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In the  unique  attainable  equilibrium  of a voting  model  with  one  minority  candidate  and
two  similarly  appealing  majority  candidates,  majority  voters  are  unable  to  coordinate  their
support  and the  minority  candidate  (Condorcet  loser)  is  elected.  Suppose  a random  sample
of voters  is  asked  about  their  preferences  prior  to  the  election.  We  show  that  there  always
exists an  equilibrium  of this  two  stage  game  in  which  all  poll  participants  are  truthful,
resulting  in  a high  likelihood  of a majority  candidate  winning  the  election.  This  equilibrium
is  unique  if  the  sample  size  of  the  poll is  Poisson  distributed  or fixed  and  odd.

© 2012 Elsevier B.V. All rights reserved.

. Introduction

Elections, in which voters act strategically, typically have multiple equilibria (e.g. Palfrey, 1989; Myerson and Weber, 1993;
ox, 1994; Myerson, 2002). Thus, elections involve a coordination problem. Elections are typically preceded by opinion polls.

n this paper we  are interested in understanding how a single opinion poll, in which participants act strategically, could serve

he voters as a coordination or equilibrium selection device.2 Furthermore, under the assumption that the outcome of the
pinion poll is used by voters as an equilibrium selection device and that this is common knowledge among voters, we are
nterested in how strategic poll participants behave in the opinion poll.
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onzalez Diaz, Daniel Diermeier, Timothy Feddersen, Bard Harstad, Wojciech Olszewski, Alessandro Pavan, Tuan Hwee Sng, Joel Sobel, Bruno Strulovici,
sher  Wolinsky and audiences at Australian National U, City U of Hong Kong, Northwestern MEDS, U of Bristol and Washington U in St. Louis for their
omments.
∗ Corresponding author.

E-mail addresses: candonie@cityu.edu.hk (C. Andonie), christoph.kuzmics@uni-bielefeld.de (C. Kuzmics).
1 Present address: IMW,  Bielefeld University, Bielefeld, Germany.
2 Of course, in real-world elections, there are other potential coordination devices that voters could use to coordinate their actions, for example public

ndorsements (e.g. Ekmekci, 2009), campaign spending levels (e.g. Myerson et al., 1998) etc. However, it will emerge in the analysis that an opinion poll is
referred by the majority voters at least to any exogenous one (that does not depend on voters’ actions), such as a public coin toss. The reason is that a poll
otentially contains information about the structure of the electorate, and thus, it allows voters to make better informed and thus more efficient ex-ante
ecisions as a group. While, in this paper, we  abstract away from the potential information opinion polls could provide, we briefly discuss this issue in
ection  3.1.
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Real-world opinion polls, in addition to possibly serving as a coordination device, also possibly provide information
about the structure of the electorate. In this paper, as we are interested only in the equilibrium selection problem and to
facilitate the analysis of the strategic implications of this aspect of opinion polls alone, we shall abstract away from this
second (possibly important) role opinion polls might have. In fact we  shall argue that opinion polls can play an important
role in elections even if they do not provide any information.

In this paper we choose to work with the simplest election model that allows us to formally study the strategic implications
of the assumed common knowledge fact that the opinion poll is used as a selection or coordination device. The formal model
goes back to Myerson and Weber (1993) and Forsythe et al. (1993) and can be briefly described as follows.3 There are three
candidates: A, B, and C and three groups of voters: AB, BA, and C. The letters identifying the three groups of voters indicate
their favorite candidates: A followed by B for AB group etc. AB and BA voters, as a group, form a majority of, say, 60%, while
the C group voters represent 40% of the electorate. The model assumes that majority voters support either A or B, while C
voters support only C. This implies that a majority candidate (either A or B) victory is possible only if majority voters (AB
and BA voters) coordinate their support4; in the case of a vote split, for example half of the majority group supports A while
the other half supports B, candidate C, which is a Condorcet loser, would win  with 40%.

We assume that such an election is preceded by an opinion poll. A random sample of m individuals from the electorate
is taken and each participant is asked to indicate their favorite candidate, that is to choose one letter (message) from the set
{A, B, C}. The outcome of the poll is then publicly announced and observed before the election takes place.

As it will emerge from the analysis, what individuals know about the sample size m has important implications about the
equilibria in the polling game.5 As it will also emerge from the analysis, solving for all equilibria for an arbitrary distribution
of the poll size is not easy. Our strategy in this paper to tackle this problem, is to first solve the game under the simplifying
assumption of a Poisson distributed poll size.6 This has the advantage of making the analysis very crisp and clear-cut, while
at the same time already providing the key strategic considerations in the polling game.

We then study the case of a commonly known fixed poll size. It turns out that one there has to carefully distinguish
between odd and even poll sizes. This distinction remains important even if the poll size is large (even if it tends to infinity).
In addition to being of independent interest, the case of a commonly known fixed poll size provides insight into what might
happen with an arbitrary poll size distribution. This is so, because, as it turns out, regardless of what the commonly known
poll size is, there is always a truthful equilibrium. That is there is always an equilibrium, in which all polled individuals
indicate truthfully their favorite candidate. Given that this is so for all poll sizes, we can conclude that there is a truthful
equilibrium for any arbitrary distribution of poll sizes. In fact, as long as an individual believes all other poll participants to
be truthful, and regardless of what she believes the poll size distribution is or what other poll participants’ beliefs about the
poll size distribution are, she has a unique best action, which is to be truthful.

The solution concept we employ in this paper is symmetric Nash equilibrium. More precisely, we restrict attention to
attainable equilibria.7 This is done because, if we  believe that achieving coordination among the majority supporters is, in
principle, difficult, we need to appeal to a solution concept (for the voting game) that reflects that. Indeed, in the absence
of a polling stage the voting game alone, as we  shall see, has a unique attainable equilibrium, in which majority supporters
are not able to overcome the coordination problem.

The two-stage game – an opinion poll followed by an election – typically has multiple attainable equilibria. We  shall focus
on those that could be called focal, using the term in the spirit of (Schelling, 1960) as the way  to play the game suggested by
the structure of the game itself. To be more specific we postulate that there is a most efficient, and thus focal, way  to behave
in the voting stage as a function of poll results. We  then analyze the behavior in the opinion poll under the assumption of
such focal behavior in the voting stage.

The main results are as follows. We  show that if the size of the opinion poll is Poisson distributed, and not known to the
poll participants, then the two-stage game has a unique equilibrium, in which all polled individuals truthfully reveal their
“type,” i.e. voters who favor, say, candidate A announce this in the poll. The intuition for the result is as follows. Consider
first a minority voter poll participant. Our model suggests that majority voters are able to coordinate whenever there is
a majority candidate who is leading in the polls. Otherwise, by attainability, they are unable to focus attention on any

particular candidate. Therefore, there are two events of interest to this polled minority voter. Consider first the event in
which one of the majority candidates leads in the poll by only one message. By sending a misleading message, such as “I
favor a majority candidate,” she can create a tie, by which she triggers a non-coordinated outcome and therefore gains in

3 Several historical elections are frequently used in the literature to motivate the formal model described here. These include the 1970 New York senatorial
elections (e.g. Forsythe et al., 1993; Fey, 1997; Myatt and Fisher, 2002; Myatt, 2007), the 1912 US presidential elections (e.g. Myerson and Weber, 1993),
and  the 1997 UK general elections (e.g. Myatt and Fisher, 2002; Myatt, 2007).

4 The game played by the AB and BA types is a multi-player version of the “battle of sexes.” We may  want to think of AB as the row player and BA as the
column player. If they coordinate their actions on either A or B, they both get positive payoffs, though AB would like to coordinate on A, while BA would
like  to coordinate on B. If they do not coordinate, they both get a payoff of zero.

5 It is not clear what actual polled individuals are told about the poll size. If told nothing, an individual may  then perhaps believe that, as common poll
sizes  are 100 and 1000, the poll size has an equal chance of being one of these two  numbers. Of course, many other beliefs could be reasonable.

6 The Poisson distribution was introduced to voting by Myerson (1998, 2000).
7 The voting game is not a completely symmetric game. Some care is needed to properly define the symmetries that are inherent in the game. Strategy

profiles  that respect those symmetries are then called attainable. The term attainable was coined by Crawford and Haller (1990).
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his situation. By lying, however, she also runs the risk of breaking the tie between the majority candidates with the result
f a coordinated outcome and a payoff loss. Therefore, her incentives to deviate from a truthful message come down to
omparing the probability of a tie with the probability of a near-tie between the number of messages favoring each of the
ajority candidates. By the attainability restriction and the Poisson assumption, the number of messages favoring either of

he two candidates must follow the same Poisson distribution. Moreover, their distribution is independent of each other.
 simple statistical property (that is proven in the appendix) shows that the probability of having a tie between two  i.i.d.

discrete) random variables is always larger than the probability of a near-tie. Therefore, a minority voter will never find
t in her interest to lie in the poll. In other words, sending a truthful message is a dominant strategy.8 A similar argument
pplies to the majority voters: sending a misleading message always yields a negative expected payoff. Therefore, for the
oisson case, the polling game has a unique attainable equilibrium in dominant strategies.

We then consider the case of a fixed poll size. We  show that if the size of the opinion poll is fixed at some odd number that
s commonly known, then the game has again a unique equilibrium, very much like the one in the Poisson case. If the size
f the poll is fixed at some even number, then there are multiple equilibria: the truthful one, as well as two additional ones,
n which the reported fraction of minority supporters is always strictly lower than the actual fraction. Thus, the poll results
n these equilibria are not to be taken completely at face value. The complications for the case of a fixed poll size arise from
he fact that, unlike the Poisson case, the number of messages favoring the majority candidates are no longer independent.
inally, we show that the polling game has a truthful equilibrium for any distribution of the poll size. This is an immediate
onsequence of the fact that the game has a truthful equilibrium for both the cases in which the poll size is odd and even.

The paper proceeds as follows. In Section 2 we introduce the (pure coordination) polling and voting model. As part of this
ection we provide the solution concept in Section 2.1 as well as the solution of the voting stage in Section 2.2. All equilibria
re then presented in Section 3, with those for Poisson random poll sizes in Section 3.3, for fixed poll sizes in Section 3.4,
nd for arbitrarily distributed poll sizes in Section 3.5. Finally, we  conclude the paper in Section 4. All proofs are relegated
o the appendix, while some simple proofs are simply omitted.

.1. Literature review

Historically, the literature studying coordination in plurality rule elections revolved around an empirically observed
henomenon, later stated as a theoretical conjecture, called “Duverger’s law” (Duverger, 1954). In short, Duverger’s law
redicts that, in plurality rule elections, only two candidates will get non-negligible shares of votes. Duverger’s explanation

s that rational voters will direct their support toward only two candidates that are thought to have good chances of winning;
hile the other candidates will receive few or even no votes as voters will not “waste” their votes on almost sure losers.9 The
rst one to provide a convincing formal proof of the law was  Palfrey (1989).  Considering a setup of a three-candidate election
ith rational voters, under quite weak assumptions, Palfrey (1989) showed that only two  types of equilibria survive as the
opulation size becomes arbitrarily large. The first one (called Duvergerian) has only two candidates receiving most of the
otes, with the third candidate’s share vanishing in the limit. The second type (called non-Duvergerian), however, has all three
andidates receiving positive shares, with one candidate coming on top and no clear runner-up i.e. the other two  candidates
eceive positive and approximately equal shares (see also Cox, 1994, 1997) Palfrey (1989) argues that the second case –
he non-Duvergerian equilibrium – is an “exceptional” case and, thus, it is not expected to occur in real elections. Myerson
nd Weber (1993) showed that the non-Duvergerian equilibrium survives �-perturbations in the structure of the electorate,
nd therefore cannot be dismissed as “exceptional”. They argue: “Thus, Duverger’s law cannot be derived exclusively from
nalyzes of voting equilibria. This result suggests that some of the interpretative discussion in Palfrey (1989) should be
econsidered. Any derivation of Duverger’s law would seem to require some additional assumption of dynamic stability or
ersistence to eliminate equilibria of the type just illustrated” (Myerson and Weber, 1993, p. 106). Fey (1997),  following on
he suggestion of Myerson and Weber (1993),  investigated the dynamic stability of both Duvergerian and non-Duvergerian
quilibria. While he finds that the Duvergerian equilibrium is dynamically stable, the non-Duvergerian one is not. Elections,
owever, are not usually repeated. The US presidential elections, for instance, take place only once every 4 years, and then
sually with one or more different candidates (or, at least older and wiser candidates). Of course, elections are typically
receded by (many) opinion polls, but opinion polls are not elections. They do not “count,” that is, whatever is said in an
pinion poll is cheap talk. Moreover, not everyone is asked to participate in the opinion polls. Thus, a dynamic analysis as
n Fey (1997),  justified by a sequence of pre-election polls, is not exactly appropriate. Here, we  take this point seriously and
rovide a strategic analysis of behavior in both the opinion poll as well as the voting game.

Myatt and Fisher (2002) and Myatt (2007) showed that the predictions of Palfrey’s model change dramatically if voters
re uncertain about the real support of each candidate. In such a setup, and in which voters receive information by way
f a private signal, they show that in equilibrium all candidates receive votes. The equilibrium fits neither the Duvergerian

or the non-Duvergerian type. As Myatt (2007) shows, the result relies crucially on the private information structure.
llowing voters to have access to a public signal with a good precision in relation to the private signal will yield the same
quilibrium predictions as in Palfrey (1989).  Furthermore, the information is exogenous. Even though voters receive their

8 This is only true in the class of attainable strategy profiles. If all strategy profiles are considered then sending a truthful message is not dominant.
9 See for example Riker (1982) for a history and detailed discussion of Duverger’s Law.
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Table  1
Experimental Results for elections with and without polls.

Number of elections % of time A won  % of time B won % of time C won

Elections without polls 48 6.25 6.25 87.5
Elections with polls (overall) 48 45.83 20.83 33.33
A  leads B in polls 24 87.5 0 12.5

Tie  between A and B in polls 11 9.09 0 90.91
B  leads A in polls 13 0 76.92 23.08

Note. Data source: Forsythe et al. (1993). The labels of voter types and candidates have been changed to fit the description of our setup.

private information from their counterparts, i.e. other voters, the model does not take into account the strategic incentives
of senders (other voters) to manipulate the beliefs and thus influence the voting behavior of others. The assumption is that
players truthfully reveal their information. In contrast, our model focuses exclusively on the public information side of the
model. The key contribution of our paper is the endogenous information structure that properly takes into account the
incentives of poll-participants to truthfully report their preferences. The model does not feature aggregate uncertainty.10

Given a poll outcome, the voting behavior in our setup is trivial. This simplification allows us to focus on the strategic
behavior of poll-participants, as they realize that their messages potentially influence the voting decisions and, therefore,
the election outcome.

The setup we employ in this paper has been used by Forsythe et al. (1993) to run lab experiments in order to study the
impact of polls, election histories, and ballot position on elections. The experimental results for the voting model, both with
and without polls, are presented in Table 1.11 We  note the starkly different voting behavior in the two  settings. In the game
without polls, the outcome is, in a majority of cases (more precisely 87.5% of the time), non-Duvergerian, i.e. majority voters
divide their votes between A and B. In the game with polls however, we see a completely different picture: the outcome
is now, most of the time (more precisely 66.66%), Duvergerian, i.e. the majority coordinated their votes. The experimental
evidence suggests that majority voters use the poll outcome as a tool to coordinate their actions, resulting in better outcomes
for the majority group. It is this idea that we try to explore in this paper.

As the experimental evidence of Forsythe et al. (1993) suggests, polls can have a significant influence on an election’s
outcome. Goeree and Grosser (2007) and Taylor and Yildirim (2010) are two  recent papers that touch on this idea. They
consider a two-candidate voting model with costly voting to study the effect of the information provided by polls12 on total
welfare. They show that, on one hand, more precise information on electoral preferences increases turnout, and consequently
increases the aggregate cost. On the other hand, more precise information makes the election more likely to be tied, therefore
reducing the aggregate benefit. These two effects work in the same direction of reducing total welfare. While these two  papers
make the case for restricting the use of pre-election polls, as is currently done in some countries, they do not allow voters
to be strategic in the polling stage, and simply assume they are all sincere. As Taylor and Yildirim (2010) put it, “Before firm
policy conclusions can be drawn, however, future research must investigate the endogeneity of the source of information
about political preferences. In particular, given the feedback we find between information and equilibrium voting behavior,
it is important to understand the incentives for individuals to report their true preferences to pollsters and the incentives
for pollsters and pundits to disclose publicly and fully any information they obtain.” (Taylor and Yildirim, 2010, p. 363) One
of the contributions of our work is providing a setup that properly takes into account voters’ incentives to truthfully reveal
their preferences in polls.13

2. The (pure coordination) model

The basic setup we use is a standard three-candidate voting model, similar to the models in e.g. Palfrey (1989),  Myerson
and Weber (1993),  Fey (1997),  and Myatt (2007).  In what follows, we  will use Palfrey (1989)’s notation. There are three
candidates: A, B, and C and a (countably) infinite number of voters. Candidates A and B can be described as ideologically
similar, while candidate C’s political position is at the other end of the political spectrum. The population of voters is made
up of three distinct groups denoted AB, BA, and C. With v ∈ (0,  1) a known constant, their preferences can be described as
follows:

1 AB voters: uAB(A) = 1, uAB(B) = v and uAB(C) = 0

2 BA voters: uBA(A) = v, uBA(B) = 1 and uBA(C) = 0
3 C voters: uC(A) = 0, uC(B) = 0 and uC(C) = 1

10 This assumption however can be relaxed without changing the main implications of the model. We  discuss this in Section 3.3.
11 The game with polls is identical to the game without, except that, before the actual voting stage in the former, voters are asked to state their voting

intentions (or preferences). The results of the poll are publicly announced, after which voting takes place.
12 More precisely, they look at the role information (about the structure of the electorate) plays on elections outcomes, and thus the welfare. The

information presumably comes from polls although they do not model that explicitly.
13 Strategic behavior in opinion polls in different contexts has also been studied by Burke and Taylor (2008), Meirowitz (2005) and Morgan and Stocken

(2008).
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he share of AB and BA voters is q each, while the share of C voters is 1 − 2q, where q ∈ (1/4, 1/3) and known by everyone.14

he winner is the candidate with a majority of votes, with ties broken (uniformly) randomly.
Note that the combined share of AB and BA voters is more than 50%. We  say that the group of AB and BA voters are in a

ajority. Because 1/4 < q < 1/3, a majority victory is possible only if AB and BA voters coordinate their support; if they do not
oordinate then the minority candidate, C, wins.

Before the voting stage, a random sample of m voters (m ≥ 1) is selected and asked who their favorite candidate is. A
olled person must state one of three messages – A, B, or C – where the meaning of these messages will only become clear in
quilibrium (as we shall see later). Sending any of these three messages is costless for the polled person, and is thus cheap
alk. The polled persons’ incentives therefore derive entirely from the effect the poll has on the eventual election outcome.

e assume that the outcome of the poll is publicly announced (and observed by everyone) before the voting stage. Thus,
ur game has 3 stages:

 Each player in the electorate is assigned a type. Types are drawn from a trinomial distribution with parameters (q,q,1 − 2q).
(Polling stage) A random sample of m voters is selected and asked to reveal their preferences (their types) by sending a
message from the set {A, B, C}.
(Voting stage) The poll results are publicly announced. The actual voting takes place and the candidate with the largest
share of votes is elected.

.1. Solution concept

The game in the polling stage is thus a normal form game � = (I, S, u) with I = {1, . . .,  m},  Si = S = {A, B, C}, and u derived
rom the outcome of the eventual voting stage. We  shall discuss the voting stage in the next section.

For i ∈ I, let �(i) ∈ {AB, BA,  C} denote player i’s type. Given the model’s assumptions, the two types AB and BA are in an exactly
ymmetric position. One could therefore say that they are, in some sense, of the same type. This type could be characterized
s the type who “prefers one of the two majority candidates over the other and considers the minority candidate her least
referred choice.” Formally, any two players of this type are symmetric in the sense of Harsanyi and Selten (1988) (see also
los-Ferrer and Kuzmics, forthcoming).

Given this, we shall restrict our attention to attainable Nash equilibria, where an attainable strategy profile is understood
o be a strategy profile that satisfies the symmetry restrictions inherent in the game at hand.15

Before we provide the definition of an attainable strategy profile for the polling game, we first explain why  we impose
hese restrictions on the possible equilibria we consider. Observe first this very important fact: the game we discuss here
s an (almost) truly one-shot game. Every election is different. Suppose that in an election involving candidates Ann, Bob,
nd Charlie, majority voters somehow managed to coordinate their support on Bob. This will not help voters in another
lection that has the same general characteristics but with candidates Herbert, Edgar, and Josephine, unless they followed
ome peculiar convention regarding, say, the first initials of candidates or the length of their first name.16

Consider, for instance, a case in which we would like exactly one half of all C types to send message C in the poll and the
ther half to send message A. How would we achieve this? We  could announce in a newspaper that this is what we would
ike to achieve. But how will any given polled C type now know whether she is supposed to send message C or to send A?
nless we talk to every polled C type separately, the best we  can hope for is that all C types randomize by attaching equal
robability of one-half to both messages.

The restrictions imposed by symmetries in the polling game are as follows. First, all voters of the same type are required
o use the same strategy. Second, AB and BA types’ strategies must be symmetric. Finally, all C types must attach the same
robability to messages A and B. Formally, let xAB, xBA, xC denote the (mixed) strategies ∈X ≡ �({A, B, C}) that AB, BA, and C
ypes use, respectively.17 Then a strategy profile is attainable if xAB(C) = xBA(C), xAB(A) = xBA(B) (implying xAB(B) = xBA(A)), and
C(A) = xC(B).

.2. The voting stage
The voting stage game has been already extensively analyzed in the voting literature. In what follows, we shall briefly
eview some of the results from these papers. The analysis below (and notation) follows Palfrey (1989) and Fey (1997).

14 Further below we discuss the case in which voters are uncertain about the structure of the electorate.
15 The term attainable strategy profile was coined by Crawford and Haller (1990) in their study of repeated (symmetric) pure coordination games. Examples
f  the use of attainable equilibria, in some form or another, are given in Farrell (1987), Crawford and Haller (1990), Blume (2000), Blume and Gneezy (2000),
lume and Gneezy (2010), Blume and Franco (2007), and Blume et al. (2009). In the special case of voting in Poisson games, Myerson (1998, 2000) has been

ed  to focus on symmetric strategies as well.
16 This game is repeated, but not in the same way as the game about which side of the road to drive on. In that case the strategies Left and Right are always
xactly  the same. Over time a convention such as driving on the right (or on the left) could easily evolve. No such thing is possible in our elections.
17 Note that we index the strategies by voter type and not identities. This is used for notational simplicity and it is justified by our restriction that all
oters  of the same type must use identical strategies.



686 C. Andonie, C. Kuzmics / Journal of Economic Behavior & Organization 84 (2012) 681– 700

Table  2
Equilibrium payoffs.

Type of equilibrium uAB uBA uC
No coordination 0 0 1
Majority coordinates on A 1 v 0
Majority coordinates on B v 1 0

Let �i : {AB, BA,  C} → {A, B, C} denote the voting strategy of a player i. As argued in the previous section, we  will
restrict attention to symmetric strategies i.e. strategies that do not depend on voters’ identities, but on their type affil-
iation only. Therefore, we will drop the superscript i from �. Given �, we can define probabilities �A, �B and �C that a
randomly chosen voter casts a vote in favor of A, B or C respectively. These probabilities generate a discrete distribution
over the set of all feasible outcomes, in which the probability of an outcome (NA, NB, NC) is the trinomial probability18:
N !/(NA ! NB ! NC !)(�A)NA (�B)NB (�C)NC . The probability distribution over the set of outcomes together with the payoff struc-
ture determine the incentives of each voter to vote A, B or C.

As it is commonly done in the literature, we  assume that voters do not play weakly dominated strategies: C voters do
not support A or B, while AB and BA voters do not vote for C. Therefore, in equilibrium, C voters will cast their support for C,
while AB and BA voters will choose between A and B.

The following lemma, which is similar to the results in Palfrey (1989), Fey (1997) and Myerson and Weber (1993),  spells
out all (pure strategy) equilibria of the voting game.

Lemma  1. The voting stage game has three (pure strategy) equilibria:

1 �(AB) = �(BA) = A ; �(C) = C, i.e. all majority voters coordinate on A.
2 �(AB) = �(BA) = B ; �(C) = C, i.e. all majority voters coordinate on B.
3 �(AB) = A ; �(BA) = B ; �(C) = C, i.e. majority voters divide their votes between A and B.

As in Palfrey (1989),  we will focus on the case of arbitrarily large electorates. Then the equilibrium payoffs are as follows.

Lemma  2. As the number of voters becomes arbitrarily large (N→ + ∞),  the equilibrium payoffs of each type are as in Table 2.

In the absence of a polling stage, the only attainable equilibrium is the one in which majority support is split between A
and B. This equilibrium prediction is strongly supported by the experimental evidence of Forsythe et al. (1993).  Running a
series of 48 elections, they find that in 42 elections the majority voters were not able to coordinate their votes (see Table 1).
Intuitively, the strong symmetry of the game makes it impossible for them to focus on one of the two majority contenders.
Therefore, the only “reasonable” prediction would involve an equal split of their votes between A and B.

3. Equilibria

3.1. Focal equilibrium map

The opinion poll results in an outcome of the form (mA, mB, mC), where mj denotes the number of j messages, j ∈ {A, B, C}.
We assume mA + mB + mC = m.  To economize on notation we  denote the outcome of the poll also by m,  i.e. m = (mA, mB, mC).

Attainability poses some restrictions even in the voting stage. First, suppose the outcome of the poll is such that mA = mB.
Then the symmetry between AB and BA types is still unbroken. Thus, in this case, whatever weight AB types attach to A
in their voting strategy must coincide with the weight BA types attach to B. Even if mA /= mB, attainability imposes some
restrictions. In fact, the probability weight AB types attach to, say, A in the case that mA = j and mB = k with j /= k must coincide
with the weight BA types attach to B in the symmetric case in which mA = k and mB = j.

The intuitive reasoning behind these restrictions can be explained as follows. Given that A and B are arbitrary labels,
the candidates are identified only after and through the polls. If mA = mB then there is still no way  to distinguish between
candidates A and B. If mA > mB, we can speak of the “leading” (majority) candidate. Voting decisions can depend on this
characteristic of candidates, but cannot depend on the arbitrary labels.

Note that, as explained in the previous section, voting A or B is weakly dominated for a C type, while voting C is weakly
dominated for AB and BA types. We  shall restrict attention to voting equilibria in undominated strategies. Thus C types must
vote for C. Voters of types AB and BA have a choice to make between voting for A or B only. This choice can, in principle,
depend in an almost arbitrary way on the particular outcome of the poll. In order to discuss this more carefully consider the

following definitions.

Let M be the space of possible poll outcomes. A typical element of M is, thus, (mA, mB, mC), a vector indicating the number
of polled voters who declared preference for the candidates A, B, and C, in that order. Let E = {A, B, C} denote the set of

18 We denote the population size by N, and denote by NA , NB and NC the number of votes candidates A, B and C get. As a convention, we use capital letters
to  denote the voting stage outcome and lower-case letters to denote the poll outcome.
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three) equilibria of the voting stage (see previous section): (equilibrium A) all majority voters vote for A, (equilibrium B)
ll majority voters vote for B, and (equilibrium C) majority voters vote for their preferred candidate. The equilibria are, thus,
enoted by the candidate that will win the election in the respective equilibrium.

Denote by e : M → E a mapping from the set of outcomes of the poll to the set of equilibria in the voting stage. Call e an
quilibrium map. In any attainable equilibrium of the polling game, and as intuitively explained above, we  must have that
he equilibrium map  e is attainable if it is characterized by these properties:

 e(j, k, l) = C if j = k;
 if e(j, k, l) = A then e(k, j, l) = B;
 if e(j, k, l) = B then e(k, j, l) = A;
 if e(j, k, l) = C then e(k, j, l) = C.

all an equilibrium map  e responsive if there are two  poll outcomes m, m′ ∈ M such that e(m) /= e(m′).19

Note that there is one and only one non-responsive attainable equilibrium map. This is the one in which, regardless
f the poll outcome, the voting game equilibrium is C, the one in which every voter votes for their preferred candidate.20

here are many responsive equilibria. Consider, for instance, the case in which only 3 voters are asked to participate in
he poll. Then there are 10 possible different poll outcomes and, thus, 310 = 59 049 possible equilibrium maps, of which
4 = 81 are attainable, of which 34 − 1 =80 are responsive. We  shall concentrate our analysis on one of all these responsive
ttainable equilibrium maps, that one could argue to be focal in the sense of Schelling (1960). As a focal selection among
ll possible equilibrium maps, we appeal to efficiency. In fact the most efficient equilibrium map  can also be characterized
s the most preferred equilibrium map  of the majority voters given the C types’ fixed behavior of voting for C. Thus, this
ocal equilibrium can be found through “group-think” or the idea that you should assume that everyone else (of your type)
ehaves like you do (and then behave optimally for yourself and, thus, for the group). If that is an equilibrium, then this

s sound. This is reminiscent of Kant’s categorical imperative and also of Feddersen and Sandroni (2006) model in which
oters’ preferences have an ethical component and depend on “how they believe they should behave given the behavior of
ther agents”. The difference here is, that this ethical component is only an equilibrium selection device, that does not enter
ndividuals’ preferences.

Efficiency does not yield a unique equilibrium map. Any equilibrium map, in which equilibrium C is chosen only when
t has to be chosen to satisfy attainability, is most efficient. For m = 3 there are still 24 = 16 such most efficient equilibrium

aps. Throughout this paper we shall focus on the following simple and intuitive equilibrium map, denoted by e*21:

sAB =

⎧⎪⎨
⎪⎩

vote A, if mA = mB

vote A, if mA > mB

vote B, if mA < mB

sBA =

⎧⎪⎨
⎪⎩

vote B, if mA = mB

vote B, if mB > mA

vote A, if mB < mA

In the remainder of this section, we shall provide two  more justifications for using this simple and intuitive equilibrium
ap  e*.
Consider the following somewhat more realistic setup. There are two  ex-ante equally likely states of the world: in one

tate the proportion of AB types is qAB = q + � and that of BA types is qBA = q − �, in the other the proportion of AB types
s qAB = q − � and that of BA types qBA = q + �, where � is positive and small. Thus in one state there are slightly more AB
oters than BA voters, while in the other state the situation is reversed. This model still exhibits the same symmetries as
he original model. Given, however, that the poll is now informative about which of the two states of the world is correct,

ajority voters can use the poll outcome to focus their attention on the unique equilibrium map  that is most efficient. The

roof of the following lemma  can be found in the appendix.

emma  3. Consider the �-perturbed model and let x = (xAB, xBA, xC) be an attainable strategy profile employed by all polled
ndividuals. If xAB(A) > xAB(B) (and hence, by attainability, xBA(B) > xBA(A)), then the unique most efficient attainable equilibrium

19 While responsive equilibrium maps are very natural in our very symmetric setup, they are also feasible, possible, maybe even plausible in non-symmetric
etups.
20 A non-responsive attainable equilibrium in our context is somewhat similar to a “babbling” equilibrium in general cheap-talk games, as first studied
y  Crawford and Sobel (1982).  There are, however, some differences. In a babbling equilibrium either the same message is sent in all states of the world or
essages are sent randomly, such that ignoring them is indeed a best response. In a non-responsive attainable equilibrium in our context the strategies

hat  guide which messages to send is completely unrestricted as playing the equilibrium C is an equilibrium no matter what happens in the message stage.
21 For the case of Poisson distributed poll sizes our results still hold for the following more general equilibrium maps:

sAB =

⎧⎨
⎩

vote A, if |mA − mB| ≤ k

vote A, if mA > mB + k

vote B, if mA < mB − k

sBA =

⎧⎨
⎩

vote B, if |mA − mB| ≤ k

vote B, if mB > mA + k

vote A, if mB < mA − k

here k ≥ 0, i.e. majority voters coordinate only if either A or B lead in the poll by at least (k + 1) messages.
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Table  3
Votes cast by AB and BA type voters in the elections with polls.

Poll outcome % of votes cast for A % of votes cast for B % of votes cast for C

A leads B 90.63 8.33 1.04
Tie  between A and B 51.14 40.91 6.82

B  leads A 16.35 81.73 0.00

Note. Data source: Forsythe et al. (1993). The labels of voter types and candidates have been changed to fit the description of our setup.

map  (from the point of view of the majority voters) is e* as given above. If xAB(A) < xAB(B) (and hence xBA(B) < xBA(A)), then the
unique most efficient attainable equilibrium map  is e**, derived from the above given e* by reversing all inequality signs. Finally,
if xAB(A) = xAB(B) (and hence xBA(B) = xBA(A) = xAB(A) = xAB(B)), then both e* and e** are most efficient attainable equilibrium maps.

Note that the third case of the above lemma  cannot arise in an attainable equilibrium. Suppose that majority voters mix
equally between messages A and B, xAB(A) = xAB(B) and xBA(B) = xBA(A), and suppose they use the equilibrium map  e*.22 In this
case an AB type poll participant has incentives to deviate to a strategy that puts weight 1 on message A. This is because, by
putting maximum weight on message A, the voter will increase the likelihood of breaking the tie in favor of candidate A and
thus making it more likely majority voters coordinate on A in the voting stage, therefore strictly improving her expected
payoff.

For the analysis of the polling game it is immaterial whether we  use equilibrium map  e* or e**. We  choose to work with the
more intuitive e*. Yet, for any polling equilibrium we  find, there is a corresponding symmetric equilibrium using equilibrium
map e**.

While Lemma 3, thus, shows that equilibrium map  e* is essentially the unique most efficient equilibrium map  in the
two-state model, the next lemma  shows that, under the assumption that equilibrium map  e* is used the set of equilibria of
the two-state model coincides with the set of equilibria of our original model, provided � is small enough.

Lemma  4. Consider the two-state model described above and our original setup proposed in Section 2. If � is small enough, than
the set of equilibria is the same in both models.

The proof of this lemma  is based on a continuity argument and follows immediately from the analysis of the equilibria
of the limit model, which is carried out in the next sections.

Note that, the poll in the two-state setup, in addition to serving as a coordination device, potentially transmits useful
information about the structure of the electorate, and thus it allows majority voters to make (ex-ante) more efficient decisions
as a group. More specifically, whenever A or B leads in the poll, majority voters, by using the equilibrium map  e* obtain an
(ex-ante) aggregate payoff higher than what they would have obtained had they chosen to coordinate on either A or B with,
say, a fifty-fifty chance (as from using the outcome of a coin toss as a coordination device).23 In this sense, they would prefer
the poll as a coordination device to any exogenous coordinate device.

A final justification for focusing attention on the particular equilibrium map  e* is an empirical one. In the experiments of
Forsythe et al. (1993) the behavior as summarized in Table 3 was  found. Note that almost every majority supporter voted
for the leading candidate after the poll identified a leading candidate.24

3.2. Pivot events

Let � denote the probability of a randomly drawn poll participant to send message A. Thus, given an attain-
able strategy profile x ∈ X, we have � = qxAB(A) + qxBA(A) + (1 − 2q)xC(A), or equivalently, using attainability, we have
� = q(1 − xAB(C)) + (1 − 2q)xC(A).

Before we identify and analyze equilibria of the polling game under two  different assumptions about the number of polled
voters in the next two subsections, we shall here discuss the pivotal events strategic polled individuals face. Note foremost,
that any particular voter who is asked to participate in the poll, has m − 1 “opponents” of uncertain types. To facilitate easy

reading we reserved the letter n = m − 1 for this number. Thus, whenever we speak of poll outcomes we shall use the letter
m (and mA, mB, and mC when needed), while whenever we speak of the behavior of a certain polled player’s opponents we
shall use the letter n (and nA, nB, and nC when needed).

22 Observe that this implies xAB(A) < 1 and xAB(B) < 1.
23 Suppose, for example, that the outcome of the poll is such that mA > mB . Then the state in which AB group is slightly larger than the BA group is more

likely  and, since, majority voters would coordinate their support on candidate A, they obtain an expected aggregate payoff higher than what they would
have  obtained in case of using the outcome of a coin toss as a coordination device.

24 While the voting stage in Forsythe et al. (1993) is the same in our model, in the sense that it is a second stage after a first polling stage, the opinion
polling stage is subtly different in Forsythe et al. (1993) and our model. In Forsythe et al. (1993) there are exactly 4 AB types, 4 BA types, and 6 C types, and
all  of them participate in both the poll and the voting stage. In contrast, in our model the voters in the opinion poll are randomly chosen from the whole
population and may  well not have exactly the same number of AB and BA types participating in it. The attainable equilibria in Forsythe et al. (1993) are,
thus,  different from the ones in our model. In particular, there is certainly no truthful attainable equilibrium in Forsythe et al. (1993). It would be interesting
to  work out the attainable equilibria of the model in Forsythe et al. (1993) and use the data provided there to test them.
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Consider first a polled C type. A C type simply wants to have a tie between the number of A and B messages. Suppose
 C type is currently planning to send message C, but is contemplating sending message A.25 Switching from the truthful
essage C to lying is detrimental to the C type’s payoff if and only if without this C type’s message there is a tie between the

umber of A and B messages. This event can be described as LOSS = {nA = nB}. The incurred payoff loss in this case is exactly
. Switching from the truthful message C to lying is beneficial to the C type if and only if without this C type’s message there

s exactly one more B message than there are A messages. This event can be described as GAIN = {nA = nB − 1}. The incurred
ayoff gain in this case is also exactly 1. The probability of these two events depends on � (and on the number of polled
eople). In all other events the message of this C type has no bearing on the result. The incentive of a C type to lie (send
essage A) is, thus, given by 	C(�) = P(GAIN) − P(LOSS), or, equivalently, by

	C (�) = P({nA = nB − 1}) − P({nA = nB}),

here the probability P of the two events depends on �. If 	C > 0 a C type will lie and send message A or B,26 while if 	C < 0
 C type will be truthful and send message C.

Note that, without restricting attention to attainable strategies and for a given (realization of the) number of other
ndividuals in the poll, clearly a C type finds that all messages A, B, and C are best-replies to some (non-attainable) strategy
rofile. Thus, none of these messages are (even weakly) dominated for a C type.

Now consider an AB type.27 An AB type wants to avoid a tie. There are three events, in which the message sent by an
B type has an impact on the outcome of the election. One in which, without this AB type’s message, there is a tie between

he number of A and B messages, {nA = nB}, one in which there is exactly one more A message than there are B messages,
nA = nB + 1}, and one in which there is exactly one more B message than there are A messages, {nA = nB − 1}. Suppose an
B type is currently planning to send message A, but is contemplating sending message B. In the event {nA = nB + 1} this
reates a tie and induces a payoff loss of exactly 1. Sending message A induces candidate A to be elected, sending message B
nduces candidate C to be elected. In the event {nA = nB − 1} this breaks the tie and induces a payoff gain of exactly v. Sending

essage A induces a tie and candidate C to be elected, sending message B induces candidate B to be elected. Note, however,
hat given any attainable strategy profile, both events {nA = nB + 1} and {nA = nB − 1} are equally likely. Thus, considering only
hese two events sending message A is at least as good as sending message B. In the third event, {nA = nB}, sending message A
nduces candidate A to be elected, while sending message B induces candidate B to be elected. An AB type, however, prefers
andidate A over B. Thus, altogether, an AB type will never find it in her interest to send message B.

Sending message B for an AB type, while not weakly dominated if opponents are allowed to choose from all (non-
ttainable) strategies, is weakly dominated if we restrict attention to attainable strategy profiles of the opponents. These
onsiderations eliminate message B as a possible equilibrium message for AB types. We  now explore whether and when
ending message C might be a viable option.

Thus, suppose an AB type is currently planning to send message A, but is contemplating sending message C. Switching
rom the truthful message A to lying and sending message C is detrimental to an AB type’s payoff if and only if doing so
reates a tie between the number of A and B messages. This happens in the event LOSS = {nA = nB} with a resulting payoff loss
f exactly 1. Switching from the truthful message A to lying and sending message C is beneficial to the AB type if and only if
ithout this AB type’s message there is exactly one more B message than there are A messages. This event can be described

s GAIN = {nA = nB − 1}. The induced payoff gain is exactly v, as sending message A induces candidate C to be elected, while
ending message C induces candidate B to be elected. Thus, the incentives of an AB type to lie are very similar to those of a

 type and are given by 	AB(�) = vP(GAIN) − P(LOSS), or, equivalently, by

	AB(�) = vP({nA = nB − 1}) − P({nA = nB}).

gain 	AB > 0 induces an AB type to lie and send message C, while 	AB < 0 induces an AB type to be truthful and send message
. BA types will behave analogously.

Note that if v = 1, the incentives to lie for AB types (as well as BA types) and C types coincide. That is, in this case, whenever
 C type wants to lie also every AB type (and BA type) wants to lie and vice versa. Of course, this means that C types send
essage A or B, while AB- and BA types send message C, as lying is not the same for both types.
If v < 1, then, as 	AB(�) ≤ 	C(�) for all �, it is still true that whenever a C type is truthful so is every AB- and BA type.

owever, the opposite is not necessarily true. If a C type has an incentive to lie an AB type might well have an incentive to
e truthful.
To finally analyze the equilibria in this model, essentially all we need to do is to compute the probability of the two  events
or all possible � ∈ [0, 1/2]. We  will do this for two different assumptions about what individuals know about the poll size
hen they are asked to report on their preferences in the poll.

25 For a C type, sending message B is, by symmetry, equivalent to sending message A.
26 In an attainable strategy profile a C type will, in this case, have to randomize 1/2, 1/2 on A and B.
27 The discussion for a BA type is, by symmetry, completely analogous.
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3.3. The Poisson case

In this section we assume that the poll size is Poisson distributed P(m), with m > 0 but finite. By the decomposition
property of the Poisson distribution (see e.g. Myerson, 1998), the number of A (or B) messages is distributed as mA ∼ P(�m)
(or mB ∼ P(�m)), while the number of C messages is mC ∼ P((1 − 2�)m). Interestingly, in the Poisson case, if we  fix some
particular voter participating in the poll, her “opponents” are also Poisson distributed with the same distribution. Thus,
from this voter’s point of view we also have nA ∼ P(�m), nB ∼ P(�m)), and nC ∼ P((1 − 2�)m). This is called the environmental
equivalence property of the Poisson distribution (Myerson, 1998, Theorem 2).

Furthermore, the random variables nA, nB and nC are mutually independent. Given this we  obtain the result that the
Poisson version of the game has a unique equilibrium.28

Proposition 1. Suppose the poll size follows a Poisson distribution. Then the polling game has a unique attainable equilibrium
(the truthful one) in which AB types send message A; BA types send message B and C types send message C.

The proof of this proposition is given in the appendix. We  here provide a brief sketch of the proof. We  have already
noted that the incentive of a C type to lie is governed by whether 	C is smaller than, equal to, or greater than zero, where
	C(�) = P(GAIN) − P(LOSS), and where LOSS is the event of a tie between the number of A messages and B messages sent
by opponents, while GAIN is the event of a near tie, in which there is one more B message than there are A messages sent
by opponents. Thus, the sign of 	C(�) depends on which of the two events, a tie or near tie, is more likely. Note that, given
attainability, a randomly chosen opponent is equally likely to send an A message or a B message. This probability is given by
�, which depends on the attainable strategy profile used by the opponents. Intuitively, if the number of A messages and that
of B messages is governed by the same independent distribution, as is the case if the poll size is Poisson distributed, then
we should expect a tie more often than a near tie. This is indeed the case and at the heart of the proof. In fact, it turns out
that this is true for any �. Given this, we, thus have that 	C(�) < 0 for all � ∈ [0, 1/2]. Thus, C types have a strict incentive to
send the truthful message C regardless of what everyone else is doing, provided they use an attainable strategy profile. Thus,
when restricting attention to attainable strategies C types find message C strictly dominant. Given that 	C(�) < 0 for all �
and that 	AB ≤ 	C we, thus, must also have that 	AB < 0. Therefore, AB-, and, by symmetry, also BA types, also find sending
their truthful messages A and B, respectively, strictly dominant. Thus, there is one and only one equilibrium, which is such
that all polled voters send their respective truthful messages.

The analysis can be easily extended to the case of a random q. Suppose that q is not known with certainty to the poll
participants but it is known to be drawn from some distribution that puts positive probability mass only on states with
1/4 < q < 1/3.29 Using the results of the non-random setup, conditioned on each state, every poll participant has a dominant
strategy to send a truthful message. This in turn implies that it is also dominant to send a truthful message if there is
uncertainty about the actual q, as long as q stays within the bounds of our original setup i.e. 1/4 < q < 1/3. Therefore, we
proved30

Proposition 2. Suppose the poll size follows a Poisson distribution. Suppose q is randomly drawn from a distribution that puts
positive probability mass only on states with 1/4 < q < 1/3. Then the polling game has a unique attainable equilibrium (the truthful
one) in which AB types send message A; BA types send message B and C types send message C.

This proposition provides one answer to the question whether C types can do anything in the polls to try to prevent
coordination among majority voters, by perhaps sending misleading messages in the polls. In the Poisson case, Proposition 1
demonstrates that the best C types can do is to be truthful. Individual incentives of C types are such that sending misleading
messages A or B is not in their interest. One could ask whether C types could do any better if they acted collectively, in a
specific sense. The answer, in the Poisson case is again no. It turns out that in the Poisson case the incentives of an individual
C type are very much aligned with that of the group of C types. To see this, suppose instead of C types individually and
independently choosing their message in the poll, one representative C type recommends a strategy to all C types, which
they then follow blindly. This representative C type shares the incentives of any other C type and assumes that AB and BA
types are truthful. It can be shown that this representative C type would also recommend to every C type to be truthful. To
summarize

Observation 1. In the Poisson case, a representative C type, assuming AB and BA types to be truthful and that her recommendation
be followed blindly, would recommend to all C types to be truthful.

The proof follows from simple algebra and it is omitted. This statement, as we  see in the next section, is not generally true

when poll sizes are fixed.

28 Recall that we assume that voting stage behavior is given by the equilibrium map  e* of Section 3.1.
29 If 0 < q < 1/3, then majority voters will condition their behavior only on those states with 1/4 < q < 1/3. This is because for q < 1/4 both of the majority

candidates are sure losers. So this case effectively reduces to 1/4 < q < 1/3. The case of 1/4 < q < 1/2, however, requires a more careful analysis and it is the
subject  of a separate paper that discusses such an extension.

30 Recall that we assume that voting stage behavior is given by the equilibrium map  e* of Section 3.1.
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Fig. 1. Incentives 	C(�) for even and odd poll sizes (a) 	C(�) for an even poll size (m = 10). (b) 	C(�) for an odd poll size (m = 11).

.4. The trinomial case

Suppose now that the poll size m ≥ 1 is non-random and commonly known. Then the number of A, B and C messages,
A, mB, and mC follow a trinomial distribution Tm(�, �, 1 − 2�). From a particular voter’s point of view, who is participating

n the poll, her “opponents” messages are also from a trinomial, but with n = m − 1 instead of m.  Thus, nA, nB, and nC follow
 trinomial distribution Tn(�, �, 1 − 2�).

The incentives of a C type to lie are still given by 	C(�) = P(GAIN) − P(LOSS). If 	C(�) > 0 a C type finds it in her interest
o send message A or B. If 	C(�) < 0 she prefers to send message C. An AB type’s incentives to lie are similarly given by

AB(�) = vP(GAIN) − P(LOSS). The two pivot events are given by LOSS = {nA = nB} and GAIN = {nA = nB − 1} as before.
In order to find all attainable equilibria of the polling game we  need to, as in the Poisson case, determine whether or

ot a tie, event LOSS, is more likely than a near tie, event GAIN. If it was the case that the random variables nA and nB are
ndependent from each other, we could use the same proof as in the Poisson case. This, however, is not true. There is a certain
mount of negative correlation between nA and nB.31 This complicates the proofs substantially and, indeed, changes the set
f equilibria.

It turns out, it is important to differentiate between two  cases. One in which the poll size is an even number, and one in
hich it is an odd number. This also complicates the writing of this paper, as when the poll size, m,  is odd, the number of

pponents of any one polled person, n, is even.

roposition 3. If the poll size m is odd there is a unique attainable equilibrium (the truthful one), in which C types send message
, AB types message A, and BA types message B.

roposition 4. If the poll size m is even and v < 1, then:

 there is no attainable equilibrium in which all types mix completely,
 there is an attainable equilibrium with the property that AB and BA types are truthful and C types randomize (with equal mass
on messages A and B),

 there is an attainable equilibrium with the property that C types lie (attach 1/2 probability on messages A and B each) and AB
and BA types randomize,

 there is no equilibrium in which all types lie (C types attaching 1/2 probability on messages A and B each; and AB and BA types
sending message C),

 there is a truthful attainable equilibrium.

The detailed proofs of these two propositions are given in the appendix. We  shall here provide a rough sketch of these
roofs. The incentive of a C type, as captured by function 	C, for an example of each of the two cases is given in Fig. 1(a) and
b).

Suppose n is odd or even and � = 0, i.e. everyone sends a C message. Thus, the probability of a tie nA = nB is 1, as we have
ust have nA = nB = 0, and that of a near tie is 0. Thus, 	C(0) = −1. This is bourn out in both Fig. 1(a) and (b) as in both cases
C(�) intersects the y-axis at exactly −1.
Now consider the case of n even (and, thus, an odd sample size m = n + 1) and suppose � = 1/2, i.e. no-one sends message C,
nd messages A and B are sent with probability 1/2 each. Then a near-tie is must have probability 0. A tie, while not receiving
robability 1, does have positive probability. Thus we  also have that 	C(1/2) < 0 as can be seen on the right side of Fig. 1(b).
he difficulty in the proof is to show that not only is 	C(�) negative for the two extreme values of � of 0 and 1/2, but also for

31 The correlation coefficient is corr(nA , nB) = − �/(1 − �).
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(a) (b)
Fig. 2. The probability of a tie in the poll for even and odd poll sizes. (a) Probability of a tie in the poll (m = 10). (b) Probability of a tie in the poll (m = 11).

all values of � in-between. As can be seen in Fig. 1(b) the value of 	C(�) is closer to 0 for intermediate values of � than for
extreme values. Nevertheless, it can be shown, as we do in the appendix, that 	C(�) < 0 for all values of � ∈ [0, 1/2] and, thus,
sending message C is strictly dominant for a C type, just as it was in the Poisson case. As we  also have, as in the Poisson case,
that 	AB(�) ≤ 	C(�), it is also true that message A is strictly dominant for an AB type and message B is strictly dominant for
a BA type. Thus, there is a unique attainable equilibrium, and this is truthful. Every type indicates their preferred candidate
in the poll. This is Proposition 3.

Now consider the case of n odd (and, thus, an even sample size m = n + 1) and suppose � = 1/2, i.e. no-one sends message
C, and messages A and B are sent with probability 1/2 each. As n is odd, the probability of a tie is 0. The probability of a near
tie, while not 1, is positive. Thus, we must have that 	C(1/2) > 0. This can be seen on the right side of Fig. 1(a).

This and the fact that 	C is continuous in �, implies that there must be a value �* at which 	C(�*) = 0. It can be shown that
this �* is unique and must satisfy �* > 1/3. This has a few implications. First, it implies that there exists a truthful equilibrium.
This is because if individuals report truthfully in the poll their preferred candidate, the induced � is equal to q, which is less
than or equal to 1/3. However, for any � ≤ 1/3 we now have 	C(�) < 0. Furthermore, as 	AB(�) ≤ 	C(�) for all � ∈ [0, 1/2] we
also have 	AB(�) < 0. Thus, indeed no type has an incentive to lie. This is part 5 of Proposition 4.

Now suppose every type were to lie. This means AB types send message C, as do BA types, while C types randomize 1/2,
1/2 between messages A and B. Then �, the probability of a randomly chosen voter to send message A, is given by (1 − 2q)1/2
as the proportion of C types is 1 − 2q and only half of them send message A. The proportion of C types, however, is between
1/3 and 1/2. Thus, (1 − 2q)1/2 ≤1/4, which in turn is less than �*. Thus, if everyone were to lie, the resulting � is such that
everyone has an incentive to be truthful. Thus, there is no lying equilibrium. This is part 4 of Proposition 4.

Note that, for v < 1 and � > 0, 	AB(�) is strictly less than 	C(�). This implies that 	AB(�) and 	C(�) cannot be equal to
zero for the same value of �. This implies that there is no equilibrium in which both C and AB types randomize, proving part
1 of Proposition 4.

Furthermore the value �* identified above characterizes an equilibrium, in which C types randomize between message
C and an even mixture of messages A and B (as they are indifferent), and AB types, who, at �*, must have an incentive to be
truthful send message A, while BA types send message B. This is part 2 of Proposition 4.

Finally, again as 	AB(�) < 	C(�), for v < 1 and � > 0, and by the fact that 	AB(1/2) = v	C (1/2) > 0, there is another value
of �, �** > �*, which again can be shown to be unique, such that 	AB(�**) = 0, while, necessarily, 	C(�**) > 0. This characterizes
another equilibrium, in which AB and BA types randomize and C types lie by sending a 1/2, 1/2 mixture of messages A and
B. This is part 3 of Proposition 4.

We  now turn to the question as to what strategy a representative C type would recommend to all C types if they follow
this recommendation blindly, and assuming that AB and BA types are truthful. In the case of an odd poll size, as in the Poisson
case, the answer is again that the representative C type will recommend to be truthful.

Observation 2. If the poll size m is odd, a representative C type, assuming AB and BA types to be truthful and that her
recommendation be followed blindly, would recommend to all C types to be truthful.

The formal proof of this observation is omitted but the intuition can be seen in Fig. 2(b). Fig. 2(b) shows that the probability of
a tie, {mA = mB}, is decreasing in �, the probability of a randomly chosen polled person to send message A. C types would like
to maximize the probability of a tie between A and B, or, equivalently, they want to have � as small as possible. Therefore,

given the truthful behavior of majority voters, the best they can do is to be truthful as well, in which case � = q.

In the case of an even poll size, of the three equilibria, the truthful one is still perhaps the most immediate and perhaps
most focal. However, one can ask the question which type prefers which equilibrium as well as, again, what behavior in
the poll a representative C type would recommend to all C types, assuming they follow this recommendation blindly, and
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ssuming AB and BA types are truthful. This amounts to comparing the probability of a tie in the poll between A and B
essages across the equilibria, and generally, for all values of �, as is done in the following proposition.

roposition 5. Suppose poll size m is even and 0 < v < 1, then:

the likelihood of coordination is largest in the “mixing” equilibrium (AB and BA’s are truthful, and C’s are mixing across A, B and
C).

 for large values of v, the likelihood of coordination is larger in the lying equilibrium (C types are lying while AB and BA are
mixing) than in the truthful equilibrium.

 for low values of v, the likelihood of coordination is smaller in the lying equilibrium (C types are lying while AB and BA are
mixing) than in the truthful equilibrium.

Parts of this proposition are reflected graphically in Fig. 2(a), in which the probability of a tie in the poll, {mA = mB}, is
rawn as a function of �, the probability of a randomly selected polled person to send message A.

It is interesting to note, that in the case of majority voters sending truthful messages, the representative C type would
ecommend lying to all C types, in order to increase the chance of a tie.

bservation 3. If the poll size m is even, a representative C type, assuming AB and BA types to be truthful and that her
ecommendation be followed blindly, would recommend to all C types to be mixing 50–50% between A and B.

he proof is given in the appendix. Indeed, if AB and BA types were truthful themselves, then all C types would also find it
n their interest to follow this recommendation, provided all other C types did so as well. However, in that case, AB and BA
ypes would no longer find it in their interest to be truthful and would prefer to lie themselves. Thus, this strategy profile in
hich no-one sends message C is not an equilibrium.

Fixing the behavior of AB and BA types to be truthful and comparing the two equilibria that have this feature, we  note
hat the one, in which also C types are truthful has a higher probability of a tie, and is, thus, between the two, preferred by all

 types. For small values of v, the cost of mis-coordination for majority voters, C types would prefer if they somehow could
nduce the lying equilibrium, in which AB and BA types randomize, while C types lie.

There is one feature that all equilibria share.

orollary 1. In any attainable equilibrium of any of the models in this section, the expected proportion of C-messages is less than
r equal to the proportion (1 − 2q) of C types. Thus C types are never over-represented in polls.

In fact, we can be more specific. In any truthful equilibrium, the expected proportion of C messages is exactly equal,
f course, to the proportion of C types. In the other two equilibria in the case of a fixed and even poll size, the expected
roportion of C messages is strictly less than the proportion of C types. Moreover, as the (even) poll size tends to infinity the
xpected proportion of C messages tends to zero. Thus, in large polls with a fixed and even poll size there are two equilibria
in addition to the truthful one), in which hardly anyone professes a preference for the minority candidate, even though the
ctual proportion of voters with such a preference is between a third and a half.

.5. Arbitrarily distributed poll size

Using the results we obtained in the previous section for fixed odd and even poll sizes, we  immediately have the following
orollary.

orollary 2. Suppose the poll size follows an arbitrary discrete distribution. Then the polling game has a truthful attainable
quilibrium.

he proof of this corollary follows from the fact that both the odd and even case feature a truthful equilibrium. Suppose that
he size of the poll is uncertain and follows some discrete distribution F(m). Conditional on the poll size being a fixed number
nd on every other poll participant sending a truthful message, it is a best response for a voter participating in the poll to also
end a truthful message. Since this holds for any fixed poll size, averaging across the entire possible states of the distribution,
t is still a best response for a voter participating in the poll to send a truthful message, if all other poll participants are sending
ruthful messages. Thus every poll participant sending a truthful message constitutes an equilibrium.

The corollary shows that even if a voter selected to participate in the poll is not aware of the actual poll size, if she believes
hat other voters truthfully report their preferences, she will also have incentives to truthfully report her preferences.

We also know that for some distributions of poll size, such as the Poisson, the truthful equilibrium is the only one. We
now furthermore that there are distributions, such as one putting probability 1 on a fixed even poll size, for which there
re multiple (three) equilibria. We  do not yet know whether other equilibria could emerge for some particular poll size
istributions.
. Conclusion

The main purpose of our paper was to understand how a single opinion poll can serve as a coordination mechanism in
lections. In order to understand this role of public opinion polls, we used a voting model in which there are two  similarly
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appealing majority candidates and a minority candidate. We have first shown that, in this model, polls are critical to achieving
coordination among majority supporters. Absent any coordination device, the only attainable equilibrium of the voting game
features a non-coordinated outcome in which the minority candidate wins the election. By introducing a polling stage before
the actual voting game, we have shown how majority voters can use the polling information to coordinate their actions and,
thus, prevent the minority candidate from being elected into office.

Our analysis suggests that polls have a significant influence on election outcomes. They play the role of a selection device
helping voters focus attention on one of the equilibria. Since, typically, polls are much smaller as compared to the total
electorate, a straw vote in the poll is more likely to influence the election outcome than an actual vote. If one were to make
an analogy to sequential elections (for example primaries) and think of the polling stage as a first voting round, then our
results would suggest that earlier rounds have a disproportionately large impact on the final outcome.

Appendix A. Proof of Lemma  3

Given a poll outcome m = (mA, mB, mC), after some algebra, it can be shown that

P(qAB = q + �, qBA = q − � | m)  > P(qAB = q − �, qBA = q + � | m)

if and only if

(mA − mB)[log(� + �(xAB(A) − xAB(B))) − log(� − �(xAB(A) − xAB(B)))] > 0,

where � = q(xAB(A) + xAB(B)) + (1 − 2q)xC(A). For the first part of the lemma, note that if the poll participants use an attainable
strategy profile with the property that xAB(A) > xAB(B), then an outcome of the poll with mA > mB indicates that the state
(qAB = q + �, qBA = q − �) is more likely than (qAB = q − �, qBA = q + �) and therefore the efficient equilibrium map  is for the majority
voters to coordinate on candidate A.32 Similarly, if the poll outcome has mB > mA, then the state (qAB = q − �, qBA = q + �) is
more likely and therefore the efficient equilibrium map  is for majority voters to coordinate on candidate B; finally if mA = mB,
attainability requires the two groups of AB and BA voters to play the no-coordination equilibrium.

The second part of the lemma  can be proved by a similar argument. Finally, for the last part, if xAB(A) = xAB(B) then
P(qAB = q + �, qBA = q − �|m)  = P(qAB = q − �, qBA = q + �|m)  independent of the poll outcome. In this case, the poll does not transmit
any information about the structure of the electorate. Therefore, no matter the outcome of the poll, the after-poll beliefs of
majority voters about the two states are identical to their prior beliefs (i.e. both states are equally likely). Thus, in this case,
the efficient equilibrium map  is for the majority voters to coordinate on either A or B, whenever either A or B lead in the
poll. �

Appendix B. Poll participants can be ignored in the voting stage

Given that the poll participants potentially have less information (after the poll results are made public) than those that
did not participate in the poll, theoretically we should allow them to use different strategies in the voting stage. However,
as we show below, a finite number of voters (i.e. the poll participants) cannot change the election outcome as the size of the
electorate grows arbitrarily large, and therefore they can be ignored in the voting stage. The strategies used in our analysis
can be thought of representing the voting strategies of the non-poll participants.

As shown in Lemma 1 the voting game alone has three equilibria. Consider, for example, the equilibrium in which all
majority group voters go for A, while C voters vote for C. Let us denote by (1AB, 1BA, 1C) the results of a trinomial draw where,
for instance, 1AB indicates that an AB type was drawn. The number of AB and BA type voters after N draws is NAB =

∑N
n=11AB

and NBA =
∑N

n=11BA respectively. Therefore, in the equilibrium considered, A gets a number of NAB + NBA votes, B gets 0 votes
while C gets NC = N − (NAB + NBA) votes. Then, we have the following result.

Lemma  5. Let k be some integer constant. Then

lim
N→+∞

P(NAB + NBA > NC + k) = 1

lim
N→+∞

P(NAB + NBA > k) = 1

Therefore a finite number of voters that would either switch to B or C cannot change the outcome of the election in the limit.

Proof. The first probability can be re-written as

P(N + N > N + k) = P(N + N > N − (N + N ) + k)
AB BA C AB BA AB BA

= P
(

NAB + NBA

N
>

1
2

(
1 + k

N

))

32 This is because it is more likely that there are more AB voters in the electorate than BA voters, and therefore the equilibrium that involves coordination
on  A yields a higher expected aggregate payoff for majority voters than the equilibrium in which they coordinate on B.
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y the law of large numbers (NAB + NBA)/N → 2q and 1/2(1 + k/N) → 1/2, and since 2q > 1/2 the first limit immediately follows
rom a straightforward application of the definition of convergence in probability. For the second limit, we  can use a similar
rgument to write

P(NAB + NBA > k) = P
(

NAB + NBA

N
>

k

N

)
nd since (NAB + NBA)/N → 2q while k/N → 0 we obtain lim

N→+∞
P(NAB + NBA > k) = 1. �

ppendix C. Proof of Proposition 1

In order to prove Proposition 1 the following lemma is useful.

emma  6. Consider a randomly chosen individual (AB- or C type) to participate in the poll, where the poll size is Poisson, P(m),
istributed. Fix the probability of a randomly chosen “opponent” to send message A (or equivalently B) of � (induced by a given
trategy profile x ∈ X). Let GAIN = {nA = nB − 1}, and LOSS = {nA = nB}. Then the incentive of a C type to lie is given by

	C = P(GAIN) − P(LOSS)

=
∞∑

k=0

e−�m (�m)k

k!
e−�m (�m)k+1

(k + 1)!
−

∞∑
k=0

e−�m (�m)k

k!
e−�m (�m)k

k!
,

he incentive of an AB type to lie is given by

	AB = vP(GAIN) − P(LOSS)

= v
∞∑

k=0

e−�m (�m)k

k!
e−�m (�m)k+1

(k + 1)!
−

∞∑
k=0

e−�m (�m)k

k!
e−�m (�m)k

k!
.

roof. The proof of this Lemma  follows directly from the definition of 	C and 	AB and the probability mass function of
he Poisson distribution. �

Lemma 6 allows us to prove Proposition 1 as follows. To simplify notation we define

pk = e−�m (�m)k

k!
, k ≥ 0.

hen the incentives to lie, by Lemma  6, can be written as

	C =
∞∑

k=0

pkpk+1 −
∞∑

k=0

p2
k

	AB = v
∞∑

k=0

pkpk+1 −
∞∑

k=0

p2
k

ince v < 1, we have 	AB < 	C. So if we show that 	C < 0 for all � ∈ (0, 1/2), then the unique equilibrium must involve every
olled voter sending a truthful message. To show 	C < 0 we note that for each l > 0:

l−1∑
k=0

pkpk+1 −
l∑

k=0

p2
k < −1

2
p2

0

etting l→ ∞,  we obtain

∞∑
k=0

pkpk+1 −
∞∑

k=0

p2
k ≤ −1

2
p2

0 < 0

herefore, 	C < 0 for all � ∈ (0, 1/2) as required. �
ppendix D. Proof of Propositions 3 and 4

In order to prove Propositions 3 and 4 a few lemmata are needed.
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Lemma  7. Consider a randomly chosen individual (AB- or C type) to participate in the poll. Fix the probability of a randomly
chosen “opponent” to send message A (or equivalently B) of � (induced by a given strategy profile x ∈ X). Let GAIN = {nA = nB − 1}
and LOSS = {nA = nB}. Then, the incentive of a C type to lie by sending message A is given by

	C = P(GAIN) − P(LOSS)

=
�
n − 1

2
�∑

k=0

n!
k!(k + 1)!(n − 2k − 1)!

�2k+1(1 − 2�)n−2k−1 −
�
n

2
�∑

k=0

n!

k!2(n − 2k)!
�2k(1 − 2�)n−2k,

The incentive of an AB type to lie is given by

	AB = vP(GAIN) − P(LOSS)

= v

�
n − 1

2
�∑

k=0

n!
k!(k + 1)!(n − 2k − 1)!

�2k+1(1 − 2�)n−2k−1 −
�
n

2
�∑

k=0

n!

k!2(n − 2k)!
�2k(1 − 2�)n−2k.

Proof. The proof of this Lemma  follows directly from the definition of 	C and 	AB and the probability mass function of
the Trinomial distribution. �

Because most of the proofs use an induction argument on n, we  will use notation 	C
n and 	AB

n and, occasionally, 	C
n(�)

and 	AB
n (�) to emphasize the dependence on n and �. To make the proofs easier to read we  define

an =
�
n

2
�∑

k=0

n!
k!k!(n − 2k)!

�2k(1 − 2�)n−2k

bn =
�
n − 1

2
�∑

k=0

n!
k!(k + 1)!(n − 2k − 1)!

�2k+1(1 − 2�)n−2k−1.

Thus, an is the probability of a tie (the event LOSS), while bn is the probability of a near-tie (the event GAIN), for a given
number of “other” poll participants. With this notation, we  can write 	C

n = bn − an and 	AB
n = vbn − an for all n ≥ 0. The

following lemmata establish properties of an and bn needed to analyze voters’ incentives.

Lemma  8. For all n ≥ 0 we have the following recurrence equations

an+1 = (1 − 2�)an + 2�bn

bn+1 = n + 1
n + 2

[(1 − 2�)bn + 2�an]

with the initial starting points a0 = 1 and b0 = 0.

The proof of Lemma  8 follows from some straightforward algebra and is omitted. Note that, while the second recurrence
relation does not, the first one has an intuitive explanation, which is as follows. The probability of having a tie in (n + 1) trials
is the probability of having a tie in n trials and a C draw in the (n + 1)st plus the probability of having a near-tie in n trials
and having the appropriate message A or B in the (n + 1)st trial such that a tie is created.

Lemma  9. Let 0 < � < 1/4 and bn < an (or 1/4 < � < 1/2 and bn > an). Then

bn+1 <
1
2

an + 1
2

bn < an+1.

Proof. Since bn < an and 0 < � < 1/4, we have (1 − 2�)bn + 2�an < 1/2an + 1/2bn < (1 − 2�)an + 2�bn. Using Lemma  8 yields the
result. �

Lemma  10. For each n ≥ 0, we have the following recurrence equation:

an+2 − bn+2 = ˛nan − ˇnbn,
where ˛n > 0 and ˛n − ˇn = 2(1/(n + 3) + 1/(n + 2))(1/(2 + 1/(n + 2)) − �).

The proof of Lemma  10 is based on straightforward algebra and is omitted.

Lemma  11. If � ∈ (0, 1/3) then an > bn for all n ≥ 0.
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roof. The proof is by induction. For n = 0 the statement is: a0 > b0 for � ∈ (0, 1/3); while for n = 1 it reads: a1 > b1 for � ∈ (0,
/3). These can be immediately verified to be true.

Suppose it holds for some n and we want to prove it holds for n + 2: an+2 > bn+2 for � ∈ (0, 1/3). Using Lemma  10,  we can
rite an+2 − bn+2 = ˛nan − ˇnbn, where ˛n > 0 and ˛n − ˇn = 2(1/(n + 3) + 1/(n + 2))(1/(2 + 1/(n + 2)) − �).

Since � ∈ (0, 1/3), we obtain ˛n > ˇn which combined with the induction hypothesis an > bn immediately implies
nan > ˇnbn or an+2 > bn+2. �

Using the above results, we are now in a position to determine the sign of both 	C
n and 	AB

n . This is done in the next three
emmata.

emma  12.

 For v < 1, 	C
n(�) > 	AB

n (�) for all � ∈ (0, 1/2).
 If n is odd, 	C

n(�) < 0 for � ∈ [0, 1/3] and 	C
n(�) > 0 for � ≥ 1/(2 + 1/n).

 If n is even, 	C
n(�) < 0, 	AB

n (�) < 0 for all � ∈ [0, 1/2].

.1. Proof of Part 1

This follows immediately from Lemma  7. �

.2. Proof of Part 2

Suppose n is odd. Since 	C
n = bn − an, using Lemma  11,  we  obtain 	C

n(�) < 0 for all � ≤ 1/3. For the second claim, we  need
o prove that an < bn for � ≥ 1/(2 + 1/n). The proof is by induction.

For n = 1 the statement is: a1 < b1 for � > 1/3. Suppose it holds for some n and we prove it holds for n + 2
.e. an+2 < bn+2 for � > 1/(2 + 1/(n + 2)). Using Lemma  10,  we can write an+2 − bn+2 = ˛nan − ˇnbn, where ˛n > 0 and
n − ˇn = 2(1/(n + 3) + 1/(n + 2))(1/(2 + 1/(n + 2)) − �). Because � > 1/(2 + 1/(n + 2)), we have 0 < ˛n < ˇn. On the other hand,

 > 1/(2 + 1/(n + 2)) > 1/(2 + 1/n) implies an < bn by the induction hypothesis. Combining these two last inequalities, we obtain
n+2 < bn+2 for all � > 1/(2 + 1/(n + 2)). Since 	C

n = bn − an, we  obtain 	C
n(�) > 0 for all odd n and � ≥ 1/(2 + 1/n). �

.3. Proof of Part 3

Suppose n is even. We  need to prove that an > bn for all � ∈ (0, 1/2). Again we  do the proof by induction.
For n = 0 the statement is: a0 > b0 for all � ∈ (0, 1/2). Suppose it holds for some even n and we want to prove it holds

or n + 2, i.e. an+2 > bn+2 for all � ∈ (0, 1/2). Using Lemma  10,  we can write an+2 − bn+2 = ˛nan − ˇnbn, where ˛n > 0 and
n − ˇn = 2(1/(n + 3) + 1/(n + 2))(1/2 + 1/(n + 2)) − �).

If � < 1/(2 + 1/(n + 2)) then ˛n > ˇn. Combining this inequality with the induction hypothesis an > bn we  obtain an+2 > bn+2
or � < 1/(2 + 1/(n + 2)). Since n is even, then n + 1 is odd. By Part 2 we  have an+1 < bn+1 for � > 1/(2 + 1/(n + 1)). Because
/(2 + 1/(n + 1)) > 1/4 we apply Lemma  9 to obtain an+2 > bn+2 for � > 1/(2 + 1/(n + 1)). Because � < 1/(2 + 1/(n + 2)) and

 > 1/(2 + 1/(n + 1)) cover all �’s in (0, 1/2) we are done. Since 	C
n = bn − an, we have that 	C

n(�) < 0 for all even n and
 ≤ 1/2. �

emma  13. Consider the case of n odd, with n ≥ 1. Then 	C
n+2(�) < 0 for � < �∗

n+2 and 	C
n+2(�) > 0 for � > �∗

n+2, where �∗
n

ncreasing in n with 1/3 ≤ �∗
n < 1/2 and �∗

1 = 1/3.

roof. First we note that by Lemma  12 part 2, 	C
n = bn − an > 0 for all odd n and � > 1/(2 + 1/n). Therefore, we must have

∗
n ≤ 1/(2 + 1/n. The proof is by induction.

If n = 1, then 	C
1 = b1 − a1 = 3� − 1. Suppose the statement is true for some n, and we want to show it holds for n + 2. Using

emma 10,  we have 	C
n+2 = bn+2 − an+2 = ˇnbn − ˛nan, where ˛n > 0 and ˛n − ˇn = 2(1/(n + 3) + 1/(n + 2))(1/(2 + 1/(n + 2)) − �).
For any � < �∗
n, by the induction hypothesis we have 	C

n < 0 or bn < an. At the same time ˇn < ˛n (this is because � < �∗
n ≤

/(2 + 1/n) < 1/(2 + 1/(n + 2))). Combine these two  inequalities to obtain ˇnbn < ˛nan or 	C
n+2 < 0 for all � < �∗

n. Using
emma 12 part 2, we have 	C

n+2 > 0 for � > 1/(2 + 1/(n + 2)). If we show that 	C
n+2 is increasing in � for � > �∗

n, then there
ust exist a threshold �∗

n+2 > �∗
n such that 	C

n+2(�) < 0 for � < �∗
n+2 and 	C

n+2(�) > 0 for � > �∗
n+2.
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To show that 	C
n+2 is increasing in �, we use Lemma  15 to compute its derivative as

d	C
n+2

d�
= dbn+2

d�
− dan+2

d�

= 4(n  + 2)(an+1 − bn+1) − 1
�

bn+2

= 4(n  + 2)(an+1 − bn+1) − 1
�

n + 2
n + 3

[(1 − 2�)bn+1 + 2�an+1]

=
(

4 − 2
1

n + 3

)
an+1 −

(
4 + 1

�

1
n + 3

(1 − 2�)
)

bn+1

=
(

4 − 2
1

n + 3

)
[(1 − 2�)an + 2�bn] −

(
4 + 1

�

1
n + 3

(1 − 2�)
)

n + 1
n + 2

[(1 − 2�)bn + 2�an]

= ̂̌nbn − ̨̂nan,

where

̂̌n =
(

4 − 2
1

n + 3

)
2� −

(
4 + 1

�

1
n + 3

(1 − 2�)
)

n + 1
n + 2

(1 − 2�)

̨̂n =
(

4 + 1
�

1
n + 3

(1 − 2�)
)

n + 1
n + 2

2� −
(

4 − 2
1

n + 3

)
(1 − 2�)

For all � > �∗
n > 1/3 we have ̂̌n > ̨̂n > 0. At the same time we know bn > an (by the induction hypothesis), thereforê̌nbn > ̨̂nan. But this means (d	C

n+2)/(d�) > 0 for all � > �∗
n. �

We note that the proof implies that 	C
n is increasing in � for � > �∗

n. Using this observation we can prove the following

Lemma  14. Consider the case of n odd, with n ≥ 1. Then 	AB
n (�) < 0 for � < �∗∗

n and 	AB
n (�) > 0 for � > �∗∗

n , where �∗
n < �∗∗

n <
1/2.

Proof. Note that 	AB
n = 	C

n − (1 − v)bn. From the previous lemma  we have 	C
n < 0 for all � < �∗

n, which implies 	AB
n < 0

for all � < �∗
n. Consider now the case of � > �∗

n. Using Lemma  15 we can compute the derivative of 	AB
n as

d	AB
n

d�
= d	C

n

d�
− (1 − v)

dbn

d�

= 4n(an−1 − bn−1) − 1
�

bn − (1 − v)[2n(an−1 − bn−1) − 1
�

bn]

For v = 1 we have (d	AB
n )/(d�) = (d	C

n)/(d�) > 0 for � > �∗
n, while for v = 0 we  have

d	AB
n

d�
= 4n(an−1 − bn−1) − 1

�
bn − [2n(an−1 − bn−1) − 1

�
bn]

= 2n(an−1 − bn−1) > 0

Because of the linearity (in v), we obtain (d	AB
n )/(d�) > 0 for all v ∈ (0,  1), meaning 	AB

n is increasing in � for � > �∗
n.

Since 	AB
n (1/2) > 0, we  conclude that there exists a unique �∗∗

n > �∗
n with the desired property. �

Previous lemmata finally allow us to prove Propositions 3 and 4.

D.4. Proof of Proposition 3

Follows directly from Lemma  12 part 3.

D.4.1. Proof of Proposition 4
Part 1 follows from Lemma  12 part 1. To see part 2, suppose C types randomize. From Lemma  13,  there exists a unique

�∗
n > 1/3 such that 	C

n = 0. For this particular �, using Lemma  12 part 1, we have 	AB
n < 0. Thus AB and BA types must be

truthful and we have xAB(A) = xBA(B) = 1. Thus � = q + (1 − 2q)xC(A) ∈ [q, 1/2] for xC(A) ∈ [0, 1/2], where xC(A) = 1/2 is the maximal
probability a C type can attach to A in an attainable equilibrium. Since �∗

n > 1/3, there exists a unique xC(A) > 0 that makes
� = �∗

n. To see part 3 suppose AB (and BA) types randomize. By Lemma  14,  there exists a unique �∗∗
n such that 	AB

n = 0. For

this particular �, using Lemma  12 part 1, we have 	C

n > 0. Thus C types must lie i.e. play xC(A) = xC(B) = 1/2. Thus, we have
� = 1/2 − qxAB(C) ∈ [1/2 − q, 1/2] for xAB(C) ∈ [0, 1]. Since �∗∗

n > 1/3, there exists a unique xAB(C) > 0 that makes � = �∗∗
n . To see

part 4 note that in order to have an equilibrium in which all types lie we  would have � = 1/2 − q, which is in the interval [1/6,
1/4] for q ∈ [1/4, 1/3]. Part 4 then follows from Lemma  12 part 2. Part 5, finally, follows from Lemma  12 part 2 and part 1. �
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ppendix E. Proof of Proposition 5

The proof uses the notation of the previous section (Proof of Lemma  12). First we note the following results

emma  15. For all n ≥ 1 and 0 < � < 1/2, we have

dan

d�
= 2n(bn−1 − an−1) and

dbn

d�
= −2n(bn−1 − an−1) − 1

�
bn.

roof. The result can be proved by considering the odd and even cases separately, simply differentiating the sums, and
losely following the steps of Lemma  8. �

emma  16. For all n ≥ 0, we have a2n(� = 0) = 1, a2n(� = 1/4) =
(

4n
2n

)
(1/2)4n, and a2n(� = 1/2) =

(
2n
n

)
(1/2)2n, which

mplies a2n(� = 1/4) < a2n(� = 1/2).

roof. We  prove only the result for � = 1/4. Taking � = 1/4 in the recurrence equations of Lemma  8, we have an+1 = (an + bn)/2
nd bn+1 = (n + 1)/(n + 2)(an + bn)/2. Summing the two equations yields 2(an+1 + bn+1)/2 = (2n  + 3)/(n + 2)(an + bn)/2. If we  denote
y un = (an + bn)/2, the equation becomes 2un+1 = (2n  + 3)/(n + 2)un. Iterating from n = 0 . . . n − 1 and using u0 = 1/2, we obtain

n−1 =
(

2n
n

)
(1/2)2n. Since a2n = u2n−1 for all n ≥ 1, the proof is finished. We  note that un−1 is decreasing in n, therefore

2n−1 < un−1, which is equivalent to a2n(� = 1/4) < a2n(� = 1/2) �

Using the above two lemmata, we have the following

.1. Proof of Proposition 5

Observe that dam/d� = 2m(bm−1 − am−1) = 2(n  + 1)	C
n

By Lemma  13,  we have dam/d� < 0 for � < �∗
n and dam/d� > 0 for � > �∗

n, where �∗
n is given by 	C

n(�∗
n) = 0. Therefore am

s decreasing over (0,  �∗
n) and increasing over (�∗

n, 1/2), thus it has a minimum at � = �∗
n (see Fig. 2(a)) proving the first part

f the proposition. Parts 2 and 3 follow from Lemma  16 and the fact that �∗∗
n is decreasing in v with �∗∗

n (v = 1) = �∗
n and

∗∗
n (v = 0) = 1/2. �

ppendix F. Proof of Observation 3

From previous section, we know that am(�) is decreasing over (0, �*) and increasing over (�*, 1/2), where 1/3 < �* < 1/2.
oreover, from Lemma 16 we have am(1/4) < am(1/2).
Since C’s as a group would like to maximize the probability of a tie, subject to the constraint that majority voters are

ruthful, they will choose � = 1/2. As � = q + (1 − 2q)xC(A), this can be achieved by setting xC(A) = 1/2. �

ppendix G. Supplementary data

A supplementary file containing omitted proofs can be found at http://dx.doi.org/10.1016/j.jebo.2012.09.014.
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