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Abstract. For a nonlinear ordinary differential equation with time delay, the differentiation of4

the solution with respect to the delay is investigated. Special emphasis is laid on the second-order5

derivative. The results are applied to an associated optimization problem for the time delay. A6

first- and second-order sensitivity analysis is performed including an adjoint calculus that avoids7

the second derivative of the state with respect to the delay.8
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1. Introduction. In this paper, we discuss the differentiability of the solution12

of the delay differential equation13

ẋ(t) + f(x(t)) = Ax(t− τ) + g(t) in (0, T ),
x(t) = φ(t) in [−b, 0] (1.1)

with respect to the time delay τ . More precisely, denoting the solution of this14

equation by x[τ ], we show the existence of the first- and second-order derivatives of15

the mapping τ 7→ x[τ ] and derive equations for them.16

In (1.1), the following quantities are given: A continuously differentiable func-17

tion f : Rn → Rn, a matrix A ∈ Rn×n, a time delay τ ≥ 0, a fixed terminal time18

T > 0, and functions g : [0, T ] → Rn, φ : [−b, 0] → Rn. Here, b > 0 is a fixed bound19

such that τ can vary in the interval [0, b].20

As an application of the differentiability properties of the mapping τ 7→ x[τ ],21

we derive first- and second-order optimality conditions for the following delay opti-22

mization problem:23

min
0≤τ≤b

∫ T

0

|x[τ ](t)− xd(t)|2dt, (1.2)

where xd ∈ L2(0, T ;Rn) is a given desired state.24

Our paper contributes to the control theory of delay equations that is a well25

developed field of applied mathematics. Among the very many contribution we can26

only cite a very small selection from the distant [1, 7, 8, 13, 12] and more recent27

past [2, 14].28

In theoretical physics, stability properties and the control of systems of delay29

equation became an important issue. There is an active research in feedback control30

and stabilization of chaotic systems. We refer to the seminal paper [16], to [6], and31
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to the survey [17] with various applications. We mention exemplarily the design1

of lasers or the research on neurological diseases. The dependence of solutions on2

the delays is an interesting and significant question. In particular, this concerns3

the differentiability with respect to delays. In [9], higher order differentiability was4

shown for a nonlinear differential equation with delay, in [10] for a class of nonlinear5

retarded reaction diffusion equations. Both results were proved only locally in time.6

Recently, in [3] the optimization of time delays in semilinear parabolic partial7

differential equation was investigated in the context of optimal control theory. The8

results were based on a general theory of first-order necessary optimality conditions9

for optimal control problems with nonlocal measure control of parabolic equations,10

[5]. An optimization problem of feedback controllers for a parabolic equation with11

nonlocal time delay was discussed in [15]. We also mention [4], where a nonlocal12

optimal control problem with memory and measure-valued controls is considered.13

All the results cited in this block are global in time.14

The main novelty of our paper is the second-order sensitivity analysis for the15

optimization of the time delay in a nonlinear system of delay differential equations.16

In particular, we prove the first- and second-order differentiability of the state w.r.17

to the delay. Moreover, we present the sensitivity analysis for the optimization18

problem (1.2) – first by adjoint calculus without invoking the second derivative of19

the state w.r. to τ and later on using this second-order derivative. We improve20

the results of [9], [10], where a sufficiently small time horizon is assumed for the21

differentiability results. We are able to derive results that are global in time.22

The paper is organized as follows: In Section 2 well-posedness of equation (1.1)23

is proven and the regularity of its solution is discussed. Section 3 is devoted to the24

differentiability of the state x with respect to the delay τ . The first and second-25

order sensitivity analysis of the optimization problem is addressed in Section 426

via an adjoint calculus without using the second-order derivative of the state with27

respect to τ . The (global) second-order differentiability of the state with respect28

to τ is the topic of Section 5. Section 6 contains a brief discussion of the case of29

multiple time delays.30

2. The delay differential equation. The aim of this section consists in31

establishing existence and uniqueness of a solution x to (1.1). Throughout the32

paper, we will require the following standing assumptions on f , φ, and g, where33

Df(x) will denote the Jacobian matrix of f at x and I is the identity matrix.34

Assumption 2.1. The function f is continuously differentiable and there is a35

constant λ > 0, such that36

Df(x) + λI is positive semi-definite for all x ∈ Rn. (2.1)

The function g belongs to L2(0, T ;Rn) and φ to H1(−b, T ;Rn).37

Later, in the context of differentiability, we will slightly strengthen the assump-38

tions on f, φ, and g. For n = 1, a typical non-monotone candidate is f(x) =39

(x− x1)(x− x2)(x− x3) with given real numbers x1 ≤ x2 ≤ x3.40

Prior to the discussion of equation (1.1), we first consider the auxiliary system41

ẋ(t) + f(x(t)) = g(t) in (0, T ),
x(0) = x0,

(2.2)



Optimization of time delays 3

where x0 ∈ Rn is given.1

A function x ∈ H1(0, T ;Rn) is said to be a solution of (2.2), if it satisfies2

the equation almost everywhere in (0, T ) and obeys the initial condition. If g is3

continuous, then we can consider x as classical solution, i.e. x ∈ C1([0, T ],Rn).4

Proposition 2.2. Assume that f and g obey Assumption 2.1. Then, for all5

x0 ∈ Rn, equation (2.2) has a unique solution x ∈ H1(0, T ;Rn). It satisfies6

∥x∥H1(0,T ;Rn) ≤ C(|x0|, |f(0)|, T, ∥g∥L2(0,T ;Rn)),

where C is continuous and monotonically increasing in each of its arguments.7

Proof. (i) Utilizing the transformation x(t) = eλtz(t), equation (2.2) becomes8

λeλtz(t) + eλtż(t) + f(eλtz(t)) = g(t), z(0) = x0,

hence9

ż(t) + e−λtf(eλtz(t)) + λz(t) = e−λtg(t). (2.3)

Setting10

Q(t, z)(t) = e−λtf(eλtz(t)) + λz(t),

we have for z and v in Rn, and t ≥ 0 by (2.1)11

(DQ(t, z)v, v) ≥ (Df(z)v + λv, v) ≥ 0.

Thus Q(t, ·) is monotone for each t ≥ 0, i.e. we have12

⟨Q(t, z)−Q(t, y), z − y⟩ ≥ 0.

The differential equation for z now reads13

ż(t) +Q(t, z(t)) = h(t), z(0) = x0 (2.4)

with h(t) = e−λtg(t).14

(ii) A priori estimate. Let z ∈ H1(0, T ;Rn) be a solution of (2.4). After15

multiplication by z and integration,16 ∫ t

0

ż · z ds+
∫ t

0

(Q(s, z(s))−Q(s, 0)) · (z(s)− 0) ds =

−
∫ t

0

Q(s, 0) · z(s) ds+
∫ t

0

h(s) · z(s) ds

By the monotonicity of Q and Young’s inequality17

1

2
|z(t)|2 ≤ 1

2

(
|x0|2 +

∫ t

0

(|Q(s, 0)|2 + |h(s)|2) ds+
∫ t

0

|z(s)|2 ds
)
. (2.5)

Gronwall’s inequality implies that18

|z(t)| ≤ (|x0|+ ∥Q(·, 0)∥L2(0,T ;R) + ∥h∥L2(0,T ;R))e
1
2T =: R a.e. on [0, T ], (2.6)
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and consequently1

|x(t)| ≤ (|x0|+
√
T |f(0)|+ ∥g∥L2(0,T ;R))e

( 1
2+λ)T a.e. on [0, T ]. (2.7)

Since f is continuously differentiable, f is locally Lipschitz, i.e. Lipschitz on compact2

sets of Rn. Moreover, we have the a priori estimate above. Thus existence and3

uniqueness of a solution of (2.2) can be obtained by the principle ”extension or4

blow up”. We refer e.g. to Corollary 3.9 of [18]. Now we are able to deal with the5

delay differential equation. We refer to x as a solution to (1.1), if x ∈ C([−b, T ],Rn)6

with x|[0,T ] ∈ H1([0, T ];Rn), x|[−b,0] = φ, and (1.1) is satisfied a.e. in (0, T ). Unless7

necessitated for reasons of clarity we shall henceforth not distinguish between x as8

solution on [0, T ] or on [−b, T ].9

Theorem 2.3 (Existence and uniqueness). If f , φ, and g satisfy Assumption10

2.1, then the delay equation (1.1) has a unique solution x ∈ H1(−b, T ;Rn). If11

moreover g ∈ H1(0, T ;Rn), then x ∈ H2(0, T ;Rn).12

Proof. With Proposition 2.2 at hand the verification of this result can be ob-13

tained in a standard manner proceeding stepwise in time with stepsize τ .14

Remark 2.4. For the second-order differentiability of the solution x with15

respect to the delay τ , depending on the function space setting to be chosen, the16

higher regularity x ∈ H2(−b, T ;Rn) is required. Even for φ ∈ H2(−b, T ;Rn) and17

g ∈ H1(0, T ;Rn), this needs a compatibility condition at t = 0:18

Indeed, if x ∈ H2(−b, T ;Rn), then ẋ has to be continuous at t = 0. We have19

ẋ(0−) = lim
t↑0

ẋ(t) = lim
t↑0

φ̇(t) = φ̇(0)

and20

ẋ(0+) = lim
t↓0

ẋ(t) = lim
t↓0

(−f(x(t)) +Ax(t− τ) + g(t))

= −f(φ(0)) +Aφ(−τ) + g(0).

Therefore, to have x ∈ H2(−b, T ;Rn), the compatibility condition21

φ̇(0) = −f(φ(0)) +Aφ(−τ) + g(0) (2.8)

is needed.22

Remark 2.5. Let us point out that the compatibility condition also naturally23

arises if the delay equation (1.1) is treated as abstract equation in function space24

over the interval (−b, 0). To briefly explain the context let us consider the linear,25

homogenous case, with f(x) = A0 x and g = 0. For the function space setting, there26

are two natural choices, namely C(−b, 0;Rn) or Rn × L2(−b, 0;Rn). Choosing the27

former, we define the infinitesimal generator A associated to (1.1) by Ay = d
dsy with28

dom(A) = {y ∈ C1(−b, 0;Rn) : d
dsy(0) = A0y(0) + Ay(−τ)}, see e.g. [8, Section 229

and Section19].30

The abstract equation associated to (1.1) is then given by31

d

dt
x(t) = Ax(t), with x(0) = φ.

The semigroup eAt generated by A satisfies eAtφ = x(t+ ·) on (−b, 0), for all t ≥ 0,32

with x the solution that we discussed above. Moreover eAtφ ∈ dom(A) for all t ≥ b.33

Thus the compatibility condition is satisfied for all t ≥ b.34
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3. Differentiability with respect to the time delay τ . By Theorem 2.3,1

for each τ ∈ [0, b] the delay equation (1.1) has a unique solution x that we denote2

by x[τ ]. The mapping τ 7→ x[τ ] is well defined from [0, b] to C([−b, T ],Rn) and to3

H1(−b, T ;Rn), if φ ∈ H1(−b, 0;Rn). In the remainder of this section, we discuss4

the first derivative of the mapping τ 7→ x[τ ].5

In principle, we might adapt the proof of an analogous theorem of differentia-6

bility from Casas et al. [3] that was performed for the optimization of time delays7

in semilinear parabolic equations with time delay. Here, we present a different proof8

via the implicit function theorem. We can benefit from this strategy also for the9

second derivative.10

To this end, following Hale and Ladeira [10], we transform equation (1.1) in the11

following way: We set12

ϕ(t) =

{
φ(t), t ∈ [−b, 0],
φ(0), t ∈ (0, T ],

and13

z(t) = x(t)− ϕ(t), t ∈ [−b, T ].

We observe that ϕ ∈ H1(−b, T ;Rn), z(t) = 0 on [−b, 0], and x(t) = z(t) +ϕ(t). For14

convenience, we introduce the following subspace of H1(−b, T ;Rn):15

H1
[0](−b, T ;R

n) = {z ∈ H1(−b, T ;Rn) : z(t) = 0 in [−b, 0]}.

In addition, we define F : H1
[0](−b, T ;R

n)× [0, b] → H1
[0](−b, T ;R

n) by16

(F (z, τ))(t) =


0, t ∈ [−b, 0],∫ t

0

{
(−f(z + ϕ) + g)(s) + (A(z + ϕ))(s− τ))

}
ds, t ∈ [0, T ].

(3.1)
Then (1.1) for x is equivalent to the equation for z ∈ H1

[0](−b, T ;R
n),17

z(t) = (F (z, τ))(t), t ∈ [−b, T ]. (3.2)

This transformation justifies to work in the closed subspace H1
[0](−b, T ;R

n) of18

H1(−b, T ;R).19

By Theorem 2.3 and the equivalence of (3.2) with (1.1), the mapping [0, b] ∋20

τ 7→ z ∈ H1
[0](−b, T ;R

n) is well defined. To express the dependency of this solution21

on τ , we denote it by z[τ ]. To study its differentiability properties, we use the22

following notation:23

ż[τ ](t) := ∂tz[τ ](t), z̈[τ ](t) := ∂2t z[τ ](t)

z′[τ ](t) := ∂τz[τ ](t), z′′[τ ](t) := ∂2τz[τ ](t).

Lemma 3.1. The parameterized shift mapping S : (z, τ) 7→ z(· − τ) is con-24

tinuously Fréchet-differentiable from H1
[0](−b, T ;R

n) × [0, b] to L2(0, T ;Rn). The25

derivative is26

(DS(z, τ)(h, δ))(t) = h(t− τ)− ż(t− τ)δ, t ∈ [0, T ]. (3.3)
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Proof. We first confirm that (3.3) is the Fréchet derivative of (z, τ) 7→ z(· − τ):1

Let 0 ≤ τ < b and |δ| < b− τ so that τ + δ ≤ b. We have2

(S(z + h, τ + δ)− S(z, τ))(t) = (z + h)(t− (τ + δ))− z(t− τ)

= z(t− τ − δ)− z(t− τ) + h(t− τ) + h(t− τ − δ)− h(t− τ)

= h(t− τ)−
∫ 1

0

ż(t− τ − sδ) δds+

∫ 1

0

ḣ(t− τ − sδ)δ ds.

= h(t− τ)− ż(t− τ)δ − δ

∫ 1

0

(ż(t− τ − sδ)− ż(t− τ)) ds+Rh(h, δ)

= h(t− τ)− ż(t− τ)δ +Rz(h, δ) +Rh(h, δ),

where the remainder terms Rz and Rh are defined by3

Rh(h, δ) = δ

∫ 1

0

ḣ(t− τ − sδ) ds,

Rz(h, δ) = δ

∫ 1

0

(ż(t− τ − sδ)− ż(t− τ)) ds.

Here, we have used that ∂sz(t− s) = −ż(t− s) which follows from the definition of4

the weak derivative ż(t− τ) via testing with a smooth function.5

For convenience, in this proof we introduce the abbreviations6

∥ · ∥H1
[0]

:= ∥ · ∥H1
[0]

(−b,T ;Rn), ∥ · ∥L2 := ∥ · ∥L2(0,T ;Rn).

The L2-norm of the remainder terms Rz and Rh, divided by ∥h∥H1
[0]

+ |δ|, tends to7

zero, if δ → 0:8

∥Rh∥2L2 =

∫ T

0

∣∣∣∣∫ 1

0

ḣ(t− τ − sδ) ds

∣∣∣∣2 δ2dt
≤

∫ T

0

∫ 1

0

|ḣ(t− τ − sδ)|2 ds dt δ2 =

∫ 1

0

∫ T−τ−sδ

0

|ḣ(σ)|2dσ ds δ2

≤
∫ 1

0

∫ T

0

|ḣ(σ)|2dσ δ2 = ∥h∥2H1
[0]
δ2,

notice that h(σ) = 0 for σ ≤ 0. Therefore ∥Rh∥L2 ≤ δ∥h∥H1
[0]

and hence9

∥Rh∥L2

∥h∥H1
[0]

+ |δ|
→ 0 if ∥h∥H1

[0]
+ |δ| → 0. (3.4)

Analogously, we obtain10

1

δ2
∥Rz(h, δ)∥2L2 ≤

∫ 1

0

∫ T

0

|ż(t− τ − sδ)− ż(t− τ)|2 dtds.

The function ż belongs to L2(−b, T ;Rn), and hence by the continuity of the shift11

operator in L2(−b, T ;Rn), see [11, pg. 199] we obtain12

∥Rz(h, δ)∥L2

∥h∥H1
[0]

+ |δ|
≤ 1

|δ|
∥Rz(h, δ)∥L2 → 0, if ∥h∥H1

[0]
+ |δ| → 0.
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The properties of the remainder terms confirm that (3.3) is the expression of the1

Fréchet derivative of the shift mapping S. The derivative depends continuously on2

(z, τ): Indeed, we have3

∥(DS(z, τ)−D(S(y, σ))(h, δ)∥L2 ≤ ∥(ż(·−τ)−ẏ(·−σ))∥L2 |δ|+∥h(·−τ)−h(·−σ)∥L2 .

The second term tends to 0 as |τ−σ| → 0 with the same argument as the one which4

led to (3.4). For the first one we estimate5

∥(ż(· − τ)− ẏ(· − σ))∥L2 ≤ ∥(ż(· − τ)− ẏ(· − τ))∥L2 + ∥(ẏ(· − τ)− ẏ(· − σ))∥L2 .

For y → z in H1
[0](−b, T ;R

n), the first term obviously tends to zero. For σ → δ,6

the second term tends to zero by the continuity of the shift operator in L2. These7

estimates show the continuity of the derivative. In the case τ = b, we assume δ < 08

and obtain the result for the left derivative of S in b.9

Notation. Preparing the next results, we introduce the following mappings10

defined in H = H1
[0](−b, T ;R

n)× [0, b), namely G : H → L2(0, T ;Rn) and F : H →11

H1(−b, T ;Rn) defined by12

G(z, τ) =
{
− f(z + ϕ) +A(z(· − τ) + ϕ(· − τ))

}
|[0,T ] + g,

F(z, τ) = z − F (z, τ),

where F is defined in (3.1). Notice that13

F (z, τ)(t) =

∫ t

0

G(z, τ)(s) ds, ∀t ∈ [0, T ].

The space H1
[0](−b, T ;R

n) is continuously embedded in C([−b, T ],Rn) and the su-14

perposition operator v 7→ f(v) is of class C1 in C([−b, T ],Rn), because f : Rn → Rn
15

is of class C1. Moreover, ϕ belongs to H1(−b, T ;Rn). Therefore, the mapping16

z 7→ f(z+ϕ) is of class C1 from H1
[0](−b, T ;R

n) to C([−b, T ],Rn) ↪→ L2(−b, T ;Rn).17

Thanks to Lemma 3.1 and the differentiability of f , the operator G is of class18

C1 from H to L2(0, T ;Rn). Therefore, via integration, F is class C1 from H to19

H1
[0](−b, T ;R

n).20

In view of these arguments, we have proved the following result:21

Lemma 3.2. The mapping (z, τ) 7→ F (z, τ) is continuously differentiable from22

H1
[0](−b, T ;R

n)× [0, b] to H1
[0](−b, T ;R

n).23

Theorem 3.3. The mapping τ 7→ z[τ ] is continuously differentiable from [0, b]24

to H1
[0](−b, T ;R

n).25

Proof. The function z[τ ] is the unique solution of the equation F(z, τ) = 0.26

Notice that existence and uniqueness of z[τ ] follow from Thm. 2.3. With F , also27

F = I − F is of class C1 in H1
[0](−b, T ;R

n). To show the result, we invoke the28

implicit function theorem.29

Therefore, we confirm that DzF(z, τ) is an isomorphism. We have DzF(z, τ) =30

I −DzF (z, τ), hence we have to consider the equation31

v −DzF (z, τ)v = d



8 K. KUNISCH AND F. TRÖLTZSCH

in H1
[0](−b, T ;R

n). More detailed, this equation for v ∈ H1
[0](−b, T ;R

n) reads1

v(t) +

∫ t

0

{Df(z(s) + ϕ(s))v(s)−Av(s− τ)} ds = d(t), t ∈ [0, T ],

or equivalently2

v̇(t) +Df(z(t) + ϕ(t))v(t) = Av(t− τ) + ḋ(t), t ∈ (0, T ],

v(t) = 0, t ∈ [−b, 0].

For each d ∈ H1
[0](−b, T ;R

n), this linear delay equation has a unique solution3

v ∈ H1
[0](−b, T ;R

n). This can be shown stepwise in time, analogously to Theo-4

rem 2.3. The arguments are even simpler, because we can use a standard existence5

and uniqueness theorem for systems of linear ordinary differential equations. The6

mapping ḋ 7→ v is continuous from L2(0, T ;Rn) to H1
[0](−b, T ;R

n) and hence DzF7

is an isomorphism.8

Since F is of class C1, the desired result follows from the implicit function9

theorem.10

Corollary 3.4. The mapping τ 7→ x[τ ] is continuously differentiable from11

[0, b] to H1(−b, T ;Rn). Its derivative w[τ ] := x′[τ ] is the unique solution of the12

delay equation13

∂tw(t) +Df(x[τ ](t))w(t) = Aw(t− τ)−Aẋ[τ ](t− τ), t ∈ (0, T ],

w(t) = 0, t ∈ [−b, 0].
(3.5)

Moreover we have14

∂t∂τx[τ ](·) = ∂τ∂tx[τ ](·) in L2(0, T ;Rn). (3.6)

Proof. Thanks to our transformation, we have x[τ ] = z[τ ] + ϕ. Therefore, the15

differentiability properties of τ 7→ z[τ ] transfer to τ 7→ x[τ ] and we have x′[τ ] = z′[τ ].16

The equation for x′[τ ] can be determined by implicit differentiation; x[τ ] obeys17

x[τ ](t) = φ(0) +

∫ t

0

{
− f(x[τ ](s)) +Ax[τ ](s− τ) + g(s)

}
ds, t ∈ (0, T ],

x[τ ](t) = 0, t ∈ [−b, 0].

Theorem 3.3 justifies to differentiate both equations with respect to τ , hence18

x′[τ ](t) =

∫ t

0

{
− (Df(x[τ ])x′[τ ])(s) +Ax′[τ ](s− τ)−Aẋ[τ ](s− τ)

}
ds, t ∈ (0, T ],

x′[τ ](t) = 0, t ∈ [−b, 0].

In view of Theorem 3.3, the function x′[τ ] belongs to H1(−b, T ;Rn). We can dif-19

ferentiate the first equation w.r. to t and obtain the claimed result of the corollary.20

To verify (3.6), note that21

∂tx[τ ](t) = −f(x[τ ](t))−Ax[τ ](t− τ) + g(t). (3.7)

The right hand side is differentiable with respect to τ and belongs to L2(0, T ;Rn).22

Hence ∂τx[τ ](·) exists as an element in L2(0, T ;Rn). Finally (3.6) follows by taking23

the derivative with respect to τ in (3.7) and comparing with (3.5).24
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4. Optimization of the time delay. In this section, we apply the theory of1

the previous sections to the optimization problem2

min
τ∈[0,b]

j(τ) :=
1

2

∫ T

0

∣∣x[τ ](t)− xd(t)
∣∣2 dt, (4.1)

where xd ∈ L2(0, T ;Rn) is a given desired state and x[τ ] denotes the solution of3

(1.1) for given τ .4

We discuss the first- and second-order sensitivity of the cost function j and5

derive first- and second-order optimality conditions. The second-order sensitivity6

analysis of j is performed in two ways. In the first, we use the second-order derivative7

x′′[τ ], in the second we invoke an adjoint calculus that does not exploit the derivative8

x′′[τ ].9

4.1. First-order sensitivity analysis. We first assume φ ∈ H1(−b, 0;Rn);10

then equation (1.1) admits a unique solution x[τ ] ∈ H1(−b, T ;Rn). If g belongs to11

H1(0, T ;Rn), then we have x ∈ H2(0, T ;Rn).12

Associated to x[τ ], we define the adjoint equation13 {
− ṗ(t) +Df(x[τ ](t))⊤p(t) = A⊤p(t+ τ) + x[τ ](t)− xd(t), t ∈ [0, T ),

p(t) = 0, t ∈ [T, T + b].
(4.2)

This equation admits a unique solution p ∈ H1(0, T + b;Rn), denoted by p[τ ].14

For the sake of brevity, we sometimes omit the dependence on τ . Concerning the15

differentiability of p[τ ] with respect to τ , we have the following result analogously16

to Corollary 3.4:17

Proposition 4.1. If f ∈ C2(Rn,Rn), the mapping τ 7→ p[τ ] is continuously18

differentiable from [0, b) to H1(0, T + b;Rn). Its derivative w = p′[τ ] is the unique19

solution of20 
− ẇ(t) +Df(x[τ ](t))⊤w(t)−A⊤w(t+ τ) =

− x′[τ ]D(Df(x[τ ](t))⊤)p[τ ](t) +A⊤ṗ[τ ](t+ τ) + x′[τ ](t), t ∈ [0, T ],

p(t) = 0, t ∈ [T, T + b],
(4.3)

where21

(qD(Df(x[τ ](t))⊤)p)i =

n∑
j,k=1

(fj)xixk
pjqk.

The proof is similar to that of Corollary 3.4 with two differences: Now, we have22

a backward equation. This can be reduced to a forward equation by a standard23

transformation of time. Moreover, in Corollary 3.4 the right-hand side g did not24

depend on τ . Here, the right-hand side is x[τ ]− xd.25

The first derivative of the cost j is characterized next. Here and in what follows,26

⟨·, ·⟩ denotes the standard inner product of Rn.27

Proposition 4.2. If f is continuously differentiable, φ ∈ H1(−b, 0;Rn), and28

g ∈ L2(0, T ;Rn), then j ∈ C1[0, b] and29

j′(τ) = −
∫ T

0

⟨p[τ ], Aẋ[τ ](t− τ)⟩dt. (4.4)
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Proof. We compute, not indicating the dependence of p[τ ] on τ ,1

j′(τ) =

∫ T

0

⟨x[τ ](t)− xd(t), x
′[τ ](t)⟩dt

=

∫ T

0

⟨−ṗ(t) +Df(x[τ ](t))⊤p(t)−A⊤p(t+ τ), x′[τ ](t)⟩dt

=

∫ T

0

⟨p(t), ẋ′[τ ](t) +Df(x[τ ](t))x′[τ ](t)−Ax′[τ ](t− τ)⟩dt

= −
∫ T

0

⟨p(t), Aẋ[τ ](t− τ)⟩dt.

2

4.2. Second-order sensitivity analysis for j. In this section we verify that3

under additional assumptions on the problem data f, φ and g, the cost functional4

is twice continuously differentiable. This allows us to formulate a second-order5

sufficient optimality condition for (4.1). We will rely on the following6

Assumption 4.3. The function f belongs to C2(Rn,Rn), φ to H2(−b, 0;Rn),7

and g to H1(0, T ;Rn).8

Proposition 4.4. If Assumption 4.3 holds, then j ∈ C2[0, b] and9

j′′(τ) =

∫ T

0

∣∣x′[τ ]∣∣2 dt− ∫ T

0

⟨p[τ ](t), D2f(x[τ ])(x′[τ ], x′[τ ])⟩dt

− 2

∫ T

τ

⟨p[τ ](t), Aẋ′[τ ](t− τ)⟩dt+ ⟨p[τ ](τ), A
(
ẋ[τ ](0+)− φ̇(0)

)
⟩

+

∫ τ

0

⟨p[τ ](t), Aφ̈(t− τ)⟩dt+
∫ T

τ

⟨p[τ ](t), Aẍ[τ ](t− τ)⟩dt.

(4.5)

Proof. For the second derivative, we obtain10

j′′(τ) =
d

dτ

[
−
∫ τ

0

⟨p[τ ](t), Aẋ[τ ](t− τ)⟩dt−
∫ T

τ

⟨p[τ ](t), Aẋ[τ ](t− τ)⟩dt

]

= −
∫ T

0

⟨p′[τ ](t), Aẋ[τ ](t− τ)⟩dt−
∫ T

0

⟨p[τ ](t), Aẋ′[τ ](t− τ)⟩dt

+ ⟨p[τ ](τ), A(ẋ[τ ](0+)− φ̇(0))⟩+
∫ τ

0

⟨p[τ ](t), Aφ̈(t− τ)⟩dt

+

∫ T

τ

⟨p[τ ](t), Aẍ[τ ](t− τ)⟩dt
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1

= −
∫ T

0

⟨p′[τ ](t), Aẋ[τ ](t− τ)⟩dt+
∫ T

0

⟨p[τ ](t), Aẋ′[τ ](t− τ)⟩dt

− 2

∫ T

0

⟨p[τ ](t), Aẋ′[τ ](t− τ)⟩dt+ ⟨p[τ ](τ), A(ẋ[τ ](0+)− φ̇(0))⟩

+

∫ τ

0

⟨p[τ ](t), Aφ̈(t− τ)⟩dt+
∫ T

τ

⟨p[τ ](t), Aẍ[τ ](t− τ)⟩dt.

Let us turn to the first two terms on the right-hand side of the last expression:2

−
∫ T

0

⟨p′[τ ](t), Aẋ[τ ](t− τ)⟩dt+
∫ T

0

⟨p[τ ](t), Aẋ′[τ ](t− τ)⟩dt

=

∫ T

0

⟨p′[τ ](t), ẋ′[τ ](t) +Df(x[τ ](t))x′[τ ](t)−Ax′[τ ](t− τ)⟩dt

+

∫ T

0

⟨p[τ ](t), Aẋ′[τ ](t− τ)⟩dt

=

∫ T

0

⟨−ṗ′[τ ](t) +Df(x[τ ](t))⊤p′[τ ](t)−A⊤p′[τ ](t+ τ), x′[τ ](t)⟩dt

+

∫ T

0

⟨p[τ ](t+ τ), Aẋ′[τ ](t)⟩dt

=

∫ T

0

⟨ṗ[τ ](t+ τ), Ax′[τ ](t)⟩dt+
∫ T

0

∣∣x′[τ ](t)∣∣2dt+ ∫ T

0

⟨p[τ ](t+ τ), Aẋ′[τ ](t)⟩dt

−
∫ T

0

⟨x′[τ ](t)D(Df(x[τ ](t))⊤p[τ ](t), x′[τ ](t)⟩dt

=

∫ T

0

∣∣x′[τ ](t)∣∣2dt− ∫ T

0

⟨x′[τ ](t)D(Df(x[τ ](t))⊤p[τ ](t), x′[τ ](t)⟩dt,

where we used that the action of the tensor D2f(x) is given by

D2f(x)(h1, h2) = colk

n∑
i,j=1

h⊤1 D
2fk(x)h2, for h1 ∈ Rn, h2 ∈ Rn,

and3

⟨D2f(x)(v, v), p⟩ = ⟨vD(Df(x)⊤)p, v⟩ ∀ v, p ∈ Rn.

4

Corollary 4.5. If the compatibility condition (2.8) is satisfied, then5

j′′(τ) =

∫ T

0

∣∣x′[τ ](t)∣∣2dt− ∫ T

0

⟨p[τ ](t), (D2f(x[τ ])(x′[τ ], x′[τ ]))(t)⟩dt

− 2

∫ T

0

⟨p[τ ](t), Aẋ′[τ ](t− τ)⟩dt+
∫ T

0

⟨p[τ ](t), Aẍ[τ ](t− τ)⟩dt.
(4.6)



12 K. KUNISCH AND F. TRÖLTZSCH

4.3. Existence for (4.1) and first/second-order optimality . With the1

results of the previous sections, the analysis of (4.1) is now completely standard.2

We summarize it in the following theorem.3

Theorem 4.6. With Assumption 2.1 holding there exists a solution τ̄ of (4.1),4

satisfying the first-order condition j′(τ̄)(τ − τ̄) ≥ 0 for all τ ∈ [0, b]. If moreover the5

regularity assumptions of Proposition 4.4 hold, then each of the following conditions6

is sufficient for τ̂ to be a strict local minimizer of j:7

(i) 0 < τ̂ < b, j′(τ̂) = 0, and j′′(τ̂) > 0,8

(ii) τ̂ = 0 and j′(0) > 0 or τ̂ = b and j′(b) > 0.9

5. Second-order derivative of the state. In this section, we discuss the10

second-order derivative of the mapping τ 7→ x[τ ] for the equation (1.1). We prove11

the existence of x′′[τ ] in L2(0, T ;Rn) and establish equations for it. This allows us12

to obtain an alternative expression for the second derivative of the cost:13

j′′(τ) =
d

dτ
j′[τ ] =

d

dτ

∫ T

0

⟨x[τ ](t)− xd(t), x
′[τ ](t)⟩dt

=

∫ T

0

∣∣x′[τ ](t)∣∣2dt+ ∫ T

0

⟨x[τ ](t)− xd(t), x
′′[τ ](t)⟩dt.

(5.1)

This requires some attention since t 7→ x′′[τ ](t) is not differentiable at t = τ unless14

the compatibility condition (2.8) is satisfied. The following example illustrates the15

difficulty:16

Example 5.1. Consider for n = 1 and 0 < τ < 1 the linear delay equation17

ẋ(t) = x(t− τ), t > 0,

x(t) = 1, −1 ≤ t ≤ 0.
(5.2)

Here, we have φ(t) = 1, t ∈ [−1, 0]. Solving this equation stepwise on [0, τ ], [τ, 2τ ],18

and [2τ, 3τ ], we find19

x[τ ](t) =


1, t ∈ [−1, 0],

t+ 1, t ∈ (0, τ ],
1
2 (t− τ)2 + t+ 1, t ∈ (τ, 2τ ],
1
6 (t− 2τ)3 + 1

2 (t− τ)2 + t+ 1, t ∈ (2τ, 3τ ].

Differentiating x[τ ] w.r. to τ in the single subintervals, we get20

x′[τ ](t) =


0, t ∈ [−1, τ ],

−(t− τ), t ∈ (τ, 2τ ],

−(t− 2τ)2 − (t− τ), t ∈ (2τ, 3τ ].

This is a function of H1(−1, 3). Differentiating again, we arrive at21

x′′[τ ](t) =


0, t ∈ [−1, τ ],

1, t ∈ (τ, 2τ ],

4(t− 2τ) + 1, t ∈ (2τ, 3τ ].
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We see that x′′[τ ] exhibits a jump at t = τ . It exists as a well defined function of1

L2(−1, 3τ), but we cannot differentiate it with respect to t in t = τ . Therefore, we2

cannot have a standard differential equation to determine x′′[τ ] on the whole interval3

[0, T ]. In our example, the function x[τ ] belongs to H1(−1, 3), but its derivative ẋ[τ ]4

is discontinuous at t = 0. Note that φ does not satisfy the compatibility condition5

(2.8).6

Remark 5.2. We have differentiated x[τ ] and x′[τ ] on single subintervals of7

time. It is not obvious that this stepwise differentiation leads to a correct result,8

because the values τ and 2τ need special care. Here, the computation is correct,9

because x[τ ] and x′[τ ] belong to H1(−1, 3), see also Lemma 5.8.10

In view of the example, we will study the second-order differentiability of x[τ ]11

first by differentiating the integral version of equation (3.5) with respect to τ ,12

w(t) =

∫ t

0

{−Df(x[τ ](s))w(s) +Aw(s− τ)−Aẋ[τ ](s− τ)}ds, (5.3)

where13

w ∈ L2
0(−b, T ;Rn) = {w ∈ L2(−b, T ;Rn) : w(t) = 0 a.e. in (−b, 0)}.

Theorem 5.3. If φ, f , and g obey Assumption 4.3, then the mapping τ 7→ x[τ ]14

is twice continuously differentiable from [−b, 0] to L2
0(−b, T ;Rn).15

Proof. For the application of the implicit function theorem, we introduce the16

mapping F : L2
0(−b, T ;Rn)× [−b, 0] → L2

0(−b, T ;Rn) defined by the right-hand side17

of (5.3) by18

F (w, τ)(t) =

∫ t

0

{−(Df(x[τ ])w)(s) +Aw(s− τ)−Aẋ[τ ](s− τ)} ds, t ∈ [0, T ],

and F (w, τ)(t) = 0 for t ∈ [−b, 0].19

We first show that F is continuously differentiable. To this end, on [0, T ] we20

split F as follows:21

F = −
∫ t

0

Df(x[τ ])w ds+A

∫ t

0

w(s− τ)ds−A

∫ t

0

ẋ[τ ](s− τ) ds = I1 +AI2 −AI3.

Differentiability of I1: Obviously, I1 is of class C1 w.r. to w ∈ L2
0(−b, T ;Rn). For22

given w, the differentiability w.r. to τ is seen as follows: We have23

Df(x[τ ])w =

n∑
i=1

wi∇fi(x[τ ]). (5.4)

For each i, thanks to the assumption on f , the mapping x(·) 7→ ∇fi(x(·)) is24

C1 in C([0, T ],Rn). By Theorem 3.3, the function τ 7→ x[τ ] is C1 from [0, b] to25

H1
[0](−b, T ;R

n) ↪→ C([−b, T ];Rn), and by the chain rule τ 7→ ∇fi(x[τ ]) is C1 from26

[0, b] to C([−b, T ];Rn).27

In view of (5.4), it is now easy to confirm that (w, τ) 7→
∫ t

0
(Df(x[τ ])w)(s)ds is28

of class C1 from L2
0(−b, T ;Rn)× [0, b] to L2(0, T ;Rn).29
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Differentiability of I2: For w ∈ L2
0(−b, T ;Rn) we have1 ∫ t

0

w(s− τ) ds =

∫ t−τ

−τ

w(σ)dσ =

∫ t−τ

0

w(σ)dσ =W (t− τ),

where W (t) =
∫ t

−b
w(s)ds belongs to H1

[0](−b, T ;R
n). Therefore, we have2

I2(w + h, τ + δ)(t) =W (t− τ − δ) +H(t− τ − δ)

with H(t) =
∫ t

−b
h(s)ds ∈ H1

[0](−b, T ;R
n). The continuous differentiability now3

follows from Lemma 3.1. The derivative in the direction h is4

H(t− τ)− Ẇ (t− τ) =

∫ t−τ

0

h(s)ds− w(t− τ).

Consequently, AI2 is of class C1 from L2
0(−b, T ;Rn)× [0, b] to L2

0(−b, T ;Rn).5

Differentiability of I3: It holds6 ∫ t

0

ẋ[τ ](s− τ) ds = x[τ ](t− τ)− x[τ ](−τ) =

{
φ(t− τ)− φ(−τ), t ∈ [0, τ ],

x[τ ](t− τ)− φ(−τ), t ∈ (τ, T ].

Both functions after the brace belong to H2 on the associated intervals. Moreover,7

they are equal for t = τ . Thanks to Lemma 5.8, we are justified to perform the8

differentiation with respect to τ on each of the intervals and obtain9

ξ[τ ](t) := ∂τ

∫ t

0

ẋ[τ ](s− τ) ds =

{
− φ̇(t− τ) + φ̇(−τ), t ∈ [0, τ ],

x′[τ ](t− τ)− ẋ[τ ](t− τ) + φ̇(−τ), t ∈ (τ, T ].

For all τ ∈ [0, b], ξ[τ ] is a function of L2(0, T ;Rn), which depends continuously on10

τ .11

The differentiability properties of I1, I2, I3 imply the continuous differentiabil-12

ity of F and the associated partial derivatives are the following:13

We have (∂wF (w, τ) z)(t) = 0 for t ∈ [−b, 0] and14

(∂wF (w, τ) z)(t) =

∫ t

0

{−Df(x[τ ](s))z(s) +Az(s− τ)} ds, t ∈ [0, T ].

Moreover, ∂τF (w, τ)(t) = 0 holds for t ∈ [−b, 0] and15

(∂τF (w, τ) δ)(t) = −δ
∫ t

0

D2f(x[τ ](s))(x′[τ ](s), w(s)) ds

+ δAw(t− τ)− δA ξ[τ ](t), t ∈ [0, T ].

The integral equation (5.3) for w ∈ L2
0(−b, T ;Rn) is equivalent to16

w − F (w, τ) = 0.

For all d ∈ L2
0(−b, T ;Rn), the equation17

(I − ∂wF (w, τ))z = d
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is equivalent to a linear Volterra integral equation that can be solved stepwise in1

time on the intervals [0, τ ], [τ, 2τ ] etc., where the term Az(t− τ) is given from the2

preceding interval. Therefore, for all d ∈ L2
0(−b, T ;Rn), the equation above has a3

unique solution z and the mapping d 7→ z is continuous in L2
0(−b, T ;Rn).4

For all τ ∈ [0, b], equation (5.3) has a unique solution w[τ ] ∈ L2
0(−b, T ;Rn).5

Thanks to the implicit function theorem, the mapping τ 7→ w[τ ] is continuously6

differentiable from [0, b] to L2
0(−b, T ;Rn). By definition, we have w[τ ] = x′[τ ],7

hence τ 7→ x′[τ ] is continuously differentiable. This is equivalent to the claim of8

the theorem. By Theorem 5.3, we are justified to differentiate equation (5.3) with9

respect to τ . This leads to the following result:10

Corollary 5.4. Under Assumption 4.3, we obtain x′′[τ ] ∈ L2
0(−b, T ;Rn) as11

the unique solution of the integral equation12

x′′[τ ](t) =

∫ t

0

{
−
[
D2f(x[τ ])(x′[τ ], x′[τ ]) +Df(x[τ ])x′′[τ ]

]
(s) +Ax′′[τ ](s− τ)

}
ds

− 2Ax′[τ ](t− τ) +Aẋ[τ ](t− τ)−Aφ̇(−τ), t ∈ [0, T ]. (5.5)

Next, we derive differential equations for x′′[τ ]. By (5.5), there holds13

x′′[τ ](t) =

∫ t

0

{. . .}ds− 2Ax′[τ ](t− τ) +Aẋ[τ ](t− τ)−Aφ̇(−τ), t ∈ [0, T ]. (5.6)

It follows from (5.6) that the restriction of x′′[τ ] to [0, τ ] belongs to H1(0, τ ;Rn)14

and the restriction of x′′[τ ] to [τ, T ] belongs to H1(τ, T ;Rn). In t = τ , x′′[τ ](t) can15

exhibit a jump that we determine next.16

For t < τ , we have17

lim
t↑τ

x′′[τ ](t) =

∫ τ

0

{. . .}ds+Aφ̇(0)−Aφ̇(−τ),

while we find for t > τ18

lim
t↓τ

x′′[τ ](t) =

∫ τ

0

{. . .}ds+Aẋ[τ ](+0)−Aφ̇(−τ).

Therefore, the jump in t = τ is19

x′′[τ ](τ + 0)− x′′[τ ](τ − 0) = Aẋ[τ ](0+)−Aφ̇(0). (5.7)

If the compatibility condition (2.8) is fulfilled, then the jump is zero. In this case,20

the function x′′[τ ] belongs to H1(−b, T ;Rn).21

Two differential equations for x′′[τ ] can be established; one on [0, τ ], another22

on [τ, T ].23

Case t ∈ [0, τ ]: Here, the differentiation of (5.6) w.r. to t yields24

∂tx
′′[τ ](t) = −Df(x[τ ](t))x′′[τ ](t) +Ax′′[τ ](t− τ)

− (D2f(x[τ ])(x′[τ ], x′[τ ]))(t) + φ̈(t− τ), t ∈ (0, τ ], (5.8)

x′′[τ ](t) = 0, t ∈ [−b, 0]. (5.9)
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Case t ∈ [τ, T ]: In view of (5.7), in t = τ we have to start with the new initial1

value2

x′′[τ ](τ + 0) = x′′[τ ](τ − 0) +Aẋ[τ ](0+)−Aφ̇(0).

We arrive at the differential equation3

∂tx
′′[τ ](t) = −Df(x[τ ](t))x′′[τ ](t) +Ax′′[τ ](t− τ)

− (D2f(x[τ ])(x′[τ ], x′[τ ]))(t)− 2Aẋ′[τ ](t− τ) +Aẍ[τ ](t− τ), t ∈ (τ, T ],
(5.10)

x′′[τ ](τ) = x′′[τ ](τ − 0) +Aẋ[τ ](0+)−Aφ̇(0), (5.11)

x′′[τ ](t− τ) = x′′[τ ]|[0,τ ](t− τ), t ∈ [τ, 2τ). (5.12)

The last equation means that we have to insert x′′[τ ](t − τ) obtained from the4

differential equation on [0, τ ] in the right-hand side of (5.10).5

We differentiated (5.5) on the whole interval [τ, T ]. Should we have expected6

another jump for x′′[τ ] of (5.10)-(5.12) in t = 2τ? The answer is no, because the7

new initial value function φ̃(t) = x′′[τ ]|[0,τ ](t− τ) obeys the compatibility condition8

in t = τ as can easily be checked; cf. also Remark 2.5.9

Summarizing, we obtain the following information on x′′[τ ]:10

Theorem 5.5. The mapping τ 7→ x[τ ] is twice continuously differentiable with11

respect to τ with image in L2
0(−b, T ;Rn). The equation for x′′[τ ] is given by12

∂tx
′′[τ ](t) +Df(x[τ ](t))x′′[τ ](t) + (D2f(x[τ ](t))(x′[τ ](t), x′[τ ](t))

= Ax′′[τ ](t− τ)− 2A(∂tx
′[τ ])(t− τ) +Aẍ[τ ](t− τ) + µτ in (0, T ],

x′′[τ ](t) = 0 in [−b, 0],
(5.13)

where µτ = A(ẋ[τ ](0+)− φ̇(0)) δ(τ), and δ(τ) is the Dirac measure located at τ .13

Example 5.6. Continuing the discussion of Example 5.1, we recall that14

x[τ ](t) = t+ 1, t ∈ (0, τ). The differential equation for x′′[τ ] on [t, 2τ ] is15

ẋ′′[τ ] = x′′[τ ](t− τ)− 2ẋ′[τ ](t− τ) + ẍ[τ ](t− τ), t ∈ (τ, 2τ).

All functions on the right-hand side are zero, thus x′′[τ ] is constant on (τ, 2τ).16

Thanks to (5.11), the associated initial value is17

x′′[τ ](τ + 0) = x′′[τ ](τ − 0) + ẋ[τ ](0+)− φ̇(0),

hence we find x′′[τ ](τ) = φ̇(−τ) = 1. Therefore, it holds x′′[τ ](t) = 1 on [τ, 2τ ] and18

this complies with the computation of x′′[τ ] in Example 5.1.19

Example 5.7. We conclude the discussion of Example 5.1 by the optimization20

problem21

min
0≤τ≤1

j(τ) :=
1

2

∫ T

0

|x[τ ](t)− xd(t)|2dt,

for equation (5.2) with T = 1. We consider 3 different settings.22
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(a) First, we select τ = 0.5 and xd = x[0.5], then we have j(τ) = 0 so that1

τ = 0.5 affords the global minimum to j. Clearly j′(0.5) = 0 holds and2

j′′(0.5) =

∫ 1

0

|x′[τ ](t)|2dt+
∫ 1

0

(x[0.5](t)− xd(t))x
′′[τ ](t)dt =

∫ 1

0

|x′[τ ](t)|2dt > 0.

By Theorem 4.6, τ = 0.5 is a strict local minimizer.3

(b) Next, we fix xd(t) = et+1 and confirm that τ = 0 is a local minimizer. For4

τ = 0, the delay equation reduces to the ordinary differential equation ẋ(t) = x(t)5

with initial condition x(0) = 1 having the solution x[0](t) = et. Equation (3.5) for6

w(t) = x′[0](t) becomes7

ẇ(t) = w(t)− ẋ[0](t) = w(t)− et, w(0) = 0

with solution −tet. It follows8

j′(0) =

∫ 1

0

(x[0](t)− xd(t))x
′[τ ](t)dt =

∫ 1

0

(et − (1 + et))(−te−t) dt > 0.

Thanks to Theorem 4.6, (ii), τ = 0 is a strict local minimizer of j.9

(c) Finally, we select τ = 1 and xd(t) = t. The state associated with τ = 110

is x[1](t) = t + 1. This linear function is smaller than all other functions x[τ ](t)11

for τ < 1, hence it is the closest to xd. Notice that for τ < 1 the solution x[τ ]12

grows faster than t + 1 for t > τ . This simple observation shows that τ = 1 is a13

global minimizer of j. However, this cannot be concluded from Theorem 4.6, because14

x′[1] = x′′[1] ≡ 0, hence j′(1) = j′′(1) = 0.15

We conclude this section with an auxiliary result, which was used in the proof16

of Theorem 5.3:17

Lemma 5.8. If Assumption 4.3 is satisfied and x[τ ] is the solution of (1.1),18

then19

∂τ

∫ t

0

ẋ[τ ](s− τ) ds =

{
− φ̇(t− τ) + φ̇(−τ), t ∈ [0, τ ],

x′[τ ](t− τ)− ẋ[τ ](t− τ) + φ̇(−τ), t ∈ (τ, T ].

Proof. We recall for convenience that20 ∫ t

0

ẋ[τ ](s− τ) ds =

{
φ(t− τ)− φ(−τ), t ∈ [0, τ ],

x[τ ](t− τ)− φ(−τ), t ∈ (τ, T ].

The term −φ(−τ) appears in both intervals and does not cause difficulties for21

piecewise differentiation. Therefore, it suffices to consider the function22

ψ(τ, t) =

{
φ(t− τ), t ∈ [0, τ ],

x[τ ](t− τ), t ∈ (τ, T ].

We first assume 0 < τ < T , then23

∂τψ(τ, t) := lim
δ→0

1

δ
(ψ(τ + δ, t)− ψ(τ, t)). (5.14)
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For every t ∈ (0, τ) ∪ (τ, T ), this limes exists and we obtain1

∂τψ(τ, t) =

{
− φ̇(t− τ), t ∈ [0, τ ],

x′[τ ](t− τ)− ẋ[τ ](t− τ), t ∈ (τ, T ].

After adding the neglected term φ̇(−τ), this is the claim of the Lemma in pointwise2

sense. We show by the Lebesgue dominated convergence theorem that the limes3

exists in the sense of L2(0, T ;Rn). For this purpose we confirm that the difference4

quotient above is bounded independently of δ.5

We first assume δ > 0 and consider the intervals [0, τ ], (τ, τ + δ), and [τ + δ, T ]6

separately. We have7

ψ(τ + δ, t)− ψ(τ, t) =


φ(t− τ − δ)− φ(t− τ), t ∈ [0, τ ],

φ(t− τ − δ)− x[τ ](t− τ), t ∈ (τ, τ + δ),

x[τ + δ](t− τ − δ)− x[τ ](t− τ), t ∈ (τ + δ, T ].

Now we derive bounds on each subinterval.8

Interval [0, τ ]: Since φ ∈ H2(−b, 0;Rn), the function φ̇ is continuous, hence9 ∣∣∣∣1δ (φ(t− τ − δ)− φ(t− τ))

∣∣∣∣ ≤ ∫ 1

0

|φ̇(t− τ − sδ)|ds ≤ ∥φ̇∥C([−b,0],Rn) <∞.

Interval [τ + δ, T ]: We split10

1

δ
(x[τ + δ](t− τ − δ)− x[τ ](t− τ)) =

1

δ
(x[τ + δ](t− τ − δ)− x[τ ](t− τ − δ))

+
1

δ
(x[τ ](t− τ − δ)− x[τ ](t− τ))) = I + II.

By Corollary 3.4, the function τ 7→ x′[τ ] belongs to C([0, b], H1(0, T ;Rn)) ↪→11

C([0, b], C([0, T ];Rn)), hence12

|I| ≤
∫ 1

0

|x′[τ + sδ](t− τ − δ)| ds ≤ max
(τ,t)∈[0,b]×[0,T ]

|x′[τ ](t)|,

|II| ≤
∫ 1

0

|ẋ[τ ](t− τ − sδ)| ds ≤ max
t∈[0,T ]

|ẋ[τ ](t)|.

Here we exploited the fact that x[τ ] ∈ H2(0, T ;Rn), cf. Thm. 2.3.13

Interval (τ, τ + δ): Here, the situation is a bit more difficult. By the mean value14

theorem in integral form, we write15

φ(t− τ − δ) = φ(0) +

∫ 1

0

φ̇(s(t− τ − δ))(t− τ − δ)ds

x[τ ](t− τ) = x[τ ](0)︸ ︷︷ ︸
=φ(0)

+

∫ 1

0

ẋ[τ ](s(t− τ))(t− τ)ds.

Therefore,16

1

δ
|φ(t− τ − δ)− x[τ ](t− τ)|

≤
∫ 1

0

|φ̇(s(t− τ − δ))| ds |t− τ − δ|
δ

+

∫ 1

0

|ẋ[τ ](s(t− τ))| ds |t− τ |
δ

≤ c.
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Again, we invoked the H2-regularity of φ and x[τ ] on [−b, 0] and [0, T ], respectively.1

Moreover, we used −δ ≤ t− τ − δ ≤ 0 and 0 ≤ t− τ ≤ δ for t ∈ [τ, τ + δ].2

Thanks to our estimates, the difference quotient 1
δ (ψ(τ + δ, t)− ψ(τ, t)) is uni-3

formly bounded for all δ > 0. The case δ < 0 can be handled analogously by the4

splitting [0, T ] = [0, τ − δ] ∪ [τ − δ, τ ] ∪ [τ, T ].5

Now we apply the Lebesgue dominated convergence theorem for δ → 0. It6

implies that the limes (5.14) exists in L1(0, T ;Rn). In view of the uniform bound-7

edness of the difference quotient, the limes exists in Lp(0, T ;Rn) for all 1 ≤ p <∞,8

in particular in L2(0, T ;Rn).9

For τ = 0 and τ = T , we only consider the one-sided derivatives with δ ↓ 0 and10

δ ↑ T , respectively, in the same way.11

6. Extension to multiple time delays. Here we briefly comment on the12

extension to an equation with multiple time delays of the form13

ẋ(t) + f(x(t)) =

m∑
l=1

Alx(t− τl) + g(t), (6.1)

with given matrices Al ∈ Rn×n, l = 1, . . . ,m, and delays 0 ≤ τ1 < . . . < τm ≤ b.14

For convenience we write τ = (τ1, . . . , τm).15

Also for multiple time delays, a discontinuity of ẋ[τ ] can appear at t = 0 only:
Indeed the compatibility condition is now given by

φ(0) = −f(x[τ ])(0) +
m∑
l=1

Alφ(−τl) + g(0).

For g ∈ H1(0, T ;Rn), the function ẋ[τ ] belongs to H1(0, b;Rn). Therefore ẋ[τ ] will16

not exhibit discontinuities after t = 0. However, t 7→ ẋ[τ ](t) from [−b, T ] → Rn has17

a jump at t = 0, in general.18

Let us briefly sketch the main extensions of the results of the previous sections.19

Well-posedness of (6.1) and first-order differentiability. For the first-order20

analysis, we require Assumption 2.1. The well-posedness of (6.1) can be shown21

analogously to Theorem 2.3. Moreover, the first-order sensitivity analysis follows22

the derivation for a single time delay. Theorem 3.3 on existence of the first-order23

derivatives extends to multiple delays, i.e. to the existence of ∂τix[τ ], i = 1, . . . ,m,24

with an analogous proof. The partial derivatives are subsequently obtained by25

differentiating the integral equation for x[τ ] as in Corollary 3.4. We obtain that26

w := ∂τix[τ ] is the unique solution to27

ẇ(t) = −Df(x[τ ](t))w(t) +
m∑
l=1

Alw(t− τl)−Aiẋ[τ ](t− τi), t ∈ (0, T ],

w(t) = 0, t ∈ [−b, 0].
(6.2)

The adjoint equation for multiple time delays is defined by28

− ṗ(t) = −Df(x[τ ](t))⊤p(t) +
m∑
l=1

A⊤
l p(t+ τl) + x[τ ](t)− xd(t), t ∈ [0, T ],

p(t) = 0, t ∈ [T, T + b].
(6.3)
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Its unique solution p is the adjoint state associated with τ , denoted by p[τ ]. We1

obtain the following results of the first and second-order sensitivity analysis of j:2

The expression for j′ in terms of the adjoint is found to be3

∇τ j(τ) = −coli
∫ T

0

⟨p[τ ], Aiẋ[τ ](t− τi)⟩dt. (6.4)

For the second partial derivatives of j we obtain under Assumption 4.34

∂2τk,τij(τ) =

∫ T

0

〈 ∂x
∂τi

[τ ],
∂x

∂τk
[τ ]

〉
dt−

∫ T

0

〈
p[τ ], D2f(x[τ ])(

∂x

∂τi
[τ ],

∂x

∂τk
[τ ])

〉
dt

−
∫ T

τi

〈
p[τ ](t), Ai

∂ẋ

∂τk
[τ ](t− τi)

〉
dt−

∫ T

τk

〈
p[τ ](t), Ak

∂ẋ

∂τi
[τ ](t− τk)

〉
dt

⟨p[τ ](τk), Ak

(
ẋ[τ ](0+)− φ̇(0)

)
⟩δik

+
( ∫ τi

0

⟨p[τ ](t), Aiφ̈(t− τi)⟩dt+
∫ T

τi

⟨p[τ ](t), Aiẍ[τ ](t− τi)⟩dt
)
δik,

(6.5)
where δik denotes the Kronecker symbol.5

Second-order differentiability of the state. For the next results, Assumption6

4.3 is needed. The mapping τ 7→ x[τ ] is twice continuously differentiable from [0, b]m7

to L2
0(−b, T ;Rn). We confirm this by the integrated version of equation (6.2) for8

w = ∂τix[τ ],9

w(t) =

∫ t

0

{
−Df(x[τ ](s))w(s) +

m∑
l=1

Alw(s− τl)
}
ds−Ai(x[τ ](t− τi)− φ(−τi)),

t ∈ (0, T ]. To show the differentiability of this equation w.r. to τj , we apply the10

implicit function theorem as in the proof of Theorem 5.3.11

Having the differentiability, we differentiate the integral equation above w.r. to12

τj . This leads to an integral equation for v = ∂τjw[τ ] = ∂τj ,τix[τ ]. Taking care of13

possible jumps of the functions t 7→ ẋ[τ ](t − τi) and t 7→ ẋ[τ ](t − τj) in t = τi and14

t = τj , respectively, we differentiate this equation w.r. to t. Finally, we arrive at15

the following delay differential equation with impulses for v = ∂τk,τix[τ ]:16

∂tv(t) +Df(x[τ ](t))v(t) + (D2f(x[τ ](t))(∂τkx[τ ](t), ∂τix[τ ](t))

=

m∑
l=1

Alv(t− τ)−Ak(∂τi ẋ[τ ])(t− τk)−Ai(∂τk ẋ[τ ])(t− τi)

+ δikAiẍ[τ ](t− τi) + δikµτi in (0, T ],

v(t) = 0 in [−b, 0],

(6.6)

where µτi = Ai(ẋ[τ ](0+)− φ̇(0)) δ(τi). We skip the details.17
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