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Abstract
A class of infinite horizon optimal control problems involving mixed quasi-norms of Lp-type cost

functionals for the controls is discussed. These functionals enhance sparsity and switching properties
of the optimal controls. The existence of optimal controls and their structural properties are analyzed
on the basis of first order optimality conditions. A dynamic programming approach is used for
numerical realization.
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1 Introduction

In this work we continue our investigations of infinite horizon optimal control problems with nonconvex
cost functionals which we started in [21]. We focus on optimal control of nonlinear dynamical systems
which are affine in the control. The input control is a vector-valued function u = (u1, . . . ,um) in the space
L∞(0,∞;Rm) under control constraints. The focus rests on that part of the cost functional which involves
the control. It is given as follows: ∫

∞

0

(
m

∑
i=1
|ui(t)|p

)q/p

dt, (1.1)

where 0 < p < 1 and p≤ q≤ 1. This functional is nonsmooth and nonconvex, leading to a challenging
optimal control problem with interesting properties for the optimal control laws, in particular sparsity
and switching. It appears that the terminology "sparse" is not rigorously defined in the literature, but
generally it is used to describe the property of the optimal control to be identically zero over nontrivial
subsets of the temporal domain. Here, by sparsity we refer to the situation that the whole vector u(t) is
zero. Switching control, is related to coordinate-wise sparsity, and is used to describe the property

ui(t)u j(t) = 0 for i, j ∈ {1, . . . ,m}, i 6= j, t ≥ 0,

which is equivalent to saying that at most one coordinate of u(t) is non-zero at t. While the use of
the control penalty (1.1) does not guarantee sparsity or switching properties, it enhances them. This is
illustrated in Figure 1, where unit balls for different q/p ratios are shown. For a fixed q decreasing p
(column-wise in the sub-figure) one direction becomes dominant over the other.
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Figure 1: Contour levels (0.1 to 1) of different balls ‖u‖q
p.

To further illustrate the effect of (1.1) let us consider the case p = 1/2 and q = 1. Then the running
cost for the control is given by

m

∑
i=1
|ui(t)|+2 ∑

i, j∈{1,...,m},i6= j
|ui(t)u j(t)|1/2,

where the L1-penalization on ui will support sparsity in the control and the product penalization enhances
switching phenomena. More generally, if q

p = j ∈N is an integer, then the running cost is is combination
of an Lq-penalization on each control coordinate ui, and it further contains weighted summands of (up
to) j− tuples of fractional powers of |ui|, with the sum of the powers for each tuple summing to q.
Fixing q, and decreasing p we expect that the control cost (1.1) increases the switching nature of the
optimal controls, since the weights on the tuples compared to those on the singletons increase. Moreover,
decreasing q we expect that the subdomain over which the optimal control vanishes (in all coordinates)
increases. These properties will be illustrated by numerical experiments.

The case with p = q and 0 < p ≤ 1 has been studied in [21]. Existence and sparsity properties
of optimal controls have been analyzed for this case, and these properties have been observed in the
numerical simulations in the case with 0 < p = q < 1. In the present work, the analysis is made for more
general nonconvex problems with the control cost (1.1). Concerning the question of existence of optimal
solutions, which is not guaranteed in general, we follow the ideas from [21] to reformulate the problem
in infinite-dimensional sequence spaces by descretizing the controls, and extending an important result
on weakly sequentially continuous mappings from [19] to obtain the existence result for our purposes.

The analysis of the sparsity and switching structure is based on the optimality conditions. For this
purpose we derive the necessary first order optimality conditions of the original problem, which follow
from general results which are available in the literature. We also derive sufficient optimality condition
for the reformulated problems. Subsequently, we investigate the sparsity and switching properties of
the optimal controls under box constraints. Finally, by using dynamic programming techniques, optimal
control laws are approximated globally in the state space for linear and nonlinear dynamical systems.

Let us mention previous related work on sparse and switching control. Closed-loop infinite horizon
sparse optimal control problems with Lp (0 < p≤ 1) functionals were analyzed in [21]. Open-loop, finite
horizon L1 sparse optimal control for dynamical systems have been studied in e.g. [15, 26, 3, 9]. Open-
loop, finite horizon sparse optimal control for partial differential equations was studied in e.g. [18, 7, 23].
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The Hamilton-Jacobi-Bellman equation for impulse and switching controls was discussed in [5, 28].
The synthesis of sparse feedback laws via dynamic programming has been studied in [13, 20, 1]. In
the context of partial differential equations optimal control of systems switching among different modes
were analysed in [16, 17], problems with convex switching enhancing functionals were investigated in
[11], and problems with nonconvex switching penalization in [12]. In [29] switching controls based
on functionals suggested by controllability considerations were investigated. Mixed (quasi-)norms as in
(1.1) with p 6= q have been used earlier, though typically in convex situations with p ≥ 1,q ≥ 1. These
investigations were carried out in the context of machine learning, regression analysis, and mathematical
imaging, with the goal of achieving group sparsity or structured parsimony, see e.g. [5, 14, 22, 27, 30],
and the references given there.

The structure of the paper is the following. The short section 2 contains the precise problem formu-
lation. Existence of optimal controls, which are discretized in time, is obtained in section 3. The sparsity
and switching structure of the optimal controls is analyzed on the basis of the optimality conditions for
the time-continuous as well as the time discrete problems in sections 4 and 5, respectively, and section 6
contains numerical results.

2 Optimal control problem

Let U ⊂ Rm be a closed set and let fi : Rd → Rd be continuous functions for i = 0, . . . ,m. We consider
the following control system: given x ∈ Rd ,{

ẏ(t) = f0(y(t))+∑
m
i=1 fi(y(t))ui(t) in ]0,∞[,

y(0) = x.
(2.2)

Here y(t)∈Rd is the state variable and u(t)= (u1(t), . . . ,um(t))∈Rm is the input control. Given p∈]0,1[,
we set for the vector u = (u1, . . . ,um) ∈ Rm

‖u‖p =

(
m

∑
i=1
|ui|p

)1/p

.

Let q ∈ [p,1], λ > 0, γ > 0 and yd ∈ Rd . For any x ∈ Rd , consider the cost functional

J(x,u) :=
∫

∞

0
e−λ t

(
1
2
‖y(t)− yd‖2

2 + γ‖u(t)‖q
p

)
dt, (2.3)

where (y,u) satisfies the state equation (2.2), and the infinite horizon optimal control problem

inf{J(x,u) : u ∈ L∞(0,∞;U)} . (2.4)

In (2.3), λ is called the discount factor, γ is the weight of control cost and ‖ · ‖2 is the Euclidean norm in
Rd . The following assumptions are made.

(H1) The control set U is compact and convex.

(H2) There exists L > 0 such that ‖ fi(x1)− fi(x2)‖2 ≤ L‖x1− x2‖2 for all x1,x2 ∈ Rd , and i = 0, . . . ,m.

(H3) For each x ∈ Rd , there exists u ∈ L∞(0,∞;U) such that J(x,u)< ∞.

Let us mention that the cost functional J is convex in the state variable and nonconvex in the control. The
case q = p has been discussed in [21].
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3 Time-discretized model

Since the cost functional J is not convex in u, existence of optimal controllers for problem (2.4) does not
hold in general. For this purpose we analyse the existence in the case of a time-discretized approximation
to (2.4). We introduce the temporal grid (tk)k∈N:

0 = t0 < t1 < · · ·< tk < tk+1 < · · · ,

and denote by Ik = [tk, tk+1[ for k ∈ N. The control is then restricted to the following set of piecewise
constant functions:

U∆ = {u = (u1, . . . ,um) ∈ L∞(0,∞;U) : ui(t) = ui,k for t ∈ Ik, i = 1, . . . ,m, k ∈ N}.

Consider the following optimal control problem

inf
u∈U∆

J∆(x,u) :=
∫

∞

0
e−λ t

1
2
‖y(t)− yd‖2

2 + γ

(
m

∑
i=1

∞

∑
k=0
|ui,k|p1Ik(t)

)q/p
dt, (3.5)

where y solves (2.2). A direct computation shows that

J∆(x,u) =
∫

∞

0
e−λ t 1

2
‖y(t)− yd‖2

2dt + γ

∞

∑
k=0

bk

(
m

∑
i=1
|ui,k|p

)q/p

,

where
bk =

∫
Ik

e−λ tdt =
1
λ
(e−λ tk − e−λ tk+1).

For any r > 0, the infinite dimensional sequence space `r = {u ∈ `∞ : ∑
∞
k=1 |uk|r < ∞} is endowed with

‖u‖r =

(
∞

∑
k=0
|uk|r

)1/r

.

For convenience we recall that `r, with 1 < r < ∞, are reflexive Banach spaces and `r1 ⊂ `r2 if 1≤ r1 <
r2≤∞. To investigate the existence of optimal controls, we follow the idea introduced in [19] by defining
the following reparametrization ψ : `q/p→ `q with

ψ(z)k = |zk|
1
p sgn(zk), for z = (z1,z2, . . .) ∈ `q/p, k = 1,2, . . . .

Using the fact that ψ is an isomorphism, (3.5) is equivalent to

inf
b−1/q

k ψ(wi)k∈U

∫
∞

0
e−λ t 1

2
‖y(t)− yd‖2

2dt + γ

∞

∑
k=0

(
m

∑
i=1
|wi,k|

)q/p

, (3.6)

where y(·) satisfies{
ẏ(t) = f0(y(t))+∑

m
i=1 fi(y(t))b

−1/p
k |wi,k|1/p sgn(wi,k) for t ∈ [tk, tk+1), k = 0,1, . . . ,

y(0) = x.
(3.7)

To obtain existence for problem (3.5), the following lemma is needed which gives some important prop-
erties of ψ . The idea of proof is inspired by [19, Lemma 2.1].

Lemma 3.1. Let q > p and let β denote the conjugate exponent of q/p. The mapping ψ : `q/p→ `β is
weakly (sequentially) continuous, i.e. zn→ z̄ weakly in `q/p implies that ψ(zn)→ ψ(z̄) weakly in `β .
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Proof. Let r = 1
p +1 and let r∗ denote the conjugate exponent of r given by r∗ = p+1. Then

1 <
q
p
≤ 1

p
< r,

which implies r∗ < β . For any z ∈ `q/p, we have

‖z‖r
r =

∞

∑
k=1
|zk|r, ‖ψ(z)‖r∗

r∗ =
∞

∑
k=1
|zk|r

∗/p =
∞

∑
k=1
|zk|r,

and

(ψ(z),z)`r∗ ,`r =
∞

∑
k=1

ψ(z)k · zk =
∞

∑
k=1
|zk|1/p+1 =

∞

∑
k=1
|zk|r.

The above computations imply that

(ψ(z),z)`r∗ ,`r = ‖ψ(z)‖r∗‖z‖r, and ‖ψ(z)‖r∗
r∗ = ‖z‖r

r,

which means that ψ is the duality mapping from `r to `r∗ and is weakly sequentially continuous. If zn→ z̄
weakly in `q/p, then zn → z̄ weakly in `r since 1 < q/p < r. Therefore, ψ(zn)→ ψ(z̄) weakly in `r∗ .
Using that r∗ < β , this implies that ψ(zn)→ ψ(z̄) weakly in `β .

Theorem 3.2. There exists a minimizer w̄ to (3.6), and hence a minimizer ū to (3.5).

Proof. The case q = p has been dealt with in [21]. Therefore, we focus on the case q > p.
Let wn = (wn

1, . . . ,w
n
m) be a minimizing sequence for the problem (3.6), we set un = (un

1, . . . ,u
n
m) with

b1/p
k un

i,k = ψ(wn
i )k, i = 1, . . . ,m, k = 0,1, . . . .

Note that bk and un
i,k are uniformly bounded with respect to k, i,n, and therefore wn

i,k are uniformly
bounded. For each i ∈ {1, . . . ,m},

∞

∑
k=0
|wn

i,k|q/p ≤
∞

∑
k=0

(
m

∑
i=1
|wn

i,k|

)q/p

,

which implies that wn
i is bounded in `q/p. On the other hand,

∞

∑
k=0
|ψ(wn

i )k|β =
∞

∑
k=0
|wn

i,k|β/p.

Noting that `q/p ⊂ `β/p since β = q
q−p > q, we deduce that

wn
i ∈ `β/p and ψ(wn

i ) =
(

b1/p
k un

i,k

)
k∈N
∈ `β .

It follows that {(ψ(wn
i ),w

n
i )}∞

n=1 is a bounded sequence in `β × `q/p. Therefore, a subsequence of
{wn

i }∞
n=1 converges weakly to some w̄i in `q/p (see [10, pp. 73]). By the same reason, a subsequence of

{ψ(wn
i )}∞

n=1 converges weakly to some ξi in `β . From Lemma 3.1 one deduces that

ξi = ψ(w̄i), for each i ∈ {1, . . . ,n}.

Let yn be the solution to (3.7) with control wn. Then on each interval Ik, we can deduce by the Arzelà-
Ascoli theorem that there exists ȳk : Ik→ Rd such that

yn→ ȳk uniformly in Ik, as n→ ∞.
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For ȳ : [0,∞)→ Rd defined by ȳ|Ik = ȳk for k ∈ N, it follows that for any T > 0

yn→ ȳ uniformly in [0,T ), as n→ ∞.

Therefore, ȳ is the solution to (3.7) corresponding to w̄ := (w̄1, . . . , w̄m). Here we use that the dynamics
f is affine in ψ(wi), i = 1, . . . ,m. Using the fact that yn→ ȳ pointwise in [0,∞) and wn

i,k → w̄i,k for any
i = 1, . . . ,m, k ∈ N, we obtain by Fatou’s lemma that

∫
∞

0
e−λ t 1

2
‖ȳ(t)− yd‖2

2dt +
∞

∑
k=0

(
m

∑
i=1
|w̄i,k|

)q/p

≤ lim inf
n→∞

∫
∞

0
e−λ t 1

2
‖yn(t)− yd‖2

2dt +
∞

∑
k=0

(
m

∑
i=1
|wn

i,k|

)q/p

,

which implies that w̄ is a minimizer for problem (3.6). Hence a minimizer ū ∈U∆ for problem (3.5) is
given by

ū = (ū1, . . . , ūm), with ūi,k = b−1/p
k ψ(w̄i)k, i = 1, . . . ,m, k ∈ N.

4 Sparsity and switching properties: the time-continuous problem

For the time-continuous problem (2.4), the necessary optimality conditions are known from the literature
and are next recalled for convenience.

Lemma 4.1. Assume that fi are C1 for i = 0, . . . ,m. For each x ∈Rd , if ū is a locally optimal control for
problem (2.4) and ȳ is the associated optimal trajectory, then there exists an adjoint state ϕ : [0,∞[→Rd

such that {
−ϕ̇(t) = D f0(ȳ(t))ϕ(t)+∑

m
i=1 D fi(ȳ(t))ūi(t)+ e−λ t(ȳ(t)− yd) for t > 0,

limt→∞ ϕ(t) = 0,

and ϕ satisfies, for t ∈]0,∞[ a.e.,〈
f0(ȳ(t))+

m

∑
i=1

fi(ȳ(t))ūi(t),ϕ(t)

〉
+ e−λ t

(
1
2
‖ȳ(t)− yd‖2

2 + γ‖ū(t)‖q
p

)

≤

〈
f0(ȳ(t))+

m

∑
i=1

fi(ȳ(t))ui,ϕ(t)

〉
+ e−λ t

(
1
2
‖ȳ(t)− yd‖2

2 + γ‖u‖q
p

)
(4.8)

for all u ∈U.

According to (4.8), for t ∈]0,∞[ a.e. we look for the minimizer of the following function

Gt(u) :=
m

∑
i=1
〈 fi(ȳ(t)),ϕ(t)〉ui + γe−λ t‖u‖q

p, ∀u ∈U.

Assume that the set of control constraints U has the form of box constraints:

U∞ := {u = (u1, . . . ,um) ∈ Rm : −ρi ≤ ui ≤ ρi, i = 1, . . . ,m}, (4.9)

where ρi > 0. In this case the optimality condition can be used to derive the following structural proper-
ties of a minimizer.
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Theorem 4.2. Let ū be an optimal control for problem (2.4) with U∞ given in (4.9), let ȳ be the associated
optimal trajectory and ϕ the associated adjoint state. For t ∈]0,∞[ a.e., we define the following index
sets:

I−(t) = {i ∈ {1, . . . ,m} : |〈 fi(ȳ(t)),ϕ(t)〉|ρ1−q
i < γe−λ t},

I0(t) = {i ∈ {1, . . . ,m} : |〈 fi(ȳ(t)),ϕ(t)〉|ρ1−q
i = γe−λ t},

I+(t) = {i ∈ {1, . . . ,m} : |〈 fi(ȳ(t)),ϕ(t)〉|ρ1−q
i > γe−λ t},

Then the following properties hold:

(i) For t ∈]0,∞[ a.e. and i ∈ I−(t),
ūi(t) = 0.

(ii) For t ∈]0,∞[ a.e. and i ∈ I0(t),

ūi(t) = 0, if I+(t) 6= /0,

ūi(t) ∈ {0,−ρi sgn(〈 fi(ȳ(t)),ϕ(t)〉)},
ūi(t)ū j(t) = 0, i, j ∈ I0(t), i 6= j, if I+(t) = /0, q ∈ [p,1[,

ūi(t) ∈ [0,−ρi sgn(〈 fi(ȳ(t)),ϕ(t)〉)],
ūi(t)ū j(t) = 0, i, j ∈ I0(t), i 6= j, if I+(t) = /0, q = 1.

(iii) For t ∈]0,∞[ a.e. and i ∈ I+(t), we have

ūi(t) ∈ {0,−ρi sgn(〈 fi(ȳ(t)),ϕ(t)〉)},

with maxi∈I+(t) |ūi(t)| 6= 0.

Let us briefly comment on sparsity and switching properties which follow from Theorem 4.2. For
the coordinates in the index set I−(t), the controllers are zero. We refer to these coordinates as the sparse
control coordinates at the time t. If I+(t) = /0, then i ∈ I0(t)∪ I−(t) for all i = 1, . . . ,m, and hence u is
switching or sparse at time t. If I+(t) 6= /0 then the coordinates in I0(t) behave like those in I−(t), they are
0. The coordinates of the optimal control in the index set I+(t) are not completely determined by (iii).
They are either active, or zero and thus they join the set of sparse control coordinates. Comparing to the
case p = q which was treated in [21, Proposition 5.2], the case (iii) is such that the control is necessarily
active. Thus p < q enhances additional sparsity compared to p = q. Finally, as a consequence of the box
constraints, the optimal control is of bang-off-bang type, except for case (ii) with q = 1.

Proof. We shall use that by Lemma 4.1 we know that ū(t) minimizes Gt in U∞ for a.e. t ∈ (0,∞). For
convenience of notations, let us set

ϕt,i = 〈 fi(ȳ(t)),ϕ(t)〉, γt = γe−λ t .

In Step 1 below we verify (i) and (ii). The claims in (iii) are proved in Step 2.

Step 1: proof of (i) and (ii).
At first, let us focus on the case q > p. Consider further the case ϕt,i ≤ 0 for i = 1, . . . ,m. Then ūi(t)≥ 0
for i = 1, . . . ,m. We introduce

Ω := {u ∈U∞ : 0≤ ui ≤ ρi, i = 1, . . . ,m}.

Let us decompose Gt in Ω as follows:

Gt(u) = G1(u)+ γtG2(u),
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where

G1(u) =
m

∑
i=1

ϕt,iui + γt

m

∑
i=1

uq
i , G2(u) =

(
m

∑
i=1

up
i

)q/p

−
m

∑
i=1

uq
i .

G1 is a concave function in Ω, G2 ≥ 0, and G2 = 0 if and only if ∑i, j=1,...,m,i 6= j |uiu j| = 0. Here we use
that q

p ∈ [1, 1
p ] and the fact that (

m

∑
i=1

ai

)r

≥
m

∑
i=1

ar
i ,

for each ai ≥ 0, r > 1, and equality holds if and only if aia j = 0 for all i, j = 1, . . . ,m, i 6= j. Then we
deduce that

Gt(u)≥ G1(u),

and equality holds if and only if ∑i, j=1,...,m,i 6= j |uiu j|= 0.
If I0(t) = /0 and I+(t) = /0, i.e. ρ1−q|ϕt,i|< γt for i = 1, . . . ,m, we have

ϕt,iui + γtu
q
i > 0 for ui ∈]0,ρi],

where u = u(t). Therefore G1 attains its unique minimum at (0, . . . ,0) and G2(0, . . . ,0) = 0. Conse-
quently ūi(t) = 0 for i = 1, . . . ,m.

If I+(t) = /0, we have

ϕtiui + γtu
q
i > 0 for ui ∈]0,ρ], i ∈ I−(t), and ϕt, ju j + γtu

q
j ≥ 0 for u j ∈ [0,ρ j], j ∈ I0(t).

Moreover for j ∈ I0(t), the expression ϕt, ju j + γtu
q
j attains its minimum in [0,ρ j] at 0 and ρ j if q < 1,

and ϕt, ju j + γtu
q
j ≡ 0 if q = 1. Therefore,

ūi(t) = 0 for i ∈ I−(t), ū j(t) ∈ {0,ρ j} for j ∈ I0(t), q < 1, and ∑
j, j′∈I0(t), j 6= j′

|u ju j′ |= 0,

and
ūi(t) = 0 for i ∈ I−(t), ū j(t) ∈ [0,ρ j] for j ∈ I0(t), q = 1, and ∑

j, j′∈I0(t), j 6= j′
|u ju j′ |= 0.

If I+(t) 6= /0, we have

ϕt,iui + γuq
i ≥ 0 for ui ∈ [0,ρi], i ∈ I−(t)∪ I0(t),

and ϕt, ju j + γuq
j attains its unique minimum in [0,ρ j] at ρ j for j ∈ I+(t). Thus, for any u ∈Ω, we define

ũ ∈Ω as follows:
ũi = 0 for i ∈ I−(t)∪ I0(t), and ũi = ui for i ∈ I+(t).

If ũ = (0, . . . ,0), then for any j ∈ I+(t) we set û ∈Ω with

û j = ρ and ûi = 0 for i 6= j, i = 1, . . . ,m.

Thus we have
G(u)≥ G1(u)≥ G1(ũ)> G1(û) = G(û).

Otherwise if ũ 6= (0, . . . ,0) and u 6= ũ,

G(u) = G1(u)+ γtG2(u)> G1(u)+ γtG2(ũ)≥ G1(ũ)+ γtG2(ũ) = G(ũ).

We then deduce that
ūi(t) = 0 for i ∈ I−(t)∪ I0(t).
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The proof for the case when ϕt,i ≤ 0 for i = 1, . . . ,m is thus concluded. The other cases when ϕt,i have
different signs can be treated analogously.

Now we proceed to look at the case q = p. In this situation, G2 ≡ 0 and G≡ G1. The minimizers of
G1 have been analyzed in the previous arguments, and we therefore arrive at the conclusion.

Step 2: proof of (iii).
We turn to analyze the behavior of the coordinates with indices in I+(t). In particular in this case
I+(t) 6= /0, and consequently by (i) and (ii)

ūi(t) = 0, for i ∈ I−(t)∪ I0(t).

Therefore,

Gt(ū(t)) =
`

∑
τ=1

ϕt,iτ ūiτ (t)+ γt

(
`

∑
τ=1
|ūiτ (t)|p

)q/p

, (4.10)

where {i1, . . . , i`} ⊂ {1, . . . ,m} is such that I+(t) = {i1, . . . , i`}. Then the problem consists in finding the
minimizer of the function

G̃(w) :=
`

∑
τ=1

ψτwτ + γt

(
`

∑
τ=1

ρ
p
τ |wτ |p

)q/p

, for w = (w1, . . . ,w`) ∈ [−1,1]`, (4.11)

where, to simplify notation, we set for τ = 1, . . . , `

wτ =
uiτ

ρiτ
, ψτ = ϕt,iτ ρiτ , and ρτ = ρiτ . (4.12)

Following the definition of I+(t), we have

|ψτ |ρ−q
τ > γt , for τ = 1, . . . , `. (4.13)

Let w̄ be the minimizer and let us start by considering the case

ψτ < 0, for all τ = 1, . . . , `.

Then it is trivial to see that
w̄τ ≥ 0, for all τ = 1, . . . , `.

We aim to prove that the minimizer w̄ is not in the interior of [0,1]`. Without loss of generality, we
assume that

1≥ w̄1 ≥ w̄2 ≥ ·· · ≥ w̄` ≥ 0.

We can therefore limit our attention to the subset

{(w1, . . . ,w`) : 1≥ w1 ≥ w2 ≥ ·· ·w` ≥ 0}. (4.14)

Note that w̄ can be expressed as w̄ = (β0w̄1,β1β0w̄1, . . . ,β`−1 . . .β0w̄1) where β0 = 1, and βτ ∈ [0,1], τ =
1, . . . , `−1. Moreover w̄1 ∈ [0,1] is a minimizer of the functional

Gβ ,1(w1) =
`

∑
τ=1

ψτβτ−1 · · ·β0w1 + γt

(
`

∑
τ=1

ρ
p
τ β

p
τ−1 · · ·β

p
0

)q/p

wq
1.

We will exclude the case that w1→Gβ ,1(w1) assumes a minimum in the interior of [0,1]. Indeed, if such
a minimum w∗1 is attained in the interior of [0,1], then

0 = G′
β ,1(w

∗
1) =

`

∑
τ=1

ψτβτ−1 · · ·β0 + γt

(
`

∑
τ=1

ρ
p
τ β

p
τ−1 · · ·β

p
0

)q/p

q(w∗1)
q−1.
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Therefore,

Gβ ,1(w
∗
1) = (1−q)γt

(
`

∑
τ=1

ρ
p
τ β

p
τ−1 · · ·β

p
0

)q/p

q(w∗1)
q ≥ 0.

Note that
Gβ ,1(1,0, . . . ,0) = ψ1 + γtρ

q
1 = ρ

q
1 (−|ψ1|ρ−q

1 + γt)< 0,

where (4.13) is applied. Thus,
Gβ ,1(w

∗
1)> Gβ ,1(1,0, . . . ,0),

which contradicts the assumption that w∗1 is the minimizer. Consequently, the minimum can not be
attained in the interior of [0,1] and thus w̄1 ∈ {0,1}. Moreover Gβ ,1(1,0, . . . ,0)< 0 and Gβ ,1(0, . . . ,0) =
0, and thus

w̄1 = 1. (4.15)

We next claim the following: for j ∈ {2, . . . , `−1}, if w̄ j−1 ∈ {0,1}, then

w̄ j ∈ {0,1}, (4.16)

and verify this statement by induction. If w̄ j−1 = 0, by (4.14) we have

w̄ j = 0

as claimed. If w̄ j−1 = 1, then w̄τ = 1, for all τ = 1, . . . , j−1.
To characterize further w̄ j, we apply the same idea as for determining w̄1. This time we restrict our

attention to the subset

{(w j,w j+1, . . . ,w`) : 1≥ w j ≥ w j+1 ≥ ·· · ≥ w` ≥ 0},

and note that for the optimal (w̄ j, . . . , w̄`) = (w̄ j,β jw̄ j, . . . ,β`−1 . . .β jw̄ j), where βτ ∈ [0,1] for τ =
1, . . . , `−1. We denote for any w j ∈ [0,1]

Gβ , j(w j) =
j−1

∑
τ=1

ψτ +ψ jw j +
`

∑
τ= j+1

ψτβτ−1 · · ·β jw j

+γt

[
j−1

∑
τ=1

ρ
p
τ +ρ

p
j wp

j +
`

∑
τ= j+1

ρ
p
τ β

p
τ−1 · · ·β

p
j wp

j

]q/p

,

and note that w̄ j is a minimizer of Gβ , j on [0,1]. If a minimum w∗j is attained in the interior of [0,1], then

G′
β , j(w

∗
j) = 0.

This yields that,

ψ j +
`

∑
τ= j+1

ψτβτ−1 · · ·β j + γt
q
p

Sq/p−1
j

(
ρ

p
j +

`

∑
τ= j+1

ρ
p
τ β

p
τ−1 · · ·β

p
j

)
p(w∗j)

p−1 = 0,

where

S j =
j−1

∑
τ=1

ρ
p
τ +ρ

p
j (w

∗
j)

p +
`

∑
τ= j+1

ρ
p
τ β

p
τ−1 · · ·β

p
j (w

∗
j)

p.

Therefore,

ψ j +
`

∑
τ= j+1

ψτβτ−1 · · ·β j =−γtS
q/p−1
j

(
ρ

p
j +

`

∑
τ= j+1

ρ
p
τ β

p
τ−1 · · ·β

p
j

)
q(w∗j)

p−1.
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By applying the above equality to compute Gβ , j(w∗j), we obtain

Gβ , j(w
∗
j)

=
j−1

∑
τ=1

ψτ +

(
ψ j +

`

∑
τ= j+1

ψτβτ−1 · · ·β j

)
w∗j + γtS

q/p
j

=
j−1

∑
τ=1

ψτ − γtS
q/p−1
j

(
ρ

p
j +

`

∑
τ= j+1

ρ
p
τ β

p
τ−1 · · ·β

p
j

)
q(w∗j)

p + γtS
q/p
j

=
j−1

∑
τ=1

ψτ + γtS
q/p−1
j

[
j−1

∑
τ=1

ρ
p
τ +(1−q)

(
ρ

p
j +

`

∑
τ= j+1

ρ
p
τ β

p
τ−1 · · ·β

p
j

)
(w∗j)

p

]
.

Using the fact that q≤ 1 and w∗j > 0, it holds that

Gβ , j(w
∗
j) ≥

j−1

∑
τ=1

ψτ + γtS
q/p−1
j

j−1

∑
τ=1

ρ
p
τ

>
j−1

∑
τ=1

ψτ + γt

(
j−1

∑
τ=1

ρ
p
τ

)q/p−1 j−1

∑
τ=1

ρ
p
τ

=
j−1

∑
τ=1

ψτ + γt

(
j−1

∑
τ=1

ρ
p
τ

)q/p

= Gβ , j(0),

which contradicts the assumption that w∗j is the minimizer. Consequently, the minimum can not be
attained in the interior of [0,1]. We then deduce that

w̄ j ∈ {0,1},

which completes the proof for the claim (4.16). Together with (4.15), it is deduced that

w̄τ ∈ {0,1}, for τ = 1, . . . , `,

which concludes the case where ψτ < 0 for all τ = 1, . . . , `.
For the other cases where ψτ is positive for some τ ∈ {1, . . . , `}, ψτ and wτ can be replaced by

−ψτ and −wτ in (4.11). Then by following the same arguments as in the previously we can obtain that
−w̄τ ∈ {0,1}. Therefore we conclude that

w̄τ ∈ {0,−sgn(ψτ)}, for τ = 1, . . . , `,

with the additional information that |w̄1|= 1. The definition of wτ and ψτ in (4.12) implies that

ūiτ ∈ {0,−ρiτ sgn(ϕt,iτ )}, for iτ ∈ I+(t), τ = 1, . . . , `,

with the additional information that maxi∈I+
|ūi|
ρi
6= 0. This completes the proof of (iii).

In Theorem 4.2 the study has been made for the case of box constraints. Next we briefly consider the
problem under Euclidean norm constraints. In this case, due to the coupling of the coordinates which is
inherent to the Euclidean norm, it appears to be more complicated to achieve explicit information on the
structure of the minimizers compared to that which was obtained for box constraints.

We define for ρ > 0

U2 := {u = (u1, . . . ,um) ∈ Rm :
m

∑
i=1

u2
i ≤ ρ

2}. (4.17)
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Theorem 4.3. Let ū be an optimal control for problem (2.4) with U given in (4.17), let ȳ be the associated
optimal trajectory, and ϕ its associated adjoint state. Let I−(t), I0(t) and I+(t) be as defined in Theorem
4.2. If for some t ∈]0,T [ the cardinality of I+(t) is less or equal to 1, then (i), (ii), and (iii) of that theorem
remain valid. Otherwise we have

m

∑
i=1
|ūi(t)|2 = ρ

2, for a.e. t ∈]0,∞[. (4.18)

Proof. Step 1. From (4.8) we know that for t ∈]0,∞[ a.e., ū(t) is the minimizer of the following function

Ḡt(u) :=
m

∑
i=1

αi(t)ui + γe−λ t‖u‖q
p, for all u ∈U2,

where αi(t) = 〈 fi(ȳ(t)),ϕ(t)〉. At first we note that U2 is a subset of U∞, if ρi = ρ for all i, and hence
minu∈U∞

Ḡt(u) ≤ minu∈U2 Ḡt(u). Moreover, if a minimizer of Ḡt over U∞ is contained in U2, then this
minimizer is also a minimizer of Ḡt over U2. Following this observation, let ū(t) be a minimizer of Ḡt

over U∞ with cardinality of I+(t) ≤ 1. Then by Theorem 4.2 all components of ū(t) are 0 except for
at most one. In case the cardinality of I+(t) equals one, then there is one non-trivial coordinate of the
control at time t whose norm then equals ρ .

Step 2. Now we turn to the general case (assuming that I+ is nonempty) and prove that the optimal
control is necessarily active. Since I+(t) is non-empty there exists at least one index τ such that γt −
|ατ(t)|ρ1−q < 0. Setting the value of this coordinate equal to ρ we obtain

G((0, . . .0,ρ,0, . . . ,0)) = ατ(t)ρ + γtρ
q = ρ

q(γt +ατ(t)ρ1−q) = ρ
q(γt −|ατ(t)|ρ1−q)< 0,

which implies that at least one coordinate of ū is nontrivial and G(ū(t))< 0. Let ˜̀ denote the number of
nontrivial coordinates of ū and without loss of generality assume that these are the ˜̀ first ones of ū(t).

Let us start with the case where αi(t) ≤ 0 for all i = 1, . . . , ˜̀. It is trivial to see that ūi(t) ≥ 0, for
i = 1, . . . , ˜̀ in this case. We set

Ω :=

{
(u1, . . . ,u ˜̀) ∈ R ˜̀ :

˜̀

∑
i=1

u2
i ≤ ρ

2, ui ≥ 0, i = 1, . . . , ˜̀
}
.

Thus ū(t) ∈ Ω. We prove by contradiction that ū ∈ ∂Ω. If this is not the case, i.e. ū is in the interior of
Ω, then

∂G
∂ui

(ū(t)) = 0, i = 1, . . . , ˜̀,

from which we deduce that

αi(t)+ γt
q
p

(
˜̀

∑
j=1
|ū j(t)|p

)q/p−1

p|ūi(t)|p−1 = 0, i = 1, . . . , ˜̀.

It follows that

αi(t)ūi(t) =−γtq

(
˜̀

∑
j=1
|ū j(t)|p

)q/p−1

|ūi(t)|p = 0, i = 1, . . . , ˜̀.

Therefore,

G(ū(t)) =
˜̀

∑
i=1

αi(t)ūi(t)+ γt

(
˜̀

∑
i=1
|ūi(t)|p

)q/p

= −γtq

(
˜̀

∑
i=1
|ūi(t)|p

)q/p−1

|ūi(t)|p + γt

(
˜̀

∑
i=1
|ūi(t)|p

)q/p

= γt(1−q)

(
˜̀

∑
i=1
|ūi(t)|p

)q/p

≥ 0.
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Since we already know that G(ū(t))< 0 this gives a contradiction. Consequently ū(t)∈ ∂Ω. Since ūi 6= 0
for i = 1, . . . , ˜̀ this implies that

˜̀

∑
i=1

ū2
i (t) = ρ

2 and ūi(t)> 0, for i = 1, . . . , ˜̀.

If some of the coordinates of α are such that αi(t) ≥ 0, then necessarily ūi(t) ≤ 0 and, adapting Ω

accordingly, it can again be verified that ∑
l
1 ū2

i (t) = ρ2.

5 Sparsity and switching properties: the time-discretized problem

In this subsection we consider the following linear dynamical system: for x ∈ Rd ,{
ẏ(t) = Ay(t)+Bu(t),
y(0) = x,

(5.19)

where A ∈ Rd×d and B ∈ Rd×m. Let us recall the optimal control problem: given x ∈ Rd , consider

inf
{

J∆(x,u) : (y,u) satisfies (5.19), u ∈U∆
}
.

The cost functional is recalled as follows:

J∆(x,u) =
∫

∞

0

1
2

e−λ t‖y(t)− yd‖2
2dt + γR(u),

where

R(u) =
∞

∑
k=0

bk

(
m

∑
i=1
|ui,k|p

)q/p

for u ∈U∆.

To investigate the optimality conditions satisfied by the optimal controllers, we introduce firstly the
adjoint equation associated to (y,u) satisfying (5.19):{

−ϕ̇(t) = AT ϕ(t)+ e−λ t(y(t)− yd) for t > 0,
limt→∞ ϕ(t) = 0.

(5.20)

Here ϕ is called the adjoint state of y. Since the controls in U∆ are piecewise constant functions, we
consider at first the optimal control on each time interval Ik, k ∈ N.

Proposition 5.1. Let ũ ∈U∆ satisfy the following: for any k ∈ N, ũ(·)≡ ũk in Ik and

ũk ∈ argmin
u=(u1,...,um)∈U

{∫
Ik

〈ϕ̃(t),Bu〉dt + γbk‖u‖q
p

}
, (5.21)

where ỹ is the corresponding trajectory and ϕ̃ is the adjoint state associated to (ỹ, ũ). Further for any
arbitrary ω ∈ Rm such that ω + ũk ∈U, we define the perturbed control

uω(t) :=
{

ũk +ω if t ∈ Ik,
ũ(t) otherwise.

Then it holds that J∆(x,uω)≥ J∆(x, ũ).

Proof. Let yω be the trajectory associated with uω . Then yω − ỹ satisfies{
ẏω(t)− ˙̃y(t) = A(yω(t)− y(t))+Bω1Ik(t) for t ∈ (0,∞),
yω(0)− ỹ(0) = 0.
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Assumption (5.21) implies that∫
Ik

〈ϕ̃(t),B(ũk +ω)〉dt + γbk‖ũk +ω‖q
p ≥

∫
Ik

〈ϕ̃(t),Bũk〉dt + γbk‖ũk‖q
p. (5.22)

By the definition of uω , (5.22) is equivalent to∫
Ik

〈ϕ̃(t),Bω〉dt + γR(uω)− γR(ũ)≥ 0. (5.23)

For almost all t > 0 we obtain,

d
dt
〈ϕ̃(t),yω(t)− ỹ(t)〉

= 〈 ˙̃ϕ(t),yω(t)− ỹ(t)〉+ 〈ϕ̃(t), ẏω(t)− ˙̃y(t)〉
= 〈−AT

ϕ̃(t)− e−λ t(ỹ(t)− yd),yω(t)− ỹ(t)〉+ 〈ϕ̃(t),A(yω(t)− ỹ(t))+Bω1Ik(t)〉
= −e−λ t〈ỹ(t)− yd ,yω(t)− ỹ(t)〉+ 〈ϕ̃(t),Bω1Ik(t)〉.

Note that limt→∞ ϕ̃(t) = 0 and yω(0)− ỹ(0) = 0, and therefore∫
∞

0

d
dt
〈ϕ̃(t),yω(t)− ỹ(t)〉= 0.

Consequently we obtain∫
∞

0

[
−e−λ t〈ỹ(t)− yd ,yω(t)− ỹ(t)〉+ 〈ϕ̃(t),Bω1Ik(t)〉

]
dt = 0,

i.e., ∫
∞

0
e−λ t〈ỹ(t)− yd ,yω(t)− ỹ(t)〉dt =

∫
Ik

〈ϕ̃(t),Bω〉. (5.24)

To compute the left-hand side of (5.24), we have for every t > 0

‖yω(t)− yd‖2
2−‖ỹ(t)− yd‖2

2 = ‖yω(t)− ỹ(t)‖2
2 +2〈yω(t)− ỹ(t), ỹ(t)− yd〉, (5.25)

and now (5.23), (5.24) and (5.25) imply that∫
∞

0

1
2

e−λ t‖yω(t)− yd‖2
2dt−

∫
∞

0

1
2

e−λ t‖ỹ(t)− yd‖2
2dt

−
∫

∞

0

1
2

e−λ t‖yω(t)− ỹ(t)‖2
2dt + γR(uω)− γR(ũ)≥ 0.

Then we deduce that

J∆(x,uω)− J∆(x, ũ)≥
∫

∞

0

1
2

e−λ t‖yω(t)− ỹ(t)‖2
2dt ≥ 0,

which ends the proof.

Proposition 5.1 provides the way to construct optimal controls on each Ik, and this procedure can be
naturally extended to construct globally optimal controls.

Theorem 5.2. Let ū ∈U∆ satisfy the following: for any k ∈ N and t ∈ Ik,

ū(t) ∈ argmin
u=(u1,...,um)∈U

{∫
Ik

〈ϕ̄(t),Bu〉dt + γbk‖u‖q
p

}
, (5.26)

where ȳ is the corresponding trajectory and ϕ̄ is the adjoint state associated to (ȳ, ū). Then ū ∈U∆ is a
minimizer of problem (3.5), i.e.

J∆(x,u)≥ J∆(x, ū), ∀u ∈U∆.
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Proof. For any u ∈U∆, we define a sequence (un)n∈N by

un(t) :=
{

ū(t) if t ∈ Ik, k = 0, . . . ,n,
u(t) otherwise.

Therefore, un→ ū pointwise in [0,∞[. Let yn be the trajectory associated with un. By the same argument
as in Theorem 3.2, we deduce that

yn→ ȳ pointwise in [0,∞[.

Assumption (5.26) and Proposition 5.1 imply that

J∆(x,u)≥ J∆(x,u0)≥ J∆(x,u1)≥ ·· · ≥ J∆(x,un), ∀n ∈ N.

By Fatou’s Lemma,

J∆(x,u) ≥ lim inf
n→∞

{∫
∞

0

1
2

e−λ t‖yn(t)− yd‖2
2dt + γR(un)

}
≥

∫
∞

0

1
2

e−λ t‖ȳ(t)− yd‖2
2dt + γR(ū)

= J∆(x, ū),

and we conclude that ū is a minimizer of problem (3.5).

Based on the optimality conditions (5.26), similar results on sparsity and switching properties as
Theorem 4.2 can be deduced by the same arguments as in the proof of Theorem 4.2.

Theorem 5.3. Following the same assumptions and notations in Theorem 5.2, we set

ϕk =
∫

Ik

BT
ϕ̄(t)dt, γk = γbk.

For each k ∈ N, we define the following index sets:

I−k = {i ∈ {1, . . . ,m} : |ϕk,i|ρ1−q
i < γk},

I0
k = {i ∈ {1, . . . ,m} : |ϕk,i|ρ1−q

i = γk},

I+k = {i ∈ {1, . . . ,m} : |ϕk,i|ρ1−q
i > γk},

The following properties hold:

(i) For k ∈ N, t ∈ Ik and i ∈ I−k ,
ūi(t) = 0.

(ii) For k ∈ N, t ∈ Ik and i ∈ I0
k ,

ūi(t) = 0, if I+k 6= /0,

ūi(t) ∈ {0,−ρi sgn(ϕk,i)},
ūi(t)ū j(t) = 0, i, j ∈ I0

k , i 6= j, if I+k = /0, q ∈ [p,1[,

ūi(t) ∈ [0,−ρi sgn(ϕk,i)],
ūi(t)ū j(t) = 0, i, j ∈ I0

k , i 6= j, if I+k = /0, q = 1.

(iii) For k ∈ N, t ∈ Ik and i ∈ I+k , we have

ūi(t) ∈ {0,−ρi sgn(ϕk,i)},

and maxiI+k
|ūi(t)| 6= 0.
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6 Numerical experiments

In this section we present numerical experiments for the computation of optimal control laws for the
problem

inf
u(·)∈L∞(0,∞;U∞)

J(x,u) :=
∫

∞

0
e−λ t

(
1
2
‖y(t)− yd‖2

2 + γ‖u(t)‖q
p

)
dt,

constrained to the nonlinear dynamical system{
ẏ(s) = f (y(s),u(s)) := f0(y(s))+∑

m
i=1 fi(y(s))ui(s) in ]0,∞[,

y(0) = x.

For the realization of globally optimal control laws we proceed as in [21], i.e. by following a dynamic
programming approach. The value function V (x) := infJ(x,u) associated to this infinite horizon optimal
control problem satisfies the following first order Hamilton-Jacobi-Bellman equation

λV (x)+ sup
u∈U∞

{− f (x,u) ·∇V (x)− 1
2
‖x− yd‖2

2− γ‖u‖q
p}= 0 ,

which leads to the optimal feedback map

ū(x) := argmin
u∈U∞

{
f (x,u) ·∇V (x)+ γ‖u‖q

p
}
. (6.27)

The solution of the Hamilton-Jacobi-Bellman equation and of the optimal feedback mapping are numeri-
cally approximated by a first-order semi-Lagrangian scheme with policy iteration as discussed in [2]. The
well-posedness of this numerical scheme is guaranteed under boundedness and continuity assumptions
for the dynamics f (x,u) and the cost. Convergence of controls, however, is only guaranteed for convex
running costs. Nevertheless, the results we report indicate that the semi-Lagrangian scheme converges
to optimal controls exhibiting the expected sparsity and switching properties. This scheme has also been
applied to the solution of sparse optimal feedback control problems in [1, 13]. In the case p = q = 1
the minimization operation in (6.27) can be realized by means of semismooth Newton methods as [20].
For different values of p and q, the minimizer is chosen by discretizing the control set U∞ into a finite
number of values and making a pointwise evaluation of the Hamiltonian.

Eikonal dynamics

We begin by considering eikonal-type dynamics for planar motion of the form

ẋ1(s) = u1(s)

ẋ2(s) = u2(s) ,

where |ui(s)| ≤ 0.5 for i = 1,2. The state space is set to be Ω = [−1,1]2, the discount factor λ = 0.2, and
γ = 1. The goal is to drive the state to the origin, and therefore yd = (0,0). The optimal control fields in
the state space for different p,q values are shown in Figure 2.

We observe the following:

a) The case p = q = 1 has been already reported in [21]. There exists a switching band of width γλ ,
where the optimal control points unidirectionally towards the origin, and ū = 0 for ‖u‖∞ ≤ γλ .

b,c) Departing from p = q = 1 and reducing the value of p, a switching region with only one active
control component arises. It increases as the ratio q/p increases. Note that for q = 1, the region
where ū = 0 remains unchanged.

d) The switching and the sparsity regions are larger for p = q = 0.2 than for p = q = 1. Only in the
particular case ρ = 1 these regions would remain the same.
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(a) p = 1,q = 1 (b) p = 0.8,q = 1 (c) p = 0.6,q = 1

(d) p = 0.2,q = 0.2 (e) p = 0.2,q = 0.3 (f) p = 0.2,q = 0.8

Figure 2: Eikonal dynamics, optimal control fields for different control penalizations‖u‖q
p.

e,f) Increasing the q/p ratio by departing from smaller values of q generates a larger switching region,
leading to a fully switching controller for a ratio of q/p sufficiently large. Note that increasing
q/p for q 6= 1 also leads to a decrease of the sparsity region.

Nonlinear dynamics of a double-well potential

We now address the synthesis of optimal controllers for nonlinear dynamics. We consider a system cor-
responding to a single one-dimensional particle moving in a double-well potential, subject to a controlled
damping, and a direct external forcing via

ẋ(s) = v(s)

v̇(s) =−(1+u1(s))v(s)+(x(s)− x3(s))+u2(s).

In the absence of control action (u1 = u2 = 0), the damped particle has two stable equilibrium positions,
namely x=±1,v= 0 (we drop the state-space notation (x1,x2) for (x,v)), with their corresponding basins
of attraction. Here our goal is to steer the particle to the equilibrium yd = (1,0). We consider a set of
initial conditions in Ω = [−2,2]2, and set γ = 0.1, ρ = 1, and λ = 0.01. Optimal controls are shown in
Figure 3.
We observe:

a,b,c) By reducing the value of p with q = 1, the region where the control u1 is active decreases.

d,e,f) Reducing q does not affect the sparsity pattern of u2. The linear control action via u2 is more
relevant for the stabilization goal than the bilinear control term u1v. As expected it becomes
insignificant as v becomes small.

g,h,i) Overall, the reduction of p has a significant effect on the increase of the switching region.
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(a) u1, p = 1,q = 1 (b) u1, p = 0.6,q = 1 (c) u1, p = 0.2,q = 1

(d) u2, p = 1,q = 1 (e) u2, p = 0.6,q = 1 (f) u2, p = 0.2,q = 1

(g) ‖u‖0, p = 1,q = 1 (h) ‖u‖0, p = 0.6,q = 1 (i) ‖u‖0, p = 0.2,q = 1

Figure 3: Optimal controls for the double-well nonlinear control problem. The first two rows show the
control variables u1 and u2 for different values of p and q.

In order to investigate a setting with a richer interplay between the control variables and the switching
structure, we consider a modified version of the double-well control system given by

ẋ(s) = v(s)

v̇(s) =−(1+u1(s))v(s)+(x(s)− x3(s))+u2(s)x(s),

where u2 enters now in a bilinear fashion. The optimal controllers are significantly different compared
to the previous setting, as shown in Figure 4.
We note that:

a,b,c) The sparsity region of u1 increases as the ratio q/p increases.

d,e, f) The sparsity region of u2 also increases as q/p increases.

g,h,i) Overall, the switching pattern of the two control variables becomes dominant as the ratio q/p
becomes large. Only a reduced region of the state space requires the simultaneous action of two
control variables.
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(a) u1, p = 1,q = 1 (b) u1, p = 0.2,q = 0.6 (c) u1, p = 0.2,q = 1

(d) u2, p = 1,q = 1 (e) u2, p = 0.2,q = 0.6 (f) u2, p = 0.2,q = 1

(g) ‖u‖0, p = 1,q = 1 (h) ‖u‖0, p = 0.2,q = 0.6 (i) ‖u‖0, p = 0.2,q = 1

Figure 4: Optimal controls for the double-well control problem with two bilinear controls. The first two
rows show the control variables u1 and u2 for different values of p and q.

Concluding remarks. In this paper we have studied infinite horizon optimal control problems with a
control cost of the form ‖u‖q

p, where 0 < p≤ q≤ 1, leading to a non-convex, non-smooth optimization
problem. From the analysis of the associated optimality conditions, we have shown that such control
penalizations induce not only sparsity, but also a switching structure in the optimal control field. The
switching pattern is determined by the different parameters of the control problem, but most notably, by
the value of q and the ratio q/p. By means of dynamic programming techniques, we have shown numer-
ically that, for an increased q/p ratio the optimal control has a dominant switching pattern, tending to
minimize a counting ‖ · ‖0 measure over an enlarged region of the state space. We believe that an impor-
tant direction for future research is a thorough study of the interplay between the underlying dynamical
structure of the control system and the switching pattern. More concretely, it would be desirable to know
whether the sparse/switching control does benefit from the basin of attraction of a given equilibrium
point, or whether the inclusion of ‖ · ‖q

p norms could lead to minimum time-type controllers.
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