the configuration (μ,b) is strongly stable, where μ is the Dirac measure putting probability 1 on θ y and b is such that
bθ y (θ y) = bθ y (φ) = y.

Proof. First, given the preferences of the fully discriminating type θ y and by Lemma 1 we have that B p(μθ ) = {bθ y }. Second,
consider, without loss of generality, any μ′ ∈ P (Θ) such that θ y /∈ C(μ′). Let μ̃ε = (1 − ε)μ + εμ′ . Note that we must have
B p(μ̃ε) �= ∅. Now we need to characterize any b′ ∈ B p(μ̃ε).

We need to determine b′
θ :Θ ∪ {φ} → Δ for all θ ∈ C(μ′) ∪ {θ y}. First of all, we know there exists such a symmetric

b′ ∈ B p(μ̃ε). We really only care about how type θ y behaves in any such b′ . There are 3 components to this. We need to
determine how type θ y behaves when meeting and observing its own type, when meeting and observing another type, and
when observing φ. The subjective payoff to type θ y when recognizing its own type and using strategy z ∈ Δ, while everyone
else plays according to b′ , is given by puθ y (θ y, z,b′

θ y (θ
y)) + (1 − p)uθ y (θ y, z,b′

θ y (φ)), which, by the fact that uθ is of the
expected utility form, equals

uθ y
(
θ y, z, pb′

θ y

(
θ y) + (1 − p)b′

θ y (φ)
)
.

Consider first the case y ∈ int(Δ). If p is sufficiently close to 1, by the same argument as in the proof of Lemma 1, we cannot
have that (b′

θ y (θ
y))i = 0 for any i ∈ {1, . . . ,n}. Hence, the only possibility is that (b′

θ y (θ
y))i > 0 for all i ∈ {1, . . . ,n}. This

implies that type θ y must be indifferent between all strategies in A. This implies that p(b′
θ y (θ

y))i + (1 − p)(b′
θ y (φ))i = yi ,

or equivalently (b′
y (θ

y))i = yi−(1−p)(b′
θ y (φ))i , which, for p close to 1, is close to yi . This alone is sufficient to show that for
θ p
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any δ > 0 there is an ε̄ > 0 such that for all ε ∈ (0, ε̄) we have that any such b′ ∈ B p(μ̃ε) also satisfies b′ ∈ Bδ
p(μ̃ε) for p

sufficiently close to 1.
This is also sufficient to show that, for p close to 1 and for small ε > 0, the material payoff of type θ y is strictly above

that of any other type θ ∈ μ′ for any μ′ ∈ P (Θ). To see this let y′ = b′
θ y (θ

y). The material payoff to type θ y is bounded
from below by (1 − ε)[p2π(y′, y′) + O (1 − p)], where O (1 − p) is a term that converges to 0 as 1 − p tends to 0. This
lower material payoff bound, hence, tends to π(y, y) if ε tends to 0 and p to 1. The material payoff to any other type θ is
bounded from above by (1 − ε)[p2π̄ + O (1 − p)] + ε , where again O (1 − p) is a term that converges to 0 as 1 − p tends
to 0. This upper material payoff bound, hence, tends to π̄ if ε tends to 0 and p to 1. Hence, for p sufficiently close to 1
and ε sufficiently close to 0 we have that Πθ(μ̃ε |b′) > Πθ ′ (μ̃ε |b′) for every θ ∈ C(μ) and every θ ′ ∈ C(μ′) and for every
b′ ∈ B p(μ̃ε).

In the general case y ∈ Δ the same arguments apply. Notice that all actions i with yi = 0 are strictly dominated for (and
thus not played by) type θ y when facing his own type. �

Proposition 1 shows that π(y, y) > π̄ is a sufficient condition for strong stability of an outcome y. Thus, under ob-
servability the indirect evolutionary approach has almost no predictive power with respect to outcomes beyond that the
outcome y has to satisfy the necessary condition π(y, y) � π̄ . Any outcome induced by a single type choosing strategy
y ∈ Δ is strongly stable for sufficiently large p as long as the resulting material payoff π(y, y) is individually rational.

Proposition 1 also provides specific, relatively simple preferences for which this outcome is strongly stable. These pref-
erences are such that the incumbent type has generalized Hawk–Dove preferences when her opponent is of the same type,
but when her opponent is of another type she has preferences which are diametrically opposed to the material payoffs of
the opponent. These are our fully discriminating preference types. Typically there are other strongly stable preferences. It
is for instance not necessary for the incumbent to minimize her mutant opponent’s fitness as long as she plays something
that is materially worse for the entrant than what the incumbents obtain. Any strongly stable preferences, however, must
be of a discriminating type.

Finally, note that the preference space Θ in Proposition 1 is arbitrary as long as it contains the fully discriminating
preference type θ y . This implies that even if we added all possible other preference types (i.e. even if we consider Gul
and Pesendorfer’s (2007) canonical space of behavioral preferences) this discriminating preference type θ y is still strongly
stable. In fact, nothing changes in our argument even if we also allow preferences of a non-expected utility form as in von
Widekind (2004). Thus, there are no additional preference types whose presence could overturn our result.

5. Extensions

All claims in this section are substantiated in Herold and Kuzmics (2008), the working paper version of this paper. Given
that our definition of strong stability requires that an outcome be supported by a single type we can only obtain outcomes
x ∈ P (A × A) which are of the symmetric product form, i.e. x = y · y, where y ∈ Δ. This derives from the simple fact that if
there is only one type all players of this type must choose the same mixed strategy when playing against each other. These
results, however, can easily be extended to asymmetric outcomes if players can also condition on their player position.

For the case of no and almost no observability Dekel et al. (2007) show that being a Nash equilibrium of G , i.e. in
material payoffs, is a necessary condition for an outcome to be DEY-stable. Their argument still goes through in our setting:
Under no and almost no observability being a Nash equilibrium is a necessary condition for DEY-stability (and therefore also
necessary for strong stability). DEY show also that being a strict Nash equilibrium is a sufficient condition for DEY-stability
under no observability. This also remains valid in our setting. Under almost no observability the conditions for DEY-stability
are somewhat different in DEY and in our setting.

For the case of any arbitrary degree of observability p between 0 and 1, one might ask whether the transition from only
Nash equilibria being stable for small p to anything above the minmax-value being stable for large p is a continuous one
or whether there is a jump at some level of p. It turns out that either of these can be the case depending on the game at
hand.

Finally, consider a random distribution over games instead of a single one, where, however, players always know which
game they are playing. Our argument hardly changes. Consider a meta-outcome (a combination of outcomes in all games)
and a type that against his own type has preferences such that each of these outcomes constitutes a subjective equilibrium
in the respective game, yet minimizes the expected material payoff of any other type in each game. This can be constructed
very much as we construct our discriminating types in this paper. Again, this fully discriminating type stabilizes any meta-
outcome with expected payoffs above the overall minmax payoff. Notice that in this scenario the material payoff of the
incumbent can even be below the minmax value for some games, as long as the average payoff is greater than the expected
payoff of a player who receives the minmax payoff in all games.

6. Discussion

A wide range of evidence from casual introspection to lab-experiments strongly suggests that individuals do not only
care about outcomes. They also care about the motives or intentions (i.e. preferences) that lead to these outcomes. This
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point, as experimentally made in e.g. Charness and Levine (2007), is already present in Adam Smith’s (1976) Theory of
Moral Sentiments:

We do not, therefore, thoroughly and heartily sympathize with the gratitude of one man towards another, merely because
this other has been the cause of his good fortune, unless he has been the cause of it from motives which we entirely go
along with. [Smith, The Theory of Moral Sentiments, II.I.18.]

For instance, we may well treat someone who seems to be a nice, altruistic person very differently from someone considered
opportunistic or even spiteful. We, thus, discriminate between players with different preferences.

Such discriminating preferences have been used in important work on interdependent preferences such as Levine (1998)
and Gul and Pesendorfer (2007) and analyzed as to their evolutionary merit in Sethi and Somanathan (2001). Especially
under observability we see no reason why nature would be restricted to only choose preferences over outcomes. Once we
allow nature to choose preferences that depend on opponent’s preferences there is also no obvious natural restriction as
to the particular form these preferences can take. We, thus, also in the spirit of Dekel et al. (2007), consider all possible
preferences. Furthermore, the fully discriminating preference type which we use to establish our folk-theorem like result is
rather simple. Thus, even if we want to consider only a subclass of plausible discriminating preferences, these preferences
should be included and our results remain valid.

This leads to a related question we want to address before we discuss the implications of our findings. Could it be that
such a richer preference space makes the observability assumption more demanding relative to the existing literature? If
we want her to reveal her relevant preferences in a setting where preferences are over outcomes only, it would in principle
be enough to ask for her best response correspondence. If preferences depend on the opponent’s preferences this might be
more difficult.15

In any case it is very questionable in both settings whether players would be willing to reveal their types by answering
such questions truthfully, in particular if the opponent’s future play depends on this information. Observability is therefore
often interpreted in a way that two individuals with different preferences are indeed visibly different. For the sake of the
argument let us say they have different “genetic codes” and this fact cannot be hidden. I.e. one can indeed see or smell
or generally sense that any two individuals with different preferences are different. But then any two different types of
individuals in this paper are just as different as any two different types of individuals with preferences over outcomes only.
Finally, note that perfect observability is not needed for our results and examples, given in Herold and Kuzmics (2008), can
be found in which the degree of observability can be far from perfect and yet our results go through.

We, thus, motivated by the above arguments, study the evolution of preferences under observability when nature is
essentially unrestricted in the set of preferences, allowed to depend on opponent preferences, she can choose from.

The results in this paper can be separated into three main findings. First, once we allow nature to choose among this
large set of preferences, we find that those preferences, which depend on outcomes only, i.e. which are non-discriminating,
are typically not evolutionary stable, unless perhaps in a very weak sense. Second, there are, however, strongly stable
preferences which exhibit discriminating behavior. Third and finally, almost any (symmetric) outcome can be sustained by
such discriminating and strongly stable preferences.

Methodologically our findings reinforce the point made by Dekel et al. (2007) that the choice of preference space at
nature’s disposal is crucial in the evolution of preferences.

Our results, however, are very different from any result in the literature. The first and second result imply that evo-
lutionary forces such as commitment effects and the drive towards efficiency are typically overpowered by the force of
discrimination, a force so far neglected in the evolutionary literature. Furthermore, the fully discriminating preference type
which we use to prove our folk-theorem type result is a fairly simple and natural type, who does whatever it does against
its own type and minimizes the material payoff of everyone else. Negative discrimination against someone perceived as
being not of your own kind seems to be an unfortunate, yet common, human trait. Given the simplicity of these types we
would also like to argue that any model of preference evolution should, thus, either consider these types or have a good
reason why nature is not able to endow an individual with these preferences.

The third result, furthermore, implies that very different ways how to play a game can be part of a stable equilibrium.
This suggests that the evolutionary force of discrimination enables a potentially huge heterogeneity of “cultures” in different,
separated, societies. Thus, in the light of our findings it would not be surprising if the same game is played very differently
in these different societies.

Note also that we obtain these results for any preference space nature has at her disposal as long as the above identified
simple type is among it. Finally, there is no additional generalization of the preference space that could overturn these
results.16

15 Note, however, that we can take our preference space to be valid in the sense of Gul and Pesendorfer (2007). This implies that you could identify
preference types sequentially from responses to similar questions.
16 Even introducing non-expected utility preferences as in von Widekind (2004) would not change the result.
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