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Abstract

We provide a general formal framework to define and analyze the concepts of focal points and frames
for normal form games. The information provided by a frame is captured by a symmetry structure which is
consistent with the payoff structure of the game. The set of symmetry structures has itself a clear structure
(a lattice). Focal points are strategy profiles which respect the symmetry structure and are chosen according
to some meta-norm, which is not particular to the framed game at hand.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

The aim of this paper is to provide a general framework for the analysis of focal points in the
tradition of Schelling [24]. The main tool for the analysis is the concept of symmetry structure,
which captures the various ways in which strategies and players can be viewed as symmetric in
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a given normal-form game. In a first approximation, focal points are understood as those (and all
those) Nash equilibria which respect the symmetries in a one-shot framed game, where a frame2

endows strategies and players with objectively observable characteristics.
Our analysis shows that symmetry structures of games have a rich and useful mathematical

structure. We establish two main results. First, the set of symmetry structures form a lattice.
For each symmetry structure in the lattice, standard arguments imply the existence of a Nash
equilibrium respecting the associated symmetries (i.e. treating symmetric strategies equally, and
analogously for symmetric players), in such a way that as one moves “down” the lattice, i.e. as
more symmetries are broken by increasingly more detailed frames, the set of associated equilibria
grows. Second, symmetry structures are in a natural, essentially one-to-one, correspondence with
the different possible frames of a given game. Thus symmetry structures become a useful tool
for the study of frames.

The objects of study, in this paper, are truly one-shot finite normal form games. That is, they
are not played recurrently, such as the game of which side of the road to drive on, for which
conventions have been established through recurrent interaction. Rather, we assume that players
are unfamiliar with the particular game at hand (and have no expectation of ever playing it again
either). The game might be of a form that is recognized, but the game itself is new to the players.

While the game is thus assumed unfamiliar to the players, it might come with a setting or
context, a frame, which could well be familiar to the players. Thus, this frame might provide
players with more information, a “clue”, as Schelling [24] puts it, as to how to play the game at
hand. In this paper we will consider all possible frames a game might be accompanied with and
analyze focal points for each frame.

Our approach is a normative one. For the sake of concreteness, imagine the following sit-
uation. A player is about to play a one-shot game which is completely new to her. Lacking
experience and specialized knowledge, she decides to obtain advice from a game theory consul-
tant. The consultant will first write down a description of the game, for instance using a matrix
form. However, neither player positions nor strategy names in this description have any intrinsic
meaning. Recommending to play whatever strategy has received a particular label, say A or “top-
right”, is completely arbitrary, as this label only makes sense in her depiction of the game. The
consultant should thus realize that there is a great deal of arbitrariness in her representation of
the game. She will conclude that a strategy must be solely identified by its associated payoff con-
sequences. Further, if two opponents, engaged in the same game, seek advice from two different
consultants, both consultants will most likely refer to their respective player as player 1. There
might be information in the game which allows for a unique identification of the player (e.g.
he or she might be the only player who could lose money), but sometimes this is not possible.
Loosely speaking, if there are two ways of writing down the game leading to the same payoff
tables although the ordering of two strategies or two players is different, then we should declare
the two strategies or players symmetric. In the absence of further information, the labeling of
those strategies and players by the different actors is effectively random. What one consultant
calls A will be B for another consultant or for the player when she actually plays. Whether two
strategies are actually considered symmetric can depend on additional (non-payoff) information
provided by the players, i.e. on the frame of the game. A complete description of which strategies
and players are considered symmetric will be called a symmetry structure.

2 The concept of frame goes back to Tversky and Kahneman [26]. It has been formalized and used in different ways in
the game-theoretic literature on focal points.



228 C. Alós-Ferrer, C. Kuzmics / Journal of Economic Theory 148 (2013) 226–258
The consultant’s analysis boils down to the identification of the appropriate symmetry struc-
ture given all available information entailed in the framed game. The recommendations provided
by consultants are required to satisfy three axioms. One, it has to constitute a Nash equilibrium.
We shall call this the axiom of rationality. The idea is that every consultant delivers both ad-
vice on how a particular player should play, and a prediction of her opponents’ play, so that
players can indeed check that the recommendation “makes sense”. Second, the recommendation
shall treat symmetric strategies equally, i.e. they must receive the same probability. We shall call
this the axiom of equal treatment of symmetric strategies. This axiom can be and has been
motivated by Laplace’s Principle of Insufficient Reason. However, a simpler justification is that
symmetric strategies are those which cannot reliably be distinguished from each other given the
payoff structure and the available frame. Hence, a consultant is not able to distinguish among
them in a recommendation and must treat them equally. Third, a recommendation should be such
that two symmetric players receive the same advice (from one consultant). We shall call this the
axiom of equal treatment of symmetric players. Any strategy profile that satisfies these three
axioms shall be called a rational symmetric recommendation.

If we were to restrict ourselves to, say, coordination games, the question of which strategies
and which players can be declared symmetric for a given normal-form game would be a simple
one. For instance, in pure coordination games (where all off-diagonal payoffs are zeros), two
strategies are symmetric if the corresponding equilibria yield the same payoffs. In matching
games (with unity payoff matrices), all strategies are symmetric unless the symmetries are broken
by the frame. A normative approach, however, cannot be restricted to a class of games because of
its simplicity. Hence the framework we develop, and especially the theory of symmetry structures
we provide, encompasses arbitrary normal-form games. One contribution of the paper is thus
to show how one can find, in general games, the symmetries that are obvious in coordination
games. This gives rise to surprisingly subtle points, and, indeed, in many games symmetries and
asymmetries might be initially “hidden” from casual players (following with our analogy, it is
the consultant’s job to uncover them). It becomes necessary to generalize and clarify the relation
between the different symmetry concepts which have been explicitly or implicitly used in game
theory.

A notable approximation to the problem is the definition of symmetric strategies in two-player
games of Crawford and Haller [10, Appendix], which we apply to general n-player games.3

In many cases, in particular for the two-player matching games studied in (the main body of)
Crawford and Haller [10], this concept is sufficient for the analysis. We show, however, that it
is in general not enough. First, Crawford and Haller’s [10] concept is based on pairwise strategy
comparisons, but a global concept is needed once one moves away from pure coordination games.
Second, once we move away from two-player games, strategy symmetries cannot be established
independently from player symmetries. We are led to a more subtle definition of symmetries
within a game, which leads to different predictions. For this global definition, we build on Nash’s
[20] concept of symmetries and Harsanyi and Selten’s [15] game automorphisms, as also used
e.g. in Casajus [8]. The resulting concept of global symmetry structures is closely related to the
concept of frames itself. Every frame induces a global symmetry structure and for every global
symmetry structure there is a frame that justifies it. We are thus led to study the structure of
global symmetry structures and find that together with the partial order of “coarser than” they

3 Crawford and Haller [10] use their framework to study how players, in a repeated two-player coordination game, can
use history to coordinate in a pure equilibrium. See also Blume [6].
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form a lattice with non-trivial joins and meets, where the meet of two symmetry structures is
the symmetry structure resulting from the combination of (the information contained in) two
appropriate frames.

Although this paper concentrates on the concept of symmetry, the main motivation is to pro-
vide the tools necessary to formalize a theory of focal points in finite, arbitrary games. Our
position is as follows. We argue that a definition of focal points must necessarily come in two
parts. The first part requires a focal point to be an equilibrium and to respect the symmetries as
specified in the symmetry structure. Since the number of predictions grows as frames become
increasingly detailed, the second part of the definition of focal points must involve the selection
of equilibria through an appropriate (and maybe very intricate) “norm” which can be defined
independently of the game at hand, i.e. a meta-norm. Our purpose is to provide a full formal
theory of the first part of the definition (symmetries), and argue that it has to be complemented
by a meta-norm. Accordingly, in our examples we will often rely on some particular meta-norm
for clarity. In our view, however, the choice of a meta-norm is not part of what a formal theory
of fully rational behavior should provide, but rather a behavioral question.

Meta-norms can range from fairly simple to very intricate. As a first example, one can rely
on the fact that games have payoffs, in, say, monetary terms. Within a pure coordination game,
familiarity with money is probably enough to ensure that players coordinate on a unique Pareto-
efficient equilibrium, if one exists. That is, the (partial) meta-norm of always picking the strategy
which gives rise to the Pareto-optimal outcome would enable players to coordinate even if the
particular game has never been encountered before. We shall call this the meta-norm of Pareto-
efficiency.4

In this paper, we thus define focal points as equilibria that should be played by highly rational
players (consultants) who understand the symmetry structure induced by the framed game and
have common knowledge of a given meta-norm. While we thus always assume that a commonly
held meta-norm is in place, we do not investigate what this meta-norm could or even should be.
In accordance with this view, we will also abstract from possible conflicts between alternative
meta-norms. Thus our paper is not a descriptive one of how players behave in a given framed
game in the lab (although, we believe our analysis could prove helpful even in these cases), but
rather how players should and perhaps eventually will behave, after generations of teaching and
learning.

We remark that our ultimately normative motivation differs from that of most of the existing
literature. We are interested in what hypothetical consultants could advise players to play in a
framed game, while the modern literature on focal points, at least in our view, aims at identifying
how people actually do play, very specially in coordination games. In simple games, players can
be safely assumed to have a set of thought routines and reasoning mechanisms which can be
equivalent to having a hypothetical consultant; hence, the two approaches are very similar. In
more general games, one can no longer expect every real-life player’s thought routines to have
worked out all the intricate symmetries inherent in the framed game and to be able to identify the
unique best way to play the game. Hence, in a sense our normative goal is less ambitious than a
descriptive theory of actual, boundedly-rational play. In exchange, by relying on the concept of
symmetry structures, we are able to tackle all games and not just coordination games.

4 Variations of this meta-norm are called the “Principle of Coordination” in Gauthier [12], Bacharach [2,3], Sug-
den [25], and Casajus [8], “Rationality in the Extended Sense” in Goyal and Janssen [13], and the “Principle of Individual
Team Member Rationality” in Janssen [17].
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Our motivation, however, also differs from other normative approaches as e.g. Harsanyi and
Selten’s [15] aim to provide a unique solution for every game. For a two-strategy matching game,
their solution must be the unique completely mixed (and Pareto-inferior) Nash equilibrium. In
our case, this remains the only solution for a particular frame, but more detailed frames (or sym-
metry structures) lead to Pareto-improved consultant’s recommendations. Since actual players
sometimes do manage to coordinate in such simple games, our approach is still compatible with
such behavior.

The paper is structured as follows. Section 2 concentrates on strategy symmetry. This section
presents the concepts of pairwise and global symmetry and analyzes the structure of symmetry
structures, their correspondence to frames, and the existence of rational-symmetric recommen-
dations. Section 3 further concentrates on global symmetry structures and extends the analysis
to include the more involved concept of player symmetry. Subsection 3.5 discusses our concept
of focal points based on the notion of a meta-norm. Section 4 briefly discusses the role of payoff
transformations. Section 5 concludes. Proofs (which rely on some elementary group and lattice
theory) are relegated to Appendix A.

2. Strategy symmetry

In this section, we analyze the concept of symmetry structures in games and their relevance for
focal points. In order to simplify the presentation, we rely on one simplification: we will ignore
symmetry among players and concentrate on symmetry among strategies (of a given player) only.

In Subsection 2.2 below, we will further restrict ourselves to concepts of pairwise symmetry,
where strategies are compared in pairs in order to decide whether they can be declared symmetric
or not. For two-player games, this first concept reduces to the one defined by Crawford and
Haller [10].

Pairwise symmetry structures allow us to discuss most of the intuitions behind our approach
while greatly reducing the necessary conceptual and analytical complexity. Furthermore, the
concept is of interest in itself, since it already captures many of the examples that have been
discussed in the literature. It is, however, not entirely satisfactory, as we will discuss further
below. In Subsection 2.3, and building upon the intuitions developed in this section, we will
discuss a global notion of symmetry. For some special games, such as matching games (the
object of study in the main body of Crawford and Haller [10]), our global notion of symmetry
is equivalent to pairwise symmetry. In Section 3, we will further develop the notion of global
symmetry to allow for player symmetry.

Once the symmetry concepts are in place, Subsection 2.4 below analyzes the correspondence
between pairwise symmetry structures and frames. As a first approximation to the idea of focal
points, Subsection 2.5 then shows that it is always possible to spell out a recommendation in the
form of a Nash equilibrium respecting the symmetries of the (framed) game, be they pairwise or
global.

2.1. Games and labels

Consider a finite game Γ = [I, (Si, ui)i∈I ], where I is a finite set of players, Si is the finite
set of pure strategies for player i, and ui : S �→ R is the payoff function of player i, defined on
the set of strategy profiles S =×i∈I

Si . The vector payoff function u : S → R
|I | is the function

whose i-th coordinate is ui .
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Following game-theoretic conventions, for all s ∈ S we write ui(s) = ui(si |s−i ),5 where
s−i ∈ S−i =×j �=i

Sj . Abusing notation, we also write u(s) = u(si |s−i ) for the vector of pay-
offs whenever we want to single out player i’s strategy but refer to the whole vector of payoffs.
Further, denote by Θi = �(Si) the set of mixed strategies of player i, and let Θ =×i∈I

Θi be
the set of mixed strategy profiles. We extend the payoff functions ui to mixed strategies in the
usual way, i.e. taking expectations over all mixed strategies.

Much of the literature on focal points and salience deals almost exclusively with two-
player games of pure coordination, or even matching games. A two-player game Γ =
[{1,2}, S1, u1, S2, u2] is a game of pure coordination if S1 = S2 and ui(si |s−i ) = 0 if si �= s−i

and ui(si |s−i ) > 0 if si = s−i , for i = 1,2. A game of pure coordination is a matching game if
additionally ui(si |s−i ) = 1 if si = s−i , i = 1,2. Let Mk denote the matching game with k strate-
gies. For instance, the main results of Casajus [8, Theorem 5.6] and Janssen [17, Propositions 1
and 2] are restricted to matching games.

A label is any observable characteristic that can be objectively established and reliably com-
municated, and that consultants can attach to strategies when analyzing the game without relying
on factors out of their control. For instance, if a player is asked to choose from four identical
objects arranged in a table in front of him in a square, “first-row, left-hand” might not qualify as
a label unless the consultant know for sure that there is a pre-established position for the objects
(and that the player will sit at a specific position around the table). However, if one of the objects
is red, while the others are blue, the colors will qualify as labels (unless the player or the consul-
tant are color-blind). We will focus on neutral adjectives like “red” or “shiny” for our examples.
However, a label is anything which can be used to provide a strategy with a universally recog-
nizable meaning, and hence other examples can range from “hire your opponent” to “the set of
prime numbers larger than 42” or “go to Grand Central Station”. In repeated games, labels can
also be derived from the history of play, as argued by Crawford and Haller [10]. For instance, in
the second stage a strategy (of the stage game) may be labeled “was played by two players in the
first stage”.

2.2. Pairwise strategy symmetry

To motivate our definition of a pairwise symmetry structure consider the following simple
example, the matching game M2.

A B

A 1,1 0,0
B 0,0 1,1

Game 1.

In this section, players are distinct by assumption, i.e. the two players can, in principle, be given
different recommendations (perhaps one is a man, the other a woman). There are two different
situations one can envision. In the first, the two strategies are symmetric (as in Crawford and
Haller [10]), because their names do not come with a salience ranking (the labels A and B are

5 We prefer the notation ui(·|·) to the more extended ui(·,·), since the latter is not always unequivocal. For instance,
in a symmetric two-player game, u2(z, z′) might refer to the payoff when player 2 plays z against z′ or vice versa,
depending on interpretation, while u2(z|z′) and u2(z′|z) cannot be confused with each other if the symbol “|” is read as
“given”.
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meaningless, arbitrary choices by the consultant; a different consultant might have labeled them
otherwise). In the second situation, the two strategies are clearly labeled. For example, A is heads
and B is tails, as in Schelling’s [24] example, with heads commonly known to be a more salient
label. Alternatively, a commonly known label might refer to a result in a previous round of play
of the game as in Crawford and Haller [10].

Since both situations are conceivable, we want this game to have two strategy symmetry
structures, one in which both strategies of both players are declared symmetric (to cover the first
case) and another in which the two strategies are kept distinct (to cover the second case). The
following definition captures this idea.

Definition 2.1. A pairwise strategy symmetry structure of game Γ is a collection T = {Ti}i∈I ,
where each Ti is a partition of Si such that, for each i ∈ I , each Ti ∈ Ti , and each pair of distinct
strategies si , s

′
i ∈ Ti , there exist renamings ρj of Sj (for all j �= i) such that ρj (Tj ) = Tj for all

Tj ∈ Tj and u(si |s−i ) = u(s′
i |ρ−i (s−i )) for all s−i ∈ S−i . The sets Ti ∈ Ti are called pairwise

symmetry classes for player i. Two strategies si , s
′
i are said to be pairwise strategy-symmetric

(relative to T ) if they belong to the same symmetry class.6

This definition is a natural generalization to n-player games of the notion of strategy sym-
metry introduced by Crawford and Haller [10, Appendix] for two-player games. The existence
of a pairwise strategy symmetry structure of any game is guaranteed by the observation that the
partition which consists of all singleton sets is a pairwise strategy symmetry structure. We will
refer to this as the trivial symmetry structure.

For the case in which strategies have no (commonly understood) labels whatsoever we would
like to find the symmetry structure with the largest possible symmetry classes. It is not immedi-
ately obvious whether there is a unique such ‘largest’ symmetry structure.

First, we need to clarify what ‘largest’ means. The set of partitions of Si is partially ordered
as follows. A partition T ′

i is coarser than another partition Ti , if for each Ti ∈ Ti there exists
T ′

i ∈ T ′
i with Ti ⊆ T ′

i . If T ′
i is coarser than another partition Ti , the latter is finer than the

former. We say that one symmetry structure T ′ is coarser than another symmetry structure T ,
if T ′

i is coarser than Ti for every i ∈ I . A coarsest symmetry structure is a maximal element
of the set of symmetry structures according to the partial order of “coarser than”. Note that the
trivial symmetry structure is the unique finest symmetry structure.

Given two partitions Ti and T ′
i of Si , the join Ti ∨ T ′

i is the finest partition which is coarser
than both Ti and T ′

i . Dually, the meet Ti ∧ T ′
i is the coarsest partition which is finer than both

partitions. Lemma A1 in Appendix A gives a useful characterization of the join of two partitions.
The join (least upper bound) T ∨ T ′ of two pairwise strategy symmetry structures T and

T ′ can be defined as the finest pairwise strategy symmetry structure which is coarser than the
two given ones. Analogously, the meet (greatest lower bound) T ∧ T ′ is the coarsest pairwise
symmetry structure which is finer than the two given ones. The following result shows that any
two pairwise symmetry structures have a join and a meet, i.e. symmetry structures form a lattice.
Since the set is finite, it follows that any arbitrary set of symmetry structures has both a join and
a meet, i.e. they form a complete lattice.

6 When it is clear from the context we will refer to a pairwise strategy symmetry structure as simply a symmetry
structure.
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Theorem 1. For every finite game Γ the set of pairwise strategy symmetry structures endowed
with the partial order of “coarser than” forms a complete lattice. The join of two pairwise
strategy symmetry structures T ′ and T ′′ is given by T ′ ∨ T ′′ = {T ′

i ∨ T ′′
i }i∈I .

As a consequence of this result, we obtain that, for any finite normal-form game, there exists
a coarsest symmetry structure.

Corollary 1. Every finite game has a unique coarsest pairwise symmetry structure T ∗.

The coarsest symmetry structure is important because it captures as much symmetry as ac-
tually exists in the payoff matrix of the game alone, i.e. without the addition of any external
labels. In a sense, it provides a useful “symmetry benchmark”. In any other symmetry structure,
external labels have been added and symmetries have been consequently broken, creating a finer
structure.

We conclude this subsection with a remark. As observed in Theorem 1, the join of two
symmetry structures has a particularly simple form. This is not true for the meet. Although
the meet of any two symmetry structures exists, it is in general not given by the collection of
meets of the individual player partitions. To see this, consider the following two-player game,
Game 2.

E F G H

A 1,1 0,0 1,1 0,0
B 0,0 1,1 0,0 1,1
C 2,2 0,0 2,2 0,0
D 0,0 2,2 0,0 2,2

Game 2.

The coarsest symmetry structure of this game is the one where T ∗
1 = {{A,B}, {C,D}} and

T ∗
2 = {{E,F,G,H }}. Consider two alternative symmetry structures, T ′ and T ′′ with T ′

1 =
T ′′

1 = T ∗
1 = {{A,B}, {C,D}} and T ′

2 = {{E,F }, {G,H }} and T ′′
2 = {{E,H }, {F,G}}. The join

of these two structures is the coarsest one, T ∗. If we consider the greatest lower bounds for
the individual player partitions, we obtain a “meet candidate” T̃ given by T̃1 = T ′

1 = T ′′
1 = T ∗

1 =
{{A,B}, {C,D}} and T̃2 = {{E}, {F }, {G}, {H }}. However, this is not a symmetry structure. Note
that player 2’s symmetry partition is the finest possible, consisting only of singletons. Given this,
two strategies of player 1 can only be symmetric if they always deliver identical payoffs, which
is not the case for any pair of strategies. Hence, this is not a pairwise symmetry structure. In this
example, the meet T ′ ∧ T ′′ is the trivial symmetry structure.

2.3. Global strategy symmetry

The concept of pairwise strategy symmetry, however, is not entirely satisfactory for general
games. In a sense, in some games it declares too many strategies symmetric.7 To illustrate the
problem, consider Game 3.

7 This is not a problem for matching games, for which Crawford and Haller [10] developed the concept.
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b1 b2 b3 b4 b5 b6
a1 1,1 0,0 0,0 3,3 0,0 0,0
a2 0,0 1,1 0,0 0,0 3,3 0,0
a3 0,0 0,0 1,1 0,0 0,0 3,3
a4 −1,−1 −1,−1 4,4 2,2 0,0 0,0
a5 −1,−1 4,4 −1,−1 0,0 2,2 0,0
a6 4,4 −1,−1 −1,−1 0,0 0,0 2,2

Game 3.

The coarsest pairwise symmetry structure, as commented above, captures the symmetries present
in the payoff matrix alone in the absence of any labels (including strategy names). In this game,
this structure has T̃1 = {{a1, a2, a3}, {a4, a5, a6}} and T̃2 = {{b1, b2, b3}, {b4, b5, b6}}. To see this,
notice for instance that a1 and a2 are seen to be symmetric if we permute the strategies of player 2
in such a way that b1 → b2 and b4 → b5. Note also for reference that only such permutations
allow us to declare a1 and a2 symmetric. For analogous reasons any pair of strategies within
one of the classes above can be declared pairwise symmetric. Hence, T̃ is a pairwise symmetry
structure.

Yet, there is a sense in which a1 and a2 are different from each other. Suppose a consultant
wrote the game down in matrix form by starting with a2 as the first strategy of player 1 and a1
as the second. By pairwise symmetry of a1 and a2 we know that we can rename (or reorder in
the matrix) the strategies in such a way that the complete row of payoff vectors for strategy a2 in
this new depiction of the game is exactly the same as that of a1 in the depiction above and vice
versa. In order to do so we need to swap player 2’s strategies b1 and b2 as well as b4 and b5. We
thus obtain the following partial depiction.

b2 b1 b3 b5 b4 b6

a2 1,1 0,0 0,0 3,3 0,0 0,0
a1 0,0 1,1 0,0 0,0 3,3 0,0

This confirms that given T̃ , player 1’s strategies a1 and a2 are indeed pairwise symmetric.
Intuitively, this should mean that these strategies are indistinguishable. That is, a consultant who
starts with this partial depiction should be able to complete her depiction of the game and, except
for the names of the strategies, still obtain exactly the same payoff matrix as above. It turns out,
however, that having started the depiction of the game as just explained, it is not possible to
obtain a fully identical depiction to the previous one. To see this, note that in order to obtain the
two upper blocks in the original payoff matrix, the next strategy to be listed for player 1 is a3.
Now we should continue the depiction of the game in such a way that the 3 × 3 matrix in the
lower right hand corner is the same as its counterpart in the original depiction. Since the ordering
on the column player strategies is already fixed, this leaves only one possibility for the ordering
of the row player’s strategies and leads to the following complete depiction.

b2 b1 b3 b5 b4 b6

a2 1,1 0,0 0,0 3,3 0,0 0,0
a1 0,0 1,1 0,0 0,0 3,3 0,0
a3 0,0 0,0 1,1 0,0 0,0 3,3
a5 4,4 −1,−1 −1,−1 2,2 0,0 0,0
a4 −1,−1 −1,−1 4,4 0,0 2,2 0,0
a6 −1,−1 4,4 −1,−1 0,0 0,0 2,2
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This depiction differs from the original one. Given our original choice of a2 rather than a1
as the first of the row players’ strategies, it is not possible to match both lower 3 × 3 corner
matrices simultaneously to the original depiction. Hence, a clever consultant can distinguish a1
and a2 on the basis of this difference. While strategy a1, if used as the first strategy, can give
rise to the original depiction, strategy a2 cannot. Thus, we need to weaken our definition of
strategy symmetry. The key difference with the original concept is that declaring two strategies
symmetric should allow to perform a global renaming of strategies of the players in such a way
that the whole payoff matrix (and not just two rows or columns) remains unchanged.

Definition 2.2. A strategy symmetry of a normal form game Γ is a collection τ = (τi)i∈I ,
where, for each i ∈ I , τi : Si → Si is a bijection, fulfilling that, for all i ∈ I and all s =
(si |s−i ) ∈ S,

ui(si |s−i ) = ui

(
τi(si)

∣∣τ−i (s−i )
)
. (1)

This concept captures the key difference between the global and the pairwise strategy sym-
metry concepts. While the renamings used in Definition 2.1 are only required to keep the payoff
matrix unchanged when comparing two specific strategies of a fixed player, strategy symmetries
are required to leave the payoff matrix unchanged globally after reordering strategies of all play-
ers simultaneously. This concept of strategy symmetry is essentially the one used in Nash [20]
or Harsanyi and Selten [15]. The definition of strategy symmetry structure can now be adapted
by using this more stringent concept.

Definition 2.3. A global strategy symmetry structure of game Γ is a collection T = {Ti}i∈I

with each Ti a partition of Si such that for each i ∈ I , each T̂i ∈ Ti , and each si, s
′
i ∈ T̂i , there

exists a strategy symmetry τ such that τi(si) = s′
i and τj (Tj ) = Tj for all Tj ∈ Tj and all j ∈ I .

The sets Ti ∈ Ti are called strategy symmetry classes for player i. Two strategies si , s′
i are said

to be (globally) strategy-symmetric (relative to T ) if they belong to the same symmetry class.

With this definition in hand,8 let us return to Game 3. The previously identified pairwise
strategy symmetry structure T̂ is not a global strategy symmetry structure. To see this, let us
try to find a symmetry allowing us to declare a1 and a2 symmetric. As commented above, that
symmetry must necessarily permute the strategies of player 2 in such a way that b1 → b2 and
b4 → b5. But permuting b1 → b2 implies that the strategies of player 1 must be permuted in
such a way that a6 → a5. On the other hand, permuting b4 → b5 implies that the strategies
of player 1 must be permuted in such a way that a4 → a5, a contradiction (τ1 would fail to
be a bijection). Hence, there exists no symmetry allowing us to declare a1 and a2 symmet-
ric.

Careful examination of this game shows that the coarsest global symmetry structure without
player symmetry is given by T̂1 = {{a1, a3}, {a2}, {a4, a6}, {a5}} and T̂2 = {{b1, b3}, {b2}, {b4, b6},
{b5}}. To see that this is indeed a symmetry structure, just consider the symmetry which si-
multaneously swaps the two strategies in every non-singleton class and leaves the remaining

8 It is possible to provide an alternative, equivalent definition which does not use the partitions of strategies as a
primitive, but rather appropriate restrictions on the sets of symmetries which are allowed. Those restrictions boil down to
the requirement that the symmetries form a subgroup of the group of all symmetries. However, an added difficulty with
that approach is that different subgroups of symmetries might generate the same partition of strategies. See Appendix A.4
for details.
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unchanged. The fact that it is the coarsest one follows from the observation that a1 and a2 cannot
be declared symmetric, and the analogous reasoning for all other strategies in singleton classes.

Thus, Game 3 provides an answer to the question of whether every pairwise strategy sym-
metry structure is a global strategy symmetry structure. For the particular case of the coarsest
symmetry structure, one can rephrase the question as follows. Suppose two strategies can be de-
clared pairwise symmetric (following Crawford and Haller [10]). Can they always be declared
globally symmetric (i.e. symmetric in the sense implicit in Nash [20])? This question was al-
ready posed (as an open question) by Casajus [9, p. 20] (except for differences with respect to
whether symmetries are allowed to transform payoffs or not; see Section 4). Game 3 shows that
the answer is negative.

Even though settling the question of the (non-)equivalence between pairwise symmetry con-
cepts as in Crawford and Haller [10] and global ones as in Nash [20] or Harsanyi and Selten
[15] is interesting in itself, this is more than a technical point. Game 3 also illustrates that
the recommendations might differ qualitatively under both approaches. Getting ahead of our-
selves for a second, suppose a consultant is allowed to recommend any Nash equilibrium where
strategies which are declared symmetric are played with equal probability. Suppose also that
this particular consultant aims to recommend Pareto-efficient equilibria in this class. Adopt-
ing the pairwise approach, the coarsest symmetry structure is given by T̃ above and hence we
are left with three equilibrium candidates: the first randomizes uniformly among a1, a2, a3 and
among b4, b5, b6; the second randomizes uniformly among a4, a5, a6 and among b1, b2, b3; while
the third randomizes uniformly among a4, a5, a6 and among the whole set b1, . . . , b6. The ex-
pected payoffs of the first are larger than the payoffs in the other two recommendations, and
hence the pairwise approach delivers a unique recommendation resulting in an expected payoff
of 1. On the other hand, the global approach delivers the coarsest symmetry structure T̂ , which
enables coordination in the equilibrium (a5, b2), with a payoff of 4. This is then the unique
recommendation, which is qualitatively different from the one arrived at under the pairwise ap-
proach.

While Game 3, thus, demonstrates that not every pairwise strategy symmetry structure is also
a global strategy symmetry structure, the converse is true. The proof is immediate.

Proposition 1. If T is a global strategy symmetry structure, then T is a pairwise strategy sym-
metry structure.

In view of this result, and although we take the position that the global version is more ap-
propriate, for the remainder of the section we will spell out the results for pairwise strategy
symmetry structures.

2.4. Pairwise strategy symmetry structures and basic frames

We now turn to frames. Let Zi be a universal set of labels for the strategy set of each player i.
A basic frame for the game Γ is a collection L = (Li)i∈I where Li : Si → Zi for each i ∈ I .
It is important to focus on the interpretation of a frame as reporting on universally observable,
objective characteristics. In particular, each consultant will be able to observe the labels Li(si) of
all strategies of all players. As in the rest of this section, here we assume that players are readily
identifiable, i.e. there is no question of player symmetry.

The coarsest pairwise symmetry structure T ∗ delivers the strongest (coarsest) reclassification
of strategies that a consultant can obtain from the game, based on payoffs alone. In this sense, T ∗
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is associated to the game without frames. It is useful to consider how other symmetry structures
might arise.

Suppose the consultant analyzes the game in two steps. First, she extracts as much information
as she can from the payoff structure alone. Thus she will arrive at the symmetry structure T ∗.
Second, she considers the basic frame L. Consider two strategies which are not symmetric in T ∗.
Since they can already be distinguished on the basis of payoffs, whether they receive the same or
different labels adds no further information. Labels are important, however, to distinguish among
symmetric strategies. That is, a basic frame induces a refinement of T ∗ by further partitioning
the symmetry classes.9 Given a basic frame component Li for player i, the Li -partition of Si

is the partition given by the sets Ti ∩ L−1
i (a) for all Ti ∈ T ∗

i symmetry classes of the coarsest
symmetry structure and all a ∈ Zi .

It is, however, not true that the refined partitions will automatically form a symmetry struc-
ture. In other words, the consultant is in general left with some work to do to integrate the new
information into a new symmetry structure. A simple example of how additional information
provided by a frame can change the symmetry structure is given by Game 4 below. Another ex-
ample in the next subsection, Game 5, illustrates that a frame can lead to subtle changes in the
symmetry structure with radical consequences for the ultimate recommendation consultants can
provide.

Definition 2.4. Let L be a basic frame for game Γ . The pairwise strategy symmetry structure
induced by L, T (L), is the coarsest pairwise strategy symmetry structure T such that, for each
player i, Ti is finer than the Li -partition of Si .

Note that T (L) is always well defined by Theorem 1. The argument is as follows. Consider
the set of all symmetry structures whose players’ partitions are finer than the Li -partitions. This
set is nonempty (since it contains the trivial one). It is easy to see that if two symmetry structures
are in this set, the join also fulfills the characterizing property. It follows that the join of all
symmetry structures in the set delivers the coarsest one.

To see that T (L) is in general not just given by the repartitioning of symmetry classes ac-
cording to the labels, consider the following two-player framed game, where Z1 = {•,◦} and
Z2 = {�,�}.

� � �
D E F

• A 1,2 0,0 0,0
◦ B 0,0 1,2 0,0
◦ C 0,0 0,0 1,2

Game 4.

In the coarsest (frame-free) symmetry structure, all strategies are symmetric, for both play-
ers. If we instead repartition the symmetry classes according to the observed labels, we obtain
{{A}, {B,C}} for player 1 and {{D,E}, {F }} for player 2. These partitions do not form a symme-
try structure. For, in order to declare B and C symmetric for player 1, it is necessary to permute

9 We assume that frames summarize universally observable information. One might conceive of interesting situations
with frames which are only observed partially by some of the players, leading to incomplete-information settings.
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E and F for player 2. But the latter strategies are in a different element of the L2-partition. The
symmetry structure induced by the frame in this example is the trivial one.10

The mapping L → T (L) gives us a natural translation of frames into symmetry structures.
This mapping is actually onto, that is, for every symmetry structure a consultant might come up
with, there exists a frame which rationalizes it.

Theorem 2. For any pairwise strategy symmetry structure there exists a basic frame L such that
T (L) = T .

Proof. Fix T and let Zi = Ti . Define Li(si) = Ti where Ti ∈ Ti is such that si ∈ Ti . The Li -
partitions just reproduce Ti and thus T (L) = T . �

Although this result is straightforward, we find its interpretation interesting. We can rephrase
it through the usual appeal to the canonical decomposition of a mapping as follows. Call two
basic frames L and L′ similar if they generate the same symmetry structure, i.e. T (L) = T (L′).
If we consider the mapping T to be defined on the quotient set, i.e. the set of similarity classes
of basic frames, then it becomes bijective. Thus, at an abstract level, we could identify basic
frames (up to similarity) with symmetry structures. In other words, given a basic frame, the
corresponding symmetry structure becomes a complete model of all symmetries implied by the
frame and the payoff structure of the game. In that sense, symmetry structures help us understand
the implications of frames.

We remark that the equivalence between symmetry structures and (classes of) frames re-
spects the lattice structure in the natural way. As an illustration, consider a situation where,
as in Casajus [8], Janssen [17], or Binmore and Samuelson [4], players might observe the real-
izations of several sets of attributes, e.g. color LC

i (si) out of certain sets ZC
i and shape LH

i (si)

out of certain sets ZH
i . The problem can be easily reformulated by defining the composite labels

Li(si) = (LC
i (si),L

H
i (si)) ∈Zi =ZH

i ×ZC
i . The corresponding symmetry structure is then just

the meet of the color and shape symmetry structures, T (L) = T (LC) ∧ T (LH ), which always
exists by Theorem 1.

2.5. Equal treatment of symmetric strategies

We are now ready to spell out the first two of the axioms we require a consultant’s recom-
mendation to satisfy for any given game and basic frame (Γ,L), i.e. for any given (pairwise
or global) strategy symmetry structure T . A recommendation is simply a mixed strategy profile
x ∈ Θ .

Axiom 1. A recommendation x ∈ Θ is rational if it is a Nash equilibrium of the game.

That xi should be a best response to x−i is a minimal rationality requirement. When con-
fronted with a specific recommendation, which includes a prediction for the play of the oppo-
nents, players should be able to recognize whether they have an individual incentive to deviate;
likewise, they should be able to check whether the prediction for the opponents’ play is reason-
able, in the same sense.

10 One could alternatively define frames directly as the partitions they induce. This example shows that the induced
partition is not always obvious, and hence we prefer to define frames through the labeling of strategies.
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Axiom 2. A recommendation x ∈ Θ satisfies the axiom of equal treatment of symmetric strate-
gies for pairwise strategy symmetry structure T if, whenever si , s

′
i ∈ Ti for some Ti ∈ Ti then

xi(si) = xi(s
′
i ).

This axiom says that if there is a meaningful sense in which two (pure) strategies can be con-
sidered equivalent or symmetric, then the consultant must treat those strategies symmetrically. Of
course, as discussed previously (and often argued in the literature), we could link this requirement
to Laplace’s Principle of Insufficient Reason; that is, in the absence of information distinguishing
two options, they should be ascribed equal probability, or, in our terms, treated equally in the rec-
ommendation. Our interpretation, however, is different. Two strategies are declared symmetric
because there is no conceivable way to distinguish them, or, more specifically, a way for a con-
sultant to communicate a distinction to either a player or another consultant. While a consultant
can use available language (the payoff structure of the game and the commonly known external
labels) to identify an element of the partition, if she further calls two strategies within the same
element “A” and “B”, it might well be that the player, or another consultant, have called them
“B” and “A”, respectively. Under this interpretation, it is simply not possible to formulate a rec-
ommendation treating symmetric strategies differently. Equal treatment of symmetric strategies
simply reflects the fact that, when two consultants write down the game, the labels they use for
symmetric strategies are necessarily random, without any possible bias in that randomness.11

Definition 2.5. A recommendation x ∈ Θ is a rational strategy-symmetric recommendation
with respect to a pairwise strategy symmetry structure T if it satisfies the axioms of rationality
and equal treatment of symmetric strategies.

The following two-player game illustrates how a small change in the symmetry structure (or
the frame) might enlarge the set of recommendations.

D1 D2 E1 E2 F1 F2
A1 1,1 0,0 2,2 0,1 0,0 0,0
A2 0,0 1,1 0,1 2,2 0,0 0,0
B1 2,2 1,0 3,3 1,1 1,1 1,1
B2 1,0 2,2 1,1 3,3 1,1 1,1
C1 0,0 0,0 1,1 1,1 4,4 1,1
C2 0,0 0,0 1,1 1,1 1,1 4,4

Game 5.

In the absence of a frame, the coarsest (pairwise) symmetry structure is given by T ∗
1 =

{{A1,A2}, {B1,B2}, {C1,C2}} and T ∗
2 = {{D1,D2}, {E1,E2}, {F1,F2}}. Notice that strategies

A1, A2 for player 1 and D1, D2 for player 2 are strictly dominated. There are three Nash
equilibria where symmetric strategies are played with identical probabilities. The first, given by
xBE

1 = xBE
2 = (0,0, 1

2 , 1
2 ,0,0), involves randomization over the symmetry classes “B” and “E”.

The second, given by xCF
1 = xCF

2 = (0,0,0,0, 1
2 , 1

2 ), prescribes to randomize over the symmetry
classes “C” and “F ”. The third, given by xm

1 = xm
2 = (0,0, 3

10 , 3
10 , 1

5 , 1
5 ), recommends a more

complex randomization among all non-dominated strategies. Among these rational strategy-
symmetric recommendations, the second one involves the largest expected payoff. Hence, the

11 We thank the associate editor for help clarifying this point.
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payoff-dominant recommendation is xCF . In a world where consultants focus on payoffs, this
would be a candidate focal point for this game.

Suppose now that one of the strictly dominated strategies, A1, receives a distinctive label
(“shiny”). Examination of the payoff table reveals that four symmetry classes break down,
and we are led to the symmetry structure given by T ′

1 = {{A1}, {A2}, {B1}, {B2}, {C1,C2}} and
T ′

2 = {{D1}, {D2}, {E1}, {E2}, {F1,F2}}. Obviously, xCF is also a rational strategy-symmetric
recommendation for this symmetry structure. However, there are now two alternative rational
symmetric recommendations leading to strictly higher payoffs, namely those represented by the
Nash equilibria (B1,E1) and (B2,E2). Hence we see that labeling a single, strictly dominated
strategy might lead to a change in what constitutes a reasonable recommendation for a game.

The next theorem states that a recommendation satisfying both of the axioms above always
exists.

Theorem 3. For any finite normal form game Γ and any pairwise strategy symmetry structure T ,
a rational strategy-symmetric recommendation with respect to T exists.

The proof (see Appendix A) relies on the appropriate appeal to Kakutani’s fixed point theo-
rem. The only difficulty is to show that the restriction of the best reply correspondence to rational
strategy-symmetric recommendation is nonempty-valued; in other words, whenever the oppo-
nents of a player i give the same weight to their symmetric strategies, there exists a best response
of player i which gives the same weight to any two of her symmetric strategies.

Theorem 3, in conjunction with Proposition 1, implies existence of a rational strategy-
symmetric recommendation whenever strategy symmetry is defined through global strategy
symmetry.

The lattice structure of symmetry structures has implications for the set of Nash equilibria,
due to the following observation.

Proposition 2. Let T and T ′ be pairwise strategy symmetry structures of a finite, normal-form
game Γ . If T is coarser than T ′, then any rational recommendation which is strategy-symmetric
with respect to T is also strategy-symmetric with respect to T ′.

The proof is immediate. Note, in particular, that the set of rational recommendations which
are strategy-symmetric with respect to the trivial structure is the set of all Nash equilibria, while
rational recommendations which are strategy-symmetric with respect to the coarsest structure are
also strategy-symmetric with respect to any structure.

This raises an interesting point. Suppose we have a framed game, and new information arrives
in the form of further attributes, additional history, etc. The effect is to refine the frame and hence
the symmetry structure. The set of strategy-symmetric Nash equilibria is consequently enlarged
(not refined) to a (weakly) larger set.

For example, in Crawford and Haller [10], as the base game is repeated, the outcomes of past
play form histories which incorporate more and more information, acting as more and more de-
tailed frames, and thus enlarging the set of equilibria until coordination on a desired equilibrium
is possible. Crawford and Haller [10] then rely on an additional principle, Pareto efficiency, in
order to select an equilibrium (see also Goyal and Janssen [13]). The argument above shows
that such a “meta-norm” is necessary for any full definition of focal points, because refining
symmetry structures results in enlarged sets of equilibria.
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3. Global strategy and player symmetry structures

In this section we add considerations of possible symmetries between players to our symmetry
structures. In order to simplify the exposition, we now take a position and concentrate on global
symmetry structures.

3.1. Global symmetry structures

To motivate our definition of global symmetry structures for a game consider the following
game, Game 6, which is a version of the battle-of-the-sexes.

A2 B2
A1 4,3 0,0
B1 0,0 3,4

Game 6.

For each player in this game, the two strategies have to be declared not symmetric. For player 1,
for instance, strategy A1 can provide a payoff of 4, which is not possible for strategy B1. If the
players are exogenously declared not symmetric, then the only symmetry structure is the trivial
one. If the game is indeed the battle-of-the-sexes, which suggests that it is common knowledge
that player 1 is a woman and player 2 a man (or vice versa), then this is indeed the appropri-
ate symmetry structure. However, we argue that the game should also have a second symmetry
structure, in which the two players are declared symmetric.

Consider the game being played by two randomly chosen students from some subject pool,
who are not informed about their opponent’s identity. They are only told that they have two
strategies at their disposal, one that can provide a high payoff of 4, the other a lower payoff of 3,
and payoffs are paid out only if one of the two players chooses the high payoff strategy and the
other the lower payoff strategy. The game is symmetric, in the sense that the two players are
in symmetric positions (they both face exactly the same situation). Formally, declaring the two
players symmetric can be achieved by mapping player 1’s high-payoff strategy A1 to player 2’s
high-payoff strategy B2, and B1 to A2. This mapping is a (player) symmetry, as defined below,
again taken from Nash [20].

Definition 3.1. A symmetry of a normal form game Γ is a tuple (σ, τ ) where σ : I → I is a
permutation of the players’ names and τ = (τi)i∈I , where, for each k ∈ I , τk : Sk → Sσ(k) is a
bijection, fulfilling that, for all k ∈ I and all s = (sk|s−k) ∈ S,

uk(sk|s−k) = uσ(k)

(
τk(sk)

∣∣τ−k(s−k)
)
, (2)

where the vector notation τ−k(s−k) ∈ S−k involves the appropriate permutation of coordinates,
i.e. τ−k(s−k) = (τσ−1(k)(sσ−1(k)))k �=σ(i).

The concept of symmetry of a game was introduced by Nash [20]. Harsanyi and Selten [15]
reformulated and further generalized it by allowing for positive affine transformations of the pay-
offs. We discuss the difference in Section 4 below. Note that, if we constrain σ to be the identity,
i.e. require players not to be considered symmetric, this definition reduces to Definition 2.2.

When player symmetry is taken into account, it turns out that partitioning player sets and
strategy sets into symmetry classes is not sufficient. We need to add another component to the
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definition of symmetry structure, which explains in what way any two or more symmetric play-
ers are symmetric. The reason is that in some cases, declaring players symmetric can be done in
two or more qualitatively different ways (with potential equilibrium-payoff consequences). Con-
sider again the two-player, two-strategy matching game M2 (Game 1). In the absence of further
information (labels) the strategies of each player are symmetric. Of course, without any labels
for the players’ identities, players are also symmetric. One symmetry structure should clearly be
that both strategies as well as players are declared symmetric. However, players might still be
symmetric if strategies are not, e.g. if strategy A of each player is labeled “heads”. In this case,
players are symmetric with the mapping A for player 1 to A for player 2 (and the same for B).
There is another case in which players are symmetric, where A is heads for player 1 and B is
heads for player 2. Now the mapping carries A for player 1 to B for player 2 (and vice versa for
the other strategies). These two ways of declaring players symmetric (when two actually sym-
metric strategies are exogenously kept not symmetric) are qualitatively different. In the first case
there are three Nash equilibria that are feasible under the symmetry structure (coordinate on A,
coordinate on B , and uniform mixing). In the second case there is only one Nash equilibrium
consistent with the symmetry structure (uniform mixing). This second case is very similar to the
player-symmetric Battle of the Sexes, Game 6.

This means that a “symmetry structure” which only specifies that the two players are sym-
metric but none of the strategies are, can have two different interpretations leading to different
sets of feasible recommendations. As a consequence, when considering player symmetries, it is
not enough to provide a partition of the set of players and partitions of the set of strategies for
each player. We need to add a specification as to how the two players are symmetric. This is
accomplished through the concept of identification.

Definition 3.2. Let (I,T ) be a pair where I is a partition of I and T = {Ti}i∈I with Ti a partition
of Si . An identification of the players (relative to (I,T )) is a vector of bijective mappings
α = (αi)i∈I , αi : Ti �→ Ωi , where the Ωi are sets such that Ωi = Ωj whenever i, j ∈ J ∈ I .

The sets Ωi in the definition are inconsequential, and could be taken to be equal to Ti for some
player i ∈ J , for each symmetry class J ∈ I . A player identification merely couples together the
symmetry classes of symmetric players by giving a common “label” or name to them. As a
consequence, symmetric players will need to have the same number of symmetry classes.

The necessary consideration of identifications sets us apart from previous concepts. The rea-
son is that this difficulty does not arise if the objective is to declare as many strategies and players
symmetric as is possible according to payoffs only. Specifically, we will establish below (Propo-
sition 3) that for the coarsest symmetry structure, the player identification is unique. Hence, the
concept of identification is not needed in e.g. Nash [20] and Harsanyi and Selten [15], who, in
our terms, deal with coarsest symmetry structures only.

The next definition summarizes how a symmetry should agree with a candidate symmetry
structure and an identification thereof.

Definition 3.3. Let (I,T ) be a pair where I is a partition of I and T = {Ti}i∈I with Ti a partition
of Si . Let α be a player identification relative to (I,T ). A symmetry (σ, τ ) agrees with (I,T , α)

if (i) σ(J ) = J for every J ∈ I , and (ii) for every k ∈ I and Tk ∈ Tk , there is a Tσ(k) ∈ Tσ(k) such
that τk(Tk) = Tσ(k) and α(Tk) = α(Tσ(k)).
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Note that, whenever σ(i) = i, the definition of identification and the second condition im-
ply that, for every Ti ∈ Ti , τi(Ti) = Ti (thus there is no need to spell out this condition in the
definition separately).

We are now ready to present our definition.

Definition 3.4. A global symmetry structure of game Γ is a triple (I,T , α) where I is a
partition of I , T is a collection T = {Ti}i∈I with each Ti a partition of Si , and α is a player
identification relative to (I,T ), such that the following hold.

(i) For each i ∈ I , each Ti ∈ Ti , and each si , s
′
i ∈ Ti , there exists a symmetry (σ, τ ) which agrees

with (I,T , α) such that σ(i) = i and τi(si) = s′
i .

(ii) For each J ∈ I and each pair of (not necessarily different) players i, j ∈ J , there exists a
symmetry (σ, τ ) which agrees with (I,T , α) such that σ(i) = j .

The sets Ti ∈ Ti are called strategy symmetry classes for player i. Two strategies si , s′
i are said

to be (globally) symmetric (relative to T ) if they belong to the same symmetry class. The sets
of I are called player symmetry classes. Two players are symmetric if they belong to the same
symmetry class.

When all players are identified, the definition just spelt out reduces to Definition 2.3. That is,
a global strategy symmetry structure is just a global symmetry structure where all players are
uniquely labeled.

Definition 3.4 identifies strategy symmetries and player symmetries simultaneously. It is
important to note that it is not possible to tackle the issues of strategy symmetry and player
symmetry separately. This is not evident from the examples presented so far. However, there are
games in which strategies and players can only be declared symmetric when this is done simul-
taneously. Game 7 below (where player 1 chooses rows, player 2 chooses columns, and player 3
chooses matrices) demonstrates this point.

A B

A B

A 2,0,1 0,2,0
B 0,2,0 2,0,1

A B

A 0,2,1 2,0,0
B 2,0,0 0,2,1

Game 7.

It is easy to see that in the coarsest symmetry structure, players 1 and 2 are symmetric, and
both strategies of player 3 are symmetric. This is established using the symmetry which maps
player 1 to player 2 and vice versa, strategies A and B of player 1 to strategies B and A of
player 2, respectively, and at the same time swaps strategies A and B of player 3. Applying all
these changes leaves the payoff matrix unchanged, which is the meaning of Eq. (2).

Suppose, however, that one adopts a different approach and identifies symmetric strategies
first and only then looks at symmetries among players. Then, both strategies are symmetric for
players 1 and 2 (just consider a symmetry swapping these strategies within each player’s strategy
set, while leaving everything else fixed), but we are not allowed to declare the two strategies of
player 3 symmetric, because the symmetry which establishes this property needs to swap players
1 and 2 (who still have not been declared symmetric). But, if the two strategies of player 3 cannot
be declared symmetric, when we look at player symmetry we will find that players 1 and 2 cannot
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be declared symmetric, because the symmetry establishing this needs to swap both strategies of
player 3. This inconsistency arises because the determination of player symmetry and strategy
symmetry needs to be simultaneous.

3.2. The structure of global symmetry structures

We say that one global symmetry structure (I ′,T ′, α′) is coarser than another symmetry
structure (I,T , α), if I ′ is coarser than I , T ′

i is coarser than Ti for every i ∈ I , and α(Ti) =
α(Tj ) implies α′(T ′

i ) = α′(T ′
j ) for all i, j ∈ J ∈ I and each Ti ∈ Ti , Tj ∈ Tj , T ′

i ∈ T ′
i , T ′

j ∈ T ′
j

with Ti ⊆ T ′
i and Tj ⊆ T ′

j . A coarsest global symmetry structure is a maximal element of the
set of global symmetry structures according to the partial order of “coarser than”. Of course, the
trivial pairwise symmetry structure together with the finest partition of the set of players (each
player is an element of the partition) form a trivial global symmetry structure which is finer than
any other one.

The structure of global symmetry structures is more involved than the one of pairwise sym-
metry structures. However, analogously to Theorem 1, existence of meets and joins can also be
established. This requires a group-theoretic detour (details are in Appendix A). Essentially, the
set of all symmetries of a game, denoted Sym(Γ ), forms a group with the composition of sym-
metries defined in the natural way. Each global symmetry structure defines one subgroup of this
group in a natural way (the set of all symmetries which do not break symmetry classes in the
global symmetry structure). The group of symmetries associated to the coarsest global symme-
try structure is the grand group Sym(Γ ). Global symmetry structures which coincide except for
the player identification define different subgroups. The proof of the theorem below crucially
uses the fact that the set of subgroups of a group has a lattice structure, which can be translated
to global symmetry structures. A difficulty in the proof is that the mapping between symmetry
structures and subgroups of symmetries is not onto, because a subgroup does not only specify
which strategies are permuted, but also “in which way” (see Appendix A.4 for details).

Theorem 4. For every finite game Γ the set of global symmetry structures endowed with the par-
tial order of “coarser than” forms a (complete) lattice. There exists a coarsest global symmetry
structure.

Contrary to Theorem 1, it is not true that the join of two global symmetry structures
(I ′,T ′,M ′) and (I ′′,T ′′,M ′′) can be constructed by setting I = I ′ ∨ I ′′ and T ′ ∨ T ′′ =
{T ′

i ∨ T ′′
i }i∈I . The following counterexample shows that indeed the structure of global sym-

metry structures is more subtle than the one of pairwise symmetry structures. The following
trivial game, Game 8, already demonstrates this fact.

L R

U 1,1 1,1
D 1,1 1,1

Game 8.

A possible global symmetry structure is given by I ′ = {{1,2}} (both players are symmetric),
T ′

1 = {{U}, {D}}, T ′
2 = {{L}, {R}}, and e.g. a player identification with α′

1({U}) = α′
2({L}) and

α′
1({D}) = α′

2({R}). A different global symmetry structure is given by I ′ = {{1}, {2}} (players
are not symmetric; hence the player identification is irrelevant), T ′′ = {{U,D}}, and T ′′ = T ′ =
1 2 2
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{{L}, {R}}. If we construct the joins of the respective partitions, we obtain I ′ ∨ I ′′ = {{1,2}},
T ′

1 ∨ T ′′
1 = {{U,D}}, and T ′

2 ∨ T ′′
2 = {{L}, {R}}. But players 1 and 2 cannot be symmetric and

have a different number of symmetry classes, hence this cannot be part of a global symmetry
structure.

It is easy to see that a given pair (I,T ) might admit several compatible player identifications.
That is, there might be several alternative global symmetry structures (I,T , α1), . . . , (I,T , αK)

sharing the same I and T , but where players are declared symmetric following different
mappings αk . An example is game M2 where, as already discussed, the players might be
declared symmetric in two qualitatively different ways. This also holds (in a less relevant
way) for Game 8. In such a case, the join of all the alternative global symmetry structures
(I,T , α1), . . . , (I,T , αk) is a well-defined symmetry structure, due the lattice structure. How-
ever, this join, say (I∗,T ∗, α∗), might in general incorporate new symmetries not captured in
(I,T ). The following definition captures this concept.

Definition 3.5. The completion of a global symmetry structure (I,T , α) is the global symmetry
structure given by the join of all structures of the form (I,T , α′).

For example, in the framed Game 8, the completion of the two global symmetry structures
with symmetric players and the symmetry classes corresponding to the frames is the coarsest
symmetry structure where all two strategies of each player are symmetric. We say that a global
symmetry structure is complete if it is equal to its completion, and incomplete if not, or, equiv-
alently, if there exist alternative player identifications. Obviously, the coarsest global symmetry
structure is always complete, since its completion cannot be strictly coarser. The following result
is then immediate.

Proposition 3. If (I,T , α) is the coarsest global symmetry structure, there exists no alternative
player identification α′ such that (I,T , α′) is a different global symmetry structure.

This observation clarifies why the approaches of Nash [20] or Harsanyi and Selten [15] do not
need a specification of player identifications. They restrict to structures considering all possible
symmetries, and hence implicitly work with coarsest symmetry structures. For those, it is not
necessary to specify player identifications.

3.3. Global symmetry structures and frames

Analogously to Subsection 2.4, there is a correspondence between global symmetry structures
and frames, where not only strategies, but also players are labeled (e.g. players 1 and 5 are men,
all others are women). We first extend the concept of basic frame to accommodate this possibility.
It is important to focus on the interpretation of a frame as reporting on universally observable,
objective characteristics. In particular, each consultant will be able to observe the labels of all
players and all strategies.

Definition 3.6. A frame is a pair (L,L0), where (i) L is a basic frame, i.e. L = (Li)i∈I and L0,
where Li : Si → Zi for each i ∈ I for some arbitrary sets of labels Zi , (ii) L0 : I → Z0 is a
mapping assigning players to labels from some arbitrary set Z0, and (iii) whenever i, j ∈ I are
such that L0(i) = L0(j), we have that Zi =Zj and |L−1(z)| = |L−1(z)| for each z ∈ Zi =Zj .
i j
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The third condition is a minimal consistency requirement. It states that two players can only
be assigned the same label if their strategies are given labels from the same set in a clearly
compatible way, i.e. the number of strategies labeled the same way is the same for both players.
Obviously, there is no guarantee that strategies or players labeled the same way will be declared
symmetric in an associated symmetry structure, because the payoff structure of the game might
deliver additional information.

As before, the coarsest global symmetry structure is the strongest (coarsest) reclassification of
strategies and players that a consultant can obtain from the game, based on payoffs alone, hence,
is thus “frameless”.

Definition 3.7. Let (L,L0) be a frame for game Γ . The global symmetry structure induced by
(L,L0) is the coarsest symmetry structure (I,T , α) such that I is finer than {L−1

0 (z) | z ∈ Z0},
Ti (L) is finer than the Li -partition of Si for each player i, and for all symmetric players i, j

and Ti ∈ Ti , Tj ∈ Tj with αi(Ti) = αj (Tj ), it follows that for each si ∈ Ti and each sj ∈ Tj ,
Li(si) = Lj(sj ).

Again, this global symmetry structure is always well defined by Theorem 4, with an analogous
argument to the one used for frames and pairwise symmetry structures. In particular, note that if
two global symmetry structures fulfill the properties stated in the definition, so does their join.

As in Subsection 2.4, the mapping which takes each frame to the global symmetry structure it
induces is onto, that is, for every global symmetry structure there exists a frame which rational-
izes it.

Theorem 5. For any global symmetry structure there exists a frame such that the induced global
symmetry structure is the original one.

Proof. Fix a global symmetry structure (I,T , α), and construct the frame as follows. Let
Z0 = I . Define L0(i) = J where J ∈ I is such that i ∈ J . For each J ∈ I , choose an arbi-
trary j ∈ J and let Zi = Tj for all i ∈ J . For each i ∈ J , define Li(si) = Tj where Tj ∈ Tj

is such that αj (Tj ) = αi(Ti) with si ∈ Ti . The Li -partitions just reproduce Ti , and analogously
for L0. Note that, given z = Tj ∈ Tj =Zj , L−1

j (z) = Tj and L−1
i (z) = Ti with αj (Tj ) = αi(Ti).

Since α agrees with (I,T ), it follows that |Ti | = |Tj |, which establishes the third condition in
the definition of frame. �
3.4. Equal treatment of symmetric players

Now we are finally ready to spell out the last axiom, to be added to rationality and equal
treatment of symmetric strategies. From this point on, we understand the latter axiom (and the
new one) to refer to global, rather than pairwise, symmetry structures.

Axiom 3. A recommendation x ∈ Θ satisfies the axiom of equal treatment of symmetric play-
ers for a global symmetry structure (I,T , α) if, whenever two players i and j are symmetric
then, xi(Ti) = xj (Tj ) whenever αi(Ti) = αj (Tj ), Ti ∈ Ti , Tj ∈ Tj .

If the consultant cannot distinguish between two player roles, then he must give equivalent
recommendations to those two player roles. The interpretation is similar to that behind equal
treatment of symmetric strategies. If two player roles are symmetric, there is no information in
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the payoff matrix or the observable, exogenous labels which allows to distinguish them. Hence,
when writing down a description of the game, there is an inherent randomness on the labels
that a given consultant will attach to each of those possible player roles. Hence, in writing a
recommendation, a consultant must necessarily treat them equally.

Definition 3.8. A recommendation x ∈ Θ is a rational symmetric recommendation with re-
spect to global symmetry structure (I,T , α) if it satisfies the axioms of rationality, equal treat-
ment of symmetric strategies and equal treatment of symmetric players.

Again, a recommendation satisfying all our axioms always exists.

Theorem 6. For every finite normal form game and every global symmetry structure, there exists
a rational symmetric recommendation.

Since a Nash equilibrium fulfilling equal treatment of symmetric strategies and players for a
global symmetry structure also fulfills those properties for a finer structure, it is enough to show
the result for T ∗. Rational symmetric recommendations for that particular structure are identical
to Nash’s [20] “symmetric equilibrium points”. Hence the result follows from Nash [20, Theo-
rem 2].12 For the sake of completeness, we include a short proof in Appendix A which builds
on the proof of Theorem 3. The only (minor) added difficulty is showing that symmetric play-
ers have symmetric best responses, given a profile which respects equal treatment of symmetric
strategies and players.

3.5. A definition of focal points

A minimal requirement for a strategy profile to be considered a focal point is that it is a
Nash equilibrium satisfying the symmetry restrictions inherent in the possibly framed game.
That is, a focal point must be a rational symmetric recommendation. In some cases this minimal
requirement suffices for the identification of a focal point. If a framed game has a unique rational
symmetric recommendation, then this strategy profile must be the focal point of the game. This
is e.g. the case for any unframed two-player matching game Mk , where the recommendation is
to randomize uniformly among all strategies. In such a case, consultants will advise in favor of
this unique recommendation, and actual play will then conform to it.

Typically, however, the set of rational symmetric recommendations is not a singleton. The
way these recommendations differ (which might be rather subtle) can be phrased in terms of
payoff matrices and labels alone. Hence, consultants can avoid mis-coordination by appealing
to a commonly known norm on how to describe and rank certain qualitative characteristics of
recommendations. We call this a meta-norm, because it is not a norm of behavior specific to any
particular game, but rather a general principle of how to choose among recommendations for all
games.

We do not want to argue that such a meta-norm is always in place, but rather that it could be
in place. If it is, actual play will conform to the rational symmetric recommendation picked by
this meta-norm. A meta-norm can be defined as a mapping assigning e.g. a real number to each

12 Note, however, that Theorem 3 does not follow from Nash’s result. The reason is that, by Proposition 1, the coarsest
global symmetry structure is finer than the coarsest pairwise symmetry structure, and, as Game 3 shows, it can be strictly
finer.
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strategy profile of the game, depending on all familiar aspects of the game. Hence, a meta-norm
defines a ranking which could be interpreted as salience.

A simple example in which a meta-norm is needed is the two-player game of pure coordi-
nation with two pure strategies, in which coordinating on one strategy provides a higher payoff
(to both players) than coordinating on the other strategy. In this case there are three rational
symmetric recommendations (the two pure Nash equilibria and the unique mixed one). A simple
meta-norm that has bite here is that of Pareto-dominance. If it were common knowledge that
players in such cases only consider playing rational symmetric recommendations that are Pareto-
undominated (among all such recommendations) then play in this game would indeed conform
to this prediction.

The same meta-norm has bite in the somewhat more subtle two-player matching game M3

with the following frame. Let the game be played twice in succession with perfect monitoring.
Suppose we are now in the second stage and that both players happened to play the same strategy
in the first stage. Thus, the frame in the second stage is such that two of three strategies (for both
players) are labeled “not yet played” and one (the same for both players) is labeled “played”.
Thus, in the second stage, the so framed game has three rational symmetric recommendations:
the “played” strategy for both players, randomizing uniformly among both “unplayed” strategies
for both players, and randomizing uniformly among all pure strategies for both players. The
meta-norm of Pareto-dominance is sufficient to identify a focal point, as the “played” equilibrium
provides higher payoff than the other two. Note that the focal point of the so framed game M3 is
very different from the focal point of the unframed game M3.

A more subtle meta-norm is needed in the two-player matching game M2, in which the two
strategies are labeled differently, say, “played” and “not yet played”. Pareto-dominance is not
sufficient to identify a focal point as two of the three rational symmetric recommendations pro-
vide exactly the same payoff (which is higher than that of the third one). Thus, the fact that one
strategy is labeled “played” must be used directly in the meta-norm. In fact it is assumed in Craw-
ford and Haller [10], who study repeated pure coordination games, that in such cases players will
choose the previously played strategy. They thus appeal, implicitly, to the meta-norm in which
among all Pareto-undominated recommendations, those involving previously played strategies
are chosen.13

To cover all possible cases a meta-norm would have to be rather intricate. In many cases,
however, a partially specified meta-norm, as e.g. Pareto-efficiency, will suffice. There are, how-
ever, many possible meta-norms one could consider. One could, for instance, base alternative
meta-norms on the concepts of risk dominance or payoff equity. Many other partially specified
meta-norms are possible. The step from a normative theory to a positive, descriptive one, would
require consensus as to what this meta-norm should be. Alternatively, one could develop an evo-
lutionary argument (as in e.g. Binmore and Samuelson [4]) where play evolves over time, so that
even though some games are only played once, there is sufficient time and incentive for players
to “find” a commonly known meta-norm.

Most examples of meta-norms belong to one of two classes. The first corresponds to meta-
norms as Pareto-efficiency or risk-dominance, which, among the rational recommendations
derived from the frame, select on the basis of payoffs alone. The second kind corresponds to
meta-norms which are based completely on the salience of the labels and not on the payoffs.

13 This was pointed out by Goyal and Janssen [13].
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For instance when players are asked to coordinate on either “heads” or “tails” it is well doc-
umented (e.g. in Schelling [24] and Mehta et al. [18,19]) that “heads” is generally considered
more salient.

In any case, meta-norms can be very intricate, and we do not expect that a unique meta-
norm has emerged which enables coordination on a single (and particular) Nash equilibrium
in all games. However, if we had a commonly known meta-norm in place, for a given game it
would pick up a particular Nash equilibrium, which would then be commonly and thus mutually
known (see Aumann and Brandenburger [1]) among players. Our point here is that such a very
intricate meta-norm covering all (framed) games could well emerge or be taught, and parts of
it are probably already in place. Given such a commonly known meta-norm, we can define the
concept of a focal point.

Definition 3.9. For a given game and frame, a rational symmetric recommendation which is
uniquely selected among all rational symmetric recommendations according to some meta-norm
is a focal point with respect to this meta-norm.

This definition has a normative character in two respects. First, we do not expect every player
to be able to immediately uncover all the symmetries (and asymmetries) of a game. If those
are uncovered, however, we believe they would immediately become a guide for actual play.
Second, we do not expect a universal meta-norm to be already in place. If such a meta-norm is
established for a family of games, however, it will act as a selection device. The result is a focal
point. For simple enough games, the approach will coincide with a more descriptive one, because
symmetries are easily uncovered and clear meta-norms are in place. For more general games,
our approach identifies the equilibria which should become focal points as players become more
sophisticated and universal conventions are developed.

If one is interested in how possibly boundedly rational people behave in framed games in labs
and the real world nowadays, one would have to model both the possible bounds to rationality
(as, for instance, in Blume and Gneezy [7]) and the lack of a commonly held meta-norm by intro-
ducing beliefs and types, leading to models of incomplete information. In this spirit Sugden [25]
proposes a model in which each strategy receives a different label according to some probability
distribution with some correlation among players due to a shared culture. Similarly, one could
also model uncertainty about which meta-norm is relevant as an incomplete information game.
Also Janssen [17] and Casajus [8, Section 5] investigate incomplete information games with their
variable universe matching games, which are based on the variable frame theory of Bacharach
[2,3].

4. Payoff transformations

In our study of symmetry concepts for games, we have implicitly adopted a cardinal approach,
in the sense that strategies can be told apart by the fact that they are associated to different
payoffs, and hence, one might argue, those quantities have a meaning in themselves. In other
words, payoffs are understood to have a commonly accepted meaning (among players) and can
be used to differentiate between strategies (as well as players). Some notions of efficiency and
most notions of equity rely on a cardinal interpretation of payoffs. Thus, the possible meta-
norms would change if payoffs cannot be given a cardinal interpretation. The various notions of
symmetry in this paper, however, are quite robust to interpreting payoffs more flexibly as just
one possible way of summarizing players’ preferences over outcomes.
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The first observation is that, as long as we restrict ourselves to strategy symmetry (i.e. fixing
players’ identities), adopting a cardinal approach is less restrictive than it might seem at first
glance. Consider a game Γ = [I, (Si, ui)i∈I ], and suppose we transform the payoffs of this game
while keeping the players’ preferences over randomized outcomes unchanged, i.e. using affine
increasing transformations. We obtain a transformed game Γ ′ = [I, (Si, vi)i∈I ], where vi(s) =
αi + βiui(s) for all s ∈ S and i ∈ I , for some αi,βi ∈R with βi > 0.

Since such payoff transformations only use the payoffs themselves as inputs and are injective,
strategy symmetries can be neither broken nor created. Further, since such transformations also
leave the best-response structure unchanged, it follows that every rational strategy-symmetric
recommendation of the original game is also a rational strategy-symmetric recommendation of
the transformed game and vice versa. We can collect these observations in the following result.

Proposition 4. Let games Γ and Γ ′ have the same player and strategy sets, and let the payoffs
of Γ ′ are derived from the payoffs of Γ through increasing affine transformations. Then, the sets
of (pairwise and global) strategy symmetry structures of Γ and Γ ′ are identical, and the sets of
rational strategy-symmetric recommendations (for a given pairwise or global strategy symmetry
structure) of Γ and Γ ′ coincide.

The above result implies that adding a requirement that consultants’ recommendations should
be invariant with respect to player-specific increasing affine transformations of payoffs (a la
Harsanyi and Selten [15]) is redundant, i.e. does not change the set of pairwise strategy symmetry
structures and their induced rational strategy-symmetric recommendations.14

Payoff transformations as above also keep unchanged the notion of Pareto-efficiency. Other
notions of efficiency (e.g. maximizing the sum of payoffs) and most notions of equity, are only
unchanged if the payoff transformations are the same for all players, which is not required in
the above proposition. Thus, while the symmetry structure might be unaffected by allowing such
payoff transformations, the meta-norm one might want to appeal to in order to choose among
recommendations might have to be different even if we allow only for such payoff transforma-
tions.

Consider now global symmetry structures, which incorporate player symmetry as well.
Strictly speaking, allowing for player-specific affine transformations does change global sym-
metry structures by changing player symmetries. Consider, for example, the following game
where payoffs are in monetary terms:

A2 B2

A1 40,3 0,0
B1 0,0 30,4

In the coarsest global symmetry structure for this game, players (and strategies) are not sym-
metric. Thus, all 3 Nash equilibria are feasible rational symmetric recommendations. Indeed, it
is likely that A1, A2 would be played if one took this game to an experimental lab. However,
if we allow for affine payoff transformations, the game can be transformed into the symmetric
Battle of the Sexes, Game 6. In the coarsest global symmetry structure of this game, the mixed
Nash equilibrium is the only feasible rational symmetric recommendation.

14 The set of strategy symmetry structures also remains unchanged if one allows for more general payoff transforma-
tions, as long as they are injective mappings.
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However, it can be argued that the player asymmetry in the game above arises because we
insist on a monetary interpretation of payoffs, and the difference between 40 for player 1 and
4 for player 2 could alternatively be captured by labels in a frame. That is, the previous global
symmetry structure can be recovered by labeling players in the symmetric Battle of the Sexes; it
is, however, not the coarsest one anymore. If one adopts this approach, we should consider the
players to be symmetric because they are symmetric in the symmetric Battle of the Sexes, which
is a transformation of the game above.15 This possibility could be easily accommodated into our
framework.

Following Harsanyi and Selten [15], as done e.g. in Casajus [8], one could go further
and require that two games with the same best-response structure should be played in the
same way. For instance, one might require invariance of solutions to transformations which
change payoffs differently depending on the strategy profile of the opponents, i.e. of the form
ũ(si |s−i ) = βi(s−i )u(si |s−i ) + αi(s−i ) with αi(s−i ), βi(s−i ) ∈ R. It would be possible to incor-
porate such a requirement into our framework. However, the resulting changes in the definition
of symmetry would lead us away from our objective.

To see the effect of allowing such payoff-transformations, consider the following game.

A B

A 3,3 −2,2
B 2,−2 −1,−1

This game can be transformed, by applying best-response-preserving transformations, into the
matching game M2. Hence the modified concept would have to declare both strategies symmet-
ric in the original coordination game. In effect, allowing for arbitrary best-response-preserving
transformations for a given game creates a large number of new symmetries and will be equiv-
alent to an application of our concept to a transformed (and, one might say, simplified) game.
However, this possibility in turn affects the possible meta-norms which one might use in a def-
inition of focal point, e.g. Pareto efficiency becomes a void concept as coordination games are
turned into matching games.

The examples in this section point out that introducing more sophisticated invariance re-
quirements is not inconsequential. However, doing so is nevertheless feasible in our theoretical
structure. For example, we could use Harsanyi and Selten’s [15] symmetries in place of our
Definition 3.1. Fix a game Γ and consider all (payoff) transformed games Γ v , where transfor-
mations keep the best-response structure unchanged. Call super-symmetry structure of Γ any
global symmetry structure of any such transformed game Γ v . This includes all global symmetry
structures of Γ itself. However, for many games there may well be additional super-symmetry
structures as illustrated, for instance, by the previous example. We, thus, obtain a larger lattice
of super-symmetry structures, which can be analyzed analogously to our global symmetry struc-
tures.

5. Conclusion

In this paper, we take the position that the concept of focal point reflects two different consid-
erations. The first one is symmetry, and boils down to the observation that strategies or players

15 This approach was suggested by a referee.
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which cannot be told apart must be treated equally. The second one is the necessity of a meta-
norm.

The meaning of symmetry can be readily formalized. Building on concepts introduced by
Nash [20], Harsanyi and Selten [15], and Crawford and Haller [10], we have shown that, given
a game, there might be many alternative, internally consistent ways to describe symmetries of
strategies and players. Far from being abstract objects, we show that each of this symmetry
structures corresponds to a frame (or a family of equivalent frames), that is, a set of commonly
observed labelings of strategies (and players) which provide additional information about their
identities. The set of symmetry structures displays a very convenient mathematical structure
(a lattice), and each symmetry structure can be viewed as a subgroup of a certain group of game
automorphisms (symmetries in the sense of Nash [20]). The coarsest such structure corresponds
to the unframed game, that is, it captures all symmetries derived from the payoff matrix of the
game. The lattice structure of the set of symmetry structures provides a rich framework where
the questions posed in both the theoretical and the experimental literature on focal points can be
developed and, we believe, better understood.

We deal with two different concepts of symmetry. The first one, based on Crawford and Haller
[10], builds on pairwise comparisons of strategies. The second, closer to Nash [20], builds on
global symmetries of the game. The pairwise concept is simpler to apply and delivers most of the
intuitions we want to capture. It is, however, unsatisfactory for complex games and the proper
modeling of player symmetry. Indeed we show that the predictions delivered with the global
version might differ from the ones arrived at with the pairwise one.

We show that, given a symmetry structure (pairwise or global), there are always possible ra-
tional symmetric recommendations, which are Nash equilibria treating symmetric strategies and
symmetric players equally. As more and more information about a game is collected, the frame
becomes more detailed, the information structure becomes finer, and the set of rational symmet-
ric recommendations grows, enabling more and more equilibria. Hence, focal points cannot, in
general, be defined through symmetry alone, because the attempt to provide more information
(through frames, histories, etc.) will result in an enlarged set of possible predictions. As a conse-
quence, a meta-norm (e.g. Pareto-efficiency, risk-dominance, or equity) is necessary to explain
why certain outcomes might be seen as focal.

Appendix A. Proofs

A.1. Some concepts from lattice theory

We will rely on the following concepts and elementary facts from Lattice Theory. We refer
the reader to Davey and Priestley [11] or Grätzer [14] for details.

A set X endowed with a partial order � is a lattice if both the meet x ∧x′ = inf{x, x′} (i.e. the
greatest lower bound) and the join x ∨x′ = sup{x, x′} (i.e. the least upper bound) exist, for every
x, x′ ∈ X. A lattice is complete if both the meet

∧
S = infS and the join

∨
S = supS exist, for

every subset S ⊆ X. If X is finite, joins and meets of subsets can be obtained by mere iteration.

Fact A1. Any nonempty, finite lattice is complete.

An element x of a partially ordered set (X,�) is a top (resp. bottom) or greatest (resp.
smallest) element if there exists no x′ ∈ X with x � x′ (resp. x′ � x) and x �= x′. If a lattice is
complete, the top and the bottom are given by supX and infX, respectively.
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Fact A2. Any nonempty, complete lattice has a top and a bottom.

A partially ordered set such that any two elements have a join (but not necessarily a meet) is
called a join semilattice. In the finite case, as long as a bottom is present, existence of meets is
guaranteed. An analogous result is true for the dual concept of meet semilattice.

Fact A3. Any finite join semilattice with a bottom (and any finite meet semilattice with a top) is
actually a lattice.

A.2. Proofs from Section 2

The following lemma gives a useful characterization of the join of two partitions.16

Lemma A1. Let Si be a finite set.

(a) Let Ti and T ′
i be partitions of Si . If T ′

i is coarser than Ti , then every set Ti ∈ Ti can be
written as a (finite) disjoint union of the sets which form T ′

i .
(b) The finest partition coarser than two partitions Ti and T ′

i of Si is given by the equivalence
classes of the following relation. Two elements si, s

′
i ∈ Si are related if and only if there exists

a finite sequence of elements of Si , s0
i = si , s

1
i , s2

i , . . . , sk
i = s′

i such that st
i and st+1

i are in
the same symmetry class of either T ′

i or T ′′
i , for all t = 0, . . . , k − 1.

Proof. Part (a) is straightforward. To see part (b), first note that the relation given in the statement
is a binary equivalence relation and thus its equivalence classes define a partition, which we
denote (T ∨ T ′)i . By construction, this partition is coarser than both Ti and T ′

i . It remains to
show that it is the finest such partition.

Let T ′′
i be a partition coarser than both Ti and T ′

i . Let T ′′
i be any of the sets in T ′′

i . By part (a),
there exist Ti,1, . . . , Ti,� ∈ Ti and T ′

i,1, . . . , Ti,�′ ∈ T ′
i such that

T ′′
i =

�⋃
r=1

Ti,r =
�′⋃

r=1

T ′
i,r .

A direct consequence is that no element of T ′′
i can be related through the relation above to any

element outside of T ′′
i . This proves that (T ∨ T ′)i is finer than T ′′

i . �
Proof of Theorem 1. Consider two symmetry structures T ′ and T ′′. We will first show that the
collection T = {T ′

i ∨ T ′′
i }i∈I is also a symmetry structure.

Let Ti ∈ Ti , and let si , s
′
i ∈ Ti . We need to show that there is a set of renamings ρj for all

j �= i such that ρj (Tj ) = Tj for all Tj ∈ Tj for all j �= i such that u(si |s−i ) = u(s′
i |ρ−i (s−i ))

for all s−i ∈ S−i . First note that the set of renamings with ρj (Tj ) = Tj for all Tj ∈ Tj for all
j �= i includes all renamings with the property ρj (T

′
j ) = T ′

j for all T ′
j ∈ T ′

j for all j �= i as well
as ρj (T

′′
j ) = T ′′

j for all T ′′
j ∈ T ′′

j for all j �= i. This is due to the fact that, by Lemma A1(a), each

16 We provide this technical lemma and its proof for completeness. It is well known in abstract algebra that the set of
partitions of a set, finite or not, forms a lattice, which is isomorphic to a certain lattice of permutation groups. For the
original proofs see Birkhoff [5] and Ore [21]. See also Roman [22] for a more recent exposition.
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Tj ∈ Tj can be written as a finite union of sets T ′
j ∈ T ′

j as well as of sets T ′′
j ∈ T ′′

j , as T is coarser
than both T ′ and T ′′.

Suppose that there is a T ′ ∈ T ′ or a T ′′ ∈ T ′′ such that si , s
′
i are either both in T ′

i or both in T ′′
i

or both. Let us w.l.o.g. suppose si , s
′
i are both in T ′

i . By definition of symmetry structure, there is
a renaming ρj such that ρj (T

′
j ) = T ′

j for all T ′
j ∈ T ′

j for all j �= i. But by the above observation
this renaming then also satisfies ρj (Tj ) = Tj for all Tj ∈ Tj for all j �= i.

Now suppose that si and s′
i are not in the same symmetry class of either T ′ or T ′′. By

Lemma A1(b), there exist s0
i = si , s

1
i , s2

i , . . . , sk
i = s′

i such that st
i and st+1

i are in the same sym-
metry class of either T ′

i or T ′′
i , for all t = 0, . . . , k − 1. The conclusion follows from an iteration

of the previous argument.
By construction, T is the finest symmetry structure which is coarser than both T ′ and T ′′,

i.e. their join. Thus any two elements of the (finite) set of symmetry structures of a finite normal
form game have a join. Thus symmetry structures form a join semilattice with a bottom (the
trivial symmetry structure), and, by Fact A3, a lattice. �
Proof of Corollary 1. The (finite) set of symmetry structures is nonempty since the trivial sym-
metry structure exists, and forms a lattice by Theorem 1. The result follows from Facts A1
and A2. �
Proof of Theorem 3. Let βi : Θ−i → Θ denote the (mixed) best-reply correspondence of
player i, and β : Θ → Θ the product correspondence given by β(x) =×i∈I

βi(x−i ). We know
that the βi , and hence β , are nonempty and convex-valued, and upper hemicontinuous. Hence,
Kakutani’s theorem implies existence of fixed points of β , which are (mixed) Nash equilibria
of Γ . We have to show that at least one of them fulfills strategy symmetry.

Let T denote a symmetry structure for Γ . For each player i ∈ I , let Θ̃i be the set of mixed
strategies xi such that xi(si) = xi(s

′
i ) whenever si , s′

i belong the same symmetry class in Ti .
Notice that Θ̃i is convex. Define β̃i : Θ̃−i → Θ̃i by β̃i (x−i ) = βi(x−i ) ∩ Θ̃i . Thus β̃i is convex-
valued by definition, and upper hemicontinuous because it is the intersection of two upper
hemicontinuous correspondences.

To see that it is nonempty-valued, we have to show that for any x−i ∈ Θ̃−i , there exists a best
response of player i which gives the same weight to any two symmetric strategies. Fix x−i ∈ Θ̃−i .
For each j �= i and each Tj ∈ Tj , there exists y(Tj ) � 0 such that xj (sj ) = y(Tj ) for all sj ∈ Tj .
Let si , s

′
i be symmetric. Then there exist renamings ρj of Sj (for all j �= i) such that ρj (Tj ) = Tj

for all Tj ∈ Tj and u(si |s−i ) = u(s′
i |ρ−i (s−i )) for all s−i ∈ S−i . Then, making extensive use of

the −i notation for product spaces,

ui(si |x−i ) =
∑

s−i∈S−i

(∏
j �=i

xj (sj )

)
ui(si |s−i ) =

∑
T−i∈T−i

(∏
j �=i

y(Tj )

) ∑
s−i∈T−i

ui(si |s−i )

=
∑

s−i∈S−i

(∏
j �=i

xj

(
ρj (sj )

))
ui

(
s′
i

∣∣ρ−i (s−i )
) = ui

(
s′
i

∣∣x−i

)
where the third equality follows from the definition of symmetric strategies if we recall that the
renamings ρj only permute strategies within symmetry classes Tj ; thus if xj (sj ) = y(Tj ), then
xj (ρj (sj )) = y(Tj ). It follows that si and s′

i yield the same payoff against x−i , thus either both
are or neither is a best response to x−i .

Consider now a pure best response to x−i , si . Construct a mixed strategy xi by giving identical
weight to all strategies in the symmetry class of si . Since xi is a convex combination of best
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responses, we have that xi ∈ β(x−i ). This proves the nonemptyness of β̃i (x−i ) for all i. Hence,
β̃ satisfies nonemptyness, convex-valuedness, upper hemicontinuity, and, hence, by Kakutani’s
fixed point theorem there is a fixed point. Since a fixed point of β̃ is also a fixed point of β , it is
a Nash equilibrium. �
A.3. Some concepts from group theory

We will rely on the following concepts and elementary facts from Group Theory. We refer the
reader to Rose [23] or Hungerford [16] for details.

A group is a nonempty set G endowed with a binary, internal operation “·” in G satisfying
the associative property ((g1g2)g3 = g1(g2g3) for all g1, g2, g3 ∈ G), with an identity element
(1G ∈ G such that 1Gg = g1G = g for all g ∈ G) and such that every element g ∈ G has an
inverse g−1 ∈ G according to this operation (g−1g = gg−1 = 1G). A subgroup of G is a subset
H ⊆ G such that 1G ∈ H and such that it is a group with the restriction of the binary operation
of G to H .

Fact A4. A nonempty subset H of a group G is a subgroup if and only if g1g
−1
2 ∈ H for every

g1, g2 ∈ H .

The set of groups of a subgroup have a lattice structure. The meet is simple.

Fact A5. The intersection of two subgroups of a group is also a subgroup.

The join is more involved. The union of two subgroups is in general not a subgroup. Given
a subset (not necessarily a subgroup) H of a group G, the subgroup generated by H , denoted
〈H 〉, is defined as the smallest subgroup of G containing H . Thus the join of two subgroups H1

and H2 is 〈H1 ∪ H2〉.

Fact A6. Given two subgroups H1, H2 of a group G, the subgroup generated by H1 and H2 is
the set of all finite products g1g2g3 · · ·gr where g� ∈ H1 ∪ H2 for all � = 1, . . . , r .

A.4. Proofs from Section 3

We will prove Theorem 4 through a series of intermediate results. First note that the compo-
sition of symmetries (defined in the natural way) is a symmetry, and the inverse (σ−1, τ−1) of
a symmetry (σ, τ ) is also a symmetry, where τ−1 = {τ−1

i }i∈I . Further, the collection of identity
mappings on I and Si form a trivial symmetry. In summary, the set of all symmetries, which we
will denote by Sym(Γ ), forms a group with the operation given by symmetry composition.

Let Sym(I,T , α) be the set of all symmetries which agree with a global symmetry struc-
ture (I,T , α). If there is a unique compatible identification, we write simply Sym(I,T ). Let
(I0,T 0) denote the trivial global symmetry structure. Then Sym(I0,T 0) is the subgroup formed
by the identity symmetry only.

Lemma A2. Given a global symmetry structure (I,T , α), the set Sym(I,T , α) is a subgroup of
Sym(Γ ).



256 C. Alós-Ferrer, C. Kuzmics / Journal of Economic Theory 148 (2013) 226–258
Proof. It is enough to observe that the composition of two symmetries agreeing with (I,T , α)

also agree with (I,T , α), and the inverse of a symmetry agreeing with (I,T , α) also agrees with
(I,T , α). The proof follows then from Fact A4.17 �

The following property follows directly from the definition of Sym(·).

Lemma A3. Let (I ′,T ′, α′) and (I ′′,T ′′, α′′) be two global symmetry structures of a game Γ .
Then (I ′,T ′, α′) is coarser than (I ′′,T ′′, α′′) if and only if Sym(I ′′,T ′′, α′′) is a subgroup of
Sym(I ′,T ′, α′).

Let Φ be an arbitrary subgroup of Sym(Γ ). Let I(Φ) be the partition of I given by the
binary equivalence relation where two players i and j are related if and only if there exists
(σ, τ ) ∈ Φ such that σ(i) = j . For each player i, Let Ti be the partition of Si given by the binary
equivalence relation where two strategies si , s′

i are related if and only if there exists (σ, τ ) ∈ Φ

such that σ(i) = i and τi(si) = s′
i . That these relations are indeed binary equivalence relations

follows from the fact that Φ is a subgroup.

Proposition A1. For each subgroup Φ of Sym(Γ ), there exists a unique player identification
α(Φ) such that the collection (I(Φ),T (Φ),α(Φ)) with T (Φ) = {Ti (Φ)}i∈I is a global symme-
try structure. Further, for each global symmetry structure (I,T , α), if Φ = Sym(I,T , α) then
(I(Φ),T (Φ),α(Φ)) = (I,T , α).

Proof. All we have to show is that there exists a suitable player identification. This is equiva-
lent18 to the statement that, for any two symmetries (σ ′, τ ′), (σ ′′, τ ′′) ∈ Φ , whenever two players
i, j are such that σ ′(i) = j and σ ′′(i) = j , then for each Ti ∈ Ti , τ ′

i (Ti) = τ ′′
i (Ti). Suppose not,

i.e. τ ′
i (Ti) = T ′

j �= T ′′
j = τ ′′

i (Ti). Since Φ is a subgroup, one has (σ ′, τ ′) ◦ (σ ′′, τ ′′)−1 ∈ Φ . But
this symmetry maps player j to itself and symmetry class T ′′

j to T ′
j , a contradiction with the

definition of Tj . �
In this sense, a global symmetry structure can be identified with its associated group of sym-

metries.19

Let Φ be an arbitrary subgroup of Sym(Γ ). It is immediate to see that Φ is a subgroup of
Sym(I(Φ),T (Φ),α(Φ)), where again � denotes the relation “to be a subgroup of”. However,
equality needs not hold in general.20

17 If we had considered the set of all symmetries agreeing with a global symmetry structure but ignored player identifi-
cations (i.e. dropped the requirement α(Tk) = α(τk(Tk))), this result would not be true.
18 The sufficiency follows because the composition of symmetries in the subgroup Φ is also in Φ .
19 There is an interesting connection with Blume [6], who uses a group-theoretic approach to formalize partial lan-
guages, which are defined as subgroups of permutations of abstract labels, which could e.g. correspond to the labels used
in a frame. Blume [6] concentrates on the issue of how partial languages facilitate coordination for repeated matching
games (following Crawford and Haller [10]), and how fast learning occurs.
20 An example can be constructed as follows. Take the game M3 with strategies A, B , C for both players. The alter-
nating group is generated by the permutation A → B → C. Using permutations in this group only one can construct a
subgroup of Sym(Γ ) which generates the coarsest global symmetry structure, i.e. all strategies are declared symmetric.
However, this is a strict subgroup of Sym(Γ ).
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We are now ready to prove Theorem 4.

Proof of Theorem 4. The set of subgroups of a group is a lattice due to Facts A5 and A6.
By Fact A3, it is enough to prove that any two global symmetry structures have a meet.
Let (I ′,T ′, α′) and (I ′′,T ′′, α′′) be two global symmetry structures of a game Γ . Let Φ ′ =
Sym(I ′,T ′, α′) and Φ ′′ = Sym(I ′′,T ′′, α′′), and consider the subgroup Φ ′ ∩ Φ ′′. Construct the
global symmetry structure (I∗,T ∗, α∗) from Φ ′ ∩ Φ ′′ as in Proposition A1. It follows from
construction that this structure is finer than both (I ′,T ′, α′) and (I ′′,T ′′, α′′).

To see that (I∗,T ∗, α∗) is the meet of the two original structures, let (I,T , α) be finer than
(I ′,T ′, α′) and (I ′′,T ′′, α′′). Let Φ = Sym(I,T , α). It follows that Φ is a subgroup of Φ ′ ∩ Φ ′′,
which in turn is a subgroup of Φ∗ = Sym(I∗,T ∗, α∗). By Proposition A1, (I,T , α) is finer than
(I∗,T ∗, α∗). �

Although we skip the details here, Fact A6 provides us with an explicitly computable con-
struction of the join of two global symmetry structures (I ′,T ′, α′) and (I ′′,T ′′, α′′). In the join,
two players are declared symmetric if and only if σ(i) = j in a symmetry (σ, τ ) which can be
written as the product of symmetries which agree with either (I ′,T ′, α′) and (I ′′,T ′′, α′′). The
construction for strategies is analogous.

We now turn to our second existence result. The proof is only sketched and given for com-
pleteness, because the result also follows from Nash [20, Theorem 2].

Proof of Theorem 6. Let (I,T , α) denote the symmetry structure. Define β̃i as in the proof of
Theorem 3, with the obvious change that symmetry classes belong to a global symmetry structure
and not a pairwise one. Hence it is a convex-valued, upper-hemicontinuous correspondence.

Let Θ̂ be the subset of
∏

i∈I Θ̃i such that, whenever two players i, j are symmetric, xi(si) =
xj (sj ) for any si ∈ Ti ∈ Ti , sj ∈ Tj ∈ Tj with αi(Ti) = αj (Tj ). Let yi be a best response to
x ∈ Θ̂ . By definition of player symmetry, defining yj as just specified for any player j which is
symmetric with i yields a best response for player j . Thus we can define β̂(y) = β̃(y) ∩ Θ̂ and,
since Θ̂ is convex, β̂ is convex- and upper hemicontinuous.

It remains to show that β̂ is nonempty-valued, that is, given x ∈ Θ̂ , every player i has a
best response which gives the same weight to any two symmetric strategies. This follows as
in the proof of Theorem 3, the only change being that the symmetry linking two symmetric
strategies might call for a permutation among symmetric players. As argued above, symmetric
players always have symmetric best responses against profiles in Θ̂ , and we conclude that β̂ is
nonempty-valued. Hence a fixed point exists. �
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