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Abstract
A concept of Petrov–Galerkin enrichment which is appropriate for highly accurate and
stable interpolation of variational solutions is introduced. In the finite element context,
the setting refers to standard trial functions for the solution, while the test space will
be enriched. The FEM interpolation procedure that we propose will be justified by
local wavelets with vanishing moments based on Gegenbauer polynomials. For the
reference Helmholtz equation, the continuous piecewise polynomial test functions are
enriched using dispersion analysis on uniform meshes in 2d and 3d. From a-priori and
a-posteriori numerical analysis it follows that the Petrov–Galerkin based enrichment
approximates the exact interpolate solution of the Helmholtz equation with at least
seventh order of accuracy.
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1 Introduction

We investigate an interpolation problem for variational solutions obtained from finite
element approximations. The specialty consists in the fact that the discrete solution
should be close to the exact solution at a finite number of trial points, which are
selected for topology optimization purpose. As a typical example for such topology
optimization problems see [7,18,19,21].

It will suffice to approximate solutions more accurately at the selected trial points
(which associate mesh nodes), rather than in the whole computational domain. To
reduce the discretization error at the nodes it is necessary to address the interpolate
solution. Motivated by the special need of highly accurate and stable interpolation
for a class of variational solutions of scattering problems, we develop a concept of
Petrov–Galerkin enrichment by the FEM.

Our motivation of the FEM interpolation come from numerous applications in
the engineering sciences where topology optimization problems arise. For typical
formulations of topology optimization aswell as related inverse and ill-posed problems
we refer to [2,10,17,20], and to [8,12,16,23,31] for common numerical approaches
used in the field.

As the reference model we consider the Helmholtz equation. It is well known that
generalized finite element methods (GFEM) are well suited in this case since they
reduce the so-called pollution error of discretization. We refer to [13,15,26,29,33] for
the theoretical background of GFEM, and to [34] for their review.Major developments
for GFEM were carried out by Babuška with coauthors.

To reduce the discretization error it is possible to enrich either the trial or the test
function spaces. The former approach enriching trial spaces is commonly used, but
it has high computational costs and meets primarily the task of approximation rather
than interpolation. The latter approach enriching test spaces is based on a Petrov–
Galerkin setting, see e.g. [4,11,28]. The Petrov–Galerkin concept is also the basis for
the variational multiscale method (VMS) by Hughes et al., e.g. [14].

We shall utilize necessary optimality conditions for interpolation properties which
are deduced when enriching the space of test functions. Using a Petrov–Galerkin
approach, we suggest low order interpolation polynomials for the trial space, and we
enrich the test space with high order shape functions. The resulting Petrov–Galerkin
enrichment (PGE) improves significantly the accuracy of interpolation, which is at a
low price because low order finite elements are used for the discrete solution.

In the present paper a theoretical justification of PGE is provided by local wavelets
with vanishing moments based on Gegenbauer polynomial approximation. We derive
also practical formulas for calculation of the systemmatrix for the referenceHelmholtz
equation given over uniform meshes in 2d and 3d.

For possible extension to nonuniform meshes and isoparametric elements we refer
to [25]. In the above paper, a global FE basis is enrichedwith polynomial bubbles based
on preprocessing, where the weights multiplying these bubbles have to be found by
solving local problems minimizing the dispersion. In the present context, the shape
functions are to be weighted within the local optimization.
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2 The concept of Petrov–Galerkin enrichment

We consider a class of variational problems formulated in the following form. Let
X0 be a closed subspace of a complex Hilbert space X . For a given u0 ∈ X find
u − u0 ∈ X0 such that

b(u, v) = 0 for all v ∈ X0, (2.1)

where the map b : X × X �→ C is continuous and sesquilinear over C (respectively,
bilinear over R).

Assuming the existence of a variational solution to (2.1) we look for its finite
dimensional approximation in a trial space Xh ⊂ X . Let X0

h be a closed subspace
of Xh and uh0 ∈ Xh . For finite elements, the index h ∈ R+ refers to the mesh size.
Following the Petrov–Galerkin approach we set a discrete counterpart of (2.1) in the
form: Find uh − uh0 ∈ X0

h such that

bh(u
h, vh) = 0 for all vh ∈ Yh (2.2)

over a test spaceYh ⊂ X , where the continuous and sesquilinear form bh : X×X �→ C

refers to a discrete version of b. It may result from approximation of a computational
domain, or may relate to the modified forms resulting from stabilization methods. In
particular, bh = b is possible option. We remark that the solution uh depends on the
choice of the test space Yh .

The main idea resides in defining the test space Yh in (2.2). The standard Galerkin
method relies on setting Yh = X0

h which is not the best choice. In fact, we consider the
following. Let BX := {φi ∈ X |i = 1, . . . ,∞} form a FE basis of X . In this basis, we
denote by X⊥

h ⊂ X the orthogonal complement to Xh with respect to (2.2), namely

X⊥
h := span{φi ∈ BX | bh(wh, φi ) = 0 for all wh ∈ Xh}. (2.3)

Noting that in general X �= Xh
⊕

X⊥
h we define the space

Zh := span{φi ∈ BX | φi /∈ X⊥
h }.

We exclude the trivial case Zh = ∅. Indeed, in the subsequent considerations we have
the direct sum X = Zh

⊕
X⊥
h in a piecewise polynomial basis BX , and Xh ⊂ Zh .

Since X⊥
h is contained in the kernel of the linear operator bh(uh, · ) : X �→ C in (2.2),

this suggests to look for a test space Yh in Zh .
The following discussion will rely on an interpolation operator IXh : X̃ �→ Xh

defined on a suitable subspace X̃ ⊆ X where exact interpolation conditions at a fixed
number of points are well-defined. This property is important, for instance, in topology
optimization. This requires that the solution u of (2.1) belongs to X̃ such that IXh u is
well defined. In our case IXh is the classical interpolation operator and thus it suffices
if X̃ is contained in the space of continuous functions.
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For any such interpolation operator, the approximation error between the solutions
u of (2.1) and uh of (2.2) can be estimated as

‖u − uh‖X ≤ ‖u − IXh u‖X + ‖IXh u − uh‖X , (2.4)

where ‖u− IXh u‖X is the interpolation error, and ‖IXh u−uh‖X is the error of the FE
solution with respect to exact interpolation. We note that the former does not depend
on the test space Yh , whereas the latter one is dependent on Yh .

Our goal is to construct the test space in such a manner that the latter error is
minimized:

minimize ‖IXh u − uh‖X over Yh in Zh . (2.5)

If the minimum in (2.5) is zero, this implies that

uh = IXh u. (2.6)

If the exact solution u and, hence, its interpolate IXh u are known, then the necessary
optimality condition for (2.5) can be deduced directly from (2.6). For this task, we
substitute (2.6) in (2.2) to determine the test space Yh in Zh in Algorithm 2.1 below.

We assume that the union of all finite element spaces with respect to the family of
meshes under consideration is dense in X . Since the FE basis is given in X we suggest
the following conceptual algorithm for construction of the interpolation by means of
the discrete problem (2.2).

Algorithm 2.1 Fix the form bh in (2.2) and set the trial space Xh.
Step 1. Find the orthogonal complement X⊥

h in (2.3).
Step 2. Determine the test space Yh by weighting the basis functions in Zh to satisfy
the necessary optimality condition

bh(IXh u, vh) = 0 for all vh ∈ Yh . (2.7)

If the test space Yh is constructed such that (2.7) in Step 2 is satisfied, then the
discrete solution uh of (2.2) coincides with the exact interpolation solution IXh u.
This construction needs knowledge of the exact solution u ∈ X̃ of (2.1), or, at least,
particular solutions for specific data u0. Otherwise, we suggest to relax (2.7) with the
following approximate condition:

bh(IXh u, vh) = �h(v
h) for all vh ∈ Yh, with

|�h(v
h)|

‖vh‖X ≤ Er(h), (2.8)

where �h : X �→ C is linear, and Er : R+ �→ R+ expresses an error function.

Proposition 2.2 Let the test space Yh be such that (2.8) holds, and let the form bh in
(2.2) satisfy the following inf-sup condition:

inf
wh∈X0

h

sup
vh∈Yh

|bh(wh, vh)|
‖wh‖X‖vh‖X ≥ γ > 0. (2.9)
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Then the error of the FE solution of (2.2) can be estimated by

‖IXh u − uh‖X ≤ 1
γ
Er(h). (2.10)

Proof Due to (2.9), estimate (2.10) follows by subtracting (2.2) from (2.8). ��
We note that from (2.9) the stability estimate ‖uh − u0‖X ≤ 1

γ
‖bh(u0, · )‖X−1

follows, where X−1 denotes the dual space of X .
In Sect. 3 we shall present our approach for the specific case of the Helmholtz

equation. We confine ourselves to the case when Xh is the space of continuous piece-
wise linear trial functions. For this case, it is known that the approximation error is of
order O(h). We realize Algorithm 2.1 by substituting particular solutions in the form
of plane waves into (2.8) and by dispersion analysis. In this way we determine the
space Yh consisting of weighted continuous piecewise quadratic test functions in Zh .
As a result of asymptotic analysis for κ := kh

2 → 0, where k stands for the wave
number, we obtain the error function Er(h) = o(κ7) in (2.8). Moreover, we prove that
the system matrix associated to bh is positive definite and hence the inf-sup condition
(2.9) holds. Therefore Proposition 2.2 guarantees interpolation of order o(κ7).

3 The Helmholtz equation

In this section we first formulate the Helmholtz problem under consideration and then
show how to use Algorithm 2.1.

3.1 The Helmholtz problem formulation and discretization

Let � ⊂ R
d , d ∈ {2, 3}, be a bounded domain with the Lipschitz boundary ∂�. We

consider the following model problem: Find u ∈ H1(�;C) =: X such that

u = u0 on ∂�,
∫

�

(∇u · ∇v − k2uv) dx = 0 for all v ∈ H1
0 (�;C) =: X0,

(3.1)

where thewave number k ∈ R and theDirichlet data u0 ∈ H1(�;C) are given. Except
for eigenvalues, the unique solvability of the variational equation (3.1) is argued by
the Fredholm’s theorem, see e.g. [6, Section 5.3].

The solution of (3.1) fulfills the homogeneousHelmholtz equation:−�u−k2u = 0
in �. Therefore, the interior C∞-regularity of u follows from the general theory
of linear elliptic PDEs, see [22, Chapter 3]. Moreover, we assume ∂� of class C1

and u0 ∈ W 1/p′,p(∂�;C) for p′ the conjugate of p and p > d. Then there exists
U0 ∈ W 1,p(�) such that U0 = u0 on ∂�, see [35, Lemma 1.49]. The difference
w := u − U0 has zero trace and solves the inhomogeneous Helmholtz equation:
−�w − k2w = k2U0 − �U0 in �. Therefore, the embedding u ∈ W 1,p(�) ⊂ C(�)

holds, see [35, Theorem 3.16]. This provides well-posedness of a pointwise evaluation
of u in � for the interpolation IXh u (see (3.2) below).
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While we consider the Dirichlet problem (3.1), our subsequent considerations can
be extended to the cases of Neumann, Robin, and mixed boundary conditions as well
as inhomogeneous equations.

We assume that the computational domain �h ⊂ R
d is polyhedral endowed with

a mesh Mh and coincides with the physical domain �. Its boundary is denoted by
∂�h . In particular, we assume that �h consists of uniform elements of size h > 0,
quadrilaterals in R

2 and polyhedra in R
3. Let Nh denote the set of all mesh nodes

x j ∈ Mh ⊂ �h , j = 1, . . . , N . We set Xh ⊂ H1(�h;C) as continuous piecewise
d-linear (bilinear in R

2, trilinear in R
3) finite element functions with respect to the

mesh Mh over �h . The respective FE functions from X0
h have zero traces at ∂�h .

In the following by IXh we denote the classical, piecewise d-linear interpolation
operator in C(�;C) =: X̃ fulfilling

IXh u(x j ) = u(x j ) at the mesh points x j , j = 1, . . . , N . (3.2)

This operator is stable, see e.g. [5, Lemma 2.1].
The discrete counterpart of (3.1) thus reads: Find uh ∈ Xh such that

uh = IXh u0 on ∂�h,
∫

�h

(∇uh · ∇vh − k2uhvh) dx = 0, for all vh ∈ Yh .
(3.3)

The unknown test space Yh ⊂ H1(�h;C) in (3.3) is to be determined according to
Algorithm2.1. For this purposewe construct in the next section a continuous piecewise
polynomial basis in H1(�h;C) based on Gegenbauer polynomials.

3.2 The continuous piecewise polynomial basis

To construct a continuous piecewise polynomial basis we suggest to use Gegenbauer
polynomials Gn ∈ Pn([−1, 1]), n = 0, 1, . . . , which are defined by the recursion

G0(ξ) := 1, G1(ξ) := −ξ, G2(ξ) = 1−ξ2

2 , G3(ξ) = ξ(1−ξ2)
2 , . . .

Gn(ξ) = 1
n

(
(2n − 3)ξGn−1(ξ) − (n − 3)Gn−2(ξ)

)
for n = 2, 3, . . .

(3.4)

More of their properties are given in Appendix A.
In the numerical framework, the Gegenbauer polynomials (3.4) are well suited as

hierarchical shape functions for hp-FEM, e.g. see [32]. In our theoretical optimization
context, theywill be used formotherwaveletswith vanishingmoments inAppendix A.

Based on (3.4) the hierarchical shape functions are given in the local coordinates
ξ ∈ [−1, 1] with respect to the binary parameter t ∈ {−1, 1} as

G̃t
1(ξ) := 1+tξ

2 , G̃t
n(ξ) := tnGn(ξ) for n = 2, 3, . . . . (3.5)
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Fig. 1 Patch 
 j of four quadrilaterals containing x j = (x j
1 , x j

2 ) in a 2d computational domain

For vector coordinates ξ = (ξ1, . . . , ξd) ∈ [−1, 1]d and binary multi-indices
(t1, . . . , td) ∈ {−1, 1}d , we define the d-dimensional shape functions as

S(t1,...,td )
n1...nd (ξ) :=

d∏

i=1

G̃ti
ni (ξi ) with ni ∈ N, ti ∈ {−1, 1} for i = 1, . . . , d, d ∈ N,

(3.6)

which are d-dimensional polynomials Pn([−1, 1]d) of degree at most n = max
i=1,...,d

ni .

In the computational domain, we apply the following affine coordinate transfor-
mation given for every fixed mesh point x j = (x j

1 , . . . , x j
d ) ∈ R

d and (t1, . . . , td) ∈
{−1, 1}d by

{xi = x j
i + h

2 (ξi − ti )}di=1 : {ξi }di=1 �→ {xi }di=1, [−1, 1]d �→ Q j
(t1,...,td ), (3.7)

which transforms the parent domain [−1, 1]d to the polyhedra

Q j
(t1,...,td ) := {xi ∈ R : x j

i − h
2 (1 + ti ) ≤ xi ≤ x j

i + h
2 (1 − ti )}di=1. (3.8)

The 2d adjacent polyhedra in (3.8) forming the patch centered at the point x j are


 j :=
⋃

t1,...,td∈{−1,1}
Q j

(t1,...,td ) = {xi ∈ R : x j
i − h ≤ xi ≤ x j

i + h}di=1,

as illustrated in 2d in Fig. 1. Applying (3.7) to (3.6) we get the transformed shape
functions

S(t1,...,td )
n1...nd (x) := S(t1,...,td )

n1...nd

(
t1 + 2

h (x1 − x j
1 ), . . . , td + 2

h (xd − x j
d )

)
(3.9)

as polynomials Pn(Q
j
(t1,...,td )) of degree at most n = max

i=1,...,d
ni on the polyhedra (3.8)

in the reference patch 
 j . We have the following lemma.
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Lemma 3.1 The continuous piecewise polynomials of degree n on the uniform polyhe-
dral mesh Mh over �h ⊂ R

d can be spanned with the shape functions (3.9) of degree
at most n on the polyhedra.

Proof Firstly we note note that the piecewise d-linear function in (3.9), namely

S(t1,...,td )
1...1 (x) =

d∏

i=1

(
1 + ti

h (xi − x j
i )

)
for x ∈ Q j

(t1,...,td ), (t1, . . . , td) ∈ {−1, 1}d ,

form the usual “hat” function supported on the patch 
 j . Second, it holds

S(t1,...,td )
n1...nd (x) = 0 for x ∈ ∂Q j

(t1,...,td ) if min
i=1,...,d

ni = 2, (t1, . . . , td) ∈ {−1, 1}d ,

because the Gegenbauer polynomials of degree two and more vanish at the boundary
(see property (A.3) in Appendix A). Therefore, the shape functions (3.9) of degree at
most n form a basis for the continuous piecewise polynomials of degree n supported
on the patch
 j . We associate the center-point x j of
 j to the nodes Nh = {x j }Nj=1 of
a uniform polyhedral meshMh over�h . Since every continuous piecewise polynomial
with respect to the mesh can be partitioned continuously over the set of overlapping
patches {
 j }Nj=1 which cover �h , this proves the assertion. ��

For the underlying Helmholtz problem (3.3), from Lemma 3.1 and Theorem A.6
which is proved in Appendix A, the main result of this section will follow.

Theorem 3.2 Let Xh be the space of continuous piecewise d-linear polynomials over
C on a uniform polyhedral mesh Mh over�h ⊂ R

d . The orthogonal complement with
respect to (3.3) (see (A.16))

X⊥
h = {v ∈ H1(�h;C) :

∫

�h

(∇wh · ∇v − k2whv) dx = 0 for all wh ∈ Xh}

can be spanned by continuous piecewise polynomials of degree n ≥ 3 on the mesh
Mh over �h. Moreover, continuous piecewise polynomials of degree at most n = 2
form a basis for the finite-dimensional space Zh for fixed h.

By Theorem 3.2 we next construct the test space Yh in Zh according to Step 2 in
Algorithm 2.1 as follows.

Let u ∈ H1(�;C) be the exact solution of the variational problem (3.1). As
introduced above, let IXh u ∈ Xh denote the interpolation over Mh satisfying the
interpolation condition (3.2). Following (2.7) we look for a test space Yh in Zh satis-
fying the following equation:

∫

�h

(∇(IXh u) · ∇vh − k2(IXh u)vh
)
dx = 0 for all vh ∈ Yh . (3.10)

Due to Theorem 3.2, Yh should be sought within continuous piecewise quadratic
polynomials on the mesh Mh over �h . In fact, one does not gain any benefit by
expanding the basis of Yh beyond the quadratic polynomials as their contribution
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to the system matrix of (3.10) will be zero. Since the dimension of Xh is less than
Zh , substituting the span of Xh and the span of Zh into (3.10) would result in an
undetermined problem for the unknown coefficients by the respective basis functions.
We reduce the number of quadratic test functions using appropriate simplifications and
accounting for particular solutions u for specific data u0. As natural simplification, we
suggest to rely on symmetric test functions in a finite element basis. Further we provide
a dispersion analysis of (3.10) with respect to the particular solutions u specified by
plane waves.

3.3 The dispersion analysis in 2d

In this section we describe in detail the dispersion analysis in 2d. The 3d results will
be presented in Appendix B.

To choose an appropriate finite element basis for the test space Yh we assemble the
linear and quadratic shape functions from (3.9) in a globally continuous and symmetric
way as follows. In R

2, at every patch 
 j = Q j
(1,−1) ∪ Q j

(−1,−1) ∪ Q j
(1,1) ∪ Q j

(−1,1)
consisting of four adjacent quadrilaterals which are defined for t1, t2 ∈ {−1, 1} by

Q j
(t1,t2)

= {xi ∈ R : x j
i − h

2 (1 + ti ) ≤ xi ≤ x j
i + h

2 (1 − ti )}2i=1,

see Fig. 1, we define the node (linear-linear), edge (linear-quadratic), and bubble
(quadratic-quadratic) modes with respect to two spatial dimensions, respectively, by

linear − linear : S(t1,t2)
11 (x) = (

1 + t1
h (x1 − x j

1 )
)(
1 + t2

h (x2 − x j
2 )

)
, (3.11a)

linear − quadratic : S(t1,t2)
21 (x) + S(t1,t2)

12 (x)

= −2
( t1
h (x1 − x j

1 ) + t2
h (x2 − x j

2 )
)
S(t1,t2)
11 (x), (3.11b)

quadratic − quadratic : S(t1,t2)
22 (x) = 4 t1

h (x1 − x j
1 ) t2h (x2 − x j

2 )S(t1,t2)
11 (x).

(3.11c)

These shape functions are illustrated in Fig. 2. In comparison, the trial space Xh

consists of bilinear shape functions corresponding to the node mode (3.11a) only.
Thus, the test space Yh is enriched compared to Xh .

Fig. 2 Test space: continuous and symmetric shape functions on the patch in R
2
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Next we apply the finite element ansatz function as

IXh u(x) =
N∑

j=1

U j
∑

(τ1,τ2)∈{−1,1}2: Q j
(τ1,τ2)

∩�h �=∅
S(τ1,τ2)
11 (x) (3.12)

with unknown coefficients {U j }Nj=1 ∈ C
N , and

vhi (x) =
∑

(t1,t2)∈{−1,1}2: Qi
(t1,t2)

∩�h �=∅

(
αN S(t1,t2)

11 (x) + αE(
S(t1,t2)
21 (x)

+ S(t1,t2)
12 (x)

)+αB S(t1,t2)
22 (x)

)
for i = 1, . . . , N

(3.13)

with unknown weights αN , αE , αB ∈ R.
Substituting (3.12) and (3.13) into (3.10) we obtain the system matrix, which we

denote by A(κ2) = {ai j (κ2)}Ni, j=1 ∈ R
N×N . Its entries are given by

ai j (κ
2) =

∑

Qi
(t1,t2)

=Q j
(τ1,τ2)

∫

Qi
(t1,t2)

{
∇S(τ1,τ2)

11 · ∇
(
αN S(t1,t2)

11 (x)

+ αE(
S(t1,t2)
21 (x) + S(t1,t2)

12 (x)
)+αB S(t1,t2)

22 (x)
)

− k2S(τ1,τ2)
11

×
(
αN S(t1,t2)

11 (x) + αE(
S(t1,t2)
21 (x) + S(t1,t2)

12 (x)
)+αB S(t1,t2)

22 (x)
)}

dx,

(3.14)

for i, j = 1, . . . , N . Henceforth the notation κ := kh
2 is used. These coefficients can

be calculated explicitly and we find

ai j (κ
2) = a ji (κ

2)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

4A0(κ
2), if 
i = 
 j with 4 overlapping quadrilaterals of 
i and 
 j

2A1(κ
2), if 
i ∩ 
 j �= ∅ with 2 overlapping quadrilaterals of 
i and 
 j

A2(κ
2), if 
i ∩ 
 j �= ∅ with 1 overlapping quadrilaterals of 
i and 
 j

0, if 
i ∩ 
 j = ∅,
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according to the nine-point interior stencil

Ainterior
stencil (κ2) =

⎛

⎝
A2(κ

2) 2A1(κ
2) A2(κ

2)

2A1(κ
2) 4A0(κ

2) 2A1(κ
2)

A2(κ
2) 2A1(κ

2) A2(κ
2)

⎞

⎠

with stencil coefficients

A0(κ
2) = αN ( 2

3 − 4
9κ

2) + αE( 1
3 − 4

9κ
2) − αB 1

9κ
2,

A1(κ
2) = αN (− 1

6 − 2
9κ

2) − αE 1
3κ

2 − αB 1
9κ

2,

A2(κ
2) = αN (− 1

3 − 1
9κ

2) + αE(− 1
3 − 2

9κ
2) − αB 1

9κ
2

(3.15)

and unknown weights αN , αE , αB .
To determine these unknown weights αN , αE , and αB we employ particular solu-

tions of the Helmholtz equation. In fact, utilizing interior regularity the solution u of
(3.1) satisfies the following equation point-wise

− �u(x) − k2u(x) = 0 for x ∈ �. (3.16)

The particular solutions of (3.16) are plane waves of the complex form

u(x) = eık(x1 cos θ+x2 sin θ), ı2 = −1, (3.17)

with an arbitrary incident angle θ ∈ (−π, π ]. The piecewise d-linear interpolation
IXh u ∈ Xh of (3.17) on every polyhedron in the patch 
 j , j = 1, . . . , N , reads

IXh u(x) =
∑

τ1,τ2∈{−1,1}
eıκ

(
(τ1−t1) cos θ+(τ2−t2) sin θ

)

S(τ1,τ2)
11 (x)

× eık(x
j
1 cos θ+x j

2 sin θ) for x ∈ Q j
(t1,t2)

, t1, t2 ∈ {−1, 1}.
(3.18)

Substituting expressions (3.18) and (3.13) into (3.10), for the interior stencil we derive
the usual dispersion equation with respect to the incident angle θ :

A0(κ
2) + A1(κ

2)
(
cos(2κC) + cos(2κS)

) + A2(κ
2) cos(2κC) cos(2κS) = 0

(3.19)

where the notation C := cos θ and S := sin θ is used. Inserting (3.15) into (3.19),
one linear equationD(αN , αE , αB; κ2, θ) = 0 for three unknowns αN , αE , and αB in
dependence of κ2 and θ is obtained. For each κ = kh

2 and for each θ , equality (3.19)
implies a linear condition which can be solved for the variables

{αN (κ2, θ), αE (κ2, θ), αB(κ2, θ)}
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in dependence of the parameters (κ2, θ).
Our consideration results in the following.

Proposition 3.3 If the incident direction (cos θ, sin θ) in R
2 is fixed a-priori, then

there exist nontrivial weights αN (κ2, θ), αE (κ2, θ), αB(κ2, θ) ∈ R which solve the
dispersion equation (3.19). These weights determine the finite element basis (3.13)
for the test space Yh. The exact interpolation IXh u from (3.18) solves problem (3.10)
stated over Yh. If the solution to (3.10) is unique, then it coincides with IXh u.

We note that Proposition 3.3 justifies the optimality condition (2.7) given in Step 2
of Algorithm 2.1 for the underlying Helmholtz problem.

In realistic situations, the incident angle θ is unknown a-priori, and the dispersion
equation (3.19) cannot be solved for arbitrary angle. Therefore, in the following we
rely on the asymptotic model of (3.19) when κ → 0. In view of the considerations
of Sect. 2 this will give us an approximate optimality condition (2.8) instead of (2.7)
(respectively, instead of (3.10) for the underlying Helmholtz problem).

We look for the weights in (3.13) given in asymptotic form with respect to κ2 as

αN (κ2) = 1 + αN
1 κ2, αE (κ2) = αE

0 + αE
1 κ2, αB(κ2) = αB

0 + αB
1 κ2,

(3.20)

with five unknown coefficients αN
1 ∈ R, and αE

i , αB
i ∈ R for i = 0, 1. The chosen

number of five unknowns will be argued below (3.21). We substitute (3.15) and (3.20)
into (3.19) and apply asymptotic relations:

cos(2κC) + cos(2κS) = 2 − 2κ2 + (
1 − 2(CS)2

) 2
3κ4 − (

1 − 3(CS)2
) 4
45κ6 + o(κ7),

cos(2κC) · cos(2κS) = 1 − 2κ2 + (
1 + 4(CS)2

) 2
3κ4 − (

1 + 12(CS)2
) 4
45κ6 + o(κ7).

This substitution reduces the dispersion equation to the following asymptotic equality

D(αN (κ2), αE (κ2), αB(κ2); κ2, θ) = 2κ2
(− 1

3α
E
0 − 2

9α
B
0

)

+ 2
3κ

4
( 1
2 + 4

3α
E
0 − 2αE

1 + 2
3α

B
0 − 4

3α
B
1

) + (CS)2 23κ
4
(−1 − 4

3α
E
0

)

+ 4
45κ

6
(−2 + 15

2 αN
1 − 23

6 αE
0 + 20αE

1 − 5
3α

B
0 + 10αB

1

)

+ (CS)2 4
45κ

6
( 7
2 − 15αN

1 + 7
3α

E
0 − 20αE

1 − 5
3α

B
0

) + Er(κ, θ),

(3.21)

where the residual Er( · , θ) = o(κ7) for θ ∈ (−π, π ]. With the following five coeffi-
cients

αN
1 = − 9

20 , αE
0 = − 3

4 , αE
1 = 13

40 , αB
0 = 9

8 , αB
1 = − 9

80 (3.22)

we eliminate the five linear combinations by the terms of order O(κ2), O(κ4), O(κ6),
O((CS)2κ4), and O((CS)2κ6) in (3.21), which provides the asymptotic equality

D(
1 − 9

20κ
2,− 3

4 + 13
40κ

2, 9
8 − 9

80κ
2; κ2, θ

) = Er(κ, θ),

Er(κ, θ) = o(κ7) for all θ ∈ (−π, π ]. (3.23)
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Fig. 3 Test space: biquadratic finite elements on the patch in R
2

Inserting (3.22) into (3.15) we get finally the following stencil coefficients

A0(κ
2) = 5

12 − 77
180κ

2 + 49
720κ

4, A1(κ
2) = − 1

6 − 1
45κ

2 + 1
240κ

4,

A2(κ
2) = − 1

12 − 1
36κ

2 − 7
720κ

4.
(3.24)

The corresponding biquadratic finite element basis functions

αN (κ2)S(t1,t2)
11 (x) + αE (κ2)

(
S(t1,t2)
21 (x) + S(t1,t2)

12 (x)
)+αB(κ2)S(t1,t2)

22 (x)

for x ∈ Q j
(t1,t2)

, t1, t2 ∈ {−1, 1}, are depicted in Fig. 3 in dependence of κ .
These basis functions correspond to the center-point in the patch shown in Fig. 2.

They are a specific combination with the coefficients (αN (κ2), αE (κ2), αB(κ2)) of
the three shape modes therein. When varying κ we observe a difference between the

basis functions shown in the plots (a) and (b) for κ =
√

2
7 (11 − √

46) ≈ 1.0977 (see
the remark after Theorem 3.4) and κ = 0.25, respectively, while the basis functions
depicted in the plots (b) and (c) for κ = 0.25 and κ = 10−10 are visually indistin-
guishable. This fact explains that κ need not be chosen very small for computations,
in spite of the asymptotic arguments used for the analysis κ → 0. We shall discuss in
the next session the choice of κ for the computational realization.

We finish this section with few remarks. It is argued in [3] that, generally, no
further reduction of degree in the residual error o(κ7) can be attained in the context of
the dispersion equation (3.19). From (3.23) we can determine also the discrete wave
number kκ such that |kκ − k| = o(κ7).

In the following section we show well-posedness of (3.3) for the chosen trial and
test spaces. Subsequently, we estimate the respective error of discretization.

3.4 Well posedness and a-priori error analysis

Now we consider the discrete variational problem problem (3.3) with the test space
Yh = Y κ

h spanned by the biquadratic finite element functions weighted according to
(3.20) and (3.22). The test space is enriched in comparison with the bilinear finite
elements in the trial space Xh .
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To guarantee well posedness of (3.3) in the test space Y κ
h , positive definiteness of

the system matrix A(κ2) ∈ Sym(N 2) with coefficients A0(κ
2), A1(κ

2), A2(κ
2) from

(3.24) is needed. We note that the coefficients enter the system matrix A(κ2) in the
following way. All nonzero elements in each row as well as in each column consist
of nine elements which are 4A0(κ

2) (once), 2A1(κ
2) (four times), and A2(κ

2) (four
times). We start our consideration with the Laplace operator which corresponds to
κ = 0 in (3.24) and then extend it by continuity to κ > 0. We note that the relations
A0(0) > 0 and A0(0) + 2A1(0) + A2(0) = 0 hold which imply the usual consistency
conditions for the Laplace operator. In fact, we can derive the following properties of
the matrix A(0) ∈ Sym(N 2):

(i) A(0) has positive diagonal entries.
(ii) A(0) is an L-matrix: ai j (0) ≤ 0 for j �= i , aii (0) > 0.
(iii) A(0) is diagonally dominant:

∑
j �=i |ai j (0)| ≤ |aii (0)|.

(iv) A(0) is irreducible: no permutation matrix P exists such that PA(0)P� can be
reduced.

From (i), (iii), and (iv) it follows that A(0) is irreducibly diagonal dominant, hence
nonsingular, see [36]. Since the determinant of A(κ2) is a continuous function of its
entries, the following existence theorem holds.

Theorem 3.4 There exists κ2
0 > 0 (which may be small) such that the discrete varia-

tional problem (3.3) stated in the trial space Xh and in the test space Y κ
h is well posed

for all κ2 ≤ κ2
0 , κ := kh

2 .

We can evaluate an upper bound for the constant κ2
0 in Theorem 3.4 from the

necessary condition (i) by requiring: κ0 <

√
2
7 (11 − √

46) ≈ 1.0977. For larger
values of κ we obtain negative diagonal entries. In diverse tests the choice κ ≤ 0.25
was successful (see Fig. 4).

Well-posedness can be assured only if k2 is bounded away from the finite-
dimensional eigenvalues of the Laplace operator. Otherwise, if k2 approaches the
finite-dimensional eigenvalues it is said to enter a zone of degeneracy, see the related
investigation in [9,24,27]. In 3d, in Appendix B for a specific choice of αB

1 we will
get A0(κ

2) > 0 for all κ2, which is the improvement compared to the 2d case.
Now with the help of Theorem 3.4 we investigate the error of (3.3). We consider

the plane wave solution u in (3.17) and its linear interpolate IXh u given in (3.18). The
optimality condition (3.10) is not satisfied exactly with the test space Yh = Y κ

h . But
with (3.23) we can argue that a residual term φκ

h ∈ Xh exists such that

∫

�h

(∇(IXh u) · ∇vh − k2(IXh u)vh
)
dx =

∫

�h

φκ
h vh dx for all vh ∈ Y κ

h ,

(3.25a)
∣
∣
∣

∫

�h

φκ
h vh dx

∣
∣
∣ ≤ Er(κ) ‖vh‖X , Er(κ) > 0, Er(κ) = o(κ7),

(3.25b)
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holds (compare with (2.8)). In comparison with (3.25a), the discrete counterpart uh ∈
Xh solves the homogeneous equation

uh = IXh u on ∂�h,
∫

�h

(∇uh · ∇vh − k2uhvh
)
dx = 0 for all vh ∈ Y κ

h , vh = 0 on ∂�h .
(3.26)

For κ2 < κ2
0 , from Theorem 3.4 the inf-sup condition (2.9) follows which in our case

has the form of the LBB condition with the LBB constant γ :

inf
wh∈X0

h

sup
vh∈Yh

∣
∣
∣
∫
�h

(∇wh · ∇vh − k2whvh
)
dx

∣
∣
∣

‖wh‖X‖vh‖X ≥ γ > 0. (3.27)

Therefore, analogously to Proposition 2.2 in Sect. 2, from 3.24 and (3.27) we infer
the following result on the asymptotic error.

Theorem 3.5 Let κ2 < κ2
0 . For an arbitrary plane wave solution u, due to the asymp-

totic estimate of the dispersion (3.23), the error between the exact linear interpolation
and the FE solution of (3.26) is given by

‖IXh u − uh‖X = o(κ7), κ = kh
2 . (3.28)

The assertion of Theorem 3.5 holds also in the 3d case, which will be described in
Appendix B.

We note that the Dirichlet problem (3.26) can be generalized to an arbitrary mixed
setting in the following way. We consider the Dirichlet, Neumann, and Robin bound-
ary conditions stated at pairwise disjoint boundaries �D

h ∪ �N
h ∪ �R

h = ∂�h of the
computational domain�h endowed with the mesh Mh . In the discretized form it leads
to the following variational problem: Find uh ∈ Xh such that uh = IXh u0 on �D

h and

∫

�h

(∇uh · ∇vh − k2uhvh
)
dx +

∫

�R
h

βhu
hvh dx = 0 for all vh ∈ Y κ

h , (3.29)

where the continuous data IXh u0 and βh are given in �h and �R
h , respectively. Using

bilinear finite elements for uh ∈ Xh , and the biquadratic finite elements given by
(3.11), (3.13) with the weights from (3.20), (3.22) for vh ∈ Y κ

h , the stiffness and
mass matrices can be calculated according to the terms in (3.29). The high order of
interpolation, which was validated for the Dirichlet problem (3.26), may not hold for
the variational boundary conditions appearing in (3.29). Possibleways of improvement
are discussed in Sect. 4.

3.5 The a-posteriori numerical analysis

We compare our approximation by the Petrov–Galerkin enrichment (PGE) with the
standard Galerkin least squares (GLS) and other GFEMmethods: the quasi-stabilized
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Fig. 4 The errors in the selected norms for various FE methods

(QSFEM)method introduced in [3], and the variationalmultiscale (VMS) version from
[30], which are well known in the literature. With uh we associate discrete solutions
corresponding to these FE methods which are compared with respect to the exact
solution u of theHelmholtz problem (3.1) given in the formof a planewave.Wepresent
here the numerical result of tests computed in the unit cube �h = � = [0, 1]d ⊂ R

d

for d = 2. Our observations also hold for our numerical tests in 3d.
The methods mentioned above are linear in the H1-seminorm, i.e.,

c1(k, κ) := ‖∇(u − uh)‖L2(�h;C) (3.30)

where c1(k, · ) = O(κ) for each k ∈ R recalling that κ = kh
2 . The errors c1(8, κ)

are depicted in Fig. 4a for the different FE methods as κ varies according to κ = 4h
with h ∈ (2−9, . . . , 2−4). We observe that the curves for GFEM methods are very
close to each other and advantage over GLS. For comparison, we provide here also the
quadratic approximation when both trial and test spaces are spanned by continuous
piecewise biquadratic polynomials on the uniform quadrilateral mesh Mh over �h . In
this case, c1(k, · ) = o(κ). The computational cost of the proposed PGE method is
the same as the linear FE methods, while the cost for quadratic FEM is increased.

The difference between the various tested linear approximation methods become
apparent when we examine the error with respect to the discrete �2-norm

c2(k, κ) := ‖IXh u − uh‖Xh = ‖u − uh‖Xh = ‖{u(x j ) − uh(x j )}Nj=1‖�2(RN )

(3.31)

given over the mesh nodes {x j }Nj=1 = Nh . These errors are depicted in Fig. 4, firstly,

in plot (b) in dependence of κ ∈ (2−7, . . . , 2−2) for fixed k = 8 and, second, in plot
(c) with respect to varying k ∈ (23, . . . , 26) for fixed κ = 0.25. The former case in
plot (b) describes the asymptotic behavior of the tested methods as κ = kh

2 → 0.
Plot (c) represents the pollution effect when increasing the wave number k even fixed
parameter κ .

Before detailed discussion of the curves depicted in Fig. 4b, c with respect to the
finite �2-norm, it will be helpful to give another interpretation of these data. To explain
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Fig. 5 The error of approximation of the exact interpolation solution for various FE methods

Table 1 The numerical
performance of the FE methods
as κ → 0 for fixed k

FE method c1(k, · ) c2(k, · ) c3(k, · )

GLS O(κ) O(κ2) O(κ2)

VMS O(κ) o(κ7) o(κ7)

QSFEM O(κ) o(κ7) o(κ7)

PGE O(κ) o(κ7) o(κ7)

quadratic o(κ) O(κ2) O(κ)

it we present in Fig. 5 the errorwith respect to the linear interpolate solution IXh u ∈ Xh

in the H1-seminorm given by

c3(k, κ) := ‖∇(IXh u − uh)‖L2(�h;C). (3.32)

This quantifier expresses the accuracy of the tested FE methods with respect to exact
interpolate of the solution. In Fig. 5 we depict the respective curves of c3(k, κ), with
respect to varying κ ∈ (2−7, . . . , 2−2) in the plot (a) for fixed k = 8, as well as varying
k ∈ (23, . . . , 26) in the plot (b) for fixed κ = 0.25.

For convenience we present in the following table some observations which can be
drawn from Figs. 4 and 5.

Below we comment on the behavior of the FE methods presented in Table 1.

• The standard GLS method has, evidently, the poorest performance.
• The high order (here, quadratic) finite elements have a good approximation prop-
erty of the exact solution while lagging behind in interpolation in the mesh nodes.

• The computational complexity of the PGE as compared to the other linear tech-
niques is comparable since thesemethods only differ with respect to weight factors
of the basis functions.

• The VMS, QSFEM, and PGE methods have the smallest pollution error when
increasing k even fixed κ = kh

2 .
• The QSFEMmethod has the best performance for large κ ∼ 1. For small κ < 2−3,
however, its error stops decaying and starts to grow in the tests. The reason is the
following one. The corresponding stencil is represented by formula (5.7) in [3]with

123



 38 Page 18 of 29 V. A. Kovtunenko, K. Kunisch

divided differences of the order O(κ)
O(κ)

, which results in numerical uncertainty of the

division 0
0 as κ → 0. Similarly, we observe in Figs. 4 and 5 that the asymptotic

decay of VMS fails for κ < 2−5. For smaller κ << 1 also PGE may become
numerically unstable.

From the computation tests for moderately small κ ≤ 0.25 we conclude that our PGE
method has the interpolation order o(κ7), which justifies numerically the assertion of
Theorem 3.4. It approximates the linearly interpolated solution in the most stable way
among the tested FE methods.

4 Concluding remarks

Here we discuss possible further developments of our approach.
In our application to inverse scattering problem, see [21], the Dirichlet data u0

in (3.1) represents boundary measurement for the reconstruction of u by means of a
solution to the Helmholtz equation.

We comment on extension of the formulas in Sect. 3 to Neumann and Robin bound-
ary conditions. The weights (3.20) and (3.22) are found from the dispersion equation
(3.19) at interior mesh points. In polyhedra adjacent to mesh points on the boundary,
the weights need to be determined according to the dispersion equation for the bound-
ary stencil of the mesh points in the respective patch. The corresponding dispersion
equation depends on the boundary condition.

The inhomogeneous Helmholtz equation with a right-hand side f can be trans-
formed to a homogeneous one for u − u0 with suitable u0, even in the case when f
resides in the dual space H−1(�;C).

The algorithm given in Sect. 2 has the potential of application to various PDEs
expressed in variational form. We note that the result of Sect. 3 includes the Laplace
equationby choosing k = 0. For vector valuedproblems, the algorithmcanbe extended
to Raviart–Thomas like finite elements. Higher order finite elements can be employed
within the Hermite interpolation as well.
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Appendix A: Gegenbauer polynomials andmother wavelets with van-
ishingmoments

The Gegenbauer polynomials Gn ∈ Pn([−1, 1]) of degree n = 0, 1, . . . are defined
by the recursion

G0(ξ) := 1, G1(ξ) := −ξ, G2(ξ) = 1−ξ2

2 , G3(ξ) = ξ(1−ξ2)
2 , . . .

Gn(ξ) = 1
n

(
(2n − 3)ξGn−1(ξ) − (n − 3)Gn−2(ξ)

)
for n = 2, 3, . . .

(A.1)
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They are used for the hierarchical shape functions, see [32], given in the local coordi-
nates ξ ∈ [−1, 1] with respect to the binary parameter t ∈ {−1, 1} as

G̃t
1(ξ) := 1+tξ

2 , G̃t
n(ξ) := tnGn(ξ) for n = 2, 3, . . . .

We start with useful properties of the Gegenbauer polynomials. First we remind
that Gn is the particular solution of the Gegenbauer equation

(1 − ξ2)G ′′
n(ξ) + n(n − 1)Gn(ξ) = 0 for n ≥ 0. (A.2)

Since G2(±1) = G3(±1) = 0, due to the two term recursion (A.1), it follows that

Gn(1) = Gn(−1) = 0 for n ≥ 2. (A.3)

Based on (A.2) and (A.3) we associate Gn to local wavelets as follows.

Lemma A.1 For n ≥ 3, the Gegenbauer polynomials {Gn} form a system of mother
wavelets (up to a normalization factor) with vanishing moments such that

∫ 1

−1
ξmGn(ξ) dξ = 0 for all 0 ≤ m ≤ n − 3. (A.4)

Proof For fixed n ≥ 3, we prove (A.4) by induction over m. For m = 0, by (A.2),
(A.3), and applying integration by parts we derive that

∫ 1

−1
Gn(ξ) dξ = − 1

n(n−1)

∫ 1

−1
(1 − ξ2)G ′′

n(ξ) dξ = 1
n(n−1)

(
2

∫ 1

−1
Gn(ξ) dξ

− (1 − ξ2)G ′
n(ξ)|1ξ=−1 + 2ξGn(ξ)|1ξ=−1

)
= 2

n(n−1)

∫ 1

−1
Gn(ξ) dξ.

The above equality is satisfied with
∫ 1
−1 Gn(ξ) dξ = 0 for n ≥ 3. Analogously, for

m = 1 we deduce the equality

∫ 1

−1
ξGn(ξ) dξ = 6

n(n−1)

∫ 1

−1
ξGn(ξ) dξ,

which is satisfied with either n = 3 or
∫ 1
−1 ξGn(ξ) dξ = 0 for n ≥ 4.

If
∫ 1
−1 ξm−2Gn(ξ) dξ = 0, then we obtain for 0 ≤ m ≤ n − 3

∫ 1

−1
ξmGn(ξ) dξ = (m+1)(m+2)

n(n−1)

∫ 1

−1
ξmGn(ξ) dξ,

hence, either m = n − 2 or
∫ 1
−1 ξmGn(ξ) dξ = 0 for m ≤ n − 3. This proves the

assertion. ��

123



 38 Page 20 of 29 V. A. Kovtunenko, K. Kunisch

With the help of Lemma A.1 we can recover the orthogonality property of the
Gegenbauer polynomials as given below (see [1, p.774]).

Lemma A.2 System {Gn}∞n=2 forms an orthogonal basis in C∞
0 ([−1, 1]) with respect

to the weighted L2-inner product

∫ 1

−1

1
1−ξ2

Gm(ξ)Gn(ξ) dξ = 0 form �= n andm, n ≥ 2. (A.5)

The property of vanishing moments in (A.4) is used to prove orthogonality of the
Gegenbauer polynomials to arbitrary polynomials as follows.

Lemma A.3 For fixed m ≥ 0, the basis {Gn}∞n=m+3 ∈ H1
0 (−1, 1) ∩ C∞([−1, 1]) is

orthogonal to arbitrary polynomials P ∈ Pm([−1, 1]) with respect to inner products
induced by the L2-norm and the H1-seminorm, respectively, i.e.

∫ 1

−1
P(ξ)Gn(ξ) dξ = 0,

∫ 1

−1
P ′(ξ)G ′

n(ξ) dξ = 0, for all n ≥ m + 3. (A.6)

Moreover, for every binary t ∈ {−1, 1} a nontrivial linear combination

wt
m+2(ξ) =

m+2∑

i=1

cti G̃
t
i (ξ) ∈ Pm+2([−1, 1]) with {cti }m+2

i=1 ∈ R
m+2 (A.7)

exists which is orthogonal to P ∈ Pm([−1, 1]) with respect to the bilinear form
∫ 1

−1

(
P ′(ξ)(wt

m+2)
′(ξ) − κ2P(ξ)wt

m+2(ξ)
)
dξ = 0, for κ ∈ R fixed. (A.8)

Proof The L2-orthogonality in (A.6) follows immediately from (A.4) for n ≥ m + 3.
The orthogonality with respect to the H1-seminorm in (A.6) is obtained after inte-
gration by parts due to P ′′ ∈ Pm−2([−1, 1]) and (A.3), (A.4). For m + 1 arbitrary
coefficients in the monomials forming P , equality (A.8) results inm +1 linear homo-
geneous equations, which can be solved with m + 2 nontrivial coefficients {cti }m+2

i=1 in
(A.7) for every t ∈ {−1, 1}. This completes the proof. ��

Lemma A.3 is used for the proof of the following theorem on decomposition of the
H1-space in 1d.

Theorem A.4 For a given mesh Mh of size h > 0 in a segment �h ⊂ R
1, let Xh be

the set of continuous (over �h) and piecewise (on Mh) polynomials of degree m ≥ 1
over C. Then for given k ∈ R, the orthogonal complement

X⊥
h := {v ∈ H1(�h;C) : ∫

�h

(
(wh)′v′ − k2whv

)
dx = 0 for all wh ∈ Xh}

(A.9)

can be spanned by continuous (over�h) and piecewise (on Mh) polynomials of degree
n ≥ m + 2. The remaining polynomials of degree n ≤ m + 1 are dense in Zh.
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Proof For the ordered set Nh of nodes x1 < x2 < · · · < xN of the mesh Mh , we cover
�h with the overlapping patches 
1 = Q1

1 ∪ Q1−1, . . . , 
N = QN
1 ∪ QN−1, where

Q j
1 := [x j−1, x j ] for j = 2, . . . , N , and Q j

−1 := [x j , x j+1] for j = 1, . . . , N − 1.

Depending on the binary index t ∈ {−1, 1}, every segment Q j
t , j = 1, . . . , N , can be

transformed to the parent domain [−1, 1]with the help of the coordinate transformation
x = x j + h

2 (ξ − t), where h = x j − x j−1 for t = 1 and h = x j+1 − x j for t = −1,
yielding the Jacobian h

2 .
Given a partition of unity subordinated to the covering∪N

j=1

j∩�h , every function

v ∈ H1(�h;C) can be partitioned in a continuous way by v = ∑N
j=1 v j . Every such

function v j (x) ∈ H1
0 (
 j ;C) is supported on the patch 
 j , j = 1, . . . , N . It can be

transformed to the function pair v j (x j + h
2 (ξ − t)) =: vtj (ξ) ∈ H1([−1, 1];C) which

is defined in the parent domain for t ∈ {−1, 1} such that v1j (−1) = v−1
j (1) = 0 and

v1j (1) = v−1
j (−1). After transformation, the equation in (A.9) implies

∫ 1
−1

(
P ′(ξ)(vtj )

′(ξ) − κ2P(ξ)vtj (ξ)
)
dξ = 0 for all P ∈ Pm([−1, 1];C),

(A.10)

where κ := kh
2 and the polynomial P(ξ) is of the form wh(x j + h

2 (ξ − t)) ∈
Pm([−1, 1];C).

We span vtj (ξ), t ∈ {−1, 1}, with the following shape functions:

{Bt
n}∞n=1 := { 1+tξ

2 , t2G2(ξ), . . . , tm+1Gm+1(ξ), wt
m+2(ξ), tm+3Gm+3(ξ), . . .

}

(A.11)

where Bt
n ∈ Pn([−1, 1]). The linear combination wt

m+2 as defined in (A.7) is chosen
such that (A.8) is fulfilled. The choice of this basis implies that (A.10) is satisfied by
(A.6) for the test functions vtj = Bt

n for n ≥ m + 3, and by (A.8) for vtj = Bt
m+2.

Therefore, substituting into (A.10) the ansatz vtj (ξ) = ∑∞
n=1 V

t
n B

t
n(ξ) with Bt

n

from (A.11) and V t
n ∈ Cwhere V 1

1 = V (−1)
1 , the orthogonality condition on segments

(A.10) takes the form

m+1∑

n=1

V t
n

∫ 1

−1

(
P ′(ξ)(B

t
n(ξ))′(ξ) − κ2P(ξ)B

t
n(ξ)

)
dξ = 0.

Due to Lemma A.3 this equality cannot be satisfied with nonzero set of coefficients
{V t

1 , . . . , V
t
m+1}. Otherwise, the shape functions in (A.11) would be linearly depen-

dent, which would lead to a contradiction.
We conclude that test functions vtj of the form vtj (ξ) = ∑∞

n=m+2 V
t
n B

t
n(ξ) are

needed to fulfill (A.10). This proves that X⊥
h is spanned by piecewise polynomials of

the local degree n ≥ m + 2. Consequently, the piecewise polynomials of the local
degree n ≤ m + 1 are dense in Zh , and the assertion of the theorem follows. ��
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We note that the mesh in 1d does not need be uniform in Theorem A.4.
In the following we extend Theorem A.4 to the multidimensional case Rd , d ∈ N.

Further we define Pn as the space of d-dimensional polynomials of degree at most
n with respect to every coordinate of the d-dimensional variable ξ = (ξ1, . . . , ξd),
namely,

Pn := {P : P(ξ) =
∑

n1,...,nd

cn1...nd

d∏

i=1

ξ
ni
i with cn1...nd ∈ R, max

i=1,...,d
ni = n}.

Lemma A.5 For fixed m ≥ 0, the d-dimensional Gegenbauer polynomials Gn(ξ) :=∏d
i=1 Gni (ξi ) ∈ Pn([−1, 1]d) of degree n ≥ m + 3 are orthogonal to arbitrary

polynomials P ∈ Pm([−1, 1]d) with respect to inner products induced by the L2-
norm and the H1-seminorm as follows

∫

[−1,1]d
P(ξ)Gn(ξ) dξ = 0,

∫

[−1,1]d
∇P(ξ) · ∇Gn(ξ) dξ = 0 (A.12)

for all n ≥ m + 3. Moreover, using the notion (for i = 1, . . . , d)

G̃ti
1 (ξi ) := 1+ti ξi

2 , G̃ti
ni (ξi ) := ti

ni Gni (ξi ) for ni ≥ 2, ti ∈ {−1, 1}, (A.13)

for every t1, . . . , td ∈ {−1, 1}, there exist exactly (m+2)d −(m+1)d nontrivial linear
combinations of the shape functions with factors {c(t1,...,td )

n1...nd }m+2
n1,...,nd=1 ∈ R

(m+2)d ,

w(t1,...,td )(ξ) =
m+2∑

n1,...,nd=1

c(t1,...,td )
n1...nd

d∏

i=1

G̃ti
ni (ξi ) ∈ Pm+2([−1, 1]d), (A.14)

which satisfy the equality

∫
[−1,1]d

(∇P(ξ) · ∇w(t1,...,td )(ξ) − κ2P(ξ)w(t1,...,td )(ξ)
)
dξ = 0, for κ ∈ R.

(A.15)

Proof Since the multiple integral over [−1, 1]d can be split into the product of d single
integrals over [−1, 1], we infer from (A.4) that

∫

[−1,1]d

d∏

i=1

ξ
mi
i

d∏

j=1

Gn j (ξ j ) dξ =
d∏

i=1

∫ 1

−1
ξ
mi
i Gni (ξi ) dξi = 0,

∫

[−1,1]d
∇( d∏

i=1

ξ
mi
i

) · ∇( d∏

j=1

Gn j (ξ j )
)
dξ =

d∑

j=1

∫ 1

−1
(ξ

m j
j )′G ′

n j
(ξ j ) dξ j

×
d∏

i=1,i �= j

∫ 1

−1
ξ
mi
i Gni (ξi ) dξi = 0,
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if there exists an index i ∈ {1, . . . , d} such that ni ≥ m + 3 and mi ≤ m. Hence
(A.12) holds.

We note that from (A.12) it follows that (A.15) holds with w(t1,...,td ) = Gn for all
n ≥ m + 3 and arbitrary κ .

Now we take w(t1,...,td ) ∈ Pm+2([−1, 1]d) in the form of (A.14) and a polynomial
P ∈ Pm([−1, 1]d)with (m+1)d degrees of freedom. Inserting the linear combination
(A.14) into the left hand side of (A.15), for every fixed (t1, . . . , td) ∈ {1, 1}d we get
(m + 1)d homogeneous equations for (m + 2)d unknown coefficients c(t1,...,td )

n1...nd ∈ R

by (n1, . . . , nd) ∈ {1, . . . ,m + 2}d . The respective matrix has full rank because
the shape functions in (A.11) are linearly independent. Therefore, we find exactly
(m + 2)d − (m + 1)d nontrivial linear combinations satisfying (A.15).

We note that the residual set of polynomial functions w(t1,...,td ) ∈ H1((−1, 1)d)
which do not fulfill (A.15) has (m + 1)d degrees of freedom. The proof is complete.

��

Based on Lemma A.5 we prove the main result generalizing Theorem A.4 to the
multidimensional case.

Theorem A.6 For a uniform polyhedral mesh Mh of the size h > 0 over the compu-
tational domain �h ⊂ R

d , d ∈ N, let Xh be the finite dimensional set of continuous
(over �h) and piecewise (on Mh) polynomials over C of degree at most m in every
coordinate, with m ≥ 1 fixed. For given k ∈ R, the orthogonal complement

X⊥
h := {v ∈ H1(�h;C) : ∫

�h

(∇wh · ∇v − k2whv
)
dx = 0 for all wh ∈ Xh}

(A.16)

can be spanned by continuous (over�h) and piecewise (on Mh) polynomials of degree
n ≥ m + 2. The remaining polynomials of degree n ≤ m + 1 are dense in Zh.

Proof We start by defining the transformation of functions depending on x ∈ �h to
the local coordinates ξ ∈ [−1, 1]d . Let Nh = {x j }Nj=1 be the set of nodal points of the

polyhedral mesh. We associate every point x j , j = 1, . . . , N , to the patch 
 j of all
neighbor elements containing x j . These neighboring elements consist of 2d polyhedra
Q j

(t1,...,td ) indexed by the binary numbers (t1, . . . , td) ∈ {−1, 1}d . Themulti-index t =
(t1, . . . , td) is chosen in such a way that it corresponds to the “hat” function centered
at the node x j . Namely, the reference patch
 j = {xi ∈ R : x j

i −h ≤ xi ≤ x j
i +h}di=1

associates the stencil of 3d -points and consists of the polyhedra

Q j
(t1,...,td ) = {xi ∈ R : x j

i − h
2 (1 + ti ) ≤ xi ≤ x j

i + h
2 (1 − ti )}di=1.

Using a partition of unity, every function v ∈ H1(�h;C) can be partitioned by
v = ∑N

j=1 v j continuously over the family of overlapping patches {
 j }Nj=1 covering

the computational domain �h in such a way that each part v j (x) ∈ H1
0 (
 j ;C) is

supported on the reference patch 
 j . We transform each polyhedron Q j
(t1,...,td ) of the
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patch to the parent domain [−1, 1]d with the linear coordinate transformation xi =
x j
i + h

2 (ξi − ti ), i = 1, . . . , d. After the transformation we obtain 2d images v j
(
x j +

h
2 (ξ − t)

) =: v
(t1,...,td )
j (ξ) ∈ H1((−1, 1)d ;C) for (t1, . . . , td) ∈ {−1, 1}d which are

continuous across mutual boundaries (corresponding to ξi = ti , i = 1, . . . , d) and
zero on the external boundary (corresponding to ξi = −ti , i = 1, . . . , d). Therefore,
v

(t1,...,td )
j can be spanned by the Gegenbauer polynomial based shape functions

S(t1,...,td )
n1...nd (ξ) :=

d∏

i=1

G̃ti
ni (ξi ) ∈ Pn([−1, 1]d), where n = max

i=1,...,d
ni . (A.17)

Here we use the notation (A.13), where (t1, . . . , td) ∈ {−1, 1}d corresponds to
Q j

(t1,...,td ).

Now we can represent the orthogonal complement X⊥
h in local coordinates. After

transformation of v j ∈ H1
0 (
 j ;C) to the parent domain, for allwh

(
x j + h

2 (ξ − t)
) =:

P(ξ) ∈ Pm([−1, 1]d ;C) we express the respective integral equation in (A.16) as

∑

(t1,...,td )∈{−1,1}d

∫

Q j
(t1,...,td )

(∇wh(x) · ∇v j (x) − k2wh(x)v j (x)
)
dx

= ( h
2

)d−2 ∑

t1,...,td∈{−1,1}

∫

(−1,1)d

(∇P(ξ) · ∇v
(t1,...,td )
j (ξ)

− ( kh2 )2P(ξ)v
(t1,...,td )
j (ξ)

)
dξ = 0.

(A.18)

Substituting v
(t1,...,td )
j = S(t1,...,td )

n1...nd from (A.17), due to (A.12) in Lemma A.5 equation
(A.18) is satisfied for n ≥ m + 3 with n = maxi=1,...,d ni . Moreover, due to (A.15)
in Lemma A.5, (m + 2)d − (m + 1)d nontrivial linear combinations w(t1,...,td ) ∈
Pm+2([−1, 1]d) of the shape functions from (A.14) satisfy equation (A.18). Therefore,
the finite set of (m + 1)d shape functions {S(t1,...,td )

n1...nd }m+1
maxi=1,...,d ni=1 forms the span of

those images which do not fulfill condition (A.18) in the parent domain.
After the inverse transformation of the images to the global coordinates we infer

the assertion of the theorem. ��

In the particular case of m = 1, Theorem 3.2 follows from Theorem A.6.

Appendix B: The PGE approximation in 3d

Utilizing the spatial shape functions S(t1,t2,t3)
n1n2n3 (ξ), t1, t2, t3 ∈ {−1, 1}, n1, n2, n3 ∈

{1, 2} for ξ = (ξ1, ξ2, ξ3) ∈ [−1, 1]3, which are defined in (3.6), we construct the
symmetric basis functions corresponding to node, edge, facet, and bubble modes,
respectively,
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S(t1,t2,t3)
111 (x) =

3∏

i=1

(
1 + ti

h (xi − x j
i )

)
, (B.1a)

S(t1,t2,t3)
211 (x) + S(t1,t2,t3)

121 (x) + S(t1,t2,t3)
112 (x)

= −2
3∑

i=1

t1
h (xi − x j

i )S(t1,t2,t3)
111 (x), (B.1b)

S(t1,t2,t3)
221 (x) + S(t1,t2,t3)

212 (x) + S(t1,t2,t3)
122 (x) = 4

( t1
h
t2
h (x1 − x j

1 )(x2 − x j
2 )

+ t1
h
t3
h (x1 − x j

1 )(x3 − x j
3 ) + t2

h
t3
h (x2 − x j

2 )(x3 − x j
3 )

)
S(t1,t2,t3)
111 (x), (B.1c)

S(t1,t2,t3)
222 (x) = −8

3∏

i=1

ti
h (xi − x j

i )S(t1,t2,t3)
111 (x). (B.1d)

Here x = (x1, x2, x3) live in the polyhedra Q j
(t1,t2,t3)

, t1, t2, t3 ∈ {−1, 1}, forming

the patch 
 j = Q j
(1,−1,−1) ∪ Q j

(−1,−1,−1) ∪ Q j
(1,1,−1) ∪ Q j

(−1,1,−1) ∪ Q j
(1,−1,1) ∪

Q j
(−1,−1,1) ∪ Q j

(1,1,1) ∪ Q j
(−1,1,1) = {xi ∈ R : x j

i − h ≤ xi ≤ x j
i + h}3i=1 as defined

in (3.8).
We use the finite element ansatz of the trial function

uh(x) =
N∑

j=1

U j
∑

τ1,τ2,τ3∈{−1,1}: Q j
(τ1,τ2,τ3)

∩�h �=∅
S(τ1,τ2,τ3)
111 (x)

with unknown coefficients {U j }Nj=1 ∈ C
N , and test functions for i = 1, . . . , N

vhi (x) =
∑

t1,t2,t3∈{−1,1}: Qi
(t1,t2,t3)

∩�h �=∅

(
αN (κ2)S(t1,t2,t3)

111 (x)

+ αE (κ2)
(
S(t1,t2,t3)
211 (x) + S(t1,t2,t3)

121 (x) + S(t1,t2,t3)
112 (x)

)

+ αF (κ2)
(
S(t1,t2,t3)
221 (x) + S(t1,t2,t3)

212 (x) + S(t1,t2,t3)
221 (x)

)+αB(κ2)S(t1,t2,t3)
222 (x)

)
.

The seven unknown parameters αN
1 , αE

0 , αE
1 , αF

0 , αF
1 , αB

0 , αB
1 ∈ R determine the

weights by the modes in the test function vh as

αN (κ2) = 1 + αN
1 κ2, αE (κ2) = αE

0 + αE
1 κ2,

αF (κ2) = αF
0 + αF

1 κ2, αB(κ2) = αB
0 + αB

1 κ2.
(B.2)

The corresponding system matrix A(κ2) ∈ Sym(N 2) of the homogeneous Helmholtz
equation consists of the entries ai j (κ2), i, j = 1, . . . , N , such that
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ai j (κ
2) = a ji (κ

2)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8A0(κ
2), if 
i = 
 j with 8 overlapping polyhedra 
i and 
 j

4A1(κ
2), if 
i ∩ 
 j �= ∅ with 4 overlapping polyhedra of 
i and 
 j

2A2(κ
2), if 
i ∩ 
 j �= ∅ with 2 overlapping polyhedra of 
i and 
 j

A3(κ
2), if 
i ∩ 
 j �= ∅ with 1 overlapping polyhedra of 
i and 
 j

0, if 
i ∩ 
 j = ∅

according to the 27-point interior stencil {(Ainterior
stencil (κ2))i1i2i3}3i1,i2,i3=1 ∈ R

3×3×3

Ainterior
stencil (κ2)i1i2i3 =

⎧
⎪⎪⎨

⎪⎪⎩

8A0(κ
2), if i1 = i2 = i3 = 2

4A1(κ
2), else if i1 = i2 = 2, or i2 = i3 = 2, or i1 = i3 = 2

2A2(κ
2), else if i1 = 2, or i2 = 2, or i3 = 2

A3(κ
2), otherwise

with the following stencil coefficients

A0(κ
2) = h

(
αN

( 1
3 − 4

27κ
2
) + αE

( 1
3 − 2

9κ
2
) + αF

( 1
12 − 1

9κ
2
) − αB 1

54κ
2
)
,

A1(κ
2) = h

(
−αN 2

27κ
2 + αE

( 1
18 − 4

27κ
2
) + αF

( 1
36 − 5

54κ
2
) − αB 1

54κ
2
)
,

A2(κ
2) = h

(
−αN

( 1
12 + 1

27κ
2
) − αE

( 1
9 + 5

54κ
2
) − αF

( 1
36 + 2

27κ
2
) − αB 1

54κ
2
)
,

A3(κ
2) = h

(
−αN

( 1
12 + 1

54κ
2
) − αE

( 1
6 + 1

18κ
2
) − αF

( 1
12 + 1

18κ
2
) − αB 1

54κ
2
)
.

(B.3)

Substituting for the trial function uh = IXh u the plane wave solution

u(x) = eık(x1C1S2+x2S1S2+x3C2), Ci := cos θi , Si := sin θi , i = 1, 2,

with arbitrary incident angle θ = (θ1, θ2) ∈ (−π, π ] × [0, π ], into the discrete
variational problem (3.11) leads to the dispersion equation

D(αN
1 , αE

0 , αE
1 , αF

0 , αF
1 , αB

0 , αB
1 ; κ2, θ) := A0(κ

2) +
3∑

i=1

Ai (κ
2)Ki = 0, (B.4)

with factors

K1 := cos(2κC1S2) + cos(2κS1S2) + cos(2κC2),

K2 := cos(2κC1S2) cos(2κS1S2) + cos(2κC1S2) cos(2κC2)

+ cos(2κS1S2) cos(2κC2), K3 := cos(2κC1S2) cos(2κS1S2) cos(2κC2).
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Further we expand these factors as κ → 0:

K1 = 3 − 2κ2 + (1 − 2C) 23κ
4 − (1 − 3C + 3S) 4

45κ
6 + o(κ7),

K2 = 3 − 4κ2 + (2 + 2C) 23κ
4 − (2 + 9C − 39S) 4

45κ
6 + o(κ7),

K3 = 1 − 2κ2 + (1 + 4C) 23κ
4 − (1 + 12C + 48S) 4

45κ
6 + o(κ7),

where C := (C2S2)2 + (C1S1)2S42 and S := (C1S1)2C2
2 S

4
2 . Inserting these formula

together with (B.2) and (B.3) into (B.4), the dispersion equation has the expansion

D(αN
1 , αE

0 , αE
1 , αF

0 , αF
1 , αB

0 , αB
1 ; κ2, θ) = h

(
2κ2

(− 1
6α

E
0 − 2

9α
F
0 − 2

27α
B
0

)

+ 2
3κ

4
( 1
4 + 5

6α
E
0 − αE

1 + 7
9α

F
0 − 4

3α
F
1 + 2

9α
B
0 − 4

9α
B
1

) + C 2
3κ

4
(− 1

2 − αE
0 − 4

9α
F
0

)

+ 4
45κ

6
(−1 + 15

4 αN
1 − 31

12α
E
0 + 25

2 αE
1 − 19

9 αF
0 + 35

3 αF
1 − 5

9α
B
0 + 10

3 αB
1

)

+ C 4
45κ

6
( 7
4 − 15

2 αN
1 + 7

3α
E
0 − 15αE

1 − 1
18α

F
0 − 20

3 αF
1 − 5

9α
B
0

)

+ S 4
45κ

6
( 3
4 + 7

2α
E
0 + 17

6 αF
0

)) + Er(κ, θ),

where the residual term Er( · , θ) = o(κ7) for all θ ∈ (−π, π ] × [0, π ]. In the above
expression the six factors in parenthesis become zero for the following choice of
parameters:

αN
1 = − 43

138 − 16
27α

B
1 , αE

0 = − 39
46 , αE

1 = 4
23 + 8

9α
B
1 ,

αF
0 = 18

23 , αF
1 = − 9

184 − 4
3α

B
1 , αB

0 = − 81
184

(B.5)

depending on one free parameter αB
1 ∈ R. This results in the asymptotic relations

D(αN
1 , αE

0 , αE
1 , αF

0 , αF
1 , αB

0 , αB
1 ; κ2, θ) = Er(κ, θ),

Er( · , θ) = o(κ7) for all θ ∈ (−π, π ] × [0, π ]. (B.6)

Inserting the weights (B.5) into (B.3) we obtain the stencil coefficients as

A0(κ
2) = h

(
8
69 − ( 1759

736 + 1
3α

B
1

) 1
27κ

2 + ( 193
184 + 1

9α
B
1

) 1
81κ

4
)
,

A1(κ
2) = h

(
− 7

276 + (− 89
736 + 1

3α
B
1

) 1
27κ

2 + ( 55
368 − 1

9α
B
1

) 1
81κ

4
)
,

A2(κ
2) = h

(
− 1

92 − ( 7
736 + 1

3α
B
1

) 1
27κ

2 + (− 7
92 + 1

9α
B
1

) 1
81κ

4
)
,

A3(κ
2) = h

(
− 1

138 + (− 113
736 + 1

3α
B
1

) 1
27κ

2 − ( 35
368 + 1

9α
B
1

) 1
81κ

4
)
.

(B.7)

Setting κ = 0 in (B.7), which corresponds to the Laplace operator, the consistency
conditions A0(0) > 0 and A0(0)+2A1(0)+ A2(0) = 0 hold. Setting αB

1 = − 3741
736 ≈

−5.08we get A0(κ
2) > 0 for all κ2. Therefore, Theorem3.4 providing the existence of

the discrete variational solution to theHelmholtz problem, andTheorem3.5 estimating
the error of the discretization, hold in the 3d case as well.
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