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Abstract. For equilibrium-constrained optimization problems sub-
ject to nonlinear state equations, the property of directional dif-
ferentiability with respect to a parameter is studied. An abstract
class of parameter dependent shape optimization problems is in-
vestigated with penalty constraints linked to variational inequali-
ties. Based on the Lagrange approach, on smooth penalties due to
Lavrentiev regularization, and on adjoint operators, a shape deriv-
ative is obtained. The explicit formula provides a descent direction
for the gradient algorithm identifying the shape of the breaking-line
from a boundary measurement. A numerical example is presented
for a nonlinear Poisson problem modeling Barenblatt’s surface en-
ergies and non-penetrating cracks.

1. Introduction

In this paper we prove a directional derivative of parameter-dependent
objective functions for a class of nonlinear equilibrium constraints. In
particular, the penalty constraint linked to variational inequalities (VI)
is investigated within Lavrentiev’s regularization. The problem de-
scribes the identification of a breaking line with contact and cohesion
in the frame of quasi-brittle fracture and destructive physical analysis
(DPA).
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The research belongs to the fields of optimal control, shape and topol-
ogy optimization [4, 34]. For optimal control of VI we cite [1, 31],
for quasi- and hemi-VI see [11, 32, 36], and for optimal control of
cracks we refer to [13, 22, 26]. In order to find an optimal shape, we
generalize the optimization approach for semi-linear equilibrium equa-
tions from [7, 20] by adopting results on directional differentiability of
Lagrangians. The main difficulty here concerns nonlinearity of state
equations. In our earlier works, the shape derivative was obtained for
free-boundary problems of Bernoulli type [8], nonlinear crack problems
[17, 18] and Barenblatt’s cracks in plane setting [20], inverse problems
of shape identification [19] and breaking-line identification [6], for the
Stokes flow [23] and the Stokes–Forchheimer flow [7].

The classical theory of state-constrained optimization problems deals
with linear equations, typically, by partial differential equations [27,
35]. In our consideration we study state constraints, given by vari-
ational inequalities and their penalization. The challenge consists in
the fact that the latter are not Fréchet differentiable (see [28, 33]). As
a consequence, the directional derivative of Lagrangians and related
shape differentiability fails. We suggest a novel approximation for the
shape derivative along specifically linearized directions and based on
generalized adjoint techniques (see [29, 30]). In particular cases, our
approach is closely related to the method of averaged adjoints devel-
oped by [24].

Our research addresses the following features:

(i) Optimization subject to nonlinear and nonsmooth equilibrium con-
straints. Within the Lagrange multiplier approach (see [12]), in Sec-
tion 2 we consider a convex objective function J with a nonlinear
equation as constraint. The linearized Lagrangian L is well-posed when
using the associated adjoint operator provided in Lemma 2.2.

(ii) Penalty optimization linked to variational inequalities (VI). In or-
der to treat VI, in Section 3 we extend L to a penalized Lagrangian Lε

for ε > 0 (see Lemma 3.2), thus reducing the variational inequalities to
case (i). Using adjoints we derive necessary and sufficient optimality
conditions for a saddle-point problem providing the optimal value l(ε).

(iii) Directional differentiability. We consider optimal value objective
and Lagrange functions j(ε, s) = l(ε, s) depending on a parameter s >
0. Following the concepts in [3, 4], the directional derivative ∂+j(0) at
ε = 0 is obtained in Theorem 2.1, and in Theorem 3.1 it is extended
to ∂+j(ε, 0) by using a differentiable Lavrentiev’s ε-regularization [25].

(iv) Limit as ε → 0+. Taking the limit as the penalty parameter ε →
0+, in Theorem 3.2 we derive the reference variational inequality, its
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adjoint equation, as well as primal and adjoint Lagrange multipliers
for inequality constraints. However, a limit directional derivative fails
since the VIs are not differentiable.

(v) Shape derivative. In Section 4 we introduce states depending on a
family of geometries Ωt parameterized by t. The diffeomorphic pertur-
bations Ωt+s are defined by a kinematic velocity Λ (see e.g. [9, 21]).
They are used to characterize the shape derivative using the bijection
property of the function spaces V (Ωt+s) 7→ V (Ωt).

(vi) Application to non-penetrating Barenblatt’s cracks. We apply shape
perturbations to the nonlinear crack problem (4.11) under non-penetra-
tion [14, 15] in the anti-plane setting (see [10]). Beyond the classic Grif-
fith’s brittle fracture, Barenblatt’s cohesion (see [2, 16]) allows crack
faces to close smoothly and determines a-priori unknown cracks by
those points where opening occurs along a breaking line Σt.

(vii) Hadamard formula and descent directions. In Theorem 4.1 we
specify the shape derivative for the nonlinear Poisson problem de-
scribed in (vi), and express it by a Hadamard formula over the moving
boundary in Theorem 4.2. This formula provides kinematic velocities
Λ for a descent direction ∂+j(ε, 0) < 0 within a gradient method.

(viii) Identification of breaking lines. Finally, in Section 5 we present a
numerical simulation of the gradient descent algorithm for the inverse
problem of identification of the breaking line Σt, which minimizes the
objective J of least-square misfit from a boundary observation. We
report that the faces need to be open for identification within DPA.

2. Directional differentiability of Lagrangians for
equilibrium constraints

In separable Banach spaces V and X, let a linear operator M : V 7→
X map the space of states u ∈ V to observations z ∈ X. We consider
an abstract objective function dependent on a positive parameter s ∈
I := [0, s0), s0 > 0:

(2.1) J (s, z) : I ×X 7→ R.

Next we introduce our state constraint. Let the continuous function
E(s, u) : I × V 7→ R be the energy functional. For every fixed s we
assume that its is differentiable, i.e.

(E1) E possesses the Gateaux derivative E ′(s, u) ∈ V ⋆ such that

⟨E ′(s, u), v⟩ = lim
r→0

E(s, u+ rv)− E(s, u)
r

for u, v ∈ V , s ∈ I.
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We define the reference state as a solution u0 ∈ V at s = 0 to the
equilibrium equation expressed in the variational form:

(2.2) ⟨E ′(0, u0), v⟩ = 0 for all v ∈ V .

Here and in what follows the brackets ⟨ · , · ⟩ stands for the duality
pairing between V and its dual space V ⋆. The variational equation
(2.2) constitutes the optimality condition for the minimum

(2.3) E(0, u0) = min
u∈V

E(0, u).

Lemma 2.1. Let assumption (E1) and the following hold:

(E2) E ′ at s = 0 is coercive: there exist a > 0 and f ∈ V ⋆ such that

⟨E ′(0, u), u⟩ ≥ a∥u∥2V − ⟨f, u⟩ for u ∈ V ;

(E3) [u 7→ E ′(0, u)] : V 7→ V ⋆ is weak-to-weak continuous: if uk ⇀ u0
weakly in V as k → ∞, then E ′(0, uk)⇀ E ′(0, u0) ⋆-weakly in V ⋆.

Then there exists a solution u0 ∈ V to (2.2).

Proof. We introduce a Galerkin approximation of (2.2) by nonlinear
equations in subspaces V n ⊂ V of finite dimension n ∈ N as follows

⟨E ′(0, un), vn⟩ = 0 for all vn ∈ V n.

Since the strong and weak convergences coincide in finite-dimensional
spaces, under the coercivity and continuity assumptions (E2) and (E3)
solutions un ∈ V n exist according to the Brouwer fixed point theorem,
see e.g. [5]. The solutions are uniformly bounded in V due to (E2).
Hence there exists a weakly convergent subsequence unk and an accu-
mulation point u0 ∈ V . Taking the limit as nk → ∞ due to (E3) the
assertion of the theorem follows. □

Induced by the state equation (2.2), we have the optimal value

(2.4) j(0) = J (0,Mu0) for u0 ∈ V solving E ′(0, u0) = 0.

Our aim is to extend the state-constrained optimization (2.4) to a well-
posed optimal value objective function j : I ⊂ R 7→ R in such a way
that it has a directional derivative at s = 0:

(2.5) ∂+j(0) = lim
s→0+

j(s)− j(0)

s
(one sided derivative).

Further we linearize the mapping u 7→ E ′ around the reference so-
lution u0 to (2.2) and use a Lagrange method [12]. For this task we
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employ for fixed (s, u0) ∈ I × V an ‘associated to adjoint’ linear opera-
tor (E ′)⋆(s, u0) ∈ L (V, V ⋆), which is defined by means of the Lagrange
identity (see [30, Chapter 1]):

(2.6) ⟨(E ′)⋆(s, u0)v, u0⟩ = ⟨E ′(s, u0)− E ′(s, 0), v⟩ for v ∈ V , s ∈ I.

Lemma 2.2. If the following assumption holds:

(E⋆1) the second Gateaux derivative E ′′(s, ru0) ∈ L (V, V ⋆) exists:

⟨E ′′(s, ru0)w, v⟩ = lim
ξ→0

〈E ′(s, ru0 + ξw)− E ′(s, ru0)

ξ
, v
〉
, v, w ∈ V ,

for s ∈ I, and r 7→ E ′′(s, ru0) is continuous for r ∈ [0, 1],

then an associated to adjoint operator in (2.6) is given by

(2.7) ⟨(E ′)⋆(s, u0)v, w⟩ :=
∫ 1

0

⟨E ′′(s, ru0)w, v⟩ dr.

Proof. From the Newton–Leibniz axiom we have

(2.8) ⟨E ′(s, u0), v⟩ = ⟨E ′(s, 0), v⟩+
∫ 1

0

⟨E ′′(s, ru0)u0, v⟩ dr.

Inserting w = u0 into (2.7) and using (2.8) implies (2.6). □

Based on Lemma 2.2, a linearized Lagrange function L : I×V 3 7→ R
is well defined for u, v ∈ V as follows

(2.9) L(s, u0, u, v) := J (s,Mu)− ⟨(E ′)⋆(s, u0)v, u⟩ − ⟨E ′(s, 0), v⟩.
For the Lagrangian L we consider the saddle-point (minimax) problem:

(2.10) L(s, u0, us, v) ≤ L(s, u0, us, vs) ≤ L(s, u0, u, vs)
for all (u, v) ∈ V 2. Following [3], we introduce the optimal values:

ls := sup
v∈V

inf
u∈V

L(s, u0, u, v) ≤ inf
u∈V

sup
v∈V

L(s, u0, u, v) =: ls

and the corresponding solution sets:

Ks := {u ∈ V | sup
v∈V

L(s, u0, u, v) = ls},(2.11)

Ks := {v ∈ V | inf
u∈V

L(s, u0, u, v) = ls},

which determine a multi-valued function [s ⇒ Ks × Ks] : I ⇒ V 2.
Later we shall prove that these sets are not empty.

Lemma 2.3. Let (E1)–(E3), (E⋆1) and the following assumptions hold

(J1) J possesses a Gateaux derivative J ′(s, z) ∈ X⋆ such that

⟨J ′(s, z), ξ⟩X = lim
r→0

J (s, z + rξ)− J (s, z)

r
for z, ξ ∈ X, s ∈ I,
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where ⟨ · , · ⟩X is the duality pairing between X and its dual space X⋆;

(J2) the objective functional is convex:

⟨J ′(s, ξ), z − ξ⟩X ≤ J (s, z)− J (s, ξ) for z, ξ ∈ X, s ∈ I;

(E⋆2) the associated to adjoint operator is symmetric:

⟨(E ′)⋆(s, u0)v, u⟩ = ⟨(E ′)⋆(s, u0)u, v⟩ for u, v ∈ V , s ∈ I;

(E⋆3) (E ′)⋆(s, u0) is coercive uniformly with respect to s: there exist
a⋆ > 0 and f ⋆ ∈ V ⋆ such that

⟨(E ′)⋆(s, u0)u, u⟩ ≥ a⋆∥u∥2V − ⟨f ⋆, u⟩ for u ∈ V , s ∈ I.

Then for every s ∈ I there exists a state us ∈ V solving the equation:

(2.12) ⟨(E ′)⋆(s, u0)v, us⟩+ ⟨E ′(s, 0), v⟩ = 0 for all v ∈ V ,

and an adjoint state vs ∈ V satisfying the adjoint equation:

(2.13) ⟨(E ′)⋆(s, u0)vs, u⟩ = ⟨J ′(s,Mus),Mu⟩X for all u ∈ V .

The pair (us, vs) ∈ Ks ×Ks is a saddle point satisfying

(2.14) l(s) := ls = L(s, u0, us, vs) = ls, s ∈ I.

If f ⋆ = 0 in (E⋆3), then the saddle-point is unique.

The proof of Lemma 2.3 is given in Appendix A.
We note that u0 from Lemma (2.1) is a solution to the s-dependent

equation (2.12) at s = 0. The latter also coincides with the reference
equation (2.2) due to the Lagrange identity (2.6).

The next lemma establishes a sequential semi-continuity property for
the solution set Ks ×Ks at s→ 0+.

Lemma 2.4. Let (E1)–(E3), (E⋆1)–(E⋆3), (J1), (J2) and the follow-
ing assumptions hold true:

(E4) E ′(s, 0) is bounded: there exist a > 0 such that

∥E ′(s, 0)∥V ⋆ ≤ a for s ∈ I;

(E5) s 7→ E ′(s, 0) is continuous from the right at u = 0 as s→ 0+;

(J3) J ′(s,Mus) on solutions is bounded: there exist aJ > 0 such that

∥J ′(s,Mus)∥X⋆ ≤ aJ ∥us∥V for us ∈ Ks, s ∈ I;

(J4) s 7→ J ′(s,Mus) on solutions us ∈ Ks is continuous as s→ 0+;

(E⋆4) (E ′)⋆(s, u0) is bounded: there exist a⋆ > 0 such that

∥(E ′)⋆(s, u0)∥ ≤ a⋆ for s ∈ I;
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(E⋆5) s 7→ (E ′)⋆(s, u0) is continuous as s→ 0+;

Then there exist sk → 0+, a subsequence of saddle points (usk , vsk) ∈
Ksk ×Ksk and (u0, v0) ∈ K0 ×K0 such that

(2.15) (usk , vsk) → (u0, v0) strongly in V 2 as k → ∞.

The proof of Lemma 2.4 is technical and is presented in Appen-
dix B. In the last lemma of this section directional differentiability of
Lagrangians [3, 4] is recalled.

Lemma 2.5. Let the set of saddle points (us, vs) ∈ Ks × Ks satis-
fying (2.14) be nonempty for each s ∈ I; assume that a subsequence
(usk , vsk) ∈ Ksk ×Ksk and an accumulation point (u0, v0) ∈ K0 ×K0

exist satisfying strong convergence (2.15) as sk → 0+. If the following
holds:

(L1) There exists a partial derivative ∂L/∂s : I × V 3 7→ R of the
Lagrangian L with respect to the first argument at r ∈ I such that

lim inf
r,sk→0+

∂L
∂s

(r, u0, usk , v0) ≥
∂L
∂s

(0, u0, u0, v0) for all v0 ∈ K0,

lim sup
r,sk→0+

∂L
∂s

(r, u0, u0, vsk) ≤
∂L
∂s

(0, u0, u0, v0) for all u0 ∈ K0,

then for the optimal value objective function j : I 7→ R defined as

(2.16) j(s) := J (s,Mus) for us ∈ V solving (2.12),

the directional derivative ∂+j(0) in (2.5) exists. It is equal to a direc-
tional derivative ∂+l(0) for the optimal value Lagrangian l : I 7→ R
from (2.14) and expressed by the partial derivative ∂L/∂s as follows

(2.17) ∂+j(0) = ∂+l(0) := lim
sk→0+

l(sk)− l(0)

sk
=
∂L
∂s

(0, u0, u0, v0).

The proof of Lemma 2.5 is standard and given in Appendix C.
Based on Lemmas 2.1–2.5 we state the main theorem of this section.

Theorem 2.1. Under assumptions (E1)–(E5), (J1)–(J4), (E⋆1)–(E⋆5),
(L1) there exists the directional derivative ∂+j(0) = ∂+l(0) in (2.17),
where (u0, v0) ∈ K0 ×K0 ∈ V 2 is a saddle point solving the reference
variational equation (2.2) and the adjoint (2.13) at s = 0:

(2.18) ⟨(E ′)⋆(0, u0)v0, u⟩ = ⟨J ′(0,Mu0),Mu⟩X for all u ∈ V .

Proof. From assumptions (E1)–(E3), (J1), (J2), (E⋆1)–(E⋆3) and Lem-
mas 2.1–2.3 it follows that the set of saddle points (us, vs) ∈ Ks ×Ks

satisfying (2.14) is nonempty. Together with assumptions (E4), (E5),
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(J3), (J4), (E⋆4), (E⋆5) Lemma 2.4 guarantees the existence of a sub-
sequence (usk , vsk) ∈ Ksk ×Ksk and an accumulation point (u0, v0) ∈
K0×K0 satisfying the strong convergence (2.15) as sk → 0+. Utilizing
(L1) Lemma 2.5 implies the assertion of the theorem. □

In the following section we extend the directional differentiability
result of Theorem 2.1 to a penalty-constrained optimization motivated
by variational inequalities.

3. Directional differentiability of Lagrangians due to
penalty constraints

Let H be another Banach space with an order relation denoted by
≥. We introduce a parameter-dependent family of linear operators
B(s) ∈ L(V,H), with s ∈ I, and the associated inequality constraints

(3.1) B(s)u ≥ 0.

As a canonical example we may consider a trace operator. Using the
decomposition ζ = [ζ]+ − [ζ]− into positive [ζ]+ = max(0, ζ) and neg-
ative [ζ]− = −min(0, ζ) parts, inequality (3.1) is equivalent to

(3.2) [B(s)u]− = 0.

Compared to (2.3), the constrained problem at s = 0:

(3.3) E(0, u0) = min
u∈V, [B(0)u]−=0

E(0, u)

leads to the variational inequality: find u0 ∈ V , [B(0)u0]
− = 0 such

that

(3.4) ⟨E ′(0, u0), v − u0⟩ ≥ 0 for all v ∈ V , [B(0)v]− = 0.

In order to bring (3.4) in equality form akin (2.2), we regularize it by
a penalty approximation.

For a small penalization parameter ε ∈ (0, ε0), ε0 > 0, we define the
penalty as a map βε(s, ζ) : I×H 7→ H⋆ into the dual space H⋆. For the
constraint [ζ]− = 0 according to (3.2), the standard penalty function
βε(0, ζ) = −[ζ]−/ε ≤ 0 forces the compliance condition ⟨βε(0, ζ), ζ⟩ =
([ζ]−)2/ε. However, the min-based penalty function is not differentiable
(see assumption (L3)). Therefore, within a Lavrentiev relaxation [25]
satisfying: (B1) there exist β, β1 ≥ 0 such that for ζ ∈ H, ε ∈ (0, ε0):

(3.5)
∥[ζ]−∥2H

ε
− εβ ≤ ⟨βε(0, ζ), ζ⟩H∗,H , βε(0, ζ) ≤ εβ1,

where ⟨ · , · ⟩H∗,H denotes the duality pairing between H and H⋆.
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For example, a smooth ε-mollification of the minimum function

(3.6) βε(0, ζ) =


ζ/ε for ζ < −ε
− exp

(
2(ζ + ε)/(ζ − ε)

)
for − ε ≤ ζ < ε

0 for ζ ≥ ε

is depicted in Figure 2 together with its derivative. It satisfies (B1)
with β = −βε(0, 0) = exp(−2) and β1 = 0.

ζ
−ε ε

−1

βε(0)

ζ−ε ε

1
ε

β′
ε(0)

Figure 1. Example graphics of ζ 7→ βε, β
′
ε for fixed ε.

This leads to the penalized problem: find uε0 ∈ V such that

(3.7) ⟨E ′(0, uε0), v⟩+ ⟨βε(0, B(0)uε0), B(0)v⟩H = 0 for all v ∈ V .

Lemma 3.1. Let the asymptotic condition (B1) hold. If

(B2) [ζ 7→ βε(0, ζ)] : H 7→ H⋆ is sequentially weak-to-weak continuous,

then there exists a solution uε0 ∈ V to (3.7).

Proof. The operator of problem (3.7) is coercive due to assumption
(E2) and the lower bound in (3.5). It is weakly continuous due to
(E3) and (B2). The proof of Lemma 2.1 can be adapted to guarantee
existence of a solution. □

Following Lemma 2.2 we assume that

(B⋆1) the Gateaux derivative β′
ε(s, rB(0)uε0) ∈ L (H,H⋆) at B(0)uε0

exists:

⟨β′
ε(s, rB(0)uε0)η, ζ⟩H∗,H = lim

ξ→0

〈βε(s, rB(0)uε0 + ξη)− βε(s, rB(0)uε0)

ξ
, ζ
〉
H∗,H

for ζ, η ∈ H, and the mapping r 7→ β′
ε(s, rB(0)uε0) is continuous for

r ∈ [0, 1], where s ∈ I.

Then the adjoint β⋆
ε (s, B(0)uε0) ∈ L (H,H⋆) exists, it is given by

(3.8) ⟨β⋆
ε (s, B(0)uε0)ζ, η⟩H∗,H :=

∫ 1

0

⟨β′
ε(s, rB(0)uε0)η, ζ⟩H∗,H dr,

and satisfies the Lagrange identity for ζ ∈ H, s ∈ I:

(3.9) ⟨β⋆
ε (s, B(0)uε0)ζ, B(0)uε0⟩H∗,H = ⟨βε(s, B(0)uε0)−βε(s, 0), ζ⟩H∗,H .
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Using (3.7) and (3.9) we modify (2.9) with a penalized Lagrange
function Lε : I × V 3 7→ R expressed by

(3.10) Lε(s, uε0, u, v) := L(s, uε0, u, v)− ⟨βε(s, 0), B(s)v⟩H∗,H

− ⟨β⋆
ε (s, B(0)uε0)B(s)v,B(s)u⟩H∗,H for u, v ∈ V .

The penalized saddle-point problem reads: find (uεs, v
ε
s) ∈ V 2 such that

(3.11) Lε(s, uε0, u
ε
s, v) ≤ Lε(s, uε0, u

ε
s, v

ε
s) ≤ Lε(s, uε0, u, v

ε
s)

for all test functions (u, v) ∈ V 2. The optimal values and solution sets
in (2.11) are

lεs := sup
v∈V

inf
u∈V

Lε(s, uε0, u, v) ≤ inf
u∈V

sup
v∈V

Lε(s, uε0, u, v) =: lsε,

Ks
ε := {u ∈ V | sup

v∈V
Lε(s, uε0, u, v) = lsε},(3.12)

Kε
s := {v ∈ V | inf

u∈V
Lε(s, uε0, u, v) = lεs}.

We establish results for (3.12) analogous to those of Lemmas 2.3 and
2.4 .

Lemma 3.2. Let (E1)–(E5), (J1)–(J4), (E⋆1)–(E⋆5), (B1), (B2),
(B⋆1) with uε0 replacing u0, and the following assumptions hold true:

(B3) B(s) is bounded: 0 < b ≤ ∥B(s)∥ ≤ b for s ∈ I,

(B4) s 7→ B(s) is continuous for s ∈ I;

(B5) βε(s, 0) is bounded: there exist bε > 0 such that

∥βε(s, 0)∥H⋆ ≤ bε for s ∈ I;

(B6) s 7→ βε(s, 0) is continuous as s→ 0+;

(B⋆2) β⋆
ε (s, B(0)uε0) is symmetric:

⟨β⋆
ε (s, B(0)uε0)ζ, η⟩H∗,H = ⟨β⋆

ε (s, B(0)uε0)η, ζ⟩H∗,H for ζ, η ∈ H, s ∈ I;

(B⋆3) there exist b⋆ > 0 and f ⋆
b ∈ H⋆ such that with a⋆ from (E⋆3):

⟨β⋆
ε (s, B(0)uε0)ζ, ζ⟩H∗,H ≥ b⋆ − a⋆

b2
∥ζ∥2H−⟨f ⋆

b , ζ⟩H∗,H for ζ ∈ H, s ∈ I.

(B⋆4) β⋆
ε (s, B(0)uε0) is bounded: there exist b

⋆

ε ≥ 0 such that

∥β⋆
ε (s, B(0)uε0)∥ ≤ b

⋆

ε for s ∈ I;

(B⋆5) s 7→ β⋆
ε (s, B(0)uε0) is continuous for s ∈ I.



11

Then for every s ∈ I there exist a state uεs ∈ V solving the equation:

(3.13) ⟨(E ′)⋆(s, uε0)v, u
ε
s⟩+ ⟨β⋆

ε

(
s, B(0)uε0

)
B(s)v,B(s)uεs⟩H∗,H

+ ⟨E ′(s, 0), v⟩+ ⟨βε(s, 0), B(s)v⟩H∗,H = 0 for all v ∈ V ,

and an adjoint state vεs ∈ V satisfying the adjoint equation:

(3.14) ⟨(E ′)⋆(s, uε0)v
ε
s, u⟩+ ⟨β⋆

ε

(
s, B(0)uε0

)
B(s)vεs, B(s)u⟩H∗,H

= ⟨J ′(s,Muεs),Mu⟩X∗,X for all u ∈ V .

The pair (uεs, v
ε
s) ∈ Ks

ε ×Kε
s is a saddle point satisfying

(3.15) l(ε, s) := lεs = Lε(s, uε0, u
ε
s, v

ε
s) = lsε, s ∈ I.

If f ⋆ = 0 in (E⋆3) and f ⋆
b = 0 in (B⋆3), then the saddle-point is unique.

Moreover, there exists a subsequence sk → 0+ with associated saddle
points (uεsk , v

ε
sk
) ∈ Ksk

ε ×Kε
sk
, and (uε0, v

ε
0) ∈ K0 ×K0 such that

(3.16) (uεsk , v
ε
sk
) → (uε0, v

ε
0) strongly in V 2 as k → ∞.

The proof of Lemma 3.2 is technical and presented in Appendix D.
For illustration, we note that the derivative β′

ε(0, ζ) of the mollified
minimum function from (3.6) satisfies (3.8). It fulfills the symmetry
assumption (B⋆2). Since β⋆

ε (0, ζ) ≥ 0, the lower bound in (B⋆3) holds

trivially with b⋆ = a⋆ and f ⋆
b = 0. The upper bound b

⋆

ε in (B⋆4) has
the order 1/ε in this case.

Below we state a theorem on differentiability of Lε.

Theorem 3.1. Let (E1)–(E5), (J1)–(J4), (E⋆1)–(E⋆5), (B1)–B(6),
(B⋆1)–(B⋆5), (L1), and the two following assumptions hold:

(L2) B is differentiable such that d
ds
B ∈ C(I,L(V,H)),

(L3) there exists the derivative d
ds
β⋆
ε (s, B(0)uε0) ∈ C(I,L(H,H∗)).

The directional derivative of the optimal value function j : (0, ε0)×I 7→
R defined by

(3.17) j(ε, s) := J (s,Muεs) for uεs ∈ V solving (3.13),

and the associated Lagrangian function l : (0, ε0)× I 7→ R from (3.15)
satisfy

(3.18) ∂+j(ε, 0) = ∂+l(ε, 0) =
∂Lε

∂s
(0, uε0, u

ε
0, v

ε
0).
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Here the partial derivative is given by

(3.19)
∂Lε

∂s
(s, uε0, u, v)

:=
∂L
∂s

(s, uε0, u, v)−
〈 d
ds
β⋆
ε (s, B(0)uε0)B(s)v,B(s)u

〉
H∗,H

−
〈
β⋆
ε (s, B(0)uε0)

d

ds
B(s)u,B(s)v

〉
H∗,H

−
〈
β⋆
ε (s, B(0)uε0)B(s)u,

d

ds
B(s)v

〉
H∗,H

.

The saddle point (uε0, v
ε
0) ∈ K0

ε × Kε
0 solves the penalty problem (3.7)

and the adjoint equation (3.14) at s = 0:

(3.20) ⟨(E ′)⋆(0, uε0)v
ε
0, u⟩+ ⟨β⋆

ε (0, B(0)uε0)B(0)vε0, B(0)u⟩H∗,H

= ⟨J ′(0,Muε0),Mu⟩X∗,X for all u ∈ V .

Proof. The differentiability assumptions (L1)–(L3) together with the
continuity in (B4), (B⋆5) imply the existence of the partial derivative
of Lε in (3.19) with respect to s ∈ I and its semi-continuity properties:

lim inf
r,sk→0+

∂Lε

∂s
(r, uε0, u

ε
sk
, vε0) ≥

∂Lε

∂s
(0, uε0, u

ε
0, v

ε
0) for all vε0 ∈ Kε

0 ,

lim sup
r,sk→0+

∂Lε

∂s
(r, uε0, u

ε
0, v

ε
sk
) ≤ ∂Lε

∂s
(0, uε0, u

ε
0, v

ε
0) for all uε0 ∈ K0

ε .

Therefore, utilizing Lemma 3.2 and proceeding as in Lemma 2.5, we
obtain formula (3.18) for the directional derivative. Taking the limit
s → 0+ in (3.13) and using (3.9) we arrived at (3.7). The adjoint
equation (3.20) follows from (3.14). The proof is complete. □

Next we analyze the limit as ε → 0+. For this task we employ the
Lagrangian L from (2.9) at s = 0.

Theorem 3.2. Let (E1)–(E5), (J1)–(J4), (E⋆1)–(E⋆5), (B1)–(B6),
(B⋆1)–(B⋆5) and the following assumptions hold:

(B7) B(0) is a compact operator;

(B8) there exits a Banach space H̃ ⊂ H exists such that B(0) : V 7→ H̃
is surjective: for each ζ ∈ H̃ there exists u ∈ V with B(0)u = ζ;

(J5) u 7→ J ′(0,Mu) is sequentially weak-to-weak continuous from V
to X∗;

(E⋆6) u 7→ (E ′)⋆(0, u) : V 7→ L (V, V ⋆) is sequentially weak-to-weak
continuous.
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Then there exists a quadruple (u0, λ0, v0, µ0) ∈ (V × H̃⋆)2, where H̃⋆

is the dual space to H̃ from (B8) with the duality pairing ⟨ · , · ⟩H̃∗,H̃ ,
which satisfies the primal problem:

(3.21) L(0, u0, u0, v)− ⟨λ0, B(0)v⟩H̃∗,H̃

≤ L(0, u0, u0, v0)− ⟨λ0, B(0)v0⟩H̃∗,H̃ for all v ∈ V,

the adjoint problem:

(3.22) L(0, u0, u0, v0)− ⟨µ0, B(0)u0⟩H̃∗,H̃

≤ L(0, u0, u, v0)− ⟨µ0, B(0)u⟩H̃∗,H̃ for all u ∈ V,

the complementarity relations:

(3.23) [B(0)u0]
− = 0, [λ0]

+ = 0, ⟨λ0, B(0)u0⟩H̃∗,H̃ = 0,

and the compatibility condition

(3.24) ⟨λ0 − βε(0, 0), B(0)v0⟩H̃∗,H̃ = ⟨µ0, B(0)u0⟩H̃∗,H̃ ,

where βε(0, 0) = − exp(−2) in (3.6).
Moreover, u0 satisfies [B(0)u0]

− = 0 and the variational inequality
(3.4). Together with the Lagrange multiplier λ0 it solves

(3.25) ⟨E ′(0, u0), v⟩+ ⟨λ0, B(0)v⟩H̃∗,H̃ = 0 for all v ∈ V .

The adjoint v0 solves the variational equation for all u ∈ V :

(3.26) ⟨(E ′)⋆(0, u0)v0, u⟩+ ⟨µ0, B(0)u⟩H̃∗,H̃ = ⟨J ′(0,Mu0),Mu⟩X∗,X

for µ0 obtained as an accumulation point in the following limit:

(3.27) β⋆
εk
(0, B(0)uεk0 )B(0)vεk0 ⇀ µ0 ⋆-weakly in H̃⋆ as k → ∞.

According to (3.21)–(3.24), the optimal value functions in (3.17) and
(3.15) at ε = 0 are

(3.28) j(0, 0) = l(0, 0) = L(0, u0, u0, v0)− ⟨λ0, B(0)v0⟩H̃∗,H̃ .

The proof of Theorem 3.2 is technical and it is presented in Appen-
dix E.

It is worth noting that we cannot pass to the limit as ε → 0+ in
the derivative β′

ε of the penalty, since it is unbounded in general, see
Figure 2. This would be needed for β⋆

ε which enters into ∂Lε/∂s in
(3.18).
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4. Shape derivative for breaking-line identification

Now we turn to a model problem for a nonlinear Poisson equation.
We derive a shape derivative suitable for shape optimization in the
problem of breaking-line identification from a boundary measurement.

Let

(4.1) [t 7→ Ωt] : (t0, t1) 7→ D ⊂ R2

be a parameter dependent family of domains contained in the hold-all
domain D. For some fixed t ∈ (t0, t1) we refer to Ωt as the reference
domain. We assume that Ωt = Ω+

t ∪ Ω−
t ∪ Σt is split into two variable

sub-domains Ω±
t with Lipschitz boundaries ∂Ω±

t and outward normal
vectors n±

t . The sub-domains are separated by a one-dimensional break-
ing line

(4.2) [t 7→ Σt] : (t0, t1) 7→ DΣ ⊂ D

with the chosen normal direction νt = n−
t = −n+

t (see Figure 2).

ΓD
t

n−
t

Ω+
t

Ω−
t

ΓD
t

n−
t

ΓN
t n+

t

ΓN
t n−

t

νtΣt

τt

Figure 2. An example geometry Ωt in 2D.

Let the outer boundary be split into two variable parts without inter-

section ∂Ωt = ΓD
t ∪ΓN

t , and the outward normal vector nt be such that
n±
t = nt at ∂Ωt. The condition ΓD

t ∩∂Ω±
t ̸= ∅ on the Dirichlet boundary

is assumed to guarantee the Poincare inequality in Ω±
t . A part of the

Neumann boundary ΓO
t ⊂ ΓN

t builds the observation boundary. Further
we introduce

(4.3) [t 7→ (ΓD
t ,Γ

N
t ,Γ

O
t )] : (t0, t1) 7→ DD ×DN ×DO ⊂ D3.

We adopt the formalism from Sections 2 and 3 to the geometry-
dependent spaces of functions

(4.4) V (Ωt) := {u ∈ H1(Ω±
t )| u = 0 on ΓD

t },
X(Ωt) := L2(ΓO

t ), H(Ωt) := L2(Σt), H̃(Ωt) := H1/2(Σt).
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The observation operator M : V (Ωt) 7→ L2(ΓO
t ) maps to the boundary

traces on ΓO
t . The restriction operator B : V (Ωt) 7→ L2(Σt) is indepen-

dent of s and describes a jump across the breaking line Σt subject to
the non-penetration condition (see motivation in [10]):

(4.5) u|Σt∩∂Ω+
t
− u|Σt∩∂Ω−

t
=: [[u]] ≥ 0.

This allows possible contact between the faces when [[u]] = 0 in (4.5).
Here we take into account the dissipative interaction phenomenon

of cohesion (see [2, 16]) described by a surface energy density α(s, ζ).
The following conditions are imposed:

(4.6)
[
(s, ζ) 7→ α, α′, α′′,

∂α′

∂s
,
∂α′′

∂s

]
∈ C(I × R),

and the existence of Kα1 > 0, Kα2 > 0 such that:

(4.7) |α′(s, ζ)| ≤ Kα1, |α′′(s, ζ)| ≤ Kα2.

For example, a mollification of the function (Kc/κ)min(κ, |ζ|) as

(4.8) α(0, ζ) = Kc



−1 for ζ < −κ− δ
δ
κ
exp

(
2 ζ+κ−δ
ζ+κ+δ

)
− 1 for − κ− δ ≤ ζ < −κ+ δ

ζ/κ for − κ+ δ ≤ ζ < κ− δ

1− δ
κ
exp

(
2 ζ−κ+δ
ζ−κ−δ

)
for κ− δ ≤ ζ < κ+ δ

1 for ζ ≥ κ+ δ

where 0 < δ < κ, κ > 0, and Kc > 0 is the fracture toughness parame-
ter. The function from (4.8) is depicted in Figure 3.

−κ
κ

ζ

−Kc

Kc α(0)

−κ κ
ζ

Kα1

α′(0)

−κ κ
ζ

−Kα2

Kα2

α′′(0)

Figure 3. Example graphics of α, α′, α′′ as δ = κ/2.

Let the Lame parameter µL > 0 and the traction force g ∈ H1(DN),
ensuring that g ∈ L2(ΓN

t ) on Lipschitz curves ΓN
t ⊂ DN, be given. The

bulk and the surface energies together constitute the total potential
energy E(0) : V (Ωt) 7→ R:

(4.9) E(0, u; Ωt) :=
µL

2

∫
Ω±

t

|∇u|2 dx−
∫
ΓN
t

gu dSx +

∫
Σt

α(0, [[u]]) dSx.
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We calculate the Gateaux derivative E ′(0) : V (Ωt) 7→ V (Ωt)
⋆ at u:

(4.10) ⟨E ′(0, u; Ωt), v⟩

= µL

∫
Ω±

t

∇u⊤∇v dx−
∫
ΓN
t

gv dSx +

∫
Σt

α′(0, [[u]])[[v]] dSx,

where ⊤ denotes the transpose. The constrained optimization (3.3)
leads to the variational inequality (3.4), which takes the form: find
ut ∈ V (Ωt), [[ut]]

− = 0 on Σt, such that

(4.11) µL

∫
Ω±

t

∇u⊤t ∇(v − ut) dx+

∫
Σt

α′(0, [[ut]])[[v − ut]] dSx

≥
∫
ΓN
t

g(v − ut) dSx for all v ∈ V (Ωt), [[v]]
− = 0 on Σt.

Lemma 4.1. There exists a solution to the variational inequality (4.11).
It satisfies the linear complementarity problem:

−µL∆ut = 0 in Ω±
t ; ut = 0 on ΓD

t ; µLn
⊤
t ∇ut = g on ΓN

t ;

ν⊤t [[∇ut]] = 0,
[
µLν

⊤
t ∇ut − α′(0, [[ut]])

]+
= 0,

[[ut]]
− = 0, [[ut]]

(
µLν

⊤
t ∇ut − α′(0, [[ut]])

)
= 0 on Σt.(4.12)

The solution is unique for convex α (hence, monotone α′).

Proof. For u ∈ V (Ωt) we recall the Poincare inequality:

(4.13)

∫
Ω±

t

|∇u|2 dx ≥ KP∥u∥2H1(Ω±
t )
, KP > 0,

and the trace inequality:

(4.14) ∥u∥L2(∂Ω±
t ) ≤ ∥u∥H1/2(∂Ω±

t ) ≤ Ktr∥u∥H1(Ω±
t ), Ktr > 0,

both uniform in t ∈ (t0, t1). Using the bound Kα1 > 0 in (4.7) and
(4.13), (4.14) we can estimate ⟨E ′(0, u; Ωt), u⟩ in (4.10) from below and
conclude the coercivity property (E2). The weak-to-weak continuity
(E3) for E ′(0, u) holds due to the continuity of α′ assumed in (4.6).

Therefore, by Lemma 3.1 there exists a solution uεt ∈ V (Ωt) to the
penalty equation (see (3.7)) in the form:

(4.15) µL

∫
Ω±

t

∇(uεt)
⊤∇v dx+

∫
Σt

[α′+βε](0, [[u
ε
t ]])[[v]] dSx =

∫
ΓN
t

gv dSx

for all v ∈ V (Ωt). It satisfies the mixed boundary value problem:

−µL∆u
ε
t = 0 in Ω±

t ; uεt = 0 on ΓD
t ; µLn

⊤
t ∇uεt = g on ΓN

t ;

ν⊤t [[∇uεt ]] = 0, µLν
⊤
t ∇uεt = [α′ + βε](0, [[u

ε
t ]]) on Σt.(4.16)
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By the compactness argument used in the proof of Theorem 3.2 we
get an accumulation point such that uεkt ⇀ ut weakly in V (Ωt) as
εk → 0, which solves the variational inequality (4.11). The derivation
of relations (4.12) is standard, see e.g [14, Chapter 1]. □

Let z ∈ H1(DO) be given, providing an observation z ∈ L2(ΓO
t ) on

Lipschitz curves ΓO
t ⊂ DO from (4.3). We aim at the shape optimiza-

tion problem for identification of an unknown breaking line from the
observation: find Σ∗ as the solution to

(4.17) min
Σt⊂DΣ

{
j(0, 0) = J(0, ut; Ωt) :=

1

2

∫
ΓO
t

(ut − z)2 dSx + ρ|Σt|

with ut satisfying (4.11)
}
,

where J represents J from (2.4), and ρ ≥ 0 stands for the reason of
perimeter regularization.

Lemma 4.2. Let the observation z be feasible this means:

Ω∗ = Ω±
∗ ∪ Σ∗ ⊂ D, Σ∗ ⊂ DΣ, (ΓD

∗ ,Γ
N
∗ ,Γ

O
∗ ) ∈ DD ×DN ×DO,

and z ∈ V (Ω∗), [[z]]
− = 0 on Σ∗ are such that

(4.18) µL

∫
Ω±

∗

∇z⊤∇(v − z) dx+

∫
Σ∗

α′(0, [[z]])[[v − z]] dSx

≥
∫
ΓN
∗

g(v − z) dSx for all v ∈ V (Ω∗), [[v]]
− = 0 on Σ∗.

If ρ = 0, then there exists a solution to the shape optimization problem
(4.17). In general, the solution is non-unique.

Proof. The trivial minimum in (4.17) is evidently attained at the ar-
gument Σt = Σ∗ when ut = z and ρ = 0.

We construct a counter-example to uniqueness. Assume Σ∗ solves
(4.17) and z satisfies (4.18). Let the active part of the breaking line
Σa

∗ ⊂ Σ∗, where the equality [[z]] = 0 holds (i.e. contact happens),
be nonempty. Then z ∈ V (Ω̃∗) satisfies (4.18) in Ω̃∗ = Ω̃±

∗ ∪ Σ̃∗ for
an arbitrary regular interface Σ̃∗ ⊂ DΣ that coincides with Σ∗ along
Σ∗ \ Σa

∗. In this case, both Σ̃∗ and Σ∗ solve (4.17). This situation is
observed in the numerical experiment. □

Under the penalty approach from Section 3 we approximate (4.17)
by a differentiable constraint following Theorem 3.1: for ε ∈ (0, ε0) find
Σ∗ ⊂ DΣ such that

(4.19) min
Σt⊂DΣ

{
j(ε, 0) = J(0, uεt ; Ωt) with uεt solving (4.15)

}
.



18 V.A. KOVTUNENKO† AND K. KUNISCH‡

Aiming to solve (4.19) by a gradient method, we look for a descent
direction ∂+j(ε, 0) < 0 from Theorem 3.1. This requires to express the
perturbation j(ε, s) for s ∈ I in a geometry-independent form.

For this task we employ the velocity method based on coordinate
transformations. Let I have the end-point s0 ≤ t1 − t, and let us fix a
kinematic flow and its inverse

(4.20) [(s, x) 7→ ϕs], [(s, y) 7→ ϕ−1
s ] ∈ C1(t0 − t1, t1 − t0;W

1,∞(D)2)2.

This defines an associateed coordinate transformation y = ϕs(x) and
its inverse x = ϕ−1

s (y). We suppose that the mapping introduced in
(4.1)–(4.3) forms a diffeomorphism:

(4.21) x 7→ ϕs : (Ωt,Σt,Γ
D
t ,Γ

N
t ,Γ

O
t ) 7→ (Ωt+s,Σt+s,Γ

D
t+s,Γ

N
t+s,Γ

O
t+s).

Then the kinematic velocity Λ(t, x) ∈ C([t0, t1];W
1,∞(D)2) can be de-

fined from (4.20) by the formula

(4.22) Λ(t+ s, y) := dϕs

ds
(ϕ−1

s (y)).

If a velocity vector is given explicitly

(4.23) Λ = (Λ1,Λ2)(t, x) ∈ C([t0, t1];W
1,∞(D))2, Λ|∂D = 0,

preserving the hold-all domain D, it determines the flows in (4.20) as
solution vector ϕs = ((ϕs)1, (ϕs)2) to the non-autonomous ODE system

(4.24)
d

ds
ϕs = Λ(t+ s, ϕs) for s ∈ I, ϕs = x as s = 0,

and ϕ−1
s (y) = ((ϕ−1

s )1, (ϕ
−1
s )2) to the transport equation

(4.25)
∂

∂s
ϕ−1
s + (∇yϕ

−1
s )Λ|t+s = 0 in I ×D, ϕ−1

s = y as s = 0.

In (4.25) we utilize the second order tensor∇yϕ
−1
s = (∂(ϕ−1

s )i/∂yj)
2
i,j=1,

and Λ|t+s = Λ(t+ s, y). For validation of (4.20)–(4.25) see [9, 21].
The diffeomorphism (4.21) preserves the bijectivity between the func-

tion spaces in (4.4):

(4.26) [u 7→ u ◦ ϕ−1
s ] :

(
V (Ωt), L

2(ΓO
t ), L

2(Σt), H
1/2(Σt)

)
7→

(
V (Ωt+s), L

2(ΓO
t+s), L

2(Σt+s), H
1/2(Σt+s)

)
.

With the help of (4.26) we transform the perturbed objective J(0, ũ; Ωt+s)
from (4.19) for ũ ∈ V (Ωt+s) such that

(4.27) J(0, u ◦ ϕ−1
s ; Ωt+s) = J(s, u; Ωt)

:=
1

2

∫
ΓO
t

(u− z ◦ ϕs)
2 ωsdSx + ρ

∫
Σt

ωsdSx,
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where ωs will be defined later. Based on the second derivative in the
identity (see (2.6)):

(4.28)

∫ 1

0

α′′(0, [[ruεt ]])[[u
ε
t ]] dr = α′(0, [[uεt ]])− α′(0, 0),

we linearize at the solution uεt the perturbed state operator in (4.10):

(4.29) ⟨E ′(0, u ◦ ϕ−1
s ; Ωt+s), v ◦ ϕ−1

s ⟩ ∼ ⟨(E ′)⋆(s, uεt)v, u⟩+ ⟨E ′(s, 0), v⟩,
where the terms are

(4.30) ⟨(E ′)⋆(s, uεt)v, u⟩ := µL

∫
Ω±

t

([∇ϕ−⊤
s ◦ ϕs]u)

⊤[∇ϕ−⊤
s ◦ ϕs]v Jsdx

+

∫
Σt

∫ 1

0

α′′(0, [[ruεt ]]) dr[[u]][[v]]ωsdSx,

⟨E ′(s, 0), v⟩ := −
∫
ΓN
t

(g ◦ ϕs)v ωsdSx +

∫
Σt

α′(0, 0)[[v]]ωsdSx.

In (4.27) and (4.30) we use the chain rule

(4.31) ∇y(u ◦ ϕ−1
s ) = (∇ϕ−T

s ◦ ϕs)∇u,
and the Jacobian in the domain and at the boundary:

(4.32) Js := det(∇ϕs) in Ω±
t , ωs := |(∇ϕ−⊤

s ◦ ϕs)n
±
t |Js at ∂Ω±

t ,

for more details, see e.g. [17, 18, 23].
Similarly, using the following identity analogous to (4.28):

(4.33)

∫ 1

0

β′
ε(0, [[ru

ε
t ]])[[u

ε
t ]] dr = βε(0, [[u

ε
t ]])− βε(0, 0),

we perturb the penalty term in (4.15) linearized at uεt such that

(4.34) ⟨βε(s, [[u ◦ ϕ−1
s ]]), [[v ◦ ϕ−1

s ]]⟩L2(Σt+s) ∼ ⟨β⋆
ε (s, [[u

ε
t ]])[[v]], [[u]]⟩L2(Σt)

+⟨βε(s, 0), [[v]]⟩L2(Σt) :=

∫
Σt

(∫ 1

0

β′
ε(0, [[ru

ε
t ]])[[u]] dr+βε(0, 0)

)
[[v]]ωsdSx.

Combining formulas (4.27)–(4.34) we get a perturbed Lagrange func-
tion in (3.10) expressed by the integrals

(4.35) Lε(s, uεt , u, v) =
1

2

∫
ΓO
t

(u− z ◦ ϕs)
2 ωsdSx + ρ

∫
Σt

ωsdSx

− µL

∫
Ω±

t

([∇ϕ−⊤
s ◦ ϕs]u)

⊤[∇ϕ−⊤
s ◦ ϕs]v Jsdx+

∫
ΓN
t

(g ◦ ϕs)v ωsdSx

−
∫
Σt

(∫ 1

0

[α′′ + β′
ε](0, [[ru

ε
t ]])[[u]] dr + [α′ + βε](0, 0)

)
[[v]]ωsdSx.
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Next we present a formula for the shape derivative.

Theorem 4.1. Let the bound Kα2 > 0 in (4.7) be sufficiently small
such that

(4.36) a⋆ := µLKP − 2Kα2K
2
tr > 0,

where KP and Ktr are the constants from the Poincare and the trace
estimates (4.13) and (4.14). Then the directional derivative of Lε exists
and is given by the formula

(4.37) ∂+j(ε, 0) =
∂Lε

∂s
(0, uεt , u

ε
t , v

ε
t ) =

∫
ΓO
t

(1
2
divτtΛ (uεt − z)2

− Λ⊤∇z(uεt − z)
)
dSx − µL

∫
Ω±

t

(∇uεt)⊤(divΛ−∇Λ−∇Λ⊤)∇vεt dx

+

∫
ΓN
t

(divτtΛ g+Λ⊤∇g)vεt dSx+

∫
Σt

divτtΛ
(
ρ−[α′+βε](0, [[u

ε
t ]])[[v

ε
t ]]
)
dSx,

where the tangential divergence is defined as

(4.38) divτtΛ := divΛ− (n±
t )

⊤∇Λn±
t at ∂Ω±

t .

The saddle point (uεt , v
ε
t ) ∈ V (Ωt)

2 solves the penalty equation (4.15)
and the adjoint equation:

(4.39) µL

∫
Ω±

t

∇u⊤∇vεt dx+
∫
Σt

∫ 1

0

[α′′ + β′
ε](0, [[ru

ε
t ]])[[v

ε
t ]][[u]] drdSx

=

∫
ΓO
t

(uεt − z)u dSx for all u ∈ V (Ωt),

for which the mixed boundary value formulation is given by:

−µL∆v
ε
t = 0 in Ω±

t ; vεt = 0 on ΓD
t ;

µLn
⊤
t ∇vεt = uεt − z on ΓO

t ; µLn
⊤
t ∇vεt = 0 on ΓN

t \ ΓO
t ;

ν⊤t [[∇vεt ]] = 0, µLν
⊤
t ∇vεt =

∫ 1

0

[α′′ + β′
ε](0, [[ru

ε
t ]])[[v

ε
t ]] dr on Σt.(4.40)

For the proof of Theorem 4.1 one checks the conditions of Theo-
rem 3.1. It is given in Appendix F.

In the following we decompose the velocity into the normal and tan-
gential vectors at the boundary:

(4.41) Λ = ((n±
t )

⊤Λ)n±
t + ((τ±t )

⊤Λ)τ±t on ∂Ω±
t ,

where τ±t is the tangential vector positively oriented to n±
t .
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Theorem 4.2. Let the solution of (4.15), (4.39) be smooth such that
(uεt , v

ε
t ) ∈ H2(Ω±

t )
2. Then the shape derivative in Theorem 4.1 satisfies

an equivalent Hadamard’s representation by the boundary integrals:

(4.42) ∂+j(ε, 0) =

∫
ΓD
t

(n⊤
t Λ)(n

⊤
t D1) dSx + (τ⊤t Λ)(τ

⊤
t [[D1]])∂ΓD

t ∩Σt

+

∫
ΓN
t

(n⊤
t Λ)(κtD2 + n⊤

t ∇D2) dSx + (τ⊤t Λ)[[D2]]∂ΓN
t ∩Σt

+

∫
Σt

(
(ν⊤t Λ)Dε

3 + (τ⊤t Λ)Dε
4

)
dSx + (τ⊤t Λ)[[Dε

5]]∂Σt

+

∫
ΓO
t

(n⊤
t Λ)(κtD6 + n⊤

t ∇D6) dSx + (τ⊤t Λ)D6|∂ΓO
t
.

The terms in (4.42) are given by

(4.43) D1 := µL

(
∇uεt(n⊤

t ∇vεt ) +∇vεt (n⊤
t ∇uεt)

)
, D2 := gvεt ,

Dε
3 := κtDε

5 + µL[[(∇uεt)⊤∇vεt ]]− ν⊤t (∇pε + qε),

Dε
4 := −τ⊤t qε, Dε

5 := ρ− pε, D6 :=
1

2
(uεt − z)2,

where κ±
t := divτtn

±
t denotes the curvature at ∂Ω±

t , and we utilize the
notation at Σt:

(4.44) pε := [α′ + βε](0, [[u
ε
t ]]) [[v

ε
t ]],

qε := [[∇uεt ]]
(∫ 1

0

[α′′ + β′
ε](0, [[ru

ε
t ]]) dr − [α′′ + β′

ε](0, [[u
ε
t ]])

)
[[vεt ]].

A descent direction ∂+j(ε, 0) < 0 in (4.42) is provided by the choice

(4.45) n⊤
t Λ = −k7(n⊤

t D1) at Γ
D
t , τ⊤t Λ = −k1(τ⊤t [[D1]]) at ∂Γ

D
t ∩ Σt,

n⊤
t Λ = −k2(κtD2 + n⊤

t ∇D2) at Γ
N
t , τ⊤t Λ = −k8[[D2]] at ∂Γ

N
t ∩ Σt,

ν⊤t Λ = −k3Dε
3 and τ⊤t Λ = −k4Dε

4 at Σt, τ⊤t Λ = −k5[[Dε
5]] at ∂Σt,

n⊤
t Λ = −k6(κtD6 + n⊤

t ∇D6) at Γ
O
t , τ⊤t Λ = −k9D6 at ∂ΓO

t ,

with ki ≥ 0, i = 1, . . . , 9, and not all simultaneously equal to zero.

The proof of Theorem 4.2 is based on integration by parts and is pre-
sented in Appendix G. The expression (4.42) is important for gradient-
based iterative techniques.
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5. Numerical simulation

We set a piecewise-linear breaking line Σ∗ ⊂ DΣ to be identified:

(5.1) DΣ = {x1 ∈ (0, 1), x2 = ψ(x1) ∈ (0, 0.5)},
Σ∗ := {x1 ∈ (0, 1), ψ∗(x1) = max(0.2, (x1 − 1)/3 + 0.4)},

which breaks the rectangle Ω = (0, 1)× (0, 0.5) into two parts Ω±
∗ . Let

the boundary ∂Ω be split into fixed Dirichlet and Neumann parts:
(5.2)
ΓD
∗ = {x1∈ {0, 1}, x2 ∈ (0, 0.5)}, ΓN

∗ = {x1 ∈ (0, 1), x2∈ {0, 0.5}},
see the illustration of the geometry in Figure 2. We choose for the
Young’s modulus EY = 73000 (mPa) and Poisson’s ratio νP = 0.34,
the Lamé parameter µL = EY/(2(1 + νP)) ≈ 27239, and the linear
traction force

(5.3) g(x) = µL(1− 1.68x1)(4x2 − 1).

Then there exists a solution z ∈ H1(Ω±
∗ ) such that z = 0 on ΓD

∗ , [[z]]
− =

0 on Σ∗, which satisfies the variational equation (4.18) according to
Lemma 4.1. Let the observation boundary be ΓO

∗ = ΓN
∗ .

Now we discretize the problem. For Σt ⊂ DΣ breaking Ω into Ω±
t , let

Ω±
t,h be a triangulation of mesh size h > 0 of Ω±

t , which is compatible

at the interface Σt,h := Σt ∩ ∂Ω1
t,h = Σt ∩ ∂Ω2

t,h. At Σt,h the cohesion

function α(0, ζ) is set as in (4.8) with Kc = 10−3 (mPa·m), κ = 10−2

(m). For small δ and h we rely on the discretization αh(0, ζ) such that

(5.4) αh =
Kc

κ
min(κ, |ζ|), α′

h =
Kc

κ
ind{|ζ| < κ}.

Figure 4. Reference configuration (a); true solution zh (b).

After piecewise-linear FE discretization of the problem on a grid of
mesh size h = 10−2 according to (5.1)–(5.4), we solve the variational
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equation (4.18) by a primal-dual active set (PDAS) iterative algorithm
developed in [11]. The numerical solution zh obtained after 3 iterations
with zero residual is plotted in Figure 4 (b). In plot (a) we depict the
computational grid Ω±

t,h, the traction force g at ΓN
∗ , the cohesion (where

[[zh]] < κ) and contact (where [[zh]] = 0) parts of Σ∗, which are marked
in the triangles adjacent to the interface.

According to the proof given in Lemma 4.1 we approximate the vari-
ational inequality (4.11) by the penalty equation (4.15). For small ε
and h, the penalty operator from (3.6) is discretized as

(5.5) βε,h(0, ζ) =
1

ε
min(0, ζ), β′

ε,h(0, ζ) =
1

ε
ind{ζ < 0}.

Let Vt,h(Ωt,h) be a conforming piecewise-linear FE-space such that

Vt,h(Ωt,h) ⊂ V (Ωt,h) = {u ∈ H1(Ω±
t,h)| u = 0 on ΓD

∗ }.

The discrete penalty equation (4.15) determines uεt,h ∈ Vt,h(Ωt,h) such
that
(5.6)∫
Ω±

t,h

(∇uεt,h)⊤∇vh dx+
∫
Σt,h

[α′
h + βε,h](0, [[u

ε
t,h]])[[vh]] dSx =

∫
ΓN
∗

gvh dSx,

and ignoring the singularity of α′
h the discrete adjoint equation (4.39)

reads: find vεt,h ∈ Vt,h(Ωt,h) such that

(5.7)

∫
Ω±

t,h

(∇uh)⊤∇vεt,h dx+
∫
Σt,h

β′
ε,h(0, [[u

ε
t,h]])[[uh]] dSx

=

∫
ΓN
∗

(uεt,h − zh)uh dSx for all uh, vh ∈ Vt,h(Ωt,h).

After solving problems (5.6) and (5.7), according to Theorem 4.2 we
calculate Dε

3 at the moving boundary Σt,h, and D1 at Σt,h ∩ ΓD
∗ , where

ρ = 1/µL is set. By the virtue of (5.4), (5.5) here qε,h = 0 and

(5.8) pε,h = [α′
h + βε,h](0, [[u

ε
t,h]]) [[v

ε
t,h]],

∇pε,h = [[∇vεt,h]][α′
h + βε,h](0, [[u

ε
t,h]]) + [[∇uεt,h]]β′

ε,h(0, [[u
ε
t,h]])[[v

ε
t,h]].

Since ΓD
∗ and ΓN

∗ = ΓO
∗ are fixed in the identification problem, the

normal velocity n⊤
t Λ = 0 at ∂Ω when k2 = k6 = k7 = 0 in (4.45). The

tangential velocity is set τ⊤t Λ = 0 at Σt by means of k4 = k5 = k8 =
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k9 = 0. Therefore, we get a descent direction when Λ1,H = 0 and

(5.9) Λ2,H =
k3√
h
(2x1 − 1)[[D1,h]]2 at Σt,h ∩ ΓD

∗ ,

Λ2,H = −k3Dε
3,h at Σt,h \ ΓD

∗ .

The scaling k3 = 0.1h/∥Λ2,H∥C(Σt,h)
is chosen, and the weight k1 =

k3/
√
h at ΓD

∗ was found empirically in [6]. We point out that the
discrete velocity ΛH at the interface Σt is defined on a coarser grid of
size H > 0, compared to the mesh size h of the problem.

We summarize the optimization algorithm for breaking line identifi-
cation.

Algorithm 1.

(0) Initialize constant grid function ψ
(0)
H = 0.25 at points sH ∈ [0, 1]

and the linear interpolate Σ(0) = {x1 ∈ (0, 1), x2 = ψ
(0)
H (x1)};

set n = 0.
(1) Set the interface Σt,h = Σ(n) and triangulate Ω±

t,h; find solutions
uεt,h, v

ε
t,h to the discrete equations (5.6), (5.7).

(2) Calculate a velocity Λ2,H from (??)–(5.9); update the values

(5.10) ψ
(n+1)
H = ψ

(n)
H + Λ2,H at the points sH ∈ [0, 1];

from linear interpolant ψ
(n+1)
H determine the piecewise-linear

segment Σ(n+1) = {x1 ∈ (0, 1), x2 = ψ
(n+1)
H (x1)}.

(3) Until a stopping rule is reached, set n = n+1 and go to Step (1).

For 11 equidistant points sH with H = 0.1, the numerical result of
Algorithm 1 after #n = 200 iterations (the stopping rule) is depicted
in Figure 5. The penalty parameter ε = 10−10 was taken. In plot (a)

0 0.4 1

0.2

0.25

0.4

0.5
(a) interface shape

 

 
n = 0

n = 10

n = 20

n = 40

n = 100

n = 200

0 50 100 150 200

0.12

0.88

1
(b) misfit ratio

 

 

objective

shape

Figure 5. Iterations Σ(n) (a); misfit ratio (b).

the selected iterations n = 0, 10, 20, 40, 100, 200 of Σ(n) according to
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(5.10) are drawn in Ω in comparison with the true interface Σ∗ (the
thick solid line). In plot (b) of Figure 5 we plot the ratio J (n)/J (0) of
the objective optimal values recalled here to be

(5.11) J (n)(uεt,h; Ω
±
t,h) =

1

2

∫
ΓO
∗

(uεt,h − zh)
2 dSx + ρ|Σ(n)|,

and the shape ratio ∥ψ(n)−ψ∗∥C([0,1])/∥ψ(0)−ψ∗∥C([0,1]). The computed
misfit ratios attain as minimum 12% and 88%, respectively.

From the simulation we conclude the following feature. In Figure 5
(a) it can be observed that the left part of curve Σ∗, where no contact
occurs (see Figure 4 (a)), is recovered well by the identification Algo-
rithm 1, whereas the right part of interface, where contact occurs, the
initialization Σ(0) is almost unchanged during the iterations.
To remedy the hidden part of Σ∗, we apply to the same configuration

a traction force which is more stretching than that in (5.3):

(5.12) g(x) = µL(1− 1.55x1)(4x2 − 1).

As the result, the whole Σ∗ is open without contact, however, the
cohesion occurs at the interface as shown in Figure 6.

Figure 6. Reference configuration (a); true solution zh (b).

In this case, the result of Algorithm 1 for n ∈ {0, . . . , 400} is depicted
in Figure 7. The objective ratio attains the minimum 0, 4%, and the
shape error ratio 25%. We observe in Figure 7 (a) that the whole curve
Σ∗ is recovered well compared to the previous case of contacting faces.

On the basis of our numerical simulation, we conclude that the break-
ing line identification algorithm is consistent with the setup of destruc-
tive physical analysis (DPA).
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Figure 7. Iterations Σ(n) (a); misfit ratio (b).
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Appendix A. Proof of Lemma 2.3

Let us define the quadratic functional E⋆ : I × V 2 7→ R by

(A.1) E⋆(s, u0, v) :=
1

2
⟨(E ′)⋆(s, u0)v, v⟩ for v ∈ V .

It is weakly lower semi-continuous and coercive due to (E⋆3), Gateaux-differentiable
by (E⋆2), and (E⋆)′(s, u0) = (E ′)⋆(s, u0). Adding to E⋆ in (A.1) the linear term
⟨E ′(s, 0), v⟩, the above properties provide an argument us ∈ V of the minimum:

(A.2) min
v∈V

{
E⋆(s, u0, v) + ⟨E ′(s, 0), v⟩

}
,

with an optimality condition in the form of the variational equation (2.12). Simi-
larly, using (J1), there exists a minimizer vs ∈ V of the problem:

(A.3) min
u∈V

{
E⋆(s, u0, u)− ⟨J ′(s,Mus),Mu⟩X∗,X

}
,

resulting in the adjoint equation (2.13). The uniqueness in (2.12) and (2.13) under
the coercivity assumption (E⋆3) if f⋆ = 0 follows in a standard way.

Indeed, inserting the explicit expression (2.9) of L into (2.10), we have the first
inequality

J (s,Mus)− ⟨(E ′)⋆(s, u0)v, us⟩ − ⟨E ′(s, 0), v⟩
≤ J (s,Mus)− ⟨(E ′)⋆(s, u0)vs, us⟩ − ⟨E ′(s, 0), vs⟩.

After cancelling J (s,Mus) and testing with v = vs ± w we obtain the variational
equation (2.12). Conversely, (2.12) satisfies the first inequality of (2.10) as equality.

On the other side, the second inequality of (2.10) after cancelling the term
−⟨E ′(s, 0), vs⟩ reads

J (s,Mus)− ⟨(E ′)⋆(s, u0)vs, us⟩ ≤ J (s,Mu)− ⟨(E ′)⋆(s, u0)vs, u⟩.

Substituting here u = us±rw, dividing the results with r and passing r → 0, by the
virtue of differentiability of J assumed in (J1), this leads to the variational equation
(2.13). Conversely, by the convexity assumption (J2) the necessary optimality
condition (2.13) is sufficient for the minimum in the second inequality of (2.10)
provided by us.
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This proves that (us, vs) ∈ V 2 is a saddle point to problem (2.10). The definition
(2.11) of solution sets Ks,Ks implies that (us, vs) ∈ Ks × Ks and satisfies the
equality (2.14). This completes the proof of Lemma 2.3.

Appendix B. Proof of Lemma 2.4

We test the primal equation (2.12) with v = us, apply the Cauchy–Schwarz
inequality, the coercivity (E⋆3) with u = us, and the boundedness assumption
(E4) to derive the upper bound

(B.1) a⋆∥us∥2V ≤ ⟨(E ′)⋆(s, u0)us + f⋆, us⟩
= ⟨f⋆ − E ′(s, 0), us⟩ ≤ (a+ ∥f⋆∥V ⋆)∥us∥V .

Testing the adjoint equation (2.13) with u = vs, from (E⋆3) with u = vs and (J3)
it follows similarly that

(B.2) a⋆∥vs∥2V ≤ ⟨(E ′)⋆(s, u0)vs + f⋆, vs⟩ = ⟨J ′(s,Mus),Mvs⟩X∗,X

+ ⟨f⋆, vs⟩ ≤ aJ ∥us∥V ∥Mvs∥X + ∥f⋆∥V ⋆∥vs∥V .
We combine (B.1) and (B.2) together in the uniform in s ∈ I estimate

(B.3) ∥us∥V + ∥vs∥V ≤ 1

a⋆
(a+ ∥f⋆∥V ⋆)

(
1 +

aJ
a⋆

∥M∥
)
+

1

a⋆
∥f⋆∥V ⋆ .

Then there exist sk → 0+, a subsequence of saddle points (usk , vsk) ∈ Ksk ×Ksk

and an accumulation point (u0, v0) ∈ V 2 such that

(B.4) (usk , vsk) ⇀ (u0, v0) weakly in V 2 as k → ∞.

For u = usk − u0 in the coercivity inequality (E⋆3) we have

(B.5) a⋆∥usk − u0∥2V ≤ ⟨(E ′)⋆(sk, u0)(usk − u0) + f⋆, usk − u0⟩
= ⟨f⋆ − E ′(sk, 0)− (E ′)⋆(sk, u0)u0, usk − u0⟩ = ⟨f⋆ − E ′(sk, u0), usk − u0⟩,

where (2.12) was tested with v = usk −u0, and (2.6) and property (E⋆2) were used.
Inserting u = vsk − v0 into (E⋆3) and using (2.13) with u = vsk − v0 gives similarly

(B.6) a⋆∥vsk − v0∥2V ≤ ⟨J ′(sk,Musk),M(vsk − v0)⟩X∗,X

+ ⟨f⋆ − (E ′)⋆(sk, u0)v0, vsk − v0⟩.
Taking the limit as k → ∞ in (B.5) and (B.6), we get (2.15) with the help of the
weak convergence in (B.4) and the boundedness properties (E4), (J3), (E⋆4) of E ′,
J ′, (E ′)⋆.

Finally, taking the limits in the primal (2.12) and adjoint (2.13) equations and
using the strong convergence (2.15) and the continuity assumptions (E5), (J4) and
(E⋆5), this guarantees that the pair (u0, v0) solves (2.2) (due to identity (2.6)) and
(2.13) at s = 0. Therefore, (u0, v0) ∈ K0 ×K0 which ends the proof of Lemma 2.4.

Appendix C. Proof of Lemma 2.5

From definition (2.9) of L and the variational equation (2.12), it follows straight-
forwardly that for s ∈ I:

(C.1) l(s) = L(s, u0, us, vs) = J (s,Mus)

− ⟨(E ′)⋆(s, u0)vs, us⟩ − ⟨E ′(s, 0), vs⟩ = J (s,Mus) = j(s)
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for the optimal values of the objective j in (2.16) and the Lagrange function l in
(2.14). Next we prove the directional differentiability of the Lagrangian l at 0..
Then by (C.1) we have ∂+j(0) = ∂+l(0) in (2.17).

We sketch the proof following [4, Chapter 10, Theorem 5.1]. For a test function
(u, v) = (u0, v0) ∈ K0 ×K0, the saddle-point inequalities (2.10) at s = sk give:

(C.2) L(sk, u0, usk , v0) ≤ L(sk, u0, usk , vsk) ≤ L(sk, u0, u0, vsk).

Also we insert (u, v) = (usk , vsk) ∈ Ksk ×Kt+sk into (2.10) at s = 0:

(C.3) L(0, u0, u0, vsk) ≤ L(0, u0, u0, v0) ≤ L(0, u0, usk , v0).

Subtracting l(0) = L(0, u0, u0, v0) from the left inequality (C.2) and using the right
inequality (C.3), after division with sk and applying the mean value theorem with
αk ∈ (0, 1) leads to the inequalities

L(sk, u0, usk , vsk)− L(0, u0, u0, v0)

sk
≥ L(sk, u0, usk , v0)− L(0, u0, u0, v0)

sk

≥ L(sk, u0, usk , v0)− L(0, u0, usk , v0)

sk
=

∂L
∂s

(αksk, u0, usk , v0).

Upon taking the limit as sk → 0+ by the virtue of the lower bound in assumption
(L1) we obtain

(C.4) lim inf
sk→0+

L(sk, u0, usk , vsk)− L(0, u0, u0, v0)

sk
≥ ∂L

∂s
(0, u0, u0, v0).

On the other hand, subtracting L(0, u0, u0, v0) from the right inequality (C.2),
using the left inequality (C.3) and the mean value theorem with weights αk ∈ (0, 1)
provides the following relations:

L(sk, u0, usk , vsk)− L(0, u0, u0, v0)

sk
≤ L(sk, u0, u0, vsk)− L(0, u0, u0, v0)

sk

≤ L(sk, u0, u0, vsk)− L(0, u0, u0, vsk)

sk
=

∂L
∂s

(αksk, u0, u0, vsk).

Together with the upper bound in (L1) this leads to the upper estimate

(C.5) lim sup
sk→0+

L(sk, u0, usk , vsk)− L(0, u0, u0, v0)

sk
≤ ∂L

∂s
(0, u0, u0, v0).

Inequalities (C.4) and (C.5) prove the limit in (2.17).

Appendix D. Proof of Lemma 3.2

The modified quadratic functional E⋆
ε : I × V 2 7→ R defined for v ∈ V by

(D.1) E⋆
ε (s, u

ε
0, v) :=

1

2
⟨(E ′)⋆(s, uε

0)v, v⟩+
1

2
⟨β⋆

ε (s,B(0)uε
0)B(s)v,B(s)v⟩H

is weakly lower semi-continuous and coercive due to (E⋆3), (B3), and (B⋆3). Using
(E⋆2) and (B⋆2) its Gateaux derivative is given by

⟨(E⋆
ε )

′(s, uε
0)u, v⟩ = ⟨(E ′)⋆(s, uε

0)v, u⟩+ ⟨β⋆
ε (s,B(0)uε

0)B(s)u,B(s)v⟩H .

Consequently, the variational equation (3.13) is an optimality condition for the
minimizer uε

s ∈ V of the following problem:

(D.2) min
v∈V

{
E⋆
ε (s, u

ε
0, v) + ⟨E ′(s, 0), v⟩+ ⟨βε(s, 0), B(s)v⟩H

}
,
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and the adjoint equation (3.14) provides an argument vεs ∈ V for

(D.3) min
u∈V

{
E⋆
ε (s, u

ε
0, v)− ⟨J ′(s,Muε

s),Mu⟩X∗,X

}
.

The uniqueness assertion is similar to Lemma 2.3 and done by coercivity.
The left-hand side of the saddle-point formulation (3.11) is equivalent to the

primal problem:

− ⟨(E ′)⋆(s, uε
0)v, u

ε
s⟩ − ⟨β⋆

ε (s,B(0)uε
0)B(s)v,B(s)uε

s⟩H
− ⟨E ′(s, 0), v⟩ − ⟨βε(s, 0), B(s)v⟩H ≤ −⟨(E ′)⋆(s, uε

0)v
ε
s , u

ε
s⟩ − ⟨E ′(s, 0), vεs⟩

− ⟨β⋆
ε (s,B(0)uε

0)B(s)vεs , B(s)uε
s⟩H − ⟨βε(s, 0), B(s)vεs⟩H ,

which implies equation (3.13). The right-hand side

J (s,Muε
s)− ⟨(E ′)⋆(s, uε

0)v
ε
s , u

ε
s⟩ − ⟨β⋆

ε (s,B(0)uε
0)B(s)vεs , B(s)uε

s⟩H
≤ J (s,Mu)− ⟨(E ′)⋆(s, uε

0)v
ε
s , u⟩ − ⟨β⋆

ε (s,B(0)uε
0)B(s)vεs , B(s)u⟩H

is equivalent to the adjoint equation (3.14) due to the convexity (J2). Then
(uε

s, v
ε
s) ∈ Ks

ε ×Kε
s satisfies the saddle-point condition (3.15).

The proof of (3.15) is analogous to that of Lemma 2.4. By the coercivity (E⋆3),
(B⋆3) and boundedness assumptions (E4), (B3), (B5), (B⋆4) we derive from equa-
tion (3.13)

(D.4) b⋆∥uε
s∥2V ≤ a⋆∥uε

s∥2V +
b⋆ − a⋆

b2
∥B(s)uε

s∥2H ≤ ⟨(E ′)⋆(s, uε
0)u

ε
s + f⋆, uε

s⟩

+⟨β⋆
ε (s,B(0)uε

0)B(s)uε
s+f⋆

b , B(s)uε
s⟩H = ⟨f⋆−E ′(s, 0), uε

s⟩+⟨f⋆
b −βε(s, 0), B(s)uε

s⟩H
≤

(
∥f⋆∥V ⋆ + a+ b(∥f⋆

b ∥H⋆ + bε)
)
∥uε

s∥V ,

and from the adjoint equation (3.14) using (J3) we get the upper bound

(D.5) b⋆∥vεs∥2V ≤ ⟨J ′(s,Muε
s),Mvεs⟩X∗,X⟨f⋆, vεs⟩+ ⟨f⋆

b , B(s)vεs⟩H
≤

(
aJ ∥M∥∥uε

s∥V + ∥f⋆∥V ⋆ + b∥f⋆
b ∥H⋆

)
∥vεs∥V .

By the boundedness of (uε
s, v

ε
s), there exists a subsequence (uε

sk
, vεsk) ∈ Ksk

ε ×Kε
sk

and an accumulation point (uε
0, v

ε
0) ∈ V 2 such that

(D.6) (uε
sk
, vεsk) ⇀ (uε

0, v
ε
0) weakly in V 2 as sk → 0+.

We test equation (3.13) with v = uε
sk

− uε
0 and in analogy to (D.4) we find using

identity (2.6):

(D.7) b⋆∥uε
sk

− uε
0∥2V ≤ ⟨(E ′)⋆(sk, u

ε
0)(u

ε
sk

− uε
0) + f⋆, uε

sk
− uε

0⟩
+⟨β⋆

ε (sk, B(0)uε
0)B(sk)(u

ε
sk
−uε

0)+f⋆
b , B(sk)(u

ε
sk
−uε

0)⟩H = ⟨f⋆−E ′(sk, u
ε
0), u

ε
sk
−uε

0⟩
+ ⟨f⋆

b − βε(sk, 0)− β⋆
ε (sk, B(0)uε

0)B(sk)u
ε
0, B(sk)(u

ε
sk

− uε
0)⟩H .

The adjoint equation (3.14) for u = vεsk − vε0 gives

(D.8) b⋆∥vεsk − vε0∥2V ≤ ⟨J ′(sk,Muε
sk
),M(vεsk − vε0)⟩X∗,X

+⟨f⋆−(E ′)⋆(sk, u
ε
0)v

ε
0, v

ε
sk
−vε0⟩+⟨f⋆

b −β⋆
ε (sk, B(0)uε

0)B(sk)v
ε
0, B(sk)(v

ε
sk
−vε0)⟩H .

Passing k → ∞ in (D.7) and (D.8) with the help of weak convergence in (D.6) and
recalling boundedness of B(s) (3.16) follows. The limit as s → 0+ in equations
(D.7) and (D.8) due to strong convergence (3.16) and continuity properties (E5),
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(J4), (E⋆5), (B4), (B6) and (B⋆5) agrees with the solution (uε
0, v

ε
0) ∈ K0

ε ×Kε
0 to

(3.7) (due to identity (3.9)) and to (3.14) at s = 0. This proves Lemma 3.2.

Appendix E. Proof of Theorem 3.2

Passing sk → 0+ due to the strong convergence (3.16) we refine the estimates
(D.4) as follows. Using the lower bound in (3.5) and (E2), from (3.7) tested with
v = uε

0 we get:

(E.1) a∥uε
0∥2V +

1

ε
∥[B(0)uε

0]
−∥2H ≤ ⟨βε(0, B(0)uε

0), B(0)uε
0⟩H

+ ⟨E ′(0, uε
0), u

ε
0⟩+ ⟨f, uε

0⟩+ εβ ≤ ∥f∥V ⋆∥uε
0∥V + εβ,

which is uniform in ε ∈ (0, ε0). From (D.5) as sk → 0+ it follows that

(E.2) b⋆∥vε0∥V ≤ aJ ∥M∥∥uε
0∥V + ∥f⋆∥V ⋆ + b∥f⋆

b ∥H⋆ .

Hence, there exists a subsequence εk → 0 and a weak accumulation point (u0, v0) ∈
V 2 such that [B(0)u0]

− = 0 since ∥[B(0)uεk
0 ]−∥H → 0, and

(E.3) (uεk
0 , vεk0 ) ⇀ (u0, v0) weakly in V 2 as k → ∞.

Taking the limit in (3.7) due to the convergence (E.3) and (E3), according to

the surjectivity in (B8) we determine λ0 ∈ H̃⋆ such that

(E.4) lim
εk→0

⟨βεk(0, B(0)uεk
0 ), B(0)v⟩H = − lim

εk→0
⟨E ′(0, uεk

0 ), v⟩

= −⟨E ′(0, u0), v⟩ =: ⟨λ0, B(0)v⟩H̃∗,H̃ for v ∈ V .

This implies that u0 ∈ V is a solution to the variational equation (3.25) and estab-
lishes the weak convergence

(E.5) βεk(0, B(0)uεk
0 ) ⇀ λ0 weakly in H̃⋆ as k → ∞.

The space H̃ has the order relation of H. Consequently λ0 ≤ 0 because of (3.5).
In particular, ⟨λ0, B(0)u0⟩H̃∗,H̃ ≤ 0 for B(0)u0 ≥ 0. On the other hand, by virtue

of assumption (B7) and (E.5) the strong convergence holds:

(E.6) B(0)uεk
0 → B(0)u0 strongly in H as k → ∞.

Using (3.5) and taking εk → 0 in ⟨βεk(0, B(0)uεk
0 ), B(0)uεk

0 ⟩H ≥ −εkβ provides
the opposite inequality ⟨λ0, B(0)u0⟩H̃∗,H̃ ≥ 0, which together ensures the comple-

mentarity relations (3.23). The variational equation (3.25) together with (3.23) is
equivalent to the variational inequality (3.4).

By the identity (2.6) at s = 0 equation (3.25) is equivalent to

⟨(E ′)⋆(0, u0)v, u0⟩+ ⟨E ′(0, 0), v⟩+ ⟨λ0, B(0)v⟩H̃∗,H̃ = 0 for all v ∈ V ,

which yields the first order necessary and sufficient optimality condition for the
unconstrained, primal limit problem (3.21).

Applying (E.3) and assumptions (J5), (E⋆6), (B8), the limit of the adjoint equa-

tion (3.20) determines µ0 ∈ H̃⋆ such that

(E.7) lim
εk→0

⟨β⋆
εk
(0, B(0)uεk

0 )B(0)vεk0 , B(0)u⟩H

= lim
εk→0

⟨J ′(0,Muεk
0 ),Mu⟩X∗,X − lim

εk→0
⟨(E ′)⋆(0, uεk

0 )vεk0 , u⟩

= ⟨J ′(0,Mu0),Mu⟩X∗,X − ⟨(E ′)⋆(0, u0)v0, u⟩ =: ⟨µ0, B(0)u⟩H̃∗,H̃ for u ∈ V .
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From (E.7) we conclude the existence of a solution v0 ∈ V to the limit adjoint
equation (3.26) and the ⋆-weak convergence (3.27). Applying the convergences (E.5)
and (3.27) to the identity (3.9) at s = 0, in the limit the compatibility condition
(3.24) follows. Equation (3.26) is the necessary and sufficient optimality condition
for the adjoint limit problem (3.22). The proof of Theorem 3.2 is complete.

Appendix F. Proof of Theorem 4.1

Using inequalities ∥[[u]]∥2L2(Σt)
≤ 2∥u∥2

L2(∂Ω±
t )

and (4.13), (4.14) we estimate from

below ⟨(E ′)⋆(0, uε
t )u, u⟩ in (4.30) as

(F.1) µL

∫
Ω±

t

|∇u|2 dx+

∫
Σt

∫ 1

0

α′′(0, [[ruε
t ]])[[u]]

2 drdSx

≥ µLKP∥u∥2H1(Ω±
t )

−Kα2∥[[u]]∥2L2(Σt)
≥ a⋆∥u∥2

H1(Ω±
t )
.

Then (4.36) provides the coercivity property (E⋆3) with uε
t replacing u0.

As s → 0, by the mean value theorem there exists r(s) ∈ [0, 1] such that from
(4.24), (4.25) it follows that ϕs = x + sΛ|t+rs and the expansions (see e.g. [34,
Chapter 2]):

(F.2) z ◦ ϕs = z + sΛ|⊤t+rs∇z, ∇ϕ−1
s ◦ ϕs = I − s∇Λ|t+rs,

Js = 1 + sdivΛ|t+rs, ωs = 1 + sdivτtΛ|t+rs

for u ∈ V (Ωt), and divτtΛ defined in (4.38). Inserting (F.2) into the perturbed
Lagrangian (4.35) we derive its expansion in the first argument:

(F.3) Lε(s, uε
t , u, v; Ωt) = Lε(0, uε

t , u, v; Ωt) + s
∂Lε

∂s
(rs, uε

t , u, v; Ωt)

with the partial derivative ∂Lε/∂s : I×V (Ωt)
3 7→ R in (F.3), which is a continuous

function and is given by

(F.4)
∂Lε

∂s
(s, uε

t , u, v) :=

∫
ΓO
t

(1
2
divτtΛ|t+s(u− z)2 − Λ|⊤t+s∇z(u− z)

)
dSx

−µL

∫
Ω±

t

(∇u)⊤(divΛ|t+s−∇Λ|t+s−∇Λ|⊤t+s)∇v dx+

∫
ΓN
t

(divτtΛ|t+sg+Λ|⊤t+s∇g)v dSx

+

∫
Σt

divτtΛ|t+s

{
ρ−

(∫ 1

0

[α′′ + β′
ε](0, [[ru

ε
t ]])[[u]] dr + [α′ + βε](0, 0)

)
[[v]]

}
dSx.

Here we recall the identity when u = uε
t :

(F.5)

∫ 1

0

[α′′ + β′
ε](0, [[ru

ε
t ]])[[u

ε
t ]] dr + [α′ + βε](0, 0) = [α′ + βε](0, [[u

ε
t ]]).

With the help of (F.1), (F.3) we check properties (E1)–(E5), (J1)–(J4), (E⋆1)–
(E⋆5), (B1)–(B6), (B⋆1)–(B⋆5), (L1)–(L3) with uε

t replacing u0 in Theorem 3.1.
This proves the assertion of Theorem 4.1.
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Appendix G. Proof of Theorem 4.2

We integrate by parts the domain integral from (4.37):

I(Ω±
t ) := −µL

∫
Ω±

t

(∇uε
t )

⊤(divΛ−∇Λ−∇Λ⊤)∇vεt dx

= µL

∫
Ω±

t

(
(Λ⊤∇uε

t )∆vεt + (Λ⊤∇vεt )∆uε
t

)
dx

− µL

∫
∂Ω±

t

Λ⊤
(
n±
t (∇uε

t )
⊤∇vεt −∇uε

t ((n
±
t )

⊤∇vεt −∇vεt ((n
±
t )

⊤∇uε
t

)
dSx

and since ∆uε
t = ∆vεt = 0 in Ω±

t :

I(Ω±
t ) = µL

∫
Σt

Λ⊤
(
νt[[(∇uε

t )
⊤∇vεt ]]− [[∇uε

t (ν
⊤∇vεt )]]− [[∇vεt (ν

⊤∇uε
t )]]

)
dSx

+ µL

∫
ΓD
t ∪ΓN

t

Λ⊤(∇uε
t (n

⊤
t ∇vεt ) +∇vεt (n

⊤
t ∇uε

t )
)
dSx.

Using the boundary conditions for (uε
t , v

ε
t ) from (4.16), (4.40), it follows that

τ⊤t ∇uε
t = τ⊤t ∇vεt = 0 at ΓD

t \ Σt. Decomposing D1 = (n⊤
t D1)nt + (τ⊤t D1)τt in

(4.43) gives

(G.1) I(Ω±
t ) =

∫
Σt

Λ⊤iΣt dSx +

∫
ΓD
t

(n⊤
t Λ)(n

⊤
t D1) dSx + (τ⊤t Λ)(τ⊤t [[D1]])∂ΓD

t ∩Σt

+

∫
ΓN
t

(Λ⊤∇vεt )g dSx +

∫
ΓO
t

(Λ⊤∇uε
t )(u

ε
t − z) dSx,

where the integrand along Σt in (G.1) is expressed as

(G.2) iΣt
:= νtµL[[(∇uε

t )
⊤∇vεt ]]− [[∇vεt ]] [α

′ + βε](0, [[u
ε
t ]])

− [[∇uε
t ]]

∫ 1

0

[α′′ + β′
ε](0, [[ru

ε
t ]])[[v

ε
t ]] dr = νtµL[[(∇uε

t )
⊤∇vεt ]]−∇pε − qε,

with the notation (4.44) for qε and pε. Here the gradient is given by

∇pε = [[∇vεt ]][α
′ + βε](0, [[u

ε
t ]]) + [[∇uε

t ]][α
′′ + β′

ε](0, [[u
ε
t ]])[[v

ε
t ]].

By the virtue of (4.45) and (G.2) and exploiting the calculus∇(ξη) = ∇ξ⊤η+∇η⊤ξ
we rearrange the terms in (4.37):

(G.3) ∂+j(ε, 0) =
1

2

∫
ΓO
t

(
divτtΛ (uε

t − z)2 + Λ⊤∇((uε
t − z)2)

)
dSx

+

∫
Σt

(
divτtΛ (ρ− pε) + Λ⊤(νtµL[[(∇uε

t )
⊤∇vεt ]]−∇pε − qε

))
dSx

+

∫
ΓN
t

(
divτtΛ(gv

ε
t )+Λ⊤∇(gvεt )

)
dSx+

∫
ΓD
t

(n⊤
t Λ)(n

⊤
t D1) dSx+(τ⊤t Λ)(τ⊤t [[D1]])∂ΓD

t ∩Σt
.

The integration along a boundary Γt ⊂ ∂Ω±
t is given by the formula (see e.g.

[34, (2.125)]) for smooth p ∈ H2(Ω±
t ):

(G.4)

∫
Γt

(divτtΛ p+ Λ⊤∇p) dSx =

∫
Γt

(n⊤
t Λ)(κtp+ n⊤

t ∇p) dSx + (τ⊤t Λ)p|∂Γt ,
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where the curvature κt = divτtnt, the normal nt and tangential τt vectors at ∂Γt are
positively oriented. Applying (G.4) to (G.3) and decomposing the velocity (4.41),
we conclude the Hadamard representation (4.42)–(4.44).

The substitution of (4.45) into (4.42) implies that ∂+j(ε, 0) < 0.


