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Abstract This paper provides an in-depth study of the (most) refined best-response
correspondence introduced by Balkenborg et al. (Theor Econ 8:165-192, 2013). An
example demonstrates that this correspondence can be very different from the stan-
dard best-response correspondence. In two-player games, however, the refined best-
response correspondence of a given game is the same as the best-response correspon-
dence of a slightly modified game. The modified game is derived from the original
game by reducing the payoff by a small amount for all pure strategies that are weakly
inferior. Weakly inferior strategies, for two-player games, are pure strategies that are
either weakly dominated or are equivalent to a proper mixture of pure strategies. Fixed
points of the refined best-response correspondence are not equivalent to any known
Nash equilibrium refinement. A class of simple communication games demonstrates
the usefulness and intuitive appeal of the refined best-response correspondence.
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D. Balkenborg et al.

1 Introduction

The refined best-response correspondence was introduced by Balkenborg et al. (2013)
in an effort to find the smallest face of the polyhedron of mixed strategy profiles that
can be termed evolutionary stable under some reasonable dynamic learning process.
Balkenborg et al. (2013) demonstrate that these faces are such that they are min-
imally asymptotically stable under a particular “smallest” deterministic dynamical
system, which is a differential inclusion based on the, so-termed, (most) refined best-
response correspondence. If the best-response dynamics, introduced by Gilboa and
Matsui (1991), Matsui (1992), and Hofbauer (1995), can be described as a gradual
process in which agents who revise their strategy always switch to a best response,
the refined best-response dynamics can be described as a gradual process in which
revising agents always switch to a best response that is also a unique best response
against a strategy profile arbitrarily close to the current one.

The lattice theorem of Balkenborg, Hofbauer, and Kuzmics (2013, Theorem 1)
implies that of all best-response-like dynamics the refined best-response dynamics
has the fewest stationary points, as the refined best-response correspondence has the
fewest fixed points of all best-response-like correspondences.! It furthermore implies
that the refined best-response dynamics has the most (asymptotically) stable points
(all of course fixed points of the refined best-response correspondence, and thus Nash
equilibria) of all best-response-like dynamics as it has the fewest solution trajectories
of all best-response-like dynamics. Of all best-response-like dynamics the refined
best-response dynamics is the one that makes the most Nash equilibria (yet, only
Nash equilibria) stable. The refined best-response dynamics, of all best-response-like
dynamics, therefore provides the closest justification, based on learning dynamics,
of the general practice of using Nash equilibrium as the solution concept for games,
while at the same time it allows us to identify Nash equilibria that can never be made
stable under any best-response-like dynamics.

The refined best-response dynamics is a very reasonable dynamic learning process
in the spirit of fictitious play. Balkenborg et al. (2013) provide a sketch of a micro-
foundation for this dynamics as follows. For every player position, there is a large
population of individuals. Time is continuous and runs from zero to infinity. Individuals
play pure strategies. At time zero, individuals’ behavior is given by some arbitrary
frequency distribution of pure strategies, with one distribution for each population. In
every short time interval, a small fraction of individuals is given the opportunity to
revise their strategy. Revising individuals do not know the exact state of play. Different
individuals have different beliefs (that are close to the truth) about the aggregate play.
Any individual’s belief over play in any two opponent populations i and j is assumed
to be statistically independent. If these beliefs are sufficiently diverse, only a vanishing
fraction of individuals adopt a strategy that is best only on a set of states with Lebesgue
measure zero. This gives rise to the refined best-response dynamics.

! What we here call a best-response-like dynamics or correspondence is what in Balkenborg et al. (2013)
is formally defined and termed a generalized best-response dynamics or correspondence.

@ Springer



The refined best-response correspondence in normal form games

The objective of this paper is to study properties of the refined best-response corre-
spondence and its fixed points (as they are stationary points of the refined best-response
dynamics) in detail for all normal form games that satisfy a mild restriction.

We show by example that the refined best-response correspondence, while, by defi-
nition, it shares many properties with the best-response correspondence, such as being
upper-hemi continuous, closed- and convex-valued, and having a product structure,
is not generally like a best-response correspondence. There are games with a refined
best-response correspondence, for which there is no game that has this refined best-
response correspondence as its best-response correspondence. Thus, even if you have
studied the best-response correspondence for all games, you have not automatically
covered all refined best-response correspondences.

The example that demonstrates this fundamental difference between refined best-
response and best-response correspondence is a three-player game. For two-player
games we show that refined best-response correspondences are like best-response
correspondences. For every two-player game with its refined best-response correspon-
dence, there is another such game with a best-response correspondence that coincides
with the given refined best-response correspondence. This result is shown by char-
acterizing strategies that are never refined best responses in terms of a local form of
weak dominance, which we call weak inferiority. We then characterize weakly inferior
strategies for two-player games, as those and only those pure strategies that are either
weakly dominated or equivalent to a proper mixture of pure strategies.’

While there are refined best-response correspondences that are unlike any best-
response correspondence in three or more player games, we can show that for all
generic normal form games, the refined best-response and best-response correspon-
dences coincide, nevertheless. This tells us that the refined best-response correspon-
dence is of interest only in non-generic games. Of course, many games of interest,
such as extensive form games, cheap-talk games, allocation games (e.g. auctions),
and generally any games with many pure strategies yet only few outcomes (e.g. win,
draw, or lose as in many parlour-games), have non-generic reduced normal form rep-
resentations, in which the refined best-response correspondence would typically not
be identical to the best-response correspondence.

We then proceed to partially characterize fixed points of the refined best-response
correspondence and show by means of examples that there is no systematic relation-
ship between these fixed points and known refinements of Nash equilibrium. A fixed
point of the refined best-response correspondence does not have to be perfect (Selten
1975), persistent (Kalai and Samet 1984), proper (Myerson 1978), or strategically
stable (Kohlberg and Mertens 1986). Conversely, a strategy profile that is perfect, per-
sistent, proper, or an element of a strategically stable set need not be a fixed point of
the refined best-response correspondence. Finally, we apply the refined best-response
correspondence in a class of simple communication games, that perhaps best demon-
strates its intuitive appeal and usefulness.

The paper proceeds as follows. Section 2 defines the very general class of games
we study and defines the refined best-response correspondence. Section 3 analyzes the

2A proper mixture of pure strategies places positive weight on at least two pure strategies.
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D. Balkenborg et al.

differences between best-response and refined best-response correspondences. Sec-
tion 4 analyzes fixed-points of the best-response correspondence. Section 5 provides
a simple direct proof of the statement that every persistent retract (Kalai and Samet
1984) contains a strategically stable set in the sense of Kohlberg and Mertens (1986).
Section 6 further illustrates the differences between the refined best-response and best-
response correspondences, and in particular the usefulness and intuitive appeal of the
refined best-response correspondence, for a class of games of independent economic
interest, namely simple games of cheap-talk communication. Section 7 concludes.

2 Preliminaries

LetI" = (/, S, u) be a finite n-player normal form game, where I = {1, ..., n}is the
set of players, S = X;¢1S; is the set of pure strategy profiles, and u : S — R”" the
payoff function.® Let ®; = A(S;) denote the set of player i’s mixed strategies, and
let ® = X;<70®; denote the set of all mixed strategy profiles. Let int(®) = {x € © :
Xxis > 0Vs € S; Vi € I} denote the set of all completely mixed strategy profiles.

For x € ® let B;(x) C S; denote the set of pure-strategy best responses to x for
player i. Let B(x) = X;e7B;(x). Abusing notation slightly, let 8; (x) = A(B;(x)) C
®; denote the set of mixed-strategy best responses to x for player i. Let S(x) =
Xiel Bi(x).

As in Balkenborg et al. (2013) we shall restrict attention to games with a nor-
mal form in which the complement of the set of mixed-strategy profiles ¥ = {x €
®| B(x) is a singleton} has Lebesgue measure 0. We denote this class by G*. A game
in G* is, therefore, such that to almost all strategy profiles all players have a unique
best response. As shown in Balkenborg et al. (2013) if a game is not in this class
G* it must be such that at least one player has two (own-payoff) equivalent pure
strategies. Two strategies x;, y; € ©; are (own-payoff) equivalent (for player i) if
wi(xi, x—;) = u;i(yi, x—;) forallx_; € ®_; = x;+;0; (see Kalai and Samet 1984).

For games in G* let 0 : ® = O be the refined best-response correspondence as
defined in Balkenborg et al. (2013) as follows. For x € ©® let the set of pure refined
best responses be given by

Si(x) = {s; € Si| Hx; )72, withx, € W Vr :
[(x; = xast — 00) A (B;(xy) = {s;} VD)1}.

Then, again abusing notation slightly, o;(x) = A (§;(x)) and o (x) = Xjejoi(x) V
x € 0.

For x € ® astrategy s; € S;(x) is thus a best response against x that is also a best
response for an open subset of any neighborhood of x.*

3 The function u will also denote the expected utility function in the mixed extension of the game I".

4 Balkenborg (1992) calls strategies s; € S;(x) semi-robust best responses. This is inspired by Okada
(1983) who calls a strategy a robust best response to strategy profile x if it is a best response for an open
neighborhood of x. One could call a strategy robust if it is a robust best response against some strategy
profile. Any pure strategy that is either a robust best response or a semi-robust best response against some
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The refined best-response correspondence in normal form games

3 The difference between the best-response and the refined best-response
correspondence

This section defines and discusses notions of strict and weak local dominance (applied
globally), that will be useful in understanding the difference between the best-response
and the refined best-response correspondences. We term these notions strict and weak
inferiority.’ They are such that, naturally, every strictly dominated strategy is strictly
inferior, every weakly dominated strategy is weakly inferior, and every strictly inferior
strategy is weakly inferior.

Definition 1 LetI" = (/, S, u) € G*. A strategy s; is strictly inferior if s; & B; (x) for
any x € ©. A strategy s; € S; is weakly inferior if there is no open subset of strategy
profiles U C ® such thats; € B;(x) forall x € U.

In other words, a strictly inferior strategy is never a best response, whereas a weakly
inferior strategy, may be a best response against some strategy profiles, but is never a
refined best response. Another equivalent statement is that a weakly inferior strategy
w; is such that if w; € B;(x) then B; (x) is not a singleton. That is, a weakly inferior
strategy is never the only best response. Note that every game in G* has at least one
strategy for each player that is not weakly inferior.

Suppose we now consider a fixed strategy profile x € ® and playeri’s best responses
to x, given by B; (x). We would like to know which of these best responses are also
refined best responses at this given strategy profile x (i.e. are in S;(x)). We must, of
course, have that any weakly inferior strategy w; satisfies w; ¢ S;(x). Can there be
another pure best response in B; (x) that is not in S;(x)? For two-player games, the
answer is “No”. However, for three of more player games, the answer is “Yes.” The
crucial difference between two- and more-player games is that for two-player games
the set of strategy profiles for which a player is indifferent between two different pure
strategies is a hyperplane, while for three- (or more-) player games it is some non-
linear hypersurface. This in turn implies that the set of strategy profiles against which
a given player’s given pure strategy is a best response is a convex set in the two-player
case, but may well be a non-convex set in the three-player case. How this difference
matters for the refined best-response correspondence is made clear in examples below.

3.1 Two-player games

The following theorem states that in two-player games, not only is a weakly inferior
strategy never a refined best response, but also any best response to a given strategy
profile x € ©® that is not a refined best response must be weakly inferior. In other
words, for two-player games, the refined best response correspondence is completely
understood even locally once we know all weakly inferior strategies.

Footnote 4 continued

strategy profile x is, thus, a robust strategy. Note that, while every strategy profile x € ® has a semi-robust
best response for all players, it may not have a robust best response.

5 Our notions of strict and weak inferiority are motivated by, but not identical to, the notion of inferior
choices in Harsanyi and Selten (1988).
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D. Balkenborg et al.

Fig. 1 A two-player game to F G
illustrate the proof of Theorems Al3T1
1 and 2. Payoffs are given only
for player 1, who chooses the Bl1]|3
row Cl2]2
D|3|0
E|0]3
Fig. 2 A plot of the payoff of payoff vs F' payoff vs G
player 1’s pure strategies against 34 4 4 3
all mixed strategies of player 2
for the game given in Fig. 1 D
2 2
C
1B 1
2%

Theorem 1 LetT" = (I, S, u) € G* be a two-player normal form game. A strategy is
a pure refined best response, s; € S;(x), if and only if it is a best response, s; € B;(x),
and is not weakly inferior.

We now provide a complete characterization of weakly inferior strategies.

Theorem 2 Let I' = (I, S,u) € G* be a two-player normal form game. A pure
strategy is weakly inferior if and only if it is weakly dominated or equivalent to a
proper mixture of pure strategies.

While the proofs of Theorems 1 and 2 are given in Appendix 2, we here provide
an intuitive sketch of the argument. The results are, of course, similar to Pearce’s
(1984) result, also to be found in Myerson (1991, Theorems 1.6 and 1.7), that in two-
player games strictly dominated strategies are exactly those strategies that are never
best responses, and that weakly dominated strategies are exactly those that are never
a best response to a completely mixed strategy. The proofs of Theorems 1 and 2 in
Appendix 1, however, does not follow the proof given by Pearce (1984), which is
based on the minmax theorem for zero-sum games, but on the sketch of the proof
based on the separating hyperplane theorem as given, for instance, by Fudenberg and
Tirole (1991, pp. 50-52).

Consider the two-player game given in Fig. 1 and the plots of payoffs for that
game given as Figs. 2 and 3, which are simple variations of the game and pictures in
Fudenberg and Tirole (1991, p. 50-51, Figs. 2.2 and 2.3). We shall first explain the
reasoning behind Theorem 2. Clearly pure strategies A and B are unique best responses
against some opponent strategies. Thus, both strategies are refined best responses.
Refined best responses must be best responses against an open set of opponent mixed
strategies. A mixed strategy of player 2 can be identified in Fig. 3 by the orthogonal
vector to a downward sloping straight line, such as the two dashed lines. In fact, as
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The refined best-response correspondence in normal form games

0 t t i

0 1 2 3 4
Fig. 3 A plot of player 1’s strategies, for the game given in Fig. 1, in the space of payoffs against the two
opponent strategies. The x axis is the payoff against pure strategy F, while the y axis is the payoff against

pure strategy G. Dots represent the five pure strategies, while the solid lines represent not strictly dominated
payoft-tuples that can be achieved by appropriate mixtures of player 1’s pure strategies

there is an open set of straight lines going through point B, there is an open set of
opponent strategy profiles against which strategy B is a (unique) best response. This
can also be seen in Fig. 2.

Now turn to the weakly dominated strategy D. The only downward sloping straight
line through point D in Fig. 3 that does not properly run through the convex hull of
payoff tuples is the line with infinite slope. Infinite slope reflects the fact that in order
to make strategy D a best response the opponent must not play strategy G with a
positive probability. Thus, the fact that there is no open set of downward sloping lines
that go through point D and are tangential to the convex hull of payoff tuples, implies
that there is no open set of opponent strategy profiles that makes strategy D a best
response. This can also be seen in Fig. 2.

Now turn to strategy C, which is equivalent to an equal mix of pure strategies A
and B. Note that, just as in the case of weakly dominated strategies, in Fig. 3 there is
only a single line through point C in the picture that is also tangential to the convex
hull of payoff tuples. The difference to weakly dominated strategies is that this single
line does not have infinite slope. Yet, rotate the line in any way, while keeping it fixed
at point C, and it will properly run through the convex hull of payoff tuples. So also in
this case there is no open set of opponent strategy profiles that would make strategy
C abest response. This can also be seen in Fig. 2.

To understand the reasoning behind Theorem 1 note that every strategy in a two-
player game can be best only in a convex set. Figure 3 demonstrates this nicely.
Consider player 1’s strategy B. The dashed lines can be identified with different
mixed opponent strategies against which strategy B is a best response. There is a
minimal slope and a maximal slope, such that for all slopes inbetween strategy B is
a best response. Thus, the set of opponent (mixed) strategies against which B is a
best response is convex. Note that this is so, for all strategies of player 1. Consider
now the mixed strategy of player 2 in which she places equal weight on her two pure
strategies, denoted by x3. Player 1’s strategy C is a best response to x3, but not to any
mixed strategy nearby. Is it then possible that strategy C is a best response against
some other (mixed) strategy of the opponent? No. If there is a unique mixed strategy
of player 2 in the neighborhood of x3 against which C is best, then, as best response
sets must be convex, strategy C cannot be a best response to any other (mixed) strategy
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of the opponent. The convexity of the best response sets in two-player games derives
from the fact that, in these games, the space of strategy profiles for which a player is
indifferent between two pure strategies is a hyperplane. For three-player games, this is
typically not the case as we demonstrate in the next subsection. For two-player games,
however, we can say even more.

Theorem 3 Let T = (I, S, u) € G* be a two-player game with refined best-response
correspondence o (). Then there is a game ' = (I, S, u’") € G* with payoff function
u' S — R? such that its best-response correspondence B(I'') = o ().

Proof Let T be such that, for every i € I, every s_; € S_;, and every weakly
inferior w; € S;, u;(w;,s—;) = u;(w;,s_;) — & for some § > 0. Then, for this
game I’ no weakly inferior strategy is ever a best response. Thus, by Theorem 1,
o) =0 = BI). O

Theorem 3 is useful as it tells us that in two-player games, the structure of fixed points
of o is the same as the structure of Nash equilibria. In particular, it implies that, in
two-player games, there are only finitely many components of fixed points of . More
precisely, applying the results in Jansen et al. (2002) we have the following.

Corollary 1 LetT" = (I, S, u) € G* be a two-player game with refined best-response
correspondence o. Then the set of fixed points of o is the union of finitely many
polytopes and hence the union of finitely many connected components.

3.2 Games with more than two players

In this subsection we turn to games with three or more players. We demonstrate by
example that neither Theorem 1 nor Theorem 3 extend to games with more than two
players.® The refined best response correspondence can, in such games, be different
from any best response correspondence. Nevertheless, it can be shown that for generic
games (in the normal form) the refined best-response correspondence is identical to
the best-response correspondence. Note, however, that many games of interest, such
as extensive form games, cheap talk games, allocation games (e.g. auctions), and
generally any games with many pure strategies yet only few outcomes (e.g. win, draw,
or lose as in many parlour-games) are typically not generic in the space of all normal
form games.

The three-player game, given above in Fig. 4, which is in G*, demonstrates that
neither Theorem 1 nor Theorem 3 holds generally for games with more than two
players. Here and in the following three-player games, player 1 chooses the row,
player 2 the column and player 3 the matrix. In this example we specify the payoffs
of player 3 only. As indicated in Fig. 5, note that against opponent strategy profiles

6 Theorem 2 does also not extend to games with more than two players. One direction is, of course, true.
That is that any pure strategy that is weakly dominated or equivalent to a proper mixture of pure strategies
is weakly inferior. But there may well be additional weakly inferior strategies. The reason is well-known.
In three player games an undominated strategy may still be never a best response (as players here always
know, or believe, if you will, that opponents cannot correlate their strategy choices). For a textbook example
see Ritzberger (2002, Example 5.7).
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C D C D
Al0|0O A1 |-1
Bl0|O B|-1[0

B F

Fig. 4 A game where the refined best-response correspondence is not the best-response correspondence
of a modified game. Payoffs are given only for player 3 who chooses matrix

F best reply.
_ Prob(D)
I
\
Prob(B) F best reply

Fig. 5 For the game given in Fig. 4, the regions where strategies E and F of player 3 are best responses are
indicated in the square of strategy profiles of players 1 and 2. The probability with which player 1 chooses
B is indicated vertically downwards in the graph while the probability of player 2 choosing D is indicated
horizontally. In the shaded area between the two branches of the hyperbola E is the best response for player
3, outside itis F'. The lower branch of the hyperbola intersects the square only in the point (B, D), indicating
that F is a best response against (B, D), but not a refined best response

(1/2A+1/2B,C),(A,1/2C +1/2D),and (2/3A + 1/3B,2/3C + 1/3D) (among
others) both E and F are refined best responses. However, against (A, C) F is the only
best response and against (B, D) E is the only refined best response. Nearby the latter
strategy profile there is no open set in the square of the opponents’ mixed strategy
profiles where F is a best response. Thus, strategy F' while it is a best response and
not weakly inferior is nevertheless not a refined best response. This demonstrates that
Theorem 1 does not extend to three or more player games.

Now assume there exists another game with the same strategies for which the best
response mapping for player 3 is identical to the refined best response correspon-
dence of the given game. This implies that player 3 must remain indifferent between
E and F against the strategy profiles (1/2A +1/2B,C) (A, 1/2C + 1/2D), and
(2/3A 4+ 1/3B,2/3C + 1/3D). Moreover, F must be a best response against (A, C),
but not against (B, D). This implies

%(u3(A,C, E)—usz(A,C, F))—%(Iu (B,C,E)—u3(B,C,F))=0
%(u3 (A,C,E)—u3(A,C, F))—%(ug,(A,D, E)—u3(A,D,F))=0
g(u3(A,C,E)_M3(A,C,F))_g(u3(B,C,E)_M3(B,C,F))

—%(u3 (A,D,E)—us (A, D, F))+$(u3 (B,D,E)—u3(B,D,F))=0
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We conclude that u3 (B, D, E) — u3 (B, D, F) = 0, and, thus F is a best response
against (B, D), a contradiction.

The fact that Theorem 3 does not extend to three or more player games is quite
remarkable. It implies that, although the refined best-response correspondence o sat-
isfies many properties that the best-response correspondence satisfies, such as being
upper hemi continuous, closed- and convex-valued, and having a product structure,
it is nevertheless, at least in some cases, not like any best-response correspondence.
Thus knowing that the best-response correspondence satisfies a certain property does
not immediately imply that the refined best-response correspondence does satisfy this
property as well.

Nevertheless, and given the above example perhaps a little surprisingly, we can
show that in almost all games (whether two players or more) the refined best-response
correspondence is equal to the best-response correspondence. Remember, however,
that many games of interest in G* (derived for instance from an extensive form) are
not among these generic normal form games.

Theorem 4 For generic normal form games a pure strategy is a refined best response
if and only if it is a best response (i.e. s; € S; (x) < s; € B; (x)). That is we have
o = f for generic normal form games.

Theorem 4 was originally established in Balkenborg (1992). Given that persistent
retracts are minimal CURB sets based on the refined best-response correspondence
o, see Balkenborg, Hofbauer, and Kuzmics (2013, Lemma 3), also originally shown
in Balkenborg (1992), Theorem 4 implies that generically persistent retracts coincide
with minimal CURB sets. This fact has been used by Voorneveld (2005) to show that
generically persistent retracts coincide with his minimal prep sets.

While the proof of Theorem 4 can be found in Appendix 1 we conclude this section
with a discussion of the intuition as well as the difficulties behind this result.

Consider first two-player games. Theorem 1 states that the refined best responses to
a strategy profile x are all those best responses to x that are not weakly inferior. Let us
now highlight another implication of the proof of Theorem 3. If we modify the payoff
of any weakly inferior strategy by uniformly subtracting some positive real number,
we obtain another game in which the refined best-response correspondence is identi-
cal to the best-response correspondence. It is also immediate that if we uniformly add
a small real number to all weakly inferior strategies we obtain yet another game in
which the refined best-response correspondence is identical to the best-response cor-
respondence.” Thus, any small uniform subtraction or addition in payoffs to weakly
inferior strategies leads to a game in which the refined best-response correspondence
is identical to the best-response correspondence. Also we could dispense with the
word “uniform”. If payoff reductions/additions are positive but possibly different for
different pure strategy profiles of the opponents, again in the new game the refined
best-response correspondence is identical to the best-response correspondence. We,
thus, have that for any game in which the refined best-response correspondence is dif-
ferent from the best-response correspondence, and for any open set of games around

7 Note that the best-response correspondence in the former case is typically not identical to the best-response
correspondence in the latter case.
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Fig. 6 This is the analogue
picture to Fig. 2 for the game
given in Fig. 4 and plots the
payoft to player 3 for her two
pure strategies, against all mixed u3 00
strategy profiles of the
opponents

prob(B) 57 02 04 06
prob(D)

this game, there is a game in which both the refined and original best-response cor-
respondence coincide. Thus, we have that the set of two-player games in which the
two correspondences coincide is dense in the space of two-player games. On the other
hand, it is also easy to see that for any game in which the refined best-response cor-
respondence coincides with the best-response correspondence, there is an open set of
games around this game in which this is still true. This is almost a proof, except that
we still have not established that the set of games in which the refined best-response
correspondence coincides with the best-response correspondence has not only positive
but “full” measure.

The remaining problem is that in the above argument we are always only changing
the payoffs of the weakly inferior strategies. A payoff change to a weakly inferior
strategy could be “compensated” by a similar payoff change for the other strategies.
Yet, it seems it would be “unlikely” that “random” changes to payoffs in a game would
lead to a game in which the refined best-response correspondence is different from the
best-response correspondence. In other words it remains to be shown that the equation
B(T) = o (') is satisfied everywhere except on a lower dimensional subset of the
space of games. In order to do this we appeal to an implication of Sard’s theorem
known as the transversality theorem (see Guillemin and Pollack 1974).

For three-player games (or games with more players) there is even an additional
difficulty. Compare Figs. 2 and 6. For two-player games, as can be nicely seen in
Fig. 2, if a strategy is a best response to some strategy profile x, but not a refined
best response, this strategy can not be a refined best response anywhere (this is also
the essence of Theorem 1). For three-player games this local property of not being
a refined best response does not extend globally as Fig. 6 demonstrates. Strategy F
is not a refined best response against (B, D) but is a refined best response in, of
course, an open set of strategy profiles around (A, C). Thus, small payoff changes
will not only affect whether or not a given strategy is a local best response against
some given strategy profile x but may also have a possibly different effect on whether
this strategy is a local best response against some other strategy profile, far away from
x. It is still easy to see that a small reduction in payoffs to a strategy which is locally
not a refined best response to some strategy profile x will lead to a new game, in
which this strategy is not even a best response. Yet, in three player games this may
come with some additional consequences, which are not necessarily clear. With the
knowledge we built so far it still seems possible that one could construct an example of a
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game-form in which small payoff changes, no matter in which direction, somehow
always compensate each other in a way that every such perturbed game has some
strategy profile in which there is a best response that is not a refined best response.
Our proof shows that such examples cannot be constructed.

4 Nash equilibrium versus best-response refinements

This section provides a few results relating fixed points of the refined best-response
correspondence to (refinements of) Nash equilibria. Given that every game has a fixed
point of the refined best-response correspondence we concentrate our comparison to
well-known refinements of Nash equilibrium that also have an existence property.

Proposition 1 Let I be a finite two-player game in G*. Let x € © be a fixed point of
the refined best-response correspondence o. Then x;y,, = 0 for every weakly inferior
w; € Sl'.

Proof Let x € o(x). By Theorem 1 w; ¢ S;(x) for any weakly inferior w; € S;. But
then no y € ® with y;,,, > 0 canbein o (x). O

Selten (1975) introduced the concept of a (trembling-hand normal form) perfect (Nash)
equilibrium. One way to define perfect equilibrium in normal form games is given in
the following definition, which is also due to Selten (1975) (see also Proposition 6.1
in Ritzberger (2002) for a textbook treatment).

Definition 2 A (possibly mixed) strategy profile x € ® is a (trembling-hand normal
form) perfect (Nash) equilibrium if there is a sequence {x;}7°, of completely mixed
strategy profiles (i.e. each x; € int(®)) such that x; converges to x and x € f(x;) for
all z.

We obtain the following Proposition.

Proposition 2 Let " be a 2-player game in G*. Then every pure fixed-point, s € S, of
the refined best-response correspondence, o, is a perfect equilibrium.

Proof Pure fixed points of o are undominated by Proposition 1. An undominated Nash
equilibrium of a two-player game is perfect (see e.g. Damme 1991, Theorem 3.2.2).
O

In what follows we demonstrate by examples that this is the strongest statement one
can make. Proposition 2 is not true if we replace “pure” with “mixed”, “2-player” with
“3 or more player”, or “perfect” with “proper”, “KM-stable”, or “persistent”, where
proper is defined in Myerson (1978), persistent is defined as a Nash equilibrium of a
persistent retract by Kalai and Samet (1984), and KM-stable is (strategically) stable in
the sense of Kohlberg and Mertens (1986) (a minimal set satisfying their Property S).
See Sect. 5 for a definition of KM-stable as well as persistent retracts.

To first see that Proposition 2 cannot be generalized to mixed fixed points of the
refined best-response correspondence, nor to games with more than two players, con-
sider the following immediate characterization of fixed points of o. For x; € ©; let
C(x;) = {s; € Si|xi5; > 0} denote the carrier (or support) of x;.
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Fig.7 A two-player game in D E F
which a mixed fixed point of o

is not perfect A 0,0 0,1 0,0
B[20]21]02
Cl102]0,1]20
Flg 8 A three—playef game i1.1 C D C D
rv:f(ﬂl;l;;e;::reﬁxedpomtofa1s A 0’070 07070 A 07070 0’_1’3
B[0,00-330]| B[10-1]-222
B F

Proposition 3 Strategy profile x € © satisfies x € o(x) if and only if for alli € 1
and for all s; € C(x;) there is an open set U C ©, with x in the closure of U®, such
that {s;} = B;(y) forall y € Ui,

Suppose x € o(x). Consider player i. Then for all s; € C(x;) let U denote this
open set in which s; is best and let V% denote its closure. Now a necessary condition
for x to be perfect is that (;c; N, eciyy V™ Nint(®) # 7.8 However, this is not
necessarily the case. Consider the two-player game given in Fig. 7 taken from Hendon
et al. (1996). For this game o and B are identical. The mixed strategy profile x* =
((0,1/2,1/2); (1/2,0, 1/2)) is a Nash equilibrium, hence a fixed point of 8, hence of
o, that, as Hendon et al. (1996) point out is not perfect.® In this fixed point of & player 2
uses his pure strategies D and F only. D isbestinthe openset UL = {x € Olx|c > %},
while F is best in the openset UF = {x € O|x|p > %}. There are no bigger open sets
with the same property. Yet the intersection of the closure of the two sets contains no
interior point (no completely mixed strategy). Hence, x* is not perfect.

The same logic also underlies the fact that Proposition 2 does not extend to games
with more than two players. Consider the three-player game given in Fig. 8. Pure
strategy profile (A, C, E) is aNash equilibrium. Player 1’s strategy A is a best response
against x € O if and only if 3xpp > x3F. Player 2’s strategy C is a best response
against x € O if and only if x37 > 3x;p. Player 3’s strategy E is a best response
against x € © if and only if x1p > 3x2p. Thus, each strategy A, C, E is best in an
open set of strategy profiles with the closure containing (A, C, E) and (A, C, E) is
a fixed point of o. However, there is not a single strategy profile, except (A, C, E),
against which all three are best at the same time. To see this use the first inequality
in the third to obtain x;p > x3r. Now use this in the second inequality to obtain
x3F > 3x3p, which is only satisfied at x3r = 0. But then, by the same inequalities,
we must also have xpp = 0 and x5 = 0. There is, thus, no strategy profile except
(A, C, E) itself against which (A, C, E) is a best response for all three players. This
in turn implies that (A, C, E) is not perfect.

8 Note that this condition is, for instance, satisfied, for the mixed equilibrium in the two-player game of
matching pennies.

9 In fact, this can be seen directly from the observation that player 2’s strategy (1/2, 0, 1/2) is weakly
dominated by strategy E.
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Fig. 9 A two-player game in A B C
which a pure fixed point of o is
not proper nor KM-stable A 1 s 1 0,0 -9,-9
B| 00 | 00 |-7-7
C|-9-9|-7-7]|-7-7
Fig. 10 A two-player game in A B C
which a pure fixed point of o is
not persistent A 0,0 0,0 1 ,- 1
B[00 1,101
Cl11[-10]-11

To see that a pure fixed point of the refined best-response correspondence does not
have to be proper or KM-stable even in two-player games consider the symmetric
two-player game given in Fig. 9. This game is from Myerson (1978), who uses it to
illustrate the difference between perfect and proper equilibrium. Note that strategy
profile (B, B) is a Nash equilibrium. Note that strategy B for each player is a best
response if and only if the opponent strategy satisfies x4 < 2xc. Thus, B is best
against an open set of strategy profiles with closure containing (B, B), and (B, B)
is, therefore, a fixed point of the refined best-response correspondence. As Myerson
(1978) shows, however, (B, B) is not a proper equilibrium.!® Note, furthermore, that
strategy profile (A, A) (whichis also a fixed point of o) is a strict Nash equilibrium and,
thus, a singleton KM-stable set (or strictly perfect). For (B, B) to be in a KM-stable
set we would have to have that it is also strictly perfect. Otherwise the minimality
requirement of the KM-stability definition would only pick up (A, A) as a KM-stable
set. It is, however, easy to see that (B, B) is not strictly perfect.!! Consider trembles
(a tremble for a given pure strategy is the minimal probability with which a player
must play this pure strategy, see Sect. 5 for a definition) such that player 2’s trembling
probability for strategy A is more than twice as large as the trembling probability for
strategy C. As C is never a best response for player 2 she will use it only with minimal
trembling probability. Thus, she will use strategy A with a probability that exceeds
twice that of strategy C. But then player 1’s unique best response is A. Any perturbed
game with such trembles only has one equilibrium, and that is close to (A, A). Thus,
(B, B) is not in a KM-stable set.

To see that a pure fixed point of the refined best-response correspondence does not
have to be persistent even in two-player games consider the symmetric two-player
game given in Fig. 10. Strategy C is strictly dominated. Strategies A and B are both
refined best responses against A. Thus, (A, A) is a fixed point of the refined best-
response correspondence. However, the unique persistent retract (minimal absorbing
retract, see Kalai and Samet 1984) is the set {(B, B)}. Thus (B, B) is the only persistent
equilibrium.

10 Strategy C yielding the lowest possible payoff must be played with much smaller probability than
strategy A in any e-proper equilibrium.

11 That (B, B) is not strictly perfect also follows from the fact, shown in Vermeulen (1996), that in 3 x 3-
games strictly perfect equilibria are proper.
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We now turn to the question whether some version of the converse of Proposition 2
could be true. We first demonstrate that the direct converse is not true and that even a
strengthening of the converse in which we replace “perfect” with “proper” or “singleton
KM-stable set” is not true.

To see this consider the symmetric two-player game given in Fig. 11. In this game
strategy A is equivalent to the equal mixture of pure strategies B and C. However, A is
a best response only on a thin set of mixed-strategy profiles. In fact, A is best against
any x € ® in which the opponent uses xp = x¢, the set of which is a thin set. Thus,
this game is in G*. In this game (A, A) constitutes a perfect equilibrium. In fact every
mixed strategy profile ((«, I_TD‘, 1_TO‘); (o, I_T“, 1_TO‘)) is a strictly perfect equilibrium,
and hence, constitutes a singleton KM-stable set. But none of these equilibria, except
the one with o = 0, are fixed points of o, due to the fact that A is only best on a thin
set (it is a weakly inferior strategy).

The following version of a converse can be established.

Proposition 4 Let I be a 2-player game in G*. Then every (pure or mixed) persistent
equilibrium x € © is a fixed point of the refined best-response correspondence o.

Proof A persistent equilibrium x € ®, by definition, is a Nash equilibrium contained
in a persistent retract (or, equivalently contained in a minimal o -CURB set, as defined
in Sect. 5). Therefore, x must place positive probability only on those pure strategies
that are refined best responses against some strategy profile. These pure strategies are,
thus, not weakly inferior. By Theorem 1 all these pure strategies must then be a refined
best response against x. O

Proposition 4 cannot be extended to games with more than two players. Consider the
three-player game given in Fig. 12, taken from Kalai and Samet (1984). The strategy
profile (A, C, E) is persistent (see Kalai and Samet (1984)) but is not a fixed point of
o. To see this note that player 1’s strategy A is never best for nearby strategy profiles.
The one pure strategy combination (of players 2 and 3) against which A is better than
B is (D, F) which for nearby (to (A, C, E)) strategy profiles will always have lower
probability than the outcomes (C, F) and (D, E) against which B is better than A.

Having, thus, established that fixed points of the refined best-response correspon-
dence have little relationship with well-known refinements of Nash equilibrium, we
now demonstrate that the two are, however, not completely incompatible either.
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Proposition 5 Let " be a game in G*. Then there is a fixed point of the refined best-
response correspondence o that is also a proper equilibrium.

Proof The proof requires only a small modification of Myerson’s (1978) proof of the
existence of proper equilibrium. Recall that a proper equilibrium is the limit point of
a sequence of e-proper equilibria. For € > 0 an e-proper equilibrium is a completely
mixed strategy profile x€ with the property that, for every player i € I and for all pure
strategies s;, s, € S;, whenever u; (s/, x¢,) < u;(s;, x¢;) then x (s]) < ex{ (s;). Here
we need to require, in addition, that an e-proper equilibrium have the property that
any pure strategy s; € S; that is not a refined best response to x€ receive weight less
than €, i.e. x{ (s;) < e.Itis straightforward to verify that Myerson’s (1978) proof goes
through unchanged, with the result that we obtain existence of a proper equilibrium
that is also a fixed point of o. O

5 0-CURSB sets and strategic stability

Balkenborg et al. (2013) prove that CURB sets (Basu and Weibull (1991)) based on
o give rise to absorbing retracts (Kalai and Samet (1984)) and minimal such sets give
rise to persistent retracts. This equivalence allows us to provide a relatively simple
proof of the fact that every persistent retract contains a strategically stable set in the
sense of Kohlberg and Mertens (1986), also known as KM-stable set.

Jansen et al. (1994) have shown that persistent retracts contain a KM-stable set for
all two-player games. Mertens (1991) showed, for general n-player games, that every
persistent retract contains an M-stable set with the corollary that every persistent retract
also contains a KM-stable set. The proof is somewhat involved. One of the authors of
this paper showed in his PhD thesis, Balkenborg (1992), that every persistent retract
contains a strategically stable set in the sense of Hillas (1990). From this it also follows
that every persistent retract contains a KM-stable set. Both results are cited, without
proof, in van Damme (2002, Theorem 12 (iv)), who also writes that ... it can be shown
that each persistent retract contains a stable set of equilibria. (This is easily seen for
stability as defined by Kohlberg and Mertens ...)”. This “easy proof™, however, to the
best of our knowledge, has not been written down anywhere. We provide it here.

A set R C S is a strategy selection if R = X;c;R; and R; C S;, R; # ¢ for all
i. For a strategy selection R let ®(R) = X;c;A(R;) denote the set of independent
strategy mixtures of the pure strategies in R. A set W C O is a face if there is a
strategy selection R such that ¥ = ©(R). Note that ® = O(S). Note also that
B(x) = O(B(x)) and o (x) = O(S(x)).

A strategy selection R is a 0 -CURB set if S(©(R)) C R.Itis a tight 0 -CURB set
if, in addition S(®(R)) D R, and, hence, S(®(R)) = R. It is a minimal ¢-CURB
set if it does not properly contain another o -CURB set.

Definition 3 Let ' = (/, S, u) be a normal form game. Fori € I letn; : S; — R be
such that

77,~(s,~) > 0Vs; €5
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and

> mis) < 1.

si €S;

Then n = (11, ..., n,) is a tremble. Let ©;(n) = {x € O;|x;(s;) > n;(s;) Vs; € S;}.
Then I'(n) = (I, ©®(n), u) is the n-perturbed game.

The following defines property S of Kohlberg and Mertens (1986) for a set of strat-
egy profiles without the requirement of it being a subset of the set of Nash equilibria,
before defining Kohlberg and Mertens’s (1986) concept of strategic stability.

Definition 4 Let I" be a finite normal form game. Let O C ©® be a closed subset of
the set of mixed strategy profiles. Q is prestable if for all ¢ > O there is a § > 0 such
that for all trembles n with n;(s;) < § for all s; € S; and for all i € I there is a Nash
equilibrium, x", of the perturbed game I"(5) such that ||x" — x|| < € for some x € Q.
Such a set Q is KM-stable if it is prestable and does not properly contain another
prestable set.

Note that minimality requires that a KM-stable set consists exclusively of perfect
equilibria.

Proposition 6 Let I' = (I, S, u) be a normal form game. Every o-CURB set of I'
contains a KM-stable set.

Proof 1t is sufficient to show that a 0-CURB set is prestable. Let R be a 0-CURB
set. Fix a tremble 1 and the associated perturbed game I" () with the set of restricted
strategy profiles ® (). Define ®*(R) = {x € ©(n)|x;s = nis if s € R;}, a compact
and convex subset of @ (n). For x € ®*(R) let 6*(x) = {y € O(n)|yis = nis if s &
Si(x)}. Thus, o* is an upper hemi-continuous correspondence defined on a convex
compact set. By Kakutani’s fixed point theorem o * has a fixed point. By the assumption
that R is a 0-CURB set and the fact that ¢ is upper hemi-continuous, we have that
there is a neighborhood U of ®(R) such that o (U) C ®(R). Thus, as long as 7 is
sufficiently close to zero, such that ®*(R) C U, this fixed point of o* is a Nash
equilibrium of the perturbed game. Thus, every sufficiently close perturbed game has
a Nash equilibrium close to the o-CURB set. O

Given the interpretation of Balkenborg et al. (2013) that o -Curb sets are asymptoti-
cally stable sets under the refined best-response dynamics, this result is reminiscent to
the result by Swinkels (1993) that every convex asymptotically stable set of states
under some reasonable deterministic dynamics, in which every Nash equilibrium
is stationary, contains a hyper-stable set. Of course, not every Nash equilibrium is
stationary under the refined best-response dynamics.
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Fig. 13 Payoffs for simple communication games

6 A cheap-talk example

This section presents a very simple, perhaps the simplest, class of cheap-talk games,
or sender-receiver games.!? All games (in particular also generic games) within this
class are non-generic in the space of normal form games. We here show that the use
of the refined best reply correspondence greatly simplifies and clarifies the analysis
for this class of games.

Suppose there are two states of the world a and b. State a realizes with probability
p € (0, 1). Player 1 (the sender) is informed about the state of the world, player
2 (the receiver) is not. Player 1 can, in each state, send one of two messages m
or n. Player 2 upon observing the message sent must choose one of two actions
A or B. Thus, both players have four pure strategies. Player 1’s strategy space is
S1 = {(my, mp), (mgy, np), (ng, mp), (ng, np)}, where strategy (m,, np), for instance,
stands for “send message m in state a and message n in state b”. Player 2’s strategy
space is S2 = {(Am, An), (Am, Bn), (Bm, An), (B, By)}, where strategy (A, Bp),
for instance, stands for “choose action A when message m is received and action B
when message n is received”.

There are only four possible outcomes: action A is chosen when the state is a,
action A is chosen when the state is b, action B is chosen when the state is a, and
action B is chosen when the state is b. Denote the set of these four outcomes by
X ={aA,aB,bA, bB}. The two players have preferences over these four outcomes
given by utility levels u’ forall x € X andi € {1, 2}. Let these games be called simple
communication games. The general payoffs for such games are given in Fig. 13.

Note that for generic choices of payoffs over outcomes in X the simple communi-
cation game is in our class G*. In what follows we shall assume that for both players
ufl 4 F ula g and ”Z 4 F ”Z - Consider first, player 1, the sender. There are only two
substantially different cases to be considered. Case 1 is such that player 1 prefers one
of the two actions in every state. Without loss of generality this can be action A. Case
2 is such that player 1 prefers different actions in different states. Without loss of
generality she could prefer action A in state a and action B in state b.

Claim 1 Suppose “cle > uélzB and u}m > uéB (i.e. the sender prefers action A in

both states). Then her strategies m,, np and n,, my, (i.e. those strategies, in which she
conditions her message on the state) are weakly inferior, but not weakly dominated
(i.e. are equivalent to a proper mixture of the other two pure strategies).

12 The games here are much simpler than those of Crawford and Sobel (1982). For a discussion of com-
munication in simple games see Farrell and Rabin (1996). See Gordon (2006) for a discussion of persistent
retracts in the cheap-talk games of Crawford and Sobel (1982).
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Claim 2 Suppose u Ell 4> u; gandu }7 a<u é g (i.e. the sender prefers different actions

indifferent states). Then her strategies m,, mp andng, np (i.e. those strategies, in which
she does not condition her message on the state) are weakly inferior, but not weakly
dominated (i.e. are equivalent to a proper mixture of the other two pure strategies).

Proof of Claims I and 2 Considering the payoffs given in Fig. 13 it is apparent that
all of the sender’s strategies yield the same payoff against receiver strategy A,,, A, (in
which the receiver ignores the message anyway and always plays A). Similarly, all of
the sender’s strategies yield the same payoff against receiver strategy B, B, (in which
the receiver ignores the message anyway and always plays B). It is also apparent that
all of the sender’s strategies yield the same payoff against the receiver’s mixed strategy
that places equal weight on A,,, B, and B,,, A,. Thus, against any mixed strategy of
the form («, % —a, % — «a, «) all of the sender’s four pure strategies are equally good.
The sender, therefore, does not have any weakly dominated strategies. Now suppose
u}l 4> u}l g and u }7 4> U }, - That is the sender prefers action A in both states. Then
strategies m,, myp, and n,, np, provide more “extreme” payoffs than strategies m,, np
and n,, mp: The highest (lowest) possible payoff under strategies m,, m; and n,, np
is higher (lower) than the highest (lowest) possible payoff under strategies m,, n; and
ny, mp. From this fact and the symmetry inherent in the game, it follows that strategies
mg, np and n,, my are equivalent to a proper mixture of strategies m,, mp and n,, np,
and, thus, weakly inferior strategies by Theorem 2. In the case that ”{11 4> u; g and
u 11, 4 <u }7 5» we have the reverse result that now strategies m,, nj and n,, mjp provide
more “extreme” payoffs than strategies m,, mp and n,, np. Thus, in this case, strategies
mg, mp and ng, np are equivalent to a proper mixture of strategies mg, np and ng, mp,
and, thus, weakly inferior strategies. O

For player 2, the receiver, the following is true. The proof of these claims is straight-
forward and omitted.

Claim 3 Suppose u‘zm > ”33 and u%A > M%B (i.e. the receiver prefers action A in both

states). Then her strategy A,,, A, weakly dominates all other strategies.

Claim 4 Suppose uﬁ A>u§ g and u% A <u% g (i.e. the receiver prefers different actions

in different states). Suppose further that ,ougA + (1 — ,o)ulzm > puﬁB + (1 - ,o)u;;B
(i.e. the receiver with her a-priori information prefers action A over B). Then strategy
By, By, is weakly dominated by A,,, A,,. The remaining three strategies are not weakly
inferior.

The analogue result holds for the case ,ouﬁA + (1 - p)u%A < puZB + (1 - p)uzB.

Claim 5 Suppose ”2A>“c213 and ”iA <ui3 (i.e. the receiver prefers different actiqns
in different states). Suppose further that puiA + (1 - p)uzA = puﬁB + (1 — p)u;,B
(i.e. the receiver with her a-priori information is indifferent between actions A and

B). Then strategies By, B, and A,,, A,, are weakly inferior, but not weakly dominated
(i.e. are equivalent to a proper mixture of the other two pure strategies).

The first two claims can be summarized as follows. If the sender always wants
the same action implemented, regardless of the state, then the sender finds those pure
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AmaAn AmaBn BmaAn BmaBn

ma,mpg 0,0 0,0 0,0 0,0
ma,np 0,0 1,1 -1,-1 0,0
na,mpg 0,0 -1,-1 1,1 0,0
na,Np 0,0 0,0 0,0 0,0

Fig. 14 A simple communication game with common interest

strategies of hers in which she conditions her message on the state weakly inferior
(or never a refined best response). This means, even without thinking about what the
receiver does if the sender avoids weakly inferior strategies she will not even contem-
plate sending different messages in different states. Of course, and now depending on
the receiver’s preferences, she might want to randomize between which message she
sends.

If the sender, on the other hand, would like to see different actions implemented
in different states, and if she avoids weakly inferior strategies, she will only consider
strategies in which she conditions her message on the state and will disregard those
strategies of hers that do not reveal any information in the first place. Again, this
does not depend on the receiver’s preferences. Of course, if the receiver also wants
to choose different actions in different states, but the opposite action than the sender
prefers, then the sender may randomize between her non-weakly inferior actions, in
order to confuse the receiver.

Simple communication games are, thus, very intuitively and simply solvable using
the refined best-response correspondence. Using refinements of Nash equilbrium will
typically not do very much in these games. To perhaps see this best consider the special
case of what is essentially a coordination (or common interest) game, given in Fig.
14, for which p = § and u), , = ulyp = 1 and u', , = u'y, = —1forbothi € {1,2}.

Note that this is a symmetric game and such that Claims 2 and 5 apply.'> There
are no weakly dominated strategies. Yet, the sender’s pure strategies (m 4, np) and
(n4, mp) are (in fact unique) best responses against appropriate pure strategies of the
opponent, (A,,, B,) and (B,,, A,,),respectively. The sender’s pure strategies (m 4, mp)
and (n4, np) are best responses against any proper mixture of all opponent strategies,
in which pure strategies (m4,np) and (n4, mp) receive equal weight. By symme-
try, the same arguments apply to the receiver’s strategies. Thus, any strategy profile
(x1, x2, X3, Xx4), (Y1, ¥2, ¥3, y4) with xo = x3 and y, = y3 is a Nash equilibrium of
this game. Every Nash equilibrium of this sort is a singleton strategically stable set in
the sense of Kohlberg and Mertens (1986). To see this note that any completely mixed
Nash equilibrium is always a singleton KM-stable set as such an equilibrium is also an
equilibrium of a sufficiently slightly perturbed game. To see that even (1, 0, 0, 0) for
both players is a KM-stable set, note that arbitrarily close to it there is a completely
mixed Nash equilibrium: for instance, when both players choose (1 — 3¢, €, €, €). In
addition to this continuum of Nash equilibria, there are two additional ones: (0, 1, 0, 0)

13 Note that even though players in this game have own-payoff equivalent pure strategies, this game is in
the class G*.
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for both players and (0, 0, 1, 0) for both players. These are also singleton KM-stable
sets.

Yet, the sender’s pure strategies (m4, mp) and (n4,np) are both equivalent to
(each other and to) an even mixture of pure strategies (m4, np) and (n4, mp). Thus,
the sender’s pure strategies (m4, mp) and (n4, np) are weakly inferior and never
refined best responses. This game has only three fixed points of the refined best-
response correspondence: the two pure informative equilibria (m 4, np), (A;,, B,) and
(na.mp), (B, Ay) and the mixed equilibrium (0, %, 1., 0) for both players. Thus, the
refined best-response correspondence by removing weakly inferior strategies turns this
game into the simple coordination it essentially is. This, in turn, greatly simplifies the
analysis. Instead of a continuum of singleton KM-stable sets or a continuum of proper
equilibria we just have three fixed points of the refined best-response correspondence,
one of which is unstable under the refined best-response dynamics.

7 Conclusion

We studied the refined best-response correspondence in normal form games as intro-
duced by Balkenborg et al. (2013) as the basis for a dynamic learning model. We show
by example that the refined best-response correspondence can be unlike any best-
response correspondence. In two-player games, however, the refined best-response
correspondence coincides with the best-response correspondence of a slightly mod-
ified game. The modification is such that all pure weakly inferior strategies, as we
define them, receive a uniform payoff reduction. In two-player games we show that
pure weakly inferior strategies are those and only those strategies that are either weakly
dominated or equivalent to a proper mixture of pure strategies. While in general
n-player games, we cannot provide such a simple characterization, we show that for
generic normal form games refined best-response and best-response correspondences
coincide. Of course, many interesting games, such as cheap talk games or extensive
form games, are non-generic in the space of all normal form games.

The fixed points of the refined best-response correspondence are the stationary
points of the refined best-response dynamics of Balkenborg et al. (2013). They are
therefore the only candidates for convergence points of this dynamic process as well as
the only candidates for (Lyapunov or asymptotically) stable points under this dynamic
process. We show by examples that the set of fixed points of the refined best-response
correspondence is neither a subset nor a superset of the set of perfect equilibria (Selten
1975), proper equilibria (Myerson 1978), persistent equilibria (Kalai and Samet 1984),
or strategically stable equilibria (Kohlberg and Mertens 1986).

We demonstrated the usefulness and intuitive appeal of the refined best-response
correspondence over the best-response correspondence in a simple class of commu-
nication games.

There are still many open questions. We have, for instance, refrained in this paper
from discussing refined rationalizable strategies. That is, strategies which do survive
the iterated elimination of never refined best responses. These would be of inter-
est, as the refined best-response dynamics converges to the set of refined rationaliz-
able strategies in every game (Balkenborg et al. 2013). It is fairly easy to see that
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the set of refined rationalizable strategies must be a sometimes proper subset of the
set of strategies which survive the S°°W-procedure of one round of elimination of
all weakly dominated strategies and then the iterated elimination of strictly dom-
inated strategies.'* This is true, for instance, when a game has strategies that are
weakly inferior but not weakly dominated. On the other hand iterated admissibility,
for which an epistemic derivation has been given by Brandenburger et al. (2008),
is sometimes a subset and sometimes a superset of the set of refined rationalizable
strategies. We would find it of interest, to understand better the differences between
the various concepts of rationalizability and especially the reasons behind these
differences.

Taking our class of simple communication games as a starting point we would also
find it of interest to study other classes of games, in which the set of outcomes is much
smaller than the set of strategy profiles. We believe that the study of the refined best-
response correspondence could be fruitful in many such cases. One example of such
a class is the class of extensive form games. Another is the class of communication
games with more states and strategies. These are topics we endeavor to address in
future work.

Acknowledgments We would like to thank Carlos Alos-Ferrer, Pierpaolo Battigalli, Eddie Dekel, Chris-
tian Ewerhart, Amanda Friedenberg, Drew Fudenberg, Klaus Ritzberger, Karl Schlag, Mark Voorneveld,
and Jorgen Weibull, as well as editor Vijay Krishna and two anonymous referees for helpful comments and
suggestions.

Appendix
On the generic equivalence of best responses and refined best responses

This appendix provides a proof of Theorem 4, which is organized in a number of
steps: We will first fix some notations for the mappings and various submanifolds to
be considered. Step 1 argues that the embedding of the uncorrelated strategy com-
binations into the set of beliefs has nice differentiability properties. Step 2 invokes
the transversality theorem (see Guillemin and Pollack 1974) to show that for generic
payoff functions we obtain the needed transversality conditions.!> Step 3 argues that
we can restrict attention to completely mixed strategy combinations of the opponents.
If the player is indifferent between several of his strategies against a given completely
mixed strategy combination, step 4 shows how we can construct an arbitrarily nearby
strategy combination, against which the player strictly prefers a given one among these
strategies. Step 5 completes the argument.

For any finite set M let R be the vector space of all mappings y : M — R.
The dimension of RM is the number of elements in M.

14 For this procedure see e.g. Dekel and Fudenberg (1990), Borgers (1994), and Ben Porath (1997).

15 This transversality theorem is a straightforward consequence of Sard’s theorem. If one assumes an
algebraic map and uses in its proof in Guillemin and Pollack (1974) the algebraic version of Sard’s theorem
in Bochnak et al. (1998) one obtains a stronger version of the transversality theorem where the conclusion
of the theorem holds outside a lower dimensional semi-algebraic set.
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Letg; : [] i RS/ — RS- be the mapping defined by

(g (=) (- = [ [ (s5) -
J#
The multilinear function g; describes the first step in the computation mentioned above.
While x_; € [] i RS/ denotes the usual strategy combinations of the opponents, we

use x_; € RS~ to describe a “correlated strategy of the opponents”, i.e., a belief over
the set S_; of pure strategy combinations of the opponents. g; maps mixed strategy
combinations to such beliefs.

Let L; be the vector space of all linear mappings

v; ‘RS — RS,

If x_; € RS~ is a belief of player i and s; € S; a pure strategy player i chooses, then
(vi (x=i)) (s;) is the payoff player i expects with his strategy choice. In this context
a vector z € RS represents the various gains a player could make, not probabilities.
The linear function v; describes for every s; the second step in the computation of the
expected payoff. Any v; € L; corresponds via u; (s—;, s;) = (v; (s—;)) (s;) uniquely
to a payoff function

u; : S —> R

in the standard notation (and this relation is a homeomorphism).

For T} C S set Zi (T}) = {z € RY | Vsi,t; € T; ¢ z(si) = 2(1)}. vi (x—i) €
Z; (T;) means that player i is indifferent between all his strategies in 7; when his belief
is x—i-Let X; := {x; € R% | 3 5, xj (s;) = 1} be the affine space generated by
player j's strategy simplex for j # i and let X—; :=[], ,; X;.

ForT; € S; (j #i)and T_; := ]_[j#i T; set

Xj(Tj) ZZ{XJ'GX]' |VSj§§TjZXj (Sj)ZO}
and
X (T =[] x; (7).
J#i

The sets ®_; N X_; (T—;) describe the various faces of the polyhedron ®_;. The
strategies of player j with support in 7; have X ; (Tj) as their affine hull.

Step 1: For all T_; the mapping ¢; : X_; (T_;) — R5- \ {0} is a diffeomorphism
onto its image (in particular ¢; (X_; (T—;)) is a closed submanifold of RS- \ {O}).

Proof X_; (T-;) is a closed affine submanifold in [ | i (RS/' \ {0}). It is straightfor-
ward to check that '

Giix (1 - X—i (T—y) — RS-\ {0}
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is well defined, is one-to-one, maps X_; (7—;) onto a closed set, and has a derivative
dgq;|x_; with maximal rank everywhere. ' O

Step 2: Let Z C RS and X € RS- \ {0} be submanifolds. Then for almost every
v; € L; the mapping v;|x : X — RS- \ {0} is transversal to Z.

Proof The family of linear maps L; defines a mapping

Vi:L; x R — RS (1)
(i, x—i) = vi (x—i) - )

The derivative of V; at (v;, x—;) can be computed as

dVilws .y ¢ ToLi x Ty ;RS- = L; x RS- — RS ©)
i, &) = vi (x=i) +vi =) (4)

If x_; # 0 we can find for every ¢; € RS some v; € L; with v; (x—i) = ¢. Then
Vil x—) i, 0) = &;.

Because for x_; € X the tangent space T, , X C RS- contains the O-vector,
dVilw,x_p @ Ty Li x Ty, X — RS is surjective. Thus V; : L; x X — RS is
transversal to Z and our claim follows from the transversality theorem.

By step 1 and step 2 almost every v; € L; satisfies: O

® For all subsets 7; € S; (1 < j < n) the mapping (v; o g;) |x_;(r_;) is transversal
to Z; (T;).

For given v; define Y (7;) = {x—; € X_; | (vi 0 gi) (x—i) € Z(T)}. Y () N O_;
is the set of strategy combinations of the opponents such that player i is indifferent
between the strategies in 7; (i.e., they give the same payoff). If 7; is a set of best replies
against x_;, then x_; € Y (T;) N ©_;.

Step 3: Suppose v; satisfies ®. For T; € S; letx_; € Y (T;) N ®_; and let O_; be a
neighborhood of x_;. Then O_; NY (T;) contains a point in the interior of ®_;.
Proof Suppose x_; is in the boundary of ®_;. For each j # i define T} := {s; € §; |
Xj (sj) #0}L Thusx_; € X (T—;) NO_;. If T; = §;, x; is in the relative interior of
©;. By assumption T; # S; for at least one opponent j. Fix j* # i with T}, # S
and 7j, ¢ Tjx Set T; == T, fori # j # j*and Tjx := Tj U {t;4}. We show
that O_; N Y (T;) contains some y_; € ®_; N X (T_[) such that f, ={s; €8 |
yj (s j) # 0} for all j # i. In other words: y_; is in the relative interior of the face
O, NX (T_,-). The claim then follows by induction.

The transversality conditions imply that the submanifolds X_; (7_;) and Y (T;) (T_ I-)
meet transversally in X _; (f_i) (see Guillemin and Pollack 1974 , Exercise 1.6.7).

16 The result is well known, e.g., in algebraic geometry: ¢; defines the so-called Segre-embedding. The
result is needed in algebraic geometry to show that the product of projective spaces can itself be embedded
into a projective space, i.e., is projective-algebraic.
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Since X _; (T_;) has codimension 1 in X _; (T_,-) it follows with arguments as in the
next step that X _; (T_i) NY (T) N {y—i | yj (tjx) > 0}N O_; intersects the relative
interior of X_; (f,i) NnNe_;. O

Step 4: Suppose v; satisfies ®@. For T; C S; with #7; > 2 let x_; € Y (T;) be in
the interior of ®_; and let O_; be a neighborhood of x_;. Then we can find for every
si € T; some y_; € O_; N ®_; such that

(vi o gi) (y—i) (si) > (viogi) (y—i) (t;) forall #; € T; \ {s;}.

Proof Because v; o q; : X_; — RS is transversal to both Z (T;) and Z (T; \ {si})
it follows that v; o g; : Y (T; \ {s;}) — Z (T; \ {s;}) is transversal to Z (7;). From
this we can deduce the existence of a tangent vector & € Ty , (Y (T; \ {s;})) with
dMx_; (§) = 1, where A is the function

A Yi(G\{sihnX_; — R (%)
y—i = (i oq;) (y—i) (i) — (vi 0 qi) (y—i) (i) (6)

defined for arbitrary but fixed #; € T; \ {s;}. We can therefore select a differentiable
curve

c:(—€, €)= Y (T; \ {si})

with ¢ (0) = x_; and (A o ¢)’ (0) = 1. For sufficiently small 0 < y < ¢ the vector
y_;i := ¢ (y) has the required properties.

Step 5: Suppose s; is a pure best response against x_;. For every neighborhood O_;
of x_; the continuity of the payoff function and the two steps above can be used to find
y_i € O_; such that s; € T; is the unique best response against y_;. Shrinking the
open sets we can find a sequence of such y_;’s converging to x_;. Continuity yields
an open set around each element in the sequence, where s; is the unique best response.
s; is the unique best response on the union of these sets, which is again open. Thus s;
is a refined best response against x_;. O

Refined best responses in two-player games

This appendix provides proofs of Theorems 1 and 2. In the case of two player games
the payoff function is linear in the mixed strategy choice of the opponent. This allows
the use of convex analysis (see Rockafellar 1970) to study the best-response corre-
spondence of a player. The most direct consequence is the convexity of the region
where a strategy is a best response. From this Theorem 1 follows immediately, the
arguments are given after Lemma 1 below. More work is needed to obtain Theorem 2.
We use conjugate functions and provide the proof after Lemma 2.

We will restrict attention to the best responses of player 1. Suppose player 2 has

K > 2 strategies szl, e szK . It will be convenient to identify the mixed strategies
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X2 € ©, with the vectors
- (le,xg, . ’sz_l) c RE-1 7

for which x§ >0foralll <k <K -—1and xZK =1 215{:_11 x§ < 0. Notice that
the zero vector corresponds to pure strategy S2K .
We define the function f : RK~1 — R by

maxg, es, U1 (51, x2) for x; € ©2
+00 else

f(x2) = [ ®)

Because u is linear in x2, f is, in the terminology of Rockafellar (1970) a proper
convex polyhedral function. A key idea explored in the following is that the strategies
of player 1 that are refined best responses, correspond to the maximal compact faces
of the epigraph

F= {(xz,oz) e RET X R f (x2) Sa}

of f, which is a convex (but not compact) polyhedron. Duality theory allows us
to identify these faces with the extreme points of the epigraph F* of the conjugate
function f* of f. This will be used in the proof of theorem Theorem 2.

Each strategy x; € ®; defines an affine function a : RE-T 5 R by a (xp) =
uq (x1, x2), which, for all x, € ©,, satisfies the inequality a (x2) < f (x2) and
a (x2) = f (x2) holds if and only if x1 € 81 (x2).

For a strategy x; € ©®1 we define the set

G(x1) ={(x2,a) € O x R|x1 € B(x2) and & = uy (x1, x2)} 9

andtheset H (x1) = {x2 € ®2 | x1 € B (x2)}, the projection of G (x1) onto ®@>. H (x1)
is the region where x is a best response.

Lemma 1 The region H (x1) is a convex polyhedron.

Proof G (x1)isafaceof the epigraph {(x2, @) € ®2 x R| f (x2) < «} of the function
f, which is a convex polyhedron. G (x1) is hence a convex polyhedron. H (x1) is the
image of the convex polyhedron G (x1) under the linear projection mapping and hence
also a convex polyhedron. O

Clearly x; is not weakly inferior if and only if the convex polyhedron H (x1) has
non-empty interior H° (x1). Moreover, H (x1) is the closure of H® (x) if H® (x1) is
not empty. Therefore, if x; is not weakly inferior and a best response against x», then
X3 is in the closure of the open set H° (x1) and so x is a refined best response against
x7. Given Definition 1 this implies immediately Theorem 1.

The remainder of this section aims at proving Theorem 2. We consider again the
epigraph F of the map f defined above. We notice that F' is a polyhedral convex set
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whose compact faces are precisely the sets G (x1) with x; € ®;. The non-compact
faces are of the form F N (®] x R), where ®/, is a face of ©.
The conjugate function f* : RK=1 — R of f is defined by

f* (x;) = sup {)cék oxr— f (xz)} = xrzneag)(z {xf oexy — f (xz)} < o0, (10)

szRK’I

where x7 o x2 denotes the usual scalar product zk xi‘k x§ As shown for any convex

polyhedral function in Rockafellar (1970), the conjugate is again a convex polyhedral
function and one has f** (x2) = f (x2).

Any two strategies x1, x| € © define the same affine function if and only if the two
strategies are own-payoff equivalent. Without loss of generality we can thus identify
©1 up to own-payoff equivalence with a subset of the affine functions on RX~1.

Any vector (x}, o) with x € R¥~" and o € R defines one and only one affine
function on RX~! by

K—-1
a(o)=—a+ » x3x (a1

k=1
We will identify affine functlons with such vectors For instance, e = (1,...,1)
corresponds to the function x2 =—-1+ Zk 1 x2 that assigns O to the first K -1

pure strategies and —1 to the last pure strategy of player 2.
Let F* be the epigraph of f*.

Lemma 2 F* is a polyhedral convex set generated by extreme points x| that are
refined best responses in ®1 and the directions

—1 for k=1

0 else 12)

—ek:(—e,l,... —ek)e]RKthhek [

fork=1,...,K — 1 and
e=(,....,1)eRK (13)

Proof By definition (x5, «*) € F*ifandonlyifa* > x3exs— f* (x2) forallx; € ©,.
v € RX is a direction in F* if and only if there exists (x}, «*) € F* such that all
vectors (x3, a*) -+ Av with A > 0 are in F*. We can write v = — Z,f;ll ek + pre
with py, ..., px € Rsince —ey, ..., —eg_1, e form a vector basis of RX. We must
show that v is a direction in F* if and only if all p; are non-negative. Suppose that v is
a direction in F*. Let x = (0, ..., 0) € ®,. The condition that ()cik a*) +Av e F*
for all » > 0 yields for this x, that o™ + Apx > — f (x2) holds for all A > 0. This

can be true only if px > 0.Forer € ©®, (1 <k < K — 1) we obtain similarly
o +Apk > x5° — Ao +Apk — f (ex) forall A > 0, which can hold only if p; > 0.
Thus only posmve combinations of —ej, ..., —eg_1, e can be directions in F*. For
every combination v = — Z,fz_ll prex + pxe with pr, ..., px > 0, every A > 0,
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every (xi‘, oz*) € F* and every x; € ®, we have conversely

K—1

o + Apx = x3'x0 — D Apkxs + hpx — f (x2) (14)
k=1

which proves that v is a direction in F*.

We have characterized the directions of F* and must now determine the extremal
points of F*. Suppose ()?;‘, &*) is an extremal point. Because F* has only finitely
many extremal points, these are exposed points by Straszewick’s theorem (Theorem
18.6 in Rockafellar 1970). Therefore we can find xo € ®; such that the hyperplane
{x3 ex2 = f (x2)} is a supporting hyperplane that meets F* only in (%5, f* (£3)).
Because F* has only finitely many extreme points and directions there exists an
open neighborhood U of x; in ®, for which the hyperplanes {xék ey =1f (yz)} are
for all y» € U supporting hyperplanes that intersect F* only in ()?;, f* ()?3‘)) This
implies that the graph of the affine function ()E;‘ f* ()?i“)) intersects F ina K — 1
dimensional face. It is therefore identical to an affine function defined by a strategy x
in © for which H (x1) is full dimensional. Given our identification, (5, f* (£3)) is
consequently a not weakly inferior strategy in ®, which was to be shown. O

Proof of Theorem 2 The lemma implies that all extreme points and hence all the points
in the compact faces of F* are in ;.

However, no points on the compact faces of F'* apart from the extreme points are not
weakly inferior strategies. To see this, notice that a proper mixture x; = Zle PIX1k
(L >2,p >0, Zlel pr = 1) of non-equivalent not weakly inferior strategies in
©® is weakly inferior. Otherwise there would be an open set in ®, on which x| and
hence all strategies x1; were best responses. They would yield identical payoffs on an
open set and were hence (by Kalai and Samet Kalai and Samet 1984, Lemma 4) all
own-payoff equivalent, contradicting the assumption. Per construction such a mixture
is own-payoff equivalent to a proper mixture of strategies that are pairwise not own-
payoff equivalent.

It remains to consider strategies in ® that are not on a compact face of F*. Such
a strategy can be written as xi =Xx; — Z,f:l prex + pkxe where x; is on one of the
compact faces of F* and, hence, in ®{, and the p; are all non-negative and at least
some of them are strictly positive. We obtain

K-1 K—-1
uy (x}, x2) = uy (x1, x2) — Z kx5 — pK (1 - ng) <up(xr,x2), (15)
k=1 k=1

where this inequality holds as a strict one for the k-th pure strategy of player 2 whenever
pk > 0. Thus x| is weakly dominated. It is a weakly inferior strategy because it is a
best response only on a proper face of ® (see Pearce 1984).

In summary, the only robust strategies in ®; are the extreme points of F*. All
other strategies are proper mixtures of not own-payoff equivalent not weakly inferior
strategies or are weakly dominated and therefore weakly inferior. O
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