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Altenbergerstraße 69, A-4040 Linz, Austria

Abstract. Global feedback stabilizability results are derived for nonauto-

nomous coupled systems arising from the linearization around a given time-
dependent trajectory of FitzHugh–Nagumo type systems. The feedback is ex-

plicit and is based on suitable oblique (nonorthogonal) projections in Hilbert

spaces. The actuators are, typically, a finite number of indicator functions
and act only in the parabolic equation. Subsequently, local feedback stabiliz-

ability to time-dependent trajectories results are derived for nonlinear coupled

parabolic-ode systems of the FitzHugh–Nagumo type.
Simulations are presented showing the stabilizing performance of the feed-

back control.

1. Introduction. In this work we focus on coupled systems consisting of a par-
abolic equation with controls, and an ordinary differential equation. This class of
systems include well-known models describing electric excitations and the propa-
gation of electric waves in nerve fibers and in heart tissue. In this context the
system of equations is referred to as the monodomain equations. Given a bounded
domain Ω ⊂ Rd, where d is a positive integer, with smooth boundary Γ = ∂Ω, the
controlled monodomain equations read

∂
∂tv = ν∆v − av3 + bv2 − cv −M1(v, w) + f +

M∑
i=1

ui1ωi , v(0) = v0, (1a)

∂
∂tw = −δw −M2(v, w), w(0) = w0, (1b)

with Neumann boundary conditions

( ∂
∂nv)|Γ = 0, (1c)

where f = f(x, t) is an external forcing, M1 and M2 are suitable functions coupling
the two equations, n is the unit outward normal vector to Γ, and the constants
in {ν, δ, a, b, c} are all given and strictly positive. Further, {ωi | i ∈ {1, 2, . . . ,M}} is
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a family of open sets of Ω and our M actuators {1ωi = 1ωi(x) | i ∈ {1, 2, . . . ,M}} ⊂
L2(Ω), are the indicator functions of the subsets ωi,

1ωi(x) :=

{
1 if x ∈ ωi,
0 if x ∈ Ω \ ωi.

Finally u = u(t), taking values in RM , is a control function at our disposal.
In electrophysiology, see [9, Section 12.3.3], the variable v models the transmem-

brane electric potential of the human heart and w is represents a gating variable.
Typical models include the FitzHugh–Nagumo, the Rogers–McCulloch, and the
Aliev–Panfilov model. See [5, 15, 18, 1, 6]. The coupling M takes the form

M(w, v) :=

[
M1(w, v)
M2(w, v)

]
:=

[
dw + evw
−γv + ρv2

]
(2a)

where the constants d, e, γ, ρ are also given, and are all strictly positive with the
following exceptions defining the model:

e = ρ = 0, for the FitzHugh–Nagumo model, [FN].
d = ρ = 0, for the Rogers–McCulloch model, [RM].
d = 0, for the Aliev–Panfilov model, [AP].

(2b)

Assume that a desired heart rhythm is given as the solution of the (uncontrolled)
system (1), corresponding to a suitable initial condition (v0, w0) ∈ L2(Ω)×L2(Ω),

∂
∂tv = ν∆v − av3 + bv2 − cv −M1(w, v) + f, v(0) = v0, (3a)

∂
∂tw = −δw −M2(w, v), w(0) = w0, (3b)

( ∂
∂nv)|Γ = 0, (3c)

If (v0, w0) 6= (v0, w0), then the behavior of (1) without control can be consider-
ably different from the desired behavior of (v, w), even if (v0, w0)− (v0, w0) is small.
Here we look for a feedback control u, so that the solution of (1) goes to the desired
heart rhythm (v, w), solving (3), provided the difference (v0, w0)− (v0, w0) is small.

We will follow a standard idea: first we find a feedback operator which stabilizes
globally the linearization of (1) around (v, w), then we use a suitable fixed point
argument to conclude that the same feedback operator also stabilizes the nonlinear
system locally.

More precisely, by direct computations, we can see that the (controlled) lineariza-
tion around (v, w), satisfies

∂
∂ty +Ay +Ary + S̃z −

M∑
i=1

ui1ωi = 0, y(0) = y0 (4a)

∂
∂tz +Dz +Rv = 0, z(0) = z0. (4b)

Moreover the difference (y, z) := (v, w)− (v, w), to the targeted solution, solves the
system

∂
∂ty +Ay +Ary + S̃z −

M∑
i=1

ui1ωi = N1(y, z), y(0) = y0 (5a)

∂
∂tz +Dz +Rv = N2(y, z), z(0) = z0, (5b)
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with the linear operators

y 7→ Ay := −ν∆y + y, (6a)

with 〈Ay, v〉H1(Ω)′,H1(Ω) := ν(∇y,∇v)L2(Ω)d + (y, v)L2(Ω),

z 7→ Dz := δz, (6b)

y 7→ Ary := −y − (−3av2y + 2bvy − cy − ewy), (6c)

z 7→ S̃z := dz + evz, (6d)

y 7→ Ry := (−γ + 2ρv)y, (6e)

and the nonlinearities

(y, z) 7→ N1(y, z) := −ay3 − (−b+ 3av)y2 − eyz, (6f)

(y, z) 7→ N2(y, z) := −ρy2. (6g)

Without loss of generality we may suppose that the set of actuators {1ωi | i ∈
{1, 2, . . . ,M}} ⊂ L2(Ω) is linearly independent. We also set UM := span{1ωi | i ∈
{1, 2, . . . ,M}}.

Let αi, i ∈ {1, 2, 3, . . . }, be the increasing sequence of repeated (Neumann)
eigenvalues of A = −∆ + 1 and let EM := span{ei | i ∈ {1, 2, . . . ,M}} be the space
spanned by the first eigenfunctions of A in L2(Ω),

0 < α1 ≤ α2 ≤ · · · ≤ αn ≤ αn+1 → +∞ and Aen = αnen.

For simplicity let us denote L2 := L2(Ω) and H1 := H1(Ω). We will show that a
sufficient condition for global stabilizability of system (4), and for local stabilizability
of system (5), is given by

H = UM ⊕ E⊥M , (7a)

αM+1 >

(
6 + 4

∣∣∣PE⊥
M

UM

∣∣∣2
L(L2)

)
|Ar|2L∞(R0,L(L2,(H1)′))

+

∣∣∣PUM
E⊥
M

S̃
∣∣∣
L∞(R0,L(L2))

|R|L∞(R0,L(L2))

δ
, (7b)

where L
(
L2, (H1)′

)
stands for the space of bounded linear functionals from L2

into (H1)′, and L
(
L2
)

stands for the space of bounded linear functionals from L2

into itself. Further, P
E⊥
M

UM
: L2 → UM is the oblique projection in L2 onto UM

along E⊥M , and PUM
E⊥
M

= Id−PE
⊥
M

UM
is the complementary oblique projection in L2

onto E⊥M along UM .
The following regularity condition on the desired trajectory will be used.

(v, w) ∈ L∞(R0 × Ω)× L∞(R0 × Ω). (8)

Recall that in [11] it is shown that when S̃ = 0, then (7) is a sufficient stabiliz-
ability condition for the parabolic system (4a).

The following Theorems 1.1 and 1.2 are the main results of this paper.

Theorem 1.1 (Linearized monodomain equations). Let λ > 0 and s0 ≥ 0. If (7)
and (8) holds true, then there are constants C ≥ 1 and µ > 0, independent of
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(s0, y0, z0), such that the solution of the linear system

∂
∂ty +Ay +Ary + S̃z − PE

⊥
M

UM
(Ay +Ary + S̃z − λy) = 0, y(s0) = y0, (9a)

∂
∂tz +Dz +Rv = 0, z(s0) = z0, (9b)

satisfies

|(y(t), z(t))|L2×L2 ≤ Ce−µ(t−s0) |(y0, z0)|L2×L2 , t ≥ s0.

for all (y0, z0) ∈ L2 × L2.

Theorem 1.2 (Monodomain equations). Let λ > 0 and s0 ≥ 0. If (7) and (8)
holds true, then there are constants C ≥ 1, µ > 0, and ε > 0, independent of
(s0, y0, z0), such that the solution of the system

∂
∂ty +Ay +Ary + S̃z − PE

⊥
M

UM
(Ay +Ary + S̃z − λy) = N1(y, z), y(s0) = y0,

(10a)

∂
∂tz +Dz +Rv = N2(y, z), z(s0) = z0,

(10b)

satisfies

|(y(t), z(t))|H1×L2 ≤ Ce−µ(t−s0) |(y0, z0)|H1×L2 , t ≥ s0,

provided that |(y0, z0)|H1×L2 < ε.

Remark 1. Observe that (10) is exactly (5), with u given by

M∑
i=1

ui1ωi = P
E⊥
M

UM
(Ay +Ary + S̃z − λy). (11)

Furthermore, by definition EM is anM dimensional space, which together with (35a)
implies that the (ordered) family of actuators UM := (1ω1

, 1ω2
, . . . , 1ωM ) is linearly

independent (with M ≥ 1). Thus, denoting the bijection [UM ] : RM → UM , with

u 7→
M∑
i=1

ui1ωi , the control u as in (11) is uniquely defined, and we may write

u = [UM ]−1P
E⊥
M

UM
(Ay +Ary + S̃z − λy).

Remark 2. Observe that Theorem 1.2 provides a result on the stabilizability to
trajectories, since it asserts that the solution (v, w) = (v, w) + (y, z) of (1) goes
exponentially to the targeted trajectory (v, w), solving (3), provided (7) holds true,
and |(v0 − v0, w0 − w0)|H1×L2 < ε.

Concerning (7b), it is proven in [17] for 1D domains of the form Ω = (0, L) ⊂ R
that for any given r ∈ (0, 1) and any given M ≥ 1 we can place M actua-

tors 1ωi = 1ωMi , with ωMi ⊂ (0, L), so that the operator norm
∣∣∣PE⊥

M

UM

∣∣∣
L(L2)

remains

bounded as M increases. Furthermore, the total volume covered by the actuators
is equal rL, and thus independent of M . The extension of these results to multi-
dimensional rectangles follows from the results in [11, Section 4.8], see also [11,
Remark 3.9]. Note that, once the operator norm of the oblique projection remains
bounded remains and αM+1 → +∞, then we can set M large enough so that (7)
is satisfied. Thus for an arbitrary “coupling” quadruple (d, e, γ, ρ), we can set M
large enough so that system (4) is stable.

Recall also that in [4] the stabilizability of (1.1) is proven, with a Riccati based
feedback, for the case ρ = 0. Comparing the results in this paper to those in [4],
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we can say that in [4] all the actuators are supported in an a-priori given subset
of the physical domain Ω and stability of the Riccati based closed-loop system is
guaranteed under a condition on the coupling triple (d, e, γ), see [4, Corollary 3.2 and
Eq. (38)]. In this paper stability of the oblique projection based closed-loop system
is obtained for an arbitrary coupling quadruple (d, e, γ, ρ) under a boundedness

condition on the operator norm of the oblique projection P
E⊥
M

UM
onto the span of the

actuators, and the placement of the actuators is supposed to be at our disposal.

Contents. The rest of the paper is organized as follows. In Sect. 2 we derive
results on the stability of linear coupled systems in an abstract setting. These
results are applied in Sect. 3 to obtain stabilizability conditions for general linear
coupled parabolic-ode systems. In Sect. 4 we derive the stabilizability result for the
concrete example of the linearized monodomain equations, in particular, it contains
the proof of Main Theorem 1.1 in Sect. 4.1 and that of Main Theorem 1.2 in Sect. 4.2.
Numerical simulations are presented in Section 5, for both the linearized system (9)
and the nonlinear system (10), confirming the theoretical results and showing the
performance of the explicit oblique projection stabilizing feedback control. Finally
the Appendix gathers comments on the existence and uniqueness of weak solutions
for the systems involved in the main text.

Notation. We write R and N for the sets of real numbers and nonnegative integers,
respectively, and we define Rr := (r, +∞), for r ∈ R, and N0 := N \ {0}.

We denote by Ω ⊂ Rd a bounded open connected subset, with d ∈ N0.
For a normed space X, we denote by | · |X the corresponding norm, by X ′ its

dual, and by 〈·, ·〉X′,X the duality between X ′ and X. The dual space is endowed
with the usual dual norm: |f |X′ := sup{〈f, x〉X′,X | x ∈ X and |x|X = 1}. In
case X is a Hilbert space we denote the inner product by (·, ·)X .

For an open interval I ⊆ R and two Banach spaces X, Y , we write W (I, X, Y ) :=
{f ∈ L2(I, X) | ∂

∂tf ∈ L
2(I, Y )}, where the derivative ∂

∂tf is taken in the sense
of distributions. This space is endowed with the natural norm |f |W (I,X, Y ) :=(
|f |2L2(I,X) + | ∂∂tf |

2
L2(I, Y )

)1/2
. In case X = Y , we write H1(I, X) := W (I, X, X).

The time derivative (in the distribution sense) of a vector function v taking values
in a Banach space X will be denoted by v̇ := d

dtv.
If the inclusions X ⊆ Z and Y ⊆ Z are continuous, where Z is a Hausdorff

topological space, then we can define the Banach spaces X×Y , X ∩Y , and X+Y ,

endowed with the norms |(a, b)|X×Y :=
(
|a|2X + |b|2Y

) 1
2 ; |a|X∩Y := |(a, a)|X×Y ; and

|a|X+Y := inf(aX , aY )∈X×Y
{
|(aX , aY )|X×Y | a = aX + aY

}
, respectively. We can

show that, if X and Y are endowed with a scalar product, then also X ×Y , X ∩Y ,
and X + Y are. In case we know that X ∩ Y = {0}, we say that X + Y is a direct
sum and we write X ⊕ Y instead.

Again, if X and Y are endowed with a scalar product, then also W (I, X, Y ) is.
The space of continuous linear mappings from X into Y will be denoted by L(X,Y ).
When X = Y we simply write L(X) := L(X,X).

If the inclusion X ⊆ Y is continuous, we write X ↪−→ Y . We write X
d
↪−→ Y ,

respectively X
c
↪−→ Y , if the inclusion is also dense, respectively compact.

C [a1,...,ak] denotes a nonnegative function of nonnegative variables aj that in-
creases in each of its arguments.

Finally, C, Ci, i = 0, 1, . . . , stand for unessential positive constants.
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2. Stability of coupled evolutionary systems. We shall present a stability
result for a coupled abstract system in a form which is convenient for our purposes.
We introduce the bounded time intervals

I := (s0, s1), 0 ≤ s0 < s1 < +∞, (12)

where the real numbers s0, s1 are given. We shall utilize a a separable Hilbert
space H, which we consider as a pivot space, H = H ′. Further we introduce a
subspace G ⊆ H, and two evolutionary systems

v̇ = −Av, v(s0) = v0 ∈ G, (13)

ẇ = −Dw, w(s0) = w0 ∈ H, (14)

in the Hilbert spaces G and H, where for suitable Hilbert spaces V ⊂ G andW ⊂ H,
we suppose that A(t) ∈ L(V,V ′) and D(t) ∈ L(W,W ′) are operators in G and H,
respectively, with domains D(A) = D(A(t)) ⊆ G and D(D) = D(D(t)) ⊆ H,
independent of t.

Furthermore, we assume that

D(A)
d
↪−→ V d

↪−→ G
d
↪−→ V ′ d

↪−→ D(A)′ and D(D)
d
↪−→W d

↪−→ H
d
↪−→W ′ d

↪−→ D(D)′.
(15)

Given linear operators S = S(t) ∈ L(H,G) and R = R(t) ∈ L(G,H), we will
consider the coupled system

v̇ = −Av − Sw, v(s0) = v0, (16a)

ẇ = −Dw −Rv, w(s0) = w0, (16b)

whose stability properties are the main focus in this section. Namely, we look for a
suitable condition, so that the stability of (16) follows from the stability of each of
the systems (13) and (14) separately.

Let us set

H := G×H, V := V ×W, and M :=

[
−A −S
−R −D

]
. (17)

Note that, since G ⊆ H is a closed subspace we may write

H ′ = H, G′ = G, and H = H′,

and we have

M∈ L(V,V′), D(M) = D(A)×D(D), D(M)
d
↪−→ V

d
↪−→ H

d
↪−→ V′

d
↪−→ D(M)′.

Assumption 1. For every bounded time interval J ⊆ R0, we have the existence
and uniqueness of:

• a (G,V)-weak solution v for system (13), for any given v0 ∈ G,
• a (H,W)-weak solution w for system (14), for any given w0 ∈ H,
• a (H,V)-weak solution z = (v, w) for system (16) for any given z0 ∈ H.

Thus, since the existence and uniqueness of solutions is not the focus of this
paper, it is simply assumed by us. In the appendix, we briefly recall the standard
procedure on the construction of weak solutions as a weak limit of suitable Galerkin
approximations. In particular we will see that the above assumption is satisfied
for a general class of operators A, D, S, and R. Applications to the linearized
monodomain equations will be given in Sect. 4.
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Assumption 2. The operators S and R are essentially bounded:

S ∈ L∞(Rs0 ,L(H,G)) and R ∈ L∞(Rs0 ,L(G,H)).

Assumption 3. There are pairs (CA, µA) and (CD, µD), both in [1,+∞)×(0,+∞),
so that∣∣∣U−A(t,s0)v0

∣∣∣
G
≤ CAe−µA(t−s0) |v0|G and

∣∣∣U−D(t,s0)w0

∣∣∣
H
≤ CDe−µD(t−s0) |w0|H

(18)
for all t ≥ s0 ≥ 0.

Theorem 2.1. Under Assumptions 3 and 2, and if the inequality

ξ :=
CACD‖S‖‖R‖

µAµD
< 1 (19)

holds true, then for all ε sufficiently small there exists a constant Dc ≥ 1 such that
the weak solution of system (16) satisfies

|(v(t), w(t))|G×H ≤ Dce−ε(t−s0) |(v0, w0)|G×H (20)

independently of (v0, w0).

The proof is given below. Before we derive some auxiliary results, where As-
sumptions 2 and 3 are assumed to hold true.

Lemma 2.2. The weak solution of system (16) satisfies the estimate

|v|L1(Rs0 , G) ≤
CA
µA
|v0|G +

CACD‖S‖
µAµD

|w0|H +
CACD‖S‖‖R‖

µAµD
|v|L1(Rs0 , G) . (21)

where ‖S‖ := |S|L∞(Rs0 ,L(H,G)) and ‖R‖ := |R|L∞(Rs0 ,L(G,H)).

Proof. Using Duhamel formula, we integrate the equation in (16b) and obtain, for
t ≥ s0,

w(t) = U−D(t,s0)w0 −
∫ t

s0

U−D(t,s)(R(s)v(s)) ds,

and

|w(t)|H ≤ CDe−µD(t−s0) |w0|H + CD

∫ t

s0

e−µD(t−s) |R(s)v(s)|H ds, (22)

Therefore, for t ≥ s0, we obtain

|v(t)|G =

∣∣∣∣U−A(t,s0)v0 −
∫ t

s0

U−A(t,s)(S(s)w(s))ds

∣∣∣∣
G

≤ CAe−µA(t−s0) |v0|G + CA‖S‖
∫ t

s0

e−µA(t−s)|w(s)|H ds (23)

≤ CAe−µA(t−s0) |v0|G + CACD‖S‖
∫ t

s0

e−µA(t−s)e−µD(s−s0) |w0|H ds

+ CACD‖S‖‖R‖
∫ t

s0

e−µA(t−s)
∫ s

s0

e−µD(s−τ) |v(τ)|G dτ ds. (24)

Let us consider first the case µA 6= µD. In this case we obtain
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∫ t

s0

e−µA(t−s)e−µD(s−s0) |w0|H ds = |w0|H e−µAt+µDs0

∫ t

s0

e(µA−µD)s ds

=
|w0|H

µA − µD
e−µAt+µDs0

(
e(µA−µD)t − e(µA−µD)s0

)
=
|w0|H

µA − µD

(
e−µD(t−s0) − e−µA(t−s0)

)
(25)

and ∫ t

s0

e−µA(t−s)
∫ s

s0

e−µD(s−τ) |v(τ)|G dτ ds

=

∫ t

s0

e−µAt+µDτ |v(τ)|G
∫ t

τ

e(µA−µD)s dsdτ

=
1

µA − µD

∫ t

s0

e−µAt+µDτ
(

e(µA−µD)t − e(µA−µD)τ
)
|v(τ)|G dτ

=
1

µA − µD

∫ t

s0

(
e−µD(t−τ) − e−µA(t−τ)

)
|v(τ)|G dτ (26)

Now, from (24), (25), and (26), it follows

|v|L1(Rs0 , G) ≤
CA
µA
|v0|G +

CACD‖S‖
µA − µD

(
1

µD
− 1

µA

)
|w0|H

+
CACD‖S‖‖R‖
µA − µD

∫ +∞

s0

∫ t

s0

(
e−µD(t−τ) − e−µA(t−τ)

)
|v(τ)|G dτ dt.

=
CA
µA
|v0|G +

CACD‖S‖
µAµD

|w0|H

+
CACD‖S‖‖R‖
µA − µD

∫ +∞

s0

|v(τ)|G
∫ +∞

τ

(
e−µD(t−τ) − e−µA(t−τ)

)
dtdτ,

that is, in the case µA 6= µD we have

|v|L1(Rs0 , G) ≤
CA
µA
|v0|G + CACD‖S‖

µAµD
|w0|H + CACD‖S‖‖R‖

µAµD
|v|L1(Rs0 , G) . (27)

It remains to prove that the last inequality also holds in the case µA = µD. Thus,

let µA = µD and notice that we have
∣∣∣U−D(t,s0)w0

∣∣∣
H
≤ CDe−(µD−ρ)(t−s0) |w0|H for

any ρ ∈ (0, µD), t ≥ s0 ≥ 0. We know, from (27), that

|v|L1(Rs0 , G) = lim
ρ→0
|v|L1(Rs0 , G)

≤ lim
ρ→0

(
CA
µA
|v0|G + CACD‖S‖

µA(µD−ρ) |w0|H + CACD‖S‖‖R‖
µA(µD−ρ) |v|L1(Rs0 , G)

)
,

from which we conclude that (27) also holds in the case µA = µD.

Corollary 1. If inequality (19) holds true, then the weak solution of system (16)
satisfies

|(v, w)|L∞(Rs0 , G×H) ≤ Dc |(v0, w0)|G×H (28)

for a suitable constant Dc ≥ 1, independent of (v0, w0).



STABILIZATION FOR COUPLED PARABOLIC-ODE SYSTEMS 9

Proof. From (21) and (19) we obtain

(1− ξ) |v|L1(Rs0 , G) <
CA
µA
|v0|G +

CACD‖S‖
µAµD

|w0|H .

Then, from (22), we arrive at

|w|L∞(Rs0 , H) ≤ CD |w0|H + CD‖R‖ |v|L1(Rs0 , G)

≤ CD |w0|H + (1− ξ)−1CD‖R‖
(
CA
µA
|v0|G +

CACD‖S‖
µAµD

|w0|H

)
Finally, from (23), we derive

|v|L∞(Rs0 , G) ≤ CA |v0|G +
CA‖S‖ |w|L∞(Rs0 , H)

µA
,

which ends the proof.

Proof of Theorem 2.1. If (v, w) solves (16), then (v(t), w(t)) := eε(t−s0)(v(t), w(t))
solves

v̇ = −(A− ε)v − Sw, v(s0) = v0, (29a)

ẇ = −(D − ε)w −Rv, w(s0) = w0. (29b)

We also have that z solves ż = −Az, z(s0) = z0 if, and only if, z(t) := eε(t−s0)z(t)
satisfies

ż = −(A− ε)z, z(s0) = z0, and |z|G ≤ CAe−(µA−ε)(t−s0) |z0|G .

Similarly u solves u̇ = −Du, u(s0) = u0 if, and only if, u(t) := eε(t−s0)u(t) satisfies

u̇ = −(D − ε)u, u(s0) = u0, and |u|H ≤ CDe−(µD−ε)(t−s0) |u0|H .

Now if (19) holds true, then it also holds

ξε :=
CACD‖S‖‖R‖

(µA − ε)(µD − ε)
< 1

for a small enough ε ∈ (0, min{µA, µD}). From Corollary 1 it follows that

|(w, v)|L∞(Rs0 , G×H) ≤ Dc |(v0, w0)|G×H (30)

for a suitable constant Dc ≥ 1 independent of (v0, w0), from which we can con-
clude (20).

Let us now consider a perturbation of system (16) as follows, where (η[, η]) ∈
L2(R0, G×H),

v̇ = −Av − Sw + η[, v(s0) = v0, (31a)

ẇ = −Dw −Rv + η], w(s0) = w0. (31b)

Corollary 2. Under the assumptions of Theorem 2.1 the weak solution of sys-
tem (31) satisfies

|(v(t), w(t))|G×H ≤ Dce−ε(t−s0)

(
|(v0, w0)|G×H + (2ε)−

1
2

∣∣∣(η[, η])∣∣∣
L2(R0,G×H)

)
,

(32)

independently of (s0, v0, w0).
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Proof. With M as in (17), by Duhamel formula we find that

|(v(t), w(t))|G×H ≤
∣∣∣UM(t,s0)(v0, w0)

∣∣∣
G×H

+

∣∣∣∣∫ t

s0

UM(t,s)(η
[, η])(s) ds

∣∣∣∣
G×H

and, by Theorem 2.1,

|(v(t), w(t))|G×H

≤ Dce−ε(t−s0) |(v0, w0)|G×H +Dc

∫ t

s0

e−ε(t−s)
∣∣∣(η[, η])(s)∣∣∣

G×H
ds

≤ Dce−ε(t−s0) |(v0, w0)|G×H +Dc

(
e−2ε(t−s0)

2ε

) 1
2
(∫ t

s0

∣∣∣(η[, η])(s)∣∣∣2
G×H

ds

) 1
2

,

from which we obtain (32).

3. Stability of the coupled parabolic-ode closed-loop system. Here we show
that the explicit oblique projections based feedback control proposed in [11] for
stabilization of nonautonomous linear parabolic equations is also able to stabilize
a general class of nonautonomous linear coupled parabolic-ode systems, where the
control acts (only) in the parabolic component. We will prove that the coupled
system

ẏ(t) +Ay(t) +Ar(t)y(t) + S̃(t)w(t)−KUM (t)(y(t), w(t)) = 0, y(s0) = y0, (33a)

ẇ(t) +D(t)w(t) +R(t)y(t) = 0, w(s0) = w0,
(33b)

with the explicit feedback

(y, w)→ KUM (y, w) := P
E⊥
M

UM

(
Ay +Ary − λy + S̃w

)
, (33c)

is stable, under suitable assumptions on the linear span of the actuators UM =
span{1ω1 , 1ω2 , . . . , 1ωM } and on the operators in (33).

3.1. Assumptions. We look at system (33) as an evolutionary system in H ×H,
where H is our pivot separable Hilbert space, H ′ = H.

First we present our assumptions on the operators in (33). They will guarantee
that the assumptions in the abstract setting of Section 2 are fulfilled. Most of the as-
sumptions are standard, and concern the existence and uniqueness of weak solutions
for auxiliary systems. The only nonstandard assumption is the main stabilizability
condition given below in Assumption 10. It can be seen as a generalization of the
condition presented in [11] for the case of parabolic equations.

Let V be another Hilbert space with V ⊂ H.

Assumption 4. A ∈ L(V → V ′) is symmetric and (y, z) 7→ 〈Ay, z〉V ′, V is a
complete scalar product in V.

From now we will suppose that V is endowed with the scalar product (y, z)V :=
〈Ay, z〉V ′, V , which still makes V a Hilbert space. Necessarily, A : V → V ′ is an
isometry.

Assumption 5. The inclusion V ⊆ H is dense, continuous, and compact.
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Necessarily, we have that

〈y, z〉V ′, V = (y, z)H , for all (y, z) ∈ H × V,

and also that the operator A is densely defined in H, with domain D(A) satisfying

D(A)
d, c
↪−−→ V

d, c
↪−−→ H

d, c
↪−−→ V ′

d, c
↪−−→ D(A)′.

Further, A has a compact inverse A−1 : H → D(A), and we can find a nondecreasing
system of (repeated) eigenvalues (αn)n∈N0

and a corresponding complete basis of
eigenfunctions (en)n∈N0 :

0 < α1 ≤ α2 ≤ · · · ≤ αn ≤ αn+1 → +∞ and Aen = αnen.

We can define, for every β ∈ R, the fractional powers Aβ , of A, by

Aβ
+∞∑
n=1

ynen :=

+∞∑
n=1

αβnynen,

and the corresponding domains D(A|β|) := {y ∈ H | A|β|y ∈ H}, and D(A−|β|) :=

D(A|β|)′. We have that D(Aβ)
d, c
↪−−→ D(Aβ1), for all β > β1, and we can see

that D(A0) = H, D(A1) = D(A), D(A
1
2 ) = V .

For the time-dependent operators we assume the following:

Assumption 6. For almost every t > 0 we have Ar(t) ∈ L(H,V ′), and we have a
uniform bound, that is, Ar ∈ L∞(R0,L(H,V ′)).

Assumption 7. We have W d
↪−→ H

d
↪−→ W ′, and D ∈ L(W,W ′) as in (15). For

any s0 ≥ 0 and w0 ∈ H there is one, and only one, (H,W)-weak solution for

ẇ(t) +D(t)w(t) = 0, w(s0) = w0,

and there are constants CD ≥ 1 and µD > 0, independent of (s0, w0), such that the
solution w satisfies |w(t)|H ≤ CDe−µD(t−s) |w(s)|H , for all t ≥ s ≥ s0 ≥ 0.

Assumption 8. The coupling operators S̃ and R are both in L∞(R0,L(H)).

Assumption 9. There exists one, and only one, solution (v, w) ∈ Wloc(Rs0 , V ×
W, V ′ ×W ′) for the system

v̇ + PUM
E⊥
M

Av + PUM
E⊥
M

Arv + PUM
E⊥
M

S̃w = 0, v(s0) = v0 ∈ E⊥M , (34a)

ẇ +Dw +Rv = 0, w(s0) = w0 ∈ H, (34b)

Note that in case KUM (t) = 0, we have that (33) is in the form of system (16),
with G = H and V = V . Note that (33) is in the form of system (16), with
G = E⊥M = PE⊥

M
H and V = E⊥M

⋂
V .

Let us denote (cf. Lemma 2.2)

‖PUM
E⊥
M

S̃‖ :=
∣∣∣PUM
E⊥
M

S̃
∣∣∣
L∞(R0,L(H,E⊥

M ))
and ‖R‖ := |R|L∞(R0,L(E⊥

M ,H))
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Assumption 10. The linear span UM of the actuators satisfies

H = UM ⊕ E⊥M , (35a)

αM+1 > inf
γ∈R2

0,
(2−γ1−γ2)>0

γ
−1
1 Ξ1 + γ−1

2

(
2 + 2

∣∣∣PE⊥
M

UM

∣∣∣2
L(H)

)
Ξ2

(2− γ1 − γ2)
+
CD‖PUME⊥

M

S̃‖‖R‖

(2− γ1 − γ2)µD

 ,

(35b)

where

Ξ1 := sup
(t,Y )∈R0×(E⊥

M∩V )

|〈Ar(t)Y, Y 〉V ′,V |2R
|Y |2H |Y |

2
V

≤
∣∣∣PE⊥

M
ArPE⊥

M

∣∣∣2
L∞(R0,L(H,V ′))

, (36a)

Ξ2 :=
∣∣∣PEMArPE⊥

M

∣∣∣2
L∞(R0,L(H,V ′))

. (36b)

Remark 3. Note that (7b) is a particular case of (35b), with γ1 = γ2 = 1
2 .

Remark 4. Recall that from [11] (by taking y0 ∈ E⊥M in [11, Theorem 3.6]) we know

that when S̃ = 0, then the system v̇+PUM
E⊥
M

Av+PUM
E⊥
M

Arv = 0 is stable provided (35)

holds true, with R = 0. In particular we observe that Assumptions 1 and 2, and

estimates (18) hold true for system (16) with A = A + PUM
E⊥
M

Ar and S = PUM
E⊥
M

S̃,

that is, they hold true for system (34).

3.2. The stability result. The main result of this section, which will lead to main
Theorems 1.1 and 1.2, is the following.

Theorem 3.1. Under Assumptions 4–10, the coupled system (33) is stable: there
are constants Cc ≥ 1 and µc > 0 such that

|(y(t), w(t))|H×H ≤ Cce−µc(t−s0) |(y0, w0)|H×H , t ≥ s0.

with (Cc, µc) independent of (s0, y0, w0).

The proof is presented below, in section 3.2.2.

3.2.1. Auxiliary results. Here we derive some auxiliary results we will use in the
proof of Theorem 3.1. We suppose that the Assumptions 4–10 do hold true. Recall
also the interval I in (12).

Notice that G = E⊥M is a closed subspace of H (with G endowed with the norm
inherited from H). Let us set V = G∩ V , which we endow with the norm inherited
from V . Observe that V is a closed subspace of V , and A maps V onto V ′.

Lemma 3.2. There exists a unique (E⊥M , V ∩ E⊥M )-weak solution for the system

v̇ + PUM
E⊥
M

Av + PUM
E⊥
M

Arv = 0, v(s0) = v0 ∈ E⊥M . (37)

Moreover, we have

|v(t)|2H ≤ e−µ(t−s0) |v0|2H , for a suitable µ >
CD‖PUME⊥

M

S̃‖‖R‖

µD
. (38)
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Proof. The existence and uniqueness is proven in [11, Section 3.1]. Note that we

have PUM
E⊥
M

Av = APUM
E⊥
M

v = Av for any v ∈ E⊥M . Now, proceeding as in [11, Sec-

tion 3.1], by multiplying the equation by 2v, we obtain

d

dt
|v|2H = −2 |v|2V − 2〈PUM

E⊥
M

Arv, v〉V ′,V

= −2 |v|2V − 2〈PE⊥
M
Arv, v〉V ′,V − 2〈PUM

E⊥
M

PEMArv, v〉V ′,V

and for any given positive constants γ1 and γ2,

d

dt
|v|2H ≤ −(2− γ1 − γ2) |v|2V + γ−1

1 Ξ1 |v|2H + γ−1
2

∣∣∣PUM
E⊥
M

PEM

∣∣∣2
L(V ′)

Ξ2 |v|2H

with Ξ1 and Ξ2 as in (36). Now from |v|2V ≥ αM+1 |v|2H , because the solution v
takes its values in E⊥M , we obtain

d

dt
|v|2H ≤ −

(
(2− γ1 − γ2)αM+1 − γ−1

1 Ξ1 − γ−1
2

∣∣∣PUM
E⊥
M

PEM

∣∣∣2
L(V ′)

Ξ2

)
|v|2H , (39)

and from (35b), it follows that we can choose γ1 and γ2 such that

µ := (2− γ1 − γ2)αM+1 − γ−1
1 Ξ1 − γ−1

2

∣∣∣PUM
E⊥
M

PEM

∣∣∣2
L(V ′)

Ξ2 >
CD‖PUME⊥

M

S̃‖‖R‖

µD
,

which implies (38).

Corollary 3. Given q ∈ H1(R0, EM ) and (v0, w0) ∈ E⊥M ×H, there exists a unique
solution for system

v̇ + PUM
E⊥
M

A(v + q) + PUM
E⊥
M

Ar(v + q) + PUM
E⊥
M

S̃w + PUM
E⊥
M

q̇ = 0, v(s0) = v0, (40a)

ẇ +Dw +R(v + q) = 0, w(s0) = w0. (40b)

This solution satisfies

|(v(t), w(t))|H×H

≤ Dce−ε(t−s0)

(
|(v0, w0)|H×H + (2ε)−

1
2 ‖T ‖

∣∣∣(3 1
2 q, q̇)

∣∣∣
L2(R0,H×H)

)
, (41)

with ‖T ‖ = max{|T PEM |L∞(R0,L(H)) | T ∈ {P
UM
E⊥
M

A,PUM
E⊥
M

Ar, P
UM
E⊥
M

,R}}, and with

suitable constants Dc ≥ 1 and ε > 0 independent of (s0, v0, w0). Furthermore,
ε ∈ (0,min{µ, µD}), where µ is as in (38).

Proof. When q = 0, the existence and uniqueness of the solution, in the space
Wloc(Rs0 , (E⊥M

⋂
V )×W, (E⊥M

⋂
V ′)×W ′), is given by Assumption 9. Setting A =

PUM
E⊥
M

A+ PUM
E⊥
M

Ar, from Lemma 3.2 we have that the solution of

v̇ +Av = 0, v(s0) = v0 ∈ E⊥M
satisfies |v(t)|E⊥

M
≤ CAe−µA(t−s0) |v0|E⊥

M
with (CA, µA) = (1, µ), where µ is as

in (38). Then, we observe that

ξ =
CACD‖PUME⊥

M

S̃‖‖R‖

µAµD
< 1.
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Observe also that system (40) is in the form of system (31), by setting η] = Rq
and η[ = PUM

E⊥
M

Aq + PUM
E⊥
M

Arq + PUM
E⊥
M

q̇. Then, from Corollary 2, it follows

|(v(t), w(t))|E⊥
M×H

≤ Dce−ε(t−s0)

(
|(v0, w0)|E⊥

M×H
+ (2ε)−

1
2

∣∣∣(η[, η])∣∣∣
L2(R0,E⊥

M×H)

)
,

which implies (41).

3.2.2. Proof of Theorem 3.1. Let us set q0 := PEM y0, v0 := PE⊥
M
y0, and q(t) :=

e−λ(t−s0)q0. Then we also set the solution (v, w) for system (40), given by Corol-
lary 3, with the initial condition (v, w)(s0) = (v0, w0). We start by showing
that (y, w) := (q+ v, w) solves (33). Indeed, with y = q+ v, we can rewrite (40a) as

0 = ẏ − q̇ + PUM
E⊥
M

Ay + PUM
E⊥
M

Ary + PUM
E⊥
M

S̃w + PUM
E⊥
M

q̇

that is,

0 = ẏ +Ay +Ary + S̃w − PE
⊥
M

UM
Ay − PE

⊥
M

UM
Ary − P

E⊥
M

UM
S̃w − PE

⊥
M

UM
q̇

= ẏ +Ay +Ary + S̃w − PE
⊥
M

UM

(
Ay +Ary + S̃w − λy

)
,

because q̇ = −λq and P
E⊥
M

UM
q = P

E⊥
M

UM
PEM y = P

E⊥
M

UM
y. Therefore, we conclude

that (y, w) solves (33), with K as in (33c). Finally, we notice that (v(t), w(t)) is
orthogonal to (q(t), 0) in H×H, because v(t) ∈ E⊥M is orthogonal to q(t) ∈ EM in H.
Therefore |(y(t), w(t))|H×H = |(v(t), w(t))|H×H + |(q(t), 0)|H×H and, using (41) in
Corollary 3, we arrive at

|(y(t), w(t))|H×H

≤ Dce−ε(t−s0)

(
|(v0, w0)|H×H + (2ε)−

1
2 ‖T ‖

∣∣∣(3 1
2 q, λq)

∣∣∣
L2(R0,H2)

)
+ e−λ(t−s0) |q0|H

≤ Dce−ε(t−s0) |(v0, w0)|H×H +
(
Dce−ε(t−s0)( 3+λ2

4λε )
1
2 ‖T ‖+ e−λ(t−s0)

)
|q0|H

≤ Dce−µc(t−s0) |(y0, w0)|H×H

with µc = min{ε, λ} and Dc = max{Dc, 1 + Dc( 3+λ2

4λε )
1
2 ‖T ‖}. The proof of Theo-

rem 3.1 is finished.

4. Applications. Stabilization of the monodomain equations. Assume that
the desired trajectory (v, w) is given as the solution of the uncontrolled system (1).
As mentioned in the Introduction, the difference (y, z) := (v, w)−(v, w) satisfies sys-
tem (10), with the operators defined as in (6). In this section we prove Theorems 1.1
and 1.2 which concern the stabilization of systems (9) and (10), respectively.

4.1. Proof of main Theorem 1.1. Theorem 1.1 will follow from Theorem 3.1.
For this purpose we discuss Assumptions 4–10, for the choice

H = L2(Ω), V = H1(Ω), and D(A) =
{
h ∈ H2(Ω) | ( ∂

∂nh)|Γ = 0
}
.

Assumptions 4 and 5 are satisfied and due to (8) Assumptions 6 and 8 hold true.
It is easy to see that Assumption 7 holds with W = H and (CD, µD) = (1, δ).

Proposition 1. If (8) and Assumption 10 are satisfied, then Assumption 9 holds.
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The proof follows from standard arguments. A few details are given in the
Appendix. Thus, under condition (8) and Assumption 10, all the assumptions in
Section 3.1 are satisfied. By Theorem 3.1 this implies the following Corollary, which
in turn implies Theorem 1.1. From Remark 3 we recall that condition (7), which is
assumed in Theorem 1.1, implies that Assumption 10 is satisfied.

Corollary 4. Let λ > 0 and s0 ≥ 0. If (8) and Assumption 10 hold true, then
there are constants C ≥ 1 and µ > 0, such that the solution of the linear system (9)
satisfies

|(y(t), z(t))|H×H ≤ Ce−µ(t−s0) |(y0, z0)|H×H , t ≥ s0.

for all (y0, z0) ∈ H × H. Here the constants C and µ are independent of the
triple (s0, y0, z0).

4.2. Proof of main Theorem 1.2. To deal with the nonlinear systems, we will
need strong solutions. We can prove that such solutions exist due to the fact that
the reaction operator Ar defined as in (6) satisfies

Ar ∈ L∞(R0,L(V,H)), (42)

if (8) holds.

Proposition 2. Let (8) and Assumption 10 be satisfied, let µ be as in Corollary 4,
and (y0, z0) ∈ V × H, with s0 ≥ 0. Then the solution for (9) is strong, that is,
(y, z) ∈Wloc(Rs0 ,D(A)×H,H ×H). Moreover, we have

sup
s≥s0

∣∣∣eµ(·−s0)(y, z)
∣∣∣
W ((s,s+1),D(A)×H,H×H)

≤ C |(y0, z0)|V×H .

The proof, which relies in part on known arguments, is sketched in the Appendix.
The next lemma gathers estimates on our nonlinearity N = N (y) = N (t, y). Let

us write, for simplicity,

H = H ×H, V = V ×H, and D(A) = D(A)×H.

Lemma 4.1. There exists a constant Ĉ1 ≥ 0 such that for all pairs p = (y, z)
and p̃ = (ỹ, z̃) in D(A)×H,

|N (p)−N (p̃)|2H ≤ Ĉ1|p− p̃|2V (1 + |p|ε1V + |p̃|ε2V )
(
|p|2D(A) + |p̃|2D(A)

)
+ Ĉ1|p− p̃|2D(A) (|p|ε3V + |p̃|ε4V ) . (43a)

Further for any given ς > 0 there exists Ĉ2 ≥ 0 such that

(N (p)−N (p̃),p− p̃)H ≤ ς |p− p̃|2V + Ĉ2(1 + |p|ε5V
+ |p̃|ε6V )(1 + |p|2D(A) + |p̃|2D(A)) |p− p̃|2H , (43b)

with
{ε1, ε2} ∈ [0,+∞) and {ε3, ε4, ε5, ε6} ∈ [2,+∞). (43c)

Proof. Recall that from (6), we have N (y, z) = (−ay3 + (b − 3av)y2 − eyz,−ρy2),
which we write as

N =

4∑
j=1

Gj , with

{
G1(y, z) := (−ay3, 0), G2(y, z) := ((b− 3av)y2, 0),
G3(y, z) := (0,−ρy2), G4(y, z) := (eyz, 0).

We will argue that (43) holds with N replaced by Gj for j = 1, . . . , 4. This implies

that (43) holds for N =
∑4
j=1 Gj . From [16, Section 5, Examples 1 and 2], we can
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conclude that (43) is satisfied with N replaced by G1 and G2 involving only the pde
component y of the solution and the pde coordinate of the nonlinearity. Recall that
the component y of the solution lives in D(A), for (almost) every time t ≥ 0. This
regularity is not necessarily satisfied by the ode component z, so we must check the
details with the monomial term yz in G4. On the other hand G3 involves the ode
component of the nonlinearity, so also in this case we will check the details.

Concerning G4 we proceed as follows: estimate (43) is trivially satisfied for e = 0,
thus we consider only the case e 6= 0, then with (ζy, ζz) := p− p̃ = (y − ỹ, z − z̃) ∈
D(A)×H, we find

1
e2 |G4(p)− G4(p̃)|2H = |yz − ỹz̃|2H ≤ 2

(
|ζyz|2H + |ỹζz|2H

)
≤ 2

(
|ζy|2L∞ |z|2H + |ζz|2H |ỹ|2L∞

)
1
e (G4(p)− G4(p̃),p− p̃)H = (yz − ỹz̃, y − ỹ)H = (ζyz + ỹζz, ζy)H

≤ |ζy|2L4 |z|L2 + |ζy|L2 |ζz|L2 |ỹ|L∞ .

Next we consider the case d = 3, that is, Ω ⊂ R3. An analogous argument can be
followed for d ∈ {1, 2}.

From suitable Sobolev embeddings, the Agmon inequality, and suitable interpo-
lation inequalities, we obtain

1
e2 |G4(p)− G4(p̃)|2H ≤ C1

(
|ζy|2D(A)|z|

2
H + |ζz|2H |ỹ|2D(A)

)
≤ C1

(
|p− p̃|2D(A)|p|

2
H + |p− p̃|2H|p̃|2D(A)

)
≤ C2

(
|p− p̃|2D(A)|p|

2
V + |p− p̃|2V|p̃|2D(A)

)
,

1
e (G4(p)− G4(p̃),p− p̃)H ≤ C1|ζy|

1
2

H |ζy|
3
2

V |z|H + C1|p− p̃|2H|ỹ|D(A)

≤ C3|ζy|2H |z|4H + ς|ζy|2V + 1
2C1|p− p̃|2H

(
1 + |ỹ|2D(A)

)
for any given ς > 0, and for suitable constants C1 > 0, C2 > 0 and C3 = C3(ς) > 0.
Therefore we can conclude that the inequalities in (43) also hold true for G4.

Finally, concerning G3 we proceed as follows: First

|G3(p)− G3(p̃)|2H ≤ |y − ỹ|2H |y + ỹ|2L∞ ≤ C1(|p− p̃|2H(|p|2D(A) + |p̃|2D(A)),

for C1 > 0 independent of p and p̃ in D(A)×H, second we find that

1
ρ (G3(p)− G3(p̃),p− p̃)H =

(
y2 − ỹ2, z − z̃

)
H

= (ζy(y + ỹ), ζz)H

≤ |y + ỹ|L∞ |ζy|L2 |ζz|L2 ≤ C1|y + ỹ|D(A)|p− p̃|2H
≤ C1(1 + |y|2D(A) + |ỹ|2D(A))|p− p̃|2H.

Thus (43) holds true also for N replaced by G3.

Lemma 4.2. If (8) holds, then the feedback operator in (33c) is bounded: KUM ∈
L∞(R0,L(H ×H,H)).

Proof. Indeed, proceeding as in [11, Proof of Theorem 3.7] we find

|KUM |L∞(R0,L(H×H,H))

≤
∣∣∣PE⊥

M

UM
PEM

∣∣∣
L(V ′,H)

(
α

1
2

M + |Ar|L∞(R0,L(H,V ′)) +
∣∣∣S̃∣∣∣

L∞(R0,L(H,V ′))
+ λα

− 1
2

1

)
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and from (8) and (6) it follows that Ar ∈ L∞(R0,L(H,V ′)) and S̃ ∈ L∞(R0,L(H)).
Therefore we have the following Corollary, which in turn implies Theorem 1.2,
because (35), assumed in Theorem 1.2, imply Assumption 10. See Remark 3.

Remark 5. We are now prepared to provide the proof for Theorem 1.2, which relies
on fixed point arguments. With two modifications, we can rely on the arguments
utilized in [4, Section 3.2] (see also [16, Section 3]). First, the feedback operator in
these references is obtained as the solution of a suitable differential Riccati equation,
in place of KUM as in (33c). However, thanks to the estimates in Corollary 4 and
Proposition 2 we can replace the Riccati-based feedback operator in [4, Section 3.2]
by KUM . Second the conditions on the nonlinearity N in [16, Section 3] are slightly
stronger than those available here.

In fact, in [16, Section 3], instead of property (43b), the following stronger as-
sumption is assumed:

(Gj(p)− Gj(p̃),p− p̃)H (44)

≤ C̃2(1 + |p|ε5V + |p̃|ε6V )
1
2 (1 + |p|2D(A) + |p̃|2D(A))

1
2 |p− p̃|V |p− p̃|H

+ C̃2(1 + |p|ε5V + |p̃|ε6V )(1 + |p|2D(A) + |p̃|2D(A)) |p− p̃|2H .

It is clear that that the last estimate implies (43b), because 2 |p− p̃|V |p− p̃|H ≤
β−1 |p− p̃|H + β |p− p̃|2V, for arbitrary β > 0.

Since Assumption 10 is implied by (7), Theorem 1.2 follows from the following.

Theorem 4.3. Let (8) and Assumption 10 hold true. Then there are constants C ≥
1 and ε > 0, independent of (s0, y0, z0), such that the solution of the system (10)
satisfies

|(y(t), z(t))|V ≤ Ce−µ(t−s0) |(y0, z0)|V , t ≥ s0, (45)

provided that |(y0, z0)|V < ε, where µ > 0 is as in Corollary 4.

Proof. We follow the main argument sketched in [16, Section 3] and [2, Section 4].
Let us consider the system

ẏ = −Ay −Ary − S̃z +KUM (y, z) + g1, y(s0) = y0 ∈ V, (46a)

ż = −δz −Ry + g2, z(s0) = z0 ∈ H. (46b)

with g ∈ L2((s0, s0 + T ),H). Multiplying the dynamics by Lz, with L =

[
A 0
0 δ

]
and D(L) = D(A), gives us

|(y, z)|2L∞((s0,s0+T ),V) + |(y, z)|2L2((s0,s0+T ),D(A))

≤ D3(T )
(
|(y, z)(s0)|2V + |g|2L2((s0,s0+T ),H)

)
, (47)

with the constant D3(T ) depending on |Ar|L∞(R0,L(V,H)), |KUM |L∞(R0,L(H×H,H)),

and T , and independent of s0 and (y, z)(s0). Here we use Lemma 4.2.
For simplicity we next denote

H = H ×H, V = V ×H, and D(A) = D(A)×H,

and we write (46) as

v̇ + Lv + Cv − Fv = g, v(s0) = v0 ∈ V (48)
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with v0 =

[
y0

z0

]
, g =

[
g1

g2

]
, C =

[
Arc S̃
0 R

]
, and F =

[
F(1,1) F(1,2)

0 0

]
. In particular,

notice that |F|L∞(R0,L(H)) = |KUM |L∞(R0,L(H,H)). Here F(1,1)y := KUM (y, 0) and

F(1,2)z := KUM (0, z).
We will look for a solution of the nonlinear system in a subset Zµ% ⊂ Zµ of the

Banach space

Zµ :=
{

v ∈ L2
loc (Rs0 ,H)

∣∣∣ |v|Zµ <∞}
endowed with the norm |v|Zµ := sup

r≥s0

∣∣eµ(·−s0)v
∣∣
W ((r,r+1),D(∆),H)

. We also set

Zµloc :=

{
v ∈ L2

loc (Rs0 ,H))
∣∣∣ ∣∣∣eµ(·−s0)v

∣∣∣
W ((r,r+1),D(∆),H)

<∞, for all r ≥ s0

}
.

For a given constant % > 0 we define the subset Zµ% as follows.

Zµ% :=
{
v ∈ Zµ | |v|2Zµ ≤ %|v0|2V

}
.

Further we define the mapping Ψ: Zµ% → Z
µ
loc, v̄ 7→ v, taking a given vector v̄

to the solution v of

v̇ + Lv + Cv − Fv = N (v̄) , v(s0) = v0. (49)

s© Step [i]: a preliminary estimate. Proceeding as in [2, Section 4.2] we can conclude
that the solution of the system (48) satisfies, for a suitable constant C,

sup
r≥0
|eµ(·−s0)z(·)|2W ((r,r+1),D(∆),H) ≤ C

(
|z0|2V + sup

k∈N

∫ k+1

k

e4µ(s−s0)|g(s)|2H ds

)
.

(50)

s© Step [ii]: Existence. The fixed point argument. Proceed as in [16, Section 3], by
using (50), with N (v̄) in the place of f , and using (43a), we can conclude that

• Ψ maps Zµ% into itself, if |z0|V ≤ ε1, where ε is small enough, and
• Ψ is a contraction, if |z0|V ≤ ε, where ε ≤ ε1 is small enough.

Therefore, we can conclude that if z0 ∈ V is sufficiently small, |z0|2V < ε, then there
exists a unique fixed point z = Ψ(z̄) = z̄ ∈ Zε% for Ψ. That is,

v̇ + Lv + Cv − Fv = N (v) , v(0) = v0. (51)

Necessarily

[
y
z

]
:= v solves (10). Further, notice that (45) follows from z ∈ Zµρ .

s© Step [iii]: Uniqueness. We show now that a solution for (10) in the space
Z := L2

loc(R0,D(∆))
⋂
C([0,+∞),V) ⊃ Zµ% is unique. Indeed, let z1 and z2 be two

solutions in Z, for (51). Then e := z1 − z2 solves (49) with g = N (z1) −N (z2) in
the place of N (z̄). Using (43b), and following standard arguments, we can obtain

d

dt
|e|2H ≤ C4(1 + |z1|ε5V + |z2|ε6V )(1 + |z1|2D(∆) + |z2|2D(∆)) |e|

2
H ,

which implies |e(t)|2H ≤ e
∫ t
s0
G(s) ds |e(s0)|2H , for all t ≥ s0, with

G(s) := C4 (1 + |z1(s)|ε5V + |z2(s)|ε6V )
(

1 + |z1(s)|2D(∆) + |z2(s)|2D(∆)

)
.

Using e(s0) = 0 we find z2(t)−z1(t) = e(t) = 0, for t ≥ s0. This ends the proof.
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5. Numerical simulations. Here we present simulation results for (9) and (10).
As actuators we will take suitable (piecewise constant) indicator functions {1ωi |
i ∈ {1, 2, . . . ,M}} ⊂ H. In this section H := L2(Ω). In Figure 1 we can see the
placement of (rectangular) actuators’ regions. Recall also that the possibly repeated
eigenvalues αi of the Laplacian, under Neumann boundary conditions increase likely
linearly, as we would expect from Weyl asymptotic formula [21]. See also [10, 8].

-6 -4 -2 0 2

-2

0

2
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6

(a) The (triangulation of the)

domain Ω.

0 5 10 15 20 25 30

0

1

2

3

4

5

6

7

(b) First 29 Neumann eigenva-

lues of −∆.

Figure 1. The domain Ω, and the (computed) first Neumann
Laplacian eigenvalues.

The following simulations were carried out using a finite elements based spatial
approximation of our equations, with a Crank–Nicolson time discretization.

We will set the parameters in the FitzHugh–Nagumo, Rogers–McCulloch, and
Aliev–Panfilov models so that we will have 3 constant steady states (v̂i, ŵi), i ∈
{1, 2, 3} and so that the first (pde) components are v̂1 = 0, v̂2 = 1, and v̂3 = 2. As
we will see:

— for M as in (2)-([FN] or [RM]):

(v̂1, ŵ1) = (0, 0), (v̂2, ŵ2) = (1, 10), (v̂3, ŵ3) = (2, 20). (52a)

— for M as in (2)-[AP]:

(v̂1, ŵ1) = (0, 0), (v̂2, ŵ2) = (1, 5), (v̂3, ŵ3) = (2, 0). (52b)

We will argue that for all 3 models:

• the linearizations around the steady state (v̂1, ŵ1) and around the steady
state (v̂3, ŵ3) are stable,

• the linearization around the steady states (v̂2, ŵ2) is unstable.

We will consider the systems (9) and (10) with two choices as reference trajectories.
The first one is the unstable steady state

(v(t), w(t)) = (v̂2, ŵ2), (53a)

the second one is spatially and temporally dependent and is defined as follows: we
consider the time-dependent vector function T = (T1, T2) : R0 → R2,

T1(t) =

{
v̂2 + (t− 2b t2c)(v̂3 − v̂2) if 0 ≤ t− 2b t2c ≤ 1,

v̂3 + (t− 2b t2c − 1)(v̂2 − v̂3) if 1 < t− 2b t2c ≤ 2,

T2(t) =

{
ŵ2 + (t− 2b t2c)(ŵ3 − ŵ2) if 0 ≤ t− 2b t2c ≤ 1,

ŵ3 + (t− 2b t2c − 1)(ŵ2 − ŵ3) if 1 < t− 2b t2c ≤ 2,
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where bsc ∈ N stands for the smallest integer which is smaller than s ≤ bsc < s+ 1.
Then we define our reference trajectory (v(t, x), w(t, x)) as

(v(t, x1, x2), w(t, x1, x2)) = (T1(t) + T1(t, x1, x2), T2(t) + T2(t, x1, x2)), (53b)

with

T1(t, x1, x2) := 0.001
∣∣∣sin(πt)

(
cos(πt+ 0.1(x1 − x2)) + (x2 − 1) sin(0.2x1)

)∣∣∣
R
,

T2(t, x1, x2) := 0.1
∣∣∣sin(πt)

(
sin(πt+ 0.1(x1 − x2)) + 0.1(x2

2 − 3x2)
)∣∣∣

R
.

Notice that (v, w) is periodic in time with period 2, (v(t + 2, x), w(t + 2, x)) =
(v(t, x), w(t, x)) for all t ≥ 0. Furthermore, for any given nonnegative integer m ∈ N,
(v(2m,x), w(2m,x)) = (v̂2, ŵ2) and (v(2m + 1, x), w(2m + 1, x)) = (v̂3, ŵ3). That
is, the trajectory (v, w) “oscillates” between the unstable steady state (v̂2, ŵ2) and
the stable steady state (v̂3, ŵ3).

The initial condition in all the simulations, unless otherwise explicitly stated, is
the constant

(v0, w0) = (−1,−1). (54)

In the feedback (33c), we have set the parameter

λ = 1. (55)

5.1. The linearized FitzHugh–Nagumo model. Here we consider the linear
system (9), with the parameters in (6) set as

ν = 1, δ = 0.01,
a = 1, b = 3, c = 1,
d = 0.1, e = 0, γ = 0.1, ρ = 0.

(56)

We can see that the vectors as in (52a) are constant steady states of the uncon-
trolled and unforced nonlinear coupled system (1) (i.e., with u = 0 and f = 0).
Indeed we can see that for a constant vector (v̂, ŵ) we have ∆v̂ = 0 and that

ξ(v̂, ŵ) =

[
ξ1(v̂, ŵ)
ξ2(v̂, ŵ)

]
:=

[
av̂3 − bv̂2 + cv̂ + dŵ + eŵv̂

δŵ − γv̂ + ρv̂2

]
satisfies, for v̂ ∈ {0, 1, 2},

ξ(0, ŵ) =

[
dŵ
δŵ

]
, ξ(1, ŵ) =

[
a− b+ c+ dŵ + eŵ

δŵ − γ + ρ

]
, (57a)

ξ(2, ŵ) =

[
8a− 4b+ 2c+ dŵ + 2eŵ

δŵ − 2γ + 4ρ

]
. (57b)

Therefore with the parameters as in (56) we find that

ξ(0, 0) = ξ(1, 10) = ξ(2, 20) =

[
0
0

]
,

which shows that the vectors as in (52a) are constant steady states for system (1).
Observe also that the linearization (4) is stable around (0, 0) and (2, 20), and is

unstable around (1, 10). Indeed, the linearization around a constant vector (v̂, ŵ)
reads

∂
∂t

[
y
z

]
=

[
∆ 0
0 0

] [
y
z

]
+

[
−3av̂2 + 2bv̂ − c− eŵ −d− ev̂

γ − 2ρv̂ −δ

] [
y
z

]
, (58)

and we find that with the parameters as in (56):
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• For (v̂, ŵ) = (0, 0), the eigenvalues of the matrix

[
−c −d
γ −δ

]
are characterized

by (−1− λ)(−δ− λ) + dγ = 0, that is, λ2 + (1 + δ)λ+ δ+ dγ = 0. Therefore,

2λ = −(1 + δ)±
√

(1 + δ)2 − 4(δ + dγ). It is clear that both eigenvalues have
strictly negative real part, because (1 + δ)2 − 4(δ + dγ) < (1 + δ)2.

• For (v̂, ŵ) = (2, 20), the eigenvalues of the matrix

[
−12a+ 4b− c −d

γ −δ

]
are

again characterized by (−1 − λ)(−δ − λ) + dγ = 0, that is, they both have
strictly negative real part.

• For (v̂, ŵ) = (1, 10), the eigenvalues of the matrix

[
−3a+ 2b− c −d

γ −δ

]
are characterized by (2 − λ)(−δ − λ) + dγ = 0, that is, λ2 + (δ − 2)λ −
2δ + dγ = 0. Thus 2λ = (2 − δ) ±

√
(2− δ)2 − 4(−2δ + dγ) = (2 − δ) ±√

(2 + δ)2 + 4(δ + dγ). It is clear that the largest eigenvalue have strictly
positive real part, because (2 + δ)2 + 4(δ + dγ) > 0 and (2− δ) > 0.

5.1.1. The case of the constant unstable steady state. Here we consider the time-
independent trajectory (v, w) = (1, 10), as in (53a), which is the constant unstable
steady state for the FitzHugh–Nagumo model.

In the figures below the annotation “dyn=feed” refers to the dynamics under
the feedback control and “dyn=free” to the free dynamics (without control). The
annotation “model=...” specifies the type of the monodomain model defined by the
selection of parameters (cf. (2)).

In Figure 2 we see the performance of our feedback control, which is able to
stabilize system (9). The slope of log(|(y, z)|2H×H) is approximately 3.3−3.8

30−5 = −0.02

for time t ≥ 5, which means that |(y, z)|H×H decreases exponentially with rate
approximately −δ = −0.01.

Recall that the explicit feedback has been constructed to stabilize the pde com-
ponent, and as a corollary the stability of the ode component follows as well.
Consequently we cannot expect to obtain a rate of decay for the ode component
which is better (smaller) than −δ.

In Figure 2 we can see also the curve illustrating the squared norm |y|2H of the pde
component versus the squared norm |z|2H of the ode component. The configuration
at initial time (t = 0) is the starting point of the curve located at (|y0|2H , |z0|2H) ≈
(42, 42) (the red dot). The configuration at final time (t = 30 in case of Figure 2)
is the end point of the curve (the green dot).

Further notice that the free dynamics is exponentially unstable, the norm is
increasing exponentially with rate approximately 1

2
120
30 = 2.

5.1.2. The case of a time-dependent trajectory. We consider the time-dependent
trajectory (v, w) as in (53b). In Figure 3 we observe that after time t ≥ 5 the
norm of the solution of the linear system (9) decreases exponentially with rate
approximately −δ = −0.01. The free dynamics is exponentially unstable with norm
increasing exponentially with rate approximately 1.

5.2. The nonlinear FitzHugh–Nagumo model. We consider again the time-
dependent reference trajectory as in (53b), but now for the nonlinear system (10).
In Figure 4 we see that the norm of the controlled nonlinear system also decreases
exponentially to zero with rate −0.01. The free dynamics is not stable, the norm
of the solution does not decrease as time increases.
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Figure 2. Norm of solution. Linearization around the steady state.
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Figure 3. Norm of solution. Linearization around the time-
dependent trajectory.
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Figure 4. Norm of solution. Around the time-dependent trajectory.

5.3. The linearized Rogers–McCulloch model. Here, in system (9), we take
the parameters

ν = 1, δ = 0.01,
a = 1, b = 4, c = 2,
d = 0, e = 0.1, γ = 0.1, ρ = 0.

(59)

Note that from (57), with the parameters as in (59), we find

ξ(0, 0) = ξ(1, 10) = ξ(2, 20) =

[
0
0

]
,
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which shows that the vectors as in (52a) are constant steady states for system (1).
For the linearization around a constant steady state (58), we find that with the
parameters as in (59):

• For (v̂, ŵ) = (0, 0), the eigenvalues of the matrix

[
−c −d
γ −δ

]
with d = 0 are

given by {−c,−δ}. Thus both eigenvalues are strictly negative.

• For (v̂, ŵ) = (2, 20), the eigenvalues of

[
−12a+ 4b− c− 2 −d− 2e

γ −δ

]
are

characterized by (0 − λ)(−δ − λ) + 2eγ = 0, that is, λ2 + δλ + 2eγ = 0.

Therefore, 2λ = −δ ±
√
δ2 − 8eγ, and we can conclude that both eigenvalues

have a strictly negative real part because δ2 − 8eγ < δ2.

• For (v̂, ŵ) = (1, 10), the eigenvalues of

[
−3a+ 2b− c− 1 −d− e

γ −δ

]
are

characterized by (2−λ)(−δ−λ) + eγ = 0, that is, λ2 + (δ−2)λ−2δ+ eγ = 0.

Thus, 2λ = (2− δ)±
√

(2− δ)2 + 4δ, because from (59) we have eγ = δ. It is
clear that the largest eigenvalue has a strictly positive real part.

5.3.1. The case of the constant unstable steady state. Here the reference trajec-
tory (v, w) = (1, 10) is as in (53a). In Figure 5 we can see that the explicit feedback is
able to stabilize the system (9) exponentially with rate approximately −δ = −0.01,
while the free dynamics is exponentially unstable with rate approximately 2.
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Figure 5. Norm of solution. Linearization around the steady state.

5.3.2. The case of a time-dependent trajectory. We consider the time-dependent
trajectory (v, w) as in (53b). In Figure 6 we can see that the explicit feedback is
able to stabilize the system (9) exponentially with rate approximately −δ = −0.01,
while the free dynamics is exponentially unstable with rate approximately 1.5.

5.4. The nonlinear Rogers–McCulloch model. Here, we consider the time-
dependent trajectory (v, w) as in (53b), and consider the corresponding nonlinear
system (10) with the parameters as in (59). In Figure 7 we see that our explicit
feedback is able to exponentially stabilize system (10). The norm of the controlled
system decreases exponentially with rate approximately −δ = −0.01. Notice also
that the free dynamics is unstable.
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Figure 6. Norm of solution. Linearization around the time-
dependent trajectory.
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Figure 7. Norm of solution. Around the time-dependent trajectory.

5.5. The linearized Aliev–Panfilov model. Here we consider the linear sys-
tem (9), with the parameters

ν = 1, δ = 0.01,
a = 1, b = 2.5, c = 1,
d = 0, e = 0.1, γ = 0.1, ρ = 0.05.

(60)

Note that from (57), with the parameters as in (60), we find

ξ(0, 0) = ξ(1, 5) = ξ(2, 0) =

[
0
0

]
,

which shows that the vectors as in (52b) are constant steady states for system (1).
For the linearization around a constant steady state (58), we find that with the
parameters as in (59):

• For (v̂, ŵ) = (0, 0), the eigenvalues of the matrix

[
−c −d
γ −δ

]
are {−c,−δ}.

They are both strictly negative.

• For (v̂, ŵ) = (2, 0), the eigenvalues of

[
−12a+ 4b− c −d− 2e

γ − 0.2 −δ

]
are char-

acterized by (−3−λ)(−δ−λ) + 2e(γ−0.2) = 0, that is, λ2 + (3 + δ)λ+ δ = 0.

Therefore, 2λ = −(3+δ)±
√

(3 + δ)2 − 4δ, and we have that both eigenvalues
have a strictly negative real part.
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• For (v̂, ŵ) = (1, 5), the eigenvalues of

[
−3a+ 2b− c− 1

2 −d− d2

0 −δ

]
are

given by λ ∈ {−δ, 1
2}, that is, the largest eigenvalue is strictly positive.

5.5.1. The case of the constant unstable steady state. Here we consider the time-
independent trajectory (v(t), w(t)) = (1, 5), is an in (53a). In Figure 8 we see
that our explicit feedback is able to stabilize system (9). The norm of the solution
decreases exponentially with rate approximately −δ = −0.01. The norm of the free
dynamics is exponentially increasing with rate approximately 0.5.
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Figure 8. Norm of solution. Linearization around the steady state.

5.5.2. The case of a time-dependent trajectory. We consider again the linear sys-
tem (9), with the time-dependent trajectory (v, w) as in (53b). In Figure 9 we
confirm that also in this case the feedback is able to stabilize system (9). The norm
decreases exponentially with rate approximately −δ = −0.01. The free dynamics is
not stable. The norm of the solution is not converging to zero, and is “close” to a
periodic behavior.
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Figure 9. Norm of solution. Linearization around the time-
dependent trajectory.

5.6. The nonlinear Aliev–Panfilov model. We take the time-dependent tra-
jectory (v, w) as in (53b), and the corresponding nonlinear system (10), again with
the parameters as in (60). For Figure 10 we ran the simulation for time t ∈ [0, 30]
as in previous examples. In this situation the results do not allow us to conclude
that the feedback is stabilizing. The norm seems to decrease but, we cannot yet
clearly see a rate of stability.
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Therefore we ran the simulation for a larger time interval and the results are
shown in Figure 11. Again we observe that an exponentially decreasing rate is
achieved. In fact, it is approximately −δ = −0.01 (the slope for time t ≥ 100 is
approximately −0.02).

We also observe that the norm corresponding to the free dynamics is not con-
verging to zero, that is the free dynamics is not stable.
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Figure 10. Norm of solution. Around the time-dependent trajectory.
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Figure 11. Norm of solution. Around the time-dependent trajectory.

5.7. On the sign of the leading coefficient a. In the above examples the lin-
earization based feedback control is able to stabilize the nonlinear system for the
initial condition (−1,−1), as in (54).

Notice that in the models above, the sign of the leading coefficient a = 1 of
av3 − b2v2 + cv is positive, and in this case we may say that is has the good
sign, in the sense that such sign somehow favors stability of the nonlinear system,
for example it may guarantee the existence of global solutions (cf. [7, Chapter 5,
Remark 5.1], for the uncoupled parabolic equation). The positive sign of a may
explain why the feedback still works for the nonlinear system for such a “large”
initial condition.

Recall that simulations in [16], for a single uncoupled parabolic equation, show
that the feedback is able to stabilize the nonlinear system only if the initial condition
is small enough. This is also the statement of Theorem 4.3, concerning the coupled
system.

Below we will consider the “a−” model where we take a negative leading coeffi-
cient a. Notice that our results are independent of the sign of a. We will consider



STABILIZATION FOR COUPLED PARABOLIC-ODE SYSTEMS 27

the following parameters

ν = 1, δ = 0.01,
a = −1, b = 0, c = −1,
d = 0, d2 = 0.1, γ = 0.1, ρ = 0.05.

[a−] (61)

which roughly can be seen a variant of the Aliev–Panfilov model with the negative
sign for a and c and with b = 0. In such situation we may expect the uncontrolled
solution of the uncoupled corresponding parabolic system to blow up in finite time.
See [7, Chapter 5], [12], and references therein. Therefore we may expect the solution
of the corresponding coupled system to explode as well.

5.7.1. The linearized “a−” model. We consider the time-dependent trajectory (v, w)
as in (53b), with (1, 1) in the place of the steady states: that is with (v̂2, ŵ2) :=
(1, 1) =: (v̂3, ŵ3).

In Figure 12 we see that the norm of the controlled solution of system (9) de-
creases exponentially with rate approximately −δ = −0.01. The norm of the free
dynamics increases exponentially with rate approximately 4.
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Figure 12. Norm of solution. Linearization around the time-
dependent trajectory.

5.7.2. The nonlinear “a−” model. Here we consider the nonlinear system (10). We
will test with the resized initial conditions

(v0, w0)ε = ε(v0, w0), with ε ∈ {1, 0.1, 0.05}. (62)

First in Figure 13 we consider the free dynamics for the nonlinear system (10).
We observe that the norm of the solution blows up in finite time, for all initial
conditions as in (62).

Next we consider the corresponding systems under the action of the feedback
control. In this case, in Figure 14, we can see that our feedback is not able to
stabilize the system for the initial conditions (−1,−1) and (−0.1,−0.1). But, it is
able to stabilize the system if we take the smaller initial condition (−0.05,−0.05)
which is consistent with our local stabilization result for the nonlinear system, as
stated in Theorem 1.2.

6. Final Remarks.
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Figure 13. Norm of solution. Around the time-dependent trajectory.
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Figure 14. Norm of solution. Around the time-dependent trajectory.

6.1. On the number and placement of the actuators. Here we consider the
same setting as in Section 5.7.1. Recall that in Figure 12, we have the results
corresponding to the case of 28 actuators as in Figure 1.

Now in Figure 15, we present the corresponding results in the case we take only 4
actuators as in Figure 15. We constructed the actuators so that the volume covered
by the 4 actuators in Figure 15 is equal to the total volume covered by the 28
actuators in Figure 1. In either case the total volume covered by the actuators
is approximately 5.4% of the volume of Ω. Though the volume covered by the
actuators is the same, we conclude that the explicit feedback corresponding to
the 4 actuators as in Figure 15 is not able to stabilize system (9), while the explicit
feedback corresponding to the 28 actuators as in Figure 1 is, as shown by Figure 12.

From the results in [11] we can conclude that once we know that
∣∣∣PE⊥

M

UM

∣∣∣2
L(H)

remains bounded with respect to M , then increasing both λ and the number of
actuators allows to achieve any prescribed rate of exponential stability in the case
of a single uncoupled parabolic equation. In Figure 16 we observe that 4 actuators
chosen as in Figure 15 are not able to stabilize the uncoupled parabolic equation,
while 28 actuators as in Figure 1 are able to stabilize the uncoupled parabolic
equation with rate approximately 1, which is the best rate we can get, independently
of M , because we have chosen λ = 1 in our feedback law, see (55).
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Figure 15. M = 4. Norm of solution. Linearization around the
time-dependent trajectory.
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Figure 16. pde only. With d = d2 = γ = ρ = 0 (uncoupled sys-

tem) and w0 = 0. Solution norm |(v, w)|2H×H = |v|2H . Linearization
around the time-dependent trajectory.

Since the norm of the projection
∣∣∣PE⊥

M

UM

∣∣∣
L(H)

plays a role in the stabilizability

condition (35b), it would be interesting to know whether we can place the actu-
ators so that it remains bounded as M increases. This has been proven recently
in 1D in [17] for parabolic equations with both Dirichlet and Neumann boundary
conditions. Then from [11, Sect. 4.8.1] we can also construct suitable actuators in
rectangular domains so that the operator norm of the corresponding projections
remain bounded as the number of actuators increases.

Another important question concerns the optimal placement of the actuators.
In Figure 1 and Figure 15 we simply tried to “spread” the actuators over Ω as
“uniformly” as possible. However, the results in [17], show that the best way of
“spreading” the actuators is a nontrivial question already in the 1D case.

By curiosity, the norm (computed numerically, see [11]) of the projection with

the 4 actuators as in Figure 15 is given by
∣∣∣PE⊥

M

UM

∣∣∣2
L(H)

≈ (0.0327)−1 ≈ 30, while the

norm of the projection with 28 actuators as in Figure 1 is given by
∣∣∣PE⊥

M

UM

∣∣∣2
L(H)

≈

(1.9367 · 10−4) ≈ 5000, which is considerably bigger.
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From [11, Sections 4.2 and 5.1], we know that there are examples of parabolic
equations where the number of necessary actuators is bounded from below, regard-
less of the location of the actuators. On the other hand the stability condition (35)
(or its particular version (7)) tells us that it is preferable to have a set of actu-

ators so that the operator norm of the oblique projection projection P
E⊥
M

UM
is as

small as possible. Therefore the optimal placement of a given set of actuators,

minimizing
∣∣∣PE⊥

M

UM

∣∣∣
L(H)

, is an important problem whose solution may lead to better

performance of the feedback control, see [11, Section 5.1].
In [11, 17], when looking for the placement of the set of M actuators {1ωMi |

i ∈ {1, 2, . . . ,M}}, ωMi ⊂ Ω, (indicator functions) spanning UM and so that P
E⊥
M

UM
remains bounded, it is also required that the volume covered by the actuators is

independent of M , that is, vol(
⋃M
i=1 ω

M
i ) = Cv. Of course, by increasing M we are

not just adding more actuators, we are instead taking different ones covering the
same volume.

6.2. On the stabilization to periodic solutions. While our results apply for
general bounded trajectories, in our numerical examples we have taken periodic
trajectories as targeted solutions. We will show here that for this case our feedback
law is also periodic. Indeed, suppose that our targeted solution (v, w) for system (3)
is time-periodic: for a given period T > 0

(v(s+ T ), w(s+ T )) = (v(s), w(s)), for all s ≥ 0. (63)

In that case we observe that the feedback law is also periodic

KUM (s+ T ) = KUM (s). (64)

Indeed, for all y, z ∈ H ×H,

KUM (s+ T )(y, z) = P
E⊥
M

UM

(
Ay +Ar(s+ T )y − λy + S̃(s+ T )z

)
= P

E⊥
M

UM

(
Ay +Ar(s)y − λy + S̃(s)z

)
= KUM (s)(y, z),

because, from (6), we see that Ar(s+T )y = Ar(s)y and S̃(s+T ) = S̃(s), when (v, w)
is T -periodic, as in (63).

Recalling that the monodomain equations provide a model for the heart rhythm
we expect the healthy solution to be periodic, that is, it makes sense to consider at
the very beginning that (v, w) satisfies (63).

Then it is natural to ask whether we can take advantage of the time periodicity

of A+Ar + S̃.
In [3, 14] the stabilization of time-periodic parabolic systems is proven under a

suitable conditions on the set of actuators. Such conditions take advantage of the
fact that the operators in the parabolic equation are time-periodic, which allows
to derive suitable properties of the asymptotic behavior of the solutions from the
spectral properties of the periodic map or Floquet map.

The feedback law proposed in [3, 14] is, however, not explicit. It is given implicitly
and involves the solution of a suitable periodic Riccati equation. The computation
of such a solution can be an expensive numerical task.

It would be interesting to know whether we can construct an ad-hoc, still explicit,
feedback operator in this situation. Recall that in [11, Section 6.5], an ad-hoc
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explicit feedback is proposed for the case of time-independent targeted trajectories
(i.e., steady states).

— Appendix —

In Assumptions 1, 7, and 9, the existence of weak solutions was assumed for
abstract nonautonomous systems. As announced, we now give some comments on
this subject. We also give the proofs of Propositions 1 and 2.

On the existence of weak solutions. Let H be a separable Hilbert space, which

we consider as a pivot space H = H′. Given another Hilbert space V
d
↪−→ H, and

a family of linear mappings L(t) ∈ L(V,V′) it follows that the domain of L(t),
defined as D(L(t)) := {h ∈ H | L(t)h ∈ H}, satisfies

D(L(t))
d
↪−→ V

d
↪−→ H

d
↪−→ V′

d
↪−→ D(L(t))′.

The domain D(L(t)) is assumed to be endowed with the natural graph norm

|h|D(L(t)) :=
(
|h|2H + |L(t)h|2H

) 1
2

. Further, for time dependent operators, we assume

that the domain D(L(t)) is independent of time:

D(L(t)) = D(L(0)), for all t ≥ 0.

Therefore we simply write D(L) := D(L(t)). Recall also the time interval I :=
(s0, s1), as in (12).

Definition A.1. We say that z(t) is a (V,H)-weak solution, in I × H, for the
evolutionary system

ż = −Lz, z(s0) = z0 ∈ H, (A.1)

if z ∈ W 1(I,V,V′), z(s0) = z0, and 〈ż + Lz, φ〉V′,V = −(z, φ̇)H + 〈Lz, φ〉V′,V = 0
for all φ ∈ {f ∈ C∞(I,V) | supp f ⊂ I}.

Recall that W 1(I,V,V′) ↪−→ C([s0, s1],H). In case that for any nonempty inter-
val J = (t1, t2) ⊆ I, the (V,H)-weak solution, in J ×H, for the linear system (A.1)
exists and is unique, for all initial conditions z(t1) = h ∈ H, then we denote it by

z(t) = U−L(t,t1)h, for t ∈ J . Necessarily, for all h ∈ H, z0 ∈ H, and s1 ≥ t ≥ t1 ≥ s0,

we have that

U−L(t1,t1)h = h and U−L(t,s0)z0 = U−L(t,t1)U
−L
(t1,s0)z0.

Definition A.2. We say that (L,V,H) has the Galerkin approximation property
if there exists a complete orthonormal basis {ψi | i ∈ N0} ⊂ V so that

1. for all h ∈ H, h =
+∞∑
i=1

(h, ψi)Hψi := lim
N→+∞

N∑
i=1

(h, ψi)Hψi,

2. for all z0 ∈ H and N ∈ N0, by setting zN0 := QNh :=
N∑
i=1

(z0, ψi)Hψi and

considering the solution zN of

żN = −QNLzN , zN (s0) = zN0 ∈ H, (A.2)

the sequence (zN )N∈N0 remains bounded:
∣∣zN ∣∣

W 1(I,V,V′)
≤ D |z0|H, with D

independent of (N, z0),
3. we have QNLzN ⇀ Lz in V′, provided zN ⇀ z in V.
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Lemma A.3. Let (L,V,H) have the Galerkin approximation property. If there is
a constant BL ≥ 0 so that

|〈Lh, h〉V′,V|R ≤ BL |h|2H , for all h ∈ V,

then there exists one, and only one, (V,H)-weak solution for system (A.1).

Proof. A solution z is given by a weak-limit, in W 1(I,V,V′), of the Galerkin

approximations solving (A.2), zN ⇀ z. The uniqueness follows from d
dt |d|

2
H =

−2〈Ld, d〉V′,V ≤ 2BL |d|2H, where d is the difference between two solutions, which

implies |d(t)|2H ≤ e2BL(t−s0) |d(s0)|2H = 0, for all t ∈ I.

The notion of weak solutions is classical. We refer to [13, Chapter 1, Section 6],
[19, Chapter 1, Section 3], and [20, Chapter 3, Sections 1.3, 1.4, and 3.2].

Proof of Proposition 1. We suppose that Assumptions 4–8, and 10 hold true.
Recall that H = L2(Ω), V = H1(Ω) and D(A) = {f ∈ H2(Ω) | ∂f∂n = 0}. Let us
take the spaces

H = (E⊥M
⋂
H)×H, V = (E⊥M

⋂
V )×H, and D(L) = (E⊥M

⋂
D(∆))×H,

and the linear operator, in matrix form,

L ∈ L(V,V′),

[
v
w

]
7→

[
PUM
E⊥
M

A+ PUM
E⊥
M

Ar PUM
E⊥
M

S̃w
R D

] [
v
w

]
. (A.3)

Next we prove that system (A.1) has the Galerkin property. We set the sequence
of eigenfunctions ei, i ≥ 1, of A = −∆ + 1 under Neumann boundary conditions.
Then we set the basis {(ei, ej) | i > M, j ≥ 1} ⊂ V for the space H. It is clear
that (1) in Definition A.2 is satisfied. Next we consider the system

żN = −QNLzN =

[
−A−QN1 P

UM
E⊥
M

Ar −QN1 P
UM
E⊥
M

S̃
−QN2 R −δId

]
, zN (s0) = zN0 ∈ H,

(A.4)

with QN
[
f
g

]
=

[
QN1 f
QN2 g

]
:=


N∑
i=1

(f, eM+i)HeM+i

N∑
i=1

(g, ei)Hei.

. Since QN is an orthogonal pro-

jection in H, with zN =

[
zN1
zN2

]
we have 〈QN1 P

UM
E⊥
M

AzN1 , z
N
1 〉V ′,V = (PUM

E⊥
M

AzN1 , z
N
1 )H =∣∣zN1 ∣∣2V = 〈AzN1 , zN1 〉V ′,V , and 〈QN2 DzN2 , zN2 〉V ′,V = δ

∣∣zN1 ∣∣2H = 〈DzN2 , zN2 〉V ′,V .
Notice that the estimates in the proof of Lemma 2.2, by taking A = A +

QN1 P
UM
E⊥
M

Ar, D = δId, R = QN2 R, and S = QN1 P
UM
E⊥
M

S̃, also hold true for sys-

tem (A.4). From Remark 4 we know that the system żN = −AzN is stable if S̃ = 0.
Therefore, we can conclude that the assumptions in Lemma 2.2 are satisfied. Fur-
ther, from Assumption 10, it follows that the assumption in Corollary 1 is also
satisfied. Thus, from Corollary 1, the Galerkin approximations satisfy∣∣zN ∣∣

L∞(Rs0 ,H)
≤ Dc

∣∣zN0 ∣∣H .



STABILIZATION FOR COUPLED PARABOLIC-ODE SYSTEMS 33

This inequality, together with

d
dt

∣∣zN ∣∣2
H
≤ −2

∣∣zN1 ∣∣2V − 2δ
∣∣zN2 ∣∣2H + 2

∣∣∣QN1 PUME⊥
M

Ar

∣∣∣
L(H,V ′)

∣∣zN1 ∣∣H ∣∣zN1 ∣∣V
+ 2

∣∣∣QN1 PUME⊥
M

S̃
∣∣∣
L(H,H)

∣∣zN2 ∣∣H ∣∣zN1 ∣∣H + 2
∣∣QN2 R∣∣L(H,H)

∣∣zN1 ∣∣H ∣∣zN2 ∣∣H
≤ −

∣∣zN1 ∣∣2V − δ ∣∣zN2 ∣∣2H + C1

∣∣∣PUM
E⊥
M

Ar

∣∣∣2
L(H,V ′)

∣∣zN1 ∣∣2H
+ C1

δ

∣∣∣PUM
E⊥
M

S̃
∣∣∣2
L(H,H)

∣∣zN1 ∣∣2H + C1

δ |R|
2
L(H,H)

∣∣zN1 ∣∣2H ,
which we can obtain after multiplying (A.4) by zN , imply that∣∣zN ∣∣2

L2((s0,s0+t),V)
≤ (1 +D2t)

∣∣zN0 ∣∣2H , t ∈ (0, s1 − s0),

with D2 independent of N and z0. Hence, by (A.4), we obtain∣∣żN ∣∣2
L2((s0,s0+t),V′)

=
∣∣QNLzN

∣∣2
L2((s0,s0+t),V′)

≤
∣∣zN ∣∣2

L2((s0,s0+t),V)
|L|2L(V,V′)

∣∣QN ∣∣2L(V′)
≤ D3

∣∣zN ∣∣2
L2((s0,s0+t),V)

,

with D3 independent of (N, s0). Here we use that the orthogonal projection QN ∈
L(H) is also defined and orthogonal in V′ (cf. [11, Lemma 3.3]), which implies

that
∣∣QN ∣∣2L(V′)

= 1. Note that for two eigenpairs (αi, ei), (αj , ej) of A = −ν∆ + Id

we have (ei, ej)V ′ := (A−
1
2 ei, A

− 1
2 ej)L2 = (A−1ei, ej)L2 = α−1

i (ei, ej)L2 = 0. Now,
it is straightforward to check that points (2) and (3), in Definition A.2, hold true.

Since the assumption in Lemma A.3 is satisfied, the existence and uniqueness
of a weak solution for system (A.1), with L as in (A.3). This finishes the proof of
Proposition 1.

Proof of Proposition 2. From (42) and (y(s0), z(s0)) ∈ V × H, the fact that
the solution for system (9) is strong follows by standard arguments. Indeed, recall-
ing (33c), system (9) becomes

ẏ = −Ay −Ary − S̃z +KUM (y, z), y(s0) = y0 ∈ V, (A.5a)

ż = −δz −Ry, z(s0) = z0 ∈ H. (A.5b)

Multiplying the dynamics by Lz, where L =

[
A 0
0 δ

]
, H = H × H, V = V × H,

and D(L) = D(A)×H, we obtain (47) with g = 0. Using (47) we can now conclude
that (y, z) ∈W ((s0, s0+T ),D(L),H) ⊆ C([s0, s0+T ],D(L),H). The same argument
leads us to

|(y, z)|2L∞((s,s+1),V) + |(y, z)|2L2((s,s+1),D(L)) ≤ D4 |(y(s), z(s))|2V , for s ≥ s0 ≥ 0,

(A.6)
with D4 = D3(1) independent of s.

Furthermore, we have the following smoothing property

|(y(s+ 1), z(s+ 1))|2V ≤ D5 |(y(s), z(s))|2H , for all s ≥ s0 ≥ 0, (A.7)

with D5 independent of s. This can be derived as follows. We consider, for t ≥ s,
the function (y̆(t), z̆(t)) := (t − s)(y(t), z(t)), which still solves system (46) with
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different data:

˙̆y = −Ay̆ −Ary̆ − S̃ z̆ +KUM (y̆, z̆) + y, y̆(s) = 0 ∈ V,
˙̆z = −δz̆ −Ry̆ + z, z̆(s) = 0 ∈ H,

from which (cf. estimate (47) with g = (y, z)) we can obtain the estimate

|(y̆, z̆)|2L∞((s,s+1),V) + |(y̆, z̆)|2L2((s,s+1),D(L)) ≤ D6

(
|y|2L2((s,s+1),H) + |z|2L2((s,s+1),H)

)
≤ D6C |(y, z)(s)|2H ,

where the last inequality follows from Corollary 4 (with s in the role of s0). In
particular (A.7) holds true.

For simplicity let us write

Ψs := |(y, z)|2L∞((s,s+1),V) + |(y, z)|2L2((s,s+1),D(L)) .

Then from estimates (A.7) and (A.6) together with Corollary 4, it follows, for all
s ≥ s0 ≥ 0:

• if s ≤ s0 + 1, then

Ψs ≤ D4 |(y(s), z(s))|2V ≤ D
2
4 |(y(s0), z(s0))|2V ≤ D

2
4e2µe−2µ(s−s0) |(y(s0), z(s0))|2V ,

• if s ≥ s0 + 1, then

Ψs ≤ D4D5 |(y(s− 1), z(s− 1))|2H ≤ D4D5Ce−2µ(s−1−s0) |(y(s0), z(s0))|2H .

We finish the proof by showing the estimate in Proposition 2. It is clear now that
we have

sup
s≥s0

e2µ(s−s0) |(y(s), z(s))|2V ≤ Ĉ |(y(s0), z(s0))|2V . (A.8)

with Ĉ = e2µ max{D2
4, D4D5C}. By direct computations we also obtain∫ s+1

s

e2µ(t−s0) |(y(t), z(t))|2D(L) dt ≤ e2µ(s+1−s0)

∫ s+1

s

|(y(t), z(t))|2D(L) dt

≤ e2µ(s+1−s0−s+s0)Ĉ |(y(s0), z(s0))|2V = e2µĈ |(y(s0), z(s0))|2V . (A.9)

Using the dynamics in (A.5), we also obtain for (ỹ, z̃) := eµ(t−s0)(y(t), z(t)),∣∣( ˙̃y, ˙̃z)
∣∣
L2((s,s+1),H)

≤ µ |(ỹ, z̃)|L2((s,s+1),H) +
∣∣∣eµ(t−s0)(ẏ, ż)

∣∣∣
L2((s,s+1),H)

≤ µ |(ỹ, z̃)|L∞((s,s+1),H) +
∣∣∣eµ(t−s0)(y, z)

∣∣∣
L2((s,s+1),D(L))

,

(A.10)

Therefore, recalling that V ↪−→ H, we conclude from estimates (A.8), (A.9),
and (A.10) that∣∣∣eµ(·−s0)(y, z)

∣∣∣
W ((s,s+1),D(L),H)

≤ D8 |(y(s0), z(s0))|H , for all s ≥ s0,

with D8 independent of s ≥ s0, which is equivalent to the estimate in Proposition 2.
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