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Abstract. This paper is devoted to proving L∞- estimates for the solution

of semilinear parabolic equations. The uniform estimates are obtained on the
infinite time interval under the assumption that the solution is square inte-

grable. This setting is useful for stabilization problems formulated as optimal

control problems. The inhomogenous forcing function are chosen as elements
of anisotropic Lebesgue spaces. Different boundary conditions on bounded

domains with a Lipschitz continuous boundary are investigated.

1. Introduction4

The goal of this paper is to establish the existence, uniqueness, and L∞(Q)-5

estimates for the solution of the following infinite horizon problem6 {
∂u

∂t
−∆u+ au+ d(x, t, u) = g in Q = Ω× (0,∞),

∂nu+ b(x, t, u) = h on Σ = Γ× (0,∞), u(0) = u0 in Ω.
(1.1)

The motivation for this endeavour is two-fold. First, this is a question of intrinsic7

interest and second, such L∞(Q) information is of importance for optimal control8

problems involving (1.1). The analysis of such control problems involves first and9

second order derivatives of the state u with respect to the control variable, where10

g or h represent the control variable, and this step is greatly facilitated, or even11

necessary, if the state u has L∞(Q)-regularity; see, for instance, [6, 16, 19]. Spe-12

cial attention is paid to obtain estimates over the infinite time horizon. This is13

motivated by stabilization problems, which can be treated by optimal control tech-14

niques, or by some applications in economy or biology. Here we focus on semilinear15

equations and semilinear Neumann boundary conditions. Dirichlet boundary con-16

ditions and more general elliptic operators, including the case of non-autonomous17

coefficients, are addressed in short sections at the end of the paper. The inhomo-18

geneities g and h will be assumed to be elements of anisotropic Sobolev spaces,19

with the precise conditions given in the following section.20

L∞(Q)-regularity of linear and semilinear parabolic equations has been investi-21

gated with much effort and a wide variety of techniques in earlier work. Let us first22

comment on results which allow for forcing functions in the state equation, which23

represent the controls in the control theoretic context. Hölder estimates on the state24

of linear parabolic equations on rough domains with mixed boundary conditions25
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were obtained by maximum regularity results in [9], [14]. L∞(Q)-estimates have1

further been proved in [2], [7], [3, Theorem 17.2], and [17]. In [17] semilinear equa-2

tions with Neumann boundary conditions are investigated and L∞(Q)-estimates3

are obtained by means of treating the nonlinear term by an appropriately chosen4

linearization and subsequently utilizing L∞(Q)-estimates obtained by semigroup5

theory and comparison principles for linear equations. Here the nonlinearities in6

the Neumann boundary problem are of class C1 and monotone, and the analysis7

is performed for finite horizon problems. These conditions will be relaxed in our8

work. In [2], in the course of investigating control problems, L∞(Q)-estimates are9

obtained for semilinear equations with inhomogenous Dirichlet boundary condition10

and finite horizon as well. Again the proof technique for these estimates utilizes11

comparison principles. Due to the semigroup approach, the coefficients in the dif-12

ferential operator are autonomous. In these last two works the regularity of the13

boundary Γ is assumed to be of class C2,α and the coefficients of the main part of14

the operator are of class C1,α(Ω̄) for some α > 0. In [2] and [17], the data were as-15

sumed to belong to isotropic Lebesgue spaces. However, in some control problems,16

the use of anisotropic Lebesgue spaces is necessary; see, for instance, [7]. Actually,17

L∞(Q)-estimates were proved in [7] for controls contained in Lp(0,∞;L2(Ω)) with18

p large enough. In a classic result for L∞ estimates, [3, Theorem 17.2], the time19

horizon T is finite, the nonlinear term of the equation is bounded with respect to20

the state u, and only the Dirichlet case is considered.21

Next we exemplarily refer to [20] and [21] and the references therein for the study22

of semilinear parabolic equations, which do not allow for forcing functions, and with23

a different focus on the type of nonlinearity than in our work, since the focus lies24

on blow-up phenomena. There are also many contributions on semilinear parabolic25

systems; see, for instance, [1, 15]. The assumptions of these papers, when restricted26

to the scalar case, do not cover our results. Finally we mention [10] and [12], where27

the authors consider semilinear problems with a very particular classes of forcing28

terms and Ω = Rn, and concentrate on the analysis of blow or lack thereof.29

In the present paper we investigate systematically the L∞(Q)-estimates for semi-30

linear parabolic equations under minimal regularity assumptions on the boundary31

Γ and the coefficients of the elliptic operator. Here we use tools from [13, Chapter32

III, Sec.6-8] where L∞(Q)-estimates are obtained for linear parabolic equations and33

a Dirichlet boundary condition. More precisely, we establish L∞(Q)-estimates for34

semilinear parabolic equations with Dirichlet and Neumann conditions for infinite35

time horizon, with coefficients depending on (x, t) belonging to L∞(Q), locally Lip-36

schitz nonlinearities, with forcing functions in anisotropic Lebesgue spaces, under37

a Lipschitz regularity of boundary Γ.38

The paper is organized in the following way. The precise problem statement and39

the main result are presented in Section 2. The proof of this result utilizes a splitting40

of the problem in two subproblems, with one of them involving a linear equation41

with an inhomogenous boundary condition, and a second one, involving the non-42

linearities d and b, and a homogenous boundary condition. These two problems43

are investigated in Sections 3 and 4. In Section 5, we consider non-linearities under44

different assumptions than used earlier in the paper, as well as the cases of Dirichlet45

boundary conditions and more general second order operators than the Laplacian46

as in (1.1). There we also point out how certain conditions on the non-linearities47

can be modified, in case that (1.1) is considered on a finite time horizon [0, T ].48
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2. Assumptions and main theorem1

We make the following assumptions on the problem data of (1.1). In case n ≥ 2,2

Ω denotes an open bounded subset of Rn with a Lipschitz boundary Γ. For n = 1,3

Ω = (α, β) with −∞ < α < β <∞ and Γ = {α, β}. Throughout this paper we set4

I = (0,∞), Q = Ω× I, Σ = Γ× I, QT = Ω× (0, T ) and ΣT = Γ× (0, T ) for every5

T ∈ (0,∞).6

For the partial differential equation we assume that a ∈ L∞(Q), 0 ≤ a ̸≡ 0,
g ∈ L2(Q) ∩ Lr(I;Lp(Ω)) with 1

r + n
2p < 1 and p, r ∈ [1,∞], and d : Q × R −→ R

denotes a Carathéodory function satisfying

d(x, t, 0) = 0, (2.1)

∀M ∃LM : |d(x, t, u2)− d(x, t, u1)| ≤ LM |u2 − u1|,∀|ui| ≤M, i = 1, 2, (2.2)

∃R such that d(x, t, u)u ≥ 0 ∀|u| ≥ R, (2.3)

for almost all (x, t) ∈ Q.

For the Neumann condition, in the case n ≥ 2, we assume h ∈ L2(Σ)∩Ls(I;Lq(Γ))7

with 1
s +

n−1
2q < 1

2 and s, q ∈ (1,∞], and b : Σ×R −→ R is a Carathéodory function8

satisfying (2.1)–(2.3) with d and Q replaced by b and Σ.9

In the case n = 1, we assume that h = (hα, hβ) with hα, hβ ∈ L2(I)∩Ls(I), s > 2,10

and b = (bα, bβ) with bα, bβ : I ×R −→ R Carathéodory functions satisfying (2.1)–11

(2.3) in the variables (t, u). Further, the boundary condition must be interpreted12

in the following sense13

−∂xu(α, t) + b(t, u(α, t)) = hα(t) and ∂xu(β, t) + b(t, u(β, t)) = hβ(t). (2.4)

Finally, we assume that the initial condition u0 belongs to L∞(Ω).14

As an immediate consequence of (2.1) and (2.2) we deduce15

∀M > 0 |d(x, t, u)| = |d(x, t, u)− d(x, t, 0)| ≤ LM |u| ≤ LMM ∀|u| ≤M.

The same property is enjoyed by b.16

Typical functions satisfying the conditions (2.1)-(2.3) are d(x, t, u) = α(x, t)[eu−17

1] or d(x, t, u) =
∑2m+1

k=1 αk(x, t)u
k, where the coefficients α and αk are functions18

of L∞(Q), α(x, t) ≥ α0, and α2m+1(x, t) ≥ α0 for some real constant α0 > 0. In19

particular, the Schlögl and Allen Cahn equations fit into the second example.20

The following notation will be used in this paper. For 0 < T ≤ ∞ we consider21

the Hilbert space22

W (0, T ) = {u ∈ L2(0, T ;H1(Ω)) :
∂u

∂t
∈ L2(0, T ;H1(Ω)∗)}

endowed with the norm ∥u∥W (0,T ) =
(
∥u∥2L2(0,T ;H1(Ω)) +

∥∥∥∂u
∂t

∥∥∥2
L2(0,T ;H1(Ω)∗)

) 1
2

.23

The embedding W (0, T ) ⊂ C([0, T ];L2(Ω)) is continuous for T ≤ ∞ and W (0, T )24

is compactly embedded in L2(0, T ;L2(Ω)) if T <∞; see [18, page 106].25

Definition 2.1. We call u a solution to (1.1) if for every T > 0 the restriction of26

u to QT belongs to W (0, T )∩L∞(QT ) and it satisfies the following equation in the27

variational sense28 {
∂u

∂t
−∆u+ au+ d(x, t, u) = g in QT ,

∂nu+ b(x, t, u) = h on ΣT , u(0) = u0 in Ω,
(2.5)
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thus u(0) = u0 and∫ T

0

⟨∂u
∂t

(t), v(t)⟩H1(Ω)∗,H1(Ω) dt+

∫
QT

[∇u∇v + auv] dx dt

+

∫
QT

d(x, t, u)v dxdt+

∫
ΣT

b(x, t, u)v dxdt

=

∫
QT

gv dxdt+

∫
ΣT

hv dxdt ∀v ∈W (0, T ).

1

The following theorem is the main result of this paper.2

Theorem 2.2. Under the above assumptions, equation (1.1) has a unique solution
u. Moreover, if u ∈ L2(Q) then u ∈W (I)∩L∞(Q) and there exist constants K1 and
K2 depending on d, b, and monotonically increasing on ∥h∥L2(Σ) + ∥h∥Ls(I;Lq(Γ)),
such that the following estimates hold

∥u∥Q ≤ K1

(
∥u∥L2(Q) + ∥u0∥L2(Ω) + ∥g∥L2(Q) + ∥h∥L2(Σ)

)
, (2.6)

∥u∥L∞(Q) ≤ K2

(
∥u∥L2(Q) + ∥u0∥L∞(Ω)

+ ∥g∥L2(Q) + ∥g∥Lr(I;Lp(Ω)) + ∥h∥L2(Σ) + ∥h∥Ls(I;Lq(Γ)) +R
)
, (2.7)

∥d(·, ·, u)∥L∞(Q) + ∥d(·, ·, u)∥L2(Q) ≤ LK∞∥u∥L2(Q), (2.8)

∥b(·, ·, u)∥L∞(Σ) + ∥b(·, ·, u)∥L2(Σ) ≤ LK∞∥u∥L2(Q), (2.9)

where R is given by (2.3), LK∞ is the Lipschitz constant in (2.2) associated with3

M = K∞ = ∥u∥L∞(Q), and4

∥u∥Q =
(
∥u∥2L∞(I;L2(Ω)) + ∥u∥2L2(I;H1(Ω))

) 1
2

.

Further, if u0 ∈ C(Ω̄), then the regularity u ∈ C(Ω̄× [0,∞)) is fulfilled.5

For n = 1 the norms ∥h∥L2(Σ) and ∥h∥Ls(I;Lq(Γ)) in the above theorem must be6

interpreted as follows7

∥h∥L2(Σ) =
(
∥hα∥2L2(I) + ∥hβ∥2L2(I)

) 1
2 , ∥h∥Ls(I;Lq(Γ)) =

(
∥hα∥sLs(I) + ∥hβ∥sLs(I)

) 1
s .

If s = ∞, then ∥h∥Ls(I;Lq(Γ)) must be replaced by ∥hα∥L∞(I) + ∥hβ∥L∞(I).8

Remark 2.3. Let us point out that in the context of many optimal control prob-9

lems the minimization of the L2(Q)-distance between the solution u of the state10

equation and a desired target is the goal. Hence, we get the L2(Q)-estimate for11

every admissible state in a natural way. Then, their L∞(Q)-estimates follow from12

the above theorem. This L∞(Q) property of the states is essential in the subsequent13

analysis of optimality conditions, which involves the first and second derivatives of14

the control-to-state mapping.15

All along the proof of this theorem the following inequality will be used:16

∃Ca > 0 : Ca∥v∥2H1(Ω) ≤
∫
Ω

[|∇v|2 + av2] dx ∀v ∈ H1(Ω). (2.10)
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Proof of Uniqueness. Let us assume that u1 and u2 are two solutions of (1.1)
and set u = u2 − u1. Given T < ∞, subtracting the equations satisfied by u2 and
u1 and testing the resulting equation with u we get for t ∈ (0, T )

1

2
∥u(t)∥2L2(Ω) +

∫
Qt

[|∇u|2 + au2] dxdτ

=

∫
Qt

[d(x, τ, u1)− d(x, τ, u2)]udxdτ +

∫
Σt

[b(x, τ, u1)− b(x, τ, u2)]udxdτ.

Taking M = max{∥u1∥L∞(QT ), ∥u2∥L∞(QT )} in (2.2) and using the Lipschitz prop-1

erties of d and b, and (2.10) we infer2

1

2
∥u(t)∥2L2(Ω) + Ca∥u∥2L2(0,t;H1(Ω)) ≤ LM

∫ t

0

(
∥u(τ)∥2L2(Ω) + ∥u(τ)∥2L2(Σ)

)
dτ.

We recall the inequality3 ∫
Γ

v2 dx ≤ K
(
ε

∫
Ω

|∇v|2 dx+ ε−1

∫
Ω

v2 dx
)

∀v ∈ H1(Ω) (2.11)

for all ε ∈ (0, 1) and a constant K independent of ε; see [11, Theorem 1.5.1.10].4

Choosing ε = min
{

1
2 ,

Ca

2KLM

}
we deduce from the above inequalities5

∥u(t)∥2L2(Ω) + Ca∥u∥2L2(0,t;H1(Ω)) ≤ 2LM (1 +Kε−1)

∫ t

0

∥u(τ)∥2L2(Ω) dτ.

Then, Gronwall’s inequality implies that u = 0.6

To prove the existence of a solution we decompose equation (1.1) into two parts:{
∂v

∂t
−∆v + av = 0 in Q,

∂nv = h on Σ, v(0) = 0 in Ω,
(2.12)

∂w

∂t
−∆w + aw + d̂(x, t, w) = g in Q,

∂nw + b̂(x, t, w) = 0 on Σ, w(0) = u0 in Ω,
(2.13)

with d̂(x, t, w) = d(x, t, v(x, t) + w) and b̂(x, t, w) = b(x, t, v(x, t) + w). Let us7

observe that if v and w solve the equations (2.12) and (2.13), then u = v+w is the8

solution of (1.1). The motivation for this decomposition is to deal with the different9

orders of integrability of g and h. The analysis of (2.12) and (2.13) is carried out10

in Sections 3 and 4, respectively.11

For the analysis of these equations we will use the following lemmas.12

Lemma 2.4. Let r̂ and q̂ be real numbers satisfying13

1

r̂
+

n

2q̂
=
n

4
,

r̂ ∈ [2,∞], q̂ ∈ [2, 2n
n−2 ] for n > 2,

r̂ ∈ (2,∞], q̂ ∈ [2,∞) for n = 2,
r̂ ∈ [4,∞], q̂ ∈ [2,∞] for n = 1.

Then, there exists a constant C only depending on r̂, q̂, and n, but independent of14

T ∈ (0,∞], such that15

∥u∥Lr̂(0,T ;Lq̂(Ω)) ≤ C∥u∥QT
∀u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), (2.14)
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where1

∥u∥QT
=
(
∥u∥2L∞(0,T ;L2(Ω)) + ∥u∥2L2(0,T ;H1(Ω))

) 1
2

.

2

Utilizing the Gagliardo inequality [4, page 173]3

∥u∥Lq̂(Ω) ≤ C∥u∥1+
n
q̂ −n

2

L2(Ω) ∥u∥
n
2 −n

q̂

H1(Ω) ∀u ∈ H1(Ω),

the proof of this lemma can be achieved by following the steps of the proof in [13,4

page 74-75] by changing ∥∇u∥L2(Ω) for ∥u∥H1(Ω).5

Lemma 2.5. Let {ξj}∞j=1 be a sequence of nonnegative real numbers satisfying the6

recursion relation7

ξj+1 ≤ cbjξ1+ε
j for j = 0, 1, . . . , (2.15)

for positive constants c, ε, and b > 1. If ξ0 ≤ c−
1
ε b

−1

ε2 , then the inequality8

ξj ≤ c−
1
ε b

−1

ε2 b−
j
ε (2.16)

holds and, consequently, limj→∞ ξj = 0.9

See [13, Lemma II-5.6] for the proof.10

Remark 2.6. In sections 3 and 4, the proofs will be carried out for finite values
s, q, r, and p. In the case where one of these numbers is ∞, for instance s = ∞ and
the condition 1

s + n−1
2q < 1

2 holds, then we can select a number s̃ < ∞ sufficiently

large such that 1
s̃ +

n−1
2q < 1

2 . Since h ∈ L2(Σ)∩L∞(I;Lq(Γ)), then we get that h ∈
Ls̃(I;Lq(Γ)) and the existence and L∞(Q) estimates of the solution is established.
Finally, it is enough to use that

∥h∥Ls̃(I;Lq(Γ)) ≤ ∥h∥1−
2
s̃

L∞(I;Lq(Γ))∥h∥
2
s̃

L2(I;Lq(Γ))

≤ s̃

s̃− 2
∥h∥L∞(I;Lq(Γ)) +

s̃

2
∥h∥L2(I;Lq(Γ)).

Hence, the estimate (2.7) follows. The same argument applies to the other values11

whenever one of them is ∞.12

3. Analysis of the linear equation.13

In this section we prove the following theorem.14

Theorem 3.1. Equation (2.12) has a unique solution v that belongs to W (I) ∩
C(Ω̄× [0,∞)). Moreover, we have the estimates

∥v∥Q + ∥v∥W (I) ≤M1∥h∥L2(Σ), (3.1)

∥v∥L∞(Q) ≤M2

(
∥h∥L2(Σ) + ∥h∥Ls(I;Lq(Ω))

)
(3.2)

with constants M1 and M2 independent of h.15
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Proof. From [18, Section III.2] we know the existence and uniqueness of a solution
v ∈W (0, T ). Testing the equation with v and integrating in QT we infer with (2.10)

1

2
∥v(t)∥2L2(Ω) + Ca∥v∥2L2(0,T ;H1(Ω))

≤ 1

2
∥v(t)∥2L2(Ω) +

∫
QT

[|∇v|2 + av2] dxdt =

∫
ΣT

hv dxdt

≤ ∥h∥L2(Σ)∥v∥L2(ΣT ) ≤ CΩ∥h∥L2(Σ)∥v∥L2(0,T ;H1(Ω))

≤ C2
Ω

2Ca
∥h∥2L2(Σ) +

Ca

2
∥v∥2L2(0,T ;H1(Ω)),

where we used that ∥v∥L2(Γ) ≤ CΩ∥v∥H1(Ω) for every v ∈ H1(Ω) and some constant1

CΩ depending on Ω. The above equation implies2

∥v∥C([0,T ];L2(Ω)) +
√
Ca∥v∥L2(0,T ;H1(Ω)) ≤

√
2

Ca
CΩ∥h∥L2(Σ).

Taking the supremum in T we obtain the estimate for ∥v∥Q in (3.1). Now, from the3

variational formulation of (2.12) we get ∂v
∂t ∈ L2(I;H1(Ω)∗) and, hence, v ∈ W (I)4

and the associated estimate follows.5

Next, we prove the estimate (3.2). To this end we follow some ideas of [13,6

Theorem III-7.1]. First we analyze the case n > 1. Given T < ∞ arbitrary, we7

define for every real number ρ > 0 and (x, t) ∈ QT8

vρ(x, t) = v(x, t)− Proj[−ρ,+ρ](v(x, t)) and Aρ(t) = {x ∈ Ω : |v(x, t)| > ρ}.

Since v ∈ W (0, T ) we also have that vρ ∈ W (0, T ) and ∇v · ∇vρ = |∇vρ|2. The9

fact that ∂tvρ ∈ L2(0, T ;H1(Ω)∗) follows from the results in [18, pages 104–105].10

Additionally we have11 ∫ t

0

〈∂v(τ)
∂t

, vρ(τ)
〉
H1(Ω)∗,H1(Ω)

dτ =
1

2
∥vρ(t)∥2L2(Ω) ∀t ∈ (0, T ).

To establish this identity we take a sequence {vk}∞k=1 ⊂ C∞(Q̄T ) such that vk → v
in W (0, T ). This convergence implies that vk → v in C([0, T ];L2(Ω)). Now we set
vk,ρ(x, t) = vk−Proj[−ρ,+ρ](vk(x, t)). From the Lipschitz property of the projection

it is immediate to check that vk,ρ → vρ in L2(0, T ;H1(Ω)) and in C([0, T ];L2(Ω)).
Then, we have for every t ∈ (0, T )∫ t

0

〈∂v(τ)
∂t

, vρ(τ)
〉
H1(Ω)∗,H1(Ω)

dτ = lim
k→∞

∫ t

0

〈∂vk(τ)
∂t

, vk,ρ(τ)
〉
H1(Ω)∗,H1(Ω)

dτ

= lim
k→∞

∫ t

0

∫
Ω

∂vk,ρ
∂t

vk,ρ dxdτ = lim
k→∞

1

2

∫ t

0

d

dt
∥vk,ρ(τ)∥2L2(Ω) dτ

= lim
k→∞

1

2
∥vk,ρ(t)∥2L2(Ω) =

1

2
∥vρ(t)∥2L2(Ω).

Taking σ = qn
qn−n+1 ∈ [1, 2), we have that q′ = (n−1)σ

n−σ and, hence, the trace

mapping γ : W 1,σ(Ω) −→ Lq′(Γ) is well defined with an embedding constant Cγ .
Testing equation (2.12) with vρ, using the identity established above, and (2.10) we
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get

1

2
∥vρ(t)∥2L2(Ω) + Ca∥vρ∥2L2(0,T ;H1(Ω))

≤ 1

2
∥vρ(t)∥2L2(Ω) +

∫ t

0

∫
Ω

[|∇vρ|2 + av2ρ] dxdτ ≤
∫ t

0

∫
Γ

h vρ dxdτ

≤
∫ t

0

∥h∥Lq(Γ)∥vρ(τ)∥Lq′ (Γ) dτ ≤ Cγ

∫ t

0

∥h∥Lq(Γ)∥vρ(τ)∥W 1,σ(Aρ(τ)) dτ

≤ Cγ

∫ t

0

∥h∥Lq(Γ)∥vρ(τ)∥H1(Aρ(τ))|Aρ(τ)|
2−σ
2σ dτ

≤ Cγ∥h∥Ls(I;Lq(Γ))∥vρ∥L2(0,T ;H1(Ω))

(∫ t

0

|Aρ(τ)|
s(qn−2n+2)

(s−2)qn dτ
) s−2

2s

.

For the last inequality we used Hölder’s inequality with exponents s, 2, and 2s
s−2 .1

With Young’s inequality we obtain for a constant C1 depending only on Ca and Cγ2

∥vρ∥QT
≤ C1∥h∥Ls(I;Lq(Γ))

(∫ T

0

|Aρ(t)|
s(qn−2n+2)

(s−2)qn dt
) s−2

2s ∀ρ > 0. (3.3)

Let us select r̂ and q̂ satisfying the system3 
1

r̂
+

n

2q̂
=
n

4

r̂

q̂
=
s(qn− 2n+ 2)

(s− 2)qn
.

This results in4

r̂ =
4

n
+

2s(qn− 2n+ 2)

(s− 2)qn
and q̂ = 2 +

4(s− 2)q

s(qn− 2n+ 2)
.

It is easy to check that (r̂, q̂) satisfies the assumptions of Lemma 2.4, consequently5

the inequality (2.14) holds. The motivation for the second equation in the above6

system will get transparent from the estimates further below.7

For every j = 0, 1, 2, . . . we set δj = ρ(2 − 2−j). We observe that ρ ≤ δj ≤ 2ρ,
Aρ(t) = Aδ0(t) ⊃ Aδ1(t) ⊃ Aδ2(t) ⊃ . . ., and Aδj (t) ⊃ A2ρ(t) for every j ≥ 0. Then,
we have with (2.14)

C∥vδj∥QT
≥ ∥vδj∥Lr̂(0,T ;Lq̂(Ω)) =

(∫ T

0

∥vδj∥r̂Lq̂(Aδj
(t)) dt

) 1
r̂

≥

(∫ T

0

∥vδj∥r̂Lq̂(Aδj+1
(t)) dt

) 1
r̂

≥ (δj+1 − δj)

(∫ T

0

|Aδj+1(t)|
r̂
q̂ dt

) 1
r̂

= (δj+1 − δj)

(∫ T

0

|Aδj+1(t)|
s(qn−2n+2)

(s−2)qn dt

) 1
r̂

.
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Taking ρ = δj in (3.3) and using the last estimate we obtain∫ T

0

|Aδj+1
(t)|

s(qn−2n+2)
(s−2)qn dt

≤ C2

(δj+1 − δj)r̂
∥h∥r̂Ls(I;Lq(Γ))

(∫ T

0

|Aδj (t)|
s(qn−2n+2)

(s−2)qn dt
) r̂(s−2)

2s

with C2 = (CC1)
r̂. Denoting1

ξj =

∫ T

0

|Aδj (t)|
s(qn−2n+2)

(s−2)qn dt, j ≥ 0, c = C2

[2
ρ
∥h∥Ls(I;Lq(Γ))

]r̂
, b = 2r̂,

and using that δj+1 − δj = ρ2−(j+1), we infer from the above inequality2

ξj+1 ≤ cbjξ
r̂(s−2)

2s
j for all j ≥ 0. (3.4)

In order to apply Lemma 2.5, we have to check that b > 1, what is obvious,
r̂(s−2)

2s > 1, and ξ0 ≤ c−
1
ε b−

1
ε2 , where ε = r̂(s−2)

2s − 1. From the definition of r̂ the
second inequality is true if and only if

r̂(s− 2)

2s
=

2(s− 2)

sn
+
qn− 2n+ 2

qn
=

2

n
− 4

sn
+ 1− 2

q
+

2

qn
> 1

⇐⇒ 1− 2

s
− n

q
+

1

q
> 0 ⇐⇒ 1

s
+
n− 1

2q
<

1

2
,

which is exactly our assumption on (s, q). To check the condition of ξ0 we distin-

guish two cases. First we assume that s ≤ qn
n−1 , which is equivalent to 2s(qn−2n+2)

(s−2)qn ≥
2. Hence, using that Aδ0(t) = Aρ(t) and |Aρ(t)| ≤ 1

ρ2 ∥v(t)∥2L2(Aρ(t))
, we get with

(3.1)

ξ0 ≤ 1

ρ
2s(qn−2n+2)

(s−2)qn

∫ T

0

∥v(t)∥
2s(qn−2n+2)

(s−2)qn

L2(Ω) dt ≤ 1

ρ
2s(qn−2n+2)

(s−2)qn

∥v∥
2s(qn−2n+2)

(s−2)qn
−2

L∞(0,T ;L2(Ω))∥v∥
2
L2(QT )

≤
(1
ρ
∥v∥QT

) 2s(qn−2n+2)
(s−2)qn ≤

(M1

ρ
∥h∥L2(Σ)

) 2s(qn−2n+2)
(s−2)qn

.

Setting η = 2s(qn−2n+2)
(s−2)qn and3

ρ = 4max{1, C
1
r̂
2 b

1
εr̂ }
(
∥h∥Ls(I;Lq(Γ)) +M1∥h∥L2(Σ)

)
,

we obtain4

c
1
ε b

1
ε2 ξ0 ≤ C

1
ε
2 2

r̂
ε
1

ρ
r̂
ε

∥h∥
r̂
ε

Ls(I;Lq(Γ))b
1
ε2

1

ρη
Mη

1 ∥h∥
η
L2(Σ) ≤

1

2
r̂
ε

< 1.

Hence, Lemma 2.5 implies that5 ∫ T

0

|A2ρ(t)|
s(qn−2n+2)

(s−2)qn dt ≤ lim
j→∞

ξj = 0,

which implies that |A2ρ(t)| = 0 for almost every t ∈ (0,∞) and, consequently,6

|v(x, t)| ≤ 2ρ a.e. in Q and the estimate (3.2) holds.7

Now, we assume that s > qn
n−1 , hence

2s(qn−2n+2)
(s−2)qn < 2. Then, we have that

2 < 2(s−2)qn
s(qn−2n+2) < 2n

n−2 . To check the second inequality we observe that it is

equivalent to 1
s + n−1

2q < 1
2 + n

2s , which holds due to our assumption on (s, q).
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The second inequality implies the continuous embedding H1(Ω) ⊂ L
2(s−2)qn

s(qn−2n+2) (Ω).
Hence we can estimate

ξ0 ≤ 1

ρ2

∫ T

0

∥v(t)∥2
L

2(s−2)qn
s(qn−2n+2) (Ω)

dt ≤ C3

ρ2

∫ T

0

∥v(t)∥2H1(Ω) dt

≤ C3

(1
ρ
∥v∥QT

)2 ≤
(√C3M1

ρ
∥h∥L2(Σ)

)2
.

Then, taking1

ρ = 4max{1, C
1
r̂
2 b

1
εr̂ }
(
∥h∥Ls(I;Lq(Γ)) +

√
C3M1∥h∥L2(Σ)

)
,

and arguing as before we deduce again the estimate (3.2).2

Now, we address the case n = 1. Starting as we did for the case n > 1 and
recalling that s > 2 we get

1

2
∥vρ(t)∥2L2(Ω) + Ca∥vρ∥2L2(0,T ;H1(Ω)) ≤

∫
ΣT

hvρ dxdt

=

∫ t

0

[hα(τ)vρ(α, τ) + hβ(τ)vρ(β, τ)] dτ

≤ C4

∫ t

0

[|hα(τ)|+ |hβ(τ)|]∥vρ(τ)∥W 1,1(Aρ(τ)) dτ

≤ C4

∫ t

0

[|hα(τ)|+ |hβ(τ)|]∥vρ(τ)∥H1(Aρ(τ))|Aρ(τ)|
1
2 dτ

≤ C4(∥hα∥Ls(I) + ∥hβ∥Ls(I))∥vρ∥L2(0,T ;H1(Ω))

(∫ T

0

|Aρ(τ)|
s

s−2 dτ
) s−2

2s

,

where we used that W 1,1(Ω) = W 1,1(α, β) ⊂ C[α, β] and Hölder’s inequality with3

exponents s, 2, and s−2
2s .4

To get a lower bound by using the inequality (2.14), we select r̂ and q̂ satisfying5

the equations6 
1

r̂
+

1

2q̂
=

1

4

r̂

q̂
=

s

s− 2
,

which gives r̂ = 4 + 2s
s−2 ∈ [6,∞) and q̂ = 2 + 4(s−2)

s ∈ (2, 6]. Then, arguing as for
n > 1 we get

C∥vδj∥QT
≥ (δj+1 − δj)

(∫ T

0

|Aδj+1
(t)|

r̂
q̂ dt

) 1
r̂

= (δj+1 − δj)

(∫ T

0

|Aδj+1(t)|
s

s−2 dt

) 1
r̂

.

The two estimates lead to∫ T

0

|Aδj+1
(t)|

s
s−2 dt

≤ C5

(δj+1 − δj)r̂
(∥hα∥Ls(I) + ∥hβ∥Ls(I))

r̂
(∫ T

0

|Aδj (t)|
s

s−2 dt
) r̂(s−2)

2s

.
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Now, we get an estimate for ξ0:

ξ0 =

∫ T

0

|Aρ(t)|
s

s−2 dt ≤ 1

ρ
2s

s−2

∫
Ω

∥v(t)∥
2s

s−2

L2(Ω) ≤
(1
ρ
∥v∥QT

) 2s
s−2

≤
(M1

ρ
(∥hα∥L2(I) + ∥hβ∥L2(I))

) 2s
s−2

.

We also have that r̂(s−2)
2s = 1 + 2(s−2)

2 > 1. Hence, taking ε = 2(s−2)
2 and1

ρ = 4max{1, C
1
r̂
5 b

1
εr̂ }
(
∥hα∥Ls(I) + ∥hβ∥Ls(I) +M1(∥hα∥L2(I) + ∥hβ∥L2(I))

)
,

applying Lemma 2.5, and arguing similarly as we did for n > 1 we get (3.2).2

Finally, we prove the continuity of v in Ω̄× [0,∞). To this end we first assume3

that h is a continuous function. Then, from [8] we deduce that v ∈ C(Q̄T ) for every4

T <∞. Combining this and the fact v ∈ L∞(Q) we infer that v ∈ C(Ω̄× [0,∞)). If5

h is not continuous, we take a sequence of continuous functions {hk}∞k=1 such that6

hk → h in L2(Σ)∩Ls(I;Lq(Γ)). For every k we obtain a solution vk ∈ C(Ω̄×[0,∞)).7

Taking into account (3.2) we deduce8

∥v − vk∥L∞(Q) ≤M2

(
∥h− hk∥L2(Σ) + ∥h− hk∥Ls(I;Lq(Γ))

)
→ 0 as k → ∞.

Thus, we also have that v ∈ C(Ω̄× [0,∞)).9

Remark 3.2. (i) If equation (2.12) is considered in a finite horizon T , obviously10

the proof given above establishes the L∞(QT ) regularity of v and the estimates (3.1)11

and (3.2) with Q, Σ, and I replaced by QT , ΣT , and (0, T ), respectively.12

(ii) Suppose that the Neumann condition ∂nv = h is replaced by the Dirichlet
condition v = h on Σ with h being the trace on Σ of a function belonging to W (I)
and such that h ∈ L∞(Σ). Then, the Dirichlet problem has a unique solution
v ∈ W (I) satisfying the estimate ∥v∥L∞(Q) ≤ ∥h∥L∞(Σ), which is well known for
finite horizon. This estimate can be checked by choosing ρ = ∥h∥L∞(Σ) and setting
vρ(x, t) = v(x, t) − Proj [−ρ,+ρ](v(x, t)), we have that vρ = 0 on Σ and then for
every T <∞ and t ∈ (0, T )

1

2
∥vρ(t)∥2L2(Ω) + Ca∥vρ∥2L2(0,T ;H1(Ω))

≤ 1

2
∥vρ(t)∥2L2(Ω) +

∫ t

0

∫
Ω

[|∇vρ|2 + av2ρ] dxdτ = 0.

Hence, vρ ≡ 0 on QT for all T and the stated estimate follows.13

4. Analysis of the nonlinear equation.14

This section is dedicated to the analysis of equation (2.13).15

Theorem 4.1. Equation (2.13) has a unique solution w. Moreover, if w ∈ L2(Q)
then it belongs to W (I) ∩ L∞(Q) and we have the estimates

∥w∥Q ≤M3

(
∥w∥L2(Q) + ∥u0∥L2(Ω) + ∥g∥L2(Q) + ∥h∥L2(Σ)

)
, (4.1)

∥w∥L∞(Q) ≤M4

(
∥w∥L2(Q) + ∥u0∥L∞(Ω) + ∥g∥L2(Q)

+ ∥g∥Lr(I;Lp(Q)) + ∥h∥L2(Σ) + ∥h∥Ls(I;Lq(Γ)) +R
)
, (4.2)
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where the constants M3 and M4 depend on d, b, and monotonically increasing on1

∥h∥L2(Σ) + ∥h∥Ls(I;Lq(Γ)). Further, if u0 ∈ C(Ω̄), then the regularity w ∈ C(Ω̄ ×2

[0,∞)) is fulfilled.3

Proof. The proof is divided into several steps.4

I - Preliminaries. First, we observe that v ∈ L∞(Q) implies that d̂ and b̂ satisfy
the local Lipschitz assumption (2.2). Hence, the uniqueness of a solution of (2.13)
follows from the uniqueness already established for equation (1.1). Next, we prove
the existence of a solution in QT for every fixed T < ∞. For every integer k ≥ 1
we define the functions

d̂k(x, t, ξ) = d̂(x, t,Proj[−k,+k](ξ)) = d(x, t, v(x, t) + Proj[−k,+k](ξ)),

b̂k(x, t, ξ) = b̂(x, t,Proj[−k,+k](ξ)) = b(x, t, v(x, t) + Proj[−k,+k](ξ)).

From (2.1)–(2.2) we deduce for M = ∥v∥L∞(Q) and Mk = ∥v∥L∞(Q) + k

|d̂k(x, t, ξ)| ≤ |d̂k(x, t, ξ)− d̂k(x, t, 0)|+ |d̂k(x, t, 0)|
≤ LMk

k + |d(x, t, v(x, t))− d(x, t, 0)| ≤ LMk
k + LMM ∀ξ ∈ R.

The same estimate is obtained for b̂k. Associated with d̂k and b̂k we consider the5

equation6 
∂wk

∂t
−∆wk + awk + d̂k(x, t, wk) = g in QT ,

∂nwk + b̂k(x, t, wk) = 0 on ΣT , wk(0) = u0 in Ω.
(4.3)

II - Existence of solution for (4.3). We define the function Fk : L2(QT ) ×7

L2(ΣT ) −→ L2(QT )× L2(ΣT ) by Fk(φ,ψ) = (w,w|ΣT
), where w ∈ W (0, T ) is the8

solution of the linear equation9 
∂w

∂t
−∆w + aw = g − d̂k(x, t, φ) in QT ,

∂nw = −b̂k(x, t, ψ) on ΣT , w(0) = u0 in Ω.
(4.4)

Using the boundedness of d̂k and b̂k by a constant independent of (φ,ψ) the conti-10

nuity of Fk follows. Furthermore, we have an estimate ∥w∥W (0,T ) ≤ Ck uniform for11

all (φ,ψ) ∈ L2(QT )×L2(ΣT ). Applying the Aubin-Lions Theorem [18, Proposition12

III.1.3] first with B0 = H1(Ω), B1 = L2(Ω), and B2 = H1(Ω)∗ we get the compact-13

ness of the embeddingW (0, T ) ⊂ L2(QT ). Later taking B0 = H1(Ω), B1 = H
3
4 (Ω),14

and B2 = H1(Ω)∗, the compactness of the embedding W (0, T ) ⊂ L2(0, T ;H
3
4 (Ω))15

follows. Finally, the continuity of the trace w → w|ΣT
from L2(0, T ;H

3
4 (Ω)) to16

L2(ΣT ) implies that the image of Fk is relatively compact in L2(QT ) × L2(ΣT ).17

Then, Schauder’s fixed point theorem implies the existence of a solution wk ∈18

W (0, T ) for equation (4.3).19

Next we prove that for k large enough wk = w ∈W (0, T )∩L∞(QT ) is indepen-20

dent of k and solves the equation (2.13) in QT .21

III - Estimate for ∥wk∥QT
. We assume that k ≥ MR,v = R + ∥v∥L∞(Q). Then,22

we have that23

d̂k(x, t, ξ)ξ ≥ 0 ∀|ξ| ≥MR,v. (4.5)
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Indeed, if ξ ≥ MR,v, then v(x, t) + Proj[−k,+k](ξ) ≥ R holds. Hence (2.3) implies1

that2

d̂k(x, t, ξ) = d(x, t, v(x, t) + Proj[−k,+k](ξ)) ≥ 0 and then d̂k(x, t, ξ)ξ ≥ 0.

Analogously we can argue for ξ ≤ −MR,v. If |ξ| < MR,v then assumptions (2.1)
and (2.2) lead to

|d̂k(x, t, ξ)| = |d(x, t, v(x, t) + Proj[−k,+k](ξ))− d(x, t, 0)|
≤ LM (|ξ|+ |v(x, t)|) (4.6)

with M = MR,v + ∥v∥L∞(Q). Henceforth we denote CMR,v
= LM to recall the

dependence of the Lipschitz constant LM on R and ∥v∥L∞(Q). The same properties

hold for b̂k. Setting ΩMR,v(τ) = {x ∈ Ω : |wk(x, τ)| < MR,v}, ΓMR,v(τ) = {x ∈ Γ :
|wk(x, t)| < MR,v}, and testing equation (4.3) with wk, integrating in (0, t) with

t ∈ (0, T ), using (4.5), (4.6), and (2.11) with ε = min
{
1, Ca

4KCMR,v

}
, we get with

Young’s inequality

1

2
∥wk(t)∥2L2(Ω) + Ca∥wk∥2L2(0,t;H1(Ω))

≤ 1

2
∥wk(t)∥2L2(Ω) +

∫
Qt

[|∇wk|2 + aw2
k] dxdτ ≤ 1

2
∥u0∥2L2(Ω) +

∫
Qt

g wk dxdτ

+

∫ t

0

∫
ΩMR,v

(τ)

|d̂k(x, τ, wk)||wk|dx dτ +
∫ t

0

∫
ΓMR,v

(τ)

|b̂k(x, τ, wk)||wk|dxdτ

≤ 1

2
∥u0∥2L2(Ω) +

∫ t

0

(
∥g(τ)∥L2(Ω) + CMR,v

∥v(τ)∥L2(Ω)

)
∥wk(τ)∥L2(Ω) dτ

+ CMR,v

∫ t

0

∥v(τ)∥L2(Γ)∥wk∥L2(Γ) dτ

+ CMR,v

∫ t

0

[
∥wk(τ)∥2L2(Ω) + ∥wk(τ)∥2L2(Γ)

]
dτ ≤ 1

2
∥u0∥2L2(Ω)

+
2

Ca

(
∥g∥L2(QT ) + CMR,v

∥v∥L2(QT )

)2
+
Ca

8

∫ t

0

∥wk(τ)∥2H1(Ω) dτ

+
2C4

ΩC
2
MR,v

Ca
∥v∥2L2(0,T ;H1(Ω)) +

Ca

8

∫ t

0

∥wk(τ)∥2H1(Ω) dτ

+ CMR,v

(
1 +

4K2CMR,v

Ca

)∫ t

0

∥wk(τ)∥2L2(Ω) dτ +
Ca

4

∫ t

0

∥∇wk(τ)∥2L2(Ω) dτ
]
.

Using (3.1), this leads to

∥wk(t)∥2L2(Ω) + Ca∥wk∥2L2(0,t;H1(Ω)) ≤ ∥u0∥2L2(Ω)

+
1

Ca

(
∥g∥L2(QT ) + CMR,v

M1∥h∥L2(ΣT )

)2
+

4C4
ΩC

2
MR,v

Ca
M2

1 ∥h∥2L2(ΣT )

+ 2CMR,v

(
1 + 4K2CMR,v

Ca

)∫ t

0

∥wk(τ)∥2L2(Ω) dτ

≤ Ĉ1

(
∥u0∥L2(Ω) + ∥g∥L2(QT ) + ∥h∥L2(ΣT )

)2
+ Ĉ2

∫ t

0

∥wk(τ)∥2L2(Ω). (4.7)
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Using Gronwall’s inequality, we get from above for every t ∈ [0, T ]1

∥wk(t)∥L2(Ω) ≤
√
Ĉ1

(
∥u0∥L2(Ω) + ∥g∥L2(QT ) + ∥h∥L2(ΣT )

)
exp

(1
2
Ĉ2T

)
. (4.8)

Combining (4.7) and (4.8) we infer2

∥wk∥QT
≤ CT

(
∥u0∥L2(Ω) + ∥g∥L2(QT ) + ∥h∥L2(ΣT )

)
∀k ≥MR,v. (4.9)

We observe that constant CT depends on T and monotonically increasing on CMR,v
.3

IV - Estimate for ∥wk∥L∞(QT ). For ρ ≥ max{∥u0∥L∞(Ω),MR,v}, we define
wk,ρ(x, t) = wk(x, t) − Proj[−ρ,+ρ](wk(x, t)) for every (x, t) ∈ QT and Aρ(t) =

{x ∈ Ω : |wk(x, t)| > ρ}. Similarly as in the proof of Theorem 3.1, we test equation
(4.3) with wk,ρ and use (4.5) to obtain

1

2
∥wk,ρ(t)∥2L2(Ω) + Ca∥wk,ρ∥2L2(0,T ;H1(Ω))

≤ 1

2
∥wk,ρ(t)∥2L2(Ω) +

∫ t

0

∫
Ω

[|∇wk,ρ|2 + aw2
k,ρ] dx dτ ≤

∫ t

0

∫
Ω

g wk,ρ dxdτ

≤ ∥g∥Lr(0,T ;Lp(Ω))

(∫ t

0

∥wk,ρ(τ)∥r
′

Lp′ (Ω)
dτ
) 1

r′
. (4.10)

We distinguish several cases depending on n and r.4

Case 1: n ≥ 2 and r > 2. Observe that the condition 1
r + n

2p < 1 implies that

p > n
2 . If n = 2 we select σ satisfying 1

r + 1
p <

1
σ < 1. We set σ = 2n

n+2 otherwise.

Then, we have(∫ t

0

∥wk,ρ(τ)∥r
′

Lp′ (Ω)
dτ
) 1

r′ ≤
(∫ t

0

∥wk,ρ(τ)∥r
′

Lσ′ (Ω)
|Aρ(τ)|

r′(σ′−p′)
σ′p′ dτ

) 1
r′

≤ C1∥wk,ρ∥L2(0,t;H1(Ω))

(∫ t

0

|Aρ(τ)|
2r(p−σ)
(r−2)pσ dτ

) r−2
2r

≤ C1∥wk,ρ∥L2(0,T ;H1(Ω))

(∫ T

0

|Aρ(τ)|
2r(p−σ)
(r−2)pσ dτ

) r−2
2r

.

This inequality and (4.10) imply5

∥wk,ρ∥QT
≤ C2∥g∥Lr(0,T ;Lp(Ω))

(∫ T

0

|Aρ(t)|
2r(p−σ)
(r−2)pσ dt

) r−2
2r

. (4.11)

Let us denote by r̂ and q̂ the solutions of the system6 
1

r̂
+

n

2q̂
=
n

4

r̂

q̂
=

2r(p− σ)

(r − 2)pσ
.

Then, we have7

r̂ =
4

n
+

4r(p− σ)

(r − 2)pσ
and q̂ = 2 +

2(r − 2)pσ

nr(p− σ)
.

It is easy to check that (r̂, q̂) satisfies the assumptions of Lemma 2.4, hence the
inequality (2.14) holds. Again, as in the proof of Theorem 3.1, we set δj = ρ(2−2−j)
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for every j = 0, 1, 2, . . . and obtain

C∥wk,δj∥QT
≥ ∥wk,δj∥Lr̂(0,T ;Lq̂(Ω)) =

(∫ T

0

∥wk,δj∥r̂Lq̂(Aδj
(t)) dt

) 1
r̂

≥ (δj+1 − δj)

(∫ T

0

|Aδj+1(t)|
2r(p−σ)
(r−2)pσ dt

) 1
r̂

.

Setting b = 2r̂, C3 = (CC2)
r̂,1

ξj =

∫ T

0

|Aδj (t)|
2r(p−σ)
(r−2)pσ dt, j ≥ 0, c = C3

(2
ρ
∥g∥Lr(0,T ;Lp(Ω))

)r̂
,

and taking into account that δj+1 − δj = ρ2−(j+1), we deduce from the above2

inequality and (4.11) that ξj+1 ≤ cbjξ
r̂(r−2)

2r
j . In order to apply Lemma 2.5 we3

have to check that b > 1, which is obvious, r̂(r−2)
2r = 1 + ε for some ε > 0, and4

ξ0 ≤ c−
1
ε b

−1

ε2 . To check that ε > 0 we insert the value of r̂ and obtain5

ε > 0 ⇔ r̂(r − 2)

2r
> 1 ⇔ 2(r − 2)

rn
+

2(p− σ)

pσ
> 1. (4.12)

In the case n ≥ 3 the last inequality is equivalent to 1− 1
r −

n
2p > 0. This is precisely6

the inequality assumed for (r, p), and hence ε > 0. In the case n = 2 inequality7

(2.12) is equivalent to 1
σ − 1

r −
1
p > 0, which is the assumption on the triple (p, r, σ)8

that was made above.9

Next, we select ρ big enough such that ξ0 ≤ c−
1
ε b

−1

ε2 holds. We consider two10

different cases:11

Case A: 2r(p−σ)
(r−2)pσ ≥ 1. In this case we use that |Aρ(t)| ≤ 1

ρ2 ∥wk(t)∥2L2(Ω) and

(4.9) to deduce

ξ0 ≤ 1

ρ
4r(p−σ)
(r−2)pσ

∫ T

0

∥wk(t)∥
4r(p−σ)
(r−2)pσ

L2(Ω) dt ≤
(1
ρ
∥wk∥QT

) 4r(p−σ)
(r−2)pσ

≤
[CT

ρ

(
∥u0∥L2(Ω) + ∥g∥L2(QT ) + ∥h∥L2(ΣT )

)] 4r(p−σ)
(r−2)pσ

.

Taking

ρ = 4max{1, C
1
r̂
3 b

1
εr̂ }
(
∥u0∥L∞(Ω) + ∥g∥Lr(0,T ;Lp(Ω))

+ CT

[∥∥u0∥L2(Ω) + ∥g∥L2(QT ) + ∥h∥L2(ΣT )

]
+MR,v

)
,

we get that ξ0 ≤ c−
1
ε b

−1

ε2 .12

Case B: 2r(p−σ)
(r−2)pσ < 1. In this case we have that 2 < (r−2)pσ

r(p−σ) . Moreover, if n > 213

then we have that (r−2)pσ
r(p−σ) < 2n

n−2 . Indeed, this inequality is equivalent to14

1

r
+

n

2p
< 1 +

n

2r
,
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which follows from our assumption on (r, p). Then, we get the estimate for ξ0 as
follows

ξ0 ≤ 1

ρ2

∫ T

0

∥wk(t)∥2
L

(r−2)pσ
r(p−σ)

(Ω) dt ≤ C4

ρ2

∫ T

0

∥wk(t)∥2H1(Ω) dt

≤ C4

(1
ρ
∥wk∥QT

)2 ≤
[√C4CT

ρ

(
∥u0∥L2(Ω) + ∥g∥L2(QT ) + ∥h∥L2(ΣT )

)]2
.

This time we set

ρ = 4max{1, C
1
2r̂
4 b

1
εr̂ }
(
∥u0∥L∞(Ω) + ∥g∥Lr(0,T ;Lp(Ω))

+ CT

[
∥u0∥L2(Ω) + ∥g∥L2(QT ) + ∥h∥L2(ΣT )

]
+MR,v

)
and ξ0 ≤ c−

1
ε b

−1

ε2 is fulfilled.1

Applying Lemma 2.5 we get |A2ρ(t)| ≤ limj→∞ ξj = 0 and, consequently, we
infer

∥wk∥L∞(QT ) ≤ K
(
∥u0∥L∞(Ω) + ∥g∥Lr(0,T ;Lp(Ω))

+ 2CT

[
∥u0∥L2(Ω) + ∥g∥L2(QT ) + ∥h∥L2(ΣT )

]
+MR,v

)
, (4.13)

where K = 8max{1, C
1
2r̂
4 b

1
εr̂ } is independent of T .2

Case 2: n ≥ 2 and r ≤ 2. From 1
2 +

n
2p ≤ 1

r +
n
2p < 1 we deduce that p > n and,

consequently, p′ < n
n−1 ≤ 2. Using Hölder’s inequality we infer(∫ t

0

∥wk,ρ(τ)∥r
′

Lp′ (Ω)
dτ
) 1

r′ ≤
(∫ t

0

∥wk,ρ(τ)∥r
′

L2(Ω)|Aρ(τ)|
r′(2−p′)

2p′ dτ
) 1

r′

≤ ∥wk,ρ∥L∞(0,T ;L2(Ω))

(∫ T

0

|Aρ(τ)|
r(p−2)
2p(r−1) dτ

) r−1
r

.

Inserting this inequality in (4.10) we deduce3

∥wk,ρ∥QT
≤ C5∥g∥Lr(0,T ;Lp(Ω))

(∫ T

0

|Aρ(t)|
r(p−2)
2(r−1) dt

) r−1
r

. (4.14)

Now we take r̂ and q̂ as the solutions of the system4 
1

r̂
+

n

2q̂
=
n

4

r̂

q̂
=

r(p− 2)

2p(r − 1)
.

Then, we have5

r̂ =
4

n
+
r(p− 2)

p(r − 1)
and q̂ = 2 +

8p(r − 1)

nr(p− 2)
.

Once again it is immediate to check that (r̂, q̂) satisfies the assumptions of Lemma6

2.4. Hence, arguing as in Case 1, we obtain7

C∥wk,δj∥QT
≥ (δj+1 − δj)

(∫ T

0

|Aδj+1
(t)|

r(p−2)
2p(r−1) dt

) 1
r̂

.

Taking b = 2r̂, C6 = (CC5)
r̂,8

ξj =

∫ T

0

|Aδj (t)|
r(p−2)
2p(r−1) dt, j ≥ 0, c = C6

(2
ρ
∥g∥Lr(0,T ;Lp(Ω))

)r̂
,
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we deduce from the above inequality and (4.14) that ξj+1 ≤ cbjξ
r̂(r−1)

r
j . It is easy1

to check that r̂(r−1)
r = 1 + ε with ε > 0. As in the previous case, we have to select2

ρ in such a way that ξ0 ≤ c−
1
ε b

−1

ε2 . To this end, we also distinguish two cases.3

Case A: r(p−2)
2p(r−1) ≥ 1. Using that |Aρ(t)| ≤ 1

ρ2 ∥wk(t)∥2L2(Ω) and (4.9) we get

ξ0 ≤ 1

ρ
r(p−2)
p(r−1)

∫ T

0

∥wk(t)∥
r(p−2)
p(r−1

L2(Ω) dt ≤
(1
ρ
∥wk∥QT

) r(p−2)
p(r−1)

≤
[CT

ρ

(
∥u0∥L2(Ω) + ∥g∥L2(QT ) + ∥h∥L2(ΣT )

)] r(p−2)
p(r−1)

.

Taking

ρ = 4max{1, C
1
r̂
6 b

1
εr̂ }
(
∥u0∥L∞(Ω) + ∥g∥Lr(0,T ;Lp(Ω))

+ CT

[
∥u0∥L2(Ω) + ∥g∥L2(QT ) + ∥h∥L2(ΣT )

]
+MR,v

)
,

we get that ξ0 ≤ c−
1
ε b

−1

ε2 .4

Case B: r(p−2)
2p(r−1) < 1. In this case we have that 4p(r−1)

r(p−2) > 2. Then we have

ξ0 ≤ 1

ρ2

∫ T

0

∥wk(t)∥2
L

4p(r−1)
r(p−2)σ (Ω)

dt ≤ C7

ρ2

∫ T

0

∥wk(t)∥2H1(Ω) dt

≤ C7

(1
ρ
∥wk∥QT

)2 ≤
[√C7CT

ρ

(
∥u0∥L2(Ω) + ∥g∥L2(QT ) + ∥h∥L2(ΣT )

)]2
.

This time we set

ρ = 4max{1, C
1
2r̂
7 b

1
εr̂ }
(
∥u0∥L∞(Ω) + ∥g∥Lr(0,T ;Lp(Ω))

+ CT

[
∥u0∥L2(Ω) + ∥g∥L2(QT ) + ∥h∥L2(ΣT )

]
+MR,v

)
and ξ0 ≤ c−

1
ε b

−1

ε2 is fulfilled. Therefore, applying Lemma 2.5 we get |A2ρ(t)| ≤5

limj→∞ ξj = 0 and (4.13) holds for a constant K independent of T .6

Case 3: n = 1. First we consider the situation where r ∈ [1, 2]. Under this7

assumption we have that 1
2 + 1

2p ≤ 1
r + 1

2p < 1. Hence, we get that p > 1, p′ <∞,8

and 1
2p < 1− 1

r = 1
r′ , which is equivalent to r′

p < 2. To deal with this case we also9

use the following Gagliardo inequality [4, page 173]10

∥φ∥Lp′ (Ω) ≤ C∥φ∥
1
p′

L1(Ω)∥φ∥
1
p

W 1,1(Ω) ∀φ ∈W 1,1(Ω).
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Using this inequality and Hölder and Young inequalities we infer∫ t

0

∥wk,ρ(τ)∥r
′

Lp′ (Ω)
dτ ≤ Cr′

∫ t

0

∥wk,ρ(τ)∥
r′
p′

L1(Ω)∥wk,ρ(τ)∥
r′
p

W 1,1(Ω) dτ

≤ Cr′
∫ t

0

∥wk,ρ(τ)∥
r′
p′

L2(Ω)|Aρ(τ)|
r′
2p′ ∥wk,ρ(τ)∥

r′
p

H1(Ω)|Aρ(τ)|
r′
2p dτ

≤ Cr′∥wk,ρ∥
r′
p′

L∞(0,T ;L2(Ω))

∫ T

0

∥wk,ρ(τ)∥
r′
p

H1(Ω)|Aρ(τ)|
r′
2 dτ

≤ Cr′∥wk,ρ∥
r′
p′

L∞(0,T ;L2(Ω))∥wk,ρ∥
r′
p

L2(0,T ;H1(Ω))

(∫ T

0

|Aρ(τ)|
pr′

2p−r′ dτ
) 2p−r′

2p

≤ Cr′
( 1

p′
∥wk,ρ∥L∞(0,T ;L2(Ω)) +

1

p
∥wk,ρ∥L2(0,T ;H1(Ω))

)r′
×
(∫ T

0

|Aρ(τ)|
pr′

2p−r′ dτ
) 2p−r′

2p

.

Inserting this estimate in (4.10) we obtain1

∥wk,ρ∥QT
≤ C8∥g∥Lr(0,T ;Lp(Ω))

(∫ T

0

|Aρ(t)|
pr′

2p−r′ dt
) 2p−r′

2pr′
. (4.15)

Now, we define (r̂, q̂) as the solution of the system2 
1

r̂
+

1

2q̂
=

1

4

r̂

q̂
=

pr′

2p− r′
,

which gives3

r̂ = 4 +
2pr′

2p− r′
and q̂ = 2 +

4(2p− r′)

pr′
.

Obviously (r̂, q̂) satisfies the conditions of Lemma 2.4. Then, arguing as in the4

previous two cases we deduce5

C∥wk,δj∥QT
≥ (δj+1 − δj)

(∫ T

0

|Aδj+1
(t)|

pr′
2p−r′ dt

) 1
r̂

.

Taking b = 2r̂, C9 = (CC8)
r̂,6

ξj =

∫ T

0

|Aδj (t)|
pr′

2p−r′ dt, j ≥ 0, c = C9

(2
ρ
∥g∥Lr(0,T ;Lp(Ω))

)r̂
,

we deduce from the above inequality and (4.15) that ξj+1 ≤ cbjξ
r̂ 2p−r′

2pr′

j . It is easy

to check that r̂ 2p−r′

2pr′ = 1+ ε with ε > 0. As in the previous case, we have to select

ρ in such a way that ξ0 ≤ c−
1
ε b

−1

ε2 . First, we observe that r ≤ 2 and r′ < 2p imply

that pr′

2p−r′ > 1 holds. Then, using again that |Aρ(t)| ≤ 1
ρ2 ∥wk(t)∥2L2(Ω) and (4.9)
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we get

ξ0 ≤ 1

ρ
2pr′

2p−r′

∫ T

0

∥wk(t)∥
2pr′

2p−r′

L2(Ω) dt ≤
(1
ρ
∥wk∥QT

) 2pr′
2p−r′

≤
[CT

ρ

(
∥u0∥L2(Ω) + ∥g∥L2(QT ) + ∥h∥L2(ΣT )

)] 2pr′
2p−r′

.

Taking

ρ = 4max{1, C
1
r̂
9 b

1
εr̂ }
(
∥u0∥L∞(Ω) + ∥g∥Lr(0,T ;Lp(Ω))

+ CT

[
∥u0∥L2(Ω) + ∥g∥L2(QT ) + ∥h∥L2(ΣT )

]
+MR,v

)
,

we get that ξ0 ≤ c−
1
ε b

−1

ε2 . Once again Lemma 2.5 implies that |A2ρ(t)| = 0 and1

(4.13) holds for a constant K independent of T .2

To conclude the proof of Case 3, we have to address the situation where r ∈3

(2,∞). First of all, we observe that when p = 1 the estimates for wk can be4

deduced from the estimates for p > 1. Indeed, from the interpolation inequality [5,5

page 93]6

∥φ∥
L

4
3 (Ω)

≤ ∥φ∥
1
2

L1(Ω)∥φ∥
1
2

L2(Ω),

we infer for every T ≤ ∞7 ∫ T

0

∥g(t)∥
4r

2+r

L
4
3 (Ω)

dt ≤
∫ T

0

∥g(t)∥
2r

2+r

L1(Ω)∥g(t)∥
2r

2+r

L2(Ω) dt ≤ ∥g∥
2r

2+r

Lr(0,T ;L1(Ω))∥g∥
2r

2+r

L2(QT ).

This leads to8

∥g∥
L

4r
2+r (0,T ;L

4
3 (Ω))

≤ ∥g∥
1
2

Lr(0,T ;L1(Ω))∥g∥
1
2

L2(QT ) ≤ ∥g∥Lr(0,T ;L1(Ω)) + ∥g∥L2(QT ).

Thus, if g ∈ Lr(0, T ;L1(Ω)) ∩ L2(QT ), then it belongs to L
4r

2+r (0, T ;L
4
3 (Ω)) and

the estimate of wk in terms of ∥g∥
L

4r
2+r (0,T ;L

4
3 (Ω))

yields the estimate in terms of

∥g∥Lr(0,T ;L1(Ω)) + ∥g∥L2(QT ). Therefore, we assume that r ∈ (2,∞) and p ∈ (1,∞).
Then, using Hölder’s inequality we infer(∫ t

0

∥wk,ρ(τ)∥r
′

Lp′ (Ω)
dτ
) 1

r′ ≤ C10

(∫ t

0

∥wk,ρ(τ)∥r
′

W 1,1(Ω) dτ
) 1

r′

≤ C10

(∫ T

0

∥wk,ρ(τ)∥r
′

H1(Ω)|Aρ(τ)|
r′
2 dτ

) 1
r′

≤ C10∥wk∥L2(0,T ;H1(Ω))

(∫ T

0

|Aρ(τ)|
r′

2−r′ dτ
) 2−r′

2r′
.

Inserting this inequality in (4.10) we deduce9

∥wk,ρ∥QT
≤ C11∥g∥Lr(0,T ;Lp(Ω))

(∫ T

0

|Aρ(t)|
r′

2−r′ dt
) 2−r′

2r′
. (4.16)

Now we take r̂ and q̂ as the solutions of the system10 
1

r̂
+

1

2q̂
=

1

4

r̂

q̂
=

r′

2− r′
.
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Then, we have1

r̂ = 4 +
2r′

2− r′
and q̂ = 2 +

4(2− r′)

r′
.

Since (r̂, q̂) satisfies the assumptions of Lemma 2.4, arguing as in Case 1, we obtain2

C∥wk,δj∥QT
≥ (δj+1 − δj)

(∫ T

0

|Aδj+1
(t)|

r′
2−r′ dt

) 1
r̂

.

Taking b = 2r̂, C12 = (CC11)
r̂,3

ξj =

∫ T

0

|Aδj (t)|
r′

2−r′ dt, j ≥ 0, c = C12

(2
ρ
∥g∥Lr(0,T ;Lp(Ω))

)r̂
,

we deduce from the above inequality and (4.16) that ξj+1 ≤ cbjξ
r̂(2−r′)

2r′
j . It is easy

to check that r̂(2−r′)
2r′ = 1 + ε with ε > 0. Since r′

2−r′ ≥ 1, we can proceed as in the

case r ∈ [1, 2] and get that ξ0 ≤ c−
1
ε b

−1

ε2 for

ρ = 4max{1, C
1
r̂
12b

1
εr̂ }
(
∥u0∥L∞(Ω) + ∥g∥Lr(0,T ;Lp(Ω))

+ CT

[
∥u0∥L2(Ω) + ∥g∥L2(QT ) + ∥h∥L2(ΣT )

]
+MR,v

)
.

Hence, Lemma 2.5 implies that |A2ρ(t)| = 0 and (4.13) holds for a constant K4

independent of T .5

V - End of proof. We observe that the equalities6

d̂k(x, t, wk(x, t)) = d̂(x, t, wk(x, t)) and b̂k(x, t, wk(x, t)) = b̂(x, t, wk(x, t))

hold for every k satisfying

k ≥ K
(
∥u0∥L∞(Ω) + ∥g∥Lr(0,T ;Lp(Ω))

+ CT

[
∥u0∥L2(Ω) + ∥g∥L2(QT ) + ∥h∥L2(ΣT )

]
+MR,v

)
.

Hence, wk is the unique solution of (2.13) and, consequently, it is independent of7

k for k large enough. Thus, we can drop the index k from the notation wk. In8

addition, if w ∈ L2(Q) then (4.1) follows from (4.7). To prove (4.2) we proceed as9

follows. In the established estimates of ξ0 we replace ∥wk∥QT
by ∥w∥Q and use (4.1)10

instead of (4.9) in the definition of ρ, which leads to (4.2). Finally, if u0 ∈ C(Ω̄),11

once again using [8] we deduce that w ∈ C(Q̄T ) for every T < ∞. Combining this12

and the fact w ∈ L∞(Q) we infer that w ∈ C(Ω̄× [0,∞)).13

End of proof of Theorem 2.2. Setting u = v + w, we deduce from Theorems 3.114

and 4.1 that u ∈W (0, T ) ∩ L∞(QT ) for every T <∞ and u is the unique solution15

of (1.1). In addition, if u ∈ L2(Q), recalling that v ∈ W (I) ∩ L∞(Q), we deduce16

that w ∈ L2(Q) as well. Then (2.6) and (2.7) are consequence of (3.1), (3.2), (4.1),17

and (4.2) along with the following inequality18

∥w∥L2(Q) ≤ ∥u∥L2(Q) + ∥v∥L2(Q) ≤ ∥u∥L2(Q) +M1∥h∥L2(Σ).

The inequalities (2.8) and (2.9) are an immediate consequence of (2.1) and (2.2).19

If u0 ∈ C(Ω̄), the property u ∈ C(Ω̄ × [0,∞)) is consequence of the regularity20

v, w ∈ C(Ω̄× [0,∞)) established in Theorems 3.1 and 4.1.21
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Remark 4.2. In the case where b and d are globally Lipschitz, then the constantM31

in (4.1) is independent of h. Indeed, in the proof of the estimate of ∥wk∥QT
carried2

out in Step III of the previous demonstration, we have that (4.6) is replaced by3

|d̂k(x, t, ξ)| ≤ L(|ξ|+|v(x, t)|), where L is the Lipschitz constant of d, hence CMR,v
=4

L. The same applies to b. Then, in the proof of (4.7) ΩMR,v
(τ) and ΓMR,v

(τ) are5

simply Ω and Γ, respectively. Then the constants in (4.7)–(4.9) are independent of6

v and, hence, of h. Therefore, the constant M3 in (4.1) is independent of h. As a7

consequence, K1 in (2.6) is also independent of h.8

5. Extensions and discussion9

In this section we discuss special cases and extensions of the main Theorem 2.2.10

5.1. Global sign conditions on d and b. Here we assume that d and b satisfy
(2.1)-(2.2) and (2.3) with R = 0. For g and h we assume the same hypotheses made
in section 2. Hence, we know that there exists a unique solution u ∈ W (0, T ) ∩
L∞(QT ) of (2.5) for every T <∞. Testing (2.5) with u we obtain

1

2
∥u(t)∥2L2(Ω) + Ca∥u∥2L2(0,t;H1(Ω)) dτ ≤ 1

2
∥u(t)∥2L2(Ω) +

∫
Qt

[|∇u|2 + au2] dxdτ

+

∫
Qt

d(x, τ, u)udx dτ +

∫
Σt

b(x, τ, u)udx dτ

=
1

2
∥u0∥2L2(Ω) +

∫
Qt

gudx dτ +

∫
Σt

hudxdτ

≤ 1

2
∥u0∥2L2(Ω) +

(
∥g∥L2(Q) + CΩ∥h∥L2(Σ)

)
∥u∥L2(0,t;H1(Ω))

From here we infer that11

∥u∥Q = sup
T>0

∥u∥QT
≤ CQ

(
∥u0∥L2(Ω) + ∥g∥L2(Q) + ∥h∥L2(Σ)

)
∀T <∞ (5.1)

with CQ independent of (u0, g, h) and (d, b). Then, u ∈ L2(Q) and estimate (2.7)
can be replaced by

∥u∥L∞(Q) ≤ C∞

(
∥u0∥L∞(Ω)

+ ∥g∥L2(Q) + ∥g∥Lr(I;Lp(Ω)) + ∥h∥L2(Σ) + ∥h∥Ls(I;Lq(Γ))

)
, (5.2)

where C∞ depends on d, b, and monotonically increasing on ∥h∥L2(Σ)+∥h∥Ls(I;Lq(Γ)).12

5.2. Mixed boundary conditions. Here we assume that Assume that ΓD is a13

measurable subset of Γ with strictly positive measure and ΓN = Γ\ΓD. We address14

the problem15

{
∂u

∂t
−∆u+ d(x, t, u) = g in Q,

u = hD on ΣD, ∂nu+ b(x, t, u) = hN on ΣN , u(0) = u0 in Ω,
(5.3)

where ΣD = ΓD×I and ΣN = ΓN×I, hD ∈ W̃ (I) = L2(I;H1(Ω))∩H1(I;H−1(Ω))
and hD |ΣD

∈ L∞(ΣD), hN ∈ L2(ΣN ) ∩ Ls(I;Lq(ΓN )) with 1
s + n−1

2q < 1
2 , g ∈

L2(Q) ∩ Lr(I;Lp(Ω)) with 1
r + n

2p < 1, and u0 ∈ L∞(Ω). For the nonlinear terms
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d and b we assume the conditions (2.1)–(2.3). This equation can be analyzed by
performing the decomposition into two problems{

∂v

∂t
−∆v = 0 in Q,

v = hD on ΣD, ∂nv = hN on ΣN , v(0) = 0 in Ω,
(5.4)

∂w

∂t
−∆w + d̂(x, t, w) = g in Q,

w = 0 on ΣD, ∂nw + b̂(x, t, w) = 0 on ΣN , w(0) = u0 in Ω,
(5.5)

with d̂(x, t, w) = d(x, t, v(x, t) + w) and b̂(x, t, w) = b(x, t, v(x, t) + w). The es-1

timate for ∥v∥L∞(Q) can be proved exactly as in Theorem 3.1 simply by select-2

ing ρ ≥ ∥hD∥L∞(ΣD) and replacing the norms ∥h∥Ls(I;Lq(Γ)) and ∥h∥L2(Σ) by3

∥hN∥Ls(I;Lq(ΓN )) and ∥hN∥L2(ΣN ). In the particular case where hN = 0, we have4

the estimate ∥v∥L∞(Q) ≤ ∥hD∥L∞(ΣD). Indeed, taking ρ = ∥hD∥L∞(Σ) and testing5

(5.4) with vρ(x, t) = v(x, t)− Proj[−ρ,+ρ](v(x, t)) we get6

1

2
∥vρ(T )∥2L2(Ω) +

∫ T

0

∫
Ω

|∇vρ|2 dxdt = 0,

where we have utilized that vρ = 0 on ΣD. Therefore, vρ ≡ 0 and the estimate7

follows.8

The proof of the estimate for the solution of (5.5) is the same as for the proof of
Theorem 4.1. Finally, arguing as in the proof of Theorem 2.2 we get the estimate

∥u∥L∞(Q) ≤ K2

(
∥u∥L2(Q) + ∥u0∥L∞(Ω) + ∥g∥L2(Q) + ∥g∥Lr(I;Lp(Ω))

+ ∥hD∥L∞(ΣD) + ∥hN∥L2(ΣN ) + ∥hN∥Ls(I;Lq(ΓN )) +R
)
.

We point out that the linear term au in the equation was necessary for the9

Neumann problem (1.1), but this is not the case if the measure of ΓD is positive.10

However, it could be included in the equation by considering it as part of the11

definition of the nonlinear term d.12

5.3. General elliptic operators. Let us consider the following operator in Q13

Au = −
n∑

i,j=1

∂xj (aij∂xiu) +

n∑
j=1

aj∂xju+ au

with measurable coefficients depending on (x, t) ∈ Q, a(x, t) ≥ 0 in Q, a ̸≡ 0, and14

ai,j ∈ L∞(QT ), a, a
2
j ∈ Lr̂(0, T ;Lp̂(Ω)) for

1

r̂
+

n

2p̂
≤ 1 ∀T <∞.

Hence, we have that A : W (0, T ) −→ W (0, T )∗ defines a continuous operator by
the expression∫ T

0

⟨Au(t), v(t)⟩H1(Ω)∗,H1(Ω) dt =

n∑
i,j=1

∫
QT

aij(x, t)∂xi
u∂xj

v dxdt

+
n∑

j=1

∫
QT

aj(x, t)∂xj
uv dxdt+

∫
QT

a(x, t)uv dxdt;

see [13, page 137].15
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We also assume that there exists a constant Ca > 0 independent of T such that1 ∫ T

0

⟨Au(t), u(t)⟩H1(Ω)∗,H1(Ω) dt ≥ Ca

∫ T

0

∥u(t)∥2H1(Ω) dt ∀u ∈W (0, T ).

In this situation the Neumann condition in (1.1) is replaced by2

∂nA
u =

n∑
i,j=1

n∑
i=1

aij∂xi
unj .

Under these assumptions Theorem 2.2 again holds. Indeed, the reader can simply3

refer back to the proof of that theorem and observe that4

⟨Au, uρ⟩H1(Ω)∗,H1(Ω) ≥ ⟨Auρ, uρ⟩H1(Ω)∗,H1(Ω)

for uρ(x, t) = u(x, t)− Proj[−ρ,+ρ](u(x, t)).5

5.4. Finite horizon problems. Looking at the proof of Theorem 2.2, we observe6

that the existence and uniqueness of a solution u ∈W (0, T )∩L∞(QT ) of (2.5) has7

been established for data u0 ∈ L2(Ω), g ∈ Lr(0, T ;Lp(Ω)), and h ∈ Ls(0, T ;Lq(Γ))8

with 1
r + n

2p < 1 and 1
s + n−1

2q < 1
2 . In this section we prove that the same result9

holds if we exchange the assumption (2.3) for the following one: there exists Λ ≥ 010

such that11

(d(x, t, u2)− d(x, t, u1))(u2 − u1) ≥ −Λ(u2 − u1)
2 ∀u1, u2 ∈ R. (5.6)

This assumption is also imposed on b. The existence and uniqueness of a solution of12

(2.5) as well as the corresponding estimates can also be obtained if we assume (2.3)13

on d and (5.6) on b, or vice-reverse. However, here we assume that d and b satisfy14

(5.6) to show how this assumption is used. We take λ = 1+ 1
2 (1+K

2)(2Λ+1)2, where15

K is given in (2.11), and perform the usual change of variables ũ(x, t) = e−λtu(x, t)16

to transform equation (1.1) into17 
∂ũ

∂t
−∆ũ+ (a+ λ)ũ+ d̃(x, t, ũ) = g̃ in QT ,

∂nũ+ b̃(x, t, ũ) = h̃ on ΣT , v(0) = u0 in Ω,
(5.7)

where g̃ = e−λtg, h̃ = e−λth,18

d̃(x, t, ũ) = e−λtd(x, t, eλtũ) and b̃(x, t, ũ) = e−λtb(x, t, eλtũ).

To analyze (5.7) we proceed as we did for (1.1) by decomposing the equation into
two parts 

∂v

∂t
−∆v + (a+ λ)v = 0 in QT ,

∂nv = h̃ on ΣT , v(0) = 0 in Ω,
(5.8)


∂w

∂t
−∆w + (a+ λ)w + d̂(x, t, w) = g̃ in QT ,

∂nw + b̂(x, t, w) = 0 on ΣT , w(0) = u0 in Ω,
(5.9)

where d̂(x, t, w) = d̃(x, t, v(x, t) +w) and b̂(x, t, w) = b̃(x, t, v(x, t) +w), and obtain19

the solution to (5.7) as ũ = v + w.20

The parameter λ will be fixed below. For the moment we simply assume that21

λ > 0. Hence, we can apply Theorem 3.1 to equation (5.8), even if a = 0, to deduce22
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the existence of a unique solution v ∈W (0, T )∩L∞(QT ) with estimates depending1

only on h̃; see (3.1) and (3.2).2

For the analysis of equation (5.9) we set3

d̂k(x, t, w) = d̂(x, t,Proj[−k,+k](w)), b̂k(x, t, w) = b̂(x, t,Proj[−k,+k](w)).

Using (2.2) and (5.6) we get for every w ∈ R

d̂k(x, t, w)w = e−λtd(x, t, eλt[v(x, t) + Proj[−k,+k](w)])w

= e−λt
(
d(x, t, eλt[v(x, t) + Proj[−k,+k](w)])− d(x, t, eλtv(x, t))

)
w

+ e−λtd(x, t, eλtv(x, t))w

≥ −Λw2 − Lv|v(x, t)||w| ≥ −L
2
v

2
v(x, t)2 − (Λ +

1

2
)w2, (5.10)

where we have applied (2.2) with M = eλT ∥v∥L∞(QT ) and Lv = LM to get the4

above inequality. The same inequality holds for b̂k. As in the proof of Theorem 4.15

we deduce the existence and uniqueness of a solution wk ∈W (0, T ) of the equation6 
∂w

∂t
−∆w + (a+ λ)w + d̂k(x, t, w) = g̃ in QT ,

∂nw + b̂k(x, t, w) = 0 on ΣT , w(0) = u0 in Ω,
(5.11)

Using (2.11) with ε = 1
K(2Λ+1) we get∫ t

0

∫
Γ

b̂k(x, t, wk)wk dxdτ

≥ −L
2
v

2

∫ t

0

∫
Γ

v2 dxdτ − (Λ +
1

2
)

∫ t

0

∫
Γ

w2
k dxdτ ≥ −L

2
v

2

∫ t

0

∫
Γ

v2 dxdτ

− 1

2

∫ t

0

∫
Ω

|∇wk|2 dx dτ −
1

2
K2(2Λ + 1)2

∫ t

0

∫
Ω

w2
k dx dτ.

Recalling the definition of λ, using (5.7) and the above inequality, and testing the
equation (5.11) with wk we infer

1

2
∥wk(t)∥2L2(Ω) +

∫ t

0

∥wk(τ)∥2H1(Ω) dτ −
L2
v

2

∫ t

0

(
∥v(τ)∥2L2(Ω) + ∥v(τ)∥2L2(Γ)

)
dτ

≤ 1

2
∥wk(t)∥2L2(Ω) +

1

2

∫ t

0

∫
Ω

[|∇wk∥2 + (a+ λ)w2
k] dx dτ

+

∫ t

0

∫
Ω

d̂k(x, τ, wk)wk dxdτ +

∫ t

0

∫
Γ

b̂k(x, τ, wk)wk dxdτ

=
1

2
∥u0∥2L2(Ω) +

∫ t

0

∫
Ω

g̃wk dx dτ.

This yields with (3.1)

∥wk(t)∥2L2(Ω) + 2

∫ t

0

∥wk(τ)∥2H1(Ω) dτ

≤ ∥u0∥2L2(Ω) + e2λT
(
∥g∥2L2(QT ) + CL2

v∥h∥2L2(ΣT )

)
+

∫ t

0

∥wk(τ)∥2L2(Ω) dτ.
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Arguing as in the proof of Theorem 4.1 we infer the estimate (4.9) from the above1

inequality as well as the L∞(Q) estimate independent of k. Thus w = wk is2

the solution of (5.9) for k large enough and ũ = v + w solves (5.7). Finally,3

u = eλtũ ∈W (0, T ) ∩ L∞(Q) and the associated estimates hold.4
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14. H. Meinlschmidt and J. Rehberg, Hölder estimates for non-autonomous parabolic problems36

with rough data, Evol. Equ. Control Theory 5 (2016), no. 1, 147–184.37

15. M. Pierre, Global existence in reaction-diffusion systems with control of mass: a survey, Milan38

J. Math. 78 (2010), no. 2, 417–455. MR 278184739

16. J. P. Raymond and H. Zidani, Pontryagin’s principle for state-constrained control problems40

governed by parabolic equations with unbounded controls, SIAM Journal on Control and Op-41

timization 36 (1998), no. 6, 1853–1879.42

17. , Hamiltonian Pontryagin’s principles for control problems governed by semilinear43

parabolic equations, Appl. Math. Optim. 39 (1999), no. 2, 143–177. MR 166566844

18. R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equa-45

tions, Math. Surv. and Monogr., vol. 49, American Mathematical Society, Providence, RI,46

1997.47
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20. J. Zhang, V. Rădulescu, M. Yang, and Z. Jiazheng, Global existence and blow-up solutions for50

a parabolic equation with critical nonlocal interactions, Journal of Dynamics and Differential51

Equations (2023), 1–39.52

21. J. Zhou, Gobal existence and L∞ estimates of solutions for a quasilinear parabolic system, J.53

Nonlinear Sci. Appl. 3 (2010), no. 4, 245–255.54



26 EDUARDO CASAS AND KARL KUNISCH

Department of Applied Mathematics and Computer Science, Universidad de Cantabria,1

39005 Santander, Spain2

Email address: eduardo.casas@unican.es3

Institute for Mathematiques and Scientific Computing, University of Graz, A-80104

Graz, Austria5

Email address: karl.kunisch@uni-graz.at6


