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OPTIMAL WINDOW WIDTH CHOICE
IN SPECTRAL DENSITY ESTIMATION

Review and Simulation

INES FORTIN and CHRISTOPH KUZMICS*

Institut fiir Hohere Studien (Institute for Advanced Studies),
Stumpergasse 56, A-1060 Vienna, Austria

(Received 25 June 1999; In final form 9 February 2000)

This paper deals with optimal window width choice in non-parametric lag or spectral
window estimation of the spectral density of a stationary zero-mean process. Several
approaches are reviewed: cross-validation-based methods as described by Hurvich
(1985), Beltrdo and Bloomfield (1987) and Hurvich and Beltrao (1990); an iterative pro-
cedure developed by Biihlmann (1996); and a bootstrap approach followed by Franke
and Hirdle (1992). These methods are compared in terms of the mean square error,
the mean square percentage error, and a third measure of the distance between the true
spectral density and its estimate. The comparison is based on a simulation study, the
simulated processes being in the class of ARMA (5,5) processes. On the basis of simu-
lation evidence we suggest to use a slightly modified version of Biihimann’s (1996)
iterative method. This paper also makes a minor correction of the bootstrap criterion
by Franke and Hérdle (1992).

Keywords: Bandwidth; non-parametric estimation; spectral density; simulation

1. INTRODUCTION

The crucial step in non-parametric spectral density estimation is the
choice of the window width, or ‘bandwidth’, of some specified lag
window or spectral window employed for smoothing the periodogram.
To optimally determine this scale parameter one may attempt to
minimize some measure of the distance between the true spectral

*Corresponding author.

109



Downloaded by [Universitaetshibliothek Bielefeld] at 06:36 28 October 2014

110 1. FORTIN AND C. KUZMICS

density of a process and its estimator over a range of scale param-
eters. Various theoretical criteria have been proposed, among them
the mean square error (MSE) and the mean square percentage error
(MSPE). The resulting optimal value for the scale parameter, how-
ever, depends on the unknown true underlying spectral density. One
way to tackle this problem is to use a likelihood motivated cross-
validation criterion. This may be seen as an estimate of some dis-
tance measure (Hurvich, 1985; Beltrdo and Bloomfield, 1987; Hurvich
and Beltrdao, 1990). Franke and Hirdle (1992), on the other hand,
consider bootstrap estimates of some distance measure by resam-
pling the residuals of a multiplicative non-parametric regression,
which can be shown to be ‘nearly’ independent. Another way to deal
with the problem was developed by Bithimann (1996). He iteratively
estimates the spectral density by calculating the optimal scale param-
eter in every step according to one of the theoretical criteria at hand,
and plugging in the (step-) spectral density estimate for the true spec-
tral density.

This paper aims to provide a brief review of the literature mentioned
and to compare the various methods on the basis of a simulation
study using a set of ARMA (5,5) processes. The cross-validation-
based methods compare poorly to both the iterative methods and
the bootstrap method. While for the bootstrap approach the issue of
finding an initial global estimate remains a problem, the iterative pro-
cedures are self-contained. A slightly modified version of Bithlmann’s
(1996) procedure seems to be superior to the others.

2. SPECTRAL DENSITY ESTIMATES

We consider a real(-valued) strictly stationary stochastic process
{X,, te N} with autocovariance function =y (k) = Cov(Xo, Xx) and zero
expectation. The spectral density function of the process X, is assumed
to exist and is given by the discrete inverse Fourier transform of the
autocovariance function,

1 o0

fw=5= Y e ™ k) forallwe[-mn]. (1)
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Let x1,...,x, be a sample of this process. The Fourier frequencies of
the sample are defined as w;=(27j/n), where j assumes integer values
such that — 7 < w; < 7. A sample estimate of the autocovariance
function may be given by (k) = (1/n) :’;I'k | xpikx, for —n < k < n.
This sample version of the autocovariance function yields the perio-
dogram, an intuitive estimate of the spectral density, by replacing ~(-)

in the definition of the spectral density, as in (1), by its estimate 4(-),

I(w):i nil e~ *4(k) for all we[—m,m]. (2)

The periodogram is not a consistent estimator of the spectral density
(see e.g., Priestley, p. 425) in the sense that Var({(w)) does not converge
to zero as n — co. A smoothed version of the periodogram, however,
may be shown to be a mean square consistent estimator of the true
spectral density. This generally biased estimator is given by

Fsm=5 3 Klhw-wp))i(), ()
j=-N

where N is the largest integer less than or equal to (n— 1)/2 and 4 is
the scale parameter that controls for the width of the window. This
window is generated by the spectral kernel K(-), which satisfies (5)
and conditions below.

Every spectral kernel estimate approximately equals a correspond-
ing lag kernel estimate,

n—1

7 1 k I —ikw
flah =g 3 )m(;z-)wc)e c (@

=—(n—1

(see Brockwell and Davis, p. 354, Priestley, p. 434, 6.2.54), where
the spectral kernel K(-) and the lag kernel k() relate via a Fourier
transformation,

K(w):%/m Kk(x)e ™ *dx, (5)

— 00
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and k(-) (see Priestley, p. 446) is an even function x : R— R* with
0)=1, |k(x)| < 1 for all x, and k(x)=0 for x > A.

A lag kernel is a C" kernel if it is 7 times continuously differentiable
in the neighborhood of zero and Lipschitz-continuous on R. A lag
kernel x has characteristic exponent r if =0 for all s <r and
k" £0, where £ =lim,_o (1 — &(x))/(|x])) is the generalized s-th
derivative of a lag kernel (-) at zero (see Bithimann, p. 249, def. 1;
Priestley, p. 459, 6.2.121).

As the choice of the kernel is less important than that of the scale
parameter (see Priestley, p. 449) in terms of density estimation we
only consider the Bartlett—Priestley window lag kernel

3 {sin(mx)
Kk(x)= =3 { v cos(wx)} (6)
and spectral kernel
K(w)= %(1_(¥)2) if |w| <m (7)
0 if |w|>m.

The Bartlett—Priestley window is C> with characteristic exponent 2.

Given a specific window one has to choose the scale parameter.
Different scale parameters may yield utterly different estimates of
the spectral density. Basically, one may get all estimates between a
straight line with slope zero and the wildly fluctuating periodogram
for different choices of h. Optimally, one would choose the scale
parameter such as to minimize some measure of the expected distance
between the estimator and the true spectral density. Various different
measures were suggested in the literature (Priestley, p. 510ff). We con-
sider distance measurers as follows:

MSE,(w) =E{(f(w) ~f @))*(f(@))"} (8)

as a measure of the local distance at a fixed frequency w, where a=0
yields the mean square error (MSE) and a= — 2 the mean square
percentage error (MSPE), and

MISE,=E / @) —f @) (@)} dw 9)
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as a global measure of the expected distance between the true density
and its estimator.

The minimization one of the local criteria produces an optimal
local choice of the scale parameter. If we look at our local distance
measures we realize that it does not matter which of them we choose:
At a fixed frequency, one measure is just a monotone transformation
of the other, and this is true for all distance measures in the class we
consider. The advantage of allowing for locally different scale param-
eters (window widths) is the possibility to adjust for the shape of the
actual density function at different frequencies. While for flat regions
of the density a high amount of smoothing may be called for, for
peaky regions it seems better not to smooth too much. Not too much
weight should be given to periodogram values that are far apart from
the considered frequency, as their mean value would be very different
from the one at the considered frequency. If one liked to employ the
same smoothing window for the whole spectrum, one might decide
to select the scale parameter such as to minimize the global, i.e.,
integrated, criteria.

For the time being we will consider minimizing the MSE. By the
usual variance decomposition the MSE can be written as the sum
of the squared bias and the variance, MSE(f,w) = BIAS?(f,w)+
VAR( 7, w). As different estimators of the spectral density are deter-
mined by different scale parameters only, we replace f in expres-
sions like BIAS(f,w) by the scale parameter 4. For the Bartlett—
Priestley window asymptotic bias and variance may be found. These
are given by (see Priestley, pp. 457—463)

ABIAS(h,w)= — % £"(w) (10)
and
AVAR (h,0)=1(0) oo (w), (11)

respectively, where

@) {2 if we{—m0,7}
L\w)=
1 otherwise.
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Minimizing the sum of squared bias and the variance yields
asymptotically optimal values for the local and global scale
parameters,

_ /5 Zfi{f"(w)}z }1/5
o) =1 55, )
and

hopt—n {30 ﬁwfz‘ u)dw ) (14)
respectively.

These optimal values for 4, however, depend on the true spectral
density and its derivatives. As we do not know the true spectrum,
we will have to adopt some kind of either direct or indirect (iterative
procedure) estimation of the MISE.

3. SCALE PARAMETER SELECTION METHODS

3.1. Cross-validation Methods

Following Marron (1985), who developed a cross-validation-based
selection criterion to determine the window width in non-parametric
probability density estimation, Beltrao and Bloomfield (1987) provide
a cross-validated log-likelihood criterion (CVLL) for determining the
smoothness parameter in non-parametric spectral density estimation.

VL= Y togf Mk + 2, (1)
O<wi<m f wjvh)
where
nej 1
F 7 (wj,h)= K (hwi)I (wj — wk), (16)
’ q(h)k,é%j) KT T

03 (h) ="k ¢sn, ) K (hwi), and J(n,)) is the set of indices k for which
I(w; — wi) = I(w)).
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Beltrao and Bloomfield show that by minimizing CVLL one ap-
proximately minimizes the mean integrated square percentage error
MISPE (i.e., MISE _, as in (9)), as the difference in CVLL for two
different window widths A; and 4, is approximately proportional to
the difference in MISPE.

IEV(CVLL(hl) —CVLL(hy)) ~ MISPE(h;) —~MISPE(h,).  (17)

Hurvich (1985) presents two other cross-validation-based selection
criteria: Stuetzle’s smoothed estimate (SES, see Palmer, 1983), and
an adaptation of the cross-validated mean square error (CYMSE)
method of Wahba and Wold (1975).

N
Z f (WJ) —I( “’1)) ) (18)

j=1

SES(f)=

ZI'—‘

N

CYMSE(f)= > {(log} () ~ (log () + C)*~7*/6}.  (19)

j=

where C=0.577216... is Euler’s constant. SES is motivated by
MISE, as in (9) and CVMSE by another distance measure
E(1/N) 1., (logf (w) — logf(w))*

Hurvich and Beltrao (1990) propose a computationally more
efficient estimate, which they call CVLL2, but which in fact is not a
cross-validation estimate:

CVLL2=2nlog(2m)+ Zlog Fl)+-—=, (20)

where v =2/(3"_1/n<u </ K?(hwj)). Note that computing time for
calculating the non-cross validatory CVLL2 is comparably short,
as it requires O(nlogn) computations, whereas the cost of computing
CVLL is O(nlogn + n(N/h)).

3.2. An Iterative Procedure

Biihlmann (1996) builds on the work by Brockmann et al. (1993) who
employed a similar idea in the context of non-parametric regression.
He estimates the optimal local and global window widths which
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minimize the asymptotic mean square error and the asymptotic mean
integrated square error by an iterative procedure.

As for the Bartlett—Priestley window, asymptotically optimal
window widths are known and given by Egs. (13) and (14). The opti-
mal scale parameter, however, depends on the true spectral density
and its second derivative with respect to w. Both, of course, are un-
known. Biihlmann’s idea is to start with an initial estimate for the
spectral density as well as its second derivative and iteratively im-
prove these estimates in the following way. He iteratively plugs the
estimates into the formula for the theoretical optimal window width,
thus receiving an improved window width and uses this for the esti-
mates of the next step.

For the various spectral density related objects Biihlmann consid-
ers the following estimators. For the density he suggests to use the
estimator as given by (4) with lag kernel & as defined in (23). For the
integrated squared density he suggests to use the integrated squared
periodogram divided by two,

1 ™ 1 n—1 " 2
_ . oy — KW
2/-w{2”k > Alke } dw. (21)
=—n+1
For the second generalized derivative of the spectral density he sug-
gests to use the estimator

n—1

X k .
Pon=r Y a&(G)eie @)
k=-(n—-1)

where the second generalized derivative is defined as fA(w) =
(1/27) 2 _ k*y(k)e™™ and satisfies the identity f@=—f" and
where & is defined by (23).

In his Remark 2, Bithlmann proposes to use different windows
for estimating the generalized derivatives of the spectral density.
He argues that the terms k*4(k) usually do not decay very fast for
increasing k. The lag window he proposes is a specific splitted
rectangular-cosine window with lag kernel

1 if |x|<0.8
R(x)= {1+cos(5(x—0.8)7r)}/2 if 0.8<|x|<1 (23)
0 otherwise.
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The iteration scheme employed by Biihlmann is the following.
ALGORITHM 3.1

. ho=n""72, the initial window width
. i=0, counting the number of iterations

1
2
3. i=i+1 2 1/5
" =! k hx 4/45 ) 1.4 %
4. Global steps: h; = n! {Z{K O j;;;;*;xz(( / '): (k))k f(k)}

- k=—n+1

ifi <4 goto 3 ) 1/s
6. Local step: hop(w) = n'/3 2" 0y {7 (e (haf*/5)) }22 .
' 7 {7 (wstha/ms9)) }

Bithimann motivates the inflation factor n**° by some asymptotics
for the local step. He argues that using the same factor in the global
steps too will yield a more stable procedure. Bithlmann concludes
that four global iteration steps will already yield the right order and
further steps will not lead to any improvement. Performing more
than one local step will not improve the estimate either.

The only problem that may arise in local smoothing is at inflection
points of the spectral density. At these points, where the second
derivative is zero, the formulation (13) of the locally optimal scale
parameter is not true. Bithlmann suggests to employ a semi-local scale
parameter selection criterion. The estimate of the second derivative
in the local step in Algorithm 3.1 is replaced by its integral over a
small range. Semi-local step:

4

o) = 3 2O L5 G0 )y }‘“
opt - fi’ooo 2 x)dx{f(w; (h4/n4/45 )}2 )

where ¢ = n***/h,,

In our simulation we determine not only the estimates of the glob-
al as well as the semi-local window widths as given by the above
algorithm, but also some estimates using the same plug-in scheme,
with different estimates in the spectral density and its derivatives. In
particular, we try to approximate the second derivative by differences,
and we use estimates with inflated as well as non-inflated window
widths.
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3.3. A Bootstrap Approach

Franke and Hirdle (1992) adopt a bootstrap approach in order to
determine the optimal scale parameter. They introduce the bootstrap
in frequency domain via a multiplicative regression problem,

I{w))=f(w))e;- (24)

The residuals are approximately independent and identically dis-
tributed for large n (see Priestley, Chapter 6.2). These residuals re-
place the true density by the kernel estimate using an ‘arbitrary’
initial scale parameter ho. They constitute the sample of independent
observations to be resampled,

] .
&= (w) , forj=1,...,N. (25)
f(wjs ho)

In fact, the residuals actually used are the rescaled ones, given by

A

&j
Ej: TN
(1/N) =18

The bootstrap procedure is performed as follows. A bootstrap
sample &%,...,ey is drawn from the empirical distribution of
£1,...,En. Alternatively, a bootstrap sample may be drawn from an
exponential distribution with scale parameter 1, as this is the limiting
distribution of the regression residuals. In the simulation part we
will only look at resampling from the empirical distribution. Using a
bandwidth g, possibly different from Ay, bootstrap periodogram values

(26)

I'(w)=T"(w-)=I"(~w)=f(w,8)e] (27)
are obtained. The corresponding bootstrap spectral estimate is then
given by

A% 27"’1 N *
j=-N

Franke and Hairdle minimize the mean square percentage error
MSPE, i.e., MSE_, in Eq. (8), which is the same as minimizing the
mean square error or any other monotone transformation of it.
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Minimizing MSPE with respect to 4 should yield the optimal scale
parameter. As MSPE is not known, however, we will minimize its
bootstrap estimate, given by

MSPE"(u, h)=E*{f w ’}’8 X (.8) }2. (29)

In fact, there is no need to resample, as we can calculate MSPE*
explicitly.

f‘z (w;g)MSPE* (w;h) = MSE* (w;h)

2V * E* “ N
=h—i;2—(—1)(Kz(O)fZ(O;gHZ{K(h(w—u)f))

j=1

+K(h(w+w,->>}2f2(wj;g>)

N 2
+{ﬁ > K(h(w-w))F(wye) —f(w;g)} . (30)

n =y

There appears to be a small error in Franke and Hardle’s formula
(6). They seem to have neglected the cross terms in the variance,
which are present as I(w_;) = I(wj) = ej*f‘ (wj,g). Franke and Hardle
(p. 135) note that var*(e}) — 1 in probability. In our simulation we
will use the value 1 for the bootstrap variance of each &;. The scale
parameter minimizing the above estimate of the MSPE is the one re-
garded optimal. Franke and Hérdle prove that the resulting estimate
is in fact a consistent estimate of the optimal scale parameter (p. 133,
Theorem 3).

4. SIMULATION

In this section we compare the procedures discussed in the previous
sections by means of a simulation study. The procedures are applied
to a set of AR and MA-processes, selected such as to exhibit different
shapes of spectral densities (see Figs. 1-5). For each process, we
simulate 300 time series of length 120 and 480. For each process and
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omega

FIGURE1 X,=08X,_;+Z,.

each scale parameter selection method three different distance meas-
ures are approximated: MISEq, MISE _, and MISE, as defined by (9).
These are in fact calculated as the average over all simulations of

1 N

ISE,= & Z (Flwp) =F @) (f @) (31)
j=-N

Standard normal random numbers are generated by RNDN, the
normal random number generator in GAUSS. A time series of, say,
length 120 is generated by setting initial values to zero, generating a se-
quence of 220 standard normal random numbers, recursively (if neces-
sary) determining 220 realizations of the particular process, and finally
dropping the first hundred (see appendix in Hurvich, 1985, p. 939).

In the tables which summarize the simulation results (Tabs. I-X),
we abbreviate the methods employed in the following way. The
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f(omega)

2.8 3.2

omega

FIGURE2 X,=04X,_ ;- 0.5X,_,+03X,_4+ Z,.

cross-validation methods, CVLL, CVLL2, SES and CVMSE are as
defined in Eqgs. (15), (20), (18) and (19), respectively. ITB is the global
method suggested by Bithimann (1996) and is given by the first part
of Algorithm 3.1. It uses the splitted rectangular-cosine lag window
estimate of the second generalized derivative and the inflation factor
n**% which is approximately 1.53 if » is 120 and 1.73 if n is 480.
ITC refers to a global method according to the same algorithm, but
without using the inflation factor. ITA is another global method fol-
lowing the said algorithm, which does not use the inflation factor
and approximates the second generalized derivative by finite differ-
ences. The suffices 1 and 2 in e.g., ITA1 and ITA2 refer to the semi-
local estimation method as in the second part of Algorithm 3.1,
where 1 indicates that the inflation factor was used in the semi-local
step and 2 that it was not used. The global window width used in the
semi-local step is always given by the corresponding global method,
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omega

FIGURE3 X,=04X,_,— 04X, 4+ Z,.

e.g., ITA for ITA1. BOOT denotes the bootstrap criterion (30), where
the reference bandwidth g is determined by ITC.

The following paragraphs examine how the several methods com-
pare. Results for the small sample (n=120) and the larger sample
(n=480) case are discussed separately. For n=480 only the iterative
procedures, which seem to outperform the cross-validation-based
ones, are compared.

4.1. Small Sample Results (n =120)

The most adequate criterion among the cross-validation-based ones
seems to be CVLL. It performs better than SES, CVMSE and CVLL2
in 4 out of 5 cases according to all three distance measures. Only for
the AR(4) process with one sharp peak (see Fig. 2) the dominating
cross-validation-based method is CVLL2 (see Tab. III), with SES,



Downloaded by [Universitaetshibliothek Bielefeld] at 06:36 28 October 2014

OPTIMAL WINDOW WIDTH 123
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0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
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FIGURE 4 X,=0.5X,_1—0.6X,_,+03X,_3— 04X, 4+ 02X, s+ Z,.

CVMSE and CVLL scoring similarly compared to each other. This
is due to the fact that CVLL2 in general produces rather high scale
parameters h, yielding a low amount of smoothing. For a density
with sharp peaks a low amount of smoothing, at least in the region
of the peak, is in fact appropriate, as periodogram values that are
further away from the considered frequency should not be given too
much weight in the smoothing process.

Among the iterative procedures Bithlmann’s (1996) original, ITB,
performs well only in 2 out of 5 cases (see Tabs. I and IX). It is the
worst criterion in another 2 out of 5 cases (see Tabs. III and V) and
does quite badly in one more case (see Tab. VII). It seems that ITB
performs well for densities with only broad bumps and no sharp
peaks as is the case for the AR(1) process as in Figure 1 and the
MA(5) process as in Figure 5. This may be due to the fact that the
inflation factor tends to favor low scale parameters A4, i.e., a high
amount of smoothing. For densities with broad bumps and no sharp
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f(omega)
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FIGURES X,=Z,+09Z,_, —08Z,_»+0.6Z,_3—0.5Z,_4+03Z,_s.

TABLET AR(1): X, = 0.8X,_, + Z; Z,~N(0,1), (n = 120)

Method MISE, MISE _, MISE,
CVLL 0.394 (0.158) 0.328 (0.048) 3.912 (21.258)
CVLL2 0.423 (0.282) 0.393 (0.074) 4.445 (39.435)
SES 0.511 (0.417) 0.424 (0.121) 5.349 (65.688)
CVMSE 0.413 (0.144) 0.363 (0.061) 4.089 (18.544)
ITA 0.384* (0.244) 0.308 (0.042) 4.108 (37.085)
ITAl 0.367 (0.081) 0.310 (0.035) 3.677 (9.597)
ITA2 0.351 (0.111) 0.295 (0.033) 3.643** (13.722)
ITB 0.385 (0.091) 0.306 (0.048) 3.715* (10.732)
ITBI 0.453 (0.061) 0.473 (0.090) 4.246 (8.626)
ITB2 0.373 (0.082) 0.325 (0.037) 3.696 (9.678)
ITC 0.391 (0.269) 0.303* (0.040) 4.255 (41.921)
ITCI 0.373 (0.085) 0.321 (0.034) 3.755 (10.327)
ITC2 0.350 (0.115) 0.279 (0.027) 3.651 (14.668)
BOOT 0.344** (0.099) 0.264** (0.023) 3.741 (14.442)

Variances are in brackets.
* Indicates the best global estimate.
** Points out the best semi-local estimate.
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TABLEII AR(1): X; = 0.8X,_1 + Z,, Z;~N(0,1), (n = 480)

Method MISE, MISE_, MISE,
ITA 0.2265 (0.0744) 0.1804 (0.0052) 2.5255 (14.5014)
ITAl 0.1511 (0.0184) 0.0898 (0.0017) 1.6911 (3.0110)
ITA2 0.1605 (0.0278) 0.1165 (0.0021) 1.7677 (4.9347)
ITB 0.1434* (0.0163) 0.0782* (0.0016) 1.5675* (2.4446)
ITBI 0.1789 (0.0122) 0.1124 (0.0024) 1.8399 (2.0646)
ITB2 0.1397** (0.0154) 0.0867** (0.0015) 1.5373** (2.3410)
ITC 0.1680 (0.0472) 0.1071 (0.0028) 1.9056 (9.0932)
ITC1 0.1505 (0.0168) 0.0901 (0.0017) 1.6400 (2.7457)
ITC2 0.1462 (0.0237) 0.0890 (0.0017) 1.6223 (4.1144)

Variances are in brackets.
* Indicates the best global estimate.

** Points out the best semi-local estimate.

TABLE III AR@4): X, = 04X, _; — 0.5X, >+ 0.3X,_4+ Z,, Z, ~ N(0,1), (n = 120)

Method MISE, MISE _, MISE,
CVLL 0,2519 (0,0201) 0,6106 (0,1556) 1,352 (0,8559)
CVLL2 0,2125* (0,031) 0,5591 (0,1017) 1,0652* (0,8543)
SES 0,249 (0,035) 0,6662 (0,3081) 1,3258 (1,3153)
CVMSE 0,2593 (0,0239) 0,6736 (0,213) 1,389 (0,919)
ITA 0,2142 (0,0218) 0,5043 (0,0924) 1,121 (0,7175)
ITAl 0,2816 (0,0093) 0,688 (0,2006) 1,6 (0,7039)
ITA2 0,2323 (0,0118) 0,5053 (0,0841) 1,3137 (0,6714)
ITB 0,3523 (0,008) 1,5519 (2,4518) 1,9544 (0,6406)
ITB1 0,4103 (0,0052) 2,6002 (4,8588) 2,2803 (0,5484)
ITB2 0,3293 (0,0073) 1,0527 (0,7048) 1,8474 (0,6429)
ITC 0,2129 (0,0223) 0,5007* (0,0843) 1,1144 (0,7339)
ITC1 0,2722 (0,0103) 0,6229 (0,147) 1,5583 (0,7461)
ITC2 0,2282 (0,0122) 0,4886 (0,0784) 1,2943 (0,6929)
BOOT 0,2067** (0,015) 0,4287** (0,0642) 1,2209** (0,7362)

Variances are in brackets.
*Indicates the best global estimate.
** Points out the best semi-local estimate.

peaks this seems to be appropriate. ITA and ITC perform similarly
well, possibly with a slight advantage for ITC.

The local iterative procedures compare to each other in a similar
fashion as do their global counterparts. Biithlmann’s original, ITBI,
and also ITB2, are in general worse than the other procedures. Our
results suggest that using no inflation factor is superior to using one,
except for the MA(5) process as in Figure 5 (see Tab. IX). Again,
ITA2 and ITC2 perform similarly well, with a slight advantage for
ITC2.
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TABLE IV AR(@4): X; = 04X,_, — 0.5X,_>+ 03X,_4+ Z,, Z,~N(, 1), (n = 480)

Method MISE, MISE_, MISE,
ITA 0.0947 (0.0062) 0.2082 (0.0047) 0.5187 (0.2716)
ITAl 0.1052 (0.0036) 0.1427** (0.0029) 0.6495 (0.2198)
ITA2 0.0909** (0.0037) 0.1542 (0.0028) 0.5360* (0.1936)
ITB 0.1314 (0.0031) 0.1796 (0.0055) 0.7819 (0.2278)
ITBI 0.2014 (0.0026) 0.3887 (0.0211) 1.1644 (0.2408)
ITB2 0.1246 (0.0031) 0.1672 (0.0036) 0.7626 (0.2187)
ITC 0.0874* (0.0054) 0.1723* (0.0040) 0.4919* (0.2394)
ITCI 0.1184 (0.0039) 0.1575 (0.0037) 0.7257 (0.2430)
ITC2 0.0917 (0.0037) 0.1455 (0.0029) 0.5458 (0.1995)

Variances are in brackets.
* Indicates the best global estimate.
** Points out the best semi-local estimate.

TABLEV AR@): X, =04X,_,— 04X, 4+ Z,, Z,~N(O,1), (n = 120)
Method MISE, MISE _, MISE,
0.398 (0.079) 0.00227 (0.000002)

CVLL 0.0175 (0.00010)

CVLL2 0.0226 (0.00025) 0.442 (0.080) 0.00292 (0.000005)
SES 0.0209 (0.00021) 0.447 (0.097) 0.00284 (0.000006)
CVMSE 0.0179 (0.00009) 0.409 (0.073) 0.00229 (0.000002)
ITA 0.0169 (0.00012) 0.347 (0.052) 0.00215 (0.000002)
ITA1 0.0166 (0.00005) 0.384 (0.051) 0.00222 (0.000002)
ITA2 0.0163 (0.00006) 0.350 (0.039) 0.00213** (0.000001)
ITB 0.0231 (0.00006) 0.774 (0.259) 0.00302 (0.000002)
ITB1 0.0270 (0.00005) 0.837 (0.393) 0.00372 (0.000002)
ITB2 0.0239 (0.00006) 0.584 (0.122) 0.00335 (0.000002)
ITC 0.0166* (0.00010) 0.345* (0.052) 0.00213* (0.000002)
ITC1 0.0180 (0.00005) 0.415 (0.054) 0.00245 (0.000002)
ITC2 0.0162 (0.00006) 0.352 (0.041) 0.00213** (0.000001)
BOOT 0.0161** (0.00006) 0.329** (0.0359) 0.00227 (0.000002)

Variances are in brackets.
* Indicates the best global estimate.
** Points out the best semi-local estimate.

In general, local procedures seem to be an improvement on the glob-
al ones with the exception of the AR(4) process with a single sharp
peak (see Fig. 2 and Tab. III). This somewhat comes as a surprise,
because one would intuitively expect that it is favorable to employ a
considerably lower degree of smoothing in the region of the peak than
in the flat regions. Apparently, this is not optimal, though.

We note that in all the cases both ITC2 and the bootstrap criteri-
on score at least as well as CVLL and most of the times even better,
according to all three distance measures. For the AR(4) process with
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TABLE VI AR@): X, = 0.4X,_, — 04X, 4+ Z,, Z,~N(0, 1), (n = 480)

Method

MISE,

MISE _,

MISE,

ITA
ITA1
ITA2

ITB
ITB1
ITB2

ITC
ITC1
ITC2

0.0112 (2.50E—05)
0.0065 (7.00E — 06)
0.0071 (1.00E—05)

0.0066* (9.00E — 06)
0.0100 (1.70E — 05)
0.0063 (8.00E — 06)

0.0068 (1.60E — 05)
0.0067 (8.00E — 06)
0.0062** (9.00E — 06)

0.1885 (0.0042)
0.1148 (0.0022)
0.1251 (0.0022)

0.1156 (0.0038)
0.1796 (0.0065)
0.1053** (0.0021)

0.1145* (0.0028)
0.1165 (0.0025)
0.1088 (0.0021)

0.00160 (8.00E —07)
0.00094 (3.00E —07)
0.00098 (3.00E —07)

0.00099 (3.00E—07)
0.00149 (6.00E—07)
0.00094 (3.00E—07)

0.00097* (5.00E —07)
0.00099 (3.00E —07)
0.00089** (3.00E—07)

Variances are in brackets.
* Indicates the best global estimate.
** Points out the best semi-local estimate.

TABLE VII AR(S): X, = 0.5X,_, — 0.6X,_» + 0.3X,_3 — 0.4X,_4 + 0.2X,_s + Z,,
Z,~N(0,1), (n = 120)

Method MISE, MISE _, MISE,
CVLL 0.0262 (0.0004) 0.4560 (0.1205) 0.0077 (0.00006)
CVLL2 0.0351 (0.0010) 0.4743 (0.0876) 0.0100 (0.00014)
SES 0.0323 (0.0006) 0.7449 (1.2001) 0.0100 (0.00010)
CVMSE 0.0281 (0.0009) 0.4754 (0.1405) 0.0083 (0.00011)
ITA 0.0253* (0.0005) 0.3698* (0.0617) 0.0072* (0.00006)
ITAl 0.0240 (0.0002) 0.4205 (0.0818) 0.0071 (0.00003)
ITA2 0.0238** (0.0002) 0.3763 (0.0551) 0.0069** (0.00003)
ITB 0.0318 (0.0001) 1.5179 (2.2244) 0.0095 (0.00003)
ITBI 0.0366 (0.0001) 0.9600 (0.8660) 0.0114 (0.00003)
ITB2 0.0300 (0.0001) 0.6815 (0.3390) 0.0090 (0.00003)
ITC 0.0260 (0.0005) 0.4015 (0.0906) 0.0076 (0.00008)
ITCI 0.0258 (0.0002) 0.4890 (0.1407) 0.0078 (0.00003)
ITC2 0.0238** (0.0003) 0.3843 (0.0596) 0.0070 (0.00004)
BOOT 0.0243 (0.0003) 0.3705** (0.0544) 0.0075 (0.00004)

Variances are in brackets.
* Indicates the best global estimate.
**Points out the best semi-local estimate.

a single sharp peak, however, (Fig. 2) CVLL2 performs at least
equally well as both ITC2 and the bootstrap method.

Considering the fact that the bootstrap criterion is far more costly
to evaluate than the iterative procedures, we suggest, on ground of
our simulation study, to employ ITC2 for finding the optimal win-
dow width in non-parametric density estimation. ITC2 is an iterative
method according to Biihlmann’s (1996) scheme, but without using
inflation factors, neither in the global steps nor in the semi-local step.
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TABLE VIIT AR(S): X, = 0.5X,_; — 0.6X,_» + 0.3X, 3 — 0.4X,_4 + 0.2X,_5 + Z,
Z,~ N, 1), (n = 480)

Method MISE, MISE _, MISE,
ITA 0.0157 (6.20E—05) 0.1843 (0.0042) 0.0045 (1.00E —05)
ITAl 0.0094 (2.20E —05) 0.1145 (0.0041) 0.0029 (5.00E — 06)
ITA2 0.0104 (3.00E—05) 0.1240 (0.0020) 0.0030 (5.00E — 06)
ITB 0.0125 (3.70E—05) 0.1931 (0.0169) 0.0042 (8.00E — 06)
ITBI 0.0180 (4.00E —05) 0.2679 (0.0160) 0.0058 (1.10E—05)
ITB2 0.0112 (3.90E—05) 0.1280 (0.0043) 0.0037 (8.00E — 06)
ITC 0.0098* (3.50E—05)  0.1133* (0.0025)  0.0029* (6.00E —06)
ITC1 0.0098 (2.30E —05) 0.1222 (0.0034) 0.0032 (5.00E — 06)
ITC2 0.0091** (220E—05)  0.1090** (0.0020)  0.0028** (5.00E —06)

Variances are in brackets.
* Indicates the best global estimate.
** Points out the best semi-local estimate.

TABLE IX MA(Q): X,=Z +09Z, 1 —08Z, »+0.6Z,_3—05Z,_4+03Z_s
Z,~N(0,1), (n = 120)

Method MISE, MISE _, MISE,
CVLL 0.0577 (0.0022) 0.2204 (0.0290) 0.0262 (0.0006)
CVLL2 0.0936 (0.0055) 0.3208 (0.0535) 0.0454 (0.0017)
SES 0.0691 (0.0053) 0.2387 (0.0418) 0.0334 (0.0018)
CVMSE 0.0625 (0.0025) 0.2372 (0.0299) 0.0288 (0.0008)
ITA 0.0818 (0.0044) 0.2748 (0.0383) 0.0383 (0.0012)
ITAl 0.0460 (0.0011) 0.1708** (0.0136) 0.0207 (0.0003)
ITA2 0.0604 (0.0020) 0.2118 (0.0187) 0.0277 (0.0006)
ITB 0.0478* (0.0007) 0.2051* (0.0168) 0.0213* (0.0003)
ITBI 0.0489 (0.0007) 0.2175 (0.0166) 0.0213 (0.0002)
ITB2 0.0478 (0.0008) 0.2000 (0.0155) 0.0213 (0.0003)
ITC 0.0640 (0.0028) 0.2190 (0.0259) 0.0301 (0.0008)
ITC1 0.0452** (0.0009) 0.1721 (0.0122) 0.0204** (0.0003)
ITC2 0.0529 (0.0015) 0.1897 (0.0162) 0.0242 (0.0004)
BOOT 0.0518 (0.0012) 0.1884 (0.0127) 0.0241 (0.0004)

Variances are in brackets.
* Indicates the best global estimate.
**Points out the best semi-local estimate.

4.2. Large Sample Results (» = 480)

ITB, ITB1 and ITB2 perform poorly in 2 out of 5 cases (see Tabs. IV
and VIII). ITA is worse than ITC in all 5 cases and worse than ITB
most of the times. ITB and ITB2 perform quite well in some cases,
especially for the AR(1) process, where ITB2 seems to be the most
adequate method. ITC2 is the most adequate procedure in 2 out of 5
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TABLEX MAQG): X,=Z,+09Z,_; —08Z,_5+0.6Z,_3—05Z,_4+ 03Z,_s,
Z,~ N, 1), (n = 480)

Method MISE, MISE_, MISE,

ITA 0.05529 (0.00058) 0.18844 (0.00450) 0.02654 (0.00020)
ITA1 0.02028 (0.00014) 0.07211 (0.00108) 0.00940 (0.00005)
ITA2 0.03221 (0.00024) 0.11190 (0.00193) 0.01520 (0.00008)
ITB 0.02111* (0.00007) 0.09361 (0.00163) 0.00914* (0.00003)
ITB1 0.02537 (0.00007) 0.11948 (0.00226) 0.01072 (0.00003)
ITB2 0.01981 (0.00006) 0.08491 (0.00163) 0.00866 (0.00002)
ITC 0.02702 (0.00030) 0.09132* (0.00231) 0.01299 (0.00010)
ITC1 0.01527** (0.00009) 0.05777** (0.00088) 0.00693** (0.00003)
ITC2 0.02080 (0.00017) 0.07198 (0.00127) 0.00982 (0.00006)

Variances are in brackets.
* Indicates the best global estimate.
** Points out the best semi-local estimate.

cases (see Tabs. VIII and VI) and not much worse than other methods
in the other cases, except for the MA(5) process (see Tab. X), where
ITC1 is clearly dominating.

5. CONCLUSION

In this paper we reviewed and compared various methods for
determining optimal scale parameters for non-parametric lag or spec-
tral window estimation of a spectral density of a stationary zero-
mean process. These are cross-validation-based estimates following
Hurvich (1985); Beltrao and Bloomfield (1987) and Hurvich and
Beltrao (1990); iterative estimates following Biihlmann (1996); and a
bootstrap estimate following Franke and Hardle (1992). The means
of comparison was a simulation study performed for selected
ARMA(5,5) processes with simulation size 300 and time series length
120 and 480. In the case of n=480, only iterative methods were
examined, for reasons of their comparable computational efficiency,
and because there is no reason to assume that cross-validation-based
procedures suddenly perform better than the iterative ones for larger
sample sizes.

All three distance measures provide similar rankings of the optimal
bandwidth selection criteria. It seems that best among the cross-vali-
dation methods in general is CVLL, possibly except for sharp peak
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density processes. More adequate is the global iterative procedure
ITC, using Biithlmann’s (1996) scheme, disregarding the inflation
factor. Local selection criteria, in general, seem to be an improve-
ment on global criteria. Among the discussed methods, ITC2, a local
selection criterion using Biihlmann’s (1996) scheme, without inflation
factors, and the bootstrap method, originated by Franke and Hérdle
(1992) and slightly corrected in this paper, seem to be the most
adequate criteria for determining the optimal window width in non-
parametric spectral density estimation.

In general terms, method ITC2 seems to be the most appropriate
to use. First, it performs best in choosing the optimal window width
in most of the cases and only slightly worse in the rest. Second, it
is a computationally efficient method compared with the bootstrap
procedure and the cross-validatory methods.
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