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The empirical joint distribution of return pairs on stock indices displays high
tail-dependence in the lower tail and low tail-dependence in the upper tail. The
presence of tail-dependence is not compatible with the assumption of (conditional)
jointnormality. The presence of asymmetric tail-dependence is not compatible with
the assumption of a joint student-t distribution. A general test for one dependence
structure versus another via the profile likelihood is described and employed in a
bivariate GARCH model, where the joint distribution of the disturbances is split
into its marginals and its copula. The copula used in the paper is such that it allows
for the existence of lower tail-dependence and for asymmetric tail-dependence, and
is such that it encompasses the normal or t-copula, depending on the benchmark
tested. The model is estimated using bivariate data on a set of European stock
indices. We find that the assumption of normal or student-t dependence is easily
rejected in favour of an asymmetrically tail-dependent distribution. Copyright ©
2002 John Wiley & Sons, Ltd.

INTRODUCTION

The dependence structure of international finan-
cial markets has always attracted attention from
various fields of finance including portfolio selec-
tion, pricing of complex financial products, and
risk management. One of the crucial questions in
risk management is how to aggregate individual
risk into overall portfolio risk. At some point in
the aggregation process, one has to make assump-
tions about the dependence structure between the
factors which drive individual risk.

The standard practice in assessing the overall
risk of a portfolio is to assume that asset prices
are driven by jointly normal random variables.
The assumption of joint normality (or ellipticity)
is often implicitly made through the use of
linear correlation as the measure of dependence.
One example is JPMorgan’s CreditMetrics (1997),
where credit ratings are driven by unobserved
jointly normal distributions. However, different
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joint distributions with the same correlation
matrix can well give rise to different Values-
at-Risk (see, for example, Embrechts et al., 2002).

One approach in the Value-at-Risk literature to
circumvent the dependency problem is to look
at return series of an entire portfolio rather than
at the set of univariate return series. Since it
is then possible to investigate the distribution
of the portfolio return and its Value-at-Risk
directly, dependence or correlation are not an
issue. Examples of this approach are Engle and
Manganelli (1999), and McNeil and Frey (2000).
Engle and Manganelli (1999) propose a modified
GARCH model to model the evolution of the
Value-at-Risk directly, while McNeil and Frey
(2000) suggest using a GARCH model to estimate
the conditional mean and variance of the portfolio
return first, and then modelling the distribution of
the residuals by employing extreme value theory
and historical simulation, to provide estimates for
the Value-at-Risk.

In considering problems such as the selection
of optimal portfolio weights, however, it is nec-
essary to understand the dependence structure
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between individual assets. One approach to
address dependency is to model correlation itself
as changing over time. Studies on international
equity markets such as Longin and Solnik (1995)
document that correlation is higher in periods
of larger volatilities. Boyer et al. (1999) suggest
that the widely observed difference of correla-
tions during periods of high and low market
volatilities, the so-called correlation breakdown,
may reflect time-changing (conditional) volatili-
ties rather than a structural break in the under-
lying distribution. They show that the observed
sample correlations, conditional on one variable
falling below/above a certain threshold value,
may differ substantially even if the true correla-
tion is constant. Loretan and English (2000) find
that this theoretical relationship can account for a
large part of empirical correlation movements.

Acknowledging the correlation breakdown cri-
tique, Longin and Solnik (2001) still confirm time-
changing correlations in international equity mar-
kets. In fact, their results suggest that the crucial
condition for high correlation is not high volatility
itself, but high volatility coupled with negative
returns. Longin and Solnik show that the correla-
tion between stock return series tends to be higher
in market downturns than in market upturns, a
fact for which standard symmetric models of mul-
tivariate stock returns cannot account. Indeed, the
authors reject joint normality for the negative tail
of the multivariate distribution, but not for the
positive tail. In other words, there seems to be
significant dependence in the lower tail of the
joint distribution, which cannot be explained by
assuming joint normality with its implied zero
tail-dependence. One drawback of the approach
of Longin and Solnik (2001) is that it uses extreme
value theory and so concentrates on the tails of
the distribution while neglecting the rest. Yet for
many applications we want a complete model for
the joint behavior of the return series, which will
describe both the tails and the central part of the
distribution.

This paper introduces an alternative way of
modelling (asymmetric) dependence in asset
returns, which can also capture the return dynam-
ics of the univariate time series. We propose
a bivariate (multivariate) GARCH-model with
a dependence structure which allows for the
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existence of lower tail-dependence by employ-
ing copulas. Our model is similar to a number
of models recently put forward by Patton (2001),
Rockinger and Jondeau (2001), Hu (2002), and
Mashal and Zeevi (2002). They also suggest mod-
elling financial return series through bivariate
GARCH models with copulas, in slightly differ-
ent versions. The main contribution of our paper
is the provision of a general test procedure of test-
ing various copulas against each other. This is the
normal or t versus a few selected copulas which
are able to display positive and asymmetric lower
and upper tail-dependence. In addition, the paper
presents empirical evidence on the dependence
structure of European stock markets.

The starting point of our discussion is the obser-
vation that a multivariate distribution function F
can be split into two parts. The first part is the set
of univariate distribution functions of each of the
random variables (marginals) involved, F;, the
second part is the dependence structure between
the random variables, the copula C.

FXi, ..o %) = CF1(x), ... Fp(X0)) M

It seems logical to make use of copulas in
risk management in order to capture different
natures of risk, the individual and the portfolio
risk. Obviously, one particular copula has already
been used extensively, that is the copula induced
by the joint normal distribution. The normal
or Gaussian copula is entirely specified by its
functional form and the correlation matrix of all
random variables (assets) involved.

In this paper we are concerned with testing the
hypothesis of normal or t-dependence against
the alternative hypothesis of the presence of
tail-dependence. Ideally, one might want to
test joint ellipticity against non-ellipticity in
financial data, since non-ellipticity and not non-
normality causes concern when one relies on
linear correlation in capturing dependence. One
possible way of testing ellipticity could be a non-
parametric approach to copula modelling, e.g. by
means of Bernstein approximations to copulas as
in Sancetta and Satchell (2001).

This paper, as a first step, only provides a test
of a special case of ellipticity, the normal or the
t-copula, against a special case of non-ellipticity
which puts asymmetrically more probability on
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joint extreme outcomes, as discussed in the third
section. We provide a general test based on
the profile likelihood to test one copula against
another. There are two sources of complication
in deriving the asymptotic distribution of the
suggested test statistic. The first is the presence of
nuisance parameters under the null hypothesis.
The second is the fact that we are testing whether
a certain parameter is on the boundary of the
parameter space. To solve the first problem we
make use of the profile likelihood, in which the
nuisance parameters are taken as fixed at their
estimated levels. Due to our large sample size
the estimated parameters should be sufficiently
accurate. The second problem is solved by
appealing to a result in Chernoff (1954) which
states that the distribution of the likelihood-ratio
statistic can be found to be a mixture of the
degenerate x; and a x? distribution, where k
is the number of unestimated parameters under
the null. A simulation exercise confirms that the
presence of nuisance parameters does not bias
the result in our large sample of close to 3000
return pairs. An application of this test using data
on European stock indices yields a significant
rejection of the normal as well as the t-copula
in favour of a more tail-dependent copula. The
results are very robust both to the assumptions
on the marginals and to the exact form of the
alternative copula. The results are very similar
for a set of different bivariate stock index series.
We then proceed to investigate whether the
alternative model we propose is well-specified by
employing the non-parametric hit-test of Patton
(2001). We first test whether our model is correctly
specified ignoring possible time-dependence or
auto-dependence using a simplified hit-test. For
data on the DAX, FTSE, and CAC indices, we do
not find the alternative model thus misspecified.
However, as Patton (2001) pointed out, for the
alternative model to be well specified we also
need time-independence. Employing the hit-test
with regressors including past hits, we test for
misspecification of this kind and find one of
our three return-pair series to be misspecified.
We then propose to model the series of return-
pairs by means of the same GARCH-process,
but with a time-changing copula. The way the
copula changes over time is slightly different from
Patton’s, which is due to the fact thatin contrast to
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the exchange rate data Patton investigates, in our
data there is hardly any upper tail-dependence.

Finally, our bivariate model is slightly modified
to enable testing of volatility spillovers. The
conditional variance of the return on one stock
index is then modelled to depend additionally on
the variance of the return on the second index.
We employ likelihood-ratio tests to determine the
direction of spillover effects.

The reminder of the paper is organized as fol-
lows. The next section presents informal evidence
of asymmetric dependence in the DAX/FTSE
return pairs. The third section provides an
account of the concept of a copula and the prop-
erties it should have to be of interest for financial
data and our testing exercise. The fourth section
lays down a bivariate GARCH model with gen-
eral copula dependence structure for the analysis
of bivariate stock returns, and describes the vari-
ous tests undertaken in this paper. The results of
estimation and testing are presented in the fifth
section. The final section presents conclusion.

MOTIVATING INFORMAL EVIDENCE

In this section we present crude estimates of
lower and upper tail-dependence for the series of
DAX/FTSE return pairs suggesting that joint nor-
mality (or even ellipticity) may not be an adequate
model to explain bivariate stock-return data.

Figure 1 shows a scatter plot of DAX versus
FTSE returns for the period 3 August 1990 to 31
December 2001. Considering the different pattern
of joint negative and joint positive extreme values,
the graph suggests a non-linear dependence
structure between DAX and FTSE returns. For
the moment let us call a DAX return extreme if it
exceeds 4% in absolute value, while a FTSE return
is denoted extreme if it exceeds 3% in absolute
value. Different threshold values are used for the
DAX and the FTSE as the two index series display
different variances. The cut-off values of 4% and
3% equal approximately three times the standard
deviations, respectively'. Given these definitions,
we observe 39 extreme DAX and 28 extreme FTSE
returns in the slightly more than 11 years under
consideration.

! The two average returns are below 0.0015%.
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Figure 1 Scatter plot of DAX/FTSE returns

Let us now consider the occurrence of an
extreme return event of one index given the
return of the other index is also extreme. This
yields crude empirical estimates of lower and
upper tail-dependence (for a rigorous definition
see the third section) in the bivariate equity
returns. Consider first the event that the FTSE
return is greater than +3%. This event is observed
13 times in our sample period. Of these 13
positive FTSE extremes there are four which
are classified as (positively) extreme also for the
DAX, the remaining nine being ordinary returns.
A rough estimate for the upper tail-dependence
in DAX/FTSE returns is thus 4/13 ~ 0.3077.
Conditioning on DAX returns, the estimate for
upper tail-dependence would be 4/16 =0.25,
since there is a total of 16 positive extreme returns
in the DAX index series.

On the negative side, consider all return-pairs,
where the FTSE return is lower than —3%. There
are 15 such instances, of which 11 are considered
(negatively) extreme also for the DAX. This yields
a crude estimate of lower tail-dependence of
11/15 = 0.7333. Conditioning on DAX returns,
we have an estimate of lower tail-dependence of
11/23 ~ 0.4783, since there is a total of 23 extreme
negative FTSE returns. Values of 0.25 and 0.31
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for the positive quadrant versus values of 0.48
and 0.73 for the negative quadrant suggest that
there is substantially higher dependence in the
lower tail of the distribution (negative extremes)
than in the higher tail (positive extremes). This
observation is not compatible with the presence
of linear dependence structures like the one
implied by the bivariate normal or the bivariate
t-distribution. The bivariate normal distribution
implies zero tail-dependence in both tails, while
the bivariate ¢-distribution does display non-zero
tail-dependence, but the same on both ends.

It is well known that stock returns are generally
not identically distributed over all time periods.
In fact, variances may change considerably over
time. Let Ypax and Yyrge denote the standard-
ized returns, where the time-changing variances
have been separately estimated by a GARCH(1,1)
process for each return series. The returns are
now in units of their respective standard devia-
tions. Table 1 shows empirical estimates of lower
and upper tail-dependence and compares them
to the tail-dependence implied by the joint nor-
mal distribution with a linear correlation of 0.56,
the estimate for our data. These numbers indicate
that the assumption of joint normality is seriously
violated in a dangerous direction. The true joint
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Table 1. Empirical tail-dependence for DAX/FTSE returns
Empirical probabilities Bivariate normal

o AL (YolYe) Ay (YelYo) A (YolYe) A (YElYD) A=A
0 0.7050 0.7050 0.6841 0.6841 0.6908
0.5 0.6000 0.5791 0.5448 0.5358 0.5626
1 0.5061 0.4725 0.4248 0.4042 0.4337
1.5 0.4432 0.4271 0.2564 0.2339 0.3159
2 0.3333 0.3571 0.1633 0.1667 0.2172
2.5 0.3333 0.4118 0.1000 0.0909 0.1408
3 0.3684 0.4118 0.1000 0.1429 0.0859

Note: This table lists empirical conditional upper and lower tail-probabilities Af (Yp|Yr) = P(Yp < a|Yr < ) and
A5(YolYe) = P(Yp > «|Ys > ), where Yp and Yg are the GARCH(1,1) standardized DAX and FTSE returns,
respectively. The last column shows the corresponding values for the bivariate normal with a correlation of

0.56, the estimated value.

distribution of the standardized returns of DAX
and FTSE seems to display far heavier, especially
lower, tail-dependence than the normal distribu-
tion implies. The asymmetry between lower and
upper tail-dependence is also pronounced.
Assuming a normal distribution, the probabil-
ity of a standardized return falling below the
threshold of —3% is about 0.0014. In our sam-
ple such an event should only happen about
four times. Yet it is observed 19 times for the
DAX and 17 times for the FISE return data,
that is, four to five times the amount suggested
by the normal distribution. This suggests that
the marginal distributions should be modelled
as Student-t rather than normal. Let us assume
that the probability of a return falling short
of —3% is 0.006 as suggested by our numbers
above. Under normal dependence (normal cop-
ula), given a correlation parameter of 0.56, the
probability of both return series realizing below
—3%is8.2in 10,000. In a sample of 3,000 we would
thus expect roughly 2.5 jointly extremely nega-
tive returns. Our DAX/FTSE data offers seven
such instances. Conversely, the event of both
returns exceeding +3% is observed only once
in our sample. Using the empirical distributions
for the marginals and the t;-copula implies an
expected number of roughly 5.7 jointly extreme
negativereturn pairs, as well as 5.7 jointly extreme
positive return pairs. Of course the presence of
seven jointly negative extreme return pairs and
of 1 jointly positive extreme return pair in the
DAX/FTSE data could be due to sampling error.
Hence, we have to resort to more powerful tests
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than the simple one just undertaken. This is what
this paper is about. Still we find Table 1 highly
suggestive, and it motivates our testing exercise
in this paper.

COPULA CHOICE

This section gives the definition of a copula, and
definitions of tail-dependence and Spearman’s
rank correlation in terms of copulas. A few useful
transformations of copulas and their properties
are stated. Then some well-known families of cop-
ulas and their properties are discussed. Finally,
a flexible, parameterized copula is constructed
from these copulas, which meets a set of require-
ments we believe a copula should have in order
to be of interest for stock-return data in general
and for our empirical study in the fifth section
in particular. The definitions and results in this
section are mostly taken from Nelsen (1999), Joe
(1997), and Embrechts et al. (2002).

Definition 1 (Copula) Let F be the joint dis-
tribution function of random variables X and
Y with marginal distribution functions F, and
F,, respectively. The copula C : I* — I is defined
to satisfy

Fx,y) = C(F.(x), F,()).

I is the closed unit interval. If F, and F, are
continuous, then C is unique.
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Definition 2 (Symmetry) A copula is said to be
symmetric if C(u, v) = C(v, u).

Definition 3 (Independence Copula) U and V
are independent if and only if C(u, v) = uv = I1.

Fact 1 (Invariance) If (X, Y) has copula C and
hi, hy are increasing, continuous functions, then
(11 (X), h,(Y)) also has copula C.

Fact 2 (Convex Combination) A convex combi-
nation C(u,v) = Y ., 1;Ci(u, v) of n copulas, with
i, A =1and A; > 0is again a copula.

Fact 3 (Density) Let U and V be standard
uniform random variables with copula C(u,
v). Then the joint density of U and V is
given by

°C
= . 2
c,Vv) 3U8V(u’ V) (2)
Fact4 (Rotation) letU=1-UandV =1-1V.

Then U and V are also standard uniform random
variables and the following statements are true:

e U and V have copula C~(u,v) =u+0v—1+
Cl—-u,1—-v) and density ¢ (u,v) =c(1—
u,1-—0)

e U and V have copula C"(u,v) =v—-C(1 —
u, v) and density C~*(u, v) = C(1 — u, v)

e U and V have copula C*~(u,v) =u — C(u,1 —
v) and density ¢~ (4, v) = c(u, 1 — v)

If C(u,v) is symmetric, then C* (u,v) =
C (v, u).

Definition 4 (Tail-dependence) Let X and Y
be random variables with continuous marginal
distribution functions F, and F, and copula C.
The coefficient of upper tail-dependence of X and
Yis

= uIiI’Q+ PFX)>1—ulF,(Y)>1—-u)

o 2u—1+CH—-u,1-u
= Iim .
u—0t u

Copyright © 2002 John Wiley & Sons, Ltd.

(©)

The coefficient of lower tail-dependence is
given by

T = Iirg P(F(X) < ulF,(Y) < u)

_ jim SWY. (4)

u—0t u

If 7y (1) € (0,1] X and Y are said to be asymp-
totically dependent in the upper (lower) tail. If
7y = 0 (7, = 0) they are asymptotically indepen-
dent in the upper (lower) tail.

Definition 5 (Spearman’s Rho) Let X and Y be
random variables with distribution functions F,
and F, and copula C. Spearman’s rank correlation
is given by

pSX,Y) = p(F(X), Fy,(Y)), ®)

where p is the usual linear correlation operator.
Spearman’s rank correlation can be expressed in
terms of the copula C:

1 1
pSX,Y) = 12/ / Cx, y)daxdy — 3 (6)
0 0

For the independence copula, II, Spearman’s Rho
is 0. If two random variables X and Y display a
linear correlation of —1 or 1, then their Spearman’s
Rho is also given by —1 or 1, respectively.

Fact 5 (Properties of Convex Combinations and
Rotations) Let C; and C, be copulas and let
C=ACi+ (1 —=21)C,, for 2 € (0,1) be a convex
combination of the two copulas. By Fact2 C
is a copula. It is true that its lower (upper)
tail-dependence is the A-convex combination of
the individual coefficients of lower (upper) tail-
dependence. The same is true for Spearman’s Rho
and the density of C. Let C be a copula and let C—
be its 180° rotation as given in Fact 4. Then the
lower (upper) tail-dependence of C~~ is the same
as the upper (lower) tail-dependence of C. Also
Spearman’s Rho of C~~ is the same as Spearman’s
Rho of C.

Definition 6 (Well-known Copulas) Various
well-known copulas are given below. The first
three belong to the class of archimedean copulas,
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the remaining two are elliptical. ®~' denotes the
inverse of the cumulative distribution function of
a standard normal random variable, T;' denotes
the inverse of the cumulative distribution func-
tion of a Student-t random variable with v degrees
of freedom, and I' is the gamma function. The « in
C, is the vector of all parameters of the copula C,.

Copula C,(u,v) o
Clayton ™ +v"’—-1)"" 6>0
Gumbel exp(—[(—Inu)’
+ (=Ino)1"") 0>1
Joe 1-[0-w)!'+1-2v)
-1 -w'd-ov" 0>1
oW po () 1
Gaussian / / _
-0 —00 ) Zg\/tl_l——tfz
s* —2ps
X exp —2(17_102)} dsdt p € (—1, 1)
T,'w  pT, @)
Student-t / /
—0C —00 2
ra)
X vy v p e (—1, 1)
EF(E)HO —pH”
2 2 st tz —(v+2)/2
Arg o2t E dsdt v > 2
v(l - p%)

Fact 6 (Properties of the above Copulas)

Copula rangeofpS 1 Ty
Clayton 0, 1) 2-1/6 0
Gumbel 0,1 0 5 _ o
Joe 0, 1) 0 2 _ e

TL=Ty
Gaussian  (—1,1) 0
Student-t  (-1,1) 2 (1 — b (7% vi-p ))

0

The definitions and facts stated above are the
basic tools we need in order to construct flexible
copulas to be applied to financial data. The brief

Copyright © 2002 John Wiley & Sons, Ltd.

investigation of the DAX/FTSE return series in
the second section as well as the results of e.g.
Longin and Solnik (2001) suggest that equity
data might well show significant non-zero tail-
dependence. This tail-dependence may be higher
in the lower than in the upper tail. We should
thus allow for the existence of asymmetric tail-
dependence when specifying a copula model.
Neither the normal copula nor the t-copula (see
fact 6) have this feature. Obviously, any degree of
(positive) correlation should be possible. Finally,
since we are interested in testing normality or t-
dependence versus asymmetric tail-dependence,
a copula of interest should nest the normal or
Student-t copula.

Hence, we believe a copula of interest for
positively correlated stock-return data should
be flexible enough to allow for (i) asymmetric
tail-dependence, (ii) the whole theoretical range
of lower tail-dependence (7 € (0,1)), (iii) any
degree of (positive) Spearman’s rank correlation
(pS € (0, 1)), and (iv) it should nest either the
normal or the student-t copula as a special case.
Unfortunately, to our knowledge there is no nice
and simple copula which would combine all
the above-mentioned properties. We will thus
take advantage of the fact that any convex
combination of copulas is again a copula (Fact
2) with nice properties (Fact 5) to construct our
ideal copula by combining different copulas,
of which each exhibits at least one of the
desired properties.

One possible choice for a copula which satis-
fies all the above-mentioned criteria is the convex
combination, as given in Definition 6, of e.g. the
Clayton and Gaussian copulas. Both the Gumbel
or Joe copulas (as given in Definition 6) must
be rotated by 180° as done in Fact 4, before
use, as both copulas exhibit tail-dependence only
in the upper tail. A convex combination of the
rotated copula and the Gaussian copula would
then meet all the criteria. The copulas used to
test joint normal (joint Student-f) dependence
in this paper are thus A-convex combinations
of the Gaussian (Student-t) copula and one of
the copulas mentioned above, the Clayton, the
rotated Gumbel (Gumbel,), or the rotated Joe
(Joe,) copula.
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MODEL, LIKELIHOOD AND TESTS

In this section we first describe the econometric
model for the joint distribution of asset returns,
which serves as the framework for our testing
exercise. We then provide the profile likelihood-
ratio test employed for testing one dependence
specification versus another and give a brief
account of Patton’s (2001) hit-test for goodness-
of-fit, which we employ to test whether our
alternative hypothesis is correctly specified. The
model we introduce is a generalization and
specialization of the multivariate GARCH model
of Bollerslev (1990), and is similar to the bivariate
GARCH models suggested by Patton (2001),
Rockinger and Jondeau (2001), Hu (2002), and
Mashal and Zeevi (2002). Yet our model differs
from theirs in the specific copula assumed
for the joint distribution of the disturbances,
which is tailored (see the previous section)
to allow likelihood-based testing of the null
hypothesis of normal or Student-t dependence
versus the alternative hypothesis of asymmetric
tail-dependence.

Let y;;,i=1,2 denote the return series of
financial assets. Each return series is assumed
to marginally follow a GARCH(1,1)-process (see
Bollerslev, 1986). The joint distribution of any two
time t disturbances is given by assumed marginal
distributions, F;, and the A-parameterized convex
combination, C, of two copulas:

Vit = Wi + 0i € (7)

0’ = v+ Vit — m)’ + Bio-1)®  (8)

F(e1, €20) = C(Fi(€1,), Falenr)) 9
C=(1—-1C"™ +2C™ (10)

In our testing exercise we assume the marginal
distributions, F, and F,, to be either Student-
t, as suggested e.g.by Bollerslev (1987), or to
be given by the empirical distribution of the
fitted disturbances. The normal distribution does
not describe the univariate tail-probabilities very
well, due to the existence of fat tails in our
financial data, and so fails to qualify for a
marginal distribution. The actual copula used
in our testing exercise is a convex combination
of a traditional copula, C™¢, and an archimedean
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copula, C®!. The traditional copula is assumed to
be either the Gaussian copula, C, with parameter
o, with zero tail-dependence in both tails, or
the t-copula, C,, with parameters p and v, with
positive but symmetric lower and upper tail-
dependence. The archimedean copula is either
the Clayton, the rotated Gumbel, or the rotated
Joe copula, each with parameter 6, and is such that
it generally displays asymmetric tail-dependence.
In fact, the archimedean copulas proposed exhibit
non-zero tail-dependence only in the lower tail
(see the previous section).

Let I; denote all information available at time
t. In the model above this information includes
asset returns and variances up to time t. Then
conditional on I, ;, the joint density for the
observed returns (i, ) is given by?

FWit, Youllizi)

—c <F1 ()/u — M1) F, <Y2.t - M2))
Ot Oot

— 1 — 1
-, <)/1,t W)—.fQ ()/2.1 Mz) L
O1t O1t O2t O2t

where

3°C
uav

cu,v) = w,v)
is the density of copula C.

The log-likelihood is now easily obtained as the
sum of the logarithm of the above joint densities
overallf. Let ® denote the vector of all parameters
used in the model given by equations (7)-(10).
The log-likelihood function can then be written as

;
£(0; {)/1,1};1 ) {Vz,z}[; )= Z N0, Youllioi))
t=2
(12)

where the density f(yi:,y1.l1) is given by
expression (11).

*Note that the following is true: If X is a random
variable with density fy and Y = p 4+ 0 X, then

() = fy (y__u> l
o

o
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In the model given by equations (7)—(10) we
take the dependence structure C and thus the
tail-dependence to be time-invariant. One might
want to test whether this assumption is too
restrictive. We will do so by allowing A to
change over time and test for the nested case
of a constant A via a likelihood-ratio test. First, we
have to specify a functional form for the evolution
of A. In the constant X situation, the larger A
the larger the potential lower tail-dependence
in the resulting convex copula. Consider now
the Euclidean distance between a realization
in the unit square and the origin. The smaller
this distance, the closer the return realization
is to the negative extreme situation, suggesting
higher probability in the negative tail and thus
a convex copula which puts more weight on
the copula with asymmetrically higher lower
tail-dependence. We thus propose the following
equation® for the evolution of A, where u and
v are the ‘uniformed’ Student-t or empirical
disturbances from the univariate GARCH(1,1)-
models:

A=A <51 + 8 A (M)

120
+ 88% ; Utz_,- + Vtz_,') a3)

where A(x) =1/(1+¢7) is the logistic transfor-
mation, which maps the real line R into the unit
interval I. At any time ¢, A, is then explained by a
constant §;, by an autoregressive term AT (hely),
and by the average distance of the disturbance
pairs and the origin over the last two weeks.

We are interested in the structure of the
dependence between extreme events, and in par-
ticular whether either the traditional Gaussian
copula with its implied zero tail-dependence
or the f-copula with positive but still symmet-
ric lower and upper tail-dependence are suf-
ficient to capture the dependence structure in

*This is slightly different from Patton’s (2001) time-
changing copulas. First, Patton makes the tail-
dependence itself change over time. Second, the
changes are driven by the distance of the uniformed
disturbances to the diagonal in the unit square. This
makes sense for Patton’s data on exchange rates where
both tails show dependence, but is not appropriate for
our data on stock returns.

Copyright © 2002 John Wiley & Sons, Ltd.

bivariate stock returns. Preliminary results from
the exploration of the DAX/FTSE data in the
second section suggest that the observed tail-
dependence may indeed be higher than the one
implied by the normal copula, and the depen-
dence structure may well be asymmetric. In order
to test rigorously for the presence of positive tail-
dependence and/or asymmetric dependence in
bivariate stock returns, we suggest performing
a profile likelihood-ratio (pLR) test. We want to
test the null hypothesis that copula C in our
econometric model given by equations (7)—(10) is
the Gaussian or the t-copula, respectively, i.e. we
want to test the null H, : A = 0 versus the alterna-
tiveH; : A > 0.

In this case, the derivation of the asymptotic
distribution of the LR-statistic is complicated by
two things. First, there are nuisance parameters
present under the null hypothesis. These are the
parameters in the univariate GARCH models.
Second, the subset of the parameter space where
A =0 is on the boundary of the parameter
space, which means that the distribution of the
LR-statistic is not simply asymptotically Chi-
square.

To deal with the first problem, we use the
profile likelihood (see e.g. Barndorff-Nielsen and
Cox, 1994), i.e. the likelihood as a function of
A only, where the random parameter estimates
are assumed to be fixed at their estimated levels
given A. Under the null, these parameter estimates
will be very accurate given our sample size
of close to 3,000 return pairs. For the profile
likelihood the result of Chernoff (1954) holds,
that the asymptotic distribution of the pLR-
statistic is an even mixture of the degenerate
xg-distribution and a x;-distribution. The degrees
of freedom in the second distribution are 2 since,
under the null, there are two parameters which
are not estimated, A and the parameter of the
archimedean copula, 6. To give an indication
of how well the asymptotic distribution of the
pLR-statistic is approximated by this x2-mixture,
given the true nuisance parameters are replaced
by their estimates, we perform a small simulation
exercise for the DAX/FISE model with the
rotated Gumbel copula. A pair of return series
is generated 100 times from the model with
parameters as estimated under the null. For each
of these pairs of return series the unrestricted
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as well as the restricted model is estimated
and their pLR-statistic computed. Out of the
100 realizations of the pLR-statistic, 47 were
(virtually) zero, the remaining 53 are given in
ascending order in Table 2. The average of these
53 numbers is 2.2, the estimated variance 4.2.
These numbers are close to the theoretical values
for the mean and variance of the xZ-distribution
of 2 and 4, respectively. Also the higher quantiles
are very much in line with the theoretical ones.

To evaluate whether our proposed copula
models are correctly specified, we employ the
non-parametric hit-test introduced by Patton
(2001). In its simplest form this test involves
comparing the theoretical and empirical number
of realizations of uniformed disturbance-pairs
in a set of specifically designed regions of the
unit square. These regions are illustrated in
Figure 2. We use the regions suggested by Patton
(2001), which are chosen to capture potential
misspecification in the lower and upper tails. In
addition, the more elaborate version of this test
allows testing the null of (residual) independence
over time. This is of particular interest for our
model with a time-invariant copula. In this case
any hit in a particular region is regressed on past
hits (one day, one week, one month past) using
maximum likelihood. The null of no (residual)
time-dependence can then be tested for by means
of a likelihood-ratio test, testing whether all the
coefficients of past hits are zero.

EMPIRICAL RESULTS

In this section we use data on stock-return pairs to
estimate our model given by equations (7)—-(10),
and to test our hypotheses. The data consists of
daily returns as of 4pm UK time of the DAX 30,
the FISE 100 and the CAC 40 indices for the
period 3 August 1990 to 31 December 2001, as
reported by Thomson Financial Datastream. We
explicitly chose to use only stock indices for which
simultaneous price quotations were available,
so as to avoid problems resulting from non-
synchronicity of price observations.* Our sample
period covers a total of 2976 observations for
each index and includes the stock market crashes
following the Asian and Russian crises in 1998
and the terrorist attack in September 2001, as well
as the period of internationally declining stock
markets starting as of March 2000.

We use Ox version 2.20 (Doornik, 1999)
and the return series on the three asset pairs
DAX/FTSE, DAX/CAC, and FTSE/CAC to esti-
mate the bivariate return model given by equa-
tions (7)—(10). Tables 3 to 6 present estimation
results for the various models with a time-
invariant copula. In addition to the parame-
ter estimates we also report the coefficient of

* Patton (2001) shows that for the conditional copula
representation theorem (Sklar’s theorem) to hold it is
a sufficient and (often) necessary condition that the
information sets in the marginal distributions and the
copula be the same.

Table 2. Simulation results for the pLR-statistic

0.1062 0.11412 0.15676 0.27262 0.3207
0.42113 0.57949 0.60932 0.64102 0.68202
0.7199 0.76298 0.77278 0.82365 0.90562
0.90947 0.94683 1.0357 1.0454 1.0842
1.1885 1.2247 1.2904 1.3902 1.4419
1.4606 1.4795 1.5146 1.56205 1.5875
1.684 1.6899 1.7682 1.7877 2.3405
2.3495 2.6168 2.899 3.0661 3.1596
3.2356 3.4551 3.5562 3.726 3.741
3.8981 3.9807 4.3574 4.4467 5.913
7.085 8.7867 9.7493

Note: Parameters are taken from the restricted (purely Gaussian) bivariate GARCH model
for the DAX/FTSE series. Only the 53 positive values (out of the total sample of 100) are
shown. The copula of the unrestricted model is the convex combination of the normal and

the rotated Gumbel copula.

Copyright © 2002 John Wiley & Sons, Ltd.
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Figure 2 Test regions on the unit square for Patton’s (2001) hit-test. There are 8 regions, regions 1 to 7, and one
region consisting of the remaining (unnumbered) patches

Table 3. Estimation results for the Gaussian copula (1) for the bivariate return model given by equations (7)—(10)

Unrestricted Restricted
Clayton Gumbel, Joe, A=0)
DAX, FTSE Qs 0.0715 0.0689 0.0686 0.0667
i 0.0477 0.0448 0.0442 0.0417
7 0.0167 0.0147 0.0150 0.0182
P 0.0143 0.0116 0.0118 0.0172
& 0.0413 0.0365 0.0364 0.0439
&, 0.0404 0.0328 0.0327 0.0413
B 0.9231 0.9308 0.9308 0.9190
Bo 0.9250 0.9384 0.9380 0.9193
t, 5.8744 5.9291 6.0459 6.4846
t, 9.1996 8.4636 8.3423 8.5529
A 0.2835 0.5877 0.3848 0
9 2.2866 1.3560 1.3599 —
F) 0.5032 0.7894 0.7399 0.5708
7 0.2094 0.1956 0.1290 0
pLL —7816.57 —7793.57 —7796.00 —7847.72
pLR 62.30 108.30 103.44
DAX, CAC I3 0.0718 0.0726 0.0729 0.0655
i 0.0498 0.0506 0.0505 0.0464
7 0.0181 0.0179 0.0182 0.0201
P 0.0410 0.0405 0.0411 0.0510

(continued overleaf)
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Table 3. (Continued)

Unrestricted Restricted
Clayton Gumbel, Joe, A=0)
& 0.0344 0.0338 0.0336 0.0360
G, 0.0303 0.0300 0.0296 0.0327
B, 0.9302 0.9306 0.9309 0.9278
B 0.9222 0.9229 0.9232 0.9110
t, 6.2204 5.9783 6.1235 6.7224
t, 8.0029 7.9933 8.0481 8.0105
A 0.3918 0.5187 0.3442 0
0 0.5314 1.4042 1.4063 —
) 0.8335 0.8560 0.8132 0.6532
3 0.1063 0.1876 0.1249 0
pLL —8428.24 —8425.62 —8428.87 —8509.71
pLR 162.94 168.18 161.68
FTSE, CAC Qs 0.0467 0.0461 0.0466 0.0452
A 0.0624 0.0626 0.0616 0.0529
i 0.0126 0.0125 0.0124 0.0136
P 0.0318 0.0306 0.0317 0.0309
& 0.0367 0.0361 0.0362 0.0374
&, 0.0316 0.0305 0.0313 0.0326
B, 0.9331 0.9341 0.9339 0.9299
Bs 0.9303 0.9321 0.9306 0.9304
t, 9.0482 9.1453 8.9544 8.4245
t, 8.0179 7.7296 7.8796 8.3574
A 0.2878 0.4091 0.2588 0
0 0.5555 1.4410 1.4277 —
F) 0.8048 0.8189 0.7947 0.6816
o1 0.0826 0.1564 0.0970 0
pLL —7637.22 —7632.78 —7637.87 —7686.21
pLR 97.98 106.86 96.68

Note: Margins are Student-t, and the copula is a convex combination of the Gaussian and one of the Clayton,
rotated Gumbel, or rotated Joe copulas.

Table 4. Estimation results for the t-copula (1) for the bivariate return model given by
equations (7)—(10)

Unrestricted Restricted
Clayton Gumbel, Joe, A=0)
DAX, FTSE i 0.0697 0.0696 0.0695 0.0717
Lo 0.0458 0.0461 0.0459 0.0481
2 0.0146 0.0144 0.0146 0.0151
Vs 0.0111 0.0111 0.0111 0.0118
Q, 0.0351 0.0349 0.0350 0.0354
a 0.0320 0.0320 0.0320 0.0328
B, 0.9321 0.9324 0.9322 0.9316
Bo 0.9400 0.9399 0.9399 0.9380
A 0.2146 0.4722 0.2268 0
6 1.3934 1.4400 1.9074 —
Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Intell. Sys. Acc. Fin. Mgmt. 11, 89—-107 (2002)
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Table 4. (Continued)

Unrestricted Restricted
Clayton Gumbel, Joe, A=0)
D 5.7740 5.2996 5.9673 5.6976
k) 0.5681 0.6689 0.5949 0.5765
, 5.7134 5.6333 5.6817 5.8203
t, 8.3946 8.3381 8.2813 8.1468
7 0.2173 0.2611 0.2170 0.1142
Y 0.0867 0.0808 0.0896 0.1142
pLL —7793.43 —7791.96 —7792.72 —7802.18
pLR 17.50 20.44 18.92
DAX, CAC Qs 0.0738 0.0741 0.0739 0.0769
fis 0.0508 0.0509 0.0509 0.0542
P 0.0182 0.0181 0.0181 0.0179
P 0.0402 0.0401 0.0401 0.0392
& 0.0318 0.0318 0.0316 0.0311
& 0.0291 0.0293 0.0288 0.0280
B, 0.9320 0.9321 0.9324 0.9338
Bo 0.9239 0.9241 0.9243 0.9264
A 0.2435 0.3663 0.2134 0
2 0.6959 1.4306 1.5815 —
D 4.3621 4.4879 4.7612 4.2666
F) 0.7347 0.7650 0.7263 0.6605
i, 5.6689 5.6710 5.6477 5.7087
t, 7.5760 7.7140 7.5554 7.5069
7 0.2438 0.2747 0.2467 0.1735
Y 0.1538 0.1368 0.1507 0.1735
pLL —8420.94 —8421.28 —8421.72 —8431.67
pLR 21.46 20.78 19.90
FTSE, CAC Qs 0.0459 0.0453 0.0459 0.0466
fis 0.0629 0.0631 0.0627 0.0627
7 0.0119 0.0122 0.0120 0.0120
P 0.0292 0.0291 0.0293 0.0292
& 0.0348 0.0351 0.0347 0.0349
&, 0.0292 0.0291 0.0292 0.0295
B, 0.9358 0.9351 0.9358 0.9353
Bo 0.9336 0.9338 0.9335 0.9332
A 0.1847 0.3039 0.1616 0
2 1.0057 1.5226 1.8433 —
D 5.9629 6.4342 6.3187 5.5644
F) 0.7249 0.7542 0.7222 0.6863
t, 8.6629 8.7853 8.6234 8.4303
t, 7.0187 7.0221 7.0139 7.0238
7 0.2283 0.2475 0.2191 0.1557
ey 0.1355 0.1188 0.1313 0.1557
pLL —7629.03 —7628.75 —7629.78 —7637.30
pLR 16.54 17.10 15.04

Note: Margins are Student-t, and the copula is a convex combination of the t-copula and one of the Clayton,
rotated Gumbel, or rotated Joe copulas.
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Table 5. Estimation results for the Gaussian copula (2) for the bivariate return model given by
equations (7)-(10)

Unrestricted Restricted
Clayton Gumbel, Joe, A=0)
DAX, FTSE A 0.3265 0.6475 0.3316 0
0 2.3320 1.9522 2.9007 —
K 0.4756 0.3163 0.4927 0.5549
1 0.2426 0.3715 0.2421 0
pLR 97.84 124.70 08.34
DAX, CAC A 0.3264 0.5572 0.3968 0
o 2.7394 2.5027 1.4833 —
k) 0.5732 0.4254 0.8178 0.6355
1 0.2534 0.3794 0.1604 0
pLR 97.71 156.96 165.09
FTSE, CAC A 0.3273 0.6075 0.2916 0
0 0.6804 2.1651 1.5498 —
K 0.8018 0.5671 0.7888 0.6728
1 0.1182 0.3783 0.1272 0
pLR 101.35 89.12 101.23

Note: Margins are given by the empirical distributions, and the copula is a convex combination of the Gaussian
and one of the Clayton, rotated Gumbel, or rotated Joe copulas. GARCH(1,1) parameter estimates are not given.

Table 6. Estimation results for the t-copula (2) for the bivariate return model given by
equations (7)-(10)

Unrestricted Restricted
Clayton Gumbel, Joe, A=0)
DAX, FTSE A 0.2527 0.5434 0.2525 0
2 2.2377 1.9595 2.8908 —
F) 0.5116 0.4080 0.5212 0.5665
) 7.6303 10.9758 7.5469 6.4276
7 0.2852 0.3340 0.2884 0.1948
Y 0.0998 0.0212 0.1044 0.1948
pLR 42.07 46.02 43.32
DAX, CAC A 0.3369 0.6011 0.2993 0
2 0.7343 1.4745 1.6209 —
F) 0.7573 0.8625 0.7443 0.6479
by 4.7486 10.1154 5.4849 4.7058
e 0.4054 0.3937 0.3969 0.3198
% 0.2743 0.1533 0.2573 0.3198
pLR 38.47 51.19 36.89
FTSE, CAC A 0.2308 0.4330 0.2075 0
0 1.1635 1.6010 1.9882 —
F) 0.7199 0.7689 0.7189 0.6796
) 6.4997 6.9617 7.0901 6.0591
3 0.3623 0.3921 0.3454 0.2839
ey 0.2350 0.1937 0.2245 0.2839
pLR 27.04 33.07 25.59

Note: Margins are given by the empirical distributions, and the copula is a convex combination of the t-copula
and one of the Clayton, rotated Gumbel, or rotated Joe copulas. GARCH(1,1) parameter estimates are
not given.
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Table 7. Specification tests

Constant Regressor

Time Series Regressors

Clayton Gumbel, Joe, Clayton Gumbel, Joe,

DAX, FTSE

Gaussian copula 0.0915 0.8109 0.0564 0.0561 0.2655 0.0413*
T-copula 0.7727 0.8609 0.7691 0.2523 0.2848 0.2511
T-copula, A; 0.8342 0.8843 0.8411 0.4152 0.4822 0.4145
DAX, CAC

Gaussian copula 0.0000* 0.1803 0.3716 0.0001* 0.0477* 0.0812
T-copula 0.1240 0.6541 0.3401 0.0367* 0.1313 0.0758
T-copula, A; 0.4800 0.4211 0.3683 0.0867 0.1432 0.0635
FTSE, CAC

Gaussian copula 0.9476 0.5094 0.8938 0.6853 0.4650 0.6481
T-copula 0.9653 0.9333 0.9776 0.7014 0.6741 0.7152
T-copula, A; 0.9494 0.8533 0.9116 0.6921 0.6498 0.6577

Note: This table reports p-values for the test that the models are correctly specified (joint test in 8 regions, see Figure 2). We consider
any p-value smaller than 0.05 (asterisked) a rejection of the hypothesis that the model is correctly specified.

Table 8. Estimation results for the t-copula (3) for the bivariate return model given by equations (7)—(10)

C®' = Clayton Ct' = Gumbel, Chl' = Joe,
Unrest. Restricted Unrest. Restricted Unrest. Restricted
8 =28,=0 8 =8=0 8, =8=0

DAX, FTSE
5, 0.2455 0.2319 0.3303 0.5310 0.2396 0.2381
5, 0.9631 0 0.9733 0 0.9618 0
8s —0.4063 0 —0.4604 0 —0.4023 0
2 3.0490 2.5081 2.1992 1.9722 3.8283 3.0758
0 0.4991 0.5072 0.4109 0.4088 0.5028 0.5156
) 8.6698 7.9684 14.0922 11.1789 8.5905 7.7957
pLR 15.99 29.49 14.86
DAX, CAC
5, —0.2393 0.3393 0.3673 0.3816 -0.2582 0.3043
5, 0.9700 0 0.9823 0 0.9670 0
85 0.3161 0 —0.5458 0 0.3279 0
2 0.6257 0.7025 3.2765 2.6338 1.4863 1.5747
i 0.8258 0.7625 0.5760 0.5280 0.7990 0.7526
) 8.0473 5.0114 6.7362 7.5470 8.4876 5.9714
pLR 26.24 51.77 21.24
FTSE, CAC
5, —-0.2111 0.2306 —-0.2248 0.4333 —0.2046 0.2074
5, 0.9818 0 0.9821 0 0.9819 0
85 0.2647 0 0.3077 0 0.2515 0
2 0.7996 1.1612 1.5444 1.5949 1.6342 1.9833
0 0.7689 0.7200 0.8161 0.7710 0.7626 0.7192
D 8.6176 6.5342 11.9961 7.1570 9.9144 7.1339
pLR 15.31 21.83 14.14

Note: Margins are given by the empirical distributions, the copula is a convex combination of the t-copula and one of the Clayton,
rotated Gumbel, or rotated Joe copulas, and 2 is modelled to be time-changing as given by equation (13). Profile likelihood ratios for

the hypothesis that A is not time-varying, i.e. 8, = 83 = 0, are reported. GARCH(1,1) parameter estimates are not given.
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lower tail-dependence 7, the coefficient of upper
tail-dependence 7, in the models involving the
t-copula,’ the profile log-likelihood,* and the pro-
file likelihood-ratio statistic.

Tables 3 and 4 give the results for the models
with Student-t marginals for the disturbances;
Tables 5 and 6 state results for the models where
we use the empirical distribution for the marginal
distribution of the disturbances. For the latter we
still apply the GARCH-filtering to account for
the time-changing volatility of returns, but the
two univariate GARCH(1,1)-processes and the
copula-models are estimated separately now.

For each of the model specifications, we
perform the profile likelihood-ratio (pLR) test
as described in the previous section. We test the
hypothesis that the copula C in the econometric
model (7)—(10) is the Gaussian or the t-copula, i.e.
we test the null hypothesis H, : 1 = 0 against the
alternative hypothesis H; : A > 0.

For any of the three data pairs, for any of
the four different specifications of the model,
and for any of the three different alternative
copulas used, both the hypothesis of normal
and that of student-f dependence are strongly
rejected. This rejection together with an estimated
coefficient for A ranging from 026 to 0.65
for the Gaussian, and 0.16 to 0.60 for the
t-copula, in the unrestricted models implies
that the symmetric copulas exhibit too little
difference (in fact none) between lower and
upper tail-dependence to describe adequately the
dependence structure between DAX, FTSE, and
CAC returns. Furthermore, the degree of lower
tail-dependence is in general under-estimated
by both the Gaussian and Student-f copulas.
Our results suggest that the ‘true” dependence
is rather a mixture of the normal or t-copula
and a second copula, which exhibits asymmetric
tail-dependence, here the Clayton, the rotated
Gumbel, or the rotated Joe copula.

Having established the need for a copula
allowing for asymmetric dependence, we now

> A convex combination of the Gaussian copula and
any of the three archimedean copulas always displays
zero upper tail-dependence, see the third Section.

¢ Not for the models with empirical disturbance distri-
butions. In these cases, for computational convenience
weadded a constant to the profile log-likelihood, which
does not affect the profile log-likelihood-ratio statistic.

Copyright © 2002 John Wiley & Sons, Ltd.

turn to test the goodness-of-fit of the estimated
asymmetric bivariate return models, using Pat-
ton’s (2001) hit-test. We do this only for the
apparently superior models where the marginal
distribution of the disturbances is taken as their
empirical distribution. Table 7 reports p-values
for model (7)—(10), where C is the Gaussian
or the t-copula, respectively. We consider any
p-value of less than 0.05 as evidence of a model
misspecification. Given the number of tests we
undertake this is not very conservative. We first
perform the hit-test with no lagged information.
Of all the models estimated, only the model with
the Clayton-Gaussian copula for the DAX/CAC
return data is misspecified.

The more interesting hit-test is the one where
we test whether lagged hits can explain current
hits. Even according to this test the majority
of models is correctly specified. Three of the
gaussian and one of the f-copula models are
misspecified given our rejection criterion. Three
of this four rejections are observed for the
DAX/CAC returns, one for DAX/FTSE returns.
Three of these are well-specified, however, if the t-
copula instead of the normal one is used. The only
misspecified model according to the time-varying
version of the hit-test, when the t-copula is taken
tobe the symmetric copula, is the Clayton-t model
for the DAX/CAC data.

At least in the DAX/CAC data, the bivari-
ate return model should probably allow for a
time-varying copula. We thus estimate a mod-
ified version of our return model as given by
equations (7)—(10), where we let A; evolve over
time according to equation (13). Parameter esti-
mates for various specifications of this model
are shown in Table 8. In addition, the profile
likelihood-ratio statistic is given. Interestingly,
this test easily rejects all the time-invariant mod-
els. The fact that the hit-test in most cases does
not reject the time-invariant models, while the
profile likelihood-ratio test does, is due to the fact
that the pLR-test has much higher power than
any non-parametric test, such as the hit-test, if we
have a particular parametric alternative model
at hand. Of course pLR-tests cannot be used if
no such parametric alternative is assumed. For
the time-varying models parameterized through
equation (13) the hit-test cannot not find any addi-
tional time-dependence. Table 7 shows that all
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the time-changing models pass the goodness-of-
fit test.

The bivariate return model as given by equa-
tions (7)—(10) allows us to test for volatility
spillovers among the three markets if we intro-
duce appropriate exogenous variables in the
variance equations (8). The modified variance
equation of stock return i is then given by

U/i =Y+ Vi1 — W) + Bi(051)°
80— £ (a

The general model now allows both conditional
return variances to depend on the other market’s
volatility, respectively. We employ likelihood-
ratio tests to determine the direction of spillover
effects. Consider for example the DAX/FTSE
return pair. We first test the hypothesis that
spillovers occur only in one direction, i.e. either
from London to Frankfurt, Hy : dpax = 0 (in the
FTSE-variance equation), or from Frankfurt to
London, Hy : éprsg = 0 (in the variance equation
of the DAX returns) against the alternative
that both spillover terms are present. We then
proceed to test the new null of no spillovers, i.e.
Hy : Spax = 8prsg = 0, against the alternative that
spillovers work in one direction only, where the
direction is determined by the outcome of the
above tests.

In the DAX/FTSE and the DAX/CAC return
data, the results of the test procedure described
above are as follows. In both bivariate models
the null that spillover effects exist only in one
direction, from Frankfurt to London or from
Frankfurt to Paris, i.e. lagged volatility in the
DAX helps to explain the current variability in
both the FTSE and CAC stock indices, cannot
be rejected at a significance level of 0.01. When
testing the null of zero spillover effects in either
direction against these semi-restricted models,
the hypothesis of no crossover effects whatsoever
is rejected at a significance level of 0.01. Our
results, which donot depend on the specificheavy
tail-dependent copula used, therefore indicate
that volatility transmissions occur from Frankfurt
to London, and from Frankfurt to Paris, and
not vice versa. These results, at least those for
the Frankfurt/London case, contrast with the
evidence reported by Kanas (1998), who examines

Copyright © 2002 John Wiley & Sons, Ltd.

volatility transmissions across London, Frankfurt
and Paris, and finds unidirectional spillovers
from London to Frankfurt.

To present a thorough picture of the directions
of volatility spillovers among European stock
exchanges, acknowledging asymmetric depen-
dence at the same time, a more detailed anal-
ysis should be undertaken. Exogenous volatility
shocks, for example, might better be modelled
as averages over a certain period than simply
as lagged volatilities. It could also be interest-
ing to analyze the changes in different volatility
coefficients, depending on whether and which
exogenous shocks are found to be present. Also
when analyzing spillovers between three markets
one should probably model them simultaneously
in a three-variate model.

CONCLUSIONS

We study the nature of dependence between
return pairs on European stock indices. The
model of stock-return pairs we use is a bivariate
GARCH(1,1)-model with a fairly general depen-
dence structure similar to recent models of Patton
(2001), Rockinger and Jondeau (2001), Hu (2002),
and Mashal and Zeevi (2002). The dependence
between the disturbances is characterized by
their marginal distribution, assumed to be either
student-f or taken as their empirical distribution,
and their copula. The copula in this paper is such
that it allows for (i) asymmetric tail-dependence,
(ii) any degree of lower tail-dependence, (iii) any
positive value for Spearman’s Rho, and (iv) such
that it nests either the Gaussian or the student-t
copula, copulas usually used when analyzing
financial data.

This model allows us to use write down
a profile likelihood test of the hypothesis of
either normal or Student-t dependence against
the alternative of asymmetric tail-dependence.
Since we are testing for a parameter being on
the boundary of the parameter space, the pLR-
statistic has an asymptotic distribution given by
an even mixture of the degenerate x? and a
x3-distribution. In using the profile likelihood
we are assuming away the stochastic nature
of the estimates of the nuisance parameters in
the model, which are the parameters describing
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the GARCH-processes for the marginals. A
simulation exercise is undertaken to illustrate the
validity of this assumption.

The profile likelihood-ratio test easily rejects
the assumption of both normal and Student-
t dependence in any specification of our basic
model. The data displays significantly asym-
metric tail-dependence as well as higher lower
tail-dependence than it would under the null
hypothesis of either normal or Student-t depen-
dence. Our findings, which are in line with the
results of Longin and Solnik (2001), are impor-
tant for a number of financial applications. The
1-day Value-at-Risk may well be seriously under-
estimated if normal or student-t dependence is
assumed. Also optimal portfolio weights may
well differ substantially from the normal or
Student-f case.

Finally we use Patton’s (2001) hit-test to test for
misspecification of our alternative model with
a time-invariant copula. Most models cannot
be rejected on evidence from the hit-test. For
the DAX/CAC return pair series, however, the
hit-test indicates that at least one model is
seriously misspecified. In order to account for
the apparent dependence over time we adopt
another model which differs from the ones
used previously in one respect. The copula
is allowed to change over time, in a slightly
different manner than in Patton (2001), due to
the different nature of our data on stock-returns
as opposed to Patton’s data on exchange rates.
Interestingly, profile likelihood-ratio tests of the
null of time-invariance reject the hypothesis even
in the models the hit-test did not identify as
misspecified. This is due to the fact that tests
based on the likelihood function are generally
more powerful than any non-parametric tests
such as the hit-test. Patton’s hit-test, however, is
applicable against any alternative. We therefore
employ it again for our time-varying model to see
whether any additional dependence over time is
present in the data and find that according to the
hit-test all models are finally correctly specified.
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