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Abstract

The long time behavior and detailed convergence analysis of Langevin
equations has received increased attention over the last years. Difficulties
arise from a lack of coercivity, usually termed hypocoercivity, of the un-
derlying kinetic Fokker-Planck operator which is a consequence of the par-
tially deterministic nature of a second order stochastic differential equa-
tion. In this manuscript, the effect of controlling the confinement potential
without altering the original invariant measure is investigated. This leads
to an abstract bilinear control system with an unbounded but infinite-
time admissible control operator which, by means of an artificial diffusion
approach, is shown to possess a unique solution. The compactness of the
underlying semigroup is further used to define an infinite-horizon optimal
control problem on an appropriately reduced state space. Under smallness
assumptions on the initial data, feasibility of and existence of a solution
to the optimal control problem are discussed. Numerical results based on
a local approximation based on a shifted Riccati equation illustrate the
theoretical findings.

Keywords: kinetic Fokker-Planck, hypocoercivity, stabilization, optimal con-
trol
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1 Introduction

We consider at first the following uncontrolled Langevin dynamics satisfying the
stochastic differential equation in R2n:dxt = vtdt

dvt = −∇G(xt)dt− γvtdt+
√

2γ
β dWt,

(1)

where G(xt) ≥ 0 is a confinement potential, and γ and β are positive constants.
In the case of thermodynamic ensembles the constant β relates to the inverse
temperature, and γ denotes a friction coefficient, see, e.g., [28, 32]. The evo-
lution of the underlying probability density ψ is known to satisfy the following
Kolmogorov forward equation, also called the kinetic Fokker-Planck equation,

d
dtψ = L♯ψ, ψ(0) = ψ0, (2)

where ψ0 denotes the initial state and L♯ the formal adjoint in L2 of the operator

Lφ = v⊤∇xφ−∇xG
⊤∇vφ+ γ (−v⊤∇vφ+ β−1∆vφ). (3)

It is given by

L♯ψ = −v⊤∇xψ +∇xG
⊤∇vψ + γ divv(vψ + β−1∇vψ). (4)

It is well-known that under suitable assumptions on G, there exists a canon-
ical invariant measure defined as

µ(dxdv) = Z−1
µ exp(−H(x, v)) dx dv,

where H(x, v) = 1
2∥v∥

2
Rn + G(x) and Zµ =

∫
R2d e

−H(x,v) dxdv, and that the
solutions to (2) convergence to µ at an exponential rate. Since the process (1) is
non-reversible, its generator L is however non-normal and this exponential rate
of convergence can be small, see [18] for a detailed discussion on the influence
of β and γ in this regard. Additionally, the factor multiplying the exponential
decay, i.e., the transient bound can be large, see, e.g., [18, 20, 28].

This motivates the introduction of controls into (1) as it has been discussed
in, e.g., [8, 11, 27]. One of the main challenges in such a control framework is to
ensure that the invariant measure of the uncontrolled dynamics (1) is unaltered.
In the previous articles, this has been studied for linear feedback forces which
enter as an additional summand into the second equation in (1). Contrary, here
we are interested in the effect of modifying the underlying confinement potential
G by adding a separable control term uα leading todxt = vtdt

dvt = −∇G(xt)dt− ut∇α(xt)dt− γvtdt+
√

2γ
β dWt,

(5)

where α denotes a fixed (spatial) control potential and ut denotes a scalar-valued
time-dependent control. The results of this work can be extended to the case of
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multiple control inputs in a straightforward manner. In the context of particle
physics the control is motivated by speeding up the uncontrolled dynamics by
means of focusing the intensity of a laser beam of shape α and intensity u, see
[24]. Our in interest in the control of (1) also relates to the fact that it serves as
a tool for asymptotic analysis of generalized stochastic gradient descent methods
([30, Theorem 14]). Similar to control strategies related to specific learning rates
[29], we aim at improving the performance of these methods, in this article via
the influence of uα.

We recall [32] that for γ → ∞ the Langevin equation can be approximated
by the Smoluchowski equation given by

dxt = −∇G(xt)dt+
√

2
β dWt,

for which the associated probability density function satisfies a Fokker-Planck
equation with a uniformly elliptic generator. The operators L and L♯ on the
other hand are elliptic only in the variable v.

The operators L and L♯ belong to the class of hypoelliptic operators [23].
Despite its lack of ellipticity w.r.t. the spatial variable x, under suitable assump-
tions on G, the operators L and L♯ and the associated dynamics asymptotically
converge to the unique invariant measure. This property is typically refereed
to as hypocoercivity, see the seminal article [37]. Asymptotic properties of L
have already been addressed earlier for specific confinement potentials arising
in statistical mechanics [15, 16]. In particular, the latter works already provide
a detailed functional analytic framework of the underlying semigroup and the
spectral properties of its infinitesimal generator. Contrary to the case of the
Fokker-Planck equation, the spectra of the operators L and L♯ contain cusps
such that the semigroups are no longer analytic. In [20, 21] it is however shown
that there is a smoothing effect which renders these semigroups compact, a fact
that will be exploited later in this manuscript. Generally, the operators L and
L♯, their spectral properties, and associated evolution equations have been the
focus of intense research, see for instance [3, 14, 18, 19], and references given
there. The investigation of control techniques for equations involving hypoco-
ercive operators appears to not have been addressed from a PDE perspective
yet.

Let us also observe that the control enters into (5) into a bilinear structure
with the state. We refer to [5] as one of the earliest papers which analyzed
feedback control for bilinear abstract systems and to [2] for early work on optimal
control of the Fokker-Planck equation.

The structure and a brief summary of the paper are as follows. In Section 2
we gather operator theoretic facts for L which will be relevant in later sections.
Section 3 is devoted to the study of the controlled kinetic Fokker-Planck equa-
tion and the existence of solutions for the inhomogeneous equation. Since the
control which enters to (5) does not influence the subspace which is generated
by the invariant measure, an appropriate orthogonal decomposition of the state
space is introduced and incorporated into the control problem in Section 4. The
optimal stabilization problem is formulated in Section 5. Existence to this prob-
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lem is verified. This requires stabilizability results which go beyond the stability
properties which the uncontrolled system already enjoys. They are obtained by
means of the infinite-dimensional Hautus test for stabilizability. For the lin-
earized optimal control problem existence of a solution to the associated Riccati
equation is obtained. This allows to speed up of the exponential stability for
sufficiently small initial conditions and the representation of feedback controls.
In Section 6 numerical results obtained by a spectral collocation technique are
presented.

Notation. By C∞
0 (R2d) we denote the set of all functions in C∞(R2d) with

compact support in R2d. For Hilbert spaces Y,Z the space of bounded linear
operators is denoted by B(Y,Z), if Y = Z, we simply write B(Z). For a linear
(unbounded) operator A with domain D(A), we write A : D(A) ⊂ Z → Z. We
distinguish between the formal adjointA∗ ofA in Z and the Hilbert space adjoint
A† of A in Z. For a closed, densely defined linear operator A with domain D(A)
in Z we shall also consider A as a bounded linear operator A ∈ B(D(A), Z) where
D(A) is endowed with the graph norm. Its dual A′ ∈ B(Z ′, [D(A)]′) is uniquely
defined and it is the unique extension of the operator A† ∈ B(D(A†), Z) to an
element of B(Z, [D(A)]′). For the associated duality pairing ⟨·, ·⟩D(A†),[D(A†)]′ ,

we simply write ⟨·, ·⟩D. In case Z = L2(R2d) we denote by A♯ the formal
adjoint of A in L2(R2d) and by A‡ the Hilbert space adjoint of A in L2(R2d).
Throughout the paper, we will extensively use the weighted (Hilbert) spaces

Y =L2
µ(R2d)=

{
y : R2d→R | µ 1

2 y ∈ L2(R2d)
}
, ∥y∥Y =

(∫
R2d

µy2 dx dv

) 1
2

,

V =H1
µ(R2d)=

{
y : R2d→R | y ∈ Y,∇y ∈ Y 2d

}
, ∥y∥V =

(
∥y∥2Y + ∥∇y∥2Y 2d

) 1
2 ,

Vv=H
1
µ,v(R2d)=

{
y : R2d→R | y ∈ Y,∇vy ∈ Y d

}
, ∥y∥Vv

=
(
∥y∥2Y +∥∇vy∥2Y d

) 1
2 ,

where ∇vy =
(

∂y
∂v1

, . . . , ∂y
∂v1

)⊤
.

2 The Operator form of the kinetic Fokker-Planck
equation

In this short section we recall some developments concerning the operator L as
generator of a C0 semigroup. For simplicity of presentation we set the parame-
ters γ and β equal to 1 and return to this point when addressing the asymptotic
behavior of solutions. The formal adjoint L♯ in L2(R2d) of L with domain
C∞

0 (R2d) has already been defined. The formal adjoint L∗ of L w.r.t. the mea-
sure µ and domain C∞

0 is given by

L∗ϕ = −v⊤∇xϕ+∇xG
⊤∇vϕ− v⊤∇vϕ+∆vϕ, (6)
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see for instance [28, Section 2.3.2]. Here and in the following we frequently use
that

∇xµ = −µ∇xG, ∇vµ = −µv. (7)

Throughout the remainder we assume that the confinement potential G satisfies

Assumption A1. The confinement potential satisfies G ∈W 1,∞
loc (Rd), it is

bounded from below, and
∫
Rd e

−G(x) dx <∞.

We further define the isomorphism M : L2
µ(R2d) → L2(R2d), Mf = µ

1
2 f. A

short computation shows that L∗ = M−2L♯M2. It has been pointed out, for
instance in [37, I.7.4] that for a probabilistic interpretation it is more appropriate
to consider

d
dtφ = L∗φ, φ(0) = φ0, (8)

in Y , rather than (2) in L2(R2d), and we shall follow this formulation in the
sequel. The state variables of these two equations are related by ψ = M2φ.

Next we address semigroup properties of L and L∗. It is our understanding
of the literature that, for quite some time, it has been taken for granted that
the closures of these operators generate C0-semigroups before rigorous proofs
were given.

Proposition 1. Let Assumption (A1) hold. Then the operators L and L∗ are

maximally dissipative in Y and they generate contraction semigroups eLt and

eL
∗t on Y . Moreover L∗ = L† = L†

and thus eL
∗t = eL

†t = (eLt)† hold.

Proof. The fact that L generates a contraction semigroup under Assumption
(A1) is known from [18]. Since adjoints are not addressed there we give some
insight into the proof and in doing so verify the statements concerning L∗. All
proofs for the generation property of L make use of the operator LK defined on
C∞

0 by

LKζ = ∆vζ − 1
4∥v∥

2ζ + d
2ζ −∇xG

⊤∇vζ + v⊤∇xζ. (9)

The operator L♯
K is obtained from LK by changing the signs of the last two

summands of that operator. A computation shows that

L = M−1LKM, and L∗ = M−1L♯
KM. (10)

Since C∞
0 is dense in Y the operator LK is densely defined. Moreover by direct

computation, it is dissipative in Y , and hence LK is closable, see [17, Chapter
II, 3.14 Proposition]. Moreover, from [12, Theorem 2.1] and its proof we know
that LK is maximally dissipative in L2(R2d). By the first equality in (10) one
can argue that L is maximally dissipative in Y and hence by the Lumer-Phillips

theorem it generates a contraction semigroup eLt on Y , see, e.g., [17, Theorem
3.15]. As a side remark we mention that under the stronger regularity assump-

tion G ∈ C∞(Rd) it was verified in [20, Proposition 5.5] that L♯
K is maximally
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dissipative in L2(R2d) and the proof there can readily be adopted to argue that
LK is maximally dissipative as well.

Next we turn to adjoints. The proof of [12, Theorem 2.1] can be adapted

to argue that L♯
K is maximally dissipative in L2(R2d) under Assumption (A1).

Hence from the second equality in (10) it follows that L∗ is maximally dissipative

in Y and generates the semigroup eL
∗t on Y .

Let us further observe that the Y -adjoint L†
= L† of L is also maximally

dissipative, [35, Proposition 3.1.10]. The graph of L∗ is contained in the graph

of L†
. Since both operators are maximally dissipative we have L∗ = L† and

eL
∗t = eL

†t. The final claim (eLt)† = eL
†t follows from a general result on

adjoint semigroups, see [31, Corollary 1.10.6].

Remark 2. While not essentially needed later in this paper, let us make some
observations on the relation between the operators L♯,L∗, and L♯

K. For this
purpose we introduce the following operators on C∞

0 (R2d):

Rµ− = −divv(∇v ·+v·), Rµ = −(∆v · −v⊤∇v·),
RL2 = −(∆v · − 1

4∥v∥
2 ·+d

2 ·), J = −v⊤∇x +∇xG
⊤∇v.

In this way we obtain

L = −J −Rµ, L♯ = J −Rµ− , L∗ = J −Rµ, L♯
K = J −RL2 .

A short computation shows that J is formally skew-adjoint in L2(R2d) as well
as in Y . Further we have that MJ = JM and

L♯
K = M−1L♯M, L∗ = M−2L♯M2.

The ′R′ summands in L♯,L♯
K, and L∗ are such that Rµ− is formally selfadjoint

in L2
µ−1(R2d), RL2 is formally selfadjoint in L2(R2d), Rµ is formally selfadjoint

in L2
µ(R2d), and these operators are nonnegative.

The following technical result will be needed in the next section.

Lemma 3. It holds that

D(L) ⊂ H1
µ,v(R2d), D(L∗) ⊂ H1

µ,v(R2d),

with continuous injections and domains endowed with the graph norm. Morover,

−⟨Lφ,φ⟩L2
µ
= ∥∇vφ∥2L2

µ
∀φ ∈ D(L),

−⟨L∗ϕ, ϕ⟩L2
µ
= ∥∇vϕ∥2L2

µ
∀ϕ ∈ D(L∗).

Proof. By computation, see, e.g., [28, pp. 719], we know

−⟨Lφ,φ⟩L2
µ
= ∥∇vφ∥2L2

µ
∀φ ∈ C∞

0 (R2d). (11)
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Let φ ∈ D(L). Since C∞
0 (R2d) is a core for L, there exists φn ∈ C∞

0 (R2d) such
that φn → φ and Lφn → Lφ in L2

µ. From (11) we deduce that ∥Lφn∥L2
µ
∥φn∥L2

µ
≥

∥∇vφn∥2L2
µ
. Consequently, {φn}∞n=1 is bounded in H1

µ,v(R2d) and thus on a

subsequence we have φn ⇀ φ̃ weakly in H1
µ,v(R2d) for some φ̃ ∈ H1

µ,v(R2n).

Since φn → φ in L2
µ(R2d), we have φn ⇀ φ in H1

µ,v(R2d) and in particular

φ ∈ H1
µ,v(R2d). Observe that (11) implies that

∥L(φn − φm)∥L2
µ
∥φn − φm∥L2

µ
≥ ∥∇v(φn − φm)∥2L2

µ
.

Hence, {φn} is a Cauchy sequence in H1
µ,v(R2d). It admits a strong limit

in H1
µ,v(R2d) which is necessarily φ. Taking the limit in −⟨Lφn, φn⟩L2

µ
=

∥∇vφn∥2L2
µ
we arrive at the first equality. The arguments for L∗ are analo-

gous.

3 The controlled kinetic Fokker-Planck equation

Returning to (5), let us briefly comment on how the change in the potential
affects the deterministic dynamics associated with L and L∗. From (3), we
conclude that for fixed time t and control u = u(t), the operator Lc(u) is given
by

Lc(u)φ = v⊤∇xφ−∇xG
⊤∇vφ− u∇xα

⊤∇vφ− v⊤∇vφ+∆vφ. (12)

Throughout the remainder we make the following additional assumption.

Assumption A2. The control potential satisfies α ∈W 1,∞(Rd).

For φ, ϕ ∈ C∞
0 , it holds that

⟨ϕ,Lc(u)φ⟩L2
µ
= ⟨ϕ,Lφ⟩L2

µ
− u

∫
µϕ∇xα

⊤∇vφdx dv

= ⟨L∗ϕ, φ⟩L2
µ
+ u

∫
φ∇xα

⊤∇v(µϕ) dx dv

= ⟨L∗ϕ, φ⟩L2
µ
+ u

∫
µφ∇xα

⊤∇vϕdxdv − u

∫
µφϕ∇xα

⊤v dx dv,

(13)
where we have used (7). This leads to the abstract bilinear controlled system

d
dty = Ay + uNy, y(0) = y0 (14)

where

Ay = L∗y = −v⊤∇xy + (∇xG)
⊤∇vy − v⊤∇vy +∆vy

Ny = (∇xα)
⊤∇vy − y(∇xα)

⊤v.
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Given y, z ∈ C∞
0 (R2d), it follows from the computations in (13) that

⟨z,Ny⟩Y =

∫
µz(∇xα)

⊤∇vy dxdv −
∫
µzy(∇xα)

⊤v dxdv

= ⟨−(∇xα)
⊤∇vz, y⟩Y =: ⟨N∗z, y⟩Y .

Note that N , being a first order differential operator, is not bounded on the
state space Y . In the context of well-posed linear systems [33], we consider it as
a generator of a well-posed input map for which we need the following estimate
for each y ∈ C∞

0 (R2d):

∥Ny∥V ′
v
= sup

z∈Vv,∥z∥Vv=1

⟨Ny, z⟩Y = sup
z∈Vv,∥z∥Vv=1

⟨y,N∗z⟩Y

= sup
z∈Vv,∥z∥Vv=1

∥y∥Y ∥(∇xα)
⊤∇vz∥Y

≤ sup
z∈Vv,∥z∥Vv=1

C∥y∥Y ∥z∥H1
v,µ(R2d) ≤ C∥y∥Y ,

(15)

where we used that α ∈W 1,∞(Rd).
Since C∞

0 (R2d) is dense in Y , we obtain N ∈ B(Y, V ′
v) and N ∈ B(Y, V ′).

Moreover, A† = L considered as an operator in Y , and therefore, with reference
to Lemma 3, we also find that N ∈ B(Y, [D(A†)]′). This is the form in which N
will be interpreted in the following steps.

Before we turn to (14), we first focus on the linear system

d
dty(t) = Ay(t) +Nw(t), y(0) = y0 ∈ Y, (16)

where w ∈ L1
loc([0,∞);Y ) is given. Following [35, Definition 4.1.1], a solution

of (16) in Y−1 := D(A†)′ is a function

y ∈ L1
loc(0,∞;Y ) ∩ C([0,∞);Y−1)

which satisfies the following equation in Y−1:

y(t)− y0 =

∫ t

0

Ay(σ) +Nw(σ) dσ ∀t ∈ [0,∞), (17)

with y0 ∈ Y . In (17) the operator A represents the unique extension of A ∈
B(D(A), Y ) as operator in B(Y, Y−1). This extension can be identified with
(A†)′, see [35, Proposition 2.3.10]. We shall use no extra notation for this
extension. Further it will be convenient to recall that (17) is equivalent to

⟨y(t)− y0, z⟩D =

∫ t

0

[⟨y(σ), A†z⟩Y + ⟨Nw(σ), z⟩D] dσ, (18)

for all z ∈ D(A†) and t ∈ [0,∞), see [35, Remark 4.1.2]. It is well-known [35,
Proposition 4.1.4] that if y is a solution of (16) in Y−1, it is given by the unique
mild solution

y(t) = eAty0 +

∫ t

0

eA(t−σ)Nw(σ) dσ. (19)
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Next we aim for proving the existence of a solution y and additional regularity.
For this purposes, let us recall the theory of admissible control and observation
operators, see, e.g., [35, Section 4]. The operator N ∈ B(Y, [D(A†)]′) is called
an admissible control operator for eAt if for some τ > 0, RanΦτ ⊂ Y , where
Φτ ∈ B(L2([0,∞);Y ), [D(A†)]′) is defined by

Φτw =

∫ τ

0

eA(τ−s)Nw(s) ds. (20)

Similarly, given C ∈ B(D(A), Z) with Z a Hilbert space, we consider

d
dty(t) = Ay(t), y(0) = y0, yobs(t) = Cy(t)

and call C ∈ B(D(A), Z) an admissible observation operator for eAt if for some
τ, Ψτ ∈ B(D(A), L2([0,∞);Z)) has a continuous extension to Y . Here, Ψτ is
defined by

(Ψτy0)(t) =

{
CeAty0 for t ∈ [0, τ ],

0 for t > τ.
(21)

Equivalently (see [35, Section 4.3]), C ∈ B(D(A), Z) is an admissible observation
operator for eAt if and only if, for some τ > 0, there exists a constant Kτ ≥ 0
s.t. ∫ τ

0

∥CeAty0∥2Z dt ≤ K2
τ ∥y0∥2Y ∀y0 ∈ D(A).

From [35, Theorem 4.4.3], we know that N ∈ B(Y, [D(A†)]′) is an admissible
control operator for eAt if and only if N ′ ∈ B(D(A†), Y ) is an admissible obser-

vation operator for (eAt)† = eA
†t.

Proposition 4. Let Assumptions (A1) and (A2) hold. Then for every y0 ∈ Y
and every w ∈ L2

loc(0,∞;Y ), the initial value problem (16) has a unique solution
in Y−1. It is given by (19) and it satisfies

y ∈ C([0,∞);Y ) ∩H1
loc(0,∞;Y−1).

Proof. By Proposition 1 and Lemma 3, the operator Π = M · id ∈ B(Y ), with
M > 0, satisfies Π ≥ 0 as well as

⟨Πz,A†z⟩Y =M⟨z, (L∗)†z⟩Y =M⟨z,Lz⟩Y = −M∥∇vz∥2Y ∀z ∈ D(A†).

On the other hand, for N ′ and z ∈ D(A†), we obtain

∥N ′z∥2Y = ∥∇xα
⊤∇vz∥2Y ≤ C∥∇vz∥2Y . (22)

Hence, choosing M > 0 large enough, it follows that

2⟨Πz,A†z⟩Y ≤ −∥N ′z∥2Y ∀z ∈ D(A†),

which, by [35, Theorem 5.1.1], implies that N ′ is an infinite-time admissible

observation operator for eA
†t. Hence, N is an infinite-time admissible control

operator for eAt and the result then follows with [35, Proposition 4.2.5].
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We shall make use of the following density result.

Lemma 5. The space C∞
0 (R2d) is dense in V .

The proof is well known in the case without weights [1, Theorem 3.18] and
can be extended to the weighted case in a straightforward manner. Henceforth
we will consider N as an operator in B(Y, V ′

v).

Proposition 6. Let Assumptions (A1) and (A2) hold. Then for every y0 ∈ Y
and every w ∈ L2

loc(0,∞;Y ), the unique solution y of (16) satisfies ∇vy ∈
L2
loc(0,∞;Y d). Additionally, for all T > 0 there exist constants C1, C2(T ), C3(T )

s.t.

max(∥y∥L∞(0,T ;Y ), ∥∇vy∥L2(0,T ;Y )) ≤ C1

(
∥y0∥Y + ∥w∥L2(0,T ;Y )

)
, (23a)

∥y∥L2(0,T ;Vv) ≤ C2(T )
(
∥y0∥Y + ∥w∥L2(0,T ;Y )

)
, (23b)

∥ẏ∥L2(0,T ;Y−1) ≤ C3(T )
(
∥y0∥Y + ∥w∥L2(0,T ;Y )

)
. (23c)

Proof. We will show the assertion by introducing a suitable perturbation which
provides the new operator Aε with a Y -V coercivity property. As a consequence,
we can resort to maximal regularity results of analytic semigroups to obtain
(uniform) a priori estimates for the corresponding solution yε. By passing to
the limit ε→ 0, we obtain similar estimates for the unperturbed solution y.

For ε > 0, we define the bilinear form aε : C
∞
0 (R2d)× C∞

0 (R2d) → R by

aε(y, z) :=

∫
∇v(µz)

⊤∇vy dx dv +

∫
µz(v⊤∇xy −∇xG

⊤∇vy + v⊤∇vy) dxdv

+ ε

∫
∇x(µz)

⊤∇xy dxdv + ε

∫
µz∇xG

⊤∇xy dxdv.

(24)
It arises from testing Ay with z, adding artificial diffusion and integration by
parts. Next we rearrange terms in aε and obtain

aε(y, z) =

∫
z∇vµ

⊤∇vy dxdv +

∫
µ∇vz

⊤∇vy dxdv +

∫
µzv⊤∇vy dx dv

+

∫
µz(v⊤∇xy −∇xG

⊤∇vy) dxdv + ε

∫
z∇xµ

⊤∇xy dx dv

+ ε

∫
µ∇xz

⊤∇xy dx dv + ε

∫
µz∇xG

⊤∇xy dx dv

=

∫
µ∇vz

⊤∇vy dxdv + ε

∫
µ∇xz

⊤∇xy dxdv

+

∫
µz(v⊤∇xy −∇xG

⊤∇vy) dx dv.
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Considering the last term explicitly and using (7), we find that∫
µz(v⊤∇xy −∇xG

⊤∇vy) dxdv = −
∫
z∇vµ

⊤∇xy dxdv +

∫
z∇xµ

⊤∇vy dx dv

=

∫
µdivv(z∇xy) dxdv −

∫
µdivx(z∇vy) dx dv

=

∫
µ∇vz

⊤∇xy dx dv +

∫
µzdivv(∇xy) dxdv

−
∫
µ∇xz

⊤∇vy dxdv −
∫
µzdivx(∇vy) dxdv

=

∫
µ∇vz

⊤∇xy dx dv −
∫
µ∇xz

⊤∇vy dx dv.

Altogether, for y, z ∈ C∞
0 (R2d) we have established that

aε(y, z) =

∫
µ∇vz

⊤∇vy dxdv + ε

∫
µ∇xy

⊤∇xz dxdv

+

∫
µ∇vz

⊤∇xy dxdv −
∫
µ∇xz

⊤∇vy dxdv.

(25)

Utilizing density of C∞
0 (R2d) in V it follows that aε can be extended to a

bounded bilinear form on V ×V . With aε we associate the operator Aε in Y by

D(Aε) = {y ∈ V | z 7→ aε(y, z) is Y -continuous} ,
⟨Aεy, z⟩Y = −aε(y, z), ∀ y ∈ D(Aε), z ∈ V.

Without change of notation we also consider the extension Aε ∈ B(V, V ′) defined
by ⟨Aεy, z⟩V ′,V = −aε(y, z) for all y, z ∈ V. As an aside we note that for
y, z ∈ C∞

0 (R2d) it holds that

⟨Aεy, z⟩Y = ⟨Ay, z⟩Y + ⟨Rεy, z⟩Y ,

where the action of Rε is defined by

Rεy = ε∆xy − ε∇xG
⊤∇xy. (26)

For y ∈ C∞
0 (R2d) we obtain, utilizing that G ∈W 1,∞

loc (Rd),

−aε(y, y) = ⟨Aεy, y⟩Y = ⟨L∗y, y⟩Y + ε

∫
µy∆xy dx dv − ε

∫
µy∇xG

⊤∇xy dxdv

= −∥∇vy∥2Y − ε

∫
∇x(µy)

⊤∇xy dxdv − ε

∫
µy∇xG

⊤∇xy dx dv

= −∥∇vy∥2Y − ε

∫
y∇xµ

⊤∇xy dxdv

− ε

∫
µ∇xy

⊤∇xy dxdv − ε

∫
µy∇xG

⊤∇xy dxdv

= −∥∇vy∥2Y − ε∥∇xy∥2Y ,
(27)
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where in the last step we referred to (7). Using density of C∞
0 (R2d) in V , we

conclude that (27) holds for all y ∈ V and thus V -Y coercivity of aε follows.
Hence Aε generates an analytic semigroup in Y , see [6, Part II, Chapter 1,
Theorem 2.12]. We next consider the perturbed variational equation in V ′

d
dtyε(t) = Aεyε(t) +Nw(t), yε(0) = y0 ∈ Y, (28)

for which we conclude from ([6, Part II, Chapter 2, Theorem 1.1]) that it admits
a unique solution

yε ∈ L2(0, T ;V ) ∩H1(0, T ;V ′). (29)

Taking the inner product with µyε and integrating over R2d yields

⟨ d
dtyε(t), yε(t)⟩V ′,V = ⟨Aεyε(t), yε(t)⟩V ′,V + ⟨Nw(t), yε(t)⟩V ′

v ,Vv
,

for almost every t ∈ (0, T ). With (22) and (27), and the computation in (14) it
follows that

1
2

d
dt∥yε∥

2
Y = ⟨Aεyε, yε⟩V ′,V + ⟨w,N ′yε⟩Y = −∥∇vyε∥2Y − ε∥∇xyε∥2Y + ∥w∥Y ∥N ′yε∥Y
≤ −∥∇vyε∥2Y − ε∥∇xyε∥2Y + ∥α∥W 1,∞(Rd)∥w∥Y ∥∇vyε∥Y
≤ − 1

2∥∇vyε∥2Y − ε∥∇xyε∥2Y + 1
2∥α∥

2
W 1,∞(Rd)∥w∥

2
Y ,

(30)
where we suppress the dependence on t. This implies that

∥yε(t)∥2Y + ∥∇vyε∥2L2(0,t;Y ) + 2ε∥∇xyε∥2L2(0,t;Y )

≤ ∥yε(0)∥2Y + ∥α∥2W 1,∞(Rd)

∫ t

0

∥w(s)∥2Y ds

and, hence, we obtain for a constant M , independent of T , that

max
(
∥yε∥L∞(0,T ;Y ), ∥∇vyε∥L2(0,T ;Y )

)
≤M

(
∥y0∥Y + ∥w∥L2(0,T ;Y )

)
,

√
ε∥∇xyε∥L2(0,T ;Y ) ≤M

(
∥y0∥Y + ∥w∥L2(0,T ;Y )

)
.

(31)

Next we pass to the limit as ε → 0. Due to (29) we have that yε ∈
C([0, T ], Y ), so that pointwise evaluation at t ∈ [0, T ] is justified. Moreover,
the extension of A to Y satisfies A = (A†)′ ∈ B(Y, Y−1), and thus Ayε ∈
C([0, T ];Y−1). Further yε satisfies

⟨ d
dtyε(t), φ⟩V ′,V = ⟨Aεyε(t) +Nw(t), φ⟩V ′,V (32)

for a.e. t ∈ (0, T ) and every φ ∈ V . For φ ∈ V ∩ D(A†) we have

⟨Ayε(t), φ⟩V ′,V = ⟨Ayε(t), φ⟩D(A†)′,D(A†) = ⟨yε(t), A†φ⟩Y

and hence together with yε ∈ C([0, T ], Y ) and (25), we find

⟨yε(t)− y0, φ(t)⟩Y =
∫ t

0
⟨yε(s), A†φ(t)⟩Y ds+

∫ t

0
⟨Nw(s), φ(t)⟩V ′,V ds

−ε
∫ t

0
⟨∇xyε(s),∇xφ(t)⟩Y ds,
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for every t ∈ [0, T ]. Consequently we obtain for every φ ∈ L2(0, T ;V ∩ D(A†)):∫ T

0
⟨yε(t)− y0, φ(t)⟩Y dt =

∫ T

0

∫ T

s

(
⟨yε(s), A†φ(t)⟩Y + ⟨Nw(s), φ(t)⟩V ′,V

)
dtds

−ε
∫ T

0

∫ T

s
⟨∇xyε(s),∇xφ(t)⟩Y dtds.

(33)
Using (31) we obtain:

ε|
∫ T

0

∫ T

s

⟨∇xyε(s),∇xφ(t)⟩Y dtds|

≤ εT (

∫ T

0

|∇xyε(s)|2Y ds)
1
2 (

∫ T

0

|∇xφ(s)|2Y ds)
1
2 → 0

for ε→ 0.
By (31) there exists a null-sequence {εk}∞k=1, and y ∈ L2(0, T ;Vv) such that

lim
k→∞

yεk ⇀ y in L2(0, T ;Vv).

Utilizing that
∫ T

0

∫ T

s
⟨yε(s), A†φ(t)⟩Y dtds =

∫ T

0
⟨yε(s),

∫ T

s
A†φ(t) dt ⟩Y ds we

can pass to the limit in (33) with ε = εk and obtain that∫ T

0

〈
y(t)− y0 −

∫ t

0
Ay(s), φ(t)

〉
D(A†)′,D(A†)

dsdt

−
∫ T

0

∫ t

0
⟨Nw(s), φ(t)⟩V ′,V dsdt = 0,

(34)

for all w ∈ L2(0, T ;V ∩ D(A†)). Since A† = L by Proposition 1 it follows that
C∞

0 (Rd) is a core for A† and thus C∞
0 (Rd) is dense in the graph norm of A† in

D(A†). Hence L2(0, T ;C∞
0 (Ω)) is dense in L2(0, T ;D(A†)). Together with the

fact that N ∈ B(Y,D(A†)′) equation (34) implies that∫ T

0

〈
y(t)− y0 −

∫ t

0

(Ay(s) +Nw(s)) ds, φ(t)
〉
D(A†)′,D(A†)

dt = 0, (35)

and consequently we have

y(t)− y0 −
∫ t

0

Ay(s) +Nw(s) ds = 0, in Y−1 and a.e. t ∈ (0, T ). (36)

Since y ∈ L2(0, T ;Y ) we have that Ay ∈ L2(0, T ;Y−1) and thus y is absolutely
continuous with values in Y−1. By the discussion below (16) therefore, the limit
y of yεk is the unique solution to (17). Consequently the whole family yε has y
as its limit. The a priori estimates (23) follow from (31) and (36).

We now turn to well-posedness of equation (14) by combining the results
of proposition 6 with classical fixed point type arguments that can be found
similarly in [4] or [22]. The proofs are, by now, rather standard and are therefore
deferred to the appendix.
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For t0 sufficiently small and u ∈ L2(0, t0), the next theorem justifies the
introduction of a mild solution of (14) which for 0 ≤ t ≤ t0 satisfies the relation

y(t) = eAty0 +

∫ t

0

eA(t−s)Ny(s)u(s) ds. (37)

Theorem 7 (Local mild solution). Let Assumptions (A1) and (A2) hold. Then
for each y0 ∈ Y and u ∈ L2(0, T ) there exists t0 ∈ (0, T ], such that (14) has a
unique mild solution y ∈ C([0, t0];Y ).

In the following, we use standard Gronwall type estimates for y to show that
the maximum interval of existence is unbounded.

Theorem 8 (Global mild solution). Let Assumptions (A1) and (A2) hold.
Then (14) has a unique mild solution in C([0, T ];Y ) for every T > 0.

From (37) and Theorem 8, the function y is also the unique mild solution to
the equation

d
dty(t) = Ay(t) +Nw(t), y(0) = y0,

where w(·) := y(·)u(·) ∈ L2(0, T ;Y ). Thus y satisfies

y(t) = eAty0 +

∫ t

0

eA(t−σ)u(σ)Ny(σ) dσ,

with u ∈ L2(0, T ), and A = L∗. Thus Proposition 6 implies that y also satisfies

⟨y(t)− y0, z⟩D(A†)′,D(A†) =

∫ t

0

[⟨y(σ), A†z⟩Y + u(σ)⟨Ny(σ), z⟩D(A†)′,D(A†)] dσ,

(38)

for all z ∈ D(A†), where A = (A†)′ = L′
.

4 Decoupling of the invariant measure

Obviously, due to the dissipativity of L∗, the eigenvalues of the operator A = L∗

are in the closed left half complex plane. Moreover, 0 is an eigenvalue of A
with its associated eigenspace containing constant functions. To show that the
constant functions are the only functions in the kernel and that convergence to
equilibrium is exponential, we need the following conditions for the potential G.

Assumption A3. The regularity G ∈ C2(Rd) holds. Moreover the Hessian
satisfies |∇2G(x)| ≤ ρ(1 + |∇G(x)|) for some ρ independent of x ∈ Rd or
∇2G ∈ L∞(Rd×d), and a Poincaré inequality holds for the measure

ν(dx) = Z−1
ν e−G(x) dx, Zν =

∫
Rd

e−G(x) dx.

14



Here, the measure ν is said to satisfy a Poincaré inequality with a constant
r > 0 if

∥φ∥2L2(ν) ≤ 1
2r∥∇φ∥

2
L2(ν), for all φ ∈ H1(ν) ∩ L2

0(ν),

where

L2
0(ν) =

{
φ ∈ L2(ν) |

∫
Rd

φdν = 0

}
, H1(ν) =

{
φ ∈ L2(ν) | ∇φ ∈ (L2(ν))d

}
.

For a discussion of sufficient conditions for the validity of the Poincaré inequality
see, e.g., [28, Section 2.2].

Proposition 9. Under Assumptions (A1) and (A3), there exist constants C
and κ̄ > 0 such that for all φ ∈ L2

0(µ)

∥etAφ∥Y ≤ Ce−κ̄t∥φ∥Y for all t ≥ 0. (39)

Proof. With Assumption (A3) holding, it follows from [28, Proposition 2.20] or
[18], that for all φ ∈ L2

0(µ)

∥etA
†
φ∥Y ≤ Ce−κ̄t∥φ∥Y for all t ≥ 0

where we have used the relation L̄ = (L∗)†, see Proposition 1. Since (eAt)† =

eA
†t this implies that

∥etAφ∥Y = ∥(etA)†φ∥Y = ∥etA
†
φ∥Y ≤ Ce−κ̄t∥φ∥Y for all t ≥ 0.

Remark 10. The dependence of κ̄ and C in (39) on β and γ in (1), has been
addressed in many publications including [3, 18, 28, 37]. The estimate in [18]
shows that κ̄→ 0+ as γ → 0+ or C → 1+.

As an immediate consequence of this proposition, the eigenspace associated
to the eigenvalue 0 is one-dimensional. It is spanned by the constant function 1.
The associated eigenspace for the operator L♯ is spanned by µ1. We shall show
that the control does not affect the dynamics of (14) on span1. This suggests
a splitting of the state space according to the measure and its complement for
which we introduce the (orthogonal) projection operators

P : Y → Y0 = L2
0(µ), y 7→ Py = y −

∫
R2d

yµdx dv 1,

P : D(A†) → D(A†) ∩ Y0, y 7→ Py = P|D(A†)y,

Q : Y → Y ⊥
0 , y 7→ Qy = (I − P )y =

∫
R2d

yµdx dv 1,

Q : D(A†) → Y ⊥
0 , y 7→ Qy = Q|D(A†)y.

(40)

With these projections, we may replace (38) as stated in the following proposi-
tion.
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Proposition 11. Let Assumptions (A1)-(A3) hold. Then the function y is a
solution to (14) in the sense of equation (38) if and only if y = Py+Qy = y1+y2,
where for all z ∈ D(A†) ∩ Y0:

⟨y1(t)− Py0, z⟩Y =

∫ t

0

⟨y1(σ), A†z⟩Y + u(σ)⟨y1(σ) +Qy0, N
′z⟩Y dσ, (41a)

y2(t) = Qy0 ∀t ≥ 0. (41b)

In particular, we have that∫
R2d

y(t) dµ =

∫
R2d

y0 dµ ∀t ≥ 0. (41c)

Proof. Let us assume that (38) holds for all z ∈ D(A†). With regard to the
integral representation (38) of the solution, we split y(t) ∈ Y and z ∈ D(A†)
according to y(t) = Py(t) +Qy(t) and z = Pz +Qz. We then obtain

⟨P (y(t)− y0) +Q(y(t)− y0),Pz +Qz⟩D = ⟨y(t)− y0, z⟩D

=

∫ t

0

⟨y(σ), A†z⟩Y + u(σ)⟨Ny(σ), z⟩D dσ =

∫ t

0

⟨y(σ), A†z⟩Y + u(σ)⟨y(σ), N ′z⟩Y dσ

=

∫ t

0

⟨Py(σ)+Qy(σ), A†(Pz+Qz)⟩Y +u(σ)⟨Py(σ)+Qy(σ), N ′(Pz+Qz)⟩Y dσ.

(42)
Since Qz ∈ Y ⊥

0 is a constant function in R2d we obtain

⟨z̃, A†Qz⟩Y = 0 = ⟨z̃, N ′Qz⟩Y ∀z̃ ∈ Y. (43)

Moreover, as P and Q, respectively P and Q are complementary projections,
for all z̃ ∈ Y and z ∈ D(A†), it holds that

⟨P z̃ +Qz̃,Pz +Qz⟩D = ⟨P z̃ +Qz̃,Pz +Qz⟩Y
= ⟨z̃, PPz⟩Y + ⟨z̃, PQz⟩Y + ⟨z̃, QPz⟩Y + ⟨z̃, QQz⟩Y = ⟨P z̃,Pz⟩Y +⟨Qz̃,Qz⟩Y .

Returning to (42), we therefore conclude that

⟨P (y(t)− y0),Pz⟩Y + ⟨Q(y(t)− y0),Qz⟩Y

=

∫ t

0

⟨Py(σ) +Qy(σ), A†Pz⟩Y + u(σ)⟨Py(σ) +Qy(σ), N ′Pz⟩Y dσ.

Let us now consider two specific cases for z ∈ D(A†).

Case 1: z ∈ Y ⊥
0 . Here, since Pz = 0 and Qz = z, it follows that

⟨y(t)− y0, z⟩Y = 0 ∀z ∈ Y ⊥
0 .

This particularly yields

Q(y(t)− y0) =

∫
R2d

(y(t)− y0)µdxdv 1 = ⟨y(t)− y0,1⟩Y 1 = 0
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or, equivalently, Qy(t) = Qy0 for all t ≥ 0 which yields (41b).

Case 2: z ∈ D(A†) ∩ Y0. Here, with Pz = z and Qz = 0, it follows that

⟨y(t)− y0, z⟩Y =

∫ t

0

⟨Py(σ)+Qy(σ), A†z⟩Y + u(σ)⟨Py(σ)+Qy(σ), N ′z⟩Y dσ.

Note that Qy(σ) ∈ Y ⊥
0 ⊂ D(A) and AQy(σ) = 0 for all σ ∈ [0, t] which yields

⟨Py(t)− Py0, z⟩Y =

∫ t

0

⟨Py(σ), A†z⟩Y + u(σ)⟨Py(σ) +Qy(σ), N ′z⟩Y dσ,

and thus (41a) holds. Note that we may also interpret this as an abstract
equation in [D(A†) ∩ Y0]′:

Py(t) = Py0 +

∫ t

0

APy(σ) + u(σ)NPy(σ) + u(σ)NQy(σ) dσ.

It can be verified by analogous arguments that (41a) and (41b) imply (38).

Remark 12. Note that the operator formulation of (41a) is given as an equa-
tion in [D(A†) ∩ Y0]′ by

d
dt ŷ = Âŷ + uN̂ŷ + uNQy0, ŷ(0) = Py0, (44)

where Â = A|Y0
, N̂ = N|Y0

.

Henceforth an additional assumption on the potential G will be required
[21], where we use the notation ⟨x⟩ =

√
1 + ∥x∥2.

Assumption A4. (a) The potential G is a C∞(Rd) function, and there exists
n > 1

2 , and for each multi-index j ∈ Rd a positive constant Cj, such that

|∂j
xG(x)| ≤ Cj(1 + ⟨x⟩2n−min{∥j∥,2}), ∀x ∈ Rd.

(b) There exist constants C0 > 0 and C1 > 0 such that

±G(x) ≥ C−1
0 ⟨x⟩2n − C0 and |∂xG(x)| ≥ C−1

1 ⟨x⟩2n−1 − C1.

Proposition 13. Let Assumptions (A3)-(A4) hold. Then the semigroup eÂt

generated by Â = A|Y0
is compact.

Proof. From the proof of Proposition 1 it is known that L♯
K is maximally dis-

sipative and that it generates a semigroup eL
♯
Kt. As has been shown in [21,

Theorem 4.2], this semigroup has a smoothing effect which, by the compact em-
beddings mentioned in the proof of Theorem 3.1 of the same article, is compact

in L2(R2d). Since A = M−1L♯
KM, the semigroups eAt and eL

♯
Kt are isomorphic

with eAt = M−1eL
♯
KtM, see, e.g., [17, Section 5.10]. With [25, Chapter 3, The-

orem 4.8], it follows that eAt is compact in Y . Hence, it remains to be shown

that eÂt = (eAt)|Y0
is compact. This however follows by utilizing the orthogonal

decomposition of the state (Hilbert) space Y = Y0 ⊕ Y ⊥
0 , the closedness of Y0

and its invariance under eÂt.
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We shall utilize the fact that the compactness of eÂt implies the spectrum
determined growth assumption [17, Chapter IV, Corollary 3.12], i.e., for all ε > 0
there exists Mε > 0 such that

∥eÂt∥ ≤Mεe
(δ+ε)t, δ := sup

λ∈σ(Â)

(Re(λ)).

Let us then focus on the following linearization of (44):

d
dt ŷ = Âŷ +Bu, ŷ(0) = Py0,

where B = NQy0 = N1 = −∇xα
⊤v is considered as operator in B(R, Y0).

We also recall that ⟨B,1⟩Y = 0. Below we shall denote by B the operator in
B(R, Y0) as well as the element in Y0. Further we assume that the initial state
y0 is normalized in such a way that∫

R2d

y0µdx dv = 1.

Under Assumptions (A3)-(A4) the operator L♯
K has compact resolvent, see [21,

Theorem 3.1, pg.170,176]. Consequently A = M−1L♯
KM has a compact resol-

vent as well. Hence its spectrum consists of isolated eigenvalues {λj}∞j=1, with
finite multiplicities, see [25, Theorem III.6.29]. The eigenvalue with largest real

part is 0. Consequently the spectrum of Â† consists of {λ̄j}∞j=2 with Re(λ̄j) < 0
for all j ≥ 2. Denote by ψj the associated eigenfunctions. Let k be an index at
which a spectral gap occurs, i.e.

0 > Re(λ2) ≥ · · · ≥ Re(λk) = δ > Re(λk+1) ≥ Re(λk+2) . . . . (45)

In case the multiplicity of the second eigenvalue of A is one we can take k = 2
and 0 > Re(λ2) = δ > Re(λ3).

Proposition 14. Let Assumptions (A2)-(A4) hold, let k be as in (45), and
assume that α satisfies

⟨B,ψj⟩Y0
̸= 0, for all j ∈ {2, . . . , k}. (46)

Then for each ς > 0 with δ − ς > Re(λk+1), the pair (Â − δI + ςI, B) is
exponentially stabilizable.

Proof. Since (−δ + ς)I is a bounded perturbation of Â the semigroup gener-
ated by Â − δI + ςI is compact as well, see [31, Chapter 3, Proposition 1.4],
and the infinite dimensional Hautus test is applicable for this operator, see [6,
Proposition V.1.3.3. and Remark V.1.3.5].

The spectral values which lie in the right half plane are given by σ+ =
{λ̄j−(δ−ς)}kj=1. Thus it suffices to argue that ker(λI−(Â−(δ−ς)I)†)∩ker(B′) =

{0} for each λ ∈ σ+, or equivalently ker(λ̄jI − Â†) ∩ ker(B′) = {0} for each
j ∈ {2, . . . , k}. Note that B′ ∈ B(Y0,R) can be expressed by ⟨B,ψ⟩Y0

for
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ψ ∈ Y0. Consequently if some nontrivial ψ ∈ ker(λ̄jI − Â†) ∩ ker(B′), with
j ∈ {2, . . . , k}, then ψ = ψj and ⟨B,ψj⟩Y0 = 0. This contradicts (46), and thus

ker(λI − (Â− (δ − ς)I)†) ∩ ker(B′) = {0}, for each λ ∈ σ+, as desired.

Remark 15. We consider the special case k = 2 and construct a control shape
function α such that (46) holds. Throughout the discussion let Assumptions
(A2)-(A4) hold. By a hypoellipticity argument, see e.g. [28, Theorem 2.13] it
follows that ψ2 ∈ C∞(R2d). By direct computation utilizing (7) it can be shown
that for α with compact support we have

⟨B,ψ2⟩Y0 =

∫
R2d

α∇xψ
⊤
2 v µdxdv −

∫
R2d

αψ2∇xG
⊤v µdx dv. (47)

This implies that

⟨B,ψ2⟩Y0
=

∫
Rd

α(x)Ψ2(x)e
−G(x) dx, (48)

where

Ψ2(x) =

∫
Rd

(∇xψ2 − ψ2∇xG)v e
− |v|2

2 dv,

is a W 1,∞
loc (Rd) function. We now assume that there exists ρ1 > 0 such that

Ψ2 is not a.e. 0 in the ball Bρ1
with center 0 and radius ρ. Further we choose

χ ∈W 1,∞(Rd) such that χ ≥ 0, χ(x) = 1 for x ∈ Bρ1 and χ(x) = 0 for |x| > ρ2,
where ρ1 < ρ2. Then it holds

α = χΨ2 ∈W 1,∞(Rd), α(x) = 0 for |x| > ρ2,

⟨B,ψ2⟩Y0 =

∫
Bρ2

χΨ2
2(x)e

−G(x) dx > 0,

as desired.

5 An infinite-horizon bilinear optimal control
problem

Here we focus on an optimal stabilization problem associated to (14). From (41)
it is known that the control does not effect the evolution of the state on Y ⊥

0 .
Therefore we concentrate on (44), i.e., the controlled evolution of the state on
Y0. We further introduce a shift δI, with δ > 0, to the state equation which will
guarantee an exponential decay rate for sufficiently small initial states. Setting

ζ(t) = eδtŷ(t), w(t) = eδtu(t), N̂δ(t) = e−δtN̂ (49)

equation (44) is transformed to

d
dtζ = (Â+ δI)ζ + wN̂δζ + wB, ζ(0) = Py0, (50)
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where we recall that B = NQy0 = N1 = −∇xα
⊤v. We thus consider

inf
w∈L2(0,∞)

J (w) :=
1

2

∫ ∞

0

∥ζ(t)∥2Y0
dt+

β

2

∫ ∞

0

w(t)2 dt

s.t. d
dtζ = (Â+ δI)ζ + wN̂δζ + wB in [D(A†) ∩ Y0]′, ζ(0) = Py0,

(51)

where L2(0,∞) = L2(0,∞;R). For convenience we point out that the above
control system is the formal notation for

⟨ζ(t)− ζ(0), z⟩Y0 =
∫ t

0
⟨ζ(s), (Â† + δI)z⟩Y0 + w(s)e−δs⟨ζ(s), N̂ ′z⟩Y0+w(s)⟨B, z⟩Y0 ds

(52)
for all z ∈ D(A†)∩Y0. A control w associated to (51) is feasible if J (w) <∞. In
particular ζ ∈ L2(0,∞;Y0). Therefore, to define the solution concept associated
to (50) we can consider the δζ summand as a L2(0,∞;Y0) perturbation, and call
ζ solution to (50) if ζ ∈ L2(0,∞;Vv ∩ Y0) ∩ L∞(0,∞;Y0) ∩ C([0,∞);Y0). It is

natural to include the property ζ ∈ C([0,∞);Y0), since N̂ is an admissible con-

trol operator, see the proof of Proposition 16 below, and t 7→
∫ t

0
eÂ(t−s)w(s)B ds

is continuous with values in Y0.

5.1 Existence of a feasible control

Recall from, e.g., [13, Theorem 6.2.7], that with α chosen according to Proposi-
tion 14, the following operator Riccati equation has a unique stabilizing solution
Π ∈ B(Y0) with Π = Π∗ ⪰ 0:

0 = ⟨Âz1,Πz2⟩Y0
+ ⟨Πz1, Âz2⟩Y0

+ 2δ⟨z1,Πz2⟩Y0
+ ⟨z1, z2⟩Y0

− ⟨B,Πz1⟩Y0
⟨B,Πz2⟩Y0

(53)

for z1, z2 ∈ D(Â). In particular, it holds that the closed loop operator Aπ

defined by

Aπζ := (Â+ δI)ζ −B⟨B,Πζ⟩Y0 , D(Aπ) = D(Â) (54)

generates an exponentially stable C0-semigroup eAπt on Y0. With regard to
the subsequently following local fixed-point argument, let us first consider the
following particular nonhomogeneous equation

d
dtζ = Aπζ + N̂u, ζ(0) = ζ0 ∈ Y0. (55)

We have the following result.

Proposition 16. Let Assumptions (A2)-(A4) and (46) hold. Then for all
ζ0 ∈ Y0 and u ∈ L2(0,∞;Y0), the unique solution of ζ of (55) is given by

ζ(t) = eAπtζ0 +

∫ t

0

eAπ(t−s)N̂u(s) ds. (56)

It holds that ζ ∈ L2(0,∞;Vv ∩ Y0) ∩ L∞(0,∞;Y0) ∩ C([0,∞);Y0). Moreover,
there exists a constant M > 0 s.t.

max(∥ζ∥L2(0,∞;Vv), ∥ζ∥L∞(0,∞;Y )) ≤M(∥ζ0∥Y0
+ ∥u∥L2(0,∞;Y0)). (57)
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Proof. In the proof of Proposition 4, we have already shown that N is an
(infinite-time) admissible control operator for eAt. From (43) we conclude that

also N̂ is an (infinite-time) admissible control operator for eÂt. We further have

that N̂ is an admissible control operator for e(Â+δI)t. Now recall that Aπ is
defined by

Aπ = Â+ δI −BB′Π = Â+ δI −N1B′Π = Â+ δI − N̂1B′Π.

Since D := 1B′Π ∈ B(Y0), with [35, Corollary 5.5.1], we obtain that N̂ is an
admissible control operator for eAπt. Since eAπt is exponentially stable, from
[35, Proposition 4.4.5], it additionally follows that N is infinite-time admissible.
Altogether, this implies the existence of a constant M1 such that

sup
t≥0

∥
∫ t

0

eAπ(t−s)N̂u(s) ds∥Y0
≤M1∥u∥L2(0,∞;Y0) ∀u ∈ L2(0,∞;Y0).

This estimate together with the exponential stability of eAπt implies the second
estimate in (57). With regard to the first estimate, let us first note that the
mapping

F : L2
loc(0,∞;Y0) → L2

loc(0,∞;Y0), u 7→ Fu = ζ, (58)

where ζ is defined by (56) is the input-output map associated with the trivial
observation operator C = I, see, e.g., [36]. In particular, the system described

by (Aπ, N̂ , I) is a well-posed linear system in the sense of [33, 36]. Again using
the exponential stability of eAπt, we conclude that the growth bound of F is
strictly negative and, hence, F ∈ B(L2(0,∞;Y0)), see, e.g., [36, Proposition 4.7]
or [33, Theorem 2.5.4(iii)]. Thus, there exists a constant M2 > 0 such that

∥ζ∥L2(0,∞;Y0) ≤M2

(
∥ζ0∥Y0

+ ∥u∥L2(0,∞;Y )

)
. (59)

For the additional (spatial) regularity of ζ, note that we can resort to the linear
system

d
dtζ = Âζ + f,

where f := δζ − B⟨B,Πζ⟩Y0
+ N̂u satisfies f ∈ L2(0,∞;V ′

v). With (23) in
Proposition 6, we can argue that there exists a constant M3 such that

∥∇vζ∥L2(0,∞;Y ) ≤M3

(
∥ζ0∥Y0 + ∥u∥L2(0,∞;Y )

)
. (60)

Combining (60) and (59) shows the announced estimates. Moreover, by [35,
Proposition 4.2.5], the mild solution ζ in (56) is continuous.

Lemma 17. Let ζ1, ζ2 ∈ L2(0,∞;Y0) ∩ L∞(0,∞;Y0). Then there exists a

constant M̃ > 0 such that

∥e−δ·(⟨B,Πζ1⟩Y0
ζ1 − ⟨B,Πζ2⟩Y0

ζ2)∥L2(0,∞;Y )

≤ M̃
(
∥ζ1∥L∞(0,∞;Y ) + ∥ζ2∥L∞(0,∞;Y )

)
∥ζ1 − ζ2∥L2(0,∞;Y ).
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Proof.

∥e−δ·(⟨B,Πζ1⟩ζ1 − ⟨B,Πζ2⟩Y0
ζ2)∥L2(0,∞;Y )

≤ ∥e−δ·⟨B,Πζ1⟩Y0(ζ1 − ζ2)∥L2(0,∞;Y ) + ∥e−δ·(⟨B,Πζ1⟩Y0 − ⟨B,Πζ2⟩Y0)ζ2)∥L2(0,∞;Y )

≤ ∥e−δ·⟨B,Πζ1⟩∥L∞(0,∞)∥ζ1 − ζ2∥L2(0,∞;Y )

+ ∥e−δ·ζ2∥L∞(0,∞;Y0)∥⟨ΠB, ζ1 − ζ2⟩Y0∥L2(0,∞)

≤ M̃(∥ζ1∥L∞(0,∞;Y ) + ∥ζ2∥L∞(0,∞;Y ))∥ζ1 − ζ2∥L2(0,∞;Y ),

for a constant M̃ depending on ∥B∥Y0 and ∥Π∥B(Y0).

Theorem 18. Let Assumptions (A2)-(A4) and (46) hold. Let M,M̃ denote the
constants from Proposition 16 and Lemma 17, respectively. If ∥ζ0∥ < 3

16M2M̃
,

then

d
dtζ = Aπζ − ⟨B,Πζ⟩Y0

N̂δζ, ζ(0) = Py0,

admits a unique solution ζ ∈ L2(0,∞;Vv ∩ Y0) ∩ L∞(0,∞;Y0) ∩ C([0,∞);Y0).
This solution satisfies

max(∥ζ∥L2(0,∞;Vv), ∥ζ∥L∞(0,∞;Y0)) ≤ 1

4MM̃
.

Proof. This result can be proved by arguments similar to those provided in the
proofs of [9, Theorem 4.8] and [10, Theorem 25].

Theorem 18 implies that the choice w = −⟨B,Πζ⟩Y0 ∈ L2(0,∞) is a feasible
control for (51). In particular, the associated state satisfies (52).

5.2 Existence of an optimal control

Here we provide sufficient conditions which guarantee the existence of an optimal
control for problem (51).

Theorem 19. Let Assumptions (A2)-(A4) hold and assume the existence of an
admissible control for (51). Then (51) admits an optimal control w̄ ∈ L2(0,∞).

Proof. Since J is bounded from below by 0, and due to the assumption on the
existence of an admissible control, there exists a minimizing sequence {wn}∞n=1

for (51). Observe that ζn = ζ(wn) satisfy

⟨ζn(t)− ζ(0), z⟩Y0

=
∫ t

0
⟨ζn(s), (Â† + δI)z⟩Y0

+ wn(s)⟨ζn(s), N̂δ(s)
′z⟩Y0

+ wn(s)⟨B, z⟩Y0
ds

(61)
for all z ∈ D(A†) ∩ Y0, and each t > 0. Next we pass to the limit n → ∞ in
the above equation. The choice of the cost functional implies that {wn}∞n=1 is
bounded in L2(0,∞). Let us now fix an arbitrary t > 0. We can follow the
proof of Theorem 8 to assert that {ζn}∞n=1 is bounded in C([0, t];Y0). Using
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(50), the boundedness of {ζn}∞n=1 in W 1,2(0, t; [D(A†)]′) follows. Thus, for a
subsequence, denoted by the same symbols, we have that

wn ⇀ w̄ in L2(0,∞), ζn ⇀ ζ̄ in W 1,2(0, t; [D(A†)]′), and ζn
w∗

⇀ ζ̄ in L∞(0, t;Y0),

for some w̄ ∈ L2(0, t), and ζ̄ ∈ W 1,2(0, t; [D(A†)]′) ∩ L∞(0, t;Y0). This implies
that ⟨ζn, z⟩D ⇀ ⟨ζ, z⟩D in W 1,2(0, t), i.e.

⟨ζn, z⟩D ⇀ ⟨ζ̄, z⟩D, and ⟨ d
dtζn, z⟩D ⇀ ⟨ d

dt ζ̄, z⟩D in L2(0, t).

Due to the compact embedding W 1,2(0, t) ⊂ L2(0, t), it follows that

⟨ζn, z⟩D → ⟨ζ̄, z⟩D in C([0, t]) for all z ∈ D(A†) ∩ Y0. (62)

Arguing as above (45) and using again [21, Theorem 3.1, pg.170, 176] the op-

erator Â† has a compact resolvent and hence D(A†) ∩ Y0 is compact in Y0. A
three-ϵ argument can now be used to verify that

⟨ζn, z⟩Y0
→ ⟨ζ̄, z⟩Y0

in L2(0, t) for all z ∈ Y0. (63)

Using (62), (63) and the fact that N̂ ′ ∈ B(D(A†) ∩ Y0, Y0) we can pass to
the limit in (61) to obtain for all z ∈ D(A†) ∩ Y0 and every t > 0:

⟨ζ̄(t)−ζ(0), z⟩Y0

=
∫ t

0

(
⟨ζ̄(s), (Â† + δI)z⟩Y0

+w̄(s)⟨ζ̄(s), N̂δ(s)
′z⟩Y0

+w̄(s)⟨B, z⟩Y0

)
ds.

Thus ζ̄ is the solution associated to the control w̄.
Finally, by weak lower semi-continuity of norms, we have that

J (w̄) =
1

2

∫ ∞

0

∥ζ̄(t)∥2Y0
dt+

β

2

∫ ∞

0

w̄(t)2 dt ≤ lim inf
n→∞

J (wn),

and thus w̄ is an optimal solution for (51).

6 Numerical experiments

Here we complement our theoretical results with two numerical examples. These
should be considered as a proof of concept rather than a complete numerical
investigation which, while certainly of interest, is out of the scope of the current
manuscript. Indeed, the challenges include handling the unboundedness of the
spatial domain and the fact that the infinite-horizon optimal control problem is
posed for an unstable system. Note also that µ scales exponentially such that
the numerical realization of the weighted inner products may suffer from finite
numerical precision.

The controls we implemented correspond to the Riccati-based strategy dis-
cussed in the context of feasibility of (51) in Section 5.1. While such controls

23



are not optimal, their performance is often sufficient for practical purposes. In
particular this holds true for small perturbations around the steady state which
is a consequence of the feedback law ⟨B,Πζ⟩Y0

being a second order Taylor ap-
proximation of the optimal feedback law obtained by differentiating the minimal
value function, see [10, 34].

All simulations were generated on an Intel i5-9400F @ 4.1 GHz x 6, 64 GB
RAM, MATLAB® version R2019b. For the solutions of the nonlinear ODE
systems, we utilize the MATLAB® routine ode23 with (default) relative and
absolute tolerances.

6.1 Spatial discretization and numerical realization

For the numerical realization of the (un)controlled systems (41a) and (44), we
replace the infinite-dimensional systems by spatially discrete surrogate models.

For the uncontrolled potentialG, we choose the triple well potential discussed

in [9] and defined by G(x) :=
((

1
2x

2−15)x2+119)x2+28x+50

200 . As the underlying
computational domain is R2, we utilize a spectral method based on “Sinc”
cardinal functions for which we briefly recall the presentation in [7, Section 5.2].
Spatial approximations are assumed to be of the form

f(x) ≈ fN (x) =

N∑
j=−N

f(xj)Cj(x), Cj(x) =
sin(π(x− jh)/h)

π(x− jh)/h

where the spectral collocation points xj = jh, j = −N, . . . , 0, . . . , N are uni-
formly distributed. Note that the functions Cj are also known as Whittaker’s
cardinal functions and satisfy Ck(xj) = δjk. In particular, let us emphasize
the beneficial discrete structure which leads to exact (skew-)symmetric finite
difference approximations of the first and second derivatives [7, Appendix F.7].
On the downside, the resulting matrices are generically dense and thereby limit
the maximal number of spatial degrees of freedom to a relatively small dimen-
sion. As a consequence, we report on results obtained on a two-dimensional grid
(−5, 5)2 with 2N + 1 = 161 grid points of grid size h = 0.0625 in each spatial
direction, leading to a spatial approximation A ∈ R25921×25921 of the operator
L∗. For the decoupling of the invariant measure, we evaluate the analytic ex-
pression exp(−H(x, v)) on the computational grid and compute a projection on
the 25920-dimensional stable subspace according to the strategy described in [9,
Section 4.1]. Rather than taking a single input as in (5), we chose four control
potential functions α1, α2, α3, α4 with αi(x) = (exp(−(x+(2i−5)))+1)−1. This
multi-input configuration led to more robust stabilization and solution results
for the underlying algebraic Riccati equations. The associated spatial deriva-
tives which enter (5) are shown in Figure 4 (left). Clearly the theoretical results
can be extended to this multi-input case.

For the guaranteed exponential decay rate, we choose δ = 0.2. The associ-
ated (shifted) algebraic Riccati equation (53) is approximately solved for Π by

a Kleinman-Newton iteration [26]. Since the discrete approximation of Â+0.2I
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has two unstable eigenvalues, see Figure 3 on the right, we compute a stabilizing
initial approximation Π0 by a spectral projection onto the subspace generated
by the first two eigenvectors and a subsequent solution of the corresponding
two-dimensional Riccati equation. The computation of iterates Π0,Π1, . . . ,Πk

is stopped once ∥Πk − Πk−1∥ < 10−5. Each iterate Πk is obtained via the
MATLAB® routine lyap which solves the Lyapunov equation associated with
the current feedback system given by Ak = A+ δI −BB⊤Πk.

6.2 Examples

We present exponential stabilization results for the two initial configurations
shown in Figure 1 (center/right). The first configuration corresponds to a
smooth perturbation of the stationary distribution. In more detail, instead
of the constant function 1(x, v) ≡ 1, denoting the coordinates of the desired
stationary state µ(x, v) (in the weighted space), we defined an initial state of
the form y0(x, v) = 1 + 1

2 cos(2πx) sin(
1
2πv). The resulting initial configuration

(in the unweighted state space) is presented in Figure 1 (left).
The second configuration is obtained as weighted average of the stationary

distribution and a 90 degree rotation thereof.

Figure 1: Left. Stationary distribution for a confining triple well potential.
Center/Right. Two different initial configurations.

In Figure 2, we show the exponential decay of the trajectories to the equilib-
rium state defined by ϱ∞(x, v) = µ(x, v). With regard to the initial configura-
tion defining a perturbation of µ, see Figure 2 (left), we observe almost identical
behavior of uncontrolled and controlled dynamical states in the beginning of the
time interval. At t ≈ 5, the local effect of the linearized dynamics dominates
and causes the expected improved exponential convergence rate. As is evident
from Figure 4 (center), the influence of the feedback controls is small. Interest-
ingly enough, these control laws still lead to a clear improvement in the speed
of convergence to the equilibrium.

For the initial configuration involving a rotation of the stationary distribu-
tion, Figure 2 (right) shows that the nonlinear closed loop system requires some
time to convergence into a suitable neighborhood of µ within which the pre-
scribed exponential decay rate is obtained. Currently, we do not know whether
the oscillatory behavior for t ∈ [0, 5] is an accurate approximation of the true dy-
namics or rather a numerical artifact caused by a not sufficiently refined discrete
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Figure 2: Exponential decay of the (un)controlled trajectories for perturbed
(left) and rotated (right) initial configurations.

grid. In this regard, in Figure 3 (left) we further provide the spectral properties
of the uncontrolled and controlled (linearized) dynamics, i.e., the eigenvalues of

A and Â−BB⊤Π, respectively. With regard to Remark 2, particularly note that
the presence of a skew symmetric part J renders the spectrum complex-valued.
Moreover, the difference of both spectra mainly becomes noticeable around the
unstable region of A+δI, see Figure 3 (right). By construction, we observe that

Re(λi(Â−BB⊤Π)) < δ for all i.
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Figure 3: Left. Entire spectrum of the (un)controlled system. Right. Zoom
around the δ-unstable part.

In comparison to the perturbed initial configuration, the influence of the
feedback control laws is significantly stronger, see Figure 4 (right). The oscilla-
tory behavior of the controls may require additional numerical investigation.
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Figure 4: Left. Gradients of the control shape functions αi. Center. Feedback
control laws for the perturbed initial configuration. Right. Feedback control
laws for the rotated initial configuration.
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A Proofs

Proof of theorem 7. We use techniques from [4, Proposition 2.1]. For R > 0 let
us define the set

F =
{
y ∈ C([0, t0];Y ) | ∥y − y0∥L∞(0,t0;Y ) ≤ R

}
,

where t0 is to be determined below, and the mapping Tu : F → C([0, t0];Y ) by

(Tuy)(t) = eAty0 +

∫ t

0

eA(t−s)Ny(s)u(s) ds.

We first show that Tu maps F into itself. For all 0 ≤ t ≤ t0 we estimate

∥(Tuy)(t)− y0∥Y ≤ ∥eAty0 − y0∥Y + ∥Φt(yu)∥Y

where Φt is the controllability map defined in (20). Since N is an (infinite-time)
admissible control operator for eAt, [35, Remark 4.6.2] yields the existence of a
constant M (independent of t) such that for z(t) = Φt(yu) we have

∥z∥L∞(0,t0;Y ) ≤M∥yu∥L2(0,t0;Y ) ≤M∥y∥L∞(0,t0;Y )∥u∥L2(0,t0).

This implies for 0 ≤ t ≤ t0:

∥(Tuy)(t)− y0∥Y ≤ ∥eAty0 − y0∥Y +M(R+ ∥y0∥Y )∥u∥L2(0,t0).

Due to strong continuity of eAt and the fact that ∥u∥L2(0,t) → 0 for t→ 0, there
exists t0 such that

∥(Tuy)(t)− y0∥Y ≤ R for all 0 ≤ t ≤ t0.
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Similarly, considering two solutions y and ỹ with y(0) = y0 = ỹ(0), we find t0
and c ∈ (0, 1) such that for all 0 ≤ t ≤ t0:

∥(Tuy)(t)− (Tuỹ)(t)∥Y = ∥Φt(y − ỹ)u∥Y
≤M∥u∥L2(0,t0)∥y − ỹ∥L∞(0,t0;Y ) ≤ c∥y − ỹ∥L∞(0,t0;Y ).

Now, the assertion follows by a standard fixed point argument.

Proof of theorem 8. Again, we follow the line of argument provided in [4, The-
orem 2.5] for an analogue statement for bounded control operators. We also
utilize ideas from the proof of [22, Theorem 2.9]. Thus, suppose that y(·) solves
(14) defined for t ∈ [0, a) with a ≤ T . Then for a constant c and the constant
M from the proof of Theorem 7, it holds that

∥y(t)∥Y ≤ c∥y0∥Y + ∥Φt(yu)∥Y ≤ c∥y0∥Y +M∥yu∥L2(0,t;Y )

= c∥y0∥Y +Msup
{
⟨yu, g⟩L2(0,t;Y ) | g ∈ L2(0, t;Y ), ∥g∥L2(0,t;Y ) ≤ 1

}
.

Hence, for ε > 0 there exists g̃ ∈ L2(0, t;Y ), ∥g̃∥L2(0,t;Y ) ≤ 1, such that

∥y(t)∥Y ≤ c∥y0∥Y +M⟨yu, g̃⟩L2(0,t;Y ) + ε.

In particular, for ε = max(∥y0∥Y , ∥u∥L2(0,T )) and c̃=c∥y0∥Y +max(∥y0∥Y , ∥u∥L2(0,T )):

∥y(t)∥Y ≤ c̃+M

∫ t

0

⟨y(s), u(s)g̃(s)⟩Y ds ≤ c̃+M

∫ t

0

∥y(s)∥Y ∥u(s)g̃(s)∥Y ds.

Since ug̃ ∈ L1(0, t;Y ), Gronwall’s lemma implies that

∥y(t)∥Y ≤ c̃e
∫ t
0
M∥u(s)g̃(s)∥Y ds ≤ c̃eM∥u∥L2(0,t) . (64)

Thus, the solution can be extended beyond a in case a < T .
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