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Abstract In this study we propose a novel method for identifying the loca-
tions of earliest activation in the human left ventricle from activation maps
measured at the epicardial surface. Electrical activation is modeled based on
the viscous Eikonal equation. The sites of earliest activation are identified by
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are then modified based on a shape derivative based perturbation field until a
minimal mismatch between the computed and the given activation maps on the
epicardial surface is achieved. The proposed method is tested in two numerical
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rate MRI-derived 3D human LV benchmark to demonstrate potential utility
in a clinical context. For unperturbed input data, our localization method is
able to accurately reconstruct the earliest activation sites in both benchmarks
with deviations of only a fraction of the used spatial discretization size. Fur-
ther, with the quality of the input data reduced by spatial undersampling and
addition of noise, we demonstrate that an accurate identification of the sites
of earliest activation is still feasible.
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1 Introduction

Computational models of cardiac function are increasingly considered as a clin-
ical research tool with the perspective of being used, ultimately, as a diagnostic
modality. Independently of which functional aspects are being considered, a key
driving mechanism of cardiac electro-mechano-fluidic function is the sequence
of electrical activation. Owing to its pivotal role, computer models intended
for clinical applications must be parameterized in a patient-specific manner to
approximate the electrical activation sequence in a given patient’s heart. Early
experimental work [8], using ex vivo human hearts provided evidence that elec-
trical activation in the left ventricle (LV), i.e. the main pumping chamber that
drives blood into the circulatory system, is initiated at discrete sites located
at the endocardial (inner) surface of the LV.

In this study we propose a novel method for identifying these sites of earli-
est activation from activation maps measured at the epicardial (outer) surface
of the heart. Such maps can be obtained non-invasively from body surface
potential maps within clinical routine using inverse mapping systems such as
CardioInsight [16]. Epicardial activation maps depend not only on location and
timing of initial activation sites, but also on the orthotropic conduction veloci-
ties within the LV wall. Therefore, in patient-specific applications, conduction
velocity tensors have to be identified using fast forward computational models
[21,13,14], or biophysically detailed models [15]. The propagation of electrical
wavefronts in the LV is modeled based on the viscous Eikonal equation. Iden-
tification of sites of earliest activation is achieved by solving a minimization
problem. Initially geometries are chosen which represent the activation sites.
Then they are relocated based on a perturbation field until a minimal mis-
match between the computed and the given activation maps at the epicardial
surface is achieved. The perturbation field is designed to reduce the functional
subject to minimization during the relocation process. The proposed method
is tested in two numerical benchmarks, a generic 2D unit-square benchmark
serving the sole purpose of theoretical analysis, and an anatomically accurate
MRI-derived 3D human LV benchmark to demonstrate potential utility in a
clinical context. For unperturbed input data, our localization method is able
to accurately reconstruct earliest activation sites in both benchmarks with
deviations of only a fraction of the used spatial discretization size. With the
quality of the input data reduced by spatial undersampling and addition of
noise, we demonstrate that an accurate identification is still feasible.

From a mathematical point of view the described problem can be inter-
preted as an inverse problem involving a non-linear elliptic PDE. On the
activation sites ωi, i = 1, . . . , N an electrical depolarization wave is initiated
which travels through the heart Ω = U \ ∪Ni=1ωi. This is modelled by a non-
linear elliptic PDE, given by a viscous Eikonal equation, see [6]. The solution
of the viscous Eikonal equation quantifies the arrival times of wave fronts at
points in the heart Ω or on its surface ΓO. Since the wave is initiated on ∪Ni=1ωi
the arrival time is zero on ∂ ∪Ni=1 ωi and thus the viscous Eikonal equation
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has zero Dirchlet boundary conditions on ∂ ∪Ni=1 ωi and Neumann boundary
conditions on the rest of the boundary of Ω. Given measurements of the arrival
times on the surface of the heart ΓO the positions of the activation sites ωi are
searched for. This inverse problem can be formulated as a shape optimization
problem, see [7] or [18], in which the positions of ωi is optimized such that
the misfit between the measured data and the solution of the viscous Eikonal
equation on ΓO is minimal. We assume that the shape and number of activa-
tion sites is known and stays constant during the optimization. Thus only the
locations of the activation sites are changed during the optimization. For the
derivation of the shape derivative of the shape functional we use a technique
which does not require the shape differentiability of the geometry–to–state
mapping, see [11] and [12]. In order to apply this technique we first prove
the wellposedness of the state equation. It is a nonlinear elliptic PDE which
can be transformed to a linear one using the Hopf-Cole transformation, see
[5]. The proof of the continuous dependence of the state on the data requires
non-standard techniques. Furthermore we prove the wellposedness of the lin-
earized and adjoint state equation using the weak maximum principle. In order
to compute the shape derivative the averaged adjoint technique from [12] is
used. In this manner we arrive at domain-based representation of the shape
derivative, in contrast to the more common boundary-based representation, see
[18]. This simplifies the numerical implementation of the shape derivative in a
finite element environment, since only domain integrals need to be calculated.
For the calculation of the perturbation field which is the basis for changing
the geometry of the activation sites in an iterative gradient based algorithm
a linear elasticity problem is solved in which the shape derivative enters as
righthand side. To give a brief account of the contents of the paper, in Section
2 after the statement of the model on which our approach is based, we give its
mathematical analysis, involving primal, tangent, and adjoint equations, and
the shape derivative. The use of this information for numerical realization is
described in Section 3. Finally Section 4 contains the two benchmark examples
alluded to above.

2 Theoretical analysis

2.1 Problem statement

Let U ⊂ Rd, with d = 2 or d = 3, be a bounded domain with C2,1 boundary,
representing the cardiac domain. Within U we introduce N subdomains ωi with
C2,1 boundaries ∂ωi, which represent the volumes of the earliest activation sites,
also denoted as activation sources. The union of ωi is denoted by ω = ∪Ni=1ωi
and its boundary by Γ = ∪Ni=1∂ωi. As such, Γ is the surface from which
activation spreads into our computational cardiac domain Ω := U \ ω̄. We
have ∂Ω = Γ ∪ ∂U , and thus Ω is a bounded domain with C2,1 boundary.
In particular it is connected, but due to the holes it is not simply connected.
Furthermore Γ ⊂ ∂Ω is closed. We set ΓN = ∂U , and further introduce
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the observatory boundary ΓO ⊆ ΓN , which in our application is given by
epicardium of the heart. We consider the following minimization problem:

min
Ω,Γ

J(Ω,Γ ) = 1
2

∫
ΓO

(T (x)− z(x))2 dx (1)

subject to the viscous Eikonal equation in the form
−ε div(M∇T ) + |∇T |2M = 1 in Ω

T = 0 on Γ
−εM∇T · n = g on ΓN

(2)

for some non-negative function g, and with

|∇T (x)|M :=
√
∇T (x)∗M(x)∇T (x).

The function T (x) represents the activation time, while the epicardial acti-
vation input data is denoted by z(x) which is assumed to be an element of
L∞(ΓO). The matrix M(x) models the squared cardiac conduction velocity
(see Section 3.5). It is assumed to be symmetric and uniformly elliptic, i.e.
there exists a α > 0 such that

M(x)ζ · ζ ≥ α|ζ|2 ∀ζ ∈ Rd, ∀x ∈ Ū .

For the rest of this work we use the notation M ≥ α. The vector n denotes
the outer unit normal vector on ΓN .

The use of Eikonal equations is well-established to approximate the excita-
tion process in the myocardium. We refer, for instance, to [6] where a carefull
singular perturbation technique analysis with respect to the thickness of the
myocardial wall and the time taken by the excitation wave front to cross the
heart wall is carried out on the basis of the bidomain equations to arrive at
various forms of Eikonal equations [6, Section 5].

Problem (1) falls in the class of inverse shape problems. For the numerical
solution of (1) we require the shape derivative of J with respect to Γ in order
to use it in a gradient decent method. As prerequisite we need to prove well-
posedness of the state equation (2) which arises as PDE constraint in (1), and
we analyze the tangent and adjoint equations.

2.2 Well-posedness of the viscous Eikonal equation

In this section, we discuss the well-posedness of the equation
−ε div(M∇T ) + |∇T |2M = f in Ω

T = 0 on Γ
εM∇T · n = g on ΓN ,

(3)
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for some functions f, g specified later. Using the transformation T (x) =
−ε log(w(x) + 1) this problem can be transformed into

−ε2 div(M∇w) + fw = −f in Ω
w = 0 on Γ

ε2M∇w · n+ gw = −g on ΓN ,
(4)

which is linear in the unknown w. Let us introduce the spaces

W 1,p
0 (Ω ∪ ΓN ) := C∞c (Ω ∪ ΓN )

W 1,p(Ω)
= {v ∈W 1,p(Ω)| v|Γ = 0}

for 1 ≤ p <∞ which are equipped with the norm

‖v‖W 1,p
0 (Ω∪ΓN ) := ‖∇v‖Lp(Ω).

Moreover we set V := H1
0 (Ω ∪ ΓN ) := W 1,2

0 (Ω ∪ ΓN ). For p > 1 let p′ its
conjugate exponent. We introduce the positive and negative part of f defined
by f+ := max(0, f) and f− := max(0,−f) as well as the embedding constant
cp > 0 of the embedding ‖w‖L2p′ (Ω) ≤ cp‖w‖V . Next we require the following
assumptions on the regularity of the data:

(Ai) M ∈ C0,δ(Ω̄,Rd2) with 0 < δ < 1, M ≥ α/2 and ‖M‖C0,δ(Ω̄,Rd2 ) ≤ ρM
(Aii) f ∈ Lp(Ω) with ‖f−‖Lp(Ω) ≤ ε2α/4c2p, p > d and ‖f‖Lp(Ω) ≤ ρf
(Aiii) g ∈ L∞(ΓN ) with g ≥ 0 and ‖g‖L∞(ΓN ) ≤ ρg

Lemma 1 For every (M,f, g) satisfying (Ai), (Aii) and (Aiii), there exists a
unique solution w ∈ V of (4). Moreover the solution satisfies w ∈W 1,p

0 (Ω∪ΓN )
with p > 2 if d = 2, and with p ∈ (3, 6] if d = 3, and

‖w‖W 1,p
0 (Ω∪ΓN ) ≤ C

where C > 0 depends continuously on ε, α, ρM , ρf and ρf .

Proof Let τN : V → L2(d−1)/(d−2)(ΓN ) denote the continuous trace operator
onto ΓN . Using the embedding V ↪→ L2d/(d−2)(Ω) and (Aii), it is easy to
see that the integral

∫
Ω
fwv dx is well defined for every v ∈ V . Due to the

mentioned properties of the trace operator τN and (Aiii) we can conclude that
the boundary integral

∫
ΓN

gwv ds is well defined. Thus we can formulate the
weak form of (4) as

ε2
∫
Ω

M∇w ·∇v dx+
∫
Ω

fwv dx+
∫
ΓN

gwv ds = −
∫
Ω

fv dx−
∫
ΓN

gv ds (5)

for all v ∈ V . To argue existence of a solution of (5) we use the Lax-Milgram
theorem. To prove the required coercivity in V we estimate for any w ∈ V
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using (Aii) and (Aiii)

ε2
∫
Ω

M∇w · ∇w dx+
∫
Ω

(f+ − f−)w2 dx+
∫
ΓN

gw2 ds

≥ ε2α

2 ‖w‖
2
V − ‖f−‖Lp(Ω)‖w‖2L2p′ (Ω)

≥
(
ε2α

2 − c2p‖f−‖Lp(Ω)

)
‖w‖2V ≥

ε2α

4 ‖w‖
2
V .

Thus we obtain coercivity and the existence of a unique solution w to (5).
Moreover there exists a constant C > 0 depending on α and ε such that

‖w‖V ≤ C(‖f‖Lp(Ω) + ‖g‖L∞(ΓN )).

Next we argue additional regularity of w. For this purpose we consider the terms
involving fw and gw as known inhomogeneities with w ∈ V . We show that
the functionals F1(v) :=

∫
Ω
fwv dx and F2(v) :=

∫
ΓN

gwv ds are elements
of (W 1,p′(Ω))∗ with p′ ∈ (1, 2) for d = 2 and p′ ∈ [6/5, 3/2) for d = 3.
First we consider F1. We recall the embedding W 1,p′(Ω) ↪→ Lq̄(Ω) with q̄ =
dp′/(d−p′) = dp/(dp−d−p) and q̄′ = dp/(d+p). We prove that fw ∈ Lq̄′(Ω).
Using Hölder’s inequality with r = (d+ p)/d resp. r′ = (d+ p)/p we obtain

‖fw‖Lq̄′ (Ω) ≤ ‖f‖Lp(Ω)‖w‖Ld(Ω) ≤ c‖f‖Lp(Ω)‖w‖V
and thus

‖F1‖(W 1,p′ (Ω))∗ ≤ c‖f‖Lp(Ω)‖w‖V .
Next we consider F2. We recall from [1, Theorem 5.22] that τN is continuous
from W 1,p′(Ω) to Lq(ΓN ) with q = (dp′ − p′)/(d − p′). Next we verify that
gτNw ∈ Lq

′(ΓN ) with q′ = p′(d− 1)/d(p′ − 1) = p(d− 1)/d. We have

‖gτNw‖Lq̄′ (ΓN ) ≤ ‖g‖L∞(ΓN )‖τNw‖Lq̄′ (ΓN ) ≤ c‖g‖L∞(ΓN )‖w‖V

since τN : V → L2(d−1)/(d−2)(ΓN ). Here the restriction p ≤ 6 is necessary. Then
assumption (Aiii) implies the assertion. Finally we get

‖F2‖(W 1,p′ (Ω))∗ ≤ c‖g‖L∞(ΓN )‖w‖V .

Moreover v 7→
∫
Ω
fv dx and v 7→

∫
ΓN

gτNv dx are functionals from (W 1,p′(Ω))∗.
A functional F from (W 1,p′(Ω))∗ can represented in the form

〈F, v〉(W 1,p′ (Ω))∗,W 1,p′ (Ω) =
∫
Ω

f1v + f2 · ∇v dx

with f1 ∈ Lp(Ω) and a vector field f2 ∈ Lp(Ω,Rd), see [1, Theorem 3.8]. Thus
the results from [20, Theorem 3.16] imply that w ∈W 1,p

0 (Ω ∩ ΓN ) holds and
the existence of a constant C depending on ρM , ε and α such that

‖w‖W 1,p
0 (Ω∪ΓN ) ≤ C

(
(‖g‖L∞(ΓN ) + ‖f‖Lp(Ω))‖w‖V

+‖g‖L∞(ΓN ) + ‖f‖Lp(Ω)
)

≤ C
(
(‖g‖L∞(ΓN ) + ‖f‖Lp(Ω))2 + ‖g‖L∞(ΓN ) + ‖f‖Lp(Ω)

)
.
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These results are applicable since the Dirichlet part Γ of ∂Ω is closed. ut

In order to proof even higher regularity of w we use the following assumptions:
(Bi) M ∈ C1,δ(Ω̄,Rd2) with M ≥ α and ‖M‖C1,δ(Ω̄,Rd2 ) ≤ ρM
(Bii) f ∈ C0,δ(Ω̄) with f > 0 and ‖f‖C0,δ(Ω̄) ≤ ρf
(Biii) g ∈ C1,δ(ΓN ) with g ≥ 0 and ‖g‖C1,δ(ΓN ) ≤ ρg

for some 0 < δ < 1.

Lemma 2 Let Assumptions (Bi), (Bii) and (Biii) be satisfied. Then the solu-
tion of (4) satisfies w ∈ C2,δ(Ω̄) with 0 < δ < 1 given according to the data.
Moreover there exists a constant C > 0 depending continuously on α, ε, ρM ,
ρf and ρg such that

‖w‖C2,δ(Ω̄) ≤ C

and −1 < w(x) ≤ 0 holds for all x ∈ Ω̄.

Proof Theorem 3.28 (ii) and 3.29 (ii) from [20] can be applied, since (4) can
be written as

−ε2
d∑

i,j=1
Mi,j∂xixjw +

d∑
i=1

ai∂xiw + fw = −f in Ω

w = 0 on Γ
d∑
i=1

bi∂xiw + gw = −g on ΓN

with ai := −ε2 div(Mi) ∈ C0,δ(Ω̄) (Mi i-th collumn ofM) and bi := ε2(Mn)i ∈
C1,δ(ΓN ) since M ∈ C1,δ(Ω̄,Rd2) and ΓN is of class C2,1. This gives us the
stated regularity and the corresponding apriori estimate. Next we define w+ :=
max(0, w) and (w + 1)− := max(0,−(w + 1)). Since (w + 1)−|Γ = 0 we can
test (5) with v = −(w + 1)− and get

−
∫
Ω

f |(w+1)−|2 dx = −ε2
∫
Ω

M∇w·∇(w+1)− dx−
∫
ΓN

g(w+1)(w+1)− ds

≤ ε2
∫
Ω

M∇(w + 1)− · ∇(w + 1)− dx+
∫
ΓN

g|(w + 1)−|2 ds ≥ 0

This implies −1 ≤ w in Ω̄, since f > 0. Testing (5) with v = w+. We get∫
Ω

f |w+|2 dx = −
∫
Ω

fw+ dx−ε2
∫
Ω

M∇w·∇w+ dx−
∫
ΓN

g(w+1)w+ ds ≤ 0.

This implies w ≤ 0 in Ω̄. Next we introduce the variable ŵ = −(w + 1) which
satisfies the equation

−ε2 div(M∇ŵ) + ŵf = 0 in Ω
ŵ = −1 on Γ

ε2M∇ŵ · n+ ŵg = 0 on ΓN .
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If the solution ŵ were constant, it has to be equal to −1. However, in this case
we have ŵ = 0 in Ω, which is a contradiction. We define O := maxx∈Ω̄ ŵ ∈
[−1, 0], see above. First we assume O = 0. Then Theorem 3.27 in [20] is
applicable which states that such a maximum cannot be achieved on Ω ∪ ΓN .
This is a contradiction. Thus O ∈ [−1, 0) and ŵ ∈ [−1, 0). This implies the
assertion. ut

For the rest of this work we fix a g ∈ C1,δ(ΓN ) with g ≥ 0, 0 < δ < 1 and
‖q‖C1,δ(ΓN ) ≤ ρg. Let

Y = YM × Yf ⊂ C1,δ(Ω̄,Rd
2
)× C0,δ(Ω̄)

be a reflexive Banach space which embeds compactly into C0,δ(Ω̄,Rd2)×Lp(Ω)
for some 0 < δ < 1, where the range of p is defined in Lemma 1. We define the
set

BY := {(M,f) ∈ Y : ‖(M,f)‖Y ≤ ρ, M ≥ α, f ≥ β}. (6)

for some ρ = 2 max(ρM , ρf ), β > 0. Note that for (M,f) ∈ BY conditions (Bi),
(Bii) are satisfied.

Proposition 1 Then there exists a constant c̄ ∈ (0, 1) such that

−c̄ ≤ w(M,f ;x) ≤ 0 ∀x ∈ Ω̄

for all (M,f) ∈ BY .

Proof We shall employ a compactness argument. For this purpose we argue
that BY is compact in C0,δ(Ω̄,Rd2) × Lp(Ω). The compact embedding of
Y into C0,δ(Ω̄,Rd2) × Lp(Ω) implies precompactness of BY . Moreover BY is
closed in C0,δ(Ω̄, ,Rd2)×Lp(Ω). Indeed, let (Mn, fn)∞n=1 ⊂ BY be a convergent
sequence in C0,δ(Ω̄, ,Rd2)×Lp(Ω) with the limit point (M,f). It is easy to see
that M ≥ α holds. There exists a subsequence (Mnk , fnk)∞k=1 such that fnk
converges for almost every x ∈ Ω to f . Thus f satisfies f ≥ β. On another
subsequence of this subsequence there holds (Mnk , fnk) ⇀ (M,f) in Y due
to the reflexivity of Y . Since BY is convex and closed in Y , it is weakly
closed in Y . Thus we have (M,f) ∈ BY which implies the closedness of BY
in C0,δ(Ω̄, ,Rd2)× Lp(Ω). Finally this implies that BY is a compact subset of
C0,δ(Ω̄, ,Rd2)× Lp(Ω).
Next we define

B =
{

(M,f) : satisfy (Ai), (Aii) and ‖(M,f)‖C0,δ(Ω̄,Rd2 )×Lp(Ω) ≤ K
}
,

where K > sup(M,f)∈BY ‖(M,f)‖C0,δ×Lp(Ω). We observe that there exists a
κ ∈ (0, ε

2α
8c2p

) such that for every (M̄, f̄) ∈ BY the set

Bκ(M̄, f̄) :=
{

(M,f) : ‖(M − M̄, f − f̄)‖C0,δ(Ω̄,,Rd2 )×Lp(Ω) < κ
}
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satisfies the inclusion Bκ(M̄, f̄) ⊂ B. For the coordinate f this is a consequence
of the estimates

‖f−‖Lp(Ω) − ‖f+ − f̄‖Lp(Ω) ≤ ‖f − f̄‖Lp(Ω) ≤ κ,

and hence
‖f−‖Lp(Ω) ≤ 2κ < ε2α

4 c2p
.

We remark that Lemma 1 is applicable for (M,f) ∈ B and thus for elements
of Bκ(M̄, f̄) with (M̄, f̄) ∈ BY . Next we choose an arbitrary (M̄, f̄) ∈ BY and
(M,f) ∈ Bκ(M̄, f̄). Furthermore we introduce (δM, δf) = (M̄ −M, f̄ −f) and
δw = w̄−w = w(M̄, f̄)−w(M,f). The solution w exists according to Lemma
1. The function δw satisfies the equation

ε2
∫
Ω

M̄∇δw · ∇v dx+
∫
Ω

f̄ δwv dx+
∫
ΓN

gδwv ds =

ε2
∫
Ω

δM∇w · ∇v dx−
∫
Ω

δf(w + 1)v dx (7)

for all v ∈ V . Next we prove that v 7→ ε2 ∫
Ω
δM∇w · ∇v dx is an element of

(W 1,p′(Ω))∗. Since M ∈ C0,δ(Ω̄,Rd2) and w ∈W 1,p
0 (Ω ∪ ΓN ), there holds

ε2
∫
Ω

δM∇w · ∇v dx ≤ ε2‖δM‖C0,δ(Ω̄,,Rd2 )‖w‖W 1,p
0 (Ω∪ΓN )‖v‖W 1,p′ (Ω).

Then similar arguments as in the proof of Lemma 1 yield a constant C > 0
depending on ε, α and ρM such that

‖δw‖W 1,p
0 (Ω∪ΓN ) ≤ C

((
‖f̄‖Lp(Ω) + ‖g‖L∞(ΓN )

)
‖δw‖V

+ε2‖δM‖C0,δ(Ω̄,Rd2 )‖w‖W 1,p
0 (Ω∪ΓN ) + ‖δf‖Lp(Ω)‖w + 1‖W 1,p(Ω)

)
≤ C

((
‖f̄‖Lp(Ω) + ‖g‖L∞(ΓN )

)(
ε2‖δM‖C0,δ(Ω̄,Rd2 )‖w‖W 1,p

0 (Ω∪ΓN ) + ‖δf‖Lp(Ω)‖w + 1‖W 1,p(Ω)

)
+ε2‖δM‖C0,δ(Ω̄,Rd2 )‖w‖W 1,p

0 (Ω∪ΓN ) + ‖δf‖Lp(Ω)‖w + 1‖W 1,p(Ω)

)
, (8)

where p is specified in Lemma 1. The expressions involving w are estimated in
terms of ρg, ε, α and K. Thus there holds

‖δw‖W 1,p
0 (Ω∪ΓN ) ≤ h(‖δM‖C0,δ(Ω̄,Rd2 ), ‖δf‖Lp(Ω)), (9)

where h : R2 → R is a continuous function with h(0, 0) = 0.
Now, let (M̄, f̄) be an arbitrary element in BY . By Lemma 2 there exists

a constant c̃ = c̃(M̄, f̄) ∈ (0, 1) such that −c̃ ≤ w(M̄, f̄ ;x) ≤ 0 for all x ∈ Ω̄.
Since W 1,p

0 (Ω ∪ ΓN ) ↪→ C(Ω̄) for p > d and due to (9) there exists a γ =
γ(M̄, f̄) < κ such that

−1 + c̃

2 ≤ w(M,f ;x) ∀x ∈ Ω̄



10 Karl Kunisch et al.

for all (M,f) ∈ Bγ(M̄,f̄). The family {Bγ(M̄,f̄) : (M̄, f̄) ∈ BY } is an open
covering in C0,δ(Ω̄,Rd2)× Lp(Ω) of the compact set BY . Hence there exists a
finite subcover {Bγ(M̄i,f̄i) : (M̄i, f̄i)}Ni=1. Then we choose

c̄ := 1 + max1≤i≤N c̃(M̄i, f̄i)
2 ,

to conclude the desired result. ut

With the help of Lemma 2 we are able to define T = −ε log(w+1) and calculate

∇T = − ε

w + 1∇w, div(M∇T ) = − ε

w + 1 div(M∇w) + ε

(w + 1)2 |∇w|
2
M .

Thus there holds

− εdiv(M∇T ) + |∇T |2M

= ε2

w + 1 div(M∇w)− ε2

(w + 1)2 |∇w|
2
M + ε2

(w + 1)2 |∇w|
2
M = f.

Moreover we have on the boundary

T |Γ = −ε log(1) = 0, εM∇T · n|ΓN = −ε2

w + 1M∇w · n|ΓN = g.

We are now prepared to state the existence theorem for the state equation (3).

Theorem 1 Let (M,f) ∈ BY where BY is defined in (6). Then equation (3)
has a unique solution T ∈ C2(Ω̄) satisfying

‖T‖C2(Ω̄) ≤ CT , (10)

where CT only depends on BY .

Proof Since existence of T was argued above only the estimate has to be proven.
We know T = −ε log(w + 1), ∇T = − ε

w+1∇w and

∂xixjT = ε

(w + 1)2 ∂xiw∂xjw −
ε

w + 1∂xixjw.

Thus there holds

T (x) = −ε log(w(x) + 1) ≤ −ε log(−c̄+ 1) ≤ K1,

|∇T (x)| = ε
1

(w + 1) |∇w(x)| ≤ ε 1
(−c̄+ 1) |∇w(x)| ≤ K2

and
|D2T (x)| ≤ ε

(−c̄+ 1)2 |∇w(x)|+ ε

−c̄+ 1 |D
2w(x)| ≤ K3

where c̄ is the constant from Proposition 1 and Ki only depends on BY . This
implies (10). ut
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2.3 Well-posedness of the tangent and adjoint equations

Let T ∈ C2(Ω̄) ∩ V be the solution of the state equation for a (M,f) ∈ BY
and T̂ for (M̂, f̂) ∈ BY . Associated to the linearization of (2) we define the
bilinear form B : V × V → R by

B(v, ϕ) :=
∫
Ω

εM∇v · ∇ϕ+M∇(T + T̂ ) · ∇v ϕ dx

for any ϕ, v ∈ V . Moreover we introduce the operators A : V → V ∗ and
A∗ : V → V ∗ defined by

〈Av, ϕ〉V ∗,V = B(v, ϕ) = 〈v,A∗ϕ〉V,V ∗

for all v, ϕ ∈ V .

Definition 1 For F ∈ V ∗ we call v ∈ V a solution of the linearized state
equation if it solves the equation Av = F or equivalently

B(v, ϕ) = 〈F,ϕ〉V ∗,V ∀ϕ ∈ V. (11)

Lemma 3 The mapping (M,f) 7→ T from BY endowed with the topology of
C0,δ(Ω̄,Rd2)× L6(Ω) to W 1,6

0 (Ω) is continuous.

Proof Let T be the solution of the state equation for M and f and T̃ for M̃
and f̃ . Let w be the solution of (4) for M , f and w̃ for M̃ and f̃ . Due to
Taylor expansion of 1/x at w̃(x) + 1 the partial derivative of the difference
δT := T − T̃ satisfies the equation

∂xjδT (x) = ε

w̃(x) + 1∂xj w̃(x)− ε

w(x) + 1∂xjw(x)

=
(

ε

w̃(x) + 1 −
ε

w(x) + 1

)
∂xj w̃(x)− ε

w(x) + 1∂xjδw(x)

=
(

ε

(w̃(x) + 1)2 δw(x)− ε

η(x)3 δw(x)2
)
∂xj w̃(x)− ε

w(x) + 1∂xjδw(x),

where δw := w − w̃ and η(x) lies between w(x) + 1 and w̃(x) + 1. Due to
Proposition 1 we have

|∂xjδT (x)| ≤ ε|δw(x)|
(

1
(−c̄+ 1)2 + c̄

(−c̄+ 1)3

)
|∂xj w̃(x)|

+ ε

−c̄+ 1 |∂xjδw(x)|.

Now estimate (9) for δw in the proof of Proposition 1 with p = 6 and Lemma
2 imply the assertion. ut

Proposition 2 Let r ∈ (2,∞) and F ∈W 1,r′(Ω)∗. Then the linearized state
equation has a unique solution v ∈W 1,r

0 (Ω ∪ ΓN ) and there exists a constant
C > 0 such that for all (M,f) ∈ BY

‖v‖W 1,r
0 (Ω∪ΓN ) ≤ C(‖F‖W 1,r′ (Ω)∗).
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Proof First we observe the following estimate∣∣∣∣∫
Ω

M∇(T + T̂ ) · ∇v v dx
∣∣∣∣

≤ αε

2 ‖v‖
2
V + 1

2αε‖M‖
2
C(Ω̄,Rd2 )‖∇(T + T̂ )‖2C(Ω̄)‖v‖

2
L2(Ω).

Then we have

B(v, v) + λ‖v‖2L2(Ω)

≥ αε

2 ‖v‖
2
V + (λ− 1

2αε‖M‖
2
C(Ω̄,Rd2 )‖∇(T + T̂ )‖2C(Ω̄))‖v‖

2
L2(Ω)

≥ αε

2 ‖v‖
2
V + (λ− 1

2αεc
2ρ2
MC

2
T )‖v‖2L2(Ω)

for some c > 0. Now for the choice λ ≥ 1
2αεc

2ρ2
MC

2
T the form B is coercive

relative to L2(Ω). It can be easily checked that B is bounded. The bilinear
form B is also defined on H1(Ω)× V and there holds that B(1, v) = 0 for any
v ∈ V . Then [20, Theorem 2.4] implies that A satisfies the weak maximum
principle. Thus the homogenous equation Av = 0 has the unique solution 0.
Then [20, Theorem 2.2] yields the existence of a unique solution v ∈ V of
Av = F for every F ∈ V ∗ which satisfied the inequality

‖v‖V ≤ ‖A−1‖‖F‖V ∗ ,

Next we discuss the dependence of ‖A−1‖ on M and T . First we remark
that T depends on M and f . Thus we prove that the mapping (M,f) 7→ A
is continuous from BY endowed with the topology of C0,δ(Ω̄,Rd2) × L6(Ω)
to L(V, V ∗). Let (M,f) and (M̃, f̃) be elements of BY and A resp. Ã the
corresponding operators. Then we estimate

〈(A−Ã)v, ϕ〉V ∗,V =
∫
Ω

(M−M̃)∇v ·∇ϕ dx+
∫
Ω

(M−M̃)∇(T+T̂ ) ·∇vϕ dx

+ 2
∫
Ω

M̃∇(T − T̃ ) · ∇vϕ dx

≤ c
(
‖M − M̃‖C(Ω̄,Rd2 )(1 + ‖∇(T + T̂ )‖L6(Ω))

+‖M̃‖C(Ω̄,Rd2 )‖∇(T − T̃ )‖L6(Ω)

)
‖v‖V ‖ϕ‖V

Thus we have

‖A − Ã‖ ≤ c
(
‖M − M̃‖C(Ω̄,Rd2 ) + ‖∇(T − T̃ )‖L6(Ω)

)
,

since ‖∇(T + T̂ )‖L6(Ω) ≤ c̃ CT for some c̃ > 0 and ‖M̃‖L∞(Ω) ≤ ĉρM for
some ĉ > 0. Then Lemma 3 implies the continuity of (M,f) 7→ A from
BY ⊂ C0,δ(Ω̄,Rd2)× L6(Ω) to L(V, V ∗). Thus the mapping (M,f) 7→ A−1 is
continuous from BY endowed with the topology of C0,δ(Ω̄,Rd2) × L6(Ω) to
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L(V ∗, V ). Since BY is compact in C0,δ(Ω̄,Rd2) × L6(Ω) for some 0 < δ < 1
there exists a constant C > 0 only depending on BY such that ‖A−1‖ ≤ C.
Finally we apply [20, Theorem 3.16, (iv)] which implies that v ∈W 1,r

0 (Ω∪ΓN )
and

‖v‖W 1,r
0 (Ω∪ΓN ) ≤ Ĉ(‖F‖W 1,r′ (Ω)∗ + ‖v‖V ),

where Ĉ depends on ε, α, ρM and CT . ut

Definition 2 For F ∈ V ∗ we call ϕ ∈ V a solution of the adjoint state
equation if it satisfies the equation A∗ϕ = F or equivalently

B(v, ϕ) = 〈F, v〉V ∗,V ∀v ∈ V. (12)

Theorem 2 Let r ∈ (2,∞) and F ∈ W 1,r′(Ω)∗. Then equation (12) has a
unique solution ϕ ∈ W 1,r

0 (Ω ∪ ΓN ). Moreover there exists a constant C > 0
such that for all (M,f) ∈ BY

‖ϕ‖W 1,r
0 (Ω∪ΓN ) ≤ C(‖F‖W 1,r′ (Ω)∗). (13)

Proof From the proof of Proposition 2 it follows that A : V → V ∗ is continuous
and bijective. Thus A∗ : V → V ∗ is also continuous and bijective. In particular
we have (A∗)−1 = (A−1)∗. So the equation A∗ϕ = F has a unique solution
ϕ ∈ V for every F ∈ V ∗ and

‖ϕ‖V ≤ ‖(A−1)∗‖‖F‖V ∗ = ‖A−1‖‖F‖V ∗ ≤ C‖F‖V ∗

for some constant C > 0 which is uniform in (M,f) ∈ BY . Then we apply [20,
Theorem 3.16, (iv)] which implies that ϕ ∈W 1,r

0 (Ω ∪ ΓN ) and

‖ϕ‖W 1,r
0 (Ω∪ΓN ) ≤ Ĉ(‖F‖W 1,r′ (Ω)∗ + ‖ϕ‖V ),

where Ĉ depends on ε, α, ρM and CT . ut

Let us note that the strong form corresponding to (12) is formally given by
−εdiv(M∇ϕ)− div

(
M∇(T + T̂ )ϕ

)
= F |Ω in Ω

ϕ = 0 on Γ
εM∇ϕ · n+ 2ϕM∇T · n = F |ΓN on ΓN .

(14)

2.4 Shape derivative of J

We follow the notation and strategy in [11,12]. For a field h ∈ C3
c (U,Rd) and

t > 0 we define the mappings Ft : U → Rd by Ft = idRd + th. Then we
introduce the perturbed domains Ωt = Ft(Ω) and the perturbed manifolds
Γt = Ft(Γ ). Since h vanishes near ΓN there exists a τ > 0 such that Ωt ⊂ U for
all t ∈ [0, τ ]. Moreover, let g ∈ C2(ΓN ) with g ≥ 0 as well as ‖g‖C1,δ(ΓN ) ≤ ρg
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for some 0 < δ < 1 and M ∈ C2(Ū ,Rd2) with M ≥ α be given. The perturbed
state equation has the form∫
Ωt

εM∇Tt ·∇v+ (M∇Tt ·∇Tt−1)v dx−
∫
ΓN

gv ds = 0 ∀v ∈ H1
0 (Ωt∪ΓN ),

for t ∈ [0, τ ]. We introduce

A(t) = ξ(t)B∗(t)M(t)B(t), where B(t) = DF−∗t , ξ(t) = det(DFt),
M(t) = M ◦ Ft,

and define the non-linear form e : [0, τ ]×W 1,4
0 (Ω ∪ ΓN )× V → R as

e(t, T t, v) =
∫
Ω

εA(t)∇T t · ∇v + (A(t)∇T t · ∇T t − ξ(t))v dx−
∫
ΓN

gv ds.

After transformation to the reference domain Ω, the perturbed state equation
can be cast as

e(t, T t, v) = 0 ∀v ∈ V, t ∈ [0, τ ], (15)
with the relation between T t and Tt given by T t = Tt ◦ Ft. Next we discuss
the differentiability of A(t) and ξ(t). We shall use the notation

Mvh =
(

d∑
k=1

DMkvk

)
h,

where Mk stands for the k-th column of M .

Lemma 4 There holds

lim
t↓0

1
t
‖ξ(t)− 1− tξ′(0)‖C(Ω̄) = 0,

lim
t↓0

1
t
‖A(t)−M − tA′(0)‖C(Ω̄,Rd2 ) = 0,

where ξ′(0) = div(h), and

A′(0)v = div(h)Mv −DhMv +Mvh−MDh∗v, for v ∈ Rd. (16)

Proof Let x ∈ Ω̄ be arbitrary. The function ξ(t;x) has the form

ξ(t;x) = 1 + tr(Dh(x))t− det(Dh(x))t2, d = 2 (17)

and

ξ(t;x) = 1 + tr(Dh(x))t− (det(Dh1(x)) + det(Dh2(x)) + det(Dh3(x)))t2

+ det(Dh(x))t3, d = 3

where Dhi are the principal minors of Dh. Thus we have
1
t
|ξ(t;x)− 1− tdiv(h(x))| ≤ 3‖Dh‖2C(Ω̄,Rd2 )t+ ‖Dh‖3C(Ω̄,Rd2 )t

2.
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Thus the first assertion is proven. Let us turn to the differentiability of t 7→ A(t).
Since M ∈ C2(Ū ,Rd2) and Ū is compact it follows that t 7→ M(x + th(x))
is differentiable from [0,∞) to C(Ū ,Rd2) at t = 0+. The derivative can be
conveniently computed by its action on any v ∈ Rd

∂tM(t)v|t=0 =
d∑
k=1

∂tMk(t)t|t=0vk =
d∑
k=1

DMkhvk =
(

d∑
k=1

DMkvk

)
h.

Now let x ∈ Ω̄ be arbitrary and let t be so small such that t‖Dh∗‖C(Ω̄,Rd2 ) < 1.
Then there holds

1
t
‖B(t;x)− Id + tDh(x)∗‖ = 1

t

∥∥∥∥∥
∞∑
k=0

(−t)k(Dh(x)∗)k − Id + tDh(x)∗
∥∥∥∥∥

≤
∞∑
k=2

tk−1‖Dh∗‖kC(Ω̄,Rd2 )

A similar proof shows

lim
t↓0

1
t
‖B∗(t)− Id + tDh‖C(Ω̄,Rd2 ) = 0.

Utilizing the product rule on A(t) = ξ(t)B∗(t)M(t)B(t) leads us to (16). ut

The formulas for ξ and A also provide the following result.

Lemma 5 The mappings t 7→ A(t) from [0, τ ] to C1(Ω̄,Rd2) and t 7→ ξ(t)
from [0, τ ] to C1(Ω̄) are continuous in 0.

Let Y = YM × Yf = W 2,s(Ω,Rd2) ×W 1,s(Ω) ⊂ C1,δ(Ω̄,Rd2) × C0,δ(Ω̄) with
s > d and δ = 1−d/s. Then Y is compactly embedded in C0,δ(Ω̄,Rd2)×Lp(Ω)
for any 0 < δ < 1 and p > d. Due to the last lemma there exists a τ such that
A(t) ≥ α/2 and ξ(t) ≥ 1/2 for all t ∈ [0, τ ]. Furthermore there exists a ρ > 0
such that ‖(A(t), ξ(t))‖Y ≤ ρ for all t ∈ [0, τ ] holds. Then we define the set

BY = {(M,f) ∈ Y : ‖(M,f)‖Y ≤ ρ, M ≥ α/2, f ≥ 1/2}

and get
{(A(t), ξ(t)) : t ∈ [0, τ ]} ⊂ BY .

Thus we have:

Proposition 3 The perturbed state equation has a unique solution T t ∈
C2(Ω̄) ∩ V ↪→W 1,4

0 (Ω ∪ ΓN ).

Proof This follows directly from Theorem 1. ut
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The perturbed cost functional can be written as

J(Ωt, Γt) = j(t, T t) = 1
2

∫
ΓO

(T t − z)2 dx

subject to e(t, T t, v) = 0 for all v ∈ V . Next we characterize the shape derivative

dJ(Ω,Γ )h = lim
t↓0

J(Ωt, Γt)− J(Ω,Γ )
t

at Ω in direction h. For this purpose we define the Lagrange functional

L(t, T t, p) = j(t, T t) + e(t, T t, p)

for some p ∈ V and t ∈ [0, τ ]. We shall follow [12] to show that

dJ(Ω,Γ )h = d
dtL(t, T t, ϕt)|t=0, (18)

where T t solves (15) and ϕt solves the averaged adjoint equation∫ 1

0
dTL(t, sT t + (1− s)T 0, ϕt)δT ds = 0 ∀δT ∈W 1,4

0 (Ω ∪ ΓN ). (19)

At first we characterize the right hand side of (18). First we observe that

dTL(t, T t, ϕt)δT =
∫
ΓO

(T t − z)δT ds

+
∫
Ω

εA(t)∇δT · ∇ϕt + 2A(t)∇T t · ∇δTϕt dx.

Since T t and T 0 appear linearly in (19), the averaged adjoint equation amounts
to ∫

ΓO

([T t]− z)δT ds+
∫
Ω

εA(t)∇δT · ∇ϕt + 2A(t)∇[T t] · ∇δTϕt dx = 0

∀δT ∈W 1,4
0 (Ω ∪ ΓN ), (20)

where [T t] = 1/2(T t + T 0) ∈ C2(Ω̄).

Proposition 4 The averaged adjoint equation has a unique solution ϕt ∈
W 1,r

0 (Ω ∪ ΓN ) with r ∈ (d,∞).

Proof We need to prove that v 7→
∫
ΓO

([T t] − z)τNv ds is an element of
W 1,r′(Ω)∗. We know that τN is continuous from W 1,r′(Ω) to Lq(ΓO) with
q = (dr′ − r′)/(d − r′). Thus we need to show that [T t]|ΓO − z ∈ Lq

′(ΓO)
with q′ = r′(d − 1)/d(r′ − 1) = r(d − 1)/d. This is true since T ∈ C2(Ω̄) and
z ∈ L∞(ΓO). ut

In order to justify (18) we need the following technical lemma.
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Lemma 6 Further let T t and ϕt be the solutions of (15) and of (19) for
t ∈ (0, τ ]. Then we have

T t → T 0 in W 1,6
0 (Ω ∪ ΓN ) for t ↓ 0,

ϕt → ϕ0 in V for t ↓ 0.

Proof The first result follows from Lemma 3 and Lemma 5. Let ϕt be the
solution of the averaged adjoint state equation (20) for A(t), [T t] = 1/2(T t+T 0)
and z. We define δϕ = ϕt − ϕ0 which solves∫

Ω

εA(t)∇v · ∇δϕ+A(t)∇(T t + T 0)∇vδϕ dx

=
∫
Ω

ε(M −A(t))∇v · ∇ϕ0 + (2(M −A(t))∇T 0 −A(t)∇δT ) · ∇vϕ0 dx

+ 1
2

∫
ΓO

δTv ds

for all v ∈ V . Next we show that v 7→
∫
Ω

(M − A(t))∇T 0∇vϕ0 dx is an
element of V ∗. This follows from the fact that ϕ0 ∈ W 1,r

0 (Ω ∪ ΓN ) ↪→ C(Ω̄)
and ∇T 0 ∈ C1(Ω̄,Rd). Moreover the functional v 7→

∫
Ω
A(t)∇δT∇vϕ0 dx is

also a functional in V ∗, since δT ∈ W 1,6
0 (Ω ∪ ΓN ). According to the proof of

Theorem 2 there holds

‖δϕ‖V ≤ C
(
ε‖A(t)−M‖C(Ω̄,Rd2 )‖ϕ

0‖W 1,r
0 (Ω∪ΓN )

+ ‖ϕ0‖W 1,r
0 (Ω∪ΓN )‖A(t)−M‖C(Ω̄,Rd2 )‖T

0‖C2(Ω̄)

+‖A(t)‖C(Ω̄,Rd2 )‖ϕ
0‖W 1,r

0 (Ω∪ΓN )‖δT‖W 1,6
0 (Ω∪ΓN ) + ‖δT‖W 1,6

0 (Ω∪ΓN )

)
,

with C > 0 independent of t. Moreover due to Theorem 2 there exists a
constant c1 > 0 depending only on BY such that ‖ϕ0‖W 1,r

0 (Ω∪ΓN ) < c1 holds.
Furthermore there holds ‖T 0‖C2(Ω̄) ≤ CT and ‖A(t)‖L∞(Ω) ≤ c2ρM with c2
independent of t. This finishes the proof using Lemma 5. ut

We introduce the outer product v ⊗ w = vw∗ for v, w ∈ Rd and the inner
product G : N = trace(GN∗) for G,N ∈ Rd×d. Now we have all necessary
ingredients to prove the main result of this subsection.

Theorem 3 The shape derivative dJ(Ω,Γ ) of J satisfies

DJ(Ω,Γ )h = d
dtL(t, T t, ϕt)|t=0 =

∫
Ω

S1 : Dh+ S0 · h dx (21)

for any h ∈ C3
c (U,Rd), where Si, i = 0, 1 have the form

S1 = IdRd(εM∇T · ∇ϕ+ (|∇T |2M − 1)ϕ)− ε(∇T ⊗M∇ϕ+∇ϕ⊗M∇T )
− 2∇T ⊗M∇Tϕ, (22)

S0 = εM∗∇T∇ϕ+M∗∇T∇Tϕ. (23)
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Proof We apply Theorem 2.1 from [12]. Thus we need to prove that

lim
t↓0

1
t
(L(t, T 0, ϕt)− L(0, T 0, ϕt)) = ∂tL(0, T 0, ϕ0).

The functional J only depends on t through T t. Thus we have∣∣∣∣1t (L(t, T 0, ϕt)− L(0, T 0, ϕt))− ∂tL(0, T 0, ϕ0)
∣∣∣∣

=
∣∣∣∣1t (e(t, T 0, ϕt)− e(0, T 0, ϕt))− ∂te(0, T 0, ϕ0)

∣∣∣∣
= 1
t

∣∣∣∣∫
Ω

ε(A(t)−M − tA′(0))∇T 0 · ∇ϕt + tA′(0)∇T 0 · ∇(ϕt − ϕ0)

+(A(t)−M − tA′(0))∇T 0 · ∇T 0ϕt + tA′(0)∇T 0 · ∇T 0(ϕt − ϕ0)
−(ξ(t)− 1− tξ′(0))ϕt − tξ′(0)(ϕt − ϕ0) dx

∣∣
Thus we can estimate in the following way:∣∣∣∣1t (L(t, T 0, ϕt)− L(0, T 0, ϕt))− ∂tL(0, T 0, ϕ0)

∣∣∣∣
≤ ε

t
‖A(t)−M − tA′(0)‖C(Ω̄,Rd2 )‖T

0‖V ‖ϕt‖V

+ ε‖A′(0)‖C(Ω̄,Rd2 )‖T
0‖V ‖ϕt − ϕ0‖V

+ c

(
1
t
‖A(t)−M − tA′(0)‖C(Ω̄,Rd2 )‖∇T

0‖2C(Ω̄,Rd)‖ϕ
t‖V

+‖A′(0)‖C(Ω̄,Rd2 )‖∇T
0‖2C(Ω̄,Rd)‖ϕ

t − ϕ0‖V
)

+ c̃

(
1
t
‖ξ(t)− 1− tξ′(0)‖C(Ω̄)‖ϕt‖V + ‖ξ′(0)‖C(Ω̄)‖ϕt − ϕ0‖V

)
.

Then Lemmas 6 and 4 imply the assertion. In order to calculate

d
dtL(t, T t, ϕt)|t=0

we recall Lemma 4 and in particular (16). We obtain

d
dtL(t, T t, ϕt)|t=0 =

∫
Ω

εA′(0)∇T 0 · ∇ϕ0 + (A′(0)∇T 0 · ∇T 0 − div(h))ϕ0 dx

with

A′(0)v = div(h)Mv −DhMv +Mvh−MDh∗v, for v ∈ Rd.
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Next we give a more usable formula for the shape derivative. For convenience
we suppress the superscript for T 0 and ϕ0 in the following. In particular we
have

εA′(0)∇T · ∇ϕ = (εM∇T · ∇ϕ) IdRd : Dh
− (ε∇ϕ⊗M∇T ) : Dh+ (εM∗∇T∇ϕ) · h
− (ε∇T ⊗M∇ϕ) : Dh,

A′(0)∇T · ∇Tϕ = ϕ|T |2M IdRd : Dh− (∇T ⊗M∇Tϕ) : Dh+ (M∗∇T∇Tϕ) · h
− (∇T ⊗M∇Tϕ) : Dh,

div(h)ϕ = ϕ IdRd : Dh.

ut

3 Practical implementation

In this section we describe the practical implementation of an algorithm uti-
lizing the shape derivative DJ for the reconstruction of the locations of the
activation sites. We assume that these sites have the form ωi = Bri(xi) with
radii ri and midpoints xi, i = 1, . . . , N . For these activation sites we reconstruct
the midpoints xi.

3.1 The state and adjoint state equations

Since the state equation is of nonlinear elliptic type which in practically relevant
situations is posed on domains with challenging geometry, we propose to solve
it using linear finite elements and a Newton method. For convenience we recall
the state equation as

e(T, v) =
∫
Ω

εM∇T · ∇v + (|∇T |2M − 1)v dx−
∫
ΓN

g2v ds = 0

∀v ∈W 1,4
0 (Ω ∪ ΓN ). (24)

In order to set up a Newton method we need to calculate the derivative of e,
in particular we have

dT e(T, ϕ)v =
∫
Ω

εM∇v · ∇ϕ+ 2M∇T · ∇vϕ dx. (25)

The Newton equation is well posed, see Proposition 2. For a given solution T
of the state equation, the adjoint state equation in the variable ϕ ∈ V has the
form

dT e(T, ϕ)v =
∫
Ω

εM∇v ·∇ϕ+2M∇T ·∇vϕdx+
∫
ΓN

(T−z)v dx = 0, ∀v ∈ V.

(26)
This is a linear elliptic equation of convection-diffusion type, which we again
solve by linear finite elements.
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3.2 Domain perturbation

While the overall source localization algorithm requires only a displacement of
the current source locations, we still calculate a vector field for the perturbation
over the whole domain Ω̄. This vector field h is chosen as the solution of the
vector valued elliptic equation∫

U

Dh : Dv + h · v dx = −
∫
Ω

S1 : Dv + S0 · v dx, ∀v ∈ H1
0 (U,Rd), (27)

where Si, i = 0, 1 are defined in (23) resp. (22). We remark that h is defined on
U and not only on Ω. The last equation is solved using linear finite elements.
We also note that

DJ(Ω,Γ )h = −
∫
U

Dh : Dh+ h · h dx ≤ 0,

and thus h is a decent direction for J . Since we are only interested in the shift
of the midpoints xi of the balls ωi, we average h over ωi, i = i, . . . , N , in order
to get a shift of the midpoints.

3.3 Finite element solver implementation

The domain Ω is discretized using tetrahedral elements and linear Ansatzfunc-
tions {ψi}. As such, there are three linear systems to be solved at least once
in each iteration of the source localization loop:
1. The linear equation in the Newton iteration KN T = f

N
, with

Ki,j
N =

∫
Ω
εM∇ψi · ∇ψj + 2 (M∇T · ∇ψi)ψj dx

f i
N

= −
∫
Ω
εM∇T · ∇ψi + (M∇T · ∇T − 1)ψi dx.

2. The adjoint state equation KA ϕ = f
A
, with

Ki,j
A =

∫
Ω
εM∇ψj · ∇ψi + 2 (M∇T · ∇ψj)ψi dx

f i
A

=
∫
ΓN

(T − z)ψi dx.
3. The domain perturbation equation KS h = f

S
, with

Ki,j
S = I3×3

∫
Ω
δxψi δxψj + δyψi δyψj + δzψi δzψj + ψi ψj dx

f i,1
S

=
∫
Ω
S1,1

1 δxψi + S1,2
1 δyψi + S1,3

1 δzψi + S1
0ψi dx

f i,2
S

=
∫
Ω
S2,1

1 δxψi + S2,2
1 δyψi + S2,3

1 δzψi + S2
0ψi dx

f i,3
S

=
∫
Ω
S3,1

1 δxψi + S3,2
1 δyψi + S3,3

1 δzψi + S3
0ψi dx,

where S0 and S1 are defined according to respectively (23) and (22).
The linear systems are assembled and manipulated using the PETSc [2] frame-
work. All three linear system are solved using the Boomer [10] Algebraic
Multigrid preconditioner in combination with the GMRES solver provided by
PETSc. The linear solver in the Newton method is configured with a relative
residual error tolerance of 10−4, while all other solvers use an absolute residual
error tolerance of 10−8. The detailed solver settings are listed in the appendix.
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Algorithm 1 The source localization algorithm.
Choose initial mid-points x0

i , i = 1, . . . , N
Choose ` > 0
Choose θ ∈ [1, 1.1]
Choose α ∈ (0, 1)
k = 0
λi = 1, i = 1, . . . , N
Solve the state equation (24) for T 0

J0 ← ‖T 0|ΓO − z‖L2(ΓO)
while Jk > tol do

Solve the adjoint state equation (26) for ϕk.
Solve (27) for hk.
hki = 1/|ωi|

∫
ωi
hk(x) dx, i = 1, . . . , N

λi ← λiθ, i = 1, . . . , N
if ‖λihki ‖ > ` then

λi ← `/‖hki ‖
end if
xk+1
i = xki + λih

k
i , i = 1, . . . , N

k ← k + 1
Solve the state equation (24) for Tk
Jk ← ‖Tk|ΓO − z‖L2(ΓO)
while Jk > Jk−1 do . Backtracking if Jk was not reduced

xki ← xki + α(xk−1
i − xki ), i = 1, . . . , N

Solve the state equation (24) for Tk
Jk ← ‖Tk|ΓO − z‖L2(ΓO)

end while
end while

3.4 Source localization

The goal of the source localization algorithm is to identify the midpoints xi,
i = 1, . . . , N of the sources {ωi} that minimize our functional J . For this
purpose, we propose the approach depicted in Algorithm 1. Required inputs
are some starting locations {x0

i }, a user-specified, mesh dependent step-length
` (usually 1-3 mesh edge-lengths), a step-length scaling parameter θ and a
backtracking scale α.

The algorithm starts by initializing T 0 and J0. Then, while the tolerance
condition on Jk is not met, in each iteration of the while-loop it computes
solutions to (26) and (27), updates the source midpoint positions and finally
computes a new state solution to (24). If necessary backtracking is employed,
and the next iteration begins.

For complex geometries, the step-length ` needs to be chosen small enough
in order to prevent the sources from being moved out of Ω. Note, that ` only
realizes an upper bound on ‖λihki ‖, but this quantity is not bounded from
below. Choosing θ > 1 improves convergence speed, as the λi are scaled up
to counteract the reduction of hk. In the case of overshooting, oscillations are
reduced by backtracking.

According to the problem statement, the sources {ωi} are not part of
the computational domain Ω. In each iteration k, all points of Ω̄ are moved
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based on the perturbation field hk, in particular the current source surface
Γ k = ∪Ni=1ω

k
i is moved. In practice it is easier to solve also the state and

adjoint equations on U = Ω ∪ ω̄ with ω = ∪Ni=1ω
k
i and apply the Dirichlet

boundary values on whole ω̄. Then we only translate the logical representation
of ω and thus the discretization of U is not perturbed. This prevents the need
for re-meshing. Once ‖λihki ‖ is smaller than the average FE mesh edge-length,
local refinement would become necessary. This however, is not within the scope
of this work.

3.5 Model parameters

The tensor parameter M contains the squared cardiac conduction velocity.
In the depth of the human LV wall, conduction velocity is orthotropic due
to numerous factors, with the most important ones being the geometry of
myocytes and the non-uniform distribution of conduction-mediating proteins
and sodium channels. The fastest propagation velocity vf is observed along
the prevailing long axis orientation of myocytes, often referred to as “fiber
orientation” f . Excitation spread within a sheet and along direction s, which is
orthogonal to f , occurs at a lower conduction velocity vs, and even slower in a
sheet normal direction n = f×s, at a velocity vn. Both orthotropic velocities as
well as the principal axes {f, s, n} vary in space. In general, vf > vs > vn holds
where the ratios are assumed as vf : vs : vn ≈ 4 : 2 : 1 based on experimental
studies [4] As such, M is defined as

M := v2
f f ⊗ f + v2

s s⊗ s+ v2
n n⊗ n.

The 2D benchmark in Section 4.2 will feature constant fiber-and sheet-
directions f = (1, 0)∗ and s = (0, 1)∗ with varying (vf , vs), while the 3D
human LV benchmark in Section 4.3 will have constant velocities vf = 0.6 m/s,
vs = 0.4 m/s, vn = 0.2 m/s and heterogeneous vectors {f, s, n}, computed by
a rule-based method [3]. Further, in the human LV benchmark M(x) is an
element-wise function. This makes the computation of S0 impractical. While
it would be possible to change the representation of M , this has not been
pursued, since the terms involving S0 have only a small impact on the shape
derivative, see the comparisons in Section 4.2, Figure 2. We carried out numer-
ical tests with varying anisotropy ratios, see Figure 7. In the LV benchmark,
the convergence trajectory of one source varied significantly between the three
choices of M . Numerical tests with significantly higher anisotropy ratios indi-
cate, that a higher FE mesh resolution is required, particularly in the case of
large displacements orthogonal to f .

The parameter ε is calibrated by comparing the macroscopic velocity of
propagating wavefronts generated by the viscous Eikonal model with physio-
logical measurements such as the observed temporal delay between endocardial
activation and epicardial breakthrough. Depending on a given trajectory rela-
tive to the used fiber field, macroscopic velocities fall into the range of local
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conduction velocities encoded in M , which themselves are based on experimen-
tal measurements [4].

4 Evaluation benchmarks

Two numerical benchmarks, a 2D wedge benchmark and a 3D LV benchmark,
will be used to evaluate the proposed algorithm’s ability to identify activation
sources based on input boundary data.

4.1 Evaluation criteria

In both benchmarks we measure both the convergence of the current source
locations {xki } to the exact source locations {xi}, and the reduction of the
functional J defined in (1). Thus the following evaluation criteria are used:

– the distances to reference locations dki := ‖xi − xki ‖
– the relative reduction Jk/J0 with Jk := 1

2
∫
ΓO

(T k − z)2 dx.

4.2 2D benchmark

In this benchmark, the computational domain U is given by the unit-square
(0, 1) × (0, 1). We consider two activation sites ωi = B0.1(xi) whose mid-
points are given by x1 = (0.5, 0.3)∗ and x2 = (0.25, 0.7)∗. Thus we have
Ω = U \

⋃2
i=1 ωi. The observed data are given on the boundary ΓN of U . The

domain U is discretized by 66049 vertices and 131072 triangles, which yields a
discretization size of ≈ 4 · 10−3. Moreover we set g = 0, f = 1, ε = 0.1 and

M =
(

sin(πx) + 1.1 0
0 sin(πy) + 1.1

)
.

In this example we consider the noise free case. Thus the observed data z
is generated by solving the state equation for T and restricting T to ΓN . In
Figure 1 we observe that the distances between the exact midpoints xi and xki
reach values below 10−3, more precisely d1 = 1.7 · 10−4 and d2 = 2.6 · 10−4,
after 100 iterations. These distances correspond approximately to the mesh
size. On the right of this figure we can note that Jk/J0 attains a value of
about 10−7. Figure 2 shows the trajectories of the points xki as the iteration
proceeds. We can see that the midpoints xki do not move in straight lines. We
expect that this is caused by interaction between the two activation sites, and
the influence of M . Nevertheless the exact midpoints xi are reached with high
precision. In Figure 3 the perturbation field hk and the adjoint state ϕk are
displayed for k = 0, 10, 20. The dominant directions of the perturbation field
point from regions of Ω where ϕk is negative to regions of Ω where ϕk attains
high positive values. Moreover we see that the trajectories of the points xki
(Figure 2) correlate to the main directions of the perturbation field hk.
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Fig. 1: The evaluation criteria for the 2D benchmark. Left: Distance to refer-
ence location dki := ‖xki − xi‖, i = 1, 2 over the iteration k. Right: Relative
functional reduction Jk/J0 over the iteration k.
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Fig. 2: Left: Trajectory of the points xk1 and xk2 during optimization. Right:
Magnitude of Sij over Iterations k.

Fig. 3: Perturbation field hk (arrows) and adjoint state variable ϕk (background
color; blue-negative and red-positive) for k = 0, 10, 20. The vectors are scaled
for better visibility. The color of the vectors correlates with their length. (blue-
short and red-long)
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Fig. 4: Left: The LV geometry forming Ω. Center: The fiber directions f ,
colored after the y-component of s. Right: The surface ΓO.

In order to study the influence of the different parts of DJk we introduce
the quantities:

S11 = ε
∣∣∫
Ω

(IdRdM∇T k · ∇ϕk) : Dhk dx
∣∣ ,

S12 =
∣∣∫
Ω

(|∇T k|2M − 1)ϕkIdRd) : Dhk dx
∣∣ ,

S13 = ε
∣∣∫
Ω

(∇T k ⊗M∇ϕk +∇ϕk ⊗M∇T k) : Dhk dx
∣∣ ,

S14 =
∣∣∫
Ω

(2∇T k ⊗M∇T kϕk) : Dhk dx
∣∣ ,

S01 = ε
∣∣∫
Ω

(M∗∇Tk∇ϕ
k) · hk dx

∣∣ and S02 =
∣∣∫
Ω

(M∗∇Tk∇T
kϕk) · hk dx

∣∣ .
We clearly see in Figure 2 that S13 and S14 are the dominating summands in
|DJkhk|. Thus it is justified to omit the terms S01 and S02 in the following
benchmark.

4.3 3D LV benchmark

The 3D LV benchmark serves to gauge the potential of the proposed method
in an envisioned clinical application which is geared towards localizing earliest
activation sites from epicardial activation maps. In line with early experimental
studies [8] on ex vivo human hearts we assume that there are three discrete sites
of earliest activation located at the endocardial surface of the LV, referred to as
anterior xaf , posterior xpf and septal fascicle xsf according to their anatomical
location.

The discretized model of a human LV forming the computational domain Ω
consists of 47,938 vertices and 245,611 tetrahedra, with an average discretiza-
tion size of ≈ 1.5mm. The observable surface ΓO is formed by the epicardial
surface of the LV. We refer to Figure 4. The source surface is Γ = ∪3

i=1∂ωi with
ωi := Br=3mm(xi), i = 1, 2, 3. Further, based on numerical tests with varying
activation sequences we chose ε = 80 ms to obtain appropriate macroscopic
conduction velocities which fall into the range of local conduction velocities
encoded in M (see Section 3.5).
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Motivated by real-world applications, we want z ∈ L2(ΓO) to correspond
to some error-prone data defined on a lower spatial resolution than the compu-
tational resolution of ΓO. To accommodate for this, the data z are generated
as follows:
1. A reference activation time T r, using the source locations

x1 = (60.3, 27.6,−20.9)∗, x2 = (42.7,−12.8,−2.6)∗

and x3 = (26.9, 19.6,−39.1)∗

is computed.
2. T r is sub-sampled at a set of 106 uniformly spaced sample points {si}106

i=1 ∈
ΓO yielding ti := T r(si).

3. A zero-average uniform noise is added: ti ← ti + ξi 1/|Ω|
∫
Ω
T r(x) dx, i =

1, . . . , 106 with ξi ∈ [−ξ/2, ξ/2].
4. The data z is interpolated from the perturbed samples {ti} using distance-

weighted interpolation.
We compare the following cases for different data selections:

(RI): Using the reference data as input: z := T r|ΓO .
(II): Using only interpolated input: z is generated as described above with
ξ = 0.
(PI): Using perturbed and interpolated input: z is generated as described
above with ξ = 0.3.

Starting at the initial locations

x0
1 = (71.1, 11.3,−18.4)∗, x0

2 = (44.7,−23,−25.2)∗

and x0
3 = (42.3, 9.1,−46.8)∗,

the source localization Algorithm 1 is applied. In order to find the best achiev-
able results, the algorithm is configured to only stop if J cannot be further
reduced. All three cases executed in approximately 250 seconds on 10 cores of
a workstation PC with two Intel Xeon E5645 (2.40GHz) CPUs.

Figure 5 shows the two evaluation criteria – the summed distances to
reference location and the relative reduction of J – over the iteration count.
For (RI), the algorithm terminates after 29 iterations with a relative error
minimum of 3 · 10−4. The highest final distance to reference location is d1 = 1
mm, which is well below the average FE edge-length of 1.5 mm. The discrete
representation of the reconstructed activation sites closely match the desired
reference sites.

In the (II) case, the algorithm stops after 29 iterations. The minimal rel-
ative error is 5.4 · 10−3. The highest final distance is d1 = 4.3 mm, which is
significantly larger than in the (RI) case. This indicates that the low-resolution
sampling of T r|ΓO lowers the quality of our reconstruction. Also, the interpo-
lation induces noise which impairs the reconstruction quality.

For (PI), the algorithm terminates after 30 iterations with relative error
1.6 ·10−2. The di are similar to the (II) case, although slightly higher, with the
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highest final distance d1 = 4.4 mm. This further hints that the low-resolution
sampling has a much greater effect on the source locations than the error due
to noise.

For all three cases, the final displacements xki − xk−1
i are smaller than 0.2

mm, and therefore only a fraction of the mesh edge-length of 1.5 mm. As such,
some mesh manipulation (e.g. mesh refinement, mesh deformation) would be
necessary in order to apply the source displacement on the state and adjoint
state problems. Since the mesh is not adjusted in the presented paper, this
leads to a stagnation of the algorithm.

Figure 6 visualizes the source localization process by displaying the trajec-
tories of xki and the adjoint solution ϕk during the source localization process.
By comparing figure parts A and B, we observe that the motion induced by
the field h is oriented from negative to positive regions of ϕk, similar to the 2D
benchmark in section 4.2. Further, we see the diminishing absolute values of ϕk
over the iteration count. The final locations in figure 6A show, that even the
worst localization (PI) still offers a good approximation of the general source
location, well inside the uncertainty bounds of clinical parameters.

5 Discussion

This study presented analysis and implementation of an algorithm for iden-
tifying sites of earliest activation in the LV from epicardial activation maps.
The algorithm is posed as an optimization problem, where initial activation
sites are chosen first to be then iteratively perturbed in order to minimize the
mismatch between computed activation times and the activation maps given
at the epicardial surface. We demonstrated well-posedness of all sub-problems,
namely the viscous Eikonal equation, the tangent and adjoint equations and
the perturbed state equation and characterized the shape derivative.
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A

B

Fig. 6: A) The trajectories traveled by xki for the (RI) and (PI) cases. The (RI)
trajectory is colored in green, while the one of the (PI) case is colored in red.
The mesh vertices inside ωi used for the reference solution T r are displayed in
red, while those inside ω0

i are displayed in blue. B) The adjoint solution ϕk for
the (RI) case, color-encoded between blue and red in the range [−50, 50] ms
for the iterations k = 0, 10, 20, 28 respectively from left to right.

Fig. 7: The source trajectories in the (RI) case for three different choices of
M . Green: vf = 0.6, vs = 0.4, vn = 0.2. Blue: vf = 0.5, vs = 0.5, vn = 0.5. Red:
vf = 0.8, vs = 0.4, vn = 0.2
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The theoretical results were verified by solving two benchmark problems, a
2D unit-square benchmark and a 3D human LV benchmark. For unperturbed
input data, the localization method was able to accurately reconstruct the
sites of initial activation. The largest deviations observed were 2.6 · 10−4 and 1
mm, respectively, for the 2D and 3D benchmark. This was significantly smaller
than the respective spatial discretization sizes of 4 · 10−3 and 1.5 mm used in
2D and 3D benchmark, respectively. To probe the robustness of the method,
the 3D benchmark was repeated using input data of reduced quality, that is,
epicardial activation were spatially under-sampled and noise was added. These
benchmark results showed, that the identification of earliest activation sites
was still feasible, yielding a sufficiently accurate approximation of the general
locations, comparable or better than the accuracy achieved with clinically used
invasive endocardial mapping systems [9].

Several topics suggest themselves as possible extensions of the present work.
The shape gradient is already set up to allow for a more realistic representa-
tion of the activations sites than those considered in the numerical realizations
of these first benchmarks. Also, it can be of interest to incorporate different
activation times by introducing inhomogenous Dirichlet boundary conditions
with unknown forcing terms. To allow for additional accuracy of the recon-
struction of the evolution of the activation regions local grid refinement can
be considered in future algorithmic efforts.

5.1 Limitations

While the benchmarks in this study demonstrate that the identification of sites
of earliest endocardial activation from epicardial activation maps is, in principle,
feasible with the proposed method, with regard to practical applications a
number of restrictions apply. Out method makes various tacit assumptions
which may not always hold in practice. Fiber arrangements are assumed to be
known, following largely the patterns observed experimentally in the healthy LV
[19]. With current technology fiber arrangements cannot be measured in vivo
with sufficient spatial resolution, but suitable technologies under development
[17] and promise to lift this restriction in the future. Further, conduction
velocities along the principal tensor axes were also assumed homogeneously
throughout the LV, as velocities cannot be determined accurately in vivo, the
chosen values were based on experimental observations [4]. These values and
their ratios may deviate from the experimentally estimation of vf : vs : vn = 3 :
2 : 1, and they may not be constant throughout the myocardium. Identifying
the velocity tensor fields is therefore an additional complexity which is a
related research topic [13] that has not been addressed in this study. A further
limitation is the assumption that three sites of earliest endocardial activation
exist. While this is physiologically motivated based on the notion that three
main fascicles initiate activation in the healthy human LV endocardium [8],
this may not always be the case, particularly not under pathological conditions
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such as a left bundle branch block where the electrical activation of the LV
may follow a markedly different pattern.

Acknowledgements The authors gratefully acknowledge many useful discussions with E.
Karabelas and K. Sturm.

Appendix

PETSc solver options

The following solver configuration parameters were passed at run-time to
PETSc:

-ksp_type fgmres
-ksp_pc_side right
-ksp_gmres_restart 100
-ksp_gmres_modifiedgramschmidt
-pc_type hypre
-pc_hypre_type boomeramg
-pc_hypre_boomeramg_max_iter 1
-pc_hypre_boomeramg_coarsen_type HMIS
-pc_hypre_boomeramg_tol 0.0
-pc_hypre_boomeramg_max_levels 100
-pc_hypre_boomeramg_relax_type_all l1scaled-SOR/Jacobi
-pc_hypre_boomeramg_grid_sweeps_all 1
-pc_hypre_boomeramg_interp_type ext+i
-pc_hypre_boomeramg_cycle_type V
-pc_hypre_boomeramg_strong_threshold 0
-pc_hypre_boomeramg_nodal_relaxation 0
-pc_hypre_boomeramg_nodal_coarsen 0
-pc_hypre_boomeramg_print_statistics 0
-pc_hypre_boomeramg_agg_nl 0
-pc_hypre_boomeramg_P_max 12

Units

The results of the LV benchmark use the following units:
variable unit
T, ϕ ms
h mm
M mm2/ms2

ε ms
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